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Abstract

Off-road driving is an important instance of navigation in unstructured en-
vironments, which is a key robotics problem with many applications, such
as exploration, agriculture, disaster response and defense. The primary
challenge in off-road driving is to be able to take in high dimensional,
multi-modal sensing data and use it to make intelligent decisions on where
and how to traverse over unstructured terrain. While off-road driving has
been the focus of much research, it remains challenging to design systems
that are capable of off-road driving quickly, robustly, and in a variety of
environments.

It is common practice for modern off-road driving systems to perform some
form of semantic segmentation to bin terrain into one of several discrete
classes (such as trails, vegetation, obstacle) and perform path planning
and trajectory optimization to navigate through low-cost terrain classes.
While such systems have generated strong empirical results, they are
often engineering intensive, requiring thousands of densely labeled images.
Such a process can take tens to hundreds of hours of an engineer’s time.
Furthermore, the mapping of terrain classes to cost ignores geometric
information (e.g. some bushes may be more dangerous than others), and
the relative cost of different terrain classes is not defined. As a result, these
systems often need to be tuned extensively in the field, which generally
requires the effort of many skilled engineers.

In order to avoid this engineering-intensive labeling and tuning process,
recent work has proposed learning end-to-end navigation policies from
autonomously collected data. While such an approach has the promise
of reducing the engineering burden to deploy off-road driving systems,
these approaches often lack interpretability and performance guarantees.
Additionally, relying on random exploration to collect training data is
unsafe for full-scale robots, which can seriously damage the environment
and themselves. As such, these methods are generally infeasible to deploy
on full-scale robots.

In this thesis, we propose a learning-based system for off-road driving
for a full-scale autonomous all-terrain vehicle. Key to the work in this
these are two assertions: 1) We can design a high-performance system
without the need of any human-annotated data, and 2) learning should
be used in concert with existing trajectory optimization methods for
off-road driving. To address the first point, we collect a large dataset
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containing several hours of human-driven trajectories through challenging
off-road terrain at high speeds. This dataset contains many traversability-
stressing scenarios, such as steep slopes, dense vegetation and high speeds.
To address the second point, we leverage this dataset to learn two key
functions in trajectory optimization, the dynamics model and the cost
function.

Overall, we find that our learning-based methods outperform traditional
common-practice navigation baselines in isolation. More importantly, we
also demonstrate that these models lead to improved performance when
incorporated in path planning and control algorithms through large-scale,
multi-kilometer navigation trials.
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Chapter 1

Introduction

1.1 Motivation, Challenges and Prior Work

Robot navigation in unstructured environments is a key challenge that has been the

subject of much research [1, 3, 5, 8, 25, 44, 48, 66]. At a high level, this problem

requires robots to interpret large streams of high-dimensional sensory data, and use

said data to decide where and how to navigate to some goal. Humans are generally

able to complete this task safely, at high speeds. State of the art in navigation for

off-road robots remains comparatively slow.

Navigation in unstructured environments is a key component of many potential

robotics applications, such as search and rescue, last-mile delivery and exploration.

Off-road navigation serves as a challenging instance of navigation in unstructured

environments, with major challenges including interaction with slopes, rocks and

vegetation, and potentially at high speeds.

Designing robots and autonomy software that can reliably perform off-road navi-

gation is challenging for a number of reasons. First, robots are required to compress

large amounts of high-dimensional (and often multi-modal) sensory data into compact

representations in order to perform planning and control on. Ideally, this repre-

sentation should be expressive enough to encode a sufficient level of environmental

nuance, while remaining compact enough to generalize to many environments and

enable high-frequency re-planning. Second, robots can be exposed to a wide variety of

unforseen scenarios during operation. A successful navigation system thus must have
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1. Introduction

Figure 1.1: Off-road navigation is a challenging problem that requires sophisticated
state estimation, perception, planning and control to achieve near-human performance.
Shown are examples of human teleoperation through challenging scenarios, such as
deep puddles, tall vegetation and slopes.

a world representation that is robust and generalizable to novel scenarios. Finally,

the robot must be able to avoid navigational mistakes that have the potential to

be extremely harmful to the robot or its potential passengers, and be able to do so

reliably over long distances and timeframes.

Classical approaches to off-road navigation typically rely on dividing the environ-

ment into traversable or non-traversable space based on geometry, and plan through

kinematic [1] or simplified dynamic models [24] to find efficient routes to a given point

through traversable space. Such an approach has been used many times in practice

[1, 3, 44, 64] and at-scale. While these approaches are fairly robust and generalizable

to many robot platforms, these benefits typically come at the cost of performance.

A well-known failure case of geometric baselines is tall grass, which is traversable,

but often labeled as an obstacle [28]. Furthermore, classical systems often require

re-tuning in the field to account for novel scenarios [65, 70], which is often a slow,

heuristic and laborious process.

Given the ability of humans to collect and label large amounts of high-quality

driving data, a potentially appealing approach for improving the performance of

navigation systems in off-road environments is to leverage that data in some sort of

2



1. Introduction

learning framework. Such approaches have been considered by prior work [5, 9, 15, 28,

36, 45, 65]. These approaches generally fall into two categories: end-to-end learning,

and semantic segmentation. While end-to-end learning approaches have theoretically

high performance, they are typically data-hungry, non-interpretable and have limited

to no safety guarantees. Furthermore, they often rely on long exploration phases that

require large amounts of random actions [28]. This may not be feasible to deploy on

large-scale systems due to the risk of damage to the robot and human operator.

Semantic segmentation methods are a potentially appealing way to improve the

fidelity of a robot’s planning representation by directly encoding navigation-relevant

classes (e.g. trails, grass, etc.) into a robot’s model of the environment [36, 45].

However, the mapping between semantic classes and robot affordances is often coarse

(i.e. not all bushes are traversable). Furthermore, creating a semantic segmentation

dataset is a highly time-consuming process. Consequently, most semantic segmenta-

tion datasets for off-road driving [27, 36, 58] are much smaller than datasets used for

end-to-end learning, or traditional machine learning tasks [6, 13, 33].

1.2 Contributions

The work presented in this thesis will describe a navigation system for a Yamaha Viking

All-Terrain Vehicle (henceforth referred to as the Yamaha ATV) in unstructured, off-

road environments. There are two key philosophies behind the design decisions in this

system. First, we require interpretable navigation representations. Interpretability

is critical in large-scale navigation tests as the robot has the potential to harm its

operators and itself. Thus a safety driver must be able to understand the robot’s

decision-making process and intervene before any unsafe behavior occurs. Furthermore,

interpretability also allows for quicker adaptation and tuning in the field. The second

key philosophy adopted by this work is to use learning methods that can leverage

self-supervision. Large-scale, labeled datasets are time-consuming to create, and

are often collected in a single environment. We assert that self-supervised methods

are simpler to develop and deploy without sacrificing performance. Self-supervised

datasets can also scale to be orders of magnitude larger than labeled datasets. As

such, several core modules of the Yamaha navigation stack are learned using large

corpora of unlabeled human driving data.

3



1. Introduction

In order to make the techniques presented in this thesis as widely applicable as

possible, we define our task to be to navigate to a series of waypoints (spatial positions

which may come from a human operator or a global planning algorithm) using only

on-board computation, without the aid of any prior observations of the terrain (e.g.

no aerial imagery, or observations from additional robots). While these limitations

may not exist for all applications of robot navigation (e.g. planning with satellite

imagery [5, 41, 42], maintaining maps between autonomy runs [30], or sharing maps

between multiple robots [3, 44]), this set of problem constraints represent a minimal

set of assumptions and the methods presented in this thesis would likely be enhanced

by relaxing these constraints.

The remainder of this thesis is split into six sections, which will discuss the

following:

2. Conceptual preliminaries, namely viewing off-road navigation as a trajectory

optimization.

3. An overview of the Yamaha ATV and testing site. This section primarily focuses

on implementation details such as vehicle sensors and actuators, coordinate

frames and setup of navigation courses.

4. Work on learning vehicle models from terrain interaction data (adapted from

[51]).

5. Work on learning cost functions from driving trajectories collected from human

experts, and evaluation on large-scale navigation tests (adapted from [52]).

6. Related work in model and cost function learning for off-road driving.

7. Conclusions and future work

4



Chapter 2

Preliminaries

2.1 Notation

Described in Table 2.1 are naming conventions for common variables in this thesis.

In general, lower-case variables are reserved for vectors, and capital variables for

matrices (or stacked vectors).

It is often useful in this domain to be able to extract positions from a vehicle state x,

which may contain additional state variables such as velocities and actuator positions.

To avoid overloading of notation, planar positions will be denoted as p = (px, py), and

a general position extraction function P is defined such that P (x) = (px, py). Lastly,

let C(P (τ)) : Rk×m → Rk (and by abuse of notation, C(τ)) represent the process of

evaluating a trajectory over a costmap. This is accomplished by first computing map

coordinates, and then stacking the appropriate cell values.

2.2 Trajectory Optimization

For the purposes of this thesis, off-road navigation can generally be viewed as a

trajectory optimization problem. A trajectory optimization problem can be defined

as the following:

5



2. Preliminaries

Variable Definition
x robot state
n size of robot state (i.e. x ∈ Rn)
p (three-dimensional) robot position
p planar robot position
q robot orientation
u robot control
m size of robot control (i.e. u ∈ Rm)
o (high dimensional) robot observation
τ trajectory or rollout
t time
T horizon
J cost function
f dynamics function
M map (M ∈ Rk1×k2×k3)
C costmap (C ∈ Rk1×k2)

Mres map resolution (m/cell)
Mx map x-origin (location of lower-left cell)
My map y-origin (location of lower-left cell)
D dataset

Table 2.1: Variable names for this thesis

min
u1:T−1

J(x1:T , u1:T−1)

s.t. xt+1 = f(xt, ut) ∀t

x1 = x̂

(2.1)

Where the agent is responsible for selecting minimum-cost actions u1:T from an initial

observed state x̂. Key to this problem are two functions:

1. A dynamics function f that constrains the state transitions (xt, ut, xt+1) of the

robot. This dynamics function is applied recursively to state-action pairs (xt, ut)

to generate rollouts τ .

2. A cost function J which measures the desirability of a given trajectory τ .

This representation is useful for this thesis as many cost functions and dynamics

functions have interpretable, useful representations (e.g. trajectory rollouts, costmaps).

In the off-road driving domain in particular, reasonable baseline approximations of

6



2. Preliminaries

these two functions exist, and will be described in the following sections.

2.3 Baseline Models

A simple but effective approximation of the dynamics function of an Ackermann-

steered vehicle is the kinematic bicycle model (KBM). While this model makes several

strong assumptions such as lack of tire slip and flat terrain, which are generally

not true for off-road navigation, these assumptions are often made in practice [1] to

reasonable success. The basic form of the KBM is provided in Equation 2.2.

x =

pxpy
θ

 , u =

[
v

δ

]
, ẋ =

vcos(θ)vsin(θ)

v tan(δ)
L

 (2.2)

A problematic assumption of the basic KBM is that it assumes that velocities v and

steering angles δ can be changed instantaneously, which is rarely true in practice.

Fortunately, it is relatively simple to modify the basic KBM to admit desired velocity

and steering [vdes, δdes] by adding additional steering and throttle dynamics (Eq 2.3).

x =


px

py

θ

v

δ

 , u =

[
vdes

δdes

]
, ẋ =


vcos(θ)

vsin(θ)

v tan(δ)
L

Kv(vdes − v)

Kδ(δdes − δ)

 (2.3)

Note that both the steering and throttle dynamics are essentially modeled as a P

controller with gains Kv and Kδ respectively. In practice, several quantities in these

equations, such as steering rate and speed are clamped in accordance to actuation

and safety constraints of the vehicle. Sample KBM outputs are shown in Figure 2.1.

2.4 Baseline Cost Functions

The cost function plays a critical role in the trajectory optimization problem as it is

responsible for telling the agent whether a given trajectory is good or bad. Generally,

7
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Parameter Value
L 3.0m
Kv 1.0
Kδ 10.0

v limits [0.5, 3.5]m/s
δ limits [−0.52, 0.52]rad
δ̇ limits [−.0.2, 0.2]rad/s

Table 2.2: Table of Parameter Values for the Yamaha ATV

Figure 2.1: Twenty example trajectories from a KBM with unit-normalized throttle
and steering commands from our data.

a cost function J(τ) is decomposed into a stage cost an terminal cost (Equation 2.4).

J(x1:T , u1:T−1) =
t=T−1∑
t=1

[JS(xt, ut)] + JT (xT ) (2.4)

For navigation problems, it is typically sufficient to use Euclidean distance to a goal

point as a terminal cost:

JT (xT ) = ||P (xT )− pg||2 (2.5)

Similarly, stage cost is often represented using a costmap.

JS(xt, ut) = C(p(xt)) = C(xt) (2.6)

A simple baseline costmap instance for off road driving is an occupancy map 2.2.

Given a set of obstacles, such a costmap can be constructed by assigning any cell

that intersects an obstacle as high cost. All other cells are assigned a cost of zero. It

8



2. Preliminaries

is also common practice to perform obstacle inflation, where cells near an obstacle

are assigned some cost proportional to their distance to an obstacle. In practice, this

allows robots to maintain a safe distance from obstacles.
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2. Preliminaries

Figure 2.2: An example costmap based on occupancy, with the vehicle located at the
center. Low cost is shown in purple, while high cost is shown in red. Areas containing
tall bushes are considered high cost, and are inflated to account for the size of the
ATV. The corresponding FPV image is provided for context.
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Chapter 3

Experimental Setup

A major component of this thesis work is the testing of our methods on a full-scale

ATV. As such, this section describes the means through which the ATV senses and

interacts with its environment.

3.1 Testing Site

All large-scale experiments in this thesis were performed at Gascola, a testing site in

Pittsburgh, PA. Gascola contains roughly 200 acres of rough terrain with several key

off-road scenarios, including trails, tall grass, obstacles and slopes. Gascola contains

many instances of each of scenario at varying degrees of difficulty (Figure 3.1).

3.1.1 Navigation Courses

The primary means of evaluating our algorithms is via navigation to a series of

pre-defined GPS waypoints. The vehicle is required to drive within a small radius

each of the waypoints in sequence. A qualitative example of this is shown in Figure

3.2. For this work, waypoints were determined by extracting poses from a human

tele-operation of the vehicle.
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Figure 3.1: Some representative terrains at Gascola, including slopes, trails and dense
vegetation.
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3. Experimental Setup

Figure 3.2: A qualitative illustration of our navigation courses. (Left) Given a human
teleop demonstration (blue), we extract waypoints (yellow) at a fixed distance interval.
(Right) Those waypoints are then transformed into the robot experiment frame and
used as goals.

3.2 Yamaha ATV

Experiments for this work were performed using the Yamaha ATV, which was

modified for autonomous driving by Mai et al. [34]. As hardware design is not a

major component of this work, we will refer readers to Mai et al. for a more complete

description of the ATV hardware.

3.2.1 Sensing

The primary sensors on the vehicle were the following:

1. A NovAtel PROPAK-V3-RT2i GNSS unit, which provided GPS poses (10hz)

and IMU data (100hz).

2. A Velodyne UltraPuck, which provided pointclouds (10hz).

3. A Multisense S21, which provided RGB and stereo images (10hz).

13
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3.2.2 Actuation

The steering and throttle of the ATV were actuated with a Kairos Autonomi steering

ring and Dynamixel MX-28T servo, respectively. The steering ring was set up for

position control via a low-level PID controller. Throttle could either be set directly

via the Dynamixel servo position, or run through another PID controller to track

desired velocities, given velocity estimates from the NovaTel.

3.2.3 State Estimation

For the majority of the work in this thesis, we use a version of Super Odometry [69]

modified by VanOsten [54]. This provides the vehicle 3D state estimates x = [p; q; v;ω],

given the IMU data from the NovaTel and pointclouds from the Velodyne.

3.2.4 Perception

A lidar-based mapping module was developed as part of this work. At a high level,

the role of the lidar perception is to produce cell-wise feature vectors from lidar

pointclouds and odometry which can be consumed by downstream costmapping

modules. The specific details of the lidar feature extraction are left for a later section

(5.3.2). In general, the algorithm works by maintaining a buffer of pointclouds, and

the ego-poses [p; q] that the pointcloud was measured at. Whenever a map should be

produced, the pointclouds in the buffer are transformed to the current vehicle frame

and aggregated (note that the pointclouds remain aligned with gravity and the map

axes).

Mapping was done this way because it:

1. Maintaining a registered pointcloud allows for local maps to be generated at

arbitrary sizes and resolutions

2. Maintaining a rolling buffer allows the perception to be reasonably robust to

mis-registered points.

A qualitative example of a registered pointcloud is provided in Figure 3.3.
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Algorithm 1: Lidar Perception Algorithm

Input:
Pointcloud buffer X,
Vehicle state xv,

Xagg = ∅ ◁ Initialize empty pointcloud aggregator
Tm = [P 3(xv); 1; 0; 0; 0] ◁ Compute location of local map frame
for X,Tx ∈ X do

Tm
x = Tm(T

−1
x ) ◁ Compute transform from pointcloud frame to map frame

Xagg = Xagg ∪ Tm
x X ◁ Add transformed points to buffer

end
M = feature extraction(Xagg) ◁ Perform feature extraction

Figure 3.3: An example of a registered pointcloud, with the FPV image shown for
context.
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3.2.5 Planning and Control

For this thesis, we relied on sampling-based methods of planning and control. Such

methods were desirable due to several key properties, such as:

1. Time and space budgets are simple to enforce via number of samples and

lookahead length

2. Can naturally handle non-smooth, non-convex cost functions

3. High empirical performance on mobile robots [1, 59]

Additional details are provided later in the thesis.

3.2.6 Frames

Vehicle experiments were primarily conducted in an gravity-aligned inertial frame

set at the vehicle position at the start of the experiment. Vehicle pose estimates and

maps are computed with respect to this frame. Additionally, we maintain a GPS

frame that remains consistent between runs, allowing use to merge data from multiple

runs together and send globally consistent waypoints. More details are provided in

Figure 3.4.
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Figure 3.4: A diagram of the relevant frames for the ATV. (I) A picture of the Yamaha
ATV. (II) The local frames of the relavant sensors including the NovaTel GPS and
IMU (A), the Multisense (B) and the Velodyne (C). (III) A high-level diagram of
the GPS and experiment frames. Waypoints (W ) are provided in the GPS frame
(G). At the start of a run, an experiment frame is set (E1, E2) at the vehicle start
position. This frame is treated as the inertial frame that trajectories τ , states x and
waypoints W are given in for preception, planning and control. Waypoint locations
are calculated by inverting the transformation from GPS to experiment (T GE )

.
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Chapter 4

Learning Models

4.1 Motivation

Performing trajectory optimization generally requires access to a good vehicle model.

While a number of analytical models, such as the kinematic and dynamic bicycle

models, exist and are commonly used in off-road applications, they make a number

of simplifying assumptions that are consistently violated in practice. Breaking these

assumptions (such as differential flatness and tire contact points) is generally benign

in applications with simpler terrain, such as in warehouses or in highway driving.

Furthermore, it is generally possible in these simpler environments to treat areas where

dynamics assumptions don’t hold as obstacles. However, in outdoor unstructured

environments, it is not sufficient to simply avoid these regions. It is rarely the case

that the path from a robot to its goal point will be on flat, smooth ground. It is also

likely that a robot will interact with objects such as logs or tall grass on its route to

a goal.

While modeling methods exist that can simulate complex terrain interactions and

interactions with deformable objects, such simulators are prohibitively slow to use in

high-frequency optimization, and are often non-differentiable (e.g. mode switching

for contacts). Additionally, the fidelity of said simulators are highly dependent on

accurate model parameters such as friction coefficients, object poses, object/terrain

geometry etc., which may not be able to be estimated reliably using on-board sensing.

As such, it seems to be a reasonable alternative to attempt to learn these models
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of physics directly from interaction data, where these complex relationships between

the vehicle and its environment can be approximated without needing to be explicitly

modeled.

4.2 Problem Formulation

Practically speaking, learning a model from corpora of trajectory rollouts can be

formulated as a standard maximum-likelihood estimation problem. That is, given a

corpus of state transitions (s, a, s′) in a dataset D, we can fit a stochastic dynamics

model fθ(·|s, a) as the following:

max
θ

E(s,a,s′)∼D
[
fθ(s

′|s, a)
]

(4.1)

Where fθ(s
′|s, a) is typically parameterized as a diagonal Gaussian. For determin-

istic dynamics models, it is common practice to replace maximum-likelihood with

minimizing mean squared error.

4.2.1 Practical Considerations

In practice, it is often more effective to predict state differences instead of new states

[38]. That is, the dynamics model is trained to predict ∆ = s′ − s, where new states

can be computed as s′ = s+∆,∆ ∼ fθ(∆|s, a).
Additionally, we generally maximize the likelihood of entire trajectories instead

of individual state transitions. That is, for a given horizon H, we sample an H-step

sequence of state transitions (s1, a1, s2), (s2, a2, s3), . . . (sH−1, aH−1, sH) and maximize

the likelihood over the entire trajectory.

max
θ

E(s1:T−1,a1:T−1,s2:T )∼D
[ T−1∏
t=1

fθ(st+1|st, at)
]

(4.2)

This has empirically been observed to increase the fidelity of long-horizon predictions

[38, 55]. Note that st+1 is dependent on the model prediction at time t. Unless

otherwise noted, st+1 will be generated using the mean prediction st.
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Figure 4.1: Our dataset contains several hours of driving data from a test site in
Pittsburgh, PA. Our dataset contains diverse off-road driving scenarios and several
sensing modalities, including front-facing camera and top-down local maps. Shown
in the center is a satellite image of the testing site with trajectories superimposed.
They are colored according to a clustering based on ResNet [22] features on the RGB
images. Shown on the sides are four datapoints (one from each cluster) with five of
the seven modalities available in the dataset shown. We can observe a diverse set of
scenarios, including dense foliage (red), steep slopes (green) open road (blue) and
puddles (yellow).

4.3 TartanDrive

Critical to the model learning process is a large, diverse dataset from which dynamics

interactions can be learned. As such, we collected a dataset of roughly five hours

of dynamics data using the Yamaha ATV. This dataset contained around 200,000

frames of interaction of the ATV in a number of interesting scenarios, including

slopes, vegetation, and interaction with foliage. We then leverage this dataset, called

TartanDrive [51], to train several state-of-the-art dynamics models [19, 50] and

evaluate the effectiveness of our learned dynamics models over traditional baselines.

4.3.1 Dataset Overview

A key differentiator between out dataset and other datasets for off-road driving is the

lack of hand-labeled semantics. Many off-road driving datasets such as RUGD [58]

and RELLIS-3D [27] are designed primarily for semantic segmentation. As as result,
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Dataset Samples State Action Image Pointcloud Heightmap RGBmap IMU Wheel RPM Shocks Intervention
RUGD 2700 No No Yes No No No No No No No

Rellis 3D 13800 Yes Yes Yes Yes No No Yes No No No
Montmorency 75000 Yes Yes Yes Yes Yes No Yes No No No

Ours 184000 Yes Yes Yes No Yes Yes Yes Yes Yes Yes

Table 4.1: Overview and comparison of various off-road driving datasets

Modality Type Dimension Train Dimension
Robot Pose Vector 7 7
RGB Image Image 2 x 1024 x 512 128 x 128
Heightmap Image 500 x 500 64 x 64
RGB Map Image 500 x 500 64 x 64

IMU Time-series 20 x 6 20 x 6
Shock Position Time-series 5 x 4 20 x 4
Wheel RPM Time-series 5 x 4 20 x 4
Intervention Boolean 1 1

Table 4.2: The set of available dataset features and their sizes.

these datasets generally contain a small number of hand-labeled images, and are

generally unable to scale in terms of number of datapoints because of this dependence

on hand-labeling. In contrast to this approach, our dataset does not contain any hand-

labeled features. While this prevents it from being useful for semantic segmentation,

this allows the dataset to be an order of magnitude larger than other real-world

datasets.

Additionally, our dataset contains a large amount of sensing modalities, including

both proprioceptive and exteroceptive modalities. Table 4.1 compares our dataset

to other common datasets for off-road driving. Table 4.2 provides a more detailed

description of the different modalities in our dataset.

4.3.2 Collection Process

Data were collected using human tele-operation in the Yamaha ATV. Due to safety

concerns, it was infeasible to perform random exploration. In total, we collected 630

trajectories across three days and five drivers at Gascola. Given the focus on dynamics

modeling, trajectories were generally kept short (about 30 seconds per trajectory),

and focused on interesting scenarios such as slopes and vegetation, and generally

exhibited more changes in throttle and steering than normal driving behavior.
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Driver

ATV

Joystick

Servos
Racepak

Data Logger

Novatel

GNSS/IMU

Multisense

3D Sensor

Dataset

Throttle/Steering

Commands

Brake

Brake Position

Wheel RPM

Shock Travel

Throttle

Steering

RGB Stereo Images

Depth Image

Odometry

IMU

ROS

Figure 4.2: A system diagram of our data collection setup. We use multiple sensors
to collect interaction data across many modalities, as well as throttle and steering
commands.

Exteroceptive data (images, maps) and poses were collected at 10hz. Propriocep-

tive data (IMU, shocks, wheel RPM) were collected at 200Hz and stacked per-timestep

to match the 10hz rate of poses and exteroception. For learning, exteroceptive data

was significantly downsampled.

4.4 Motivational Experiment: Dynamical

Variation in Practice

How the robot moves depends on the physical properties of the robot, the action

command we send, and the physical properties of the environment. In simple

environments such as urban roads, the robot properties and actions are sufficient to

perform accurate trajectory prediction. We thus ask the question: does our dataset

capture the dynamical variation induced by different types of terrains? To answer
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this question, we first perform a motivational experiment to quantify the correlation

between future states and action sequences. The rationale behind this experiment

is that if significant dynamical variations exist due to different terrains, then we

would expect that similar sequences of actions in the dataset may yield very different

trajectories.

In order to perform this experiment, we first collected 10000 random subsequences

of length 10 (one second) from our dataset and computed the displacement and

rotation from the initial state to the final state (such that every trajectory began

from the same initial state). We then performed time-series clustering (using [47]) on

the corresponding sequences of actions. One important note is that we chose simple

Euclidean distance instead of time-warping methods [37] as both the duration and

temporal position of the actions in the sequence (and not just the shape of the sequence)

affect state displacement. We then computed a t-Distributed Stochastic Neighbor

Embedding (t-SNE) [53] of the state displacements and colored each embedded point

according to its corresponding action cluster. To mitigate the effect that velocity has

on the final state displacement, we binned our data based on initial speed and created

a separate visualization for each bin. One of the resulting visualizations is shown in

Figure 4.3. The remainder of the figures and the experiment hyperparameters are in

Section 4.7

4.5 Multi-Modal Dynamics Modeling with

TartanDrive

In addition to data collection, we benchmarked several recent neural network architec-

tures for dynamics prediction from high-dimensional data. For this work, we consider

the task of dynamics prediction to be the prediction of future states x1:T , given an

intital state x0, a sequence of actions u1:T , and a set of observations O0 = {om0 } from
a set of modalities M . These models thus take the form fθ(x0, u1:T , O0).

We first describe the general architecture of our latent-space model for off-road

dynamics prediction. Similar to prior work [19, 50], we use a latent-space model that

is comprised of three parts:

1. An encoder eθ(ot) : O → Z that maps a high-dimensional observation ot into
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Figure 4.3: One t-SNE embedding of the state displacements in the dataset. Each
point is colored according to its closest action sequence centroid. We can observe
from this figure that there is some correlation between the clusters and their position
in the t-SNE embedding, though the colors clearly mix. Shown on the left are three
action sequences from different clusters that map to the same region in the embedding
space. Conversely, shown on the right are three action sequences that map to very
different regions of the embedding space, despite being very similar.
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the latent space

2. A model fθ(zt, ut) : (Z,U) → Z that forward-simulates the model in latent

space, given actions.

3. A decoder dθ(zt) : Z → O that maps the low-dimensional latent state back to

the observation space.

Parameterizing the model in this fashion allows for efficient state prediction, as one

only needs to encode the initial observation o0 to get an initial latent state z0. From

this, state vectors x1:T can be recovered via forward-simulating the latent model to

get z1:T and then decoding state without decoding the high-dimensional observations.

A detailed description of the network architecture is provided in section 4.7. We now

describe the specific implementation of our model for the ATV.

Multi-modal Encoders

The encoder for our model consists of a deep neural network for each modality m.

The original size, and rescaled training size of each modality used is shown in Table

4.2. The neural network architectures used for the different modality types are as

follows:

1. Vector inputs were passed through a dense network to produce a Gaussian

distribution p(z).

2. Images were passed through a convolutional neural network (CNN), flattened,

and passed through a dense network to produce p(z).

3. Time-series inputs were passed through a WaveNet encoder [39], flattened, and

passed through a dense network.

To combine the multiple predictions on p(z), we follow previous work [50, 61]

which use a product of experts [23]. In this formulation, the aggregated probability

of the latent state, p(z), is determined by the product of probabilities of each expert∏
i qi(z|oi). This formulation is preferable over a mixture of experts for its ability to

produce sharper distributions and allow experts to focus on smaller regions of the

prediction space. Since our encoders output diagonal Gaussian distributions in Z, we
can compute the closed-form product of Gaussian experts using the result from Cao

et al. [10],
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p(z|O) =
∏
i

qi(z|oi) = N

(∑
i(
µi
σi
)∑

i
1
σi

, I

(∑
i

1

σi

))
(4.3)

Latent Model

Our latent model is implemented as a GRU [11]. While prior work [19, 50] use the

Recurrent State-Space model, we found that its performance was similar to a GRU

for our particular task.

Decoders

We used several different decoder architectures to address the multi-modality of our

observations.

1. Vector outputs were handled using a dense network.

2. Image outputs were handled by using deconvolutional layers to upsample z.

3. Time-series outputs were handled by using temporal deconvolutional layers to

upsample z.

4.5.1 Training The Latent Space Model

We experimented with three different variations of training loss for our experiments.

State Reconstruction

This loss trained the model to maximize log-probability of ground-truth states

(position and orientation) from the Novatel, given the initial states, initial observations

and sequences of actions. Note that this loss does not train observation decoders.

Lstate = −logpθ(x1:T |o0, x0, u1:T ) (4.4)

Reconstruction Loss

This loss maximizes the log-probability of all observations in addition to the state.
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Lrec = Lstate −
∑
m

[βmlogpθ(o
m
1:T |z1:T )] (4.5)

Note that βm allows us to re-weight the importance of each modality.

Contrastive Loss

Hafner et al. [19] observed that Bayes’ rule can be applied to the reconstruction terms

to derive a contrastive loss. Since the contrastive loss is expressed using the latent

code z, a potential benefit is the ability to ignore distractors in the observation space

that are irrelevant to dynamics prediction, e.g. image backgrounds. The contrastive

loss is defined as:

Lcon =Lstate − β

[
logpθ(z1:T |O1:T )−

∑
O′

1:T

logpθ(z1:T |O′
1:T )

]
(4.6)

where the added objective aims to maximize the log-probability of the latent code

z given the corresponding observation O, while minimizing the log-probability of

z given the other observations in the batch O′. Note that while the terms of the

reconstruction loss can be decomposed into independent probabilities, the contrastive

loss cannot. As such, there is a single weighting constant β.

4.6 Experiments and Analysis

Our experiments aim to answer the following questions:

1. Does using multi-modal sensory data lead to improved dynamics prediction in

challenging environments?

2. Does varying the loss type improve model accuracy?

3. Does adding exteroception help model predictions?
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State Reconstruction Contrastive
KBM 1.1638 1.1638 1.1638
Image 0.5263 0.4740 0.4952

Image + Maps 0.3521 0.3386 0.3741
Time Series 0.2176 0.2285 0.1966

All 0.1896 0.1674 0.1958

Table 4.3: Model prediction results showing RMSE of mean state prediction for
different models and loss functions.

4.6.1 Does Adding Additional Modalities Help?

We divided our dataset into a set of training trajectories and evaluation trajectories.

We then trained four latent-space models with the following varied input modalities:

1. RGB image only, as in [28] (Image)

2. RGB image, heightmap and RGB map (Image + Maps)

3. IMU, shock position and wheel RPM (Time-series)

4. All Modalities (All)

We trained each model using each loss function described in the previous section.

We also implemented a baseline kinematic bicycle model (KBM) that leveraged the

average wheel RPM to make predictions. Table 4.3 shows the accuracy of each model

as the root mean squared error (RMSE) of the mean state prediction after 20 steps

of forward-simulation. The model with the lowest score for a given loss (i.e. the best

set of modalities) is bolded. The model with the lowest evaluation score for a given

modality (i.e. the best loss function) is colored in red. Note that since the KBM is

not a latent-space model, we copy its evaluation score across all loss columns.

Overall, we can observe that adding additional modalities to the latent-space

model results in improved prediction accuracy. The most noticeable improvement

comes from adding top-down maps to the image-only model, yielding a 33% decrease

in prediction error. From our results, we can gather that the time-series data is very

important to the overall dynamics prediction. This is evidenced by the large increase

in model accuracy from adding the time-series data (roughly 45% improvement from

Image + Maps to All across all training procedures), and the relatively high accuracy

of the time-series model. This is to be expected, as wheel RPM in particular is highly
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correlated with the velocity. However, we still observe that adding the image-based

modalities to the time-series model yielded roughly a 15% increase in model accuracy

across all training procedures. We note that the performance of the time-series and

all-modality models are essentially the same under the contrastive loss.

4.6.2 Does the Loss Type Matter?

We find that all three loss functions led to similar model accuracy. We attribute

this to the fact that in many cases, the high-dimensional sensory inputs are not

necessarily correlated with robot motions as they are in the environments used by

Hafner et al. [19]. In these simulated environments, predicting future observations is

always possible since environments consist only of the agent and a static background.

However, future observations are much more difficult to predict in our scenarios. For

example, if the ATV drives around a corner, it will be unable to predict observations

without some form of mapping and prior traversal. As such, we observe that the

auxiliary task of predicting sensory input yields little performance increase.

4.6.3 When Does Adding Exteroception Help?

We re-evaluated the usefulness of additional input modalities in more difficult driving

scenarios. We compared the prediction accuracy of time-series input only models to

prediction accuracy of models incorporating exteroception from the maps and images

in both the original dataset, and a new dataset separately collected exclusively in

more uneven terrain. We define a trajectory difficulty metric as average change in

height per second, which roughly corresponds to terrain steepness and unevenness.

The original and new dataset had trajectory difficulties of 0.0866m/s and 0.2253m/s,

respectively. 87% of the trajectories in the new dataset were more difficult than the

figsn difficulty in the original dataset. Table 4.4 shows the prediction accuracy of

time-series and all-modality models on each evaluation set, as well as the percent

improvement.

Overall, we observe that the additional vision-based modalities are more beneficial

in the more challenging scenarios. This makes sense, as the difficulty of the terrain

increases, it becomes increasingly difficult to accurately predict the future using

proprioception alone.
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Dataset Prop. Error Prop. + Ext. Error Improvement
Original 0.2176 0.1896 13%
Difficult 0.7313 0.5394 26%

Table 4.4: Comparison of Proprioception-only (Prop.) and Proptioception + Ex-
teroception (Prop. + Ext.) Models on the Original and More Difficult Evaluation
Datasets

4.7 Implementation Details

4.7.1 Network Architecture and Training Procedure

In this section, we elaborate more on our network architectures and training proce-

dures. The algorithm for generation state and observation predictions is presented

in Algorithm 2. The general algorithm for encoding and decoding both image and

time-series data is presented in Algorithms 3-6. The temporal downsample block

follows the implementation of WaveNet [39] (i.e. gated, dilated, causal convolutions).

However, as there is no temporal order to the latent code, temporal upsampling is

handled simply by 1D convolution and upsampling along the time dimension. We

present the full list of neural network architectures in Tables 4.5-4.10. We present

our training hyperparameters in Table 4.12. Since we evaluate multiple different

loss types, we add an additional column denoting which experiments used which

hyperparameters (with ’R’ standing for reconstruction and ’C’ for contrastive).

4.7.2 Algorithm for T-SNE Clustering

In this section, we describe in more detail our algorithm for performing time-series

clustering. This is presented in Algorithm 7.

4.7.3 T-SNE figures For Dynamical Variation Experiment

The full set of t-SNE figures and clusters from our motivational experiment are

provided in Figures 4.4 and 4.5, respectively. The hyperparameters for the experiment

are provided in Table 4.13.
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Algorithm 2: Latent Model Forward Pass

Input: Modality set M , initial state x0, initial observations {om0 ,∀m ∈M},
action sequence a1:T , modality prediction set M̃ . Encoders
emψ ,∀m ∈M , Decoders dmψ ,∀m ∈ M̃ , latent model fθ(z, a), action
encoder gψ(a), state decoder dstateψ

Output: State predictions ˜x1:T , observation predictions {om1:t, ∀m ∈ M̃}
for m ∈M do

pm(z)← emψ (o
m
0 ) ◁ Encode each observation into Z

end
z0 = aggregate({pm(z),∀m ∈M}) ◁ Use Deepsets [67] or Product of Experts
[23] to get single z
for t ∈ 1 : T do

zt = fθ(z, gψ(at−1)) ◁ Embed action and predict next latent state
xt = dstateψ (zt) ◁ Decode state

for m ∈ M̃ do
omt+1 = dψ(zt) ◁ Decode observation

end

end

return x1:T , {om1:t,∀m ∈ M̃}

Algorithm 3: Upsample Block

Input: Image input x, upsample factor s, convolution kernel K, activation
function f

Output: Upsampled image output x̃
x← linear interpolate(x, s)
x← x ∗K
x← f(x)
return x

Algorithm 4: Downsample Block

Input: Image input x, downsample factor s, convolution kernel K, activation
function f

Output: Downsampled image output x̃
x← x ∗K
x← f(x)
x← linear interpolate(x, s)
return x
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Algorithm 5: CNN Encoder

Input: Image input x, downsample blocks Dψ, MLP fθ
Output: Latent distribution p(z)
for dψ in D do

x← dψ(x) ◁ using Algorithm 4 or [39]
end
x← flatten(x) ◁ Flatten x to 1D
µ, σ ← fθ(x)
return N (µ, σ)

Algorithm 6: CNN Decoder

Input: Latent vector z, upsample blocks Uψ, MLP fθ
Output: Image reconstruction X̃
x← fθ(x)
x← pad front (x, 2) ◁ x ∈ {1× 1× |x|}
for uψ in U do

x← uψ(x) ◁ using Algorithm 3
end
return x

Layer Input Dim Output Dim Kernel Size Activation
Downsample 1 3× 128× 128 4× 64× 64 3× 3 ReLU
Downsample 2 4× 64× 64 8× 32× 32 3× 3 ReLU
Downsample 3 8× 32× 32 16× 16× 16 3× 3 ReLU
Downsample 4 16× 16× 16 32× 8× 8 3× 3 ReLU

Flatten 32× 8× 8 2048 - -
MLP 2048 2× |Z| - Tanh

Gaussian 2× |Z| N ∈ Z - -

Table 4.5: Visual CNN Encoder Architecture
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Layer Input Dim Output Dim Kernel Size Activation
Downsample 1 {1, 3} × 64× 64 4× 32× 32 3× 3 ReLU
Downsample 2 4× 32× 32 8× 16× 16 3× 3 ReLU
Downsample 3 8× 16× 16 16× 8× 8 3× 3 ReLU
Downsample 4 16× 8× 8 32× 4× 4 3× 3 ReLU

Flatten 32× 4× 4 512 - -
MLP 512 2× |Z| - Tanh

Gaussian 2× |Z| N ∈ Z - -

Table 4.6: Local Map CNN Encoder Architecture

Layer Input Dim Output Dim Size Dilation Activation
Downsample 1 {4, 9} × 20 {4, 9} × 20 2 2 [39]
Downsample 2 {4, 9} × 20 {4, 9} × 20 2 4 [39]
Downsample 3 {4, 9} × 20 {4, 9} × 20 2 8 [39]
Downsample 4 {4, 9} × 20 {4, 9} × 20 2 16 [39]

Flatten {4, 9} × 20 {80, 180} - - -
MLP {80, 180} 2× |Z| - - Tanh

Gaussian 2× |Z| N ∈ Z - -

Table 4.7: Temporal CNN Encoder Architecture

Layer Input Dim Output Dim Kernel Size Activation
MLP |Z| 128 - Tanh

Unflatten 128 128× 1× 1 - -
Upsample 1 128× 1× 1 32× 4× 4 3× 3 ReLU
Upsample 2 32× 4× 4 16× 8× 8 3× 3 ReLU
Upsample 3 16× 8× 8 8× 16× 16 3× 3 ReLU
Upsample 4 8× 16× 16 4× 32× 32 3× 3 ReLU
Upsample 5 4× 32× 32 3× 128× 128 3× 3 ReLU

Table 4.8: Visual CNN Decoder Architecture
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Layer Input Dim Output Dim Kernel Size Activation
MLP |Z| 128 - Tanh

Unflatten 128 128× 1× 1 - -
Upsample 1 128× 1× 1 32× 4× 4 3× 3 ReLU
Upsample 2 32× 4× 4 16× 8× 8 3× 3 ReLU
Upsample 3 16× 8× 8 8× 16× 16 3× 3 ReLU
Upsample 4 8× 16× 16 4× 32× 32 3× 3 ReLU
Upsample 5 4× 32× 32 3× 64× 64 3× 3 ReLU

Table 4.9: Local Map CNN Decoder Architecture

Layer Input Dim Output Dim Kernel Size Activation
Unflatten |Z| 1× |Z| - -
Upsample 1 1× |Z| 2× 64 2 Tanh
Upsample 1 2× 64 4× 32 2 Tanh
Upsample 1 4× 32 8× 16 2 Tanh
Upsample 1 8× 16 16× 8 2 Tanh
Upsample 1 16× 8 20× {4, 9} 2 Tanh

Table 4.10: Temporal CNN Decoder Architecture

Layer Input Dim Output Dim Activation
Action Encode 1 2 16 Tanh
Action Encode 2 16 16 Tanh

GRU (128, 23) 128, 128 -
State Decode 1 128 128 Tanh
State Decode 2 128 N ∈ R7 -

Table 4.11: Latent Model Architecture

Algorithm 7: T-SNE Clustering

Input: Dataset D (binned by velocity), consisting of states s1:T and actions
a1:T , time window k, numbers of clusters n,

Output: Cluster mappings c1:T and t-SNE embeddings z1:T for each timestep
ft = flatten(at:t+k),∀t ◁ Get features for each state by flattening actions over
the window
c1:k = kmeans(f1:T ) ◁ Perform k-means to get cluster centers
Tt = (st)

−1,∀t ◁ Compute the transform to start all state differences at 0,0
∆s1:T = Tt(st+k − st),∀t ◁ Compute state differences for all states
z1:T = tsne(∆s1:T ) ◁ Perform t-SNE on the state differences
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Hyperparameter Value Experiment
Optimizer Adam [29] All

Learning Rate 1e− 3 All
Epochs 5000 All

Batch Size 64 All
Gradient Steps Per Epoch 10 All

Gradient Norm Clip 100.0 All
Train Timesteps 20 All

RGB Image Loss Scale 100 R
RGB Map Loss Scale 100 R
Heightmap Loss Scale 1 R

IMU Loss Scale 0.1 R
Wheel RPM Loss Scale 0.1 R

Contrastive Scale 10.0 C
EMA τ 0.05 C

Table 4.12: Training Hyperparameters

Hyperparameter Value
# Subsequences 10000
Sequence length 10

# Clusters 10
# Velocity Bins 5

Clustering Distance Metric Euclidean

Table 4.13: Motivational Experiment Hyperparameters
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Figure 4.4: The t-SNE visualizations for all five velocity bins.
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Figure 4.5: The cluster centroids for the motivational experiment
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Chapter 5

Learning Cost Functions

5.1 Motivation

While learning more accurate models of vehicle dynamics may tell a vehicle how to

drive, it is critical that the vehicle also know where to drive. We assert that simple

obstacle avoidance is not sufficient for off-road driving for the following reasons:

1. Many common objects such as tall grass and low bushes may appear as obstacles

despite being traversable.

2. Some objects may be more costly to traverse than others (i.e. tall grass and

rocks should be costed differently).

5.2 Problem Formulation

In order to obtain more effective representations of cost for our problem, we choose

to adopt an inverse reinforcement learning (IRL)-based method to produce costmaps

from tensors of map features obtained from lidar pointclouds. The supervision for

these costmaps is derived from a set of expert trajectories obtained from a human

driving the ATV through certain scenarios. These trajectories can be thought of as

samples from an expert policy. The objective of IRL is to find a cost function whose

corresponding optimal policy closely resembles the expert.
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5.3 Dataset Collection for Inverse RL

Unfortunately, the data collected in TartanDrive [51] is unsuitable for inverse RL for

several reasons. (1) Since TartanDrive was focused on learning models, trajectories

were often collected at a relatively slow speed with significant changes in steering,

which cause trajectories to be highly sub-optimal. (2) The Velodyne UltraPucks were

installed on the Yamaha ATV after TartanDrive data was collected. As such, the

sensing horizon in TartanDrive is comparatively small (up to 10m in front of the

vehicle). This severely limits the speed that is safe of the vehicle to traverse. In

contrast, the lidar maps produced by the Velodyne have a horizon of 60m.

In order to have expert demonstrations for IRL, we collected a dataset of roughly

an hour of aggressive off-road driving where human tele-operator was instructed to

drive as aggressively as possible while still maintaining safety. We then quantify the

difficulty of the resulting dataset using the following metrics:

1. Speed: The magnitude of the body velocity at each timestep in the dataset.

2. Yawrate: The magnitude of the z-component of the body twist at each timestep

in the dataset.

3. Dz: The magnitude of the change in the vehicle’s z position between two

consecutive timesteps.

A comparison between TartanDrive [51] and the IRL dataset is provided in Figure

5.1. Overall, the IRL dataset has higher mean difficulty across all metrics, and also

exhibits a wider distribution of difficulty across all metrics, as well.

5.3.1 Extracting Goals from Undirected Driving Data

A minor, but important caveat to the data collection process is that the expert

demonstrations in the IRL dataset are undirected. That is, the human tele-operator

was not instructed to navigate to any particular goal point. While this approach to

data collection may render the dataset not applicable to techniques such as global

planning over several hundreds of meters or more, given the focus on local planning,

we found that the benefits of this data collection method outweighed the costs. The

most significant benefit was that demonstrations could be collected much more quickly,
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(a) Tartandrive difficulty

(b) IRL dataset difficulty

Figure 5.1: Comparison of dataset difficulties between our dataset and TartanDrive.
Our IRL dataset has higher mean difficulty and a wider distribution of difficulty, as
well.
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Feature Calculation
Height Low minp[pz], ∀p|pz < tz + koverhang
Height Mean 1

|P |
∑

p[pz], ∀p|pz < tz + koverhang
Height High maxp[pz], ∀p|pz < tz + koverhang
Height Max maxp[pz], ∀p
Terrain (T) See Algorithm 8

Slope 0.5 (| ∂
∂x
T |+ | ∂

∂y
T |)

Diff Height high - Terrain
SVD1 λ1−λ2

λ1

SVD2 λ2−λ3
λ1

SVD3 λ3
λ1

Roughness λ3
λ1+λ2+λ3

Unknown 1 [|P | = 0]

Table 5.1: List of grid map features, and their calculations given the points in a cell

could be adapted rapidly if interesting scenarios presented themselves during the

data collection process. Furthermore, the lack of pre-defined goal points can be easily

ameliorated via a simple, offline goal-labeling process. Given a fixed time horizon

H, a goal state xg can be determined by simply using the robot state H steps in the

future:

xGt = xt+H (5.1)

This goal-relabeling process has been shown to be effective in reinforcement

learning problems [4]. Furthermore, goal-relabeling with a small enough H can avoid

an issue in IRL noted by Ratliff et al. [42] where experts may choose paths in a

sub-optimal homotopy class, especially with respect to obstacles.

5.3.2 Lidar Feature Maps

Key to the IRL problem is informative state features upon which learning can be

performed. For the purpose of this work, we implemented a lidar perception module

that takes in registered lidar pointclouds and produces a tensor of geometric map

features. Given this map M , features can be determined for a given state xN by

projecting its position pN onto the map features.

An overview of our set of map features is provided in Table 5.1, and our lidar
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mapping algorithm is presented in detail in Algorithm 8.

Algorithm 8: Lidar Mapping Algorithm
Input: Buffer of registered pointclouds Pb, pointcloud skip kp, Map origin (ox, oy), Map size (lx, ly), Map resolution r,

overhang limit koverhang
Output: Terrain feature tensor X

nx = ⌊ lx
r

⌋

ny = ⌊ ly
r

⌋
X = 0nx×ny×12 ◁ Initialize map tensor

P =
∑|Pb|/kp

i=0 Pi∗kp ◁ Aggregate pointclouds from buffer

for i = 0 . . . nx do
for j = 0 . . . ny do

Pm = {p, ∀p ∈ P |(Px−ox
r

= i) ∧ (
Py−oy

r
= j)} ◁ Get all points in a given column

X[i, j, 0] = minp∈Pm [pz ] ◁ Get min height

X[i, j, 1] = maxp∈Pm [pz ] ◁ Get max height

end

end
X[:, :, 4] = G ∗ inflate(X[:, :, 0]) ◁ Generate terrain estimate by inflating and low-pass filtering min height
X[:, :, 5] = Sx ∗ |X[:, :, 2]| + Sy ∗ |X[:, :, 2]| ◁ Get terrain slope via derivative filter
for i = 0 . . . nx do

for j = 0 . . . ny do

Pm = {p, ∀p ∈ P |( px−ox
r

= i) ∧ (
py−oy

r
= j) ∧ (pz < X[i, j, 2] + koverhang)} ◁ Filter overhanging points

X[i, j, 2] = maxz [pz∀p ∈ Pm] ◁ Get the max height of the cell, saturating at the overhang limit

X[i, j, 3] = 1
|Pm|

∑
p∈Pm

[pz ] ◁ Get the mean height of the cell

X[i, j, 6] = X[i, j, 2] − X[i, j, 4] ◁ Get the height of the cell relative to terrain $
λ1, λ2, λ3 = SV D(Pm) ◁ Get the SVD decomposition of the cell points

X[i, j, 7] =
λ1−λ2

λ1
◁ Get SVD1

X[i, j, 8] =
λ2−λ3

λ1
◁ Get SVD2

X[i, j, 9] =
λ3
λ1

◁ Get SVD3

X[i, j, 10] =
λ3

λ1+λ2+λ3
◁ Get roughness

X[i, j, 11] = 1[|Pm| = 0] ◁ Get unknown

end

end
return X

5.4 Methodology

5.4.1 MaxEnt IRL

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) is a popular

framework for extracting cost functions for a Markov Decision Process (MDP) from

large corpora of human demonstrations [72]. MaxEnt IRL builds off of the results

shown by Abbeel and Ng [2] that one can obtain a policy close to the expert policy

by matching feature expectations. However, the baseline IRL problem is ill-posed,

as there are an infinite number of cost functions that can explain a set of expert

trajectories. Ziebart et al. [72] propose using the principle of maximum entropy [26]

to address the ill-posed nature of unregularized IRL. They show that the gradient

for maximizing the likelihood of the expert trajectories τE under the learned reward
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function with entropy regularization can be computed as Equation 5.2.

∇θ

∑
τE∈DE

L(τE|θ) = f̃ −
∑
si

DL
si
fsi (5.2)

∇f

∑
τE∈DE

L(τE|θ) =
∑
si

[
DE
si
−DL

si

]
(5.3)

Here, fsi are the features associated with state si, DL
si

is the learner’s state

visitation distribution, and f̃ is the expert’s expected feature counts (f̃ =
∑

si
DE
si
fsi).

Note that the computation of this gradient requires enumeration over the state-space

of the MDP.

Performing gradient ascent using this objective has been shown to produce strong

results for reward functions linear in state features (of the form r = θTf). Wulfmeier

et al. [62] extend this formulation by providing a gradient of the MLE objective with

respect to state features (Equation 5.3). This gradient allows for the training of deep

neural networks via IRL (MEDIRL).

Algorithm 9: Training Step for Fast MEDIRL

Input:
Dataset D of expert trajectories τE,
Map features M ,
Goal weight κ,
FCN Ensemble Fθ(M) : RW×H×D → RB×W×H ,
MPPI MPPI(xs, xg, C, λ) : X → (ηn, τn)×N

while not converged do
τE,M ∼ D ◁ Sample from dataset
x0 = τE0 , xg = τEt−1 ◁ set start/goal
fθ ∼ Fθ ◁ sample FCN from ensemble
C = fθ(M0) ◁ Compute costmap from FCN
τL,ηL = MPPI(x0, xg, C, κ)
DE = SV F (τE, 1) ◁ Compute state visitations
DL = SV F (τL, ηL) via Algorithm 10
∇zJ = DE −DL ◁ Gradient via [62]
backprop(∇zJ, fθ) ◁ Update FCN grads
θ ← Adam(θ −∇θJ) ◁ Update via [29]

end
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5.4.2 Optimizing Over Cost Functions with MPPI

Key to computing the MaxEnt IRL gradient is an algorithm that can quickly compute

an optimal policy for a given cost function. In recent years, it has been popular to

use sampling-based MPC methods, due to their simplicity, ease of parallelization

and ability to make minimal assumptions as to the form of the dynamics model and

cost function. In particular, MPPI [60] has been widely used, demonstrating strong

empirical results in several domains including navigation [1, 59] and manipulation

[7, 38].

MPPI can be thought of as a gradient-free optimizer that attempts perform

importance sampling of an optimal distribution of controls where control sequences

u1:T have probability inversely proportional to the exponential of their cost (Equation

5.4). It is assumed that cost can be calculated by rolling out an action sequence u

through a (stochastic) dynamics function f with initial state x0, and applying a cost

function to the resulting trajectory τ .

q∗(u1:T ) ∝ exp(−C(τ))p(u1:T ), τ ∼ x0, f (5.4)

This distribution q∗ is assumed to have the form of a control sequence u∗
1:T with

independent Gaussian noise. Given these assumptions, u∗
1:T can be estimated by

importance sampling with a proposal distribution p(u) (Equation 5.5).

u∗ =
∑
u

q∗(u)u =
∑
u

p(u)
q∗(u)

p(u)
u = Eu∼p(u)[

q∗(u)

p(u)
u] (5.5)

Fortunately, the likelihood ratio q∗(u)
p(u)

is easily computable given the assumption

as to the form of the optimal distribution (Equation 5.4). This results in the update

rule:

u∗
1:T =

∑
u

[exp(−C(τ))u], u ∼ ũ1:T (5.6)

where ũ1:T is a running estimate of the optimal distribution. In practice, the first

action u1 is then executed on the robot, and the running estimate is then shifted to

warm-start the optimization process for the next timestep.
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MPPI with Gaussian Walks

In practice, MPPI can be prone to getting stuck in local optima if the noise parameters

are not tuned appropriately. Furthermore, the use of independent Gaussian noise can

produce highly noisy action sequences, which can be damaging to robot actuators due

to high jerk. In order to address these issues, we choose to sample action sequences

via a Gaussian random walk (Equations 5.7, 5.8).

u1:T = ũ1:T + w1:T (5.7)

where

w1 = 0, wk = wk−1 + ϵ, ϵ ∼ N (0, σ) (5.8)

Since all wk are zero-mean, Equation 5.5 remains an unbiased estimator of u∗
1:T .

Given the ability to maintain a significant variance over u1:T while maintaining a low

variance in the random walk, action sequences produced from Gaussian random walks

can be much smoother while maintaining sufficient coverage of the action space.

5.4.3 Computing State Visitations

Given the resulting continuous trajectory distribution from MPPI, we can project the

resulting trajectories into the map through Algorithm 10. Note that since trajectories

from MPPI are weighted by their probability under the optimal distribution, we can

use multiple MPPI trajectories, weighted by their likelihood under q∗.

5.5 Uncertainty Estimation for Costmaps

While in theory the implicit regularization of MaxEnt IRL should result in consistent

solutions, we observe variance in our trained costmaps in practice. In order to combat

this, we train an ensemble of costmaps and combine their predictions using conditional

value-at-risk (CVaR).

While originally used in econometrics applications, there has been interest from the

robotics community in using CVaR as a risk metric for reasoning about distributions
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Algorithm 10: Computation of State Visitation Frequencies (SVF) from
Weighted Trajectories

Input: Initial State x0, Weights η, Trajectories τ , Map resolution Mres

Output: State Visitation Frequencies D
for τn, ηn ∈ τ ,η do

for xt ∈ τn do
i, j ← ⌊p(xt)/Mres⌋
D[i, j]← D[i, j] + ηn

end

end

D ← D∑
i,j D[i,j]

return D

of cost [9, 12, 15, 35] for its ability to capture more accurately the nuances of long-

tailed and multimodal distributions. Intuitively, CVaRν can be thought of as the the

mean value of a distribution, when only considering the portion of the distribution

exceeding a given quantile (a.k.a. Value at Risk (VaR)) ν ∈ [0, 1] (described formally

in Equation 5.9) [43].

CVaRν =

∫ ∞

f(x)>VaRν

f(x)p(x)dx (5.9)

Note that CVaR can also be used to capture the behavior of the lower tail of the

distribution by taking values below a given quantile [9]. Via a small abuse of notation,

we will refer to this mode of CVaR as CVaRν for ν ∈ [−1, 0] (Equation 5.10). This

gives us a range of ν ∈ [−1, 1] that we can use to smoothly vary the risk-tolerance of

the vehicle. Note that CVaR0 corresponds to taking the mean of the ensemble (and

being neutral to risk), similar to Ratliff et al. [42].

CVaR−ν =

∫ f(x)<VaR1−ν

−∞
f(x)p(x)dx (5.10)
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Algorithm 11: Inference Step for Fast MEDIRL

Input:
Map features M ,
FCN Ensemble Fθ(M) : RW×H×D → RB×W×H ,
Risk level ν

Cν = 0m×n ◁ Initialize empty costmap
C = Fθ(M) ◁ Create costmap for each FCN
for i, j ∈ ([0 . . .m]× [0 . . . n]) do

c = C[:, i, j] ◁ Get each FCN’s cell output
Cν [i, j] = CV aRν(c) ◁ Compute CVaR

end
return Cν

5.6 Algorithm Overview

We thus arrive at a practical algorithm for IRL that is risk-aware. At a high level,

our algorithm can be summarized as follows:

1. Extract a fixed time-window of expert trajectory τEt:t+H (7.5s or 75 timesteps

for our experiments), starting at the time the map features Mt were taken.

2. Set the first expert state τE0 as the MDP start state.

3. Set the final expert state τET as the MDP goal state.

4. Obtain a costmap by randomly selecting a costmap predictor from the ensemble

and running it on the lidar features at timestep 0.

5. Set state transition function to be KBM dynamics (2.3).

6. Set cost function as a weighted combination of the costmap Ct and final-state

distance-to-goal (Eq. 5.11).

7. Compute a state visitation distribution for an optimal policy by optimizing the

cost function via MPPI

8. Use the MPPI state visitation frequencies to update the selected costmap

network via IRL.

J(τ) =
∑
si∈τ

[
C[p(xi)]

]
+ κ||xT − xg||2 (5.11)
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Figure 5.2: An overview of our algorithm. We first process lidar scans into a tensor of
map features. We then use an ensemble of FCNs to create a set of costmaps. In order
to train these networks, we can sample from our set of costmaps, solve the resulting
MDP with MPPI, and use the resulting state distribution to supervise our networks
with inverse RL. At test time, the costmaps can be aggregated together using CVaR
to create a costmap associated with a given risk level.
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Function Approximator MHD
Occupancy 3.220± 0.027
Linear 1.847± 0.033

Linear Sigmoid 1.955± 0.046
Resnet 1.973± 0.022

Resnet Sigmoid 1.794± 0.033

Table 5.2: Performance of various function approximators on reproducing expert
behavior

5.7 Offline Performance

We first evaluate the performance of our IRL-based method’s ability to reconstruct

expert paths. Similar to prior work, [57, 68, 71], we use modified Hausdorff distance

[14] between the expert path and the optimal path from MPPI as our primary

performance metric.

As a baseline, we compare to a simple occupancy-based baseline that first identifies

obstacle cells as cells whose maximum height exceeds the terrain estimate by a certain

threshold, and then inflates those obstacles to ensure that the vehicle maintains a

reasonable distance from obstacles.

We evaluate a number of different costmap architectures for IRL. Namely, we

compare a Resnet-5 architecture and a linear baseline. We also explore whether it

helps to squash the cost outputs via a sigmoid activation. The resulting MHD over a

held-out test set (consisting of around 2000 datapoints) are shown in Table 5.2. Each

method was evaluated over three random seeds.

Overall, we observe a significant increase in performance over the occupancy-based

baseline. This is to be expected, as the higher-capacity function approximator is

trained directly to maximize likelihood of expert paths. Additionally, we observe

a small, but statistically significant performance improvement when using a deep

network.

5.8 Real-World Navigation Trials

We evaluated our method on several challenging navigation courses at Gascola. There

were four courses used, totalling roughly 6km in length. Our courses were defined
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Course IRL Interventions Baseline Interventions
Red 0 6
Blue 3 7
Green 3 11
Purple 3 7

Table 5.3: Interventions for each method.

by a series of GPS waypoints. Given the sensing horizon (40m in all directions) and

focus on local planning, waypoints were spaced 50m apart. In all experiments, all

components of our navigation stack were identical, except for the costmap generation

method. A more detailed description of the course used for the navigation experiments

and representative terrains is presented in Figure 5.3.

As we are interested in evaluating the effect of the costmap on overall navigation

performance, we report the number of interventions from a human safety driver as

our primary metric. We also report the total distance traveled and average speed,

excluding distance traveled while intervening. The safety driver was instructed to

intervene in the following two cases:

1. If the ATV was going to drive into an obstacle

2. If the ATV drove past a waypoint without going within a 4m radius of it

On the full 6km course, we compare the performance of IRL to occupancy-based

costmaps (Table 5.3). Overall, we observe a 70% reduction in interventions as a result

of using the IRL costmaps.

Additional results for different settings of CVaR are provided in Table 5.4 and

Figure 5.4. Overall, we are again able to observe significant improvement over the

baseline when using IRL-based costmaps. All IRL-based methods had roughly the

same number of interventions, but exhibited different navigation behaviors, especially

with respect to tall grass. In general, more conservative settings of CVaR (> 0.8),

caused the ATV to avoid patches of moderate-height grass when possible, while more

aggressive settings of CVaR (< −0.8), caused the ATV to drive through taller patches

of grass. As one would expect, average distance traveled increased with CVaRν , as

there were monotonically more high-cost regions to avoid. The occupancy-based

method traveled the shortest amount of autonomous distance as a result of having

more human interventions. Interestingly, we observed that the difference between the

speeds and distance traveled for CVaR−0.9 and CVaR0 were relatively small, while
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Figure 5.3: An overview of our navigation courses. In total, the courses were roughly
1.6km, and included several challenging scenarios such as going over slopes and
through tall grass.
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Method Auto. Dist. Auto. Speed Interventions
Baseline 1465m 3.21m/s 7

IRL (CVaR -0.9) 1482m 3.25m/s 4
IRL (CVaR 0.0) 1498m 3.29m/s 3
IRL (CVaR 0.9) 1592m 3.14m/s 4

Table 5.4: Navigation metrics for each method on the purple course. Distance and
speed columns are not bolded as higher/lower values don’t necessarily mean better
performance.

CVaR0.9 was considerably slower and traveled farther.

5.9 Qualitative Results

Presented below are additional qualitative visualizations of the costmaps learned

from linear features and resnets. Visualizations are produced from representative

examples of terrain from the test set in Figures 5.5 and 5.6. Note that each subplot

has its own color normalization. That is, changes in color denote changes in cost

relative to other costs in that particular subplot. This was done to mitigate higher

CVaR potentially producing a constant bias and shift. Also note that the vehicle is

located in the center of each BEV plot, and the orientation of the vehicle in the map

is notated via the red arrow.
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(a) Costmaps learned via IRL allow the robot to cut a corner over some low grass
(about 15cm), while the baseline takes a longer route (note that obstacle inflation
makes the grass patch appear as an obstacle to the baseline).

(b) Both the baseline and some IRL costmaps result in navigation over roughly 25cm
grass, while IRL with a low risk tolerance (CVaR=0.9), takes a longer route
around.

(c) The baseline method is unable to navigate to the waypoint in the tall grass,
resulting in an intervention. IRL with a high risk tolerance (CVaR=-0.9) stays
on the trail longer, then cuts through a taller grass patch. (black arrow used for
clarity in costmap plot for CVaR=0.9)

Figure 5.4: Several scenarios that during the navigation run that resulted in different
behaviors. Left column: An enlarged BEV of the particular scenario, with trajectories
from the individual runs superimposed (start=square, end=triangle, intervention=X,
waypoint=yellow star). Middle column: FPV of the given scenario, with the paths
from each trial annotated on. Right column: Visualization of the respective costmaps
and trajectories for each. (top left: baseline, top right: IRL (CVaR -0.9), bottom left:
IRL (CVaR 0.0), bottom right: IRL (CVaR 0.9).
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5. Learning Cost Functions

(a) Corridor Scenario. The relative cost of obstacles and trail are consistent for all CVaRν .

(b) Tall Grass Scenario. The relative cost of grass increases with CVaRν .

(c) Slope Scenario. The relative cost of the slope in the FPV increases with CVaRν .

Figure 5.5: Resnet results on representative terrains in the test set. Note that in
uncertain regions such as grass and slopes, the resnet-based costmap adjusts costs
based on CVaR.
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(a) Corridor Scenario

(b) Tall Grass

(c) Slope Scenario

Figure 5.6: Linear results on representative terrains in the test set. Note that the
costmaps are more or less unchanged with respect to CVaR.
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Chapter 6

Background

6.1 Learning Models

Most publicly-available off-road driving datasets focus on understanding environ-

mental features instead of the interplay between the robot and the environment [40].

RUGD [58] consists of video sequences with segmentation label of 24 unique category

annotations. Maturana et al. [36] collected a segmentation dataset, which tried to

explore more fine-grained information such as traversable grass and non-traversable

vegetation, but those discrete labels are still too abstract to understand how a robot is

going to behave in the specific case. Gresenz et al. [18] collected a dataset containing

over 10000 images of offroad bicycle driving and labels corresponding to the roughness

of the terrain in the image, where the labels were generated from processing sensory

data available on the platform. Similarly, this dataset does not provide enough inter-

action data or actions. Rellis 3D [27] consists of images, pointclouds, robot states,

and actions, but the amount of trajectory data is rather small (about 20 minutes

– 12,000 datapoints at 10hz – total). Generally, learning dynamics models requires

on the order of hundreds of thousands of dynamics interactions. As our dataset is

designed to focus on dynamics models with multi-modal sensory inputs without the

need for hand-labeling, we are able to collect much more data than existing datasets.

More and more off-road driving research has taken account of the robot-environment

interaction rather than environment features alone to improve the driving perfor-

mance. Due to the lack of publicly-available real-world datasets, they usually train
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their models in simulation environments or collect their own data in a small scale or

for a specific research purpose. Tremblay et al. [50] trained a multi-modal dynamics

model in a simulation environment based on Unreal Engine, and a small forest dataset

(Montmorency) [49]. Sivaprakasam et al. [46] developed a simulation environment

with random obstacles to learn a predictive model from physical interaction data.

They also collected a small real-world dataset to test their algorithm on a small racer

car. Similarly, Wang et al. [56] trained a probabilistic dynamics model for planning

using a simulator and a small robot platform. Kahn et al. [28] employ a model-based

RL technique in order to enable a wheeled robot to navigate off-road terrain using a

monocular front-facing camera [28]. Their algorithm (BADGR) leverages many hours

of trajectory data collected via random exploration in order to train a neural network

to model the dynamics of the robot over various types of terrain. In addition to using

the position of the robot, the authors also utilize hand-designed events calculated from

the on-board IMU and LiDAR as additional supervision for the model. The authors

make their data publicly-available, where the data consists of the hand-designed

events (such as bumpiness and collision), RGB images, robot states, and actions.

On the other hand, learning a dynamics model has been an active research area

in various directions such as model-based reinforcement learning (RL). Most work in

RL literature learns the model in simulation environments. For the off-road driving

task, [28] learned from the interaction data a classification network to predict the

hand-designed events (i.e. collision, smoothness, etc.). Tremblay et al. [50] modify the

recurrent state-space model of Hafner et al. [20] to handle multiple modalities and

provide a modified training objective. Wang et al. [56] improve trajectory prediction

by incorporating uncertainty estimation and a closed-loop tracker. In this paper, we

follow these papers and test several neural network architectures to demonstrate the

potential value of the proposed TartanDrive dataset.

6.2 Learning Costmaps

Perhaps the most widely-used costmap generation method relies on computing cost

from geometric properties of the terrain. The most straightforward form of this

approach is to create an occupancy-based representation of the terrain and assign

high cost to cells that are occupied with high-height terrain. Krüsi et al. [31],
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Fankhauser et al. [17] and Fan et al. [16] extend this representation with additional

costs derived from geometric terrain features such as curvature and roughness. They

all demonstrate that these features allow for improved navigation over rough terrain.

Recent work in off-road driving has focused on leveraging semantic segmentation

approaches to assign traversability costs to different terrain types. Traditional work

performs this segmentation in a first-person view (FPV) [27, 36, 57, 58]. However,

it remains challenging to convert this segmentation into a useful representation for

navigation, as simple projection is not robust to occlusions or sensor mis-calibration.

As such, recent work by Shaban et al. [45] instead performs semantic segmentation

in a bird’s-eye view (BEV), using pointclouds from lidar. By first defining a mapping

between semantic classes and cost, they are able to train a network to directly output

costmaps. While they are able to demonstrate impressive navigation and prediction

results, the mapping between semantic classes and cost is both heuristically defined

and coarse, limiting the network’s ability to generalize between robots or easily adapt

online.

Inverse RL for costmap generation for wheeled vehicles is also a well-explored

problem [5, 41, 42]. Recent work in generating costmaps for off-road vehicles largely

focus on introducing deep neural networks as cost function approximators. Wulfmeier

et al. [63] trained a deep, fully convolutional network using inverse RL for urban driv-

ing scenarios and demonstrate improved performance in generating expert trajectories

as compared to a hand-crafted baseline. They also observe an issue in that there

are few gradient propagations in rarely-explored areas of the state space, causing

their cost networks to perform more poorly on unseen state features. Lee et al. [32]

focus on learning costmaps in a multi-agent highway driving scenario. In addition to

replacing the value iteration step of IRL with MPPI [60], they also propose regulariz-

ing unvisited states to have zero cost to alleviate the costmap artifacts observed by

Wulfmeier et al. They additionally add a time dimension to the state-space to account

for dynamic agents in their environment. Zhu et al. [71] propose a modification

to the standard IRL procedure that takes into account an approximation of the

kinematics of Ackermann-steered vehicles. They demonstrate that their algorithm

results in improved ability to re-create expert behavior on unimproved roads. Zhang

et al. [68] extend the basic IRL framework to include kinematic information. They

concatenate information such as velocity and curvature into their intermediate feature
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representations in order to get costmaps that are able to reflect the current dynamics

of their vehicle. Wigness et al. [57] combine semantic segmentation and IRL for a

skid-steered robot in off-road scenarios. Unlike previous approaches which focus on

extracting costmaps from lidar features, they instead produce costmaps from semantic

classes from BEV-projected camera data. Using this feature space, they are then able

to learn a costmap using a linear combination of these classes, as well as an obstacle

layer. They also demonstrate the capability to quickly update navigation behaviors

with a small number of additional demonstrations.
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Chapter 7

Conclusions

We presented two methods for incorporating learning into the offroad driving problem;

using learning to improve vehicle models with real-world data, and using learning to

improve cost functions from human demonstrations. While the work presented in

this thesis represents a significant improvement over standard baselines, there remain

a number of shortcomings that will be addressed in future work.

A fairly significant limitation of this work is a lack of intelligent velocity planning.

While costmaps are well-suited to making the vehicle change the shape of its trajectory,

they are not able to effectively tell the robot to traverse through a region at a given

speed. The use of distance-to-goal as a heuristic in the cost function exacerbates this

issue in that faster trajectories are nearly always preferable. The end result of this

is that we had to set a relatively low upper-bound on speed (around 4m/s) in our

navigation trials.

A simple solution to this issue would be to add a velocity dimension to our inverse

RL method. While this may improve performance, there are some potential problems

with this method:

1. IRL methods scale poorly with the number of state dimensions

2. Intuitively, desired speeds depend both on map features and goal information.

An interesting line of work would be to extend the current IRL methods to

include visual features. Methods such as that presented by Harley et al. [21] produce

BEV-projected visual features that can be directly consumed by the IRL algorithm
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presented in this work. Extendind this work to admit semantic probabilities, raw

RGB, or deep features should enhance the decision-making capability of the IRL

algorithm.

Another interesting line of work would be to couple learning both costmap

parameters and MPC parameters. While much of the in-field costmap tuning issues

are alleviated by IRL, there are still a large number of hyperparameters in the MPC

that are tuned regularly.

62



Bibliography

[1] Arl autonomy stack, 2022. URL https://www.arl.army.mil/business/

collaborative-alliances/current-cras/sara-cra/sara-overview/. Ac-
cessed 13-September-2022. 1.1, 2.3, 3, 5.4.2

[2] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the twenty-first international conference on
Machine learning, page 1, 2004. 5.4.1

[3] Ali Agha, Kyohei Otsu, Benjamin Morrell, David D Fan, Rohan Thakker,
Angel Santamaria-Navarro, Sung-Kyun Kim, Amanda Bouman, Xianmei Lei,
Jeffrey Edlund, et al. Nebula: Quest for robotic autonomy in challenging
environments; team costar at the darpa subterranean challenge. arXiv preprint
arXiv:2103.11470, 2021. 1.1, 1.2

[4] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. Advances in neural information processing
systems, 30, 2017. 5.3.1

[5] James Andrew Bagnell, David Bradley, David Silver, Boris Sofman, and Anthony
Stentz. Learning for autonomous navigation. IEEE Robotics & Automation
Magazine, 17(2):74–84, 2010. 1.1, 1.2, 6.2

[6] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke,
Cyrill Stachniss, and Jurgen Gall. Semantickitti: A dataset for semantic scene
understanding of lidar sequences. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 9297–9307, 2019. 1.1

[7] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D
Ratliff, Dieter Fox, Fabio Ramos, and Byron Boots. Storm: An integrated
framework for fast joint-space model-predictive control for reactive manipulation.
In Conference on Robot Learning, pages 750–759. PMLR, 2022. 5.4.2

[8] Paulo Borges, Thierry Peynot, Sisi Liang, Bilal Arain, Matthew Wildie, Melih
Minareci, Serge Lichman, Garima Samvedi, Inkyu Sa, Nicolas Hudson, et al.
A survey on terrain traversability analysis for autonomous ground vehicles:

63

https://www.arl.army.mil/business/collaborative-alliances/current-cras/sara-cra/sara-overview/
https://www.arl.army.mil/business/collaborative-alliances/current-cras/sara-cra/sara-overview/


Bibliography

Methods, sensors, and challenges. Field Robotics, 2(1):1567–1627, 2022. 1.1

[9] Xiaoyi Cai, Michael Everett, Jonathan Fink, and Jonathan P How. Risk-
aware off-road navigation via a learned speed distribution map. arXiv preprint
arXiv:2203.13429, 2022. 1.1, 5.5, 5.5

[10] Yanshuai Cao and David J Fleet. Generalized product of experts for auto-
matic and principled fusion of gaussian process predictions. arXiv preprint
arXiv:1410.7827, 2014. 4.5
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