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Abstract

Historically, the combinatorics of various search-based approaches to plan-
ning, even in single-agent planning contexts, have presented a solid barrier
to scalable performance. These approaches quickly become complicated
and overwhelming as the number of goals to be achieved (or tasks to be
included in the plan) increases. It is because the number of tasks to be
included adds more nodes in the search tree and, with more constraints,
increases the constraint satisfaction times. However, we believe there is a
way forward. We propose that the combinatorics of a planning problem
can be overcome by learning an abstract model of the planner’s search
that utilizes the characteristics of the current state to learn the relative
quality of various search decisions extending the plan. A substantial
computational speedup can be achieved by learning on example runs of
the planner in a given domain, and the learned model can be used as
a surrogate for the explicit combinatorial search. We focus specifically
on a framework for multi-agent planning and scheduling [14] recently
developed to support the continual management of a team of humans,
robotic agents, and autonomous control systems. Within this framework,
a new task request triggers a search for the best HTN decomposition of
the request into constituent actions to be added to the plan, the best
assignment of resources to those actions, and the best time slots over
the planning horizon. The search initialization generates and evaluates
all feasible options concerning a specified objective and selects the best
option. The computational cost of performing the search increases propor-
tionally with the number of pre-existing actions in the plan, the number
of agents (resources) available to carry out these actions, and the number
of alternative decompositions associated with a high-level task request.

This thesis proposes two solutions. First, it presents an efficient learning
framework to aid the planner in accelerating the time-consuming search
process by learning an abstract representation of the search space. This
learning framework consists of an LSTM memory network with an MLP
baseline that learns from example runs of the planner. Second, it describes
a simulation pipeline for enhancing the real-world physical understanding
of the reasoning used by the planner. Both of these solutions form a part
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of a robust, efficient, and interpretable planning system that can also be
used in varied domains outside of a space habitat.
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Chapter 1

Introduction

1.1 Motivation

Controlling the operations of a spacecraft orbiting a planet millions of miles away

from Earth cannot be considered a trivial task. Due to the brevity of these tasks,

most of these tasks are manual and human-controlled in near-earth habitats. However,

transmission can only happen when a deep-space satellite is visible in deep-space

habitats. These transmissions consume much energy to coordinate activities in a space

habitat. Apart from energy requirements, a communication delay (NASA reports

5 to 20 minutes for Mars communications) prohibits real-time control of spacecraft

activities from the ground, especially during unmanned phases. Hence, autonomy

proves helpful in deep space habitats, integrating into repair or task workflows.

An essential part of this effort is devoted to integrating planning and scheduling

technologies to provide an adequate basis for multi-agent planning. This effort led

to Timeline-based planning approaches first proposed by Remote Agents [13]. One

of the critical features of the Remote Agent system is its ability to operate on long

timelines, spanning days, weeks, or even months. The system uses a hierarchical

approach to planning and scheduling, with high-level plans generated by a mission

planner and lower-level plans generated by individual subsystems on the spacecraft.

Space habitats are complex. For example, The International Space Station has
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1. Introduction

16 pressurized modules. Each module has more than ten systems ranging from

Environment Control and Life Support System (ECLSS) to Guidance, Control, and

Navigation system, each with multiple subsystems. Autonomous deep space habitats

add more complexity due to the absence of a crew that adds robustness, safety, and

computation checks. The subsystems in such habitats must identify, plan, and execute

various tasks in an ordered sequence. For example, a filter change requires detection,

cutting off the supply, replacing the filter, and then turning on the supply. Most

tasks in space can be divided into a sequence of such sub-tasks that are generally

executed in coordination with various agents - robots, rovers, and free flyers. Optimal

planning to solve such tasks requires scheduling these agents with system constraints.

These constraints ensure that the order of the sub-tasks is met without conflicts.

These constraints can be spatial constraints that ensure no collision between agents

or temporal constraints that ensure the agents are free to assign tasks.

Historically, such tasks are scheduled on multi-agent systems through a search-

based approach. Search-based planning typically works by exploring the space of

possible plans or action sequences and evaluating them based on some objective

function or cost metric. The search process involves generating candidate plans

by considering the possible actions that can be taken in each state and evaluating

the resulting states until a plan is found that meets the specified goal criteria. As

we increase the number of tasks that must be included (or goals to be achieved),

the combinatorics of search-based planning methods grow exponentially and quickly

become overwhelmed. The complexity of these approaches poses a barrier to scalable

and efficient performance.

We focus specifically on a recent framework for multi-agent planning and schedul-

ing T-HTN [14] that was developed to support the continual management of a team

of agents. The framework combines the structure of a Hierarchical Task Network

planning with the temporal flexibility of timeline-based planners. This helps main-

tain a global schedule of activities on a habitat over time and increases robustness

to uncertain and unexpected outcomes and tasks. To plan for a new request, a

decomposition of the request into constituent actions is carried out. These actions

should be added to the evolving plan with the best assignment of resources to those
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1. Introduction

actions over the best-possible time slots over the horizon. Once this search process

is initiated, all feasible options are generated and evaluated based on an objective

function (e.g., minimizing makespan/setup time), and the best option is selected.

The computational cost of performing the search increases proportionally with the

number of actions preexisting in the plan, the number of agents (resources) available

to carry out these actions, and the number of alternative decompositions associated

with specified higher-level task requests.

However, we believe this complexity can be mitigated by learning search heuristics

as a variable ordering problem. We hypothesize that an abstract model of the

planner’s search can be learned that utilizes state descriptions of the planning state

to recognize the relative importance of various search decisions for iterative planning.

This model can aid the planner as a surrogate for the explicit combinatorial search and

substantially speed up the computation time required to generate a partial solution.

1.2 Contributions

We propose Learn2Plan, a novel memory-driven learning framework that supports

hierarchical planners to enable multi-agent coordination efficiently. We designed

Learn2Plan to learn constraints from spatiotemporal descriptions of the world state

and understand the characteristic behavior of hierarchical planners. A physics-

based simulation environment and the pipeline are also proposed to aid planning

frameworks to be interpretable. With this pipeline, we propose better-capturing

black-box planners’ physical uncertainties and real-world awareness. Specifically, our

contributions are the following:

• A hybrid planning system, as shown in Figure 1.1, combines learning and

planning to overcome the traditional complexity of planners to select optimum

slots. The learning method learns the decision structure of the planner through

examples, takes candidate slots as input, and predicts the best slot ordering to

minimize makespan. This system includes:

A Multi-layer neural network exploratory comparative baseline

3



1. Introduction

Figure 1.1: Learn2Plan hybrid planning system

A Long-Short Term Memory Network is aware of the inherent sequence of

requests on a horizon.

• A simulation pipeline to convert plan outputs to domain simulations built on

ROS and MuJoCo.

1.3 Organization

The thesis starts with essential concepts in constraint-based scheduling, resource allo-

cation, and search techniques in task-based planning and symbolic planning methods

in Chapter 2. Chapter 3 discusses recent literature on optimization techniques and

learning frameworks, mainly focused on the search process. Chapter 4 introduces
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1. Introduction

Learn2Plan, the search modeling technique used, and each framework component in

detail. The empirical results and experiments are discussed in Chapter 5, demon-

strating the efficient nature of specific multi-agent scenarios. The simulation pipeline

and its components are discussed in Chapter 6. Lastly, Chapter 6 is the conclusion of

this thesis that provides future research directions based on the current limitations.
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Chapter 2

Background

Before understanding the concepts, let us understand the domain environment (as

shown in Figure 2.1) used for this thesis. The domain is a rail-mounted system with

a rail further divided into several rail blocks. There are two rail-mounted UR5 robots

- UR5a and UR5b, with Robotiq grippers. There are custom boxes that can be added

depending on the problem size and complexity. The problem class we follow for this

thesis is pick-and-place operations that must be coordinated in the system.

2.1 Constraint-based Scheduling and Planning

Scheduling is the process of allocation of a set of resources to a set of activities over

time [3]. In a standard scheduling problem, resources are constrained in various ways.

These constraints can be pertinent to optimizing the capacity of a resource as well as

the order of the activities. An optimal schedule is defined as one that satisfies all

such constraints for specific criteria. These criteria can be broad, like the length of

the schedule, or specific, like the capacity of a resource.

Constraint-based scheduling allows for a much larger variety of constraints and

changes in the model dynamically without changing the algorithms that enable the

reuse of the model for other tasks, such as planning. It achieves this by separating

the model (the activities, resources, constraints, and objectives) from the solving
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2. Background

Figure 2.1: Domain setup
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2. Background

algorithms. Combinatorics of the problem is heavily leveraged for solving the problems,

leading to improved performance characteristics. Constraint-solving methods like

Constraint Propagation, Domain Reduction, and Backtracking search have proved

well in various industries.

Constraint-based planning follows the same pattern, i.e., given a set of desired

products, a planner determines the sequence of tasks (the plan) that will deliver the

products. The scheduler decides specific resources, operations, and timing to perform

the tasks. This information then goes to an executor, ensuring the products are

produced [8]. In certain domains, however, they both can be embedded and used as

an integrated control system. A general description of the planning problems defines

three inputs:

• A description of the initial state and expectation of changes in the world

• A description of the goal of the agent

• A description of the possible actions that can be performed (Domain Theory)

The output of a planner is a feasible sequence of actions referred to as a plan,

a partial ordering of actions that will achieve the agent’s goal starting from the

initial state. In terms of generating multi-agent plans that satisfy a set of complex

constraints, there are two broad approaches. Action-based temporal planners (like

HTNs [15]) typically achieve success by constraining the plan generation process

to forward state-space search (i.e., expanding plans in a time-forward order). On

the other hand, timeline-based approaches [13] provide flexibility for actions to be

inserted at different time points on an agent’s horizon to better optimize the global

parameters of the plan.

Constraint-Based Scheduling models are highly configurable regarding new con-

straints and objectives and are general in representational assumptions. By definition,

they are incremental decision-making procedures. Hence, they provide a direct basis

for managing solutions change over time and minimizing undue disruption to the

current schedule.
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2. Background

2.2 Constraint-based Search

Constraint-based search is a problem-solving technique that involves defining a set of

constraints on the possible solutions to a problem and then searching for a solution

that satisfies these constraints. The basic idea behind constraint-based search is to

reduce the search space by using constraints that rule out certain solutions that are

not feasible. This is done by defining a set of rules or constraints that specify the

allowable combinations of values for the variables that make up the problem. As the

search proceeds, the constraints eliminate possible solutions that violate the rules.

The remaining solutions are then checked for feasibility, and the search continues

until a satisfactory solution is found or all possible solutions have been exhausted.

Constraint-based search models combine principles of constraint programming

and heuristic search in the formulation and solution of scheduling problems [17].

Constraint propagation routines are triggered as scheduling decisions are posted or

retracted from a solution representation. Propagation computes the consequences of

any change for related scheduling decisions, possibly winnowing (or enlarging) the set

of feasible values for other decision variables or detecting a constraint conflict (which

signifies an infeasible state). Commitment and retraction strategies/heuristics are two

essential components that guide the search process in moving forward (e.g., allocating

resources or assigning start and end times to an as yet unassigned mission) or moving

backward (e.g., unassigning a previously assigned mission) in the underlying search

space.

To better understand the search process, let us understand graph representations

of planners. Planning graphs provide a graphical representation of a planning problem

and allow for efficient search and inference to find a solution.

A planning graph consists of two levels: the state level and the action level. The

state-level represents the possible states that the planning problem can be in at any

given time, while the action level represents the possible actions that can be taken

to move from one state to another. At the state level, the planning graph captures

the current state of the problem, as well as all possible future states that can be

reached through the application of actions. Each level of the state level represents a

10



2. Background

snapshot of the problem’s state, with each node representing a set of state variables

and their corresponding values. At the action level, the planning graph captures the

set of actions that can be applied to change the problem’s state. Each node in the

action level represents a specific action that can be taken, and the edges between

nodes represent the preconditions and effects of those actions. Such planning graphs

can also accommodate temporal constraints through Task Constraint Networks [6].

A TCN is a graph-based model that represents the constraints between temporal

events. The graph nodes represent the events, and the edges represent the temporal

constraints between them. These constraints can be specified regarding the relative

ordering or duration of events.

Returning graph is constructed by iteratively adding levels to the state and action

levels until a fixed point is reached, where no new information is added. At this

point, the graph can search for a plan that achieves the desired goal using techniques

such as heuristic search or graph traversal algorithms. Constraint-Based Planning

utilizes search nodes representing partial plans with time intervals connected by

constraints. These partial plans may not be fully complete, as constraints may not

be fully satisfied, and decisions may still need to be made. The planning process

aims to transform these partial plans into valid and complete plans. To achieve this,

traditional search-based methods attempt various possibilities to complete the partial

plans and backtrack when constraints are breached. Constraint reasoning methods,

such as propagation and consistency checks, can aid this process.

These possibilities, which are feasible for the constraints, are then compared with

an objective function like minimizing the makespan. The best possibility is chosen as

the final result of the search.

2.3 T-HTN

T-HTN [14] is a current framework that combines the structural strength of Hierarchi-

cal Task Networks with the flexibility of Simple Temporal Networks (Timeline-based

planners). It is a planning system that differs from traditional planning methods by

explicitly representing the evolution of the current state over time rather than just a
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collection of facts. This leads to a more extensive search space as states across the

planning horizon need to be considered. However, T-HTN takes advantage of problem

structure by designating particular objects as resources and assuming that all actions

will be allocated and scheduled on specific resources. Each resource has a timeline

representing its availability over time, and when an action is scheduled on a resource,

an action token is inserted onto the resource’s timeline. This token indicates the state

aspects of the action that are true during the scheduled interval and assumes that

they will only change with the insertion of new actions. The T-HTN system uses an

extended version of the Hierarchical Domain Definition Language (HDDL), used in

planning problems in the past, to represent the domain and problem inputs with this

additional resource structure.

Plan Generation Search Procedure

Let us understand the Plan Generation Search procedure by an example. Building

on the setup from Figure 2.1, the example task is to move the red cube from the

given location to the table’s edge. Considering this incoming task request, the first

step is to process this task request to map it to a known task model to create a path

decomposition tree for all the potential possible alternatives. As the request maps to

a high-level task request, it is decomposed into low-level tasks with an AND/OR tree

variant.

All the alternative decompositions are collected through recursively expanding

OR nodes and depth-first search. After this, for each possible decomposition, a task

network is instantiated for each possible decomposition with an underlying STN

composed of tokens corresponding to high-level tasks. Each token constitutes a start

and end time for a particular task and consists of potential parameter assignments.

This task network forms the fundamental structure, wherein the unassigned variables

are grounded and then utilized to search for ”slots” on the required resource timelines

where the instantiated tokens can be inserted.

Returning to our example, Figure 2.2 shows the generated path decomposition

tree. Let us consider the first node and leaf of the grasp item, and try to schedule

12



2. Background

Figure 2.2: Path Decomposition tree

Figure 2.3: Initial resource timelines before an incoming/new request

this particular item. In our domain, we have two robots as our resources. Before the

example task request goes in, let us assume that the resource timelines are previously

instantiated with tokens. Shown in Figure 2.3 are the timelines for both of the

resources. As we can see in these timelines, there are two pre-existing tokens on the

timeline of ur5A and one on ur5B that correspond to earlier already scheduled tasks.

The scheduled tokens have durations, start and end locations, and other parameters

that factor in temporal and sequencing constraints for further scheduling requests.

When our example item goes into the planner, the ”slots” are the empty spaces

on the timeline. These slots have early and late bounds on start and end times to

capture flexibility. Let us assume that the incoming item has a release time (how soon

13



2. Background

Figure 2.4: Generated slots triggered by an incoming item

the item can start) of 0 units and a due date (how late the request has to end) of 35

units. The incoming item triggers the generation of all slots, known as candidate slots,

where the incoming item can be scheduled. Let us parameterize the incoming item

by having a duration of 6 units, as shown in Figure 2.4. Assuming all sequencing and

spatial constraints are met for all five candidate slots, we can see that the fifth slot

does not meet the duration constraint of 6 units, which removes this candidate slot

as infeasible. Hence the feasible slots are slots 1,2,3,4, in which all of the constraints

are met for scheduling the incoming item.

Moving on to the matching process, the planner checks all of these feasible slots to

optimize an objective function, in this case, minimizing the makespan. The planner

will do so by scheduling the grasping task on each of these slots one by one and

keeping track of the makespan of each schedule. After all the slots have been checked,

the planner will choose the slot which accounts for the least makespan. This search

process is called backtracking search, as it backtracks after scheduling each slot

and then noting the final makespan. The order in which you try these slots can

be seen as a variable ordering heuristics problem. As discussed, there are various

techniques like ”fail-first,” in which the slot that is most likely to fail is checked

first. However, Backtracking and exhaustive search on all slots is computationally

expensive and time-consuming, and the computation grows linearly with the number

of slots available.
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Figure 2.5: (a) Scheduling grasp action on slot 1 corresponds to a total makespan of
32

Figure 2.6: (b) Scheduling grasp action on slot 2 corresponds to a total makespan of
27

Figure 2.7: (c) Scheduling grasp action on slot 3 corresponds to a total makespan of
28

Figure 2.8: (d) Scheduling grasp action on slot 4 corresponds to a total makespan of
26

Figure 2.9: Search procedure, (a) case 1: 2.5, (b) case 2: 2.6, (c) case 3: 2.7

, (d) case 4: 2.8

15
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If we can visualize by our example through 2.9, and cases 1-4, we can see that the

least makespan is observed in case 4, i.e., Slot 4, which is seen after trying out slots

1-3. As we optimize for minimum makespan, the optimum slot order in our example

is 4 - 2 - 3 - 1. However, to find the best slot, the planner checks all slots from 1

to 4, which uses computation time that ultimately does not lead to the final plan.

This area has much potential for improvement and can lead to substantial speedups.

In our example, directly going to the best slot can result in a 75% computational

speedup.

2.4 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) [10] is a type of recurrent neural network (RNN)

architecture that is designed to overcome the limitations of traditional RNNs, such as

the vanishing gradient problem. It has been widely used in various domains, including

natural language processing, speech recognition, and time series prediction.

An LSTM cell is shown in figure

The input gate determines which information from the current input should be

stored in the memory cell. It is implemented as a sigmoid layer that takes the current

input and the previous hidden state as inputs and outputs a number between 0 and 1

for each input dimension. A value of 0 means the information should be discarded,

while a value of 1 means the data should be stored in the memory cell.

The forget gate determines which information from the previous hidden state

should be discarded. It is also implemented as a sigmoid layer that takes the previous

hidden state and the current input as inputs and outputs a number between 0 and 1

for each dimension of the hidden state. A value of 0 means the information should

be discarded, while a value of 1 means the data should be retained.

The output gate determines which information from the memory cell should be

output. It is implemented as a sigmoid layer that takes the current input and the

previous hidden state as inputs and outputs a number between 0 and 1 for each

dimension of the memory cell. A value of 0 means the information should not be

output, while a value of 1 means the data should be output.
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2. Background

Figure 2.10: LSTM Cell

In addition to the three gates, LSTM has a cell state that runs through the entire

sequence and is updated by the input and forget gates. The current input modifies

the cell state, and the forget gate decides which information should be discarded from

the previous cell state. The input gate then decides which data from the modified

cell state should be added to the current cell state.

The final output of LSTM is obtained by multiplying the output gate and the

updated cell state and passing the result through a tanh activation function to squash

the values between -1 and 1.

Overall, LSTM is a robust architecture that allows the model to selectively

forget or remember information, making it well-suited for tasks that require long-term

dependencies. It has been shown to outperform traditional RNNs on many benchmark

datasets and is considered a standard baseline for sequential data modeling.

We have used these LSTM cells to capture the sequentiality in our data. As we

know that the requests are sequential, the slot output for the first request is captured

in the hidden state and entered as input for the subsequent request. Hence, we use

an LSTM cell per request that cascades the sequentiality from the initial request to

the final request.
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Chapter 3

Literature Review

3.1 Variable ordering heuristics

Variable ordering heuristics are techniques used to guide the search for solutions to

constraint satisfaction problems (CSPs). CSPs are computational problems that aim

to find a solution that satisfies constraints. Variable ordering heuristics determine

the order in which variables are assigned values during the search process. These

heuristics can effectively reduce the branching factor of the search tree and quickly

identify variables that are highly constrained or more likely to cause a failure.

The fail-first heuristic is a problem-solving strategy [9] that aims to quickly identify

and eliminate the most likely causes of a problem. In the context of constraint

satisfaction problems (CSPs), the fail-first heuristic can improve the efficiency of

variable ordering heuristics. The basic idea behind the fail-first heuristic in variable

ordering is prioritizing variables most likely to fail early in the search process. By

selecting variables that are more likely to fail, the search algorithm can quickly prune

large portions of the search space and reduce the overall search time.

Dynamic Variable Ordering is investigated in conjunction with tree-search algo-

rithms in the context of binary CSPs [2]. With DVO, the order in which the variables

are instantiated during tree search can vary from branch to branch in the search tree,

not sequential instantiation. The tree-search algorithm calls the Minimum Remaining
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Value procedure when it has descended to the next level and needs to choose a variable

to assign at this level. When invoked, the MRV procedure can check each value in

the domain of each uninstantiated variable to see if that value is consistent with the

current set of assignments. By cycling through all the values in the variable domains,

it can count the number of remaining compatible values each variable has and return

a variable with the minimum number. DVO heuristics, however, add complexity to

the planners and extra overheads. The solver is also very domain-dependent, which

reduces the generality of this approach. Another approach is the Degree Heuristic [1];

it attempts to reduce the branching factor on future choices by selecting the variable

involved in the most significant number of constraints on other unassigned variables.

The authors found that degree heuristics were highly effective in reducing CSP search

space, leading to faster convergence and fewer backtracks. In particular, they found

that the ”max” degree heuristic, which selects the variable with the most constraints

on other unassigned variables, performed the best overall. However, computing the

degree of each variable can be computationally expensive, especially if the problem has

many variables and constraints. The degree of heuristics’ computational complexity

can become prohibitive as the problem grows.

Just like these approaches to Variable Ordering Heuristics, Learn2Plan learns

a heuristic that is a probability-based priority method that prioritizes slots for a

given planner’s tree search. This ultimately prunes the search tree by leveraging the

planner’s experience.

3.2 Learning Frameworks

Recent research has combined learning frameworks in planners to increase backtracking

efficiency regarding variable ordering heuristics. Learning variable ordering heuristics

for Constraint-based satisfaction Problems has been explored in recent years through

Reinforcement Learning, Deep Learning, and Meta-Learning.

Muchg and learning initiated from Adaptive Tree Search [16], in which the search

order is adjusted according to heuristic information available during the search for a

given problem. With Adaptive Probing, the tree is traversed stochastically, and the
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model will guide the child’s choice at each node learned iteratively by a cost on every

leaf. However, this work focuses on solving a given problem instance which limits its

approach.

Adaptive Entropy Tree Search (AETS)[19] is a planning and learning algorithm

that combines tree search with online learning to solve planning problems efficiently.

The algorithm uses an entropy-based heuristic to guide the search and adaptively

adjust the exploration-exploitation trade-off during the search process. The basic

idea behind AETS is to use a decision tree to represent the search space of possible

actions and outcomes, then use an adaptive entropy-based heuristic to guide the

search. The entropy heuristic measures the uncertainty of the outcome of each

action and is used to balance exploration and exploitation of the search space. The

algorithm uses online learning to update the entropy estimates and adaptively adjust

the heuristic during the search. While Adaptive Entropy Tree Search (AETS) is

a robust planning and learning algorithm, there are some drawbacks to consider.

Firstly, the performance of AETS can be sensitive to the choice of parameters, such

as the depth of the decision tree and the learning rate for the entropy estimates.

Poor choices of these parameters can result in suboptimal or even inefficient search

behavior. Secondly, using online learning to update the entropy estimates can be

computationally expensive, particularly in large search spaces. This can make AETS

less efficient than other planning and learning algorithms in specific domains.

Much research on integrating learning and planning has focused on conventional

action-based planners, in which the plan tree traces are used to learn heuristics.

This research, as formulated in Learning Search Control [12], aims to speed up the

plan generation process or improve the quality of generated plans by learning search

control rules. These rules give the planner the knowledge to guide decision-making

at choice points. They can include selection rules (recommendations to use an

operator in a specific situation), rejection rules (suggestions not to use an operator in

a particular situation or avoid a world state), and preference rules (indicating that

certain operators are preferable in specific cases). In the article [11], a theoretical basis

for formally defining algorithms that learn preconditions for HTN methods is proposed.

The algorithm consists of three main steps: preprocessing the plan traces, learning
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preconditions from the preprocessed plan traces, and using the learned preconditions

to improve planning efficiency. In the first step, the plan traces are preprocessed

to extract the action sequences performed in each plan trace and the corresponding

HTN structure. In the second step, an association rule mining algorithm extracts

frequent patterns of operators and preconditions from the preprocessed plan traces.

These patterns are used to construct preconditions for the operators in the HTN

structure. Finally, in the third step, the learned preconditions improve planning

efficiency by guiding the planner to select operators more likely to apply in a given

state. The results showed that the learned preconditions outperformed the baselines

regarding the number of expanded nodes, search time, and plan quality. Specifically,

the learned preconditions reduced the number of expanded nodes by up to 73% and

the search time by up to 90% compared to the random baseline. Compared to the

CaMeL preconditions, the learned preconditions reduced the number of expanded

nodes by up to 33% and the search time by up to 62%. However, this work did not

consider the timelines or any time constraints. It also relies on the assumption that

the preconditions for operators are independent of each other. This assumption may

not hold in some domains, and in such cases, the learned preconditions may not

accurately capture the actual dependencies between the preconditions. The authors

also need to provide a detailed analysis of the algorithm’s computational complexity,

and it is unclear how scalable the approach is to larger datasets or more complex

domains. The algorithm requires a large set of plan traces to learn the preconditions

accurately, which may be computationally expensive or infeasible for some problems.

We believe that even higher performance can be achieved with better uncertainty

accommodation by considering time bounds.

Another approach to learning from plan traces was to incrementally learn control

knowledge to improve the efficiency and quality of planning in domains with large

and complex search spaces [4]. The algorithm generates a search tree and analyzes it

to identify areas where the search is inefficient. Relevant sub-trees are identified, and

control knowledge is defined in each sub-tree selection, rejection, and preference rules.

Control knowledge is incrementally learned during the planning process and used to

guide the search through relevant sub-trees and to avoid revisiting already explored
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areas of the search space. By doing so, the algorithm can significantly improve

the efficiency and quality of planning in complex domains. The approach relies on

analyzing the search space of a planning problem, which can be computationally

expensive, especially for complex domains. Additionally, the approach requires

domain-specific knowledge to identify the relevant parts of the search space and to

define the control knowledge to be learned.

There has been an effort to discover new variable ordering heuristics to boost

the efficiency of planners. Deep Reinforcement Learning [18] has been used to

automatically find new variable ordering heuristics for a given class of CSP instances.

To accommodate different sizes and complex constraints and variables, they represent

CSP as a Graph Neural Network. The authors use Double Deep Q-Network to

minimize the search effort of reaching the leaf nodes. A GNN-based scheme to

describe the internal search states, based on which a deep Q network is designed to

output the Q-value of each candidate variable end-to-end from raw state features of

variables and constraints. Variables are given updated embeddings based on iterations

of embedding aggregations. Experimental results on random CSP instances show that

the learned policies outperform classical hand-crafted heuristics with smaller search

trees (up to 10.36 reduction) on small and medium-sized instances. Computationally,

the DRL approach is complex and does not significantly reduce computation times.

Another paper [20] presents a reinforcement learning approach for project schedul-

ing under resource constraints, where the objective is to minimize the total project

duration subject to resource availability constraints. The proposed method uses

a variant of Q-learning called S-learning, which incorporates resource constraints

into the state and action spaces of the learning agent. The state space includes

information on the project schedule, resource utilization, and remaining work, while

the action space includes the set of possible task assignments for a given time. The

reward function is based on the total project duration, with penalties for resource

over-utilization and incomplete tasks. The authors demonstrate the effectiveness

of their approach on a set of project scheduling instances with different resource

constraints and problem sizes. They compare the S-learning approach with a baseline

heuristic and show that S-learning achieves better solutions in less time for most
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instances, significantly as the problem size increases. The paper concludes that

reinforcement learning is a promising approach for project scheduling under resource

constraints and suggests several directions for future research.

However, RL-based scheduling techniques require a large amount of data to train

the agent and can be computationally expensive. In addition, the performance of RL

algorithms can be sensitive to the choice of hyperparameters, reward function, and

exploration strategy.

The paper[7] presents a method for improving the efficiency of constraint optimiza-

tion algorithms by learning and adapting variable ordering heuristics. The authors

propose an online learning framework that uses past performance data to update the

heuristics in real time during the search process. The approach is based on a variant

of the multi-armed bandit problem, where the learner must balance exploration and

exploitation to find the best ordering heuristic. The authors evaluate their approach

to several benchmark problems from the constraint optimization literature and show

that their method consistently outperforms several state-of-the-art algorithms. They

also analyze the impact of different exploration strategies and show that their ap-

proach is robust to problem instances and search algorithm changes. For example,

in some instances of the Minimum Vertex Cover problem, their approach improved

by up to 30 percent over the best-performing baseline algorithm. In instances of the

Maximum Independent Set problem, their approach enhanced by up to 13 percent

over the best-performing baseline algorithm. Overall, the paper provides evidence

that the approach can substantially improve the efficiency of constraint optimization

algorithms. A major drawback is that the approach requires significant computa-

tional resources to maintain and update the heuristics in real-time. This may be a

challenge in cases where computational resources are limited, or the search process is

constrained by time or memory limitations.
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Chapter 4

Methodology

The main goal of this thesis is to develop a hybrid planning system with an integrated

learning technique that can reason for task assignments for coordination and manage-

ment of activities on board space habitats while being scalable, efficient, and robust.

However, the application of this system goes well beyond deep-space habitats; it can

work with different planners in different domains as it is highly domain-independent.

At the core of this system is an LSTM-based learning architecture- Learn2Plan, which

models the task planning process as a sequence-to-sequence model. Building on

the search process explained in Chapter 4, this framework provides a substantial

computational speedup to the search process of hierarchical planners by providing

the optimum slot order for an incoming task. Learn2Plan learns the slot matching

process from the spatial description of the world state on data obtained from example

data from the planner. Suppose the slot and incoming request descriptions (including

time bounds and locations) collected for a wide range of problem instances with

high variance are combined with the makespan and the selected slot for a request.

This data can be used to learn a surrogate model of the planner’s decision-making

structure. This high-accuracy framework aids the planner in catalyzing the search by

suggesting the best slot iteratively to the planner from the optimum slot order as the

output.
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4.0.1 Problem Instances

We consider pick-and-place operations as tasks for this given domain. This is because

these operations encompass a wide range of activities, including cargo stowage, object

retrieval, and manipulation of parts on board. Each request corresponds to picking a

box up and keeping it in the desired position. The number of requests (i.e., boxes) with

corresponding locations and the number of divisions of the rail blocks are specified in

the problem file. Each move action by the robot is constituted by a constant time

interval specified in the problem file. For this thesis and to establish a proof of concept

and build on our domain setup of rail-mounted robots and rail block divisions, we

limit training to problems with five requests and five rail block divisions, with only

two slots per request investigated.

4.1 World state

Problem instances are converted to problem files, then used as planner input to run

examples. As the planner is run, features are collected for each feasible slot generated

during the planner search. Each such collected slot provides data for each request as

an example. As we established before, the combinatorics of a multi-agent scheduling

problem is the primary source of complexity increase; we try to describe the world

state only through spatiotemporal features. These features range from the spatial

start and end places on the domain, with temporal bounds of each slot. An incoming

task is also described with the same parameters to ensure uniformity. The features

are a surrogate for constraints, both temporal and spatial. Spatial constraints are

captured by the start and end location of the slot and the temporal constraints by

the bounds of the start and end times. Similarly, we have similar features for an

incoming task to understand how the constraints play in selecting a slot. All of these

features are summarized in Table 4.1

Our training data follows this structure; every request has multiple candidate

slots. The ground truth results from the planner after it checks all the slots and
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Item Spatial Features Temporal Features

Slot
Start location Early Start Time, Late Start Time
End location Early Finish Time, Late Finish Time

Incoming Task
Pick-up location Duration
Drop-off location

Table 4.1: Slot and Task Description

outputs the chosen slot and makespan for one request.

S1, S2, S3, ..., Sn ⇒ Soptimum,makespanoptimum (4.1)

where Si is a feasible slot, and n is the number of feasible slots per request.

4.2 Data

To generate training and testing data, we run T-HTN on a set of representative

problems. We developed an automated script to query the planner to create problem

files in the Extended Hierarchical Domain Definition Language supported by T-HTN.

Through the script, we develop 100,000 problem files for the planner. These

problem files consist of 5 rail blocks and five requests, and the planner outputs the

state descriptions and the ground truths as discussed. We have focused on high

variance in our data set to capture the different nature of tasks with different spatial

and temporal constraints to prepare a holistic dataset for learning. For every request,

we consider two slots.

Dataset S = {zi}ni=1 = {(xi,yi)}ni=1 is sampled from a distribution D over a

domain Z = X × Y. This distribution consists of 100,000 tasks with descriptions

defined in Table 4.1, with all slots per request and corresponding makespan.

X is the instance domain (a set), Y is the label domain (a set), and Z = X × Y
is the example domain (a set).
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xi = {RequestID, descriptionstate, descriptiontask, slots,makespan}

RequestID ∈ requestA, requestB, requestC, requestD, requestE

slots = All feasible slots per RequestID

Usually, X is a subset of Rd and Y is a subset of Rdo , where d is the input dimension

(10), do is the output dimension (1). The label for our data is the selected slot and

the corresponding makespan.

yi = {SelectedSlot,makespan}

n = 100, 000 is the number of samples. Without specification, S and n are for

the training set, where each sample contains the sequence of all requests required to

complete a task. We use a 70/30 split between training and testing. We do not keep

a cross-validation set because the data is well-curated and structured by the planner.

Loss function

A loss function, denoted by ℓ : H × Z → R+ := [0,+∞), measures the difference

between a predicted label and a true label. In our case, we take one primary loss and

an auxiliary loss. The primary loss is a standard classification loss, a stable request-

wise Binary Cross Entropy with Logits Loss. The auxiliary loss is a Root-Mean

Squared Error for our linear variable of makespan.

28



4. Methodology

ℓ(fθ, z) = ℓslot + ℓmakespan

ℓslot = LBCE = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

ℓmakespan = RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

where ℓslot is the classification loss for the predicted slot, and ℓmakespan is a

regression loss for the predicted makespan. ŷi is the ground truth, which is the slot

chosen by the planner and the makespan value computed by the planner, yi is the

prediction by our learner. We predict the makespan but do not report it because

it is not a part of the variable ordering process for slot matching. If we select the

optimum slot for the planner to validate, it will automatically calculate the makespan

for that slot and action. However, we consider it in the loss function because that

is the objective function in our case and gives useful information about guiding the

search process.

Empirical risk or training loss for a set S = {(xi,yi)}ni=1 is denoted by LS(θ) or

Ln(θ) or Rn(θ) or RS(θ),

LS(θ) =
1

n

n∑
i=1

ℓ(fθ(xi),yi). (4.2)

The population risk or expected loss is denoted by LD(θ) or RD(θ)

LD(θ) = EDℓ(fθ(x),y), (4.3)

where z = (x,y) follows the distribution D.
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4.2.1 Multi-Layer Perceptron baseline

The purpose of developing an MLP (multi-layer perceptron) is to provide a proof-

of-concept and validate learning on the data set for simplicity and a much lower

computation cost. The model is used to establish a starting point for evaluating the

performance of our proposed complex model. An MLP is a type of neural network

with multiple layers of nodes, where each node in a layer is connected to every node

in the previous layer. The connections between nodes have associated weights that

are adjusted during training.

The MLP baseline is trained on the previously explained data set, and its per-

formance is evaluated on the same metrics for our proposed LSTM model. The

primary goal of using an MLP baseline is to demonstrate whether the proposed model

improves upon the performance of a simpler model that could be easily implemented

with fewer computational resources.

Architecture

As seen in Figure 4.1, The neural network consists of hundred input dimensions and

two hidden layers with fifty and twenty-five nodes, respectively. We pass ten tasks

(batch size) for each run through this network with two requests each. Hence there

are five nodes, one for each request. The input dimension is calculated by multiplying

ten tasks with five requests, generating two slots, resulting in a vector size of hundred.

The hidden layer nodes are decided on an ad-hoc basis by trading off accuracy with

computation. The final layer has one node for the best slot per request, a sigmoid

layer that also gives the probability output for all slots per request and pushes the

best slot per request iteratively to the planner. All layers are linear with ReLU

activation functions. The total input vector size is 100, and the output vector size is

50, generating the best slot per request for ten tasks.

30



4. Methodology
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Figure 4.1: MLP baseline architecture with slots per request as input and the best
slot as the output
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Figure 4.2: Data Modelling through LSTM cells. As we can see that the se-
quence2sequence structure understands the sequence in requests and keeps track of it
with the hidden state H

4.2.2 LSTM

Similar to the input and output modeling of the MLP baseline, the LSTM model is

modeled with the same data and loss function. LSTMs have a chain-like structure,

and the repeating module is an LSTM cell, as described earlier. Every cell corresponds

to one request and stores a hidden state at every request for the whole task, as shown

in figure 4.2. As we increase complexity, we have to add zero padded cells for variable

input sizes, but our formulation will still be one cell per request.

Architecture

The encoder-decoder layers in the LSTM cell have five layers each, as in the internal

architecture of MLP. The input and output description, sizes, and batch size remain

the same to ensure uniform metrics. After the LSTM layer, there is a downstream

linear neural network layer with 64 nodes in the hidden layer and ReLU activation

functions.
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Algorithm 1 Learn2Plan

1: procedure SlotOrderHeuristic(T, S)
2: S ← Initialize an empty slot list
3: for all t ∈ T do
4: Da ← Sa, t
5: Sorder = LSTM(Da)
6: if Sorder ̸= ∅ then
7: for all s ∈ Sorder do
8: if s is validated by the planner and consistent with constraints

then
9: s← task t
10: Add s to TaskNetwork
11: end if
12: end for
13: end if
14: end for
15: return S
16: end procedure

Figure 4.3: LSTM and Downstream Neural Network
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Chapter 5

Experiments

For evaluation, a data set of five requests and five blocks is used, with randomly

sampled data consisting of ten rail blocks to test generalization. We use an Apple

Mac M1 CPU with 16GB of RAM for computation, and all the times quoted from

here on are from the same machine.

Setup

We will use the rail-mounted robot domain we defined earlier for our experiments.

Every request is a pick-and-place operation, picking a box up from a rail block and

placing it on another rail block.

5.1 MLP

We train the MLP baseline model for 300 epochs until we find convergence, as seen in

5.1. We can see expected trends in the loss function as the test loss converges to zero

with the training loss, which means that the model is learning well. We calculate

accuracy as slot accuracy. It measures how often the MLP model predicts the same

slot as the T-HTN planner. We can see that even without sequential awareness, the

MLP baseline achieves reasonable accuracy rates.
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Figure 5.1: Loss curve for the train and test

Accuracy

We get a good test accuracy value around 100 epochs, with high accuracy rates

achieved in the early stages of the training as shown by Figure 5.2. This means that

the model is very accurate and, around 85% of the time, predicts the same output as

the planner.

ROC-Curve and Precision-Recall

To measure the model’s performance, we also calculate other metrics as shown in

Figure 5.3. ROC (Receiver Operating Characteristic) curve, AUC (Area Under the

ROC Curve), and F1 score are standard evaluation metrics used in machine learning

models to measure the model’s ability to distinguish between positive and negative

classes for classification problems.

The ROC curve plots the true positive rate (TPR) against the false positive rate

(FPR) at different classification thresholds. TPR is the proportion of actual positive

cases correctly identified as positive, while FPR is the proportion of actual negative
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Figure 5.2: Accuracy curve for the training and testing of the MLP baseline

cases incorrectly classified as positive. The ROC curve visualizes how well a model

can distinguish between the two classes by showing how the TPR and FPR change as

the classification threshold varies. The AUC score is a measure of the area under the

ROC curve. It ranges from 0 to 1, with higher values indicating better performance.

An AUC score of 1 represents a perfect classifier, while a score of 0.5 represents

a random classifier. We see an AUC score of 0.956, as shown in Table 5.3, which

signifies that the model can differentiate between classes.

The Precision-Recall curve is another evaluation metric used in machine learning

models, particularly in binary classification problems. It is a plot of precision against

recall at different classification thresholds. Precision is the proportion of true positive

predictions (correctly identified positive cases) among all positive predictions. It

measures how many of the positive predictions made by the model are correct.

Conversely, recall is the proportion of true positive predictions among all positive

cases. It measures how many actual positive cases are correctly identified by the

model. The Precision-Recall curve visualizes the trade-off between precision and

recalls at different classification thresholds. As the threshold increases, the model
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Figure 5.3: ROC; Precision-Recall Curve for the MLP baseline

Table 5.1: Evaluation Metrics

Model Accuracy F1-Score AUC-Score
MLP baseline 86.3% 0.801 0.956

becomes more conservative in its predictions, leading to higher precision but lower

recall. Conversely, as the threshold decreases, the model becomes more liberal in its

predictions, leading to higher recall but lower precision. A good classifier has both

high precision and high recall. However, in practice, there is often a trade-off between

precision and recall, and the appropriate balance depends on the problem. This can

also be seen in the curve from Figure 5.3, that the model reaches high precision and

high recall at different thresholds.

All metrics show a positive trend, with a good F1 and AUC score. As shown in

the Table 5.1:

Feature Importance

To understand the working behind the MLP and the neural networks, we plot the

correlation matrices on the data set with the predicted slot probabilities in Figure5.4.

This would give us the importance of our spatial and temporal descriptions in the

network and how much they contribute to the final slot selection.
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Figure 5.4: Correlation Matrix for MLP baseline with the predicted probabilities

As we can see from the correlation matrices, the spatial and temporal constraints,

such as the pickup location, drop location, and the time bounds of the incoming item

and the slots, have a higher correlation. There is a drop in start times because the

first two requests generate slots from the start with a relaxed constraint. From this

figure’s last column, we can imply that the model gives almost equal weights to all

features and does not overfit to any; this signifies that the learning problem is valid

without the learner single-handedly learning the relation/heuristic between two vital

components.

5.2 LSTM

We train the LSTM model for 1200 epochs until we find convergence. As shown in

figure 5.5, we get expected trends in the loss function. It converges around 500 epochs
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Figure 5.5: Loss curve for the training and testing of the LSTM model

and continues to perform well.

Accuracy

We calculate accuracy as slot accuracy. It measures how often the LSTM model

predicts the same slot as the T-HTN planner. As shown by Figure 5.6, we get a good

test accuracy value of 90.2% around 1200 epochs, with high accuracy rates achieved

in the early stages of the training. With the seq2seq modeling, the LSTM achieves

better accuracy rates than the baseline.

ROC Curve and Precision-Recall

We also calculate metrics similar to the MLP baseline to measure the model’s

performance, as shown in figure 5.7. ROC (Receiver Operating Characteristic) curve,

AUC (Area Under the ROC Curve), and F1 score are standard evaluation metrics

used in machine learning models to measure the model’s ability to distinguish between

positive and negative classes for classification problems.

All metrics show a positive trend, with an excellent F1 and AUC score. As shown
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Figure 5.6: Accuracy curve for the train and test

Figure 5.7: ROC and Precision-Recall Curve
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Table 5.2: Evaluation Metrics - Learn2Plan

Model Accuracy F1-Score AUC-Score
Learn2Plan 90.2% 0.893 0.996

Figure 5.8: Correlation Matrix

in the Table 5.2. A high F1 score says our predictions have low false negatives and

positives, and the model classifies well.

Feature Importance

Similar to the baseline, we calculate feature importance in Figure 5.8

As we can see from the correlation matrices and much like the MLP correlation

matrix, the spatial and temporal constraints, such as the pickup location, drop

location, and the time bounds of the incoming item and the slots, have a high

correlation.

Much like the baseline, the LSTM model is also not dominated by specific features

and understands the interplay of these features equitably, as seen in the last column.
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Table 5.3: Computation Metrics

5 requests T-HTN POPF MLP Learn2Plan
5 rail blocks 0.150 0.143 0.052 0.128

5.3 Computation Times

Our mission is to reduce the computation time for the slot-matching process. The

novel thing about our approach is that no matter how many candidate slots are

presented, the learner will take the same amount of time. However, the planner

computation time will grow linearly with the number of candidate slots. For example,

for a particular request, if ten slots have to be evaluated by the planner, following

the Learn2Plan Heuristic will take approximately 1/10th of the computation time

that the planner will take.

We compare Learn2Plan with the planner T-HTN from which we have generated

our training data, and POP-F [5] a forward chaining temporal planner used in task-

planning and scheduling benchmarks. For every request, we compute the computation

time improvement for our model (both LSTM and baseline) by the equation:

timprovement = (tPlanner)allslots − tmodel

tmodel = (tmodel)modelinference − (tPlanner)modeloutputslot

Where t is computation time. As we can see in the table 5.3, we get computational

speedups compared to both planners. The results are statistically significant, with

p-scores of 0.012 and 0.014 for MLP and Learn2Plan, respectively, from a one-sample t-

test. The MLP baseline achieves a 65.3% and 63.6% computational speedup compared

to T-HTN and POP-F, respectively. The LSTM also fairs well with 14.6% and 15.3%,

respectively, due to higher inherent complexity. However, we will achieve substantial

improvement as we increase the number of slots per request, requests, and rail blocks.

As accuracy is a feature for computational speedup, as it requires computing even to

validate sub-optimal slots, LSTM will work reasonably well for complex cases with

multiple slots.
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Table 5.4: Generalization accuracy

5 requests MLP Learn2Plan
10 rail blocks 76.11% 78.21%

Table 5.5: Computation Metrics

5 requests T-HTN POPF MLP Learn2Plan
5 rail blocks 0.150 0.143 0.052 0.128
10 rail blocks 0.150 0.143 0.06 0.135

5.4 Generalization

We generated sample data with five requests and ten rail blocks to evaluate perfor-

mance on unseen data. 10 Tasks were randomly sampled from this dataset and used

with Learn2Plan to evaluate the generalizability of this approach. First, the mean

accuracy is calculated in Table 5.4. We believe this is due to the difference in rail

block locations, as it is from a different statistical distribution than that of 5 rail

blocks.

The computation time is also measured to compare with the ten rail block test

set that shows the numbers are relatively similar due to similar input and output

sizes as shown in Table 5.5.

These results show that the model can reasonably generalize for uncertain requests.
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Chapter 6

Simulation

Moving on to the MuJoCo-based simulation framework with real physical and joint

dynamics. We have ported previous simulation approaches in planning problems from

ROS Gazebo to MuJoCo because of a lot of reasons, including:

• Performance: MuJoCo is designed to be highly optimized for fast and efficient

simulations, making it more suitable for real-time control applications. On the

other hand, ROS Gazebo may be slower due to the overhead of ROS middleware.

• Physics Engine: MuJoCo uses a proprietary physics engine that is highly

accurate and provides a realistic simulation of complex robotic systems. In

comparison, ROS Gazebo uses open-source ODE or Bullet physics engines that

may not be as accurate or reliable for some applications.

• Ease of use: MuJoCo has a more straightforward and user-friendly interface,

making it easier for researchers to set up and run simulations. In comparison,

ROS Gazebo has a steeper learning curve and may require more programming

and simulation setup expertise.
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Figure 6.1: ROS Pipeline

6.1 ROS Pipeline

The ROS simulation pipeline in figure 6.1 consists of three modules - Plan2Sim,

System Control, and mujoco control. Let us see what all three modules do-

• Plan2Sim: Parses an output plan, a JSON file, to identify coordinates from

symbolic locations such as rail block5. After interpreting, actions are assigned

to subsystems.

• system controllers: The robot and the rail are modeled as a subsystem in this

module with relevant URDF files. This module handles actuation.

• mujoco control: Handles the difference between desired and current values,

interfaces with MuJoCo, and sets limits, checks, and timeouts.

The example environment for a sorbent bed replacement task with a free flyer

modeled as a drone can be seen here:
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Figure 6.2: Simulation Environment
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we propose Learn2Plan, a novel and comprehensive LSTM-based

memory framework that combines the robustness and accuracy of a hierarchical task

planner and the efficiency of a shallow learning neural network model. Further, this

thesis also puts forward a method of a surrogate learning model that can aid multiple

HTN planners in scalability by speeding up their search process. It also opens up a new

research topic of learning heuristics and decision structures of hierarchical networks

through plan search tree traces. The simulation pipeline developed also proposes

a step towards physically-aware closed-loop planning to enhance the dimension of

interpretability in task-based planners.

In this framework, examples of planner runs are used to understand the spatial

and temporal reasoning behind the working of a planner without using any constraints

for the learning framework. For a given domain, the time bounds and the operating

locations of the tasks and slots generated by the planner are used. In planners, the slot

generation process is followed with this learning heuristic and bypasses the lengthy

and time-intensive slot-matching process. The learner takes all the candidate slots as

input and, through learning, outputs the best slot for a particular request optimizing

for makespan. The learning framework uses an LSTM model that understands the
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Figure 7.1: Planning system

sequentiality in the nature of requests and uses memory to reason for different slots

for different requests.

Finally, we conducted initial testing and proof-of-concept on a limited data set

that shows substantial computational speed-up compared to existing planners and

benchmarks. This speed-up is compared with almost 90% accuracy rates, guaranteeing

robustness in generated plans. Learn2Plan learns variable ordering heuristics through

planning tree traces and demonstrates effectiveness as a scalable add-on to HTN

planners. This thesis proposes a planning system that is robust, scalable, and

interpretable with the proposed solutions, as shown in Figure 7.1. Such planning

systems will enable efficient autonomous coordination in deep space habitats by

using a robust planner with a Learn2Plan integration to make it much more efficient.

This planner will also be integrated with the simulator to execute the plan in a

physics-aware environment and replan for failures.

7.2 Future Work

Learn2Plan experiment results show trends in the positive direction and achieve

excellent results with our initial tests. However, there are three future research

50



7. Conclusion and Future Work

directions for this work:

First, in the area of extensive testing and evaluation. This work’s true essence

and advantage will be seen when it is applied on multiple slots per request and many

requests because this will linearly increase the computation time for planners but

will always stay the same for Learn2Plan. Taking one step further to assess domain

independence, use different domains and problem instances than the one discussed in

the thesis. Ultimately, we want this approach to be domain-independent to a large

extent, if not entirely, and work with different hierarchical planners with minimal

modifications.

Second, Learn2Plan will work better if we convert the input values to world

embedding. World embedding is defined in a latent space that adds continuity to

discrete data and helps achieve higher accuracy rates by developing an upstream neural

network to convert variable input sizes to same-size embedding. Such embedding

would further go in the LSTM model instead of currently zero-padding cells.

Lastly, we want to integrate the simulation pipeline with plan execution and

replanning. As we know, planners work offline, and if some uncertainty or failure is

crept in the simulation due to physical features like friction, there should be a replan

trigger from the simulator. This would require sending the world state and the reason

for failure back to the planning system to replan from that state to achieve the final

state.
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