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Abstract

We propose a self-supervised algorithm to learn representations from
egocentric video data using multiple modalities of video and audio. In
robotics and augmented reality, the input to the agent is a long stream
of video from the first-person or egocentric point of view. Towards this
end, recently there have been significant efforts to capture humans from
their first-person/egocentric view interacting with their own environments
as they go about their daily activities. As a result, several large-scale
egocentric, interaction-rich, multi-modal datasets have emerged. However,
learning representations from such videos can be quite challenging.

First, given the uncurated nature of long, untrimmed, continuous videos,
learning effective representations require focusing on moments in time
when interactions take place. A real-world video consists of many non-
activity segments which are not conducive to learning. Second, visual
representations of daily activities should be sensitive to changes in the state
of the object and the environment. In other words, the representations
should be state-aware. However, current successful multi-modal learning
frameworks encourage representations that are invariant to time and
object states.

To address these challenges, we leverage audio signals to identify moments
of likely interactions which are conducive to better learning. Motivated
by the observation of a sharp audio signal associated with an interaction,
we also propose a novel self-supervised objective that learns from audible
state changes caused by interactions. We validate these contributions
extensively on two large-scale egocentric datasets, EPIC-Kitchens-100 and
Ego4D, and show improvements on several downstream tasks, including
action recognition, long-term action anticipation, object state change
classification, and point-of-no-return temporal localization.
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Chapter 1

Introduction

Self-supervised learning has witnessed tremendous progress with the help of pretext

tasks [18, 27, 54, 57] or contrastive learning based methods [12, 30, 34, 55]. However,

most of the methods are bottlenecked by the lack of rich, real-world data and they

learn from static images which lack temporal information and restrict the ability to

learn object deformations and state changes over time. This issue can be addressed by

leveraging videos that provide temporal information and learning rich representations

from them in a self-supervised manner.

Learning representations from videos is however quite challenging. We first need

to choose the right objective function for self-supervised representation learning.

Approaches such as [61, 74] learn representations that are invariant to object defor-

mations and viewpoints. However, many downstream tasks such as action recognition

require representations that are sensitive to these deformations in order to uniquely

identify an action. Another alternative has been to use the multi-modal data [3, 50, 64]

and learn representations via audio. However, most of these approaches seek to align

audio and visual features in a common space which leads to invariant representations

as well. The second challenge is that current video-based SSL approaches train

on the curated nature of video datasets, such as Kinetics [10]. These approaches

are designed to leverage carefully selected clips, displaying a single action or object

interaction. This is in contrast to the predominantly untrimmed real-world data

which consists of multiple daily activities and interactions over time. Here, unlike

action centric datasets, the most ‘interesting‘ or ‘interaction-rich‘ clips have NOT
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1. Introduction

been carefully selected by human annotators. A long, untrimmed video can consist of

long non-activity segments. Thus, learning from untrimmed videos poses a major

challenge, as a significant portion of the data does not focus on the concepts we want

to learn.

At the same time, we see our world from an egocentric, first-person view. Similarly,

for robotic agents, the input consists of a long stream of video from a first-person,

egocentric point of view. Motivated by this, there have been efforts towards learning

from egocentric datasets and curating datasets [15, 16, 29] which represent the

real-world.

Motivated by the above challenges and the characteristics of the real-world, in this

work, we ask the question, ‘Can we learn meaningful representations from interaction-

rich, multi-modal streams of egocentric data?’ Learning from continuous streams of

data requires focusing on the right moments in time when the actual interactions are

likely to occur. Consider, for example, the acts of opening a fridge, placing a pan

on the stove, or cutting of vegetables. Actions like these create clear and consistent

sound signatures due to the physical interaction between objects. These moments can

be easily detected from audio alone and can be used to target training on interesting

portions of the untrimmed videos. We show that even a simple spectrogram-based

handcrafted detector is sufficient to identify interesting moments in time, and that

representation learning benefits substantially from using them to sample training

clips.

Prior work on audio-visual correspondence (AVC) [4, 17, 50] use the natural

co-occurrence of sounds as a source of supervision and try to bring the modalities into

a common feature space. However, since the AVC objective still favors invariance, the

learned representations are not informative of the changes that happen over time (e.g.,

representations that can distinguish between closed and opened fridge, or vegetables

before and after chopping them). To better capture state changes, we introduce a novel

audio-visual self-supervised objective, in which audio representations at key moments

in time are required to be informative of the change in the corresponding visual

representations over time. The intuition behind this objective is that transitions

between object states are often marked by characteristic sounds. Thus, models

optimized under this objective would associate the distinct sounds not only with the

objects themselves (as accomplished with AVC), but also with the transition between

2



1. Introduction

two different states of the object.

To this end, we introduce RepLAI – Representation Learning from Audible

Interactions, a self-supervised algorithm for representation learning from videos of

audible interactions. RepLAI uses the audio signals in two unique ways: (1) to

identify moments in time that are conducive to better self-supervised learning and

(2) to learn representations that focus on the visual state changes caused by audible

interactions. We validate these contributions extensively on two egocentric datasets,

EPIC-Kitchens-100 [16] and the recently released Ego4D [29], where we demonstrate

the benefits of RepLAI for several downstream tasks, including action recognition,

long term action anticipation, and object state change classification.

3
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Chapter 2

Related Works

2.1 Self-supervised learning

Self-supervised learning methods learn representations from an unlabeled dataset.

These methods can be divided into two categories: learning from pretext tasks and

learning from contrastive learning based objective functions. Multiple pretext tasks in

self-supervised learning have been explored such as solving jigsaw puzzle [54], patch

location prediction [18], inpainting [57], and image rotation [27] prediction. The

second category of contrastive learning learns representations with the help of data

augmentation and creates positive and negative pairs for a data sample. The positive

pair is brought closer via cosine similarity and negative pairs are brought far apart.

This is explored as instance discrimination [9, 12, 30, 34, 55]. These methods have

shown rapid progress in self-supervised learning for images. While these approaches

explore spatial information of images, our method leverages the temporal information

of videos.

2.2 Video representation learning

For self-supervised representation learning in videos, spatio-temporal pretext tasks

are designed such as temporal order prediction [39, 47, 76, 77], predicting motion and

appearance statistics [72], pace prediction [73], temporal cycle consistency [20, 75],
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2. Related Works

and video colorization [71]. The second category in self-supervised learning of

contrastive learning has also been widely explored for videos [24, 31, 32, 36, 62, 64, 79]

with impressive results on action recognition tasks. These methods however learn

representations that are invariant to spatio-temporal augmentations, such as temporal

jittering, and thus are incapable of representing object state changes. Closer to the

objective of our method, we include relevant literature on audio-visual representation

learning from videos, where the audio stream is additionally utilized.

2.3 Audio-visual representation learning

Leveraging other modalities to provide a supervisory signal has also been explored

in the context of the audio modality with the help of audio-visual correspondence

(AVC) [4, 5]. Pretext tasks for audio-visual representation learning include temporal

synchronization [40, 56] between audio and video, audio classification [3, 6, 13],

spatial alignment prediction between audio and 360-degree videos [48], optimal

combination of self-supervised tasks [59]. The above tasks have been shown beneficial

for learning effective multi-modal video representations. Contrastive learning has

also been explored for both audio and video modality [49, 50, 58] as a cross-modal

instance discrimination task. We explore the audio-visual representation for real-world

fine-grained video understanding.

2.4 Fine-grained video understanding

Real-world videos are often long and untrimmed in nature and have multiple actions in

a single video. Along this line, fine-grained analysis has been studied for videos in the

form of a query-response temporal attention mechanism [80], bi-directional RNNs [65],

and semi-supervised learning problem [19]. While these works are unimodal in nature

and only utilize the visual modality, other works have also explored multi-modal

fine-grained video understanding as a transformer-based model [38], by exploiting the

correspondence between modalities [51], or by exploring how to best combine multiple

modalities - audio, visual, and language [2]. In our work, we show fine-grained video

understanding in a self-supervised manner by using the video and audio modalities.
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2.5 Egocentric datasets

In robotics and augmented reality, the input to the agent is a long stream of video

from the first-person or egocentric point of view. Motivated by this, efforts have

been made toward curating egocentric datasets. These egocentric datasets offer new

opportunities to learn from a first-person point of view, where the world is seen

through the eyes of an agent. Many egocentric datasets have been developed such

as Epic-kitchens [15, 16] which consist of daily activities performed in a kitchen

environment, Activities of Daily Living [60], UT Ego [42, 67], the Disney Dataset [22],

and the large-scale Ego4D dataset [29] which consists of daily life activities in multiple

scenarios such as household, outdoor spaces, workplace, etc. Multiple challenges and

downstream tasks have been explored for egocentric datasets like action recognition [37,

38, 43], action localization [63], action anticipation [1, 25, 28, 44, 66], human-object

interactions [7, 14, 52], parsing social interactions [53], audio-visual navigation [11],

and domain adaptation [51]. In our work, we evaluate the representations learned

by our self-supervised approach on the EPIC-Kitchens-100 and Ego4D datasets over

multiple downstream tasks.

2.6 Learning from interactions

Over the last few years, human-object interactions have been widely explored in

the form of reconstructing the hand in the wild [8], from a single RGB image [78],

reconstructing both hand and object from RGB videos [33], image generation [35],

hand pose estimation [45], and two hand interactions [41]. Studying these interactions

has been helpful for improving grasping [46]. While these works explore how to

interact with the objects, in our work, we study the object state changes that arise

from an interaction.
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Chapter 3

Audio-visual State-Aware

Representation Learning from

Interactions

3.1 Objective

Our objective is to learn audio-visual representations from interaction-rich, ego-centric

data, such that, it develops a state-aware understanding of the action/interaction

being performed in a video clip. We achieve this in a self-supervised manner and make

two key contributions in our work - identifying moments of interaction (MoI)

and learning from audible state changes. In the following sections, we will

provide an overview of our approach and then present our contributions in detail.

3.2 Overview

This section contains the setup of our algorithm for learning audio-visual representa-

tions. We use the framework of self-supervised learning to learn representations from

audio-visual videos without annotations.

We begin with a dataset D = {(vi, ai)Ni=1} which consists of N long, untrimmed

videos consisting of both video and audio modality. Given a sample (v, a) ∈ D, we

9



3. Audio-visual State-Aware Representation Learning from Interactions
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Before 
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to chopped bok choy
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Figure 3.1: Moment of interactions (MoI) detected in a long, untrimmed
video. When humans interact with the environment, it produces a unique audio
pattern which is observed as vertical edges in the audio spectrogram. We define
these edges as moments of interaction as shown in red box. Random moments in
time are likely to contain NO interactions as shown by the gray box. Since no
interactions occur, no changes are observed in the before and after states. We observe
state changes around moments of interaction (MoI) which can be leveraged to learn
state-aware representations.

identify the moment of interactions (MoI) using the audio signal of the video (Sec-

tion 3.2.1). Then, we extract a short audio clip and short video clips around these

identified moments of interaction. We use visual and audio encoders, fV and fA

respectively, to encode these trimmed audio-video clips. Note that our objective

is to learn the audio-visual encoders, fV and fA. Once we receive the audio-visual

representations from the encoders, we optimize the algorithm with two audio-visual

self-supervised losses:

1. Taking inspiration from the work [50], we use Audio-Visual Correspondence

Loss, LAVC (Section 3.2.3).

2. We propose a novel objective, Audible State Change Loss LAStC (Sec-

tion 3.2.2).

Before a detailed discussion of the moment of interaction and the objective

functions used for model training, we provide some intuition behind our two key

contributions as follows:

• How do moments of interaction (MoI) help? When we consider a real-

10
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Untrimmed 
Audio-Visual Pairs

Trim

Trim
Untrimmed audio stream 𝑎

Untrimmed visual stream 𝑣
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𝑓"

ℒ"!#
𝑡MoI Detection
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Δ$

Audio-Visual
Encoders

Clip 
Extraction

Self-Supervised 
Loss

ℒ"%&#

, Visual state
change

Figure 3.2: Overview of RepLAI. RepLAI seeks to learn audio and visual encoders
(fA and fV ) by (1) detecting and focusing the training on moments of interaction
(MoI) present in untrimmed videos and (2) learning via two self-supervised objective
functions – audio-visual correspondence (AVC) and audio identifiable state changes
(AStC).

world, untrimmed video of daily activities, it often contains long periods without

interactions, which aren’t useful for training. Instead, we search for moments in

time that are more likely to contain interactions, which we refer to as moments

of interaction (MoI). This gives a more informative signal to the model to learn

about the interactions with the environment. Note that our definition of an

interaction is not just restricted to a human-object interaction but also covers

the scenarios of human-environment interaction.

• How does audible state change loss (LAStC) help? Visual representations

of interaction-rich data should be informative of the changes in the state of

the environment and/or objects being interacted with. Moreover, these state

changes are usually caused by physical interactions, which produce distinct

sound signatures. We hypothesize that state-aware representations can be

obtained by learning to associate audio with the change of visual representation

during a moment of interaction.

3.2.1 Audio-driven identification of moments of

interaction (MoI)

We hypothesize that audio signals can be particularly informative of moments of

interaction. Considering a real-world scenario, when we perform day-to-day activities,

11



3. Audio-visual State-Aware Representation Learning from Interactions

we physically interact with the objects in our environment. These interactions usually

produce a distinct audio pattern which is a short burst of energy that span all

frequencies (Figure 3.1). Referring to Figure 3.1, we visualize the untrimmed visual

and audio data of a person interacting with the environment. The audio modality

is represented as a log mel spectrogram where the x-axis represents time and y-axis

the audio frequency in log-scale. The moments of interaction are visible in the

spectrogram in the form of vertical edges which can be easily detected to give us

the timestamps of where an interaction occurred. Once detected, we take short

audio-video clips around these moments of interaction and collect them into a dataset

DMoI which is used for training.

Now, we focus our discussion on how we can locate the timestamp of such vertical

edges. Intuitively, we do this by finding robust local maxima in the total energy

(summed over all frequencies) of the spectrogram. Concretely, let M(t, ω) be the value

of the log mel spectrogram of an audio clip at time t and frequency ω. To remove the

background noise, we compute the z-score normalization of the spectrogram for each

frequency independently M̄(t, ω) = s(t,ω)−µω

σω+ϵ
, where ϵ is small constant for numerical

stability. Here, µω and σω are the mean and standard deviation of M(t, ω) over time,

respectively. 1

Next, we define moments of interaction as the set of timestamps which are local

maxima of
∑

ω s̄(t, ω) (or peaks for short). Since there can be multiple local maxima

or weak local maxima due to the noisy nature of audio signals, we ignore peaks with

small prominence (lower than 1)2. For further robustness, when multiple close peaks

are found (less than 50ms apart), only the highest prominence peak is kept.

3.2.2 Audible State Change Loss (LAStC)

When we interact with the environment, the physical interactions often gives rise to

two natural things:

• State Changes in the environment

• Distinct audio signals

1Specifically, µω = Et[M(t, ω)], σ2
ω = Et[(M(t, ω)− µω)

2], and ϵ = 1e− 5.
2The prominence of a peak is defined as the difference between the peak value and the minimum

value in a small window around it.
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Learning from Audible State Changes

Trim

TrimAudio 𝑎

Video 𝑣

𝑓!

MoI 𝑡

𝑓"

𝑓"

−

Audio-Visual
Encoders

Clip 
Extraction

ℎ"!#$%

ℎ"!#$%

ℎ!!#$%

AStC
Projection Heads

ℎ&"!#$% ℒ!#$%
Δ𝒗$

Loss 
Function

Figure 3.3: The proposed AStC formulation (3.2.2)

We leverage this natural co-occurrence and propose a self-supervised objective

that seeks to associate the audio with changes in the visual state during a moment of

interaction. The proposed task is optimized by minimizing a loss with two negative

log-likelihood terms to:

• increase the probability of associating the audio with the visual state change in

the forward (i.e. correct) direction

• decrease the probability of associating the audio with the visual state change in

the backward (i.e. incorrect) direction

For example, consider the interaction of ‘cutting a vegetable’ as shown in the

Figure 3.1. To optimize for this task, the audio of the action cut should be

• similar to the visual transition of full vegetable → cut vegetable

• dissimilar to the (backwards) transition cut vegetable → full vegetable

This encourages the model to learn representations that are informative of object

states as well as the transition direction of the object states, making them useful for

a variety of egocentric tasks. Specifically, the audible state change (AStC) loss can be

defined as:

LAStC = Evt,at∈DMoI

[
− log

(
pfrwd(vt, at)

)
− log

(
1− pbkwd(vt, at)

)]
. (3.1)

13



3. Audio-visual State-Aware Representation Learning from Interactions

The probabilities (pfrwd, pbkwd) are computed from cross-modal similarities

pfrwd(vt, at) = σ
(
sim

(
∆vfrwd

t , at

)
/τ

)
(3.2)

pbkwd(vt, at) = σ
(
sim

(
∆vbkwd

t , at

)
/τ

)
(3.3)

where τ = 0.2 is a temperature hyper-parameter, and σ denotes the sigmoid

function. For readability, we absorb the notations for the audio projection MLP head

hAStCA and the state change projection MLP head hAStC∆V within sim(·, ·), but their usage
is clearly illustrated in 3.3.

We obtain the audio representations (at) by encoding the trimmed audio clips

at via the audio encoder fA (shared across all objectives). As explained above, at is

further projected via hAStCA to a space where the similarity to visual state changes is

enforced.

State change representations (∆vfrwd
t , ∆vbkwd

t ) are computed by considering

two non-overlapping visual clips for each moment of interaction t, at timestamps

t− δ and t+ δ. The two clips, vt−δ and vt+δ, are encoded via the visual encoder fV

(shared across all tasks) and a projection MLP head hAStCV (specific to the AStC task).

Specifically, we represent forward and backward state changes as

∆vfrwd
t = hAStCV ◦ fV (vt+δ)− hAStCV ◦ fV (vt−δ), (3.4)

∆vbkwd
t = hAStCV ◦ fV (vt−δ)− hAStCV ◦ fV (vt+δ). (3.5)

3.2.3 Audio-Visual Correspondence Loss (LAVC)

Audio-visual correspondence (AVC) is a well-studied self-supervised method [4, 17, 50]

for learning uni-modal audio and visual encoders. The key idea is to bring visual and

audio clips into a common feature space such that the representations of audio-visual

pairs are aligned.

For our audio-visual correspondence objective (AVC), we consider a dataset of

audio-visual pairs (vi, ai) with representations vi = fV (vi) and ai = fA(ai). In our

dataset, (vi, ai) are short video and audio clips extracted from sample i around one of

the detected moments of interaction. Then, taking inspiration from the work [50, 68],

audio-visual correspondence is established by minimizing a cross-modal InfoNCE loss
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Figure 3.4: Audio-visual correspondence (3.2.3)

of the form as follows:

LAVC = Evi,ai∼D

[
− log

esim(vi,ai)/τ∑
j e

sim(vi,aj)/τ
− log

esim(vi,ai)/τ∑
j e

sim(vj ,ai)/τ

]
, (3.6)

where τ = 0.07 is a temperature hyper-parameter and sim(·, ·) denotes the cosine

similarity. Both terms in Equation 3.6 help bring vi and ai (i.e. the positives) together.

The key difference is whether the negative set is composed of audio representations

aj or visual representations vj where j ̸= i

For readability of Equation 3.6, we once again absorb the notation for the audio

and visual projection MLP heads (hAVCA and hAVCV ) within sim(·, ·), and illustrate their

usage in Figure 3.4. Figure 3.4 also shows that we apply the AVC loss twice to associate

both the visual clips, one that is extracted slightly before and another clip after the

moment of interaction t, to the corresponding audio.

LAVC vs LAStC: An important thing to note here is that AVC differs from the

proposed AStC task. AVC seeks to associate the audio at with the corresponding

visual clips vt, as opposed to the change in visual state ∆vt. Whereas, AStC seeks to

associate the audio at with the dynamic/temporal change in the visual state. As a

result, visual representations learned through AVC are biased towards static concepts,

while those learned through AStC are more sensitive to dynamic concepts. Both types

of representations are useful for egocentric tasks so that the representations have a

spatial object understanding as well as a state-aware understanding.
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3. Audio-visual State-Aware Representation Learning from Interactions

3.2.4 Training

We learn the audio-visual representation encoders fA and fV and train them to

minimize both AVC and AStC losses, such that the final objective function is as follows:

L = αLAVC + (1− α)LAStC (3.7)

where α is a weight hyper-parameter between the two terms.
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Chapter 4

Experiments

4.1 Datasets

We evaluate on two egocentric datasets (Figure 4.1): EPIC-Kitchens-100 [16]

which contains 100 hours of activities in the kitchen and Ego4D [29] that contains

3670 hours of egocentric video covering daily activities in the home, workplace, social

settings, etc. For experiments on Ego4D, we use all videos from the Forecasting and

Hand-Object interaction subsets.

4.2 Implementation Details

We follow prior work on audio-visual correspondence [50], and use R(2+1)D video

encoder [69] with depth 18 and a 10-layer 2D CNN as the audio encoder. We extract

two short video clips around moments of interaction with a duration of 0.5 seconds

and a frame rate of 16 FPS. The two video clips are separated by a gap of 0.2 seconds.

Video clips are augmented by random resizing, cropping, and horizontal flipping

resulting in clips of 8 frames at a resolution of 112 × 112. For audio, we extract

an audio clip of 2 seconds at 44.1kHz and downsample them to 16kHz. Given the

stereo audio, we average the two waveforms to get mono audio and then convert the

mono signal to a log mel spectrogram with 80 frequency bands and 128 temporal

frames. We train our algorithm with stochastic gradient descent for 100 epochs with
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4. Experiments

Figure 4.1: (Left) EPIC-Kitchens-100: Consists of 100 hours of activities in the
kitchen, (Right) Ego4D: Contains 3670 hours of egocentric video covering daily
activities in the home, workplace, social settings.

a batch size of 128 trained over 4 GTX 1080 Ti GPUs, a learning rate of 0.005 and a

momentum of 0.9. For Ego4D, we keep the same parameters except for a batch size

of 512 trained over 8 RTX 2080 Ti GPUs with a learning rate of 0.05. The loss terms

in Equation 3.7 are equally weighted with an α = 0.5.

4.3 Baselines

We consider the baselines which explore audio-visual modalities. AVID [50] and

XDC [3] are two state-of-the-art models. AVID explores audio visual representation

learning and alignment via contrastive learning, whereas XDC explores clustering

based methods to achieve the same. AVID is pre-trained on 2M audio-visual pairs

from AudioSet [26] that only leverages audio-visual correspondence. For our method,

we initialize the model weights from AVID before training on moments of interaction

to minimize both LAVC and state change loss LAStC. We also compare our approach

with the fully supervised methods presented in Ego4D [29].

4.4 Ablations

Random represents an untrained (randomly initialized) model, RepLAI from

scratch is our method trained without AVID initialization, RepLAI w/o LAVC
(Section 3.2.2, Section 3.2.3) is our method with only audible state change loss and
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Figure 4.2: Downstream Tasks: Action Recognition (AR) of verb and noun

Figure 4.3: Downstream Tasks: State Change Classification (StCC) and Point-of-no-
return (PNR) temporal localization error

Figure 4.4: Downstream Tasks: Long-term action anticipation (LTA)

without the audio-visual correspondence loss, RepLAI w/o LAStC is our method

with only audio-visual correspondence loss and without audible state change loss,

RepLAI w/o MoI is our method trained on random moments in time and without

a moment of interaction (MoI).

4.5 Downstream Tasks

After training our model on the self-supervised losses, we evaluate the representations

on a range of egocentric downstream tasks (Figures 4.4, 4.3, 4.4). For all the

downstream tasks, we follow the standard procedure and append a task specific

decoder to the backbone model and train the decoder on a small annotated dataset.

We discuss the downstream tasks below:
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1. Video action recognition (AR) on EPIC-Kitchens-100 and Ego4D (Figure 4.2):

Given a short video clip, the task is to classify the ‘verb’ and ‘noun’ of the

action taking place in the video. We use two separate linear classifiers trained

for this task and report the top-1 and top-5 accuracy on EPIC-Kitchens-

100 [16] (Table 4.1) and Ego4D [29] (Table 4.2). We also evaluate on the unseen

participants, head classes, and tail classes of EPIC-Kitchens-100 in Table 4.3.

This task is helpful in assessing the spatio-temporal representations learned by

the model in differentiating among different verbs and nouns.

2. State change classification (StCC) on Ego4D (Figure 4.3): Given a video clip,

the task is to classify if an object undergoes a state change or not and is designed

as a binary classification task. The video clip is encoded by fV and a state

change classification head is used which performs global average pooling on

the entire feature tensor and is followed by a classification layer. For this task,

we use the metric, State Change Classification Accuracy (%), and report it

in Table 4.2. This is an ideal task for our model as it evaluates if the model

is able to learn state-aware representations and identify the temporal change

happening in the state of an object in an action.

3. Long-term action anticipation (LTA) on Ego4D (Figure 4.4): Given a video,

the task is to predict the camera wearer’s future sequence of actions. The

model takes as input 4 consecutive clips of 2 seconds, which are encoded using

our visual backbone fV . Following [29], the representations are concatenated

and given to 20 separate linear classification heads to predict the future 20

actions. We measure the performance using the edit distance metric ED@(Z=20)

proposed in the work [29].1 This task is helpful to evaluate if the representations

can be used for long-horizon planning where the actions can change and may

be of arbitrary duration. Results are reported in Table 4.2.

4. Point-of-no-return (PNR) temporal localization error (Figure 4.3): Given a

video clip of a state change, the network has to estimate the time at which

a state change begins. Specifically, the model tries to estimate the keyframe

within the action video clip that contains the point-of-no-return (the time when

1Edit distance measures the minimum number of operations required to convert the predicted
sequence of actions to ground truth. To account for multi-modality of future actions, it also allows
the model to make Z = 20 predictions, and only accounts for the best prediction.
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Method LAVC LAStC MoI Sampling AVC Pretraining [50]
Top1 Acc ↑ Top5 Acc ↑
Verb Noun Verb Noun

(1) Random 20.38 4.96 64.75 19.83

(2) XDC [3] 24.46 6.75 68.04 22.71

(3) AVID [50] ✓ 26.62 9.00 69.79 25.50

(4) RepLAI w/o AVC ✓ ✓ ✓ 29.92 10.46 70.58 29.00

(5) RepLAI w/o AStC ✓ ✓ ✓ 29.29 9.67 73.33 29.54

(6) RepLAI w/o MoI ✓ ✓ ✓ 28.71 8.33 73.17 27.29

(7) RepLAI (scratch) ✓ ✓ ✓ 25.75 8.12 71.25 27.29

(8) RepLAI ✓ ✓ ✓ ✓ 31.71 11.25 73.54 30.54

Table 4.1: Action recognition on EPIC-Kitchens-100. Top1 and top5 accuracy (%) is
reported. ↑: Higher is better.

StCC AR LTA PNR

Method LAVC LAStC MoI AVC Pretraining [50] Acc ↑ Top1 Acc ↑ ED@(Z=20) ↓
Err ↓

Verb Noun Verb Noun

(S1) I3D-ResNet-50 [10, 29] NA NA NA NA 68.70 - - - - 0.739

(S2) SlowFast [23, 29] NA NA NA NA - - - 0.747 0.808

(S3) MViT [21, 29] NA NA NA NA - - - 0.707 0.901

(1) Random 51.80 17.4 7.7 0.831 0.936 0.827

(2) XDC [3] 58.90 17.90 8.70 0.823 0.928 0.820

(3) AVID [50] ✓ 61.11 18.3 10.7 0.811 0.919 0.814

(4) RepLAI w/o AVC ✓ ✓ ✓ 64.00 20.3 12.4 0.781 0.854 0.792

(5) RepLAI w/o AStC ✓ ✓ ✓ 63.60 21.1 13.5 0.774 0.853 0.795

(6) RepLAI w/o MoI ✓ ✓ ✓ 62.90 19.8 11.2 0.792 0.868 0.801

(7) RepLAI (scratch) ✓ ✓ ✓ 66.20 22.2 14.1 0.760 0.840 0.775

(8) RepLAI ✓ ✓ ✓ ✓ 66.30 22.5 14.7 0.755 0.834 0.772

Table 4.2: Performance on several downstream tasks on Ego4D. StCC: State Change
Classification (%). AR: Action Recognition (%). LTA: Long-term action anticipation.
↑: Higher is better. ↓: Lower is better.

the state change begins). We do this by training a fully-connected head applied

to each frame’s representation in order to identify the timestamp at which

the state of an object changes. We measure the performance using temporal

localization error (seconds) in Table 4.2.

4.6 Discussion of Results

From Tables 4.1 and 4.2, we can observe that our method outperforms all other

methods across all downstream tasks. We attribute this performance gain as we

train the model to focus on interactions, both by detecting when they occur and by

learning state-aware representations that are sensitive to interactions. We discuss the

results in more detail for closer analysis and to draw some insights.
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Unseen Participants Tail Classes Head Classes

Top1 Acc ↑ Top5 Acc ↑ Top1 Acc ↑ Top5 Acc ↑ Top1 Acc ↑ Top5 Acc ↑
Methods Verb Noun Verb Noun Verb Noun Verb Noun Verb Noun Verb Noun

XDC [3] 24.29 6.96 67.79 23.00 15.89 4.17 44.92 9.77 24.78 6.95 72.28 24.74

AVID [50] 26.17 8.67 68.75 24.12 16.80 4.43 47.14 12.89 27.95 9.82 73.20 28.43

RepLAI w/o AVC 28.67 9.38 72.04 27.88 18.49 5.21 47.79 12.63 30.59 10.21 73.33 30.90

RepLAI w/o MoI 27.71 7.92 72.08 26.88 16.80 4.04 49.74 12.76 29.36 10.65 76.33 30.41

RepLAI 31.58 10.17 73.46 29.96 20.05 6.12 52.08 16.54 33.41 11.58 77.77 34.33

Table 4.3: Video action recognition (AR) accuracy (%) on EPIC-Kitchens-100 for
unseen participants, head classes, and tail classes. Top1 and top5 accuracy (%) is
reported. ↑: Higher is better.

RepLAI enhances large-scale AVC driven approaches. Prior work on self-

supervised audio-visual learning has shown strong audio-visual representations for

action recognition [49, 50]. In our work, we try to explore how useful these representa-

tions are for egocentric tasks and what are their limitations. To do this, we compare

our model trained from scratch, RepLAI (Scratch), with our model using the weights

from AVID [50] as initialization for both the visual and audio encoders. We also

compare our method to standalone AVID and XDC i.e. without further self-supervised

training. Comparing rows (2), (3), and (8) in Table 4.1 and Table 4.2, it is clear that

our method enhances large-scale AVC pre-training by significant margins, leading to

absolute improvements of 5% in top-1 verb accuracy on EPIC-Kitchens-100, 4.2% on

Ego4D, 5.2% increase in state-change classification accuracy, 5.6% reduction on the

edit distance for long-term anticipation compared to AVID, and 4.2% improvement

in point-of-no-return localization error. Comparing rows (7) and (8), we also see that

large-scale AVID pre-training enhances the representations learned by our method

on EPIC-Kitchens-100 significantly but only marginally on Ego-4D. This is likely

due to the significantly large diversity of scenes in Ego4D. Thus, while relying on

large-scale audio-visual pre-training (as with AVID) can help avoid overfitting on

smaller egocentric datasets, this is less critical when training on larger and more

diverse data. This also shows that our method is able to leverage the large-scale

unlabeled dataset and does not require initial pretraining given enough large-scale

data.

Detecting moments of interaction (MoI) helps representation learning. We

hypothesize that to learn good representations for egocentric data of daily activities,
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self-supervised learning should focus on moments in time when interactions occur.

To assess whether our audio-driven MoI detection (Section 3.2.1) algorithm helps

representation learning, we compare RepLAI with an ablated version, RepLAI w/o

MoI, where the model is trained on audio-visual clips extracted at random from the

untrimmed videos. As can be seen by comparing rows (6) and (8) in Table 4.1 and

Table 4.2, sampling clips around MoI leads to significantly better representations for

all egocentric downstream tasks that we study.

Moreover, even though RepLAI w/o MoI trains with AStC (Section 3.2.2), it is

unable to fully leverage the state change objective function without the information

of moments of interactions which leads to worse performance. Moments of interaction

are helpful in giving a signal for state changes whereas random moments can consist

of no activity or no interaction segments of data and are less likely to consist of state

changes. This suggests that, an explicit state change objective function and sampling

video clips around moments of interactions (which are likely to be aligned with the

actual state changes) together provide an information-rich feedback to our model in

better understanding of how the state changes by an interaction and how the actions

transition over time. These results also clearly show that the proposed MoI detection

procedure is able to find moments in time that are especially useful for learning

representations of daily activities. We emphasize the simplicity and effectiveness of

our audio-driven detector, which shows how informative audio can be when searching

for moments of interaction. In the future, we believe that learning-based approaches

could further enhance MoI detection, and further improve the learned audio-visual

representations. We also show several qualitative examples of detected MoI in the

supplement.

AVC and AStC are complementary. To assess the impact of both terms in Equa-

tion 3.7, we evaluate our method trained without LAVC (Section 3.2.3) and without

LAStC (Section 3.2.2). Comparing rows (4), (5) to row (2) and row (3) in Table 4.1

and Table 4.2 shows that each term enhances the representations obtained through

large-scale audio-visual pre-training (AVID) as compared to the baselines. Further-

more, comparing the ablated models in rows (4) and (5) to the full model in row (8)

shows that these two terms are complementary to each other. This is because the AVC

and AStC tasks encourage the learning of representations with different characteristics.
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RepLAI (ours) t-SNE 

AVID t-SNE

Before Cut 
Carrot

After Cut 
Carrot

Before Grate 
Carrot

After Grate 
Carrot

Audio 
Spectrogram

Action Timeline

Moment of Interaction:
Cutting carrot

Moment of Interaction:
Grating carrot

Figure 4.5: t-SNE visualization of the feature representations learned by RepLAI
and AVID for a video consisting of fine-grained actions over time. For a simpler
visualization, we consider all the videos belonging to a single participant. A larger
spread in the t-SNE of RepLAI indicates more distinct state-aware representations.

AVC focuses on learning visual representations that are informative of what kind of

sounding objects are present in the video, while AStC forces the model to differentiate

between visual representations that occur before and after state change interactions.

RepLAI encourages state-aware representation learning. To study the

representations learned by our approach for different states, we generate a t-SNE

plot [70] for RepLAI and AVID as shown in Figure 4.5. For generating a simpler

visualization, a small dataset is prepared consisting of all the videos corresponding to

a single participant, P01, in EPIC-Kitchens-100 and split into clips of 0.5s. We can

observe that there is a larger spread in the t-SNE plot for RepLAI than AVID. A larger

spread indicates that the representations of the various states are significantly different

from each other and form more distant clusters as shown by RepLAI. Whereas, if the

state representations are similar to each other, they are clustered together and show

lesser spread as shown by AVID. MoI are the key moments of interactions with an

object in an environment where the state is changing. AVID has no such information

about the key moments and also does not have an explicit state change objective

function. Therefore, it is unable to discriminate between the before and after state of

an action and has less effective state-aware information in its representations.
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RepLAI representation are more generalizable and robust to long-tail. To

assess RepLAI in a scenario with domain shift, we evaluate on unseen participants that

were fully excluded from the pre-training of RepLAI. Table 4.3 shows that RepLAI

significantly outperforms baselines and ablations, indicating that representation

learning by our model provides much better generalization. Moreover, the verb and

noun classes in EPIC-Kitchens-100 exhibit a long-tailed distribution. When further

compared on head and tail classes separately in Table 4.3, we can observe that RepLAI

outperforms all other methods highlighting its higher robustness on a long-tailed

distribution.

Self-supervised vs supervised representation learning Table 4.2 also compares

RepLAI to fully supervised methods introduced in Ego4D [29] (rows S1, S2 and S3).

We can observe that RepLAI can also perform competitively to the fully supervised

approaches when we have access to larger and more diverse data. With a further

focus on SSL for untrimmed datasets, SSL methods will be able to match supervised

approaches, and our work takes a step toward it.

4.7 Analysis of the types of interaction and

potential failure modes

To provide further insights into the generalization ability of the proposed method,

we conduct an experiment to assess how discriminative the learned representations

are for different types of interactions. For this experiment, we first categorize the

activities based on the nature of the transition:

• T1: irreversible interactions, backward transition highly unlikely (e.g., cut

vegetables)

• T2: reversible interactions, backward transition occurs often (e.g., open/close

fridge)

• T3: interactions with no transition direction (e.g., stirring)

AStC learns from both T1 and T2 interactions, as they are associated with visual

state changes. Although T1 interactions are never seen in reverse order, the model
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still benefits from knowing the correct order, as this leads to more state-aware

representations. As for T3 type interactions, they can be a failure mode of the AStC

objective, if they cause no change in the visual state of the environment.

Mean Average Precision Norm of Visual State Change Average Similarity

Method T1 T2 T3 T1 T2 T3 T1 T2 T3

AVID 34.5 22.8 10.64 34.5 22.8 10.64 34.5 22.8 10.64

RepLAI 46.22 29.47 14.78 46.22 29.47 14.78 46.22 29.47 14.78

Table 4.4: Assessment of generalization ability of our method

4.7.1 Generalization and state change identifiability

To analyze how RepLAI representations behave for different types of interaction,

we show several metrics in Table 4.4. We computed the mean average precision,

after training a linear classifier for action recognition on Epic-Kitchens. The results

indicate the RepLAI performs significantly better than the finetuned AVID baseline

across all categories of transition/direction, showing that RepLAI (which includes

both AVC and AStC) is generic enough to enhance representations for all types of

interactions.

We also observed that MoI detection helps to find timestamps that have more

perceptible visual state change (even for T3 type interactions) in Table 4.4. To see

this, we computed the norm of the visual state change ||fv(vt+δ)− fv(vt−δ)|| around
MoIs and around randomly chosen timestamps. We also measured how well the

AStC loss learns the association between the audio and the visual state change in the

forward direction. Specifically, we calculated the average similarity sim(∆vfrwd
t , at)

within each of the three categories (T1, T2, T3). Table 4.4 shows a comparison of

this forward association score between RepLAI and the AVID baseline. As expected,

RepLAI learns better associations between the audio and visual state changes than

AVID. More importantly, despite being harder to identify, RepLAI still performs

relatively well among T3 type interactions. This shows that, even for actions like

washing and stirring, there are still slight visual state changes that the model can

learn.
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Chapter 5

Conclusions and Future Work

In this work, we propose a multi-modal audio-visual contrastive-learning based method

for learning representations of egocentric videos of daily activities. We address two

important challenges in order to learn strong representations for this domain. First,

a model should focus learning on moments of interaction (MoI). Since these moments

only occur sporadically in untrimmed videos, we show that MoI detection is an

important component of representation learning in untrimmed datasets. This solves

the issue of training on non-activity segments in long, untrimmed videos. Second,

learning should focus on the natural aspects that arise from interactions, i.e., the

sharp audio signal corresponding to an interaction and changes in the state of an

environment caused by agents interacting with the world. In particular, by seeking to

identify visible state changes from the audio alone, we can learn representations that

are potentially more aware of the state of the environment and hence, particularly

useful for egocentric downstream tasks.

As a future work, we believe there are two components that can make our

approach more robust and attend to the variable situations of the real-world. First,

since noisy audio can result in false moments of interaction, the method can be made

robust to noisy audio. Currently, we remove the background noise by normalizing

the spectrogram across the frequencies, however, more robust approaches can be

implemented to address the noisy audio of real-world and create more accurate

moments of interaction. Since spectrogram is more sensitive to noise, a simple MLP-

based approach can be used which can detect the moments of interaction and then in
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turn, its predictions can be used to train the network with the losses. Second, while

the audible state change loss does give a signal to the network about the temporal

state change direction, there is some room for improvement for the approach to

perform well on actions that have no sense of direction. While these are some of the

future possibilities to improve the model, our future vision is to create a model that

can attend to any real-world scenarios by first detecting the moments of interaction

accurately even in noisy scenarios and second, understanding the nature of action

directions. Such a model can then be used to understand hand-object interactions

in our daily activities, which can ultimately benefit robot manipulation tasks of

interacting with an object.

Broader Impact: Deep learning models are generally capable of learning (and

sometimes even amplifying) biases existing in datasets. While several steps have

been taken in datasets like Ego4D to increase geographical diversity, we would like to

encourage careful consideration of ethical implications when deploying these models.

While public datasets are essential to make progress on how to represent visual

egocentric data, premature deployment of our models is likely to have negative

societal impact, as we did not check for the presence or absence of such biases.
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Appendix A

Appendix

A.1 Additional downstream evaluation tasks

We evaluated all models on the audio representations of our model on two downstream

tasks, state change classification and action recognition.

Action Recognition (AR) w/ audio: For this task, video embeddings from fV

and audio embedding from fA are concatenated together and passed through two

separate linear classifiers to classify the ’verb’ and ’noun’ of the action occurring in

the video clip. Performance is measured using top-1 accuracy (%).

State change classification (StCC) w/ audio: For this task, we concatenate

the representations from both video and audio modalities. Using these concatenated

representations as input, the occurrence of state change is then predicted by training

a binary linear classifier. We then measure the performance using state-change

classification accuracy (%).

Incorporating audio modality helps with performance: Additionally, by

comparing Table A.1 with Table 4.2 we observe that the performance on state change

classification (StCC) and action recognition (AR) improves by incorporating the
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StCC w/ Audio AR w/ Audio

Method LAVC LAStC MoI AVC Pretraining [50] Acc ↑ Top1 Acc ↑
Verb Noun

(1) Random 52.90 18.90 9.50

(2) XDC [3] 57.70 19.10 10.20

(3) AVID [50] ✓ 61.30 19.80 12.30

(4) RepLAI w/o AVC ✓ ✓ ✓ 64.60 22.70 14.00

(5) RepLAI w/o AStC ✓ ✓ ✓ 64.40 21.40 13.00

(6) RepLAI w/o MoI ✓ ✓ ✓ 64.10 20.80 11.70

(7) RepLAI (scratch) ✓ ✓ ✓ 66.30 22.50 15.00

(8) RepLAI ✓ ✓ ✓ ✓ 66.80 23.10 15.80

Table A.1: Performance on several downstream tasks on Ego4D. StCC w/ Audio:
State Change Classification (%), AR w/ Audio: Action Recognition (%). ↑: Higher
is better.

audio modality which shows the usefulness of audio representations. The gain in

incorporating audio can be seen across all models, but is more significant on action

recognition.

A.1.1 Detection of moments of interaction

In the experiments section, we showed that MoI detection improves representation

quality. We evaluated the utility of moments of interaction (MoI) through their

impact on representation quality and performance on multiple downstream tasks.

Particularly, comparing rows (6) and (8) of Table 4.1 and Table 4.2 demonstrates

that sampling training clips around MoIs improve representation quality and transfer.

We believe that MoI detection is especially useful for finding moments in the video

with more perceptible visual state changes. We validate this by computing the norm

of the difference between the before and after visual state for a detected MoI (averaged

over all detected MoIs). A higher visual state change norm indicates that the model

is able to detect locations in the video that have a significant and meaningful visual

state change. From the Table A.2, we observe that the norm of visual state change

around the detected MoIs is significantly higher than that around randomly picked

locations. This validates that MoI is more effective in picking locations with relatively

better visual state change. This, in turn, provides a richer signal to the model to
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learn better representations and provide stronger performance on downstream tasks.

Method visual state change ↑
Random location 2.73

Moment of Interaction (MoI) 3.14

Table A.2: Evaluating the detected moments of interaction

A.2 Qualitative Analysis

A.2.1 Audio-visual correspondence analysis

We analyse the audio-visual correspondence learned by our method, RepLAI and

compare it with AVID [50] by generating a t-SNE plot in Figure A.1. This correspon-

dence is helpful in assessing how well the model is able to predict if a short video clip

and an audio clip correspond with each other or not. For a simpler visualization, a

small dataset consisting of a single participant in EPIC-KITCHENS-100 is taken and

split into clips of 0.5s. Both the audio and video features are visualized in the same

space in the t-SNE plot and represented by gray dots. A few examples are selected

randomly and their visual representation as well their audio representation is shown

in colors. It can be observed that the audio-visual representation dots are closer in

RepLAI representing better audio-visual correspondence compared to AVID. This

indicates that the AStC is helpful in enhancing the correspondence learned between

the video and audio.
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RepLAI (ours) AVID

Figure A.1: t-SNE visualization of the audio-visual feature representations learned
by RepLAI and AVID. For a simpler visualization, we consider all the videos of a
single participant. The gray dots represent both the audio and visual features in
the same space. Randomly 6 examples are chosen and their two dots are shown in
colors representing the visual features and the audio features. Closer the two dots
are, better the audio visual correspondence.

A.2.2 Detected MoIs

In this section, we visualize the moments of interaction detected with the help of

spectrogram in several videos (Figure A.1, Figure A.2, and Figure A.3). While not

perfect, we observe that sharp changes in the spectrogram energy correlate well

with moments of interaction. Several of these moments are captured in Figure A.1,

Figure A.2, and Figure A.3, such as opening drawers, putting down objects, cutting

vegetables, etc.
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Before moment 
with NO interaction

After moment 
with NO interaction

No State Change

No State Change State Change: Break Egg

State Change: Put down Knife

Before moment 
with interaction

After moment 
with interaction

Before moment 
of NO interaction

After moment 
of NO interaction

Before moment 
of interaction

After moment 
of interaction

Figure A.1: The above visualization shows the spectrogram of a video containing
the action of putting down knife and breaking egg. The gray indicate the random
moments with no moment of interaction and red indicate the moments of interaction.

Before moment 
with NO interaction

After moment 
with NO interaction

No State Change

State Change: Cut Celery No State Change

State Change: Cut Celery State Change: Cut Celery

Before moment 
with NO interaction

After moment 
with NO interaction

Before moment 
of interaction

After moment 
of interaction

Before moment 
of interaction

After moment 
of interaction

Before moment 
of interaction

After moment 
of interaction

Figure A.2: The above visualization shows the spectrogram of a video containing the
action of cutting celery. The gray indicate the random moments with no moment of
interaction and red indicate the moments of interaction.
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Before moment 
with NO interaction

After moment 
with NO interaction

No State Change

No State Change State Change: Put Utensil

State Change: Open Drawer

Before moment 
with interaction

After moment 
with interaction

Before moment 
of NO interaction

After moment 
of NO interaction

Before moment 
of interaction

After moment 
of interaction

Figure A.3: The above visualization shows the spectrogram of a video containing the
action of opening drawer and putting cutlery. The gray indicate the random moments
with no moment of interaction and red indicate the moments of interaction.
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