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Abstract

This thesis investigates the problem of inferring the underlying dynamic model of indi-
vidual agents of a multiagent system (MAS) and using these models to shape the MASŠs
behavior using robots extrinsic to the MAS. We investigate (a) how an observer can infer
the latent task and inter-agent interaction constraints from the agentsŠ motion and (b) how
the observer can elicit a desired behavior out of the MAS by orchestrating its interactions
with robots. The ability to learn individual dynamics models of an aggregated system has
several applications such as learning local rules in biological swarms that give rise to emer-
gent behavior and learning tactics of an adversarial multirobot team. Likewise, the ability
to shape behavior using extrinsic robots can be used to defend against an adversarial team
of robots and guide humans using robots as in social navigation.

The Ąrst part of this thesis focuses on the model learning problem. We model agents as
integrators that solve a reactive optimization to calculate velocities for mediating between
goal-directed motions and collision avoidance with other agents. We develop several esti-
mators that allow an observer to infer this modelŠs parameters and show that the learned
parameters indeed rationalize the observed motions. Necessary identiĄability conditions are
derived that guarantee correct inference. Our proposed estimators include adaptive ob-
servers, Kalman Ąlters and several inverse optimization algorithms that are robust to both
measurement noise and model mismatch. To demonstrate this robustness, we evaluate these
estimators on a pedestrian dataset and learn each pedestrianŠs desired velocity, aggressive-
ness coefficients and safety margins with walls, obstacles and other pedestrians.

The second part of this thesis focuses on eliciting a desired behavior out of the MAS
by inducing interactions with robots. While the theory we develop is general, we consider
the dog-sheep herding problem as a use case that requires controlling dog robots to repel
sheep agents from a critical zone. We incorporate non-collocated feedback linearization in
an optimization-based framework to compute the desired controls for the dogs. Both cen-
tralized and distributed implementations are developed to cater to the scalability, feasibility
and budget-efficiency objectives. We validate the correctness of these controllers in multiple
experiments on the CMU multirobot arena. We also develop a robust extension of these con-
trollers, which we term control-barrier function based semideĄnite programs (CBF-SDPs),
that guarantee zone defense despite uncertainty in the sheepŠs dynamics. Finally, we con-
clude this thesis with an integration of the robust model learning algorithms with robust
control algorithms followed by experimental validation on the multirobot arena.
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1 Introduction

1.1 Motivation

In the last decade, multi-robot systems (MRSs) have advanced from being researched in
labs to being deployed in the real world for solving practical problems in domains such as
warehousing [1Ű3], precision agriculture [4] and environment monitoring [5Ű8]. The redun-
dancy offered by an aggregated system composed of individual self-sufficient units provides
resilience to faults, efficient spatial coverage in an environment and parallelized and dis-
tributed acquisition of information. Thus naturally, several research efforts have led to the
development of coordination and control algorithms that make multiple robots come together
to solve team-level, global tasks using local interaction rules [9Ű11]. These algorithms share
several desirable characteristics including (a) local (i.e. individual robots act on information
locally available to them), (b) safe (i.e. result in collision-free motions amongst robots) and
(c) emergent (i.e. global properties result from using local interaction rules) [12Ű15].

These characteristics can be treated as the insiderŠs perspective i.e. design principles
borne in mind by the control engineer when programming their own robots for a given task.
Complementary to this is the outsiderŠs perspective i.e. the perspective of an external agent
watching a group carry out a task by executing motions consistent with these characteristics
[16]. As swarms and MRSs become widespread, viewing their behavior from the vantage
point of an external observer becomes equally important. For example, if the observer is
adversarial, the control engineer must analyze how easily can the observer decrypt the groupŠs
task by tracking its membersŠ motions [17]. This would guide the control engineer to design
privacy preserving controllers for obfuscating group tactics [18]. On the other hand, if the
group itself is adversarial, for example, by posing a threat to a high-value unit, then the
observer must predict the groupŠs motion and conscript external agents to defend the unit
[19, 20]. Predicting the groupŠs motion requires the observer to infer the underlying group
dynamic model. Likewise, planning defensive strategies requires the observer to identify how
group agents would interact with external non-group agents.

Understanding and inĆuencing group behavior has applications beyond just the adver-
sarial context. For example, shepherding behaviors, speciĄcally, are one class of Ćocking

2



Ch. 1 Ű Introduction

behaviors in which one or more external agents (called shepherds) attempt to control the
motion of another group of agents (called a Ćock) by exerting repulsive forces on them [21, 22].
A natural example is a dog guiding a Ćock of sheep and herding them to a goal position.
A successful practical demonstration of robotic herding was achieved in the robot sheepdog
project [23Ű25]. Here, an autonomous wheeled mobile robot (the external agent/shepherd)
was used to gather a Ćock of ducks and maneuvered them to a speciĄed goal position. The
robot used a potential-Ąeld based model to capture the ducksŠ dynamics, their interactions
amongst one another and their interaction with the robot.

1.2 Challenges

While successful, several existing methods for multiagent behavior inference and behav-
ior shaping make strict assumptions such as homogeneity of group dynamics and a-priori
knowledge of group dynamics. Moreover, they rely on heuristically guided control strategies
for shaping behavior that lack theoretical guarantees. There are several challenges that are
still unaddressed. We describe some of these issues below and build on them to layout the
objectives of our work.

For the sake of the argument, we consider an example problem consisting of a group of N
agents where each agent is performing goal-directed motion while maintaining a minimum
safety distance with every other agent in the rest of the group. The observer is required
to ensure that all agents stay away a from protected zone while en-route to their goals.
To ensure this, the observer must reverse engineer the goals of the agents to see whether
the possibility of breaching exists. If all agentsŠ goals are far from the protected zone, the
observer need not intervene. However, if not, the observer will have to program his robots
to steer the agents away from the zone. This form of estimation and control is challenging
because of the reasons identiĄed below.

1. Goal inference with unknown safety margins: For the observer to infer the goal of
any agent, the observer must disaggregate that agentŠs motion into a component arising
from its motivation to reach its goal and another arising from its need to maintain a
desired safety margin with the remaining agents. This is because the motion that
the observer watches comes through the Ąlters of goal-directed behavior and safety
combined. However, much like the goal itself, the observer does not know the agentŠs
latent safety margin. Because of this, the observer cannot tell the extent to which
safety constraints manifest in the agentŠs motion. Therefore, before proceeding to
inferring goals, the observer must learn these safety margins for each agent to perform
this dynamics disaggregation.

2. Observability/Identifiability: Related to the challenge mentioned above is the issue
of observability i.e. identifying when can the latent goal of an agent be inferred from its
motion data. This is challenging because failure in identiĄcation may stem either from
using a poorly tuned estimator or relying on motion data that is inherently deĄcient in
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information about the goal. The latter situation can arise when an agent moves solely
to ensure safety. Thus, the observer needs to develop estimator-agnostic identiĄability
criteria that give a yes or no answer to whether a recorded segment of trajectory data
is useful for latent parameter extraction at all.

3. Inference under noise and model-mismatch: In any practical scenario, observed
positions and velocities of the agents will be corrupted by noise. This could originate
either on the observerŠs end possibly from bad localization or on the agentsŠ end when
performing state estimation. Moreover, agents may exhibit behavior that deviates
from the model hypothesized by the observer. Any estimator that relies on perfect
noiseless measurements and strict adherence to a template model would be too brittle
and might converge to incorrect parameters. Thus, the observer needs to develop
estimation algorithms that at the very least, are forgiving to small amounts of noise
and model mismatch.

4. Controllability: The challenges mentioned above are related to the estimation aspect.
Next, we identify hurdles posed by the problem of inĆuencing group behavior using
external robots. For this discussion, we assume that the observer a-priori knows the
latent parameters of the group agentsŠ underlying dynamic model. Since the external
robots cannot directly command the actuators of the group agents, they must rely on
their interaction dynamics (collision-avoidance constraints) with the group to inĆuence
the groupŠs behavior. This results in a non-collocated control problem, because the
actuators i.e. the observerŠs robots are not co-located on the plant i.e. the agents of
the group [26]. Therefore, akin to the observability criteria, the observer must develop
controllability criteria to determine when this problem is feasible. In particular, a
formal theory is needed to capture the conĆicts that can arise between the agentsŠ self-
motivated autonomous dynamics and the behavioral requirements expected of them
by the observer.

5. Scalability: If there is one robot tasked with inĆuencing a large group, the behavior
shaping problem will likely be infeasible, since from the perspective of the robot, the
system is severely underactuated. Technically, this will depend on the expected be-
havior, the groupŠs nominal task and the interaction model between the group and the
robot. To make this problem more tractable, the observer can solicit multiple robots.
Thus, the observer must decide on how many robots would be sufficient to elicit a
given behavior and how to divide labour among the robots so that the said behavior
can be realized. In practice, there will be a trade-off between using multiple robots to
favor feasibility of behavior shaping and using fewer robots to favor budget efficiency.
Thus, the observer, must address these trade-offs.

6. Control under model uncertainty: While challenges 4 and 5 above assume that
the group agentsŠ model is known a-priori, in practice, the observer will not have access
to the true latent parameters of the groupŠs dynamic model. Thus, the observer must
rely on nominal estimates of the parameters to synthesize the correct control inputs.
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(a) Learning parameters of the latent dynamics of
the MAS (red agents)

(b) Controlling the MAS (red agents) through inter-
actions with robots (green)

Figure 1.1: The observer (denoted by the eye) seeks to reverse engineer the agentsŠ param-
eters (goal and inter-agent safety constraints). It uses this knowledge to prevent breach of
the protected zone by orchestrating interactions of the MAS with robots.

However, since these nominal estimates can be far away from the true parameters,
the resulting controls may not guarantee that the required behavior emerges out of
the group agents. Thus, in addition to the nominal parameter estimates, the observer
must incorporate uncertainties in their control synthesis approach. The challenge lies
in developing a robust control framework, which, despite the uncertainty in latent
parameters, will guarantee that the required behavior will emerge out of the group
agentsŠ motions.

1.3 Thesis Statement

Given these challenges, my thesis attempts to formally address the following questions

1. How can the observer disaggregate a group agentŠs motions into components resulting
from its intended task-oriented behavior and its motivation to stay safe with respect
to other agents?

2. How can the observer learn a group dynamic model that is robust to measurement
noise, suboptimality of team members and a small amount of model mismatch?

3. How can the observer indirectly control the team to elicit a desired behavior by using
agents external to the team (i.e. robots) and do so in a scalable way?

4. Lastly, how can the observer address question 3 above, when there is uncertainty in
the dynamic model of the group agents?
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The objectives of our work are (a) to develop algorithms for inferring a robust model
of group dynamics by observing individual agents and (b) leveraging this behavioral
model for eliciting a desired behavior in the group by orchestrating interactions of
non-group members (i.e. robots) with those of the group.

1.4 Outline and Contributions:

An outline of this document is provided below.

• Chapter 2 covers related work in the Ąeld of system identiĄcation for distributed
dynamic systems and control of distributed agents via external agents.

• Chapter 3 proposes a candidate dynamic model for modeling group behavior and
justiĄes the choice of this model. This chapter outlines the necessary assumptions for
both group behavior inference and group control from the perspective of an external
observer agent.

• Chapter 4 develops identiĄability conditions which are necessary for convergence of
estimates of the parameters of the group dynamic model to its true parameters. This
chapter assumes that the observer has access to perfect noiseless measurements of all
agentsŠ positions and velocities, and that the observer knows the safety constraints
representing inter-agent interactions. Decentralized online parameter estimators are
developed for inferring the task parameters of agents. The work in this chapter ap-
peared in [27].

• Chapter 5 proposes an online region-based parameter estimator that learns correct
bounds of the task parameters of the agents when the identiĄability conditions de-
veloped in chapter 4 are violated. Like the last chapter, the assumption is that the
observer has access to perfect measurements and knows the safety constraints. The
work in this chapter appeared in [28].

• Chapter 6 relaxes the noiseless measurements assumption and develops three empiri-
cal risk minimization algorithms to learn task parameters when there is (a) noise in the
observerŠs measurements, (b) suboptimality in the decisions taken by the agents and
(c) a small amount of model mismatch. The algorithms developed here are based on
ideas from inverse optimization literature. The work in this chapter appeared in [29].

• Chapter 7 further relaxes the a-priori known safety constraints assumption. Robust
MIQP based algorithms are developed to learn parameters of the safety constraints
in addition to the task parameters of individual agents. We demonstrate how these
algorithms can be used to infer underlying dynamics of pedestrians in an indoor lab
environment by using the dateset in [30]. The work in this chapter appeared in [31].
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• Chapter 8 develops a preliminary approach to solve the one-agent behavior shaping
problem using one robot. We describe how to use control barrier functions to elicit
two types of shepherding behaviors from an agent using a robot. We identify the
issues posed by modeling agents using optimization-based dynamics and take recourse
to a simpler group dynamic model that is more amenable for being controlled through
interactions with observerŠs robots.

• Chapter 9 develops optimization-based control algorithms to solve the M -agent, N -
robot behavior shaping problem using the framework of control barrier functions. The
chapter talks about trade-offs between feasibility and optimality i.e. using larger num-
ber of robots to guarantee feasibility of control synthesis v/s using fewer robots to favor
budget efficiency. Accordingly, this chapter presents different algorithms for different
preference metrics. In addition to the numerical simulations, the chapter also presents
experimental validation of the behavior shaping algorithms on >10 Khepera robots.
The work in this chapter appeared in [32] and [33].

• Chapter 10 extends the centralized optimization-based algorithms in chapter 9 by in-
corporating uncertainties in parameter estimates. Using the well-known s-procedure,
we rewrite the CBF-QP controllers in the form of CBF-SDPs which guarantee feasibil-
ity despite Ąnite-uncertainty in parameters of the agentsŠ underlying dynamic model.
Simulations and experimental results are also presented. The work in this chapter
appeared in [34]

• Chapter 11 concludes the thesis with a summary of this work and outlook for future.
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2 Related Work

2.1 Multiagent Behavior Inference

The problem of learning models for groups of interacting dynamic agents lies at the inter-
section of system identiĄcation and modeling of distributed dynamical systems. A vigorous
body of work is emerging from the controls, robotics and machine learning communities
focused on analyzing models of Ćocks, swarms, and similar distributed dynamic systems. In
the realm of learning based approaches, [35] show how inverse reinforcement learning (IRL)
can be extended to homogeneous large-scale problems. Their framework is able to produce
meaningful local reward models that can replicate the observed global system dynamics in
swarms. Similarly, [36, 37] use IRL to model the reward function of individual agents of bi-
ological swarms such as Ćocks of pigeons. They enforce priors by modeling the rewards with
basis functions containing terms capturing cohesion, repulsions, following a leader etc. [38]
use IRL to learn swarming behaviors observed in Ąsh schools. They model all Ąsh with an
identical neural network to learn a common single policy to capture the emergent behavioral
patterns. [39, 40] build on the learning-from-demonstration paradigm and develop a graph
neural network architecture which can imitate an observed swarm and is able to extract
rules governing group behavior. In the realm of control-theoretic approaches, some recent
works have started to address the identiĄability issue in reverse-engineering swarm dynamics.
For example, [16, 17] propose empirical metrics of observability for learning parameters of
Ćocking dynamics that were developed in [41].

These works focus on inferring group dynamics observed in swarms which tend to be ho-
mogeneous. Inference algorithms have also been developed for heterogeneous multiagent sys-
tems. [42] presents a model-based approach for understanding movement and interaction dy-
namics amongst cows. Their algorithms learn characteristic constants of attraction/repulsion
forces that are unique for each cow. [43] train a deep network to learn goal-directed and colli-
sion avoidance behavior of robots in a multirobot system. Their motivation is to incorporate
this learned model as a heuristic to speed up MILP-based multirobot motion planning. [44]
shows how high-level behaviors can be inferred from an expert multirobot system and use
them to train an untrained team of robots to execute a mission.
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Several inference algorithms model the behavior of a multiagent system as resulting from
a dynamic non-cooperative game [45Ű47]. The demonstrations are assumed to constitute an
open-loop Nash equilibrium solution of the game. The behavior inference problem in this
context reduces to inferring the unique long term cost-functions of each player subject to
the dynamics of the plant they act on. [48] developed batch and online algorithms following
single-agent inverse optimal control (IOC) [49, 50] for inferring cost functions of individual
players in a game. [51, 52] develop robust algorithms for inferring player objectives from
noisy demonstrations of player trajectories.

Several of these game theoretic approaches assume that there are no constraints on the
plant state or on playerŠs control inputs. The inference algorithms developed in these works
operate on player trajectories that are Nash equilibria solutions for an unconstrained dynamic
game. However, there is an issue with this approach. To illustrate, suppose a player is
following a trajectory that is the open-loop Nash equilibrium solution, and suddenly an
obstacle previously unaccounted for in the game, needs to be avoided. Since the player
will try to locally adjust its plan to satisfy this constraint, the resulting adjusted trajectory
would no longer represent the Nash solution. Thus, using this perturbed demonstration
may not guarantee correct inference. This prevents the direct application of existing IOC
based approaches for inferring long-term rewards when there are constraints on plant states.
Recent work on reactive optimization-based controllers for multirobot systems has shown
how a nominal plan can be minimally adjusted to satisfy safety constraints [53Ű55]. This is
the model that we adopt in our work for performing inference because this model captures both
the long-term intentions of an agent and the local adjustments it makes to satisfy constraints
such as safety with respect to the other agents.

Our work develops algorithms to learn the long term intentions/task parameters of in-
dividual agents from observed demonstrations in the face of input constraints. To perform
this inference, we Ąrst simplify our problem by assuming known constraints and learn the
task parameters of all agents with this assumption. In chapter 4 we analyze situations in
which the task parameters can be correctly inferred using the concept of persistency of ex-
citation. We develop decentralized online estimators for inferring these parameters. Further
improvements are presented in chapters 5-6. Subsequently, in chapter 7, we relax the known
constraints assumption as well and develop batch algorithms to learn robust estimates of the
parameters of costs and constraints simultaneously.

2.2 Multiagent Behavior Shaping

The problem of controlling the behavior of a group of agents using robots has not received
as much attention as the behavior inference problem. There is a wide range of domains where
controlling a multi-agent team via external robots Ąnds practical applications. These include
the use of robots to herd sheep [56, 57]; crowd control [58]; protecting aircraft from bird
strikes [59, 60] and defense against adversarial swarms [19]. [21, 61] used the term shepherd-
ing behaviors to capture herding, patrolling and covering behaviors. They gave simulation
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results to show how this can be achieved using one or more shepherds. [62] gives a review of
shepherding as a bio-inspired swarm-robotics guidance approach. Another term commonly
used to describe these behaviors is noncooperative herding because the Ćock agents are nei-
ther adversarial nor fully cooperative with the shepherd [22, 63Ű67]. These works exploit the
interaction dynamics between the Ćock and robots to shape the ĆockŠs behavior. While suc-
cessful, one issue common in these approaches is that they fail to consider the self-motivated
dynamics of the Ćock agents. As a result, the Ćock agentsŠ motions are solely driven by
repulsions from the robots. Secondly, the Ćock agents consider these repulsions perpetually
regardless of how far the robots are located relative to the Ćock. Thirdly, not all of these
approaches come with rigorous theoretical guarantees. In chapter 8, we show a formalism to
address three issues simultaneously by modeling agents using optimization-based dynamics
and using control barrier functions to pose the behavior shaping problem. To demonstrate
our approach, we show simulation results that achieve successful herding and defending be-
haviors by using one robot against one agent. In subsequent chapters, we extend this to the
multirobot-multiagent behavior shaping with both experimental and simulation results.
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3 Background and Problem
Formulation

In this chapter, we describe the representation of the dynamics for the multiagent system
that we will adhere to, in the rest of the thesis. We formally pose the multiagent behavior
inference problem and the multiagent behavior shaping problem bearing this representation
of dynamics in mind. The outline of this chapter is as follows: section 3.1.1 provides the
relevant deĄnitions/notations of control barrier functions which we will use (a) for modeling
collision avoidance constraints amongst agents and (b) for posing the group behavior shaping
requirements. Section 3.2 gives a formal statement of the multiagent behavior inference
problem. Finally, section 3.3 gives a formal statement of the multiagent behavior shaping
problem using external robots.

3.1 Background

3.1.1 Control Barrier Functions

We recall the fundamentals of control barrier functions that are used to synthesize a safe
controller for a dynamical system. We refer the reader to [55] for a comprehensive review on
this subject. Consider a dynamical system with state x ∈ Rn and control-affine dynamics

ẋ = f(x) + g(x)u. (3.1)

Here u ∈ Rm is the control-input to the system1. We assume that functions f(·) and g(·)
are Lipschitz continuous. Unlike stability which involves steering the state of the system to
a point, safety can be framed in the context of enforcing invariance of a set, i.e., not leaving
a certain predeĄned set. We denote this set as C and deĄne it as the superlevel set of a

1Assuming that the system is control-affine is not restrictive, because any non-control affine system can
be converted to a control affine form using dynamic extension.
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continuously differentiable function h : D ⊂ Rn −→ R

C := ¶x ∈ Rn♣h(x) ≥ 0♢
∂C := ¶x ∈ Rn♣h(x) = 0♢

Int C := ¶x ∈ Rn♣h(x) > 0♢ (3.2)

We refer to C as the safe set. Let u = k(x) be a Lipschitz continuous feedback controller
such that the closed-loop dynamics of (3.1) are

ẋ = fcl(x) := f(x) + g(x)k(x) (3.3)

Because fcl(x) is locally Lipschitz, for any initial condition x0 ∈ D, there exists a maximum
interval of existence I(x0) = [0, τmax) such that x(t) is the unique solution to (3.3) on I(x0).
This allows us to deĄne safety,

Definition 1. The set C is forward invariant if for every x0 ∈ C, x(t) ∈ C for x(0) = x0

and all t ∈ I(x0). System (3.3) is safe with respect to C if C is forward invariant.

Definition 2. Let C ⊂ D ⊂ Rn be the zero-level superset of a continuously differentiable
h : D −→ R. Then h(·) is a control barrier function (CBF) if there exists a class κ∞ function
α(·) such that for the control system (3.1), the following holds

ḣ(x,u) ≥ −α(x),∀x ∈ D
←− sup

u∈Rm

[Lfh(x) + Lgh(x)u] ≥ −α(x),∀x ∈ D (3.4)

Given an h(·), we can characterize the set of all controls that render C safe per Def. 1:

Kcbf (x) := ¶u ∈ Rm♣Lfh(x) + Lgh(x)u ≥ −α(x)♢
≡ ¶u ∈ Rm♣A(x)u ≤ b(x)♢, (3.5)

where A(x) := −Lgh(x) and b(x) := α(x) + Lfh(x). Finally, we come to the main result:

Theorem 1. [55] Let C be deĄned as the superlevel set of a continuously differentiable
function h : Rn −→ R. If h is a CBF on D and dh

dx
̸= 0 ∀x ∈ ∂C, then any Lipschitz

continuous controller u ∈ Kcbf (x) renders C forward invariant.

For any given control objective for (3.1), we assume that a reference controller û(x) ex-
ists. This may be generated by a high-level planner or by applying linear control synthesis
techniques to a linearization of (3.1) at an operating point xo. This controller may not be
safe with respect to our deĄnition in (3.5). Thus, in order to synthesize a safe controller, a
commonly used strategy is to project the reference controller û(x) to the set Kcbf (x) locally
at every x ∈ D. Since Kcbf (x) in (3.5) deĄnes a linear half-space in Rm when evaluated
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at a given x ∈ D, the projection of û(x) on Kcbf (x) can be done by posing the following
quadratic program

u∗(x) = arg min
u

∥u− û(x)∥2

subject to Lfh(x) + Lgh(x)u ≥ −α(x).
(3.6)

This optimization problem is commonly referred to as the CBF-QP and results in a control
that is minimally invasive to û(x) and is safe by construction. In the next section, we describe
how to model collision-free motions between any pair of agents using this optimization.

3.1.2 Collision-Free Multiagent System Dynamics

We describe the template representation of the dynamics of each agent in the multiagent
system that we will use in this thesis. We model all agents as single integrators that are
velocity-controlled, although the ensuing theory is applicable for double integrator agent
dynamics as well. Suppose there are M + 1 agents in our system. Denote the state of agent
i by xi ∈ R2 ∀i ∈ ¶1, 2, · · · ,M + 1♢ which represents its position and denote its velocity as
ui ∈ R2, which acts as the control input. The dynamics of this agent are

ẋi = ui, ∀i ∈ ¶1, 2, · · · ,M + 1♢. (3.7)

To keep the discussion simple, we focus on one agent i.e. the ego agent, so we will omit
subscript i. Let the state of this agent be x. This agent has a primary task to accomplish
and we assume that it can accomplish this task using a reference control ûθ. Assume the
following representation of the reference control

ûθ(x) = C(x)θ + d(x). (3.8)

Here θ are the parameters capturing the task of that agent and are in general different for
each agent. C(x), d(x) are some task oriented basis functions. This representation is general
enough to capture some elementary tasks relevant to this thesis. We give two examples here

1. Reaching a goal position: Suppose that the primary task of the agent is to reach a goal
position xd at an exponentially fast speed governed by a gain kp. A candidate control
that can accomplish this task is given by û(x) = −kp(x−xd). We rewrite this control
in a form akin to (3.8) as follows

ûθ =




−xx 1 0

−xy 0 1





︸ ︷︷ ︸

C(x)







kp

kpxdx

kpxdy







︸ ︷︷ ︸

θ

+ 0
︸︷︷︸

d(x)

. (3.9)

2. Maintaining a constant velocity: Suppose the task of the agent is to maintain a constant
velocity vd, then we can select û(x) = vd. This control expressed akin to (3.8) is

ûθ = I
︸︷︷︸

C(x)

vd
︸︷︷︸

θ

+ 0
︸︷︷︸

d(x)

(3.10)
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In addition to performing its task, this agent is also driven by the need to stay collision free
with respect to the other agents. We assume that in the multiagent system, all agents coop-
erate to achieve collision avoidance amongst one another while performing their respective
tasks. Since the reference controller of the ego agent ûθ is purely task-oriented and is not
derived considering safety, it cannot be relied upon to ensure collision-avoidance of the ego
agent with the rest. We derive constraints that must be satisĄed by a candidate control to
ensure collision free motion of the ego agent. Let the other agents be located at positions
xoj ∀j ∈ ¶1, 2, · · · ,M♢. The ego agent and agent j are collision free if their positions (x,xoj)

satisfy ∥∆xj∥2 ≥ D2
s where ∆xj := x − xoj and Ds is a desired safety margin. Using this

requirement, we pose a pairwise safety index h : R2 × R2 −→ R and deĄne it as

hj(x,x
o
j) :=

∥
∥
∥x− xoj

∥
∥
∥

2 −Ds
2. (3.11)

The ego agent is collision free with respect to all other agents iff hj(x,xj) ≥ 0 ∀j ∈
¶1, 2, · · · ,M♢. We can treat these safety indices as CBFs. To ensure that all hj continue to
stay non-negative for all times, the agent enforces the following constraints

dhj
dt
≥ −γhj,∀j ∈ ¶1, 2, · · · ,M♢. (3.12)

These constraints can be reformulated as constraints on the agentŠs velocity u following (3.5).

These are given by A
(

x, ¶xoj♢Mj=1

)

u ≤ bγ,Ds

(

x, ¶xoj♢Mj=1

)

. Here A
(

x, ¶xoj♢Mj=1

)

∈ RM×2,

b
(

x, ¶xoj♢Mj=1

)

∈ RM are deĄned such that the jth row of A is aTj and the jth entry of bγ,Ds

is bj:

aTj := −∆xTj = −(x− xoj)
T , bj :=

γ

4
(∥∆xj∥2 −Ds

2) ∀j ∈ ¶1, 2, . . . ,M♢ (3.13)

To combine the collision avoidance requirement with the task completion objective, the
agent solves a QP that computes a controller closest to its reference ûθ(x) and satisĄes M
collision-avoidance constraints as follows

u∗ = arg min
u

∥u− ûθ(x)∥2

subject to A
(

x, ¶xoj♢Mj=1

)

u ≤ bγ,Ds

(

x, ¶xoj♢Mj=1

)

.
(3.14)

Going forward, we will assume that each agent in the multiagent system solves this QP
at every time instant to determine its optimal control u∗. Additionally, since agents do
not come to an abrupt halt, we will also assume that a solution to this QP always exists
i.e. the agentsŠ velocities are always feasible. This control ensures collision avoidance while
encouraging task completion. Aside from its position x, the ego agentŠs control u∗ depends
on task parameters θ. This is implicitly encoded through the cost function of (3.14) (recall
ûθ(x) = C(x)θ + d(x)). While all agents follow (3.14) to synthesize their control inputs,
it is the task+constraint parameters i.e. Θ = (θ, γ,Ds) that distinguish one agent from
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another. To highlight the dependence of u∗ on these parameters, we denote the control as
u∗

Θ
(x).
Fig. 3.1 shows example trajectories computed by this controller for an agent with one

collision avoidance constraint relative to a rectangular obstacle. The reference control is
û(x) = −kp(x − xd). To get an intuitive understanding of the parameter γ, we conducted
several simulations of (3.14) with increasing values of γ keeping Ds,x0,xd and kp Ąxed. The
resulting trajectories are shown in Ąg. 3.1(a). From this Ągure, it is evident that a large
value of γ makes the trajectory less conservative and makes it follow the reference controller
more closely while still maintaining Ds relative to the obstacle.

(a) Effect of varying γ (b) Effect of varying Ds

Figure 3.1: Sample trajectories produced by (3.14) with one rectangular obstacle as a con-
straint. These trajectories are computed for different values of γ and Ds. (a) For a Ąxed
Ds, increasing γ makes the trajectory less conservative and makes it follow the reference
controller more closely. (b) For a Ąxed γ, increasing Ds increases the distance from the
obstacle as is expected.

3.1.3 Why Is This Representation Of Dynamics A Good Modeling
Choice?

There are several reasons in favor of this representation of dynamics:

1. The nominal control ûθ(x) represents the agentŠs primary controller should there be
no other agents in the system. This represents the self-motivated dynamics of that
agent. Thus having an optimization model the dynamics automatically encourages the
agentŠs intent to follow this controller as much as possible while also ensuring that
safety is respected in the presence of other agents.

2. For a given state of the ego agent and other agents, some constraints will ŚmatterŠ while
some will not (this notion will be formalized in the next chapter). This is equivalent
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to saying that the agents associated with those constraints ŚmatterŠ to the ego agent
while others donŠt. By matter, we mean whether or not they inĆuence the ego agentŠs
dynamics. Our prior work showed a one-to-one mapping between what it means for an
agent to matter and the distance of that agent relative to the ego agent [68]. A direct
implication of this result then, is that this model then automatically Ąlters out agents
far away from the ego agent that donŠt interfere with the ego agentŠs task, thus only
neighboring agents end up inĆuencing the egoŠs dynamics. Thus, this model captures
the local interactions automatically.

3. Feasibility of constraints ensures strict collision avoidance, thus for demonstrations
that never undergo collisions, it is reasonable to assume these demonstrations might
be originating from constraints of the form in (3.14) on the agentsŠ velocities.

3.2 Behavior Inference Problem Formulation

Having settled on the dynamic model, we now state the behavior inference problem for
the multiagent system. In informal terms, an external observer wishes to understand the
preferred task controller + safety constraints of each agent in the system by tracking its
positions and velocities over some time. Before stating the inference problem, we state all
assumptions on the observerŠs knowledge.

Assumption 1. The observer knows that the ego agentŠs cost function is of the form
∥u− ûθ(x)∥2

Assumption 2. The observer knows the task functions C(x), d(x) of ûθ(x).

Assumption 3. The observer knows the form of safety constraints A(x, ¶xoj♢Mj=1) and
bγ,Ds

(x, ¶xoj♢Mj=1).

Problem 1 (Multiagent Behavior Inference). The observerŠs problem is to infer pa-
rameters Θ = (θ, γ,Ds) for each agent by monitoring its position x(t) and the positions of
other agents i.e. xoj(t) ∀j ∈ ¶1, 2, · · · ,M♢ over some Ąnite-time.

Since there are M+1 agents in the system, the observer will run M+1 parallel estimators
to identify Θi = (θi, γi, D

i
s) for ∀i ∈ ¶1, 2, · · · ,M♢. While θ represents information about

the task-oriented part of the dynamics, (γ,Ds), on the other hand, contain information about
safety margins and conservativeness i.e. they represent information about safety constraints/
the interaction part of the dynamics.

Let us point out why this inference is non-trivial. The dependence of u∗
Θ

(x) on θ comes
through the Ąlter of constraints and the objective function in (3.14). In a situation where
u∗

Θ
(x) is solely determined by constraints, θ will not be inferable because it is the cost

function that depends on θ not the constraints. Naturally, the observer may not have means
to deduce the extent of the dependence of u∗

Θ
(x) on the constraints, and this is precisely

what makes this problem challenging.
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3.3 Behavior Shaping Problem Formulation

In the behavior shaping problem, the observer solicits N robots to elicit a desired behav-
ior from the multiagent system under observation. Since this is an indirect control problem,
the observer requires a model of interaction between the multiagent system and the robots
to analyze how information Ćows from her robots to the agents and in turn modiĄes their dy-
namics. In this thesis, we interpret interaction as the collision-avoidance constraints between
agents. Like the collision avoidance constraints that exist amongst group agents themselves,
we assume that similar constraints model collision-avoidance of the multiagent system with
the observerŠs robots. To distinguish between the agent of the group and the observerŠs
robots, we will use subscript A and R respectively.

Suppose there M agents in the group collectively denoted as A := ¶1, 2, · · · ,M♢. Let
the position of agent i be xAi

∈ R2 ∀i ∈ A. Likewise, assume there are N robots collectively
denoted as R := ¶1, 2, · · · , N♢. Let robot k be located at xRk

∈ R2 ∀k ∈ R. Consistent
with our modeling paradigm so far, we choose to model the dynamics of the ith agent Ai
using a reactive one-step optimization

ẋAi
= arg min

u

∥
∥
∥u− ûθAi

(xAi
)
∥
∥
∥

2

subject to A
(

xAi
, ¶xAj

♢j∈A\i
)

u ≤ bγi,Di
s

(

xAi
, ¶xAj

♢j∈A\i
)

constraints with agents

A
(

xAi
, ¶xRk

♢k∈R
)

u ≤ bγ̃i,D̃i
s

(

xAi
, ¶xRk

♢k∈R
)

constraints with robots

:= fi
(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)

.

(3.15)

We allow a different set of parameters γ̃, D̃s to distinguish the interaction amongst agents of
the group from their interaction with the observerŠs robots. The cost function penalizes devi-
ation from a reference task-based control ûθAi

(xAi
), which is the control that Ai would follow

should all its constraints be inactive. Thus, it represents the autonomous self-motivated dy-
namics of Ai. In totality, its the dynamics depend on parameters (θAi

, γi, D
i
s, γ̃i, D̃

i
s). We

collectively denote all these parameters as ΘAi
, and aggregate parameters of all agents as

Θ = (ΘA1
, · · · ,ΘAM

) where,

ΘAi
:= (θAi

, γi, D
i
s, γ̃i, D̃

i
s). (3.16)

Further, we use superscript ΘAi
on fi to emphasize its dependence on ΘAi

. As for each
robot, we assume it is velocity-constrolled with dynamics

ẋRk
= uRk

∀k ∈ R. (3.17)

We can view (3.15) and (3.17) as a joint system, with its state as the combined states of all
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agents and robots, and the velocities of the robots as the control input to the system
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. (3.18)

Given this joint model, we now pose the problem of eliciting a desired behavior from the
agents. We denote the observerŠs behavioral requirement using a function yi : R2 −→ R that
corresponds to the behavioral requirement expected from agent i. DeĄne a set Y ⊂ R2M as

Y := ¶x ∈ R2M ♣yi(xAi
) > 0 ∀i ∈ A♢ (3.19)

Now depending on whether the observer knows the parameters of the agents or not, there
can be two variants of the behavior shaping problem. We state both these variants below.
Chapters 8 and 9 address the behavior shaping problem with known model. Chapter 10 de-
velops a robust control technique to address the behavior shaping problem with an uncertain
model.

Problem 2 (Multiagent Behavior Shaping With Known Model). Assuming the true
parameters Θ are known to the observer, if the initial agent positions (xA1

(0), · · · ,xAM
(0)) ∈

Y, the multiagent behavior shaping problem requires the observer to Ąnd robot controls
(uR1

, · · · ,uRN
) such that (xA1

(t), · · · ,xAM
(t)) ∈ Y ∀t > 0. However, if the positions of

the agents (xA1
(0), · · · ,xAM

(0)) /∈ Y , then the observerŠs problem is to Ąnd (uR1
, · · · ,uRN

)
such that (xA1

(t), · · · ,xAM
(t)) ❀ Y in Ąnite time.

Problem 3 (Multiagent Behavior Shaping With Uncertain Model). Assume that
observer has estimates of the parameters given by Θ̂ and an upper bound on estimation
error

∥
∥
∥Θ̂−Θ

∥
∥
∥ ≤ η. If the initial agent positions (xA1

(0), · · · ,xAM
(0)) ∈ Y, the multiagent

behavior shaping problem requires the observer to Ąnd robot controls (uR1
, · · · ,uRN

) such that
(xA1

(t), · · · ,xAM
(t)) ∈ Y ∀t > 0. However, if the agent positions (xA1

(0), · · · ,xAM
(0)) /∈ Y

, then the observerŠs problem is to Ąnd (uR1
, · · · ,uRN

) such that (xA1
(t), · · · ,xAM

(t)) ❀ Y
in Ąnite time.
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Multiagent System Identification
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4
Identifiability Criteria

and Convergent
Estimators

4.1 Introduction

In this chapter, we investigate the well-posedness of the multiagent behavior inference
problem as stated in Def. 1 in chapter 3. For now, we assume that the constraint parameters
γ,Ds are known to the observer and relax this later in chapter 7. We want to understand
when are the positions of individual agents Şrich enoughŤ so that they suffice to reveal the
parameters of their underlying tasks (i.e. θ) to the observer, given that the dynamics of
agents are given by (3.14). Inference with such controllers is challenging because presence
of an optimization in the closed-loop dynamics of an agent makes its positions/velocities
depend implicitly on task parameters. On the other hand, it is an explicit relation that is
practical for deriving identiĄability criteria. We will describe how to derive such a relation,
and develop necessary conditions which when satisĄed would ensure correct inference of the
task. The theory is for inferring an arbitrary task and specialized subsequently for the goal-
reaching task, for which, the observerŠs problem will be to infer the goals and controller gains
of each agent.

The outline is as follows: in section 4.2, we provide a brief background on parameter
identiĄcation. Using the persistency of excitation [69] analysis, we derive a novel necessary
condition for successful identiĄcation in lemma 1. In section 4.3, we recall the the multiagent
behavior model (from (3.14)) and the inference problem for this system. The main contri-
butions begin from section 4.4 where we derive the KKT conditions of the control-synthesis
optimization. By focusing on the set of active interactions (i.e. active constraints) of an
agent with the rest, we pose an equality-constrained optimization (EQP) which is the Ąrst
step for deriving a relation between parameters and its dynamics. In section 4.5, we classify
each agentŠs dynamics based on the number of constraints in this EQP, and linear inde-
pendence relations amongst these constraints. Taking the SVD of these constraints allows
us to derive the explicit relation between the parameters and dynamics of each agent that
we wanted. Finally, using these relations in conjunction with the persistency of excitation
requirement and the result derived in lemma 1, we provide the main necessary conditions
for successful task identiĄcation of the multiagent system (theorems (2-6)). The message
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that these theorems convey is that as the number of agents that an ego agent interacts
with increases, estimation of egoŠs parameters becomes difficult. This conĄrms our intu-
ition, because with more interactions, the ego agentŠs motion (that the observer measures)
is expended in satisfying collision avoidance constraints which it achieves by sacriĄcing task
performance. We demonstrate this numerically in section 4.6, where we use an adaptive
observer and a UKF to infer all agentŠs goals using their positions under various geometric
settings. We conclude in 4.7 by summarizing and provide directions for future work.

4.2 Observer based Parameter Identification

While there exist several parameter estimation algorithms that the observer can leverage
(such as RLS [70], UKF [71]), we focus on adaptive observer-based methods borrowing ideas
from [72, 73] because they provide conditions under which convergence to the true parameters
is achieved. Consider a nonlinear parameter-affine system as follows

ẋ = G(x)θ + f(x), (4.1)

where x ∈ Rn is the measurable state, θ ∈ Rp is the unknown parameter and G(x) : Rn −→
Rn×p, f(x) : Rn −→ Rn are known functions. In our context, x(t) will correspond to
the position of the ego agent under observation and θ denotes the task parameters of its
controller that we wish to infer. We assume that the observer runs several parallel estimators
synchronously, one for estimating the parameters of each agent, so the focus here is on the

ego agent. The observerŠs problem is to design an estimation law ˙̂
θ = ψ(θ̂,x) that guarantees

convergence of θ̂ −→ θ by using x(t) over some t ∈ [0, T ] where T is large enough. Consider
a state predictor deĄned analogously to (4.1)

˙̂x = G(x)θ0 + f(x) + kw(x− x̂), x̂(0) = x(0), (4.2)

where θ0 ∈ Rp is a nominal initial estimate of θ and kw > 0. DeĄne an auxiliary variable
η ∈ Rn as follows

η = x− x̂−W (θ − θ0) (4.3)

where W ∈ Rn×p is generated according to

Ẇ = −kwW +G(x), W (0) = 0. (4.4)

Here W is a low-pass Ąltered version of G(x). While η as deĄned in (4.3) is not measurable
because it depends on θ that is unknown, deĄning W as in (4.4) lets us generate η using

η̇ = −kwη, η(0) = x(0)− x̂(0). (4.5)

Based on (4.1)-(4.5), let Q ∈ Rp×p and C ∈ Rp be generated according to the following
dynamics

Q̇ = W TW, Q(0) = 0p×p, (4.6)

Ċ = W T (Wθ0 + x− x̂− η), C(0) = 0p×1, (4.7)
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and let tc be the time at which Q(tc) ≻ 0, then the following parameter update law

˙̂
θ = Γ(C −Qθ̂), θ̂(0) = θ0, (4.8)

for Γ ≻ 0 guarantees that
∥
∥
∥θ̂ − θ

∥
∥
∥ is non-increasing for 0 ≤ t ≤ tc and exponentially

converges to 0 for t > tc. Thus, as long as there exists tc at which Q(tc) ≻ 0, convergence of
the estimate θ̂ to the true parameter θ is guaranteed.

Definition 1 (Persistency of Excitation [74]). A function Φ : R+ → Rn is persistently
exciting (PE) if there exist constants T, ϵ > 0 such that

∫ t+T
t Φ(s)ΦT (s)ds ≽ ϵI ∀t ≥ 0

Definition 2 (Interval Excitation [75]). A function Φ : R+ −→ Rn is said to be interval
exciting (IE) if there exist constants T0, ϵ > 0 such that

∫ T0

0 Φ(s)ΦT (s)ds ≽ ϵI

Remark. The condition that Q(tc) ≻ 0 is equivalent to the IE condition presented in Def.
(2) for T0 := tc. Indeed by deĄning Φ(t) := W T (x(t)), we get that W T (x(t)) is IE iff
∫ tc

0 W T (x(s))W (x(s))ds ≻ 0 ⇐⇒ Q(tc) ≻ 0 since Q(t) =
∫ t

0 W
T (x(s))W (x(s))ds using

(4.6)

Since W (x(t)) is a low-pass Ąltered G(x(t)) (4.4), W T (x(t)) is IE only when GT (x(t)) is
IE [76]. Therefore, GT (x(t)) is IE implies existence of tc such that Q(tc) ≻ 0 i.e.

∫ tc

0
GT (x(s))G(x(s))ds ≽ ϵI =⇒ ∃tc ♣ Q(tc) ≻ 0. (4.9)

Next, we derive a new necessary condition which is required for GT (x(t)) to be IE.

Lemma 1. Let N (G(x)) ⊂ Rp denote the null space of G(x), then a necessary condition
for GT (x(t)) to be IE, is that N (G(x)) must not be time-invariant.

Proof. We prove this lemma by contradiction. Let v(x(t)) ∈ N (G(x(t))) and assume that
v(x(t)) is time-invariant i.e. v(x(t)) ≡ v ∈ Rp for some constant non-zero vector v. Let
T > 0, then we have that

r = vT
(
∫ T

0
GT (x(s))G(x(s))ds

)

v

=
∫ T

0

(

vTGT (x(s))G(x(s))v

)

ds

= 0 ∀t > 0. (4.10)

Since we assumed that v ̸= 0 and T was arbitrary,

r = 0 =⇒
∫ T

0
GT (x(s))G(x(s))ds ⪰̸ ϵI ∀t, ϵ > 0

=⇒ GT (x(t)) is not IE .

Since existence of such a v implies GT (x(t)) is not IE, therefore, ∄ tc for which Q(tc) ≻ 0.
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Consequently, failure to obtain positive-deĄniteness of Q(t) prevents unique identiĄcation
of θ using (4.8). What is the intuition for this result? Recall from (4.1) that the dy-
namics depend on the true parameter θ affinely through G(x). A time-invariant vector
v ∈ N (G(x(t))) qualitatively represents a pathological parameter that does not inĆuence
the dynamics because G(x(t))v = 0 and by extension, also does not inĆuence the measure-
ments x(t). Said another way, suppose θ is the true parameter of the system and let θ +αv
denote an arbitrary parameter for some α ∈ R. Then, the following calculation shows that
either of these parameters result in the same observed dynamics ẋ(t) for any t for a given
initial condition x(0), because G(x(t))v = 0:

ẋ = G(x)(θ + αv) + f(x)

= G(x)θ + αG(x)v + f(x)

= G(x)θ + f(x)

As a result, the observed measurements x(t) would be identical for either choice of parameters
(i.e. θ or θ + αv). Therefore, unique identiĄcation of the true θ solely based on these
measurements is not possible. For our application involving parameter estimation for agents,
the high-level task and the resulting dynamics of each agent govern the speciĄc form of this
condition.

4.3 Problem Formulation

We have M+1 agents in the system. The state of an ego agent is x ∈ R2 which represents
is position and the states of the other agents are xoj ∀j ∈ ¶1, 2, · · · ,M♢. The nominal task
based control for the ego agent is

ûθ(x) = C(x)θ + d(x) (4.11)

and we take it as a given that this control guarantees completion of the ego agentŠs task.
The closed-loop dynamics of this agent with the collision-avoidance constraints are

ẋ = u∗
θ = arg min

u
∥u− ûθ(x)∥2

subject to A
(

x, ¶xoj♢Mj=1

)

u ≤ b
(

x, ¶xoj♢Mj=1

) (4.12)

where A ∈ RM×2, b ∈ RM are such that the jth row of A and the jth element of b are:

aTj (x,xoj) := −∆xTj = −(x− xoj)
T

bj(x,x
o
j) :=

γ

4
(∥∆xj∥2 −D2

s) ∀j ∈ ¶1, 2, . . . ,M♢ (4.13)

The problem for the observer is to monitor the positions of the ego agent x(t) and the other
agents xoj(t) ∀j ∈ ¶1, 2, · · · ,M♢ and use these to infer θ. To estimate θ using the algorithm
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in section 4.2 ((4.1)-(4.8)) and to compute the condition in lemma 1, the observer requires
explicit dynamics of the form ẋ = G(x)θ + f(x) in (4.1). That is, it must know G(x)
and f(x). However, owing to the fact that ẋ = u∗

θ(x) is optimization-based, such explicit
relations are not known. In the next section, we derive the KKT conditions of (4.12) which
is the Ąrst step to derive these expressions.

4.4 Analysis using KKT conditions

To analyze the relation between the optimizer of (4.12) i.e. u∗
θ(x) and parameters θ,

we look at the KKT conditions of this QP. These are necessary and sufficient conditions
satisĄed by u∗

θ(x). The Lagrangian for (4.12) is

L(u,µ) = ∥u− ûθ∥2
2 + µT (Au− b).

Let (u∗
θ,µ

∗
θ) be the optimal primal-dual solution to (4.12). The KKT conditions are [77]:

1. Stationarity: ∇uL(u,µ)♣(u∗
θ
,µ∗

θ
) = 0,

=⇒ u∗
θ = ûθ −

1

2

∑

j∈¶1,··· ,M♢
µ∗
jθaj

= ûθ −
1

2
ATµ∗

θ. (4.14)

2. Primal Feasibility

Au∗
θ ≤ b ⇐⇒ aTj u

∗
θ ≤ bj ∀j ∈ ¶1, · · · ,M♢. (4.15)

3. Dual Feasibility

µ∗
jθ ≥ 0 ∀j ∈ ¶1, 2, · · · ,M♢. (4.16)

4. Complementary Slackness

µ∗
jθ · (aTj u∗

θ − bj) = 0 ∀j ∈ ¶1, 2, · · · ,M♢. (4.17)

We deĄne the set of active and inactive constraints as

A(u∗
θ) := ¶j ∈ ¶1, 2, · · · ,M♢ ♣ aTj u∗

θ = bj♢, (4.18)

IA(u∗
θ) := ¶j ∈ ¶1, 2, · · · ,M♢ ♣ aTj u∗

θ < bj♢. (4.19)

The set of active constraints qualitatively represents those other agents that the ego agent
ŞworriesŤ about for collisions. From the perspective of the ego agent, we will simply re-
fer to the Şother agentsŤ as obstacles. Let there be a total of K active constraints i.e.
card(A(u∗

θ))) = K where K ∈ ¶0, 1, · · · ,M♢. Using (4.16) and (4.17), we deduce

µ∗
jθ = 0 ∀j ∈ IA(u∗

θ). (4.20)
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Therefore, we can restrict the summation in (4.14) only to the set of active constraints i.e.

u∗
θ = ûθ −

1

2

∑

j∈A(u∗
θ

)

µ∗
jθaj

= ûθ −
1

2
ATacµ

ac
θ . (4.21)

where Aac(x) ∈ RK×2 is the matrix formed using the rows of A that are indexed by the active
set A(u∗

θ), and likewise µac
θ := ¶µ∗

jθ♢j∈A(u∗
θ

). Similarly, let bac(x) ∈ RK denote the vector
formed from the elements of b indexed by A(u∗

θ). By deleting all inactive constraints and
retaining only the active constraints, we can pose another QP that consists only of active
constraints, whose solution is the same as that of (4.12). This equality-constrained program
(EQP) is given by

u∗ = arg min
u

∥u− ûθ(x)∥2

subject to Aac(x)u = bac(x)
(4.22)

Note that the system Aac(x)u = bac(x) is always consistent by construction because of
(4.18), as long as a solution u∗

θ to (4.12) exists. Now why do we care for this EQP? That
is because it is easier to derive an expression u∗

θ(x) = G(x)θ + f(x) for (4.22) than the
inequality constrained problem (4.12). The only question is how to estimate the active set
A(u∗

θ) to determine Aac(x), bac(x) for (4.22). This can be done as follows. Recall that the
observer can measure both the position x(t) and velocity u∗

θ(x(t)) of the ego agent. Using
these, the observer can determineA(u∗

θ) by comparing the residuals ♣aTj (x)u∗
θ−bj(x)♣ against

a small threshold ϵ > 0 consistent with (4.18):

Aobserver := ¶j ∈ ¶1, 2, · · · ,M♢ ♣ ♣aTj (x)u∗
θ − bj(x)♣ < ϵ♢.

For a small enough threshold ϵ and with perfect noiseless measurements, it holds true that
Aobserver = A(u∗

θ) consistent with (4.18). This allows the observer to determine the active
set. In the next section, we work with (4.22) to derive an explicit expression for control i.e.
u∗

θ(x) = G(x)θ + f(x) for various combinations of card(A(u∗
θ)) = K and rank(Aac(x)).

4.5 SVD based Analysis

The aim of this section is to derive relations between u∗
θ and θ needed for identifying

these parameters. We will show that the dependence of u∗
θ on these parameters banks on

rank(Aac(x)). Theorems 2, 3 and 5 roughly state that whenever there is none or one obstacle
for the ego agent to actively avoid, the control u∗

θ exhibits a well-deĄned dependence on tθ
making their inference using the estimation algorithm in section 4.2 i.e. equations (4.1)-
(4.8) possible. On the other hand, theorem 6 states that whenever there are too many
obstacles active, the agent is consumed by collision avoidance constraints, so u∗

θ Şgives upŤ
on optimizing the objective. Therefore, u∗

θ does not depend on θ making its inference using
(4.1)-(4.8) impossible.
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4.5.1 Example Task

Suppose the agentŠs task-based control is to reach a goal position xd at an exponential
rate governed by gain kp. The reference control for this task is ûθ(x) = −kp(x − xd).
Depending on what parameters the observer wishes to infer, functions C(x),d(x) can be
deĄned accordingly to ensure −kp(x− xd) ≡ C(x)θ + d(x).

1. If the gain kp is known to the observer and the observer wants to estimate the goal i.e.
θ = xd, then deĄne C(x),d(x) as follows:

C(x) := kpI

d(x) := −kpx (4.23)

2. If the goal xd is known to the observer and the observer wants to estimate the gain
i.e. θ = kp, then deĄne C(x),d(x) as follows:

C(x) := −(x− xd)

d(x) := 0 (4.24)

4.5.2 No active constraints

When no constraint is active, we have µjθ = 0 ∀j ∈ ¶1, 2, · · · ,M♢, so from (4.14) we
get u∗

θ(x) = ûθ(x) = C(x)θ + d(x). Intuitively this means that the agent does not worry
about collisions with any obstacle, so it is free to use ûθ itself. DeĄning G(x) := C(x) and
f(x) := d(x), we get the following result:

Theorem 2. If ∀t ∈ [0, T ], no constraint is active, the observer can estimate θ provided
C(x) is IE over [0, T ].

Proof. The proof follows directly from (4.9) by choosing G(x) = C(x) for this case.

We specialize this theorem to the case the agentŠs task is to reach a goal position xd at
an exponential rate governed by gain kp using ûθ(x) = −kp(x−xd). Fig 4.1(a) conveys this
scenario intuitively.

Corollary 2.1. If ∀t ∈ [0, T ], no constraint is active, then the observer can always esti-
mate the goal assuming gain is known. Likewise, the observer can always estimate the gain
assuming the goal is known, as long as the agent is not already at its goal.

Proof. (a) If the observer wants to estimate the goal i.e. θ = xd, then for this case
C(x) = kpI from (4.23). For this case, C(x)TC(x) = k2

pI ≻ 0 i.e. C(x) is IE and
C(x) has no null space (lemma 1). Thus, goal estimation is always possible using
theorem 2.
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(a) No active constraint (b) One active constraint (c) Two active constraints

Figure 4.1: We try to intuitively convey the dependence of the dynamics on task parameters
using a go-to-goal task as example. The ego robot is shown in blue, its goal as the blue dot
and the rest of the robots are gray if they are perceived as inactive by the ego robot and
red if active. In Ąg. 4.1(a), the ego robot can freely navigate to its goal since there is no
other robot in its way. This scenario is information-rich for goal inference. In Ąg. 4.1(b),
even though there is one robot in the way, the ego robot can use one degree of freedom to
manifest goal directed motion. In Ąg. 4.1(c), since there are two robots in the way, the ego
robot temporarily relinquishes goal directed behavior to repel these robots.

(b) If the observer wants to estimate the gain i.e. θ = kp, then for this case C(x) :=
−(x − xd) from (4.24). Gain estimation is only possible when CT (x(t))C(x(t)) =
∥x(t)− xd∥2 ̸= 0∀t ∈ [0, T ] i.e. when the agent is not at its goal. This is expected
because if the agent is already at its goal, then it will stay there forever, so there is no
information about kp in its position, hence the result.

4.5.3 Exactly one active constraint

When one constraint is active, there is one obstacle that the ego agent ŞworriesŤ about
for collision. Since there are two degrees of freedom in the control, and one obstacle to
avoid, the ego agent can avoid this obstacle and additionally minimize ∥u− ûθ(x)∥2 with
the remaining degree of freedom. This causes u∗

θ to exhibit a well-deĄned dependence on
ûθ(x) and by extension, on θ. This makes their inference using the estimation algorithm in
section 4.2 i.e. equations (4.1)-(4.8) feasible.

Let i ∈ ¶1, 2, · · · ,M♢ denote the index of the active constraint, meaning that it is
the obstacle located at xoi that should be ŞactivelyŤ avoided. Thus, from (4.18), we have
Aac(x)u∗

θ = aTi (x)u∗
θ = bi(x) where Aac(x) := aTi (x) and aTi (x), bi(x) are deĄned in (4.13).

Since aTi (x) ∈ R1×2, from rank-nullity theorem it follows that aTi (x) has a non-trivial
null space of dimension one. The null space gives one degree of freedom to the control to
minimize ∥u− ûθ(x)∥2 while satisfying the constraint. We show this by computing the SVD
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aTi (x) = U(x)Σ(x)V T (x):

U(x) := 1

Σ(x) :=
[

Σm(x), 0
]

where Σm(x) = ∥ai(x)∥

V (x) :=
[

V1, V2

]

V1 =
ai(x)

∥ai(x)∥ , V2 = Rπ
2

ai(x)

∥ai(x)∥ . (4.25)

Since V forms a basis for R2, any u can be expressed as

u =
[

V1, V2

]
[

ũ1

ũ2

]

.

=⇒ aTi u− bi = U
[

Σm, 0
]
[

V T
1

V T
2

]
[

V1, V2

]
[

ũ1

ũ2

]

− bi

= UΣmũ1 + 0 · ũ2 − bi = 0 (4.26)

Choosing ũ1 = Σ−1
m UT bi and ũ2 = ψ ∈ R, we Ąnd that

u = V1Σ
−1
m UT bi + V2ψ (4.27)

satisĄes aTi (x)u = bi(x) ∀ψ ∈ R. Recall from the properties of SVD that V2 forms a basis
for N (aTi (x)). We tune ψ to minimize ∥u− ûθ∥2 by solving the following unconstrained
minimization problem

ψ∗ = arg min
ψ

∥u− ûθ∥2

= arg min
ψ

∥
∥
∥V1Σ

−1
m UT bi + V2ψ − ûθ

∥
∥
∥

2
,

(4.28)

which gives ψ∗ = V T
2 û. Substituting this in (4.27), gives

u∗
θ = V1Σ

−1
m UT bi + V2V

T
2 ûθ. (4.29)

Substituting ûθ = C(x)θ + d(x) gives

u∗
θ = V1Σ

−1
m UT bi + V2V

T
2 (Cθ + d)

= V2V
T

2 C
︸ ︷︷ ︸

G(x)

θ + V1Σ
−1
m UT bi + V2V

T
2 d

︸ ︷︷ ︸

f(x)

= G(x)θ + f(x). (4.30)

This equation is the solution to (4.22) and by extension, to (4.12). Using this relation (4.30),
we are ready to state the conditions under which inference of parameters using the algorithm
((4.1)-(4.8)) and lemma 1 in section 4.2 is possible.
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Theorem 3. If ∀t ∈ [0, T ], no constraint is active, the the observer can estimate θ provided
V2(x)V T

2 (x)C(x) is IE over [0, T ]

Proof. Follows from (4.9) by choosing G(x) = V2(x)V T
2 (x)C(x) (from (4.30)) for this case.

Next, we specialize this theorem to the case the agentŠs task is to reach a goal position
xd ûθ(x) = −kp(x− xd). Fig 4.1(b) conveys this scenario intuitively.

Corollary 3.1. If ∀t ∈ [0, T ], exactly one constraint is active, then the observer can estimate

the goal (gain) assuming the gain (goal) is known, as long as the orientation of ai(x)
∥ai(x)∥ is not

time-invariant and x(t) ̸= xd ∀t ∈ [0, T ]

Proof. (a) If the observer wants to estimate the goal i.e. θ = xd when kp is known,
then C(x) = kpI,d(x) = −kpx from (4.23). Thus, using (4.30), G(x) :=
kpV2(x)V T

2 (x). Thus, per theorem 3, goal identiĄcation is possible when G(x(t)) is
IE i.e.

∫ T
0 GT (x(t))G(x(t))dt ≻ 0. The situation when positive-deĄniteness is not

attained is when N (G(x(t)) is time-invariant which follows from Lemma 1. Note

that N (G(x)) = N (kpV2V
T

2 ) = V1 = ai(x)
∥ai(x)∥ which follows from the properties of

SVD. Since V1 is always a unit vector, it can only change through its orientation.
If its orientation does not change over [0, T ], then V1 is a time-invariant vector in
N (G(x)) and hence goal estimation will not be possible, using Lemma 1. The video
at https://youtu.be/gh0WT_ErLxw shows an example where invariance of the orien-
tation of null-space results in failure to identify the goal.

(b) If the observer wants to estimate the gain i.e. θ = kp, then C(x) = −(x−xd),d(x) = 0

from (4.24). Thus, G(x) := −V2V
T

2 (x − xd) from (4.30). If (x − xd) ∥ V1 =⇒
(x − xd) ⊥ V2 then G(x) ≡ 0. So if (x(t) − xd) ∥ V1(x(t)) ∀t ∈ [0, T ] then G(x(t))
will violate the IE condition needed for gain identiĄcation in theorem 3.

4.5.4 More than one active constraint but linearly dependent

Now we consider the more general case in which there is more than one constraint active,
but all of these are linearly dependent on one constraint among them. This means that
effectively there is only one Şrepresentative constraintŤ or obstacle for the ego agent to
worry about. Consequently, this case is similar to the case with just one active obstacle.
We formally demonstrate this now. Let i1, i2, · · · , iK ∈ ¶1, · · · ,M♢ be the indices of active
constraints which satisfy











aTi1(x)

aTi2(x)
...

aTiK (x)











u∗
θ =











bi1(x)

bi2(x)
...

biK (x)











or

Aac(x)u∗
θ = bac(x), (4.31)
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where aTij (x) and bij (x) are deĄned using (4.13). Since rank(Aac(x)) = 1, WLOG we have

aTij (x) = λja
T
i1

(x) where λj ∈ R ∀j ∈ ¶2, 3, · · · , K♢. LetŠs Ąrst see the geometric arrange-
ments of the agent and the obstacles i1, i2 · · · , iK when this case arises in practice.

Lemma 4. The case with more than one constraint active and all linearly dependent can
only arise in practice for λj ∈ ¶+1,−1♢. λj = +1 means that obstacles indexed i1 and ij
are coinciding and bi1(x) = bij (x). λj = −1 means that the agent is located exactly in the
middle of obstacles i1 and ij. Furthermore, even if there is just one j for which λj = −1,
then bij (x) = 0 ∀j ∈ ¶1, 2, · · · , K♢ ⇐⇒ bac(x) = 0.

Proof. Since i1, ij are active constraints ∀j ∈ ¶2, 3, · · · , K♢
aTi1(x)u∗

θ = bi1(x) (4.32)

aTij (x)u∗
θ = bij (x) ∀j ∈ ¶2, 3, · · · , K♢ (4.33)

Substituting aTi1 = λaTij in (4.32), we get

λaTij (x)u∗
θ = bi1(x)

=⇒ λbij (x) = bi1(x) ∀j ∈ ¶2, 3, · · · , K♢ (4.34)

Recalling that br(x) := γ
2
(∥ar∥2 −D2

s) from (4.13), we get

λ
γ

2
(
∥
∥
∥aij

∥
∥
∥

2 −D2
s) =

γ

2
(∥ai1∥2 −D2

s)

=⇒ λ(
∥
∥
∥aij

∥
∥
∥

2 −D2
s) = (

∥
∥
∥λaij

∥
∥
∥

2 −D2
s)

=⇒ λ2
∥
∥
∥aij

∥
∥
∥

2 − λ(
∥
∥
∥aij

∥
∥
∥

2 −D2
s)−D2

s = 0 (4.35)

This equation has two roots λ = 1,− D2
s

∥aij∥2 .

1. λ = 1 =⇒ bi1(x) = bij (x) and aTi1 = aTij i.e. x − xoi1 = x − xoij or xoi1 = xoij . This
means obstacle ij is coinciding with obstacle i1. This is a trivial yet an expected result.

2. λ = − D2
s

∥aij∥2 < 0 implies that aTi1 ,a
T
ij

are anti-parallel. However, when λ < 0, bij (x) >

0 =⇒ bi1(x) < 0. Recalling the deĄnition of bij (x), we know that bij (x) > 0 ⇐⇒
∥
∥
∥aij (x)

∥
∥
∥

2
> D2

s and therefore bi1(x) < 0 ⇐⇒ ∥ai1(x)∥2 < D2
s . This means that if the

agent is strictly safe with respect to obstacle ij, then it is colliding with obstacle i1.
This means that the control at the previous time step u∗

θ(x(t−)) caused this collision
which is not possible. This conĆict can only be resolved when we relax strict safety to

bij (x) = 0 =⇒
∥
∥
∥aij (x)

∥
∥
∥

2
= D2

s meaning that the agent and obstacle j are touching

each other. This gives bi1(x) = 0 implying that the agent and obstacle i1 are also

touching each other. In this case λ = − D2
s

∥aij∥2 = −1 which implies x−xoi1 = −(x−xoij )
or x = 1

2
(xoi1 + xoij ). Furthermore, even if there is one j for which λj = 0, then from

(4.34), bij = 0∀j¶1, 2, · · · , , K♢ =⇒ bac = 0
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Next, we derive an analytical expression for u∗
θ(x) using (4.31). NoteAac(x) = U(x)Σ(x)V T (x)

where

U :=
[

U1, U2

]

, U1 =
1

√

1 + ΣK
j=2λ

2
j

[

1, λ2, · · ·λK
]T

Σ :=

[

Σr 01×1

0K−1×1 0K−1×1

]

, Σr =
√

1 + ΣK
j=2λ

2
j ∥ai(x)∥

V :=
[

V1, V2

]

,V1 =
ai1(x)

∥ai1(x)∥ , V2 = Rπ
2

ai1(x)

∥ai1(x)∥ . (4.36)

Choosing u = V1ũ1 + V2ũ2, from (4.31) we get

Aacu− bac =
[

U1, U2

]
[

Σr 0

0 0

] [

V T
1

V T
2

]
[

V1, V2

]
[

ũ1

ũ2

]

− bac

=
[

U1, U2

]
( [

Σrũ1

0

]

−
[

UT
1 bac

UT
2 bac

])

. (4.37)

Since ∥∥2 is unitary invariant, from (4.31)

∥Aacu− bac∥2 =

∥
∥
∥
∥
∥

[

Σrũ1

0

]

−
[

UT
1 bac

UT
2 bac

]∥
∥
∥
∥
∥

2

=
∥
∥
∥Σrũ1 − UT

1 bac
∥
∥
∥

2
+
∥
∥
∥UT

2 bac
∥
∥
∥

2
. (4.38)

The minimum norm is achieved for ũ1 = Σ−1
r UT

1 bac. Choosing ũ2 = ψ ∈ R, the Şleast-
squaresŤ solutions are

u = V1Σ
−1
r UT

1 bac + V2ψ. (4.39)

Computing ψ by minimizing ∥u− ûθ∥2, we get ψ∗ = V T
2 ûθ which gives

u∗
θ = V1Σ

−1
r UT

1 bac + V2V
T

2 ûθ. (4.40)

Substituting ûθ(x) = C(x)θ + d(x) in (4.40) gives

u∗
θ = V1Σ

−1
r UT

1 bac + V2V
T

2 (Cθ + d)

= V2V
T

2 C
︸ ︷︷ ︸

G(x)

θ + V1Σ
−1
r UT

1 bac + V2V
T

2 d
︸ ︷︷ ︸

f(x)

= G(x)θ + f(x). (4.41)

Suppose λj = +1 ∀j ∈ ¶2, 3, · · · , K♢, then from (4.36), we have U1 = 1√
K

1, Σr =
√
K ∥ai1(x)∥.

Moreover, from lemma 4, we have bij (x) = bi1(x) ∀j ∈ ¶2, 3, · · · , K♢, this means that, and
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bac(x) = 1bi1(x). Substituting this in (4.40), one can verify that we get the same expression
for control as in (4.29). This is expected because λj = 1 ∀j ∈ ¶2, 3, · · · , K♢ means that all
obstacles are coinciding so the ego agent treats them all as one obstacle, hence the control
is identical to one when there was just one active obstacle in 4.5.3. The slight difference
between this case and 4.5.3 comes when there is a j for which λj = −1. From lemma 4,
this happens when the agent is in the middle of i1 and ij and bac = 0. Then it follows from
(4.40) that

u∗
θ = V2V

T
2 ûθ. (4.42)

V2V
T

2 ûθ is the projection of ûθ along V2 = Rπ
2

ai1
(x)

∥ai1
(x)∥ . This is expected because when the

agent is in the middle of the obstacles (lemma 4), the only feasible direction of motion is
along the line that is perpendicular to the line segment connecting the obstacles i.e. along

Rπ
2

ai1
(x)

∥ai1
(x)∥ because motion along any other direction will cause collisions. We are ready to

state the conditions under which inference of θ is possible using (4.41) as the expression for
u∗

θ .

Theorem 5. If ∀t ∈ [0, T ], no constraint is active, then following (4.9), the observer can
estimate θ provided V2(x)V T

2 (x)C(x) is IE over [0, T ].

Proof. Follows from (4.9) by choosing G(x) = V2(x)V T
2 (x)C(x) (from (4.41)) for this case.

Next, we specialize this theorem to the case where the agentŠs task is to reach a goal
position xd at an exponential rate governed by gain kp using ûθ(x) = −kp(x− xd).

Corollary 5.1. If ∀t ∈ [0, T ], two or more constraints are active, all of which are linearly
dependent on one among them, then the observer can estimate the goal (gain) assuming

the gain (goal) is known, as long as the orientation of
ai1

(x)

∥ai1
(x)∥ is not time-invariant and

x(t) ̸= xd ∀t ∈ [0, T ]

Proof. The proof is similar to the proof of corollary 3.1 so it is skipped.

4.5.5 Two or more linearly-independent active constraints

Now consider the case where two of K constraints are linearly independent, while the re-
maining constraints are linear combinations of these two. There are fewer degrees of freedom
in control than the number of independent active obstacles to avoid, hence u∗

θ is completely
determined by these constraints and does not depend on ûθ, and by extension, neither
on θ. We formally demonstrate this claim as follows. Let i1, i2, · · · , iK ∈ ¶1, 2, · · · ,M♢
be the indices of the K active constraints. These constraints satisfy (4.31) except that here
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Table 4.1: Summarizing the control expressions for various cases. The red row shows the
case which violates the persistency of excitation criterion.

Case K rank(Aac) u∗(x) Relevant Equations

A (section 4.5.2) None - ûθ = C(x)θ + d(x) -

B (section 4.5.3) 1 1 V1Σ
−1
m UT bi + V2V

T
2 ûθ (4.29)-(4.30)

C (section 4.5.4) ≥ 2 1 V1Σ
−1
r UT

1 bac + V2V
T

2 ûθ (4.40)-(4.41)

D (section 4.5.5) ≥ 2 2 A†
acbac (4.43)-(4.45)

rank(Aac(x)) = 2. This problem is overdetermined but not ill-posed because by construction
(4.31) is consistent. Its solution is

u∗
θ(x) = arg min

u
∥Aac(x)u− bac(x)∥2

2

= A†
ac(x)bac(x)

(4.43)

where A†
ac(x) denotes the Moore-Penrose pseudo inverse deĄned as

A†
ac(x) := (ATac(x)Aac(x))−1ATac(x). (4.44)

When K = 2, A†
ac(x) ≡ A−1

ac (x). Since neither A†
ac(x) nor bac(x) depend on θ (4.13),

inference of θ is not possible. This can be seen by rewriting (4.43) as

u∗
θ(x) = O

︸︷︷︸

G(x)

θ + A†
ac(x)bac(x)

︸ ︷︷ ︸

f(x)

(4.45)

Theorem 6. If ∀t ∈ [0, T ], two or more than two constraints are active and two of these
are linearly independent, then the observer cannot estimate θ.

Proof. Since G(x) ≡ O ∀t ∈ [0, T ] (4.45), it does not (4.9), hence the result.

Next, we specialize this theorem to the case where the agentŠs task is to reach a goal
position xd. Fig 4.1(c) conveys this scenario intuitively.

Corollary 6.1. If ∀t ∈ [0, T ], two or more constraints are active and two of these are linearly
independent, then the observer cannot estimate either the goal or the gain.

Proof. Since G ≡ O, it does not matter whether the parameter to be inferred is the goal xd
or the gain kp, either of these will not be inferrable due to theorem 6.

Table 4.1 summarizes the control expressions that we derived in sections 4.5.2 - 4.5.5
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(d) Adaptive Observer
and UKF

Figure 4.2: (a)-(c) A agent navigating to its goal (green) amongst static obstacles. Dark disc
represents an active obstacle. Estimates of goal using AO and UKF are shown in blue and
pink discs. (d) The norms of goal position errors for AO and UKF. Since atmost one obstacle
is active, estimation errors converge to zero. Video at https://youtu.be/jPIsdM08-II

4.6 Simulation Results

In this section, we present results for estimation of goals for a multiagent system. We con-
sider two estimators, (a) a UKF and (b) an adaptive observer (AO) (4.1) to (4.8). G(x), f(x)
for AO are chosen per theorems 2-6 by checking the number of active obstacles at a given
time. The AO converges only when the necessary conditions in these theorems are satisĄed.
As for UKF, while it doesnŠt require explicit dynamics, it doesnŠt provide any guarantees
for convergence either. To substantiate this, we Ąrst show simulations for a single agent
navigating towards its goal in an environment consisting of static obstacles. In Figs. 4.2(a)-
4.2(c), an ego agent (red) is trying to reach its goal shown in green. As the agent moves to
the right, obstacle two remains active until t = 2.8s. While there are six obstacles, only one
of them is active in this duration, hence theorem 3 guarantees reduction in goal estimation
error using AO. This is shown in the dark green left panel of Fig. 4.2(d). For t > 2.8s,
no obstacle is active hence theorem 2 ensures that the goal estimation error converges to
zero using AO as evident in Fig 4.2(d). A similar trend is obtained using UKF. In Figs.
4.3(a)-4.3(c), the same agent is trying to reach its goal shown in green. We have purpose-
fully positioned the obstacles in such a way that as the agent moves, obstacle one and two
are active until t = 1.08s, at which point, obstacle three and four become active, and stay
so until t = 1.8s. Thus until t = 1.8s, two obstacles are always active. Hence, from theorem
6, agent dynamics do not depend on the goal location. As expected, the AO error does not
decrease as is evident from the red panel of Fig. 4.3(d). Interestingly, this is also true for
UKF, which empirically shows that convergence of estimation error is agnostic to the choice
of estimator, which is because agent dynamics itself do not depend on the goal. Thereafter,
no obstacle is active, hence the estimation errors converge to zero as is evident from the
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(d) Adaptive Observer
and UKF

Figure 4.3: (a)-(c) Goal identiĄcation for a agent navigating amongst static obstacles. (d)
The red patch represents the duration in which identiĄcation is not supposed to work, because
two obstacles are active. After t ∼ 1.8s, no obstacles are active, hence estimation errors begin
to converge to zero. Video at https://youtu.be/8k7Zegn2lvw
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Figure 4.4: (a)-(c) Goal estimation for a multiagent system. We highlight the ego agent
(red) for legibility. AO and UKF estimates are shown in blue and pink discs respectively.
Video at https://youtu.be/i6RiyA_AtbU

green panel in Fig. 4.3(d). Finally, we consider a multiagent system in Fig. 4.4 in which
we run parallel estimators synchronously. To ensure that the snapshots are legible, we only
highlight the ego agent (i.e. agent 2), while other agents are light grey or dark depending
on whether they are active or inactive for the ego agent. In this simulation, there are times
when one agent is active (Fig. 4.4(a)), two are active (Fig. 4.4(b)) and none are active (Fig.
4.4(c)). The estimation errors are shown in Fig. 4.5. The grey curves correspond to the
non-ego agents and the blue (AO) and pink (UKF) curves are for the ego agent. Since all
the curves converge to zero, the estimates of goals for all agents converge to their true goals.
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Figure 4.5: Estimation errors as a function of time for AO (left) and UKF (right). The
highlighted curves are for the ego agent while the gray ones are for other agents.

4.7 Conclusions

In this chapter, we developed a mathematical framework for observer based task inference
of a multiagent system by using ideas from system identiĄcation. Since these agents use
optimization in the feedback loop, their dynamics depend implicitly on task parameters which
makes the application of previously developed estimators as well as identiĄability conditions
non-trivial. We used duality theory to derive explicit relations to derive the identiĄability
conditions. The message that our theorems convey is that as the number of agents that an
ego agent interacts with increases, estimation of egoŠs parameters becomes difficult because
with more interactions, the ego agentŠs motion is expended in avoiding collisions which it
achieves by sacriĄcing task performance. In the next chapter, we will explore how to learn
bounds on parameters θ when the identiĄability conditions are violated.
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5 Inferring Bounds on Task
Parameters

5.1 Introduction

In the chapter 4, we derived necessary conditions based on persistency of excitation anal-
ysis for inferring the task parameters of each agent in a multiagent system. We demonstrated
the utility of these conditions by trying to estimate the goals and gains of all agents using a
UKF based parameter estimator and an adaptive observer [73], [72]. These algorithms are
pointwise estimators in that they generate a single estimate of the parameter that converges
to the true parameter when the system dynamics satisfy the persistency of excitation crite-
rion [74]. However, as we saw in chapter 4, this condition may not necessarily be satisĄed in a
multiagent system. In particular, we showed that whenever an agent has active interactions
with two or more other agents, this condition will get violated for that agent. Now since
interactions among agents are inevitable, by this reasoning, pointwise parameter estimators
would fail to identify the true parameter for that agent.

This takeaway from the previous chapter forms the motivation for this chapter. That is,
while it may not be possible to get an exact estimate of the task parameter of an agent, we
want to determine if we can estimate any bounds for it. To address this problem, we propose
a feasible-region based identiĄcation algorithm that generates a bounded set which contains
the true parameter. We design this algorithm such that the ŞmeasureŤ of this set (i.e. its
size) is non-increasing with time. There are several advantages of our proposed approach
over point-wise identiĄcation.

1. Firstly, this algorithm is anytime i.e. the set computed at a given time is comprised
of parameters that are all valid candidates for explaining the agent measurements
observed until that time.

2. Secondly, this algorithm does not have any gains to tune as in Kalman Ąlters or adaptive
observers [78] which require userŠs intuition for tuning.

3. Thirdly, this algorithm can also work symbiotically with point-wise estimation algo-
rithms and can expedite their convergence by continually projecting their estimates to
the feasible regions generated by this algorithm.
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4. Finally, our empirical evidence suggests that even in cases where point-wise estimation
is possible, our algorithm converges much faster than a point-wise estimator (a UKF
used for comparison).

The outline of this chapter is as follows. In section 5.2, we give a brief review of point-wise
parameter estimation following the development in [27, 79] and establish notation for our
proposed feasible region-based identiĄcation approach. In section 5.3, we formalize the feasi-
ble region-based task identiĄcation problem. The main contributions begin from section 5.4.
We use the KKT conditions of the control synthesis optimization (3.14) to pose an equality
constrained optimization problem (EQP) formulated using the set of active constraints of
the ego agent. In section 5.5, we derive explicit relations between agent dynamics, Lagrange
multipliers and task parameters. Finally, using these relations along with the KKT condi-
tions, we derive analytical descriptions of the sets where the task parameters must belong
as we wanted. We demonstrate the power of this identiĄcation approach through numer-
ical simulations in section 5.6. We consider geometric settings that span all combinations
of number of active constraints and linear independence relations we theorized in section
5.5 and show through simulations how the bounds on task parameters computed by our
approach converge much faster than a UKF. Finally, we conclude in section 5.7 and provide
directions for future work.

5.2 Approaches for Parameter Identification

We describe two different approaches for parameter identiĄcation. These include (a)
Point-wise identiĄcation and (b) Feasible-region based identiĄcation. The need for distin-
guishing between these two approaches is necessitated by our application i.e. task inference
for multiagent systems. Approach (a) can often fail to converge owing to unavoidable inter-
actions between agents. In such circumstances, approach (b) can provide reasonable bounds
on task parameters.

5.2.1 Point-wise identification

The point-wise identiĄcation approach focuses on designing an online parameter update
law which ensures that the estimate of the parameter converges to the true parameter of
the underlying system. Several known estimation algorithms fall in this category, including
RLS [70], UKF [71] and the ones based on adaptive observers [72, 73, 79]. Consider a
nonlinear system:

ẋ = G(x)θ + f(x), (5.1)

where x ∈ Rn is the measurable state, θ ∈ Rp is the unknown parameter and G(x) :
Rn −→ Rn×p, f(x) : Rn −→ Rn are known functions. For example, in our context, x(t)
will correspond to the position of the ego agent under observation and θ denotes the task
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parameters of its controller that the observer wishes to infer. We can assume that the
observer runs several parallel estimators, one for each agent, so the observerŠs focus is on the
ego agent. Adhering to the point-wise identiĄcation paradigm, the observerŠs problem is to

design an estimation law
˙̂
θ = ψ(θ̂,x) that guarantees convergence of θ̂ −→ θ by using x(t).

A necessary condition for this convergence is that G(x) be persistently exciting [69].

5.2.2 Feasible region-based identification

In this approach, the aim is to compute a set where the parameter of the underlying
system must belong rather than computing its exact value. The observer may use some
measurements y(t) and compute a set Θ(t) ⊂ Rp such that

1. Θ(t) is bounded.

2. θ ∈ Θ(t) ∀t.

3. The measure of this set, denoted by µ(Θ(t)) is non-increasing with time.

Ideally, if condition (2) is satisĄed and condition (3) is replaced with a strict decrease in
µ(Θ(t)), it is guaranteed that limt→∞Θ(t) = θ. However, the relaxed condition (3) i.e.
µ(Θ(t)) is non-increasing is easier to ensure in practice and will be our focus. One way to
deĄne a set that satisĄes these three conditions is as follows. Suppose at time t, we deduce
that θ ∈ Ω(t) where

Ω(t) := ¶θ̂ ∈ Rp♣g(y(t), θ̂) ≺ 0♢, (5.2)

for some function g(y(t), θ̂) that depends on the observerŠs measurements y(t). We call Ω(t)
the instantaneous feasible set. Note that Ω(t) need not be bounded, that would depend on
how g(y(t), θ̂) is deĄned. Further, suppose Θ0 ⊂ Rp is a known time-invariant compact set
in which θ is known to belong a-priori. Then deĄning

Θ(t) :=
⋂

0≤τ≤t
Ω(τ) ∩Θ0, (5.3)

will ensure satisfaction of the three conditions proposed above. Indeed, let t1 and t2 be two
time instants such that t1 < t2, then from (5.3) it is evident that Θ(t2) ⊆ Θ(t1). This
would in-turn imply that µ(Θ(t2)) ≤ µ(Θ(t1)) or in other words, µ(Θ(t)) non-increasing.
Since Θ(t) is derived from the set Ω(t), it suffices to focus on constructing the instantaneous
feasible set Ω(t) i.e. deriving g(y(t), θ̂).

In the rest of the chapter, our goal is to construct the instantaneous feasible set Ω(t)
for inferring parameters of each agent in the multiagent system. We will assume the same
formalism as in chapter 3-chapter 4 to model the dynamics of each agent:

ẋ = u∗
θ = arg min

u
∥u− ûθ(x)∥2

subject to A
(

x, ¶xoj♢
)

u ≤ b
(

x, ¶xoj♢
) (5.4)
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where A ∈ RM×2, b ∈ RM . The nominal task based control for the ego agent is

ûθ(x) = C(x)θ + d(x) (5.5)

We will use these dynamics to illustrate the mechanics of constructing Ω(t) for inferring θ.

5.3 Region-based Identification Problem

The observerŠs problem is to identify a region in the parameter space Θ(t) ⊂ Rp consistent
with the three conditions of the feasible-region based identiĄcation approach proposed in Sec.
5.2. Following the analysis in section 5.2.2, it suffices to estimate the instantaneous feasible
set Ω(t) (5.2) as the 0-sublevel set of a function g(y(t), θ̂). The measurements y(t) that the
observer can use to compute this set include (a) the positions of the ego agent x(t) and (b) the
positions of the other agents xoj(t) ∀j ∈ ¶1, 2, · · · ,M♢ i.e. y(t) = (x(t),xo1(t), · · · ,xoM(t)).

The observer will run M + 1 parallel identiĄers to compute ¶Ωi(t)♢M+1
i=1 for each agent in

the team since each agent has its unique task parameter θi, in general. Focusing on the ego
agent, the observer needs to derive functions g(y(t), θ̂). For that, the observer must know
an explicit relation between the dynamics of the ego agent and the parameters θ of the form
ẋ = G(x)θ + f(x) similar to (5.1). That is, it must know G(x) and f(x). However, owing
to the fact that ẋ = u∗

θ(x) is optimization-based (5.4), such explicit relations are not known.
We derive these relations conditions using the KKT conditions of (5.4).

5.4 Analysis using KKT conditions

Since we covered the KKT conditions in chapter 4 (section 4.4), we state them here
directly without deriving them.

Stationarity ûθ −
1

2
ATµ∗

θ = ûθ −
1

2

∑

j∈¶1,··· ,M♢
µ∗
jθaj

Primal Feasibility Au∗
θ ≤ b ⇐⇒ aTj u

∗
θ ≤ bj ∀j ∈ ¶1, · · · ,M♢

Dual Feasibility µ∗
jθ ≥ 0 ∀j ∈ ¶1, 2, · · · ,M♢

Complementary Slackness µ∗
jθ · (aTj u∗

θ − bj) = 0 ∀j ∈ ¶1, 2, · · · ,M♢

Recall the set of inactive and active constraints are:

IA(u∗
θ) := ¶j ∈ ¶1, 2, · · · ,M♢ ♣ aTj u∗

θ < bj♢, (5.6)

A(u∗
θ) := ¶j ∈ ¶1, 2, · · · ,M♢ ♣ aTj u∗

θ = bj♢. (5.7)
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5.4.1 Using KKT conditions for deriving Ω(t)

Now we brieĆy describe how these conditions are useful for the computing the instanta-
neous feasible set Ω(t) (5.2) where the parameter θ belongs.

1. Inactive constraints: From the deĄnition of inactive constraints (5.6), recall aTj u
∗
θ <

bj ∀j ∈ IA(u∗
θ). Thus, deriving an explicit expression for u∗

θ = G(x)θ + f(x) will
allow us to compute a set where θ belongs.

2. Non-negativity of Lagrange multipliers: Likewise from dual feasibility, recall
that µ∗

jθ ≥ 0 ∀j ∈ ¶1, 2, · · · ,M♢. Since µ∗
jθ depends on θ, deriving an explicit expres-

sion for µ∗
jθ as a function of θ will allow us to further prune the set where θ belongs.

Thus, using these two criteria, we deĄne Ω(t) as

Ω := ¶θ̂ ∈ Rp♣aTj u∗
θ − bj < 0 ∀j ∈ IA(u∗

θ), µ∗
jθ ≥ 0 ∀j ∈ ¶1, · · · ,M♢♢. (5.8)

From this deĄnition, we can see that we need explicit representation of u∗
θ as a function of θ

and µ∗
jθ as a function of θ. While we calculated u∗

θ in section 4.5, we still need to compute
µ∗
jθ. This is the subject of the next section.

5.4.2 Using KKT conditions for deriving u∗θ and µ∗jθ
The content of this section is similar to section 4.4, so we brieĆy recall the equations that

are absolutely relevant. Let there be a total of K active constraints i.e. card(A(u∗
θ)) = K

where K ∈ ¶0, 1, · · · ,M♢. From dual feasibility and complimentary slackness, we have:

µ∗
jθ = 0 ∀j ∈ IA(u∗

θ) (5.9)

This results in a simpliĄcation of the stationarity condition:

u∗
θ = ûθ −

1

2
ATacµ

ac
θ . (5.10)

where Aac(x) ∈ RK×2 is the matrix formed using the rows of A that are indexed by the active
set A(u∗

θ), and likewise µac
θ := ¶µ∗

jθ♢j∈A(u∗
θ

). Similarly, let bac(x) ∈ RK denote the vector
formed from the elements of b indexed by A(u∗

θ). Likewise, we can deĄne Ainac(x) and
binac(x) corresponding to the inactive set. By deleting all inactive constraints and retaining
only the active constraints from (5.4), we arrive at equality-constrained QP:

u∗ = arg min
u

∥u− ûθ(x)∥2

subject to Aac(x)u = bac(x).
(5.11)

This EQP is useful because it is easier to derive explicit expressions for both u∗
θ(x) and µ∗

jθ

using (5.11) than (5.4). As we did in chapter 4, the observer can estimate the active set
A(u∗

θ) by comparing residuals ♣aTj u∗
θ − bj♣ against a threshold ϵ > 0 consistent with (5.6):

Aobs. := ¶j ∈ ¶1, · · · ,M♢ ♣ ♣aTj u∗
θ − bj♣ < ϵ♢. (5.12)
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Table 5.1: Enumerating cases where either point-wise identiĄcation or region-based identiĄ-
cation or both are possible

Case K rank(Aac) Point-wise Region-based
A None - Possible Possible
B 1 1 Possible Possible
C ≥ 2 1 Possible Possible
D 2 2 Not possible Possible
E ≥ 3 2 Not possible Possible

For a small threshold ϵ, it holds true that Aobs. = A(u∗
θ) consistent with (5.6). This allows

the observer to determine the active set. Next, we work with (5.11) to derive an explicit
expression for µ∗

jθ for various combinations of K and rank(Aac(x)). The expressions for
u∗

θ(x) = G(x)θ + f(x) were already derived in chapter 4 and summarized in Table 4.1.

5.5 Computing Ω(t) using SVD of Aac(x)u = bac(x)

The aim of this section is to derive expressions for the control u∗
θ and Lagrange mul-

tipliers µ∗
jθ for computing the instantaneous feasible set Ω(t) (5.8). We will use the EQP

derived in (5.11) as a surrogate to the original problem (5.4). We consider different cases
that can arise based on the number of active constraints (K) and linear independence rela-
tions among these constraints to analyze this EQP. Table 5.1 summarizes these cases along
with whether point-wise identiĄcation and region-based identiĄcation is possible when either
of these arises in practice. Of special signiĄcance are cases D and case E (last two rows of
Table 5.1). These correspond to situations when the ego agent has active interactions with
at-least two other agents. This table says that in these situations, point-wise estimation does
not converge [27] and region-based estimation is the only way to infer information about the
underlying parameters. Since in a multiagent system, multiple active interactions are in-
evitable, this result underscores the importance of region-based estimation for multiagent
systems. Nevertheless, even in cases where point-wise estimation is possible, our empirical
evidence suggests that region-based estimation converges much faster than point-wise es-
timation. Hence, our region-based estimation approach is beneĄcial either way. Next, we
analyze these cases one by one.

5.5.1 No active constraints

When no constraint is active, we have µjθ = 0 ∀j ∈ ¶1, 2, · · · ,M♢. This means that
A(u∗

θ) = ϕ and IA(u∗
θ) = ¶1, 2, · · · ,M♢. From (5.10) we get u∗

θ = û(x) = C(x)θ + d(x).
From this expression, it is evident that the control u∗

θ and the agent dynamics ẋ, exhibit a
well-deĄned dependence on θ. Therefore, it is possible to do point-wise identiĄcation of θ
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using RLS, UKF or AO type of estimators (provided that C(x) is persistently exciting [76]).
However, since point-wise identiĄcation is not under the purview of this chapter, we focus on
estimating a set where θ belongs. Referring to 5.4.1, note that the condition for nonnegativity
of Lagrange multipliers is satisĄed trivially because µjθ = 0 ∀j ∈ ¶1, 2, · · · ,M♢, so they do
not give any information about θ. However, the condition for inactive constraints gives

aTj u
∗
θ − bj < 0 ∀j ∈ ¶1, 2, · · · ,M♢

=⇒ aTj (Cθ + d)− bj < 0

=⇒ (aTj C)θ < bj − aTj d, (5.13)

which represents a set of M halfspace constraints on θ. In (5.13), we have omitted the depen-
dencies on x and xoj ∀j ∈ ¶1, 2, · · · ,M♢ to keep the notation light. Thus, the instantaneous
feasible set Ω is deĄned using (5.8) and (5.13) as follows

Ω := ¶θ̂ ∈ Rp♣(AC)θ̂ < b− Ad♢. (5.14)

5.5.2 Exactly one active constraint

When exactly one constraint is active i.e. K = 1, there is one obstacle that the ego
agent ŞworriesŤ about for collision. Since there are two degrees of freedom in the control
and one obstacle to avoid, the ego agent can avoid this obstacle and additionally minimize
∥u− ûθ(x)∥2 with the remaining degree of freedom. This causes u∗

θ to exhibit a well-deĄned
dependence on ûθ(x) and by extension, on θ. This allows for point-wise identiĄcation of θ.

Region-based identiĄcation is also possible and can be used to expedite the convergence
of point-wise identiĄcation. To derive the feasible region where θ belongs, we need the
expression for control u∗

θ and the Lagrange multiplier corresponding to the active constraint.
This expression was derived in chapter 4 (4.30) and we recall it here:

u∗
θ = V1Σ

−1
m UT bi + V2V

T
2 (Cθ + d)

= V2V
T

2 C
︸ ︷︷ ︸

G

θ + V1Σ
−1
m UT bi + V2V

T
2 d

︸ ︷︷ ︸

f

= Gθ + f . (5.15)

From inactive constraints, we get:

aTj u
∗
θ − bj < 0 ∀j ∈ IA(u∗

θ)

=⇒ aTj (Gθ + f)− bj < 0

=⇒ (aTj G)θ < bj − aTj f

=⇒ (AinacG)θ ≺ binac − Ainacf , (5.16)
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where Ainac, binac are the rows of A, b indexed by the inactive constraints IA(u∗
θ). To get

the Lagrange multiplier µ∗
θ, we use (5.10) and (5.15),

u∗
θ = ûθ −

1

2
ATacµ

∗
θ

=⇒ 1

2
ATacµ

∗
iθ = (C −G)

︸ ︷︷ ︸

G̃

θ + (d− f)
︸ ︷︷ ︸

f̃

= G̃θ + f̃

=⇒ µ∗
θ = 2

Aac(G̃θ + f̃)

∥ATac∥2 . (5.17)

From non-negativity of µ∗
θ we get

µ∗
θ ≥ 0 ⇐⇒ −AacG̃θ ⪯ Aacf̃ . (5.18)

Thus Ω is deĄned using (5.16) and (5.18) as follows

Ω := ¶θ̂ ∈ Rp♣(AinacG)θ̂ ≺ binac − Ainacf ,−AacG̃θ̂ ⪯ Aacf̃♢. (5.19)

5.5.3 More than one active constraint but linearly dependent

LetŠs consider the more general case in which there is more than one constraint active,
but all these constraints are linearly dependent on one constraint among them. That is to
say there is effectively only one Şrepresentative constraintŤ. Consequently, this is similar to
the case with just one active obstacle. We now write out expressions for u∗

θ and µac
θ . Let

i1, i2, · · · , iK ∈ ¶1, · · · ,M♢ be the indices of the active constraints which by deĄnition (5.6)
satisfy











aTi1(x)

aTi2(x)
...

aTiK (x)











u∗
θ =











bi1(x)

bi2(x)
...

biK (x)











or

Aac(x)u∗
θ = bac(x), (5.20)

where aTij (x) and bij (x) are deĄned using (3.13). Let Aac = UΣV T where

U =
[

U1, U2

]

where, U1 ∈ RK×1, U2 ∈ RK×K−1

Σ =

[

Σr 01×1

0K−1×1 0K−1×1

]

V =
[

V1, V2

]

where, V1, V2 ∈ R2. (5.21)
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Then u∗
θ is given by (recall from (4.41))

u∗
θ = V1Σ

−1
r UT

1 bac + V2V
T

2 (Cθ + d)

= V2V
T

2 C
︸ ︷︷ ︸

G

θ + V1Σ
−1
r UT

1 bac + V2V
T

2 d
︸ ︷︷ ︸

f

= Gθ + f . (5.22)

Following (5.16), for the inactive constraints, we get:

(AinacG)θ ≺ binac − Ainacf (5.23)

To get the Lagrange multipliers µac
θ , we use (5.10) and (5.22),

u∗
θ = ûθ −

1

2
ATacµ

ac
θ

=⇒ 1

2
ATacµ

ac
θ = (C −G)θ + (d− f)

= G̃θ + f̃

=⇒ ATacµ
ac
θ = 2(G̃θ + f̃). (5.24)

Here, given the fact that ATac ∈ R2×K and rank(ATac) = 1, the Lagrange multipliers are
underdetermined. We use the SVD of ATac = ŨΣ̃Ṽ T to derive µac

θ . Here

Ũ =
[

Ũ1, Ũ2

]

where Ũ1, Ũ2 ∈ R2

Σ̃ =

[

Σ̃r 01×K−1

01×1 01×K−1

]

Ṽ =
[

Ṽ1, Ṽ2

]

where, Ṽ1 ∈ RK×1, Ṽ2 ∈ RK×K−1. (5.25)

Then using (5.24), we get

µac
θ = 2Ṽ1Σ̃

−1
r ŨT

1 (G̃θ + f̃) + Ṽ2η, (5.26)

where η ∈ RK−1 are Ćoating variables which can assume any value. (See [28] for a complete
derivation). From non-negativity of µac

θ we get

µac
θ ⪰ 0 ⇐⇒ −2Ṽ1Σ̃

−1
r ŨT

1 G̃θ − Ṽ2η ⪯ 2Ṽ1Σ̃
−1
r ŨT

1 f̃ . (5.27)

Thus, Ω is deĄned using (5.23) and (5.27) as follows

Ω := ¶θ̂ ∈ Rp♣(AinacG)θ̂ ≺ binac − Ainacf ,−2Ṽ1Σ̃
−1
r ŨT

1 G̃θ̂ − Ṽ2η ⪯ 2Ṽ1Σ̃
−1
r ŨT

1 f̃ if ∃η ∈ RK−1♢
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5.5.4 Two linearly independent active constraints

Consider the case where there are exactly two constraints that are active and linearly
independent. In this case, there are as many degrees of freedom in control as the number
of independent active obstacles to avoid. Consequently, u∗

θ is completely determined by the
active constraints and hence does not depend on û. We demonstrate this claim as follows.
Let i1, i2 ∈ ¶1, 2, · · · ,M♢ be the indices of the two active constraints. These constraints
satisfy (5.20) except that here Aac(x) ∈ R2×2 and rank(Aac(x)) = 2. This problem is
well-posed, its solution is given by

Aac(x)u∗
θ = bac(x)

=⇒ u∗
θ = A−1

ac (x)bac(x). (5.28)

where the inverse exists because rank(Aac(x)) = 2. Since neither A−1
ac nor bac depend on

θ (3.13), u∗
θ also does not depend on θ. Hence, point-wise identiĄcation is not possible.

For feasible region-based identiĄcation, we cannot get information from inactive constraints
because that is also contingent upon on u∗

θ depending on θ (section 5.4.1). Nevertheless,
non-negativity of Lagrange multipliers is still useful. From (5.10) and (5.28), we have

µac
θ = 2A−T

ac (Cθ + d− A−1
ac bac)

=⇒ µac ⪰ 0 ⇐⇒ −A−T
ac Cθ ⪯ A−T

ac (d− A−1
ac bac).

Thus Ω is deĄned as follows

Ω := ¶θ̂ ∈ Rp♣ − A−T
ac Cθ̂ ⪯ A−T

ac (d− A−1
ac bac)♢. (5.29)

5.5.5 More than two linearly-independent active constraints

Finally, letŠs consider the case where there are K > 2 constraints that are active and
two of them are linearly independent. The constraints satisfy (5.20) except that here
rank(Aac(x)) = 2. This problem is well-posed albeit overdetermined, its solution is given by

u∗
θ = A†

ac(x)bac(x). (5.30)

where A†
ac denotes the Moore-Penrose pseudoinverse which exists because rank(Aac(x)) = 2.

Since u∗
θ is independent of θ, point-wise identiĄcation is not possible. For feasible region-

based identiĄcation, we cannot get information from inactive constraints. Nevertheless,
non-negativity of Lagrange multipliers µac

θ is still useful. From (5.10) and (5.30),

A†
acbac = ûθ −

1

2
ATacµ

ac
θ

=⇒ ATacµ
ac
θ = 2(Cθ + d− A†

acbac). (5.31)
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The above linear system for determining µac
θ is full rank but underdetermined. The SVD of

ATac is ATac = ŨΣ̃Ṽ T where

Ũ ∈ R2×2

Σ̃ =
[

Σ̃m 02×K−2
]

where, Σ̃m ∈ R2×2

Ṽ =
[

Ṽ1, Ṽ2

]

where, Ṽ1 ∈ RK×2, Ṽ2 ∈ RK×K−2. (5.32)

Then, we can derive the following expression for µac
θ by solving (5.31)

µac
θ = 2Ṽ1Σ̃

−1
m ŨT (Cθ + d− A†

acbac) + Ṽ2η. (5.33)

Here η ∈ RK−2 are Ćoating variables which can assume any value. (See [28] for a complete
derivation). From non-negativity of µac

θ we get

µac
θ ⪰ 0 ⇐⇒ −2Ṽ1Σ̃

−1
m ŨTCθ − Ṽ2η ⪯ 2Ṽ1Σ̃

−1
m ŨT (d− A†

acbac). (5.34)

Thus Ω is deĄned using (5.34) as follows

Ω := ¶θ̂ ∈ Rp♣ − 2Ṽ1Σ̃
−1
m ŨTCθ̂ − Ṽ2η ⪯ 2Ṽ1Σ̃

−1
m ŨT (d− A†

acbac) if ∃η ∈ RK−2♢. (5.35)

5.6 Simulation Results

In this section, we present simulations to demonstrate the effectiveness of our proposed
region-based parameter identiĄcation. We consider a multiagent system in which the task
of each agent is to reach a goal position while avoiding collisions with other agents. The
observerŠs problem is to infer the goal of each agent using the its positions and velocities
as measurements. We use a UKF as a baseline to show how our region-based estimator
outperforms a UKF.

To infer agent goals, the observer must estimate the instantaneous feasible region Ω(t)
using which it will compute the cumulative feasible region Θ(t). Recall from (5.3), that Θ(t)
is computed by taking intersections of all Ω(t) over time, and then its intersection with a
compact set Θ0 where the θ is known to belong. For the goal inference problem, the observer
can compute the instantaneous set Ω(t) using the results we derived in sections 5.5.1-5.5.5
by checking how many obstacles are active at a given time. As for Θ0, we assume that the
observer knows some reasonable upper and lower bounds on the location of the agent goals.
We Ąrst show results for a single agent navigating in an environment consisting of static
obstacles. Subsequently, we show results for multiagent inference as well.

In Figs. 5.1(a)-5.1(c), an ego agent (red) is trying to reach its goal xd. The green regions
correspond to Θ(t) computed using the instantaneous feasible regions Ω(t). As the agent
moves to the right, obstacles one and two remain active until t = 1.1s. After this, obstacles
three and four stay active until t = 2.1s. Thus until t = 2.1s, since atleast two obstacles are
active, point-wise parameter identiĄcation is not possible. As is evident from Figs. 5.1(a)-
5.1(c), the UKF based estimator (red) does not get updated. However, the green regions
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(a) t = 0.40s (b) t = 1.60s (c) t = 2.80s

0 1 2 3 4
0

10

20

30

40

50

60

70

80

(d) Error Comparison

Figure 5.1: (a)-(c) Goal identiĄcation for an agent navigating among static obstacles. Dark
discs represent active obstacles. (d) Comparison of region-based identiĄcation (blue) with a
UKF. Video at https://youtu.be/jH3mxZhX2mA

(a) t = 0.20s (b) t = 1.00s (c) t = 3.40s
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(d) Error Comparison

Figure 5.2: (a)-(c) Goal identiĄcation for an agent navigating among static obstacles. Dark
discs represent active obstacles. (d) Comparison of region-based identiĄcation (blue) with a
UKF (red). Video at https://youtu.be/VthIXiBvjfU

computed from our approach continue to shrink. The insets in these Ągures show zoomed
in views around the goal to empirically show that the feasible region always includes the
goal. We measure µ(Θ(t)) by computing its area using the MPT3 toolbox in MATLAB.
Fig. 5.1(d) shows this area as a function of time and demonstrates the fast convergence as
the agent moves, in comparison to the UKF error shown in red.

In Figs. 5.2(a)-5.2(c), we consider a different arrangement of obstacles. Here, until
t = 0.38s, only one obstacle is active; then until t = 2.08s exactly two obstacles are active,
then until t = 3.68s exactly one is active, following which all obstacles are inactive. As the
agent moves, the region-based estimator converges quickly to the true goal as is evident in
the insets in Figs. 5.2(a)-5.2(c). Further, the errors shown in 5.2(d) illustrate how the UKF
estimator takes some time to converge while the region based estimator converges much
faster to the true goal. Furthermore, the UKF estimator does not respect the feasibility of
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(a) t = 0.08s (b) t = 0.44s (c) t = 0.76s (d) t = 3.60s

Figure 5.3: (a)-(d) Region-based goal identiĄcation for multiagent system. Video at https:

//youtu.be/r8W1CJ5FJo8
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Figure 5.4: Estimation errors of our region-based estimator (left) and UKF (right). The
areas shrink around the goal much faster than UKF errors converge to zero.

the goal, it frequently remains outside the feasible region. This is to be expected because
the derivation for UKF estimator does not consider non-negativity of Lagrange multipliers.

Finally, we consider a multiagent system in Fig. 5.3 in which we run parallel region-
based estimators synchronously. There are four agents shown in different colors, their goals
are shown in the same colors as are their feasible regions Θi(t) ∀i ∈ ¶1, 2, 3, 4♢. Fig. 5.4
compares the convergence of region based estimator (left) to the UKF estimator (right). As
is evident, the region-based estimators converge to the true goal much faster than the UKF
based estimators.
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5.7 Conclusions

In this chapter, we proposed a region-based parameter identiĄcation method to compute
bounds on parameters of tasks being performed by a multiagent system. This approach
works even when exact estimation using point-wise estimators is likely to fail. We used
all the KKT conditions to compute the instantaneous feasible set using which we computed
contracting sets where the underlying parameters lie. To demonstrate the effectiveness of our
method, we showed numerical simulations for a single agent moving amongst static obstacles
as well as for a multiagent system. These scenarios show how our region based estimator
outperforms a UKF in terms of speed of convergence.
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6 Inference Under Noise

In chapter 4, we developed necessary conditions for correct inference of task-parameters of
a multiagent system. We developed an RLS estimator that can infer these task parameters
in a Ąnite time. To handle situations where these conditions are violated, we developed
a feasible-region based estimator in chapter 5. This estimator can infer bounds on the
parameters instead of their exact values. While provably-correct, both these algorithms
require the observer to perfectly guess the active set for each agent (i.e. the observerŠs
estimated active-set must be the same as the agentŠs true active-set at every time). We
deĄned the observerŠs guess as:

Aobs. := ¶j ∈ ¶1, · · · ,M♢ ♣ ♣aTj u∗
θ − bj♣ < ϵ♢. (6.1)

It goes without saying that this is a brittle assumption, one that can fail in practice due to
measurement noise. In particular, if the observer uses numerical differentiation to calculate
velocities of agents from their positions, then the ampliĄed noise in velocities can cause
♣aTj u∗

θ − bj♣ to exceed ϵ leading to missing out on an active-constraint. This is problematic
because our task-parameter estimators in chapters 4 and 5 rely on a correct estimate of the
active set for correct parameter inference.

Therefore, we need a practical algorithm that is tolerant to some noise in the posi-
tions/velocities of the agents and is not bound by the correct active-set estimate require-
ment. The algorithms we present in this chapter are developed with this focus in mind. We
take recourse to the theory of inverse optimization (IO) to develop batch estimators that can
not only handle measurement noise, but also account for a small amount of model mismatch
(i.e. when the true dynamic model of an agent differs from the observerŠs hypothesis).

6.1 Introduction

Recent literature on inverse optimization (IO) has developed approaches for estimat-
ing cost/constraint parameters of latent parametric optimization problems [80]. While IO
algorithms have been explored in Ąnance [81] and operations research [82], they have not
been explored as much in robotics. We consider three previously developed IO algorithms
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from [83], [81] and [84] and reformat these algorithms to perform task inference of individual
agents in a multiagent system. Since we assumed that agents dynamics are optimization-
based (3.14), these methods are directly applicable to our model. For these IO algorithms,
the training data set needed to perform inference consists of pairs of exogenous signals to the
agentŠs forward optimization problem, and the agentŠs decisions made in response to those
signals [85]. In our context, we treat the positions of agents as the signals and the velocities
computed by CBF-QPs (3.14) as decisions, to perform task inference.

The outline of this chapter is as follows. In section 6.2, we pose a mathematical formu-
lation of the IO-based task inference problem. The main technical contributions start from
section 6.3. We reformat previously developed IO algorithms for the task inference prob-
lem. In particular, we derive novel QP-based reformulations of the KKT-loss minimization
algorithm of [84] and suboptimality-loss minimization algorithm of [81]. In section 6.4, we
present numerical results for inference of controller gains and goal location of each agent in a
multiagent system using the presented algorithms. We stress test our our previously devel-
oped identiĄability conditions against these algorithms i.e. more than two active constraints
result in incorrect inference and less than two result in success. In this chapter, we show that
these results are valid for IO based algorithms as well. In section 6.5, we show experimental
results of goal inference using these algorithms on Khepera-4 agents and demonstrate that
these algorithms provide accurate estimates of goals even in the presence of perception noise.
Finally, we summarize our work in section 6.6 and conclude with directions for future work.

6.2 IO-based Task Inference

We assume the same formalism as in chapters 3-5 for the dynamics of each agent:

ẋ = u∗
θ = arg min

u
∥u− ûθ(x)∥2

subject to A
(

x, ¶xoj♢
)

u ≤ b
(

x, ¶xoj♢
) (6.2)

where A ∈ RM×2, b ∈ RM given by (3.13). The inference approach we develop in this chapter
can be easily extended to perform inference for multiple agents in parallel, so the focus is on
the ego agent. The observer tracks this agentŠs position x(t), its velocity i.e. u∗

θ(x(t)) and
additionally, tracks the positions of other agents i.e. ¶xoj(t)♢Mj=1. The observerŠs problem is
to infer the task parameter θ based on the knowledge that the optimal control of the ego
agent, u∗

θ(x(t)), is computed using (6.2) in response to the ego agentŠs position at x(t) and
obstaclesŠ positions at ¶xoj(t)♢Mj=1 (the exogenous signals).

Most IO algorithms operate in the batch-setting. In the context of our problem, this
implies that the observer will sample K signal-response pairs over some duration. By

signal-response pairs, we refer to tuples of the form

(
(

x(k), ¶xoj(k)♢Mj=1

)

︸ ︷︷ ︸

signal

, u∗
θ(k)

︸ ︷︷ ︸

response

)

∀k ∈

¶1, 2, · · · , K♢. The observer uses all of these K measurements in one step to compute θ.
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6.3 IO-based algorithms for inference

We consider three prominent IO algorithms. Since different authors follow different nota-
tions, we have used their ideas but reformatted their notations and language to be compatible
with our agent task inference problem.

6.3.1 Predictability Loss Minimization

We know that the observer has access to state-control measurements of the ego agent.
The observer can pose a parallel surrogate problem akin to the one being solved by the
agent i.e. (6.2). In the surrogate problem, the observer treats the unknown parameter θ

as a tunable knob. The observer modulates this knob until the observerŠs predicted controls
computed by the solving the surrogate problem in response to state x, match with the
controls measured from the agentŠs motion when the agent is also in state x. To do this
tuning, the observer poses the following problem:

θ̂, ¶ûk♢Kk=1 = arg min
θ,¶uk♢K

k=1

1

K

K∑

k=1

∥uk − u∗
meas(k)∥2

such that uk solves (6.2) ∀k ∈ ¶1, · · · , K♢.
(6.3)

In this problem, the observer is learning both the parameter θ ∈ Rp as well as predictions of
the optimal control ûk ∈ R2 ∀k ∈ ¶1, 2, · · · , K♢. The cost function in (6.3) is the empirical
average of the deviations of the predicted controls ûk from the measured optimal controls
u∗
meas(k). This is known as the predictability loss and was proposed in [83]. Naturally, it

makes sense to minimize this loss only if the observerŠs predicted controls solve the forward
problem (6.2) which is posed as a constraint in (6.3). Since (6.2) is in itself an optimization
problem, problem (6.3) is a bi-level optimization which is known to be computationally
difficult to solve. [83] proposed a duality based reformulation of a bi-level optimization to a
single level problem. Applying their technique to our agent task inference, we replace the
constraint in (6.3) with the optimality conditions of (6.2) i.e.: uk solves (6.2) ⇐⇒ ∃ λk ∈
RM such that

1. ∥uk − ûθ(x(k))∥2 ≤ h(λk,x(k),θ)

2. λk ≥ 0

3. A(x(k))uk ≤ b(x(k)) 1

Here λk ∈ RM for each time instant k, are the M Lagrange multipliers corresponding to the
M collision avoidance constraints of the ego agent in (6.2). h(λk,x(k),θ) is the Lagrange

1Technically, this should be A
(

x(k), ¶xo
j(k)♢M

j=1

)

uk ≤ b
(

x(k), ¶xo
j(k)♢M

j=1

)

but instead we chose to write

A(x(k))uk ≤ b(x(k)) to keep notation light.
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dual function of (6.2) and is given by

h = ∥ũ− ûθ(x)∥2 + λTk (A(x(k))ũ− b(x(k)))

where ũ = ûθ(x(k))− 1

2
AT (x(k))λk (6.4)

Given these three conditions, (6.3) can be re-posed as follows

θ̂, ¶ûk♢Kk=1, ¶λ̂k♢Kk=1 = arg min
θ,¶uk♢K

k=1
,¶λk♢K

k=1

1

K

K∑

k=1

∥uk − u∗
meas(k)∥2 ,

subject to ∥uk − ûθ(x)∥2 ≤ h(uk,λk,θ)

λk ≥ 0

A(x(k))uk ≤ b(x(k)) ∀k ∈ ¶1, · · · , K♢

(6.5)

Even though (6.5) is a single-level reformulation of (6.3), yet it is non-convex because of the
Ąrst constraint in (6.5). Therefore, it can only be solved using generic nonlinear programming
solvers which tend to be slow, especially when the number of measurements K is large. In
Sec. 6.4, we present numerical results using (6.5).

6.3.2 KKT Loss Minimization

Another candidate loss that can be used to compute an estimate of risk is the KKT
loss [84]. In our context, this loss quantiĄes the extent to which the observed optimal
control violates the KKT conditions of the agentŠs optimization problem (6.2). LetŠs recall
these conditions.

Stationarity u∗ = ûθ(x)− 1

2
AT (x)λ∗

Primal Feasibility A(x)u∗ ≤ b(x)

Dual Feasibility λ∗ ≥ 0

Complementary Slackness λ∗ ⊙
(

A(x)u∗ − b(x)
)

= 0

Using stationarity and complementary slackness, the KKT loss is deĄned as follows

lKKT = lstat. + lcomp. slack. where,

lstat. =
∥
∥
∥
∥u

∗ − ûθ(x) +
1

2
AT (x)λ∗

∥
∥
∥
∥

2

lcomp−slack. =
∥
∥
∥λ∗ ⊙

(

A(x)u∗ − b(x)
)∥
∥
∥

2
(6.6)
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Using K observed signal-response pairs Ω(k) = (x(k),u∗
θ(k)), the observer poses an empiri-

cal risk minimization problem that queries for θ and K Lagrange multipliers ¶λk♢Kk=1 ∈ RM

which minimize the total KKT loss:

θ̂, ¶λ̂k♢Kk=1 = arg min
θ,¶λk♢K

k=1

K∑

k=1

lKKT (θ,λk,Ω(k))

subject to λk ≥ 0 ∀k ∈ ¶1, · · · , K♢.
(6.7)

In this problem, the decision variables are the task parameter θ and the Lagrange multipliers
λk. The objective function in (6.7) ŚsoftensŠ the stationarity and complementary slackness
conditions. The constraints in (6.7) capture dual feasibility. Given the complicated nature
of the loss function in (6.6), the Ąrst instinct is to use a generic solver such as fmincon to
perform inference. However, these solvers tend to be computationally slow, especially when
the number of constraints and decision variables is large. We reformulate this as a QP for
faster inference.

Reformulating (6.7) as a QP

DeĄne a vector µ = (θT ,λT1 , · · · ,λTK)T ∈ Rp+MK which is the decision variable of (6.7).
DeĄne matrices Eθ and Eλ

k appropriately to extract θ and λk from µ as follows:

θ = Eθµ

λk = Eλ
kµ (6.8)

We can already re-pose the constraints in (6.7) as follows:

λk ≥ 0 ∀k ∈ ¶1, · · · , K♢ ⇐⇒ Eλ
kµ ≥ 0 ∀k ∈ ¶1, · · · , K♢, (6.9)

which are convex by construction. Next, we reformulate the cost function of (6.7). Recall
that lKKT = lstat. + lcomp.slack.. First we focus on lstat.k from (6.6). We have

lstat.k =
∥
∥
∥
∥u

∗(k)− ûθ(x(k)) +
1

2
AT (x(k))λk

∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥
∥

u∗(k)− d(x(k))
︸ ︷︷ ︸

rk

−C(x(k))θ +
1

2
AT (x(k))λk

∥
∥
∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥rk − C(x(k))Eθµ +

1

2
AT (x(k))Eλ

kµ

∥
∥
∥
∥

2

=
∥
∥
∥rk − F̃kµ

∥
∥
∥

2

= µT F̃ T
k F̃kµ− 2rTk F̃kµ + rTk rk (6.10)

In the equation above,

F̃k = C(x(k))Eθ − 1

2
AT (x(k))Eλ

k (6.11)
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Similarly, using (6.6), we reformulate lcomp. slack.k :

lcomp. slack.k =

∥
∥
∥
∥
∥
∥
∥
∥

λk ⊙
(

A(x(k))u∗(k)− b(x(k))
)

︸ ︷︷ ︸

wk

∥
∥
∥
∥
∥
∥
∥
∥

2

=
∥
∥
∥Eλ

kµ⊙wk

∥
∥
∥

2

= µTEλT
k WkE

λ
kµ (6.12)

where Wk = diag
(

[w2
k(1),w2

k(2), · · · ,w2
k(M)]

)

. Adding (6.10) and (6.12) gives

lKKTk = µT F̃ T
k F̃kµ + µTEλT

k WkE
λ
kµ− 2rTk F̃kµ + rTk rk

= µT
(

F̃ T
k F̃k + EλT

k WkE
λ
k

)

︸ ︷︷ ︸

Qk

µ + (−2rTk F̃k)
︸ ︷︷ ︸

vT
k

µ + rTk rk
︸ ︷︷ ︸

sk

= µTQkµ + vTk µ + sk (6.13)

Thus, the total loss over all K measurements from the cost function of (6.7) is obtained by
summing (6.13) as follows:

K∑

k=1

lKKTk =
K∑

k=1

(

µTQkµ + vTk µ + sk

)

= µT

(
K∑

k=1

Qk

)

︸ ︷︷ ︸

Q

µ +

(
K∑

k=1

vTk

)

︸ ︷︷ ︸

vT

µ +

(
K∑

k=1

sk

)

︸ ︷︷ ︸

s

= µTQµ + vTµ + s (6.14)

From (6.14), it is evident that the total KKT loss in (6.7) is indeed in quadratic in the
decision variables µ. Hence, we can re-pose (6.7) using the reformulated cost in (6.14) and
constraints in (6.9) as the following QP:

µ̂ = arg min
µ

µTQµ + vTµ

subject to Eλ
kµ ≥ 0 ∀k ∈ ¶1, · · · , K♢.

(6.15)

(6.15) is thus a QP-based reformulation of (6.7), and is amenable to faster solutions using
existing QP-solvers.

6.3.3 Sub-optimality Minimization

[86] proposed data-driven techniques to infer unobservable parameters of models describ-
ing Nash equilibria in game theory. They combined ideas from inverse optimization with
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variational inequalities to develop data-driven techniques for estimating the parameters of
these models from observed equilibria. Following their approach, we show how to reformat
(6.2) so that we can leverage their approach for inferring θ. Consider a general optimization
problem

minimize Fθ(ξ)

subject to ξ ∈ X (6.16)

Here θ are parameters of the convex cost function F known to the agent solving (6.16) and
X ⊂ Rn is a convex set.

Assumption 1. X can be represented as the intersection of a small number of conic in-
equalities in standard form, X = ¶ξ ∈ Rn♣Gξ = h, ξ ≥ 0♢.

Assumption 2. X satisĄes a SlaterŠs condition.

The following result from [86] characterizes necessary and sufficient conditions for ξ̂ to
be an ϵ-optimal solution to (6.16):

Theorem 1. [86] Assuming X satisĄes 1-2, an observed decision ξ̂ is an ϵ-optimal solution

to (6.16) if and only if ∃ y such that GTy ≤ ∇ξFθ(ξ)♣ξ̂ and ξ̂T∇ξFθ(ξ)♣ξ̂ − hTy ≤ ϵ

The inverse problem requires an observer to infer θ based on the knowledge that the
agent solves (6.16) using K samples of ξ̂ which are known to be ϵ-optimal solutions to
(6.16). Since the observer does not know the suboptimality of a decision ϵ, the observer
poses a suboptimality minimization problem querying for ϵk,yk,θ as follows:

θ̂, ¶ϵ̂♢Kk=1, ¶ŷk♢Kk=1 = arg min
θ,¶ϵ♢K

k=1
,¶yk♢K

k=1

K∑

k=1

ϵ2
k

subject to GTyk ≤ ∇ξFθ(ξ)♣ξ̂k

ξ̂Tk∇ξFθ(ξ)♣ξ̂ − hTyk ≤ ϵk ∀k ∈ ¶1, · · · , K♢

(6.17)

Notice that the cost function in (6.17) penalizes the suboptimality of observed solutions ξk
whereas the constraints are necessary and sufficient conditions for observed decisions ξk to
be ϵk-optimal solutions of (6.16) based on theorem 1.

Agent task inference using (6.17)
In the context of inferring task parameters of a agent, recall that our ego agent solves (6.2)
where the task parameters are involved in the cost function. This optimization problem is
a speciĄc instance of the general problem in (6.16), therefore we need to reformat the ego-
agentŠs optimization problem (6.2) to (6.16) to facilitate inference of θ using (6.17). Recall
that controls in (6.2) are required to satisfy safety constraints

A(x)u ≤ b(x). (6.18)
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On the other hand, the feasible set X in (6.16) is required to satisfy assumptions 1-2. To
reformat (6.18) so that these assumptions are satisĄed, deĄne u1 ≥ 0 and u2 ≥ 0 such that
u = u1−u2. One choice satisfying these requirements is u1 = u+ ♣u♣,u2 = ♣u♣. DeĄne the
following variables,

z = (b(x)− A(x)u) ∈ RM (6.19)

ξ = (u1,u2, z) (6.20)

Then, it is evident that

A(x)u ≤ b(x) ⇐⇒ A(x)(u1 − u2) ≤ b(x)

⇐⇒ A(x)(u1 − u2) + z = b(x), z ≥ 0 (6.21)

DeĄne G and h required in assumption 1 as follows

G(x) :=
[

A(x),−A(x), IM
]

h(x) := b(x) (6.22)

where IM is the M ×M identity matrix. Then, it is easy to verify that G(x)ξ = h(x). We
have

A(x)u ≤ b(x)

⇐⇒ u1 ≥ 0,u2 ≥ 0, z ≥ 0, A(x)(u1 − u2) + z = b(x)

⇐⇒ ξ ≥ 0 and G(x)ξ = h(x) (6.23)

The cost function in (6.2) is

Fθ(u) = ∥u− ûθ(x)∥2 (6.24)

DeĄne a matrix Eu appropriately so that u = Euξ. The cost then becomes a function of ξ:

Fθ(ξ) = ∥Euξ − ûθ(x)∥2

=⇒ ∇ξFθ(ξ) = 2EuT (Euξ − ûθ(x))

= 2EuT (Euξ − C(x)θ − d(x))

Thus, with (6.2) re-posed as (6.16), the signal-response pairs for inference are no longer
(x(k),u∗(k)), rather they are (x(k), ξ∗(k)). To construct ξ∗(k) from u∗(k), deĄne

u1(k) := u∗(k) + ♣u∗(k)♣
u2(k) := ♣u∗(k)♣
z(k) := b(x(k))− A(x(k))u∗(k)

=⇒ ξ∗(k) := (u1(k),u2(k), z(k)). (6.25)

Note that u1(k),u2(k) ≥ 0 because of the way we deĄned them. ♣u∗(k)♣ is the absolute
value of u∗(k) taken element wise. zk ≥ 0 because the measured controls u∗(k) must satisfy
the safety constraints (6.18). Thus, ξ(k) ≥ 0 as is required by assumption 1. Assumption
2 is automatically satisĄed by all QPs [77], and by extension, by (6.2). Once again, (6.17),
in the form presented, can only be solved by general NLP solvers. In the next section, we
show how to reformulate this as a QP.

59



Ch. 6 Ű Inference Under Noise

Reformulating (6.17) as a QP

DeĄne a vector µ = (θT , ϵ1, · · · , ϵK ,yT1 , · · · ,yTK)T which is the decision variable of (6.17).
DeĄne matrices Eθ, Eϵ

k and Ey
k appropriately to extract θ, ϵk and yk from µ as follows:

θ = Eθµ

ϵk = Eϵ
kµ

yk = Ey
kµ (6.26)

Based on these deĄnitions, we can already re-pose the cost function in (6.17) as follows:

K∑

k=1

ϵ2
k =

K∑

k=1

∥Eϵ
kµ∥2 = µT

(
K∑

k=1

EϵT
k E

ϵ
k

)

︸ ︷︷ ︸

Q

µ (6.27)

The constraints can be re-posed as

GTyk ≤ ∇ξFθ(ξ)♣ξ∗(k)

⇐⇒ GT (x(k))Ey
kµ ≤ 2EuT (Euξ∗(k)− C(x(k))Eθµ− d(x(k))

After some rearrangement, this can be re-posed as an inequality in µ:

H1µ ≤ g1 (6.28)

Here H1, g1 are

H1 = GT (x(k))Ey
k + 2EuTC(x(k))Eθ

g1 = 2EuT (Euξ∗(k)− d(x(k))) (6.29)

Similarly the second constraint in (6.17) can be re-posed as

ξ∗T∇ξFθ(ξ)♣ξ∗(k) − hTyk ≤ ϵk

⇐⇒ 2ξ∗T (k)EuT

(

Euξ∗(k)− C(x(k))Eθµ− d(x(k)

)

− hT (x(k))Ey
kµ ≤ Eϵ

kµ

which after some rearrangement gives

H2µ ≤ g2 (6.30)

Here H2, g2 are

H2 = −
(

2ξ∗T (k)EuTC(x(k))Eθ + 2ξ∗T (k)EuThT (x(k))Ey
k + Eϵ

k

)

g2 = −2ξ∗T (k)EuTEuξ∗ + 2ξ∗T (k)EuTd(x(k)) (6.31)
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Combining the quadratic cost in (6.27) with the affine constraints (6.28) and (6.30), we arrive
at the following QP-based formulation:

µ̂ = arg min
µ

µTQµ

subject to H1µ ≤ g1 ∀k ∈ ¶1, 2, · · · , K♢
H2µ ≤ g2 ∀k ∈ ¶1, 2, · · · , K♢.

(6.32)

Thus, the convexity of this formulation allows for faster inference on batch-data by exploiting
existing QP solvers.

-5 0 5

(a) t = 0.06s

-5 0 5

(b) t = 0.6s

-5 0 5

(c) t = 1.2s

-5 0 5

(d) t = 2.4s

Figure 6.1: Multiagent goal ientiĄcation.

6.4 Simulation Results

We provide numerical results for inference of task parameters in a multiagent system
using (6.5), (6.15) and (6.32). We consider the task where each agent is trying to reach a
goal position while avoiding collisions with every other agent. We will use these algorithms to
estimate the desired goal xd and proportional gain kp for each agent by using their positions
and velocities collected over some time. We also describe situations where these estimators
will fail to identify these parameters, which occur when the measurements fail to satisfy
certain ŞrichnessŤ criteria.

6.4.1 Gain and Goal inference in a multiagent setting

In Fig. 6.1, we have Ąve agents located in a 5m × 5m area. Each agent has a unique color
and is required to reach a goal position denoted with the same color while staying safe. The
agents use utaskp∗

d
= −kp(p − p∗

d) as a nominal task-based controller in (6.2). The inference

algorithm must compute estimates of p̂d and gain k∗
p for each agent. Table 6.1 shows the gain

reconstruction errors for different algorithms. and Table 6.2 presents the goal-reconstruction
errors. As is evident from the table, all three algorithms produce 0 error, meaning that they
are able to correctly estimate both the correct goal and gain for each agent.
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Table 6.1: Gain Estimation Errors ♣kp − k∗
p♣

agent
ID

Predict. loss algorithm KKT loss algorithm
Suboptimality loss al-
gorithm

1 0.0000 0.0000 0.0000
2 0.0001 0.0000 0.0000
3 0.0002 0.0000 0.0000
4 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000

Table 6.2: Goal Estimation Errors ∥p̂d − p∗
d∥ in [m]

agent
ID

Predict. loss algorithm KKT loss algorithm
Suboptimality loss al-
gorithm

1 0.0000 0.0000 0.0000
2 0.0005 0.0000 0.0000
3 0.0012 0.0000 0.0000
4 0.0002 0.0000 0.0000
5 0.0001 0.0000 0.0000

6.4.2 Inference when Identifiability Conditions are Violated

In chapter 4, we used persistency of excitation analysis to identify conditions where
conventional estimators such as a Kalman Ąlter would fail to infer task parameters θ using
position and velocity measurements of a agent. Given the new algorithms considered in the
current work, we want to stress test these conditions against these new algorithms. To keep
this chapter self-contained, we present these conditions only at a high-level. For an intuitive
understanding, we present results for a single agent navigating amongst static obstacles.
The inference problem is to determine the goal of this agent and its controller gain using its
position and velocity measurements. The Ąrst condition, stated in Theorem 2 identiĄes a
situation when inference will be successful.

Theorem 2. [27] If ∀t ∈ [0, T ], no constraint is active, then the observer can always
estimate the goal and gain using x(t),u∗(x(t)) ∀t ∈ [0, T ] (unless the agent is not already at
goal).

By an active constraint, we refer to the constraint of (6.2) for which equality holds.
Intuitively, this refers to an active interaction with an obstacle, because that obstacle is a
potential risk of collision. This result says that if the agent does not have active interactions
with any obstacles, then the position-velocity measurements of the agent will be so rich that
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(a) No obstacle is active (b) One obstacle is active (c) Two obstacles are active

Figure 6.2: As the agent navigates to its goal, the success of inference depends on the number
of obstacles that it actively interacts with. In Fig (c) there are two active interactions (dark),
so per Theorem 3, goal/gain inference will fail.

Act.

Obs.
Pred. loss KKT loss Subopt. loss UKF RLS-AO

0 0.0003 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.024 ± 0.000 0.022 ± 0.002

1 0.031 ± 0.046 0.000 ± 0.000 0.000 ± 0.000 0.29± 0.307 0.021 ± 0.018

2 6.37 ± 2.448 5.885 ± 3.778 4.337 ± 2.236 5.657 ± 0.307 5.625 ± 0.018

Table 6.3: Goal inference errors when the number of active obstacles is 0 (top row), 1 (middle
row) and 2 (bottom row).

goal/gain inference will always be successful. One situation when this occurs is when the
obstacles are far enough from the agent such that the agent can freely use ûθ as shown in
Fig. 6.2(a)). We evaluate IO algorithms presented in this chapter and compare them with
a UKF and an Adaptive observer (from [27]) to stress-test this theorem for inferring the
location of the goal. Table 6.3 shows the numerical results for this situation. We show the
mean and standard deviation of goal estimation errors averaged over ten trials. In each trial,
we varied the Ąnal goal position of the agent and locations of obstacles while keeping the
initial position of the agent identical. As is evident from the errors in the Ąrst row, goal
inference is always successful for all estimators. Let us look at a situation where inference
will fail.

Theorem 3. [27] If ∀t ∈ [0, T ], two or more than two constraints are active, then the
observer cannot estimate either the goal or the gain, using x(t),u∗(x(t)) ∀t ∈ [0, T ].

In this situation, the agent has active interactions with either two or more than two ob-
stacles while navigating towards its goal. Consequently, this theorem says that the position-
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velocity measurements are not rich enough to facilitate correct inference of either the goal
or the gain. Intuitively, this occurs because of the following. We know that the agent has
two degrees of freedom in its control and when there are two or more obstacles to actively
avoid, both of those degrees of freedom are exhausted in repelling the obstacles leaving no
freedom dedicated for the task. Therefore, the motion that the observer measures does not
have any explicit information about the task, which is why task inference will fail. Figure
6.2(c) shows an example simulation where the agent is moving towards its goal. There are
several obstacles, two of these, shown in black, are the ones active during the agentŠs motion.
Hence, for this simulation, the inference algorithm will not be able to deduce the goal or the
gain. This is indeed evident from the large errors in the third row in Table 6.3.

In the middle of the spectrum is the situation where there is exactly one active obstacle
to avoid. Figure 6.2(b) shows a simulation where the agent is navigating towards its goal,
and obstacle 3 remains active during the agentŠs journey to the goal. Since the agent can
use one degree of freedom to avoid that obstacle, and use the remaining degree of freedom to
perform the task, its position-velocity measurements will have information about the task.
Therefore, it is possible to infer either the goal or the gain. The second row in Table 6.3
shows the errors in estimating the goal. These errors are negligible, and comparable to those
in the Ąrst row, demonstrating that goal inference is successful.

6.5 Experimental Results

We also performed physical experiments with three Khepera agents to analyze the effect
of noise in hardware and perception sensing on the estimation of goals. We conducted exper-
iments with three agents and performed a total of eight runs in which the initial positions of
the agents, their gains and safety margins were varied, but their individual respective goal
locations were kept same through the runs. Table 6.4 reports the errors of these individual
runs for the three algorithms along with the mean and standard deviations. The videos of
these experiments can be found at https://bit.ly/3s7yovL. From the numerical values of
the errors, it is evident that all algorithms are able to obtain estimates of the goals that are
within a maximum of 5cms of the true goals.

6.6 Conclusions

We considered the problem of inference of parameters of tasks being performed by agents
in a multiagent system. In such a system, agents use optimization based controllers to medi-
ate between task satisfaction and collision avoidance, thus the trajectories they take, reĆect
how a purely task-based motion is warped to ensure safety. This makes inference of task
parameters non-trivial. We considered several IO algorithms to solve this problem in a batch
setting and demonstrated how accurate estimates of underlying parameters can be recon-
structed. Furthermore, we derived QP based reformulations of the KKT-loss minimization
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Table 6.4: Goal Errors in Experiments ∥p̂d − p∗
d∥ in [m]

Run
Num-
ber

Predict. loss algorithm KKT loss algorithm
Suboptimality loss al-
gorithm

1 0.0166 0.0073 0.0566
2 0.0502 0.0185 0.1394
3 0.0171 0.0079 0.0133
4 0.0292 0.0218 0.0178
5 0.0047 0.0046 0.0332
6 0.0057 0.0058 0.0408
7 0.0043 0.0041 0.0951
8 0.0053 0.0050 0.0281
Mean 0.0166 0.0094 0.0530
Std. 0.0151 0.0064 0.0406

and suboptimality minimization algorithms. Finally, using our previously derived criteria
for successful inference, we demonstrated that these IO algorithms may fail to identify the
correct underlying task parameters whenever the ego agent interacts with two or more ob-
stacles. In the next chapter, we extend this work to simultaneously learn parameters of the
cost function as well as constraints of the ego-agentŠs forward problem.
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7
Simultaneously Inferring

Objectives and
Constraints

In chapters 4 - 6, we developed algorithms for inferring the task-parameters θ for each
agent in the system. These parameters are associated with the nominal task-based control
ûθ(x) and manifest in the cost function of that agentŠs dynamics:

u∗ = arg min
u

∥u− ûθ(x)∥2

subject to A
(

x, ¶xoj♢Mj=1

)

u ≤ bγ,Ds

(

x, ¶xoj♢Mj=1

) (7.1)

In these chapters, we assumed that the observer knows the parameters of collision-avoidance
constraints (γ,Ds) a-priori and uses them to infer θ. In particular, the algorithms in chap-
ters 4, 5 required their values to compute the active-set. However, in practice, their values
will also be unknown to the observer because these parameters encode individual agent pref-
erences for ensuring collision free motions. Simultaneously inferring constraint parameters
γ,Ds with task parameters θ can be challenging because an agentŠs observed trajectory only
partially manifests its long-term task; it also contains adjustments made by the agent to
ensure collision avoidance with other agents and obstacles in the environment. Since an ob-
server would have no means to determine the magnitude of these adjustments, it is difficult
to isolate the task-oriented component from the observed motion.

Given this limitation of our previous algorithms, we ask how can an observer simulta-
neously infer both the cost-function parameters θ and the constraint parameters γ,Ds by
observing each agent. We build on chapter 6 to Ąll this gap. We develop two robust mixed-
integer programming algorithms that infer the task and safety related parameters of this op-
timization problem from the positions and velocities of the agents. In addition to modeling
inter-agent collision avoidance constraints as done in (7.1), we also model collision-avoidance
constraints between the agents and obstacles/walls. Thus, our inference algorithms enable
us to infer safety constraints with obstacles/walls in the environment. We validate these
algorithms on synthetic datasets using parameter estimation errors, displacement errors and
computation time as metrics. We further test these algorithms on a dataset of real human
trajectories. We show that the learned parameters capture the true underlying pedestrian
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Figure 7.1: Sample trajectories produced by (7.2) with one rectangular obstacle as a con-
straint. Increasing γ makes the trajectory less conservative and makes it follow the reference
controller more closely.

dynamics by rolling out the learned model and showing similarity between the ground truth
trajectories and the reconstructed trajectories.

7.1 Application to inferring human intentions

As mentioned, we demonstrate the applicability of our proposed inference algorithms for
learning intents (i.e. goals, safety margins) of multiple humans that interact among one
another and with the walls/obstacles in a close-proximity environment. We identify a set
of behavior and safety-related parameters for each humanŠs dynamics model that describe
their (i) long-term intention (such as goal, desired velocity etc.), and (ii) collision avoidance
behavior around other agents or walls, (e.g. underlying safety margin, aggressiveness etc).
Our chosen optimization-based dynamics modeling paradigm models cooperation among
different agents to achieve collision-free behavior. Using these algorithms, a control engineer
can the predict future behaviors of humans for generating safe robot motions.

We develop two mixed-integer quadratic programming (MIQP) based algorithms to learn
the parameters of the CBF-QP based model describing each agentŠs behavior from its ob-
served trajectories. This allows for individually learning the parameters of the task-oriented
component and the collision avoidance-related component of the agent. We use stationarity
error and prediction error as heuristics to learn parameters that best explain the observed
measurements. Our proposed algorithms are decentralized, robust to model mismatch and do
not require long training times (we show empirical results to support these claims). Addition-
ally, by virtue of being model-based, the parameters we learn have an intuitive physics-based
interpretation. Because of this feature, our inference approach enables reliable prediction
that is generalizable to unseen scenarios, e.g. it describes how an agent will behave when en-
tering a new scenario with a different set of nearby obstacles. Lastly, in addition to learning
these parameters, our algorithm automatically learns which obstacles/agents in the environ-
ment inĆuence the ego agentŠs dynamics from its velocity. IdentiĄcation of these interest
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entities is what makes our algorithms integer-programs. We validate these algorithms on
several simulated datasets and show small values of parameter reconstruction errors and
small average and Ąnal displacement errors. Next, we evaluate them on a pedestrian dataset
called THöR [30] which contains human motion trajectories recorded in a controlled indoor
experiment at Örebro University. These trajectories exhibit social interactions that occur in
populated spaces like offices, thus making them suitable for evaluating our algorithms. Our
results show that the learned parameters capture pedestrian dynamics accurately, which we
demonstrate by showing low values of average and Ąnal displacement errors.

7.2 Problem Formulation

To model the dynamics of the ego agent, we continue to follow the optimization-based
model in (7.1). However, while this model only considers inter-agent safety constraints, we
would also like to include safety constraints between the ego-agent and obstacles/walls in
the environment. The new model is shown in (7.2)

ẋ = u∗ = arg min
u
∥u− ûθ(x)∥2

subject to

[

AA

AO

]

︸ ︷︷ ︸

A

u ≤
[

bAγ,Ds

bOγ,Ds

]

︸ ︷︷ ︸

bγ,Ds

(7.2)

Here ûθ(x) := C(x)θ + d(x) like before. Moreover, AA and bAγ,Ds
model inter-agent safety

constraints and so are the same as in (7.1). The new terms are AO and bOγ,Ds
. For complete-

ness, we recall the deĄnitions of inter-agent safety constraints i.e. AA and bAγ,Ds
, and present

the derivation of agent-obstacle safety constraints i.e. AO and bOγ,Ds
next.

Modeling safety with other agents: We assume that all agents cooperate to achieve
collision avoidance amongst one another while performing their respective tasks. Let the
other agents be located at positions ¶xoj♢ ∀j ∈ ¶1, 2, · · · , NA♢. The ego agent and agent j

are collision-free iff their positions (x,xoj) satisfy ∥∆xj∥2 ≥ D2
s where ∆xj := x−xoj and Ds

is a desired safety margin. In prior work [54], control barrier functions were used to derive
linear constraints on agentsŠ velocities u for ensuring inter-agent collision-free behavior. We
use these constraints as is

AAu ≤ bAγ,Ds
, (7.3)

where superscript A denotes that these constraints model safety with other agents. AA ∈
RNA×2, bA ∈ RNA are deĄned so that the jth row of AA and jth entry of bAγ,Ds

are

aTj := −∆xTj = −(x− xoj)
T (7.4)

bj := γ(
∥
∥
∥x− xoj

∥
∥
∥

2 −Ds
2) ∀j ∈ ¶1, 2, . . . , NA♢ (7.5)
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Here γ > 0 is a hyperparameter unique to each agent. It captures the unwillingness of an
agent to compromise on task completion to ensure safety.

Modeling safety with walls/obstacles: Let there be NO obstacles in the environ-
ment, which we assume are polytopic. We denote them as Pi := ¶y ∈ R2♣APi y ≤ bPi ♢
∀i ∈ ¶1, · · · , NO♢. To model the agentŠs safety with the Pi, we assume that the agent (lo-
cated at x) tries to stay Ds distance away from the point on Pi closest to x. This point can
be calculated by the following QP

yOi = arg min
y

∥x− y∥2

subject to y ∈ Pi ⇐⇒ APi y ≤ bPi

(7.6)

Akin to (7.3), the following constraints on the ego agentŠs velocity u account for its safety
with each obstacle Pi

AOu ≤ bOγ,Ds
, (7.7)

where superscript O denotes that these constraints model safety with obstacles. AO ∈ RNO×2,
bO ∈ RNO are deĄned such that the ith row of AO and the ith entry of bγ,Ds

are

aTi := −(x− yOi )T (7.8)

bi := γ(
∥
∥
∥x− yOi

∥
∥
∥

2 −Ds
2) ∀i ∈ ¶1, 2, . . . , NO♢. (7.9)

7.2.1 Inference Problem

The inference problem requires the observer to infer Θ = (θ, γ,Ds) simultaneously using
this agentŠs positions x(t), its velocities u∗

θ(x(t)), the positions of all other agents ¶xoj(t)♢Mj=1

and the positions of the walls and obstacles. The observer will use a batch of K signal-

response pairs i.e.

(
(

x(k), ¶xoj(k)♢Mj=1

)

︸ ︷︷ ︸

signal

, u∗
θ(k)

︸ ︷︷ ︸

response

)

∀k ∈ ¶1, 2, · · · , K♢ to compute an estimate

of Θ = (θ, γ,Ds). Like before, the focus is on inferring these for one agent, we can always
employ parallelization for inferring these for all the agents together.

7.3 MIQP-based Robust Inference Algorithms

The general approach for inferring (θ, γ,Ds) is to pose an empirical risk minimization al-
gorithm that uses a reasonable heuristic as a loss. We propose two algorithms: the algorithm
in 7.3.1 considers the prediction error as a heuristic while the algorithm in 7.3.2 considers
a variant of the KKT loss proposed in [84] as a heuristic. Both these algorithms rely on
the KKT conditions of (7.2). Thus, we state these conditions Ąrst before presenting these
algorithms. Let (u∗,λ∗) be the optimal primal-dual solution to (7.2). The KKT conditions
are
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1. Stationarity: u∗
θ = ûθ(x)− 1

2
AT (x)λ∗

2. Primal Feasibility: A(x)u∗ ≤ bγ,Ds
(x)

3. Dual Feasibility: λ∗ ≥ 0

4. Complementary Slackness: λ∗ ⊙
(

A(x)u∗ − bγ,Ds
(x)

)

= 0

Complementary slackness can be re-posed with an equivalent formulation by using the big-M
approach [87]. This is done by augmenting the lower bounds 0 ≤ bγ,Ds

(x) − A(x)u∗ and
0 ≤ λ∗ with artiĄcial upper bounds as follows:

0 ≤ bγ,Ds
(x)− A(x)u∗ ≤Mz

0 ≤ λ∗ ≤M(1− z) (7.10)

Here z ∈ ¶0, 1♢NA+NO are Boolean variables and M is a large number chosen as a hyper-
parameter. The Boolean variables z are also unknown and will be learned as part of the
inference problem in the next section. Given these conditions, we are ready to develop the
Ąrst inference algorithm.

7.3.1 Predictability Loss MIQP

The observer assumes that each agent uses (7.2) as the underlying model. Akin to this
model, the observer poses a copy problem in which he treats θ, γ,Ds as tunable knobs. These
can be tuned until the predicted velocities computed by solving the copy problem match with
the measured velocities. This can be done by solving:

θ̂, γ̂, D̂s, ¶ûk♢Kk=1 = arg min
θ,γ,Ds,¶uk♢K

k=1

K∑

k=1

∥uk − umeask ∥2

such that uk solves (7.2) ∀k ∈ ¶1, · · · , K♢
(7.11)

The cost function in (7.11) is the empirical sum of the deviations of the predicted controls uk
from the measured controls umeask . This is known as the predictability loss [83]. Naturally, it
makes sense to minimize this loss only if the observerŠs predicted controls solve the forward
problem (7.2) which is posed as a constraint in (7.11). Since (7.2) is in itself an optimization
problem, (7.11) is a bi-level optimization problem, which is known to be computationally
difficult to solve. We convert this to a single level problem by replacing the inner problem
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with its KKT conditions as follows:

θ̂, γ̂, D̂s,¶ûk♢Kk=1, ¶λ̂k♢Kk=1, ¶ẑk♢Kk=1, ¶δ̂k♢Kk=1 =

arg min
θ,γ,Ds,¶uk♢K

k=1
,

¶λk♢K
k=1

,¶zk♢K
k=1

,¶δk♢K
k=1

K∑

k=1

∥uk − umeask ∥2 + ρ
K∑

k=1

∥δk∥2

subject to

0 ≤ bγ,Ds
(xk)− A(xk)uk ≤Mzk

0 ≤ λk ≤M(1− zk)

¶zk♢Kk=1 ∈ ¶0, 1♢NA+NO

− δk ≤ uk − ûθ(xk) +
1

2
AT (xk)λk ≤ δk

θL ≤ θ ≤ θU , γL ≤ γ ≤ γU , DsL ≤ Ds ≤ DsU

(7.12)

The cost function in (7.12) is quadratic. The Ąrst term in the cost is the aggregated prediction
error and the second penalizes the magnitude of the slack variables. These variables account
for how much the stationarity condition is violated. In case the observed measurements of the
agentŠs velocity are noisy, this algorithm tries to Ąnd the controls that satisfy the KKT condi-
tions as best as they can while simultaneously ensuring that the inferred/predicted velocities
are as close to the measured velocities as possible. Thus including slack variables confers ro-
bustness to this algorithm. The constraints are linear in θ, γ, γD2

s , ¶uk,λ, zk, δk♢Kk=1. Since
¶zk♢Kk=1 are restricted to be Boolean, the overall problem is a mixed-integer QP. We use
Gurobi to solve this problem.

7.3.2 Stationarity Loss MIQP

Another heuristic that can be used to solve the inference problem is the stationarity loss.
This loss quantiĄes the residual of the stationarity condition evaluated on observed positions
and velocities:

lStat.k =
∥
∥
∥
∥u

meas
k − ûθ(xk) +

1

2
AT (xk)λk

∥
∥
∥
∥

2

(7.13)

This residual is quadratic in both θ and λk. Using K observed signal-response pairs, the
observer poses an empirical risk minimization problem that queries for θ, γ,Ds, Lagrange
multipliers ¶λk♢Kk=1 and Boolean variables ¶zk♢Kk=1 which minimize the total stationarity loss
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evaluated on the observed measurements:

θ̂, γ̂, D̂s, ¶λ̂k♢Kk=1, ¶ẑk♢Kk=1 = arg min
θ,γ,Ds,

¶λk♢K
k=1

,¶zk♢K
k=1

K∑

k=1

lStat.k

subject to

0 ≤ bγ,Ds
(xk)− A(xk)u

∗ ≤Mzk

0 ≤ λk ≤M(1− zk)

¶zk♢Kk=1 ∈ ¶0, 1♢NA+NO

θL ≤ θ ≤ θU , γL ≤ γ ≤ γU , DsL ≤ Ds ≤ DsU

(7.14)

The constraints in this problem capture all the KKT conditions in addition to bounds on
θ, γ,Ds from our prior knowledge. Since the cost is quadratic and all constraints are linear
in (θ, γ, γD2

s , ¶uk♢Kk=1, ¶λk♢Kk=1, ¶zk♢Kk=1), the overall problem is a mixed-integer QP. We use
Gurobi to solve this problem.

7.4 Results: Validation on Synthetic Datasets

Before testing these algorithms on the human trajectory dataset, we evaluate them on a
simulated dataset. We generated several trajectories of a single agent using (7.2) by varying
its initial position x(0) in each run. The nominal task for this agent is to follow a con-
stant velocity ûθ = v∗

d. Additionally, the agent has to ensure safety margin of D∗
s with the

obstacles with a conservativeness factor of γ∗. The observerŠs problem is to infer vd, γ,Ds

of this agent from the obtained trajectories using the predictability loss MIQP (7.11) and
stationarity loss MIQP (7.14).

Testing Robustness: To test the robustness of these algorithms, we consider two sce-
narios: scenario (1) has no noise in the measured velocities and in scenario (2) we add zero
mean Gaussian noise with 2 m/s standard deviation to the velocities (ϵ ∼ N (0, 2m/s)). To
assess repeatability, we conduct ten simulations with a randomly chosen initial position of
the agent. The hyperparameter ρ for the predictability loss MIQP was chosen systematically
by tuning performance on a validation dataset.

Warm Starting: Expecting that the computation time of predictability loss MIQP can
be longer than stationarity loss MIQP due to more variables, we also compare the perfor-
mance for predictability loss MIQP with and without a warm start using the result from
stationary loss MIQP to see if there is any added beneĄt.

Error Metrics: The proposed algorithms are compared based on parameter reconstruc-
tion accuracy and computation time for parameter identiĄcation. In the human dataset,
ground truth values of parameters are not available since the underlying model of humans
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Table 7.1: Performance comparison on THoR environment with noiseless measurements

Metric\
Algorithm

∥v̂d − v∗
d∥

[m/s]
♣γ̂ − γ∗♣
[1/s]

♣D̂s − D∗
s ♣

[m]
ADE [m] FDE [m] Time [s]

Stat. MIQP 0± 0 49.71± .29 .0238± .028 .0012±.0014 .044± .0534 8.17± .49

Pred. MIQP 0± 0 49.71± .29 .0238± .028 .0012±.0014 .044± .0539 1.63± .067

Pred. (warm
start)

0± 0 49.71± .29 .0238± .028 .0012±.0014 .044± .0539 1.61± .056

Table 7.2: Performance comparison on THoR environment with noisy measurements

Metric\
Algorithm

∥v̂d − v∗
d∥

[m/s]
♣γ̂ − γ∗♣
[1/s]

♣D̂s − D∗
s ♣

[m]
ADE [m] FDE [m] Time [s]

Stat. MIQP .57± 1.56 49.64± .2 .0295± .016 .048± .105 .806± 1.432 8.01± .083

Pred. MIQP 2.9± 2.73 49.64± .2 .0295± .016 .373± .372 12.9± 12 1.6± .082

Pred. (warm
start)

2.9± 2.7 49.64± .2 .0295± .016 .332± .346 9.67± 1.28 1.59± .05

is not (7.2) necessarily. Therefore, we consider the reconstructed trajectories using inferred
parameters for performance evaluation. To this end, comparisons are made based on the
average displacement error (ADE) and Ąnal displacement error (FDE) of the trajectories
generated using the inferred parameters relative to the ground truth trajectories.

Environment: We consider the environment modeled after the map in the THöR dataset.
For this, we manually convert the walls and obstacles into polytopes. There are a total of
14 obstacles in this enivornment i.e.NO = 14. This is shown in 7.2.

Analysis of Results: Table 7.1 shows the parameter reconstruction errors and ADE, FDE
errors averaged over ten runs with noiseless demonstrations for the THöR environment. It is
evident that when perfect measurements are available to the observer, all the three methods
share the same performance in terms of inferred parameters accuracy and ADEs and FDEs.
However, we notice that stationary loss MIQP takes much longer for computation. Warm
start does reduce the computation time for predictability loss MIQP, but only marginally.
Table 7.2 shows these errors with noisy demonstrations. From these tables, it is evident that
the stationarity loss MIQP exhibits a great amount of robustness to measurement noise. The
ADEs and FDEs are much smaller for the stationarity loss MIQP compared to the other
algorithms. The computation time for this algorithm is still very large compared to the other
two. Additionally, we observe that warm start improves the performance of predictability
loss MIQP with lower error in inferred parameters accuracy and as well as ADE and FDE.
There is not much reduction in computation time. Overall, stationarity loss MIQP has the
best performance and strongest tolerance to noise in the velocity measurements. In the next
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Figure 7.2: Environment used for generating the simulated trajectories using (7.2).

section, we show that the stationarity loss MIQP performs best on the human dataset as
well.

7.5 Results: Validation on Human Datasets

In this section, we validate the proposed methods on a human dataset THöR [30]. The
trajectories in this dataset exhibit social interactions that occur in populated spaces like
offices, malls etc., thus making them suitable for evaluating our algorithms. Our results show
that the learned parameters capture pedestrian dynamics accurately, which we demonstrate
by showing low ADE and FDE values. We assume that the nominal task of the humans is
to move at a constant velocity. Because of this assumption, we handpicked some scenes in
the dataset where the humans approximately moved at a constant velocity. Thus, instead
of using the entire datase for parameter identiĄcation, we selected 15 handpicked scenarios
with selected time intervals of human trajectories where the constant velocity assumption
was valid for most of the human pedestrians.

Parameter inference is conducted on each single pedestrian independently. The pre-
dictability loss MIQP (7.12) has a hyperparameter ρ which corresponds to the penalty on
the slack variables. We chose this hyperparameter by doing a brute force search on all these
scenarios. Since the humans do not necessarily follow (7.2) as the underlying model, the
only way to check whether our inferred parameters rationalize the observed measurements
is by rolling out (7.2) with the learned parameters and comparing the reconstructed trajec-
tories with the ground truth trajectories. We use ADE and FDE as the metrics to do this
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comparison.
In Figure 7.3, we plot the mean and standard deviation of the ADE and FDE errors

averaged over all 15 scenarios for the predictability loss MIQP without warm start (7.3(a)),
predictability loss MIQP with warm start (7.3(b)) and the stationarity loss MIQP (7.3(c)).
The y axis denotes these errors and the x axis corresponds the value of the slack penalty
hyperparameter ρ (on log10 scale).

It is observed that predictability loss MIQP with warm start performs better then pre-
dictability loss MIQP without warm start, exhibiting both smaller mean and standard de-
viation in both ADE and FDE. Predictability loss MIQP with warm start performs exactly
the same as the stationarity loss MIQP for ρ < 10−4. However, the stationarity loss MIQP
performs the best, exhibiting the smallest mean ADE and smallest mean FDE with small
standard deviation as well.
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(a) Pred. Loss MIQP (without
warm start)
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(b) Pred. Loss MIQP (with warm
start)
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(c) Stat. Loss MIQP

Figure 7.3: ADE and FDE Errors averaged over 15 scenarios sampled from the THöR dataset
with varying number of pedestrians in each scenario. X axis represents the log of the slack
penalty hyperparameter ρ in (7.12). Among all three algorithms, the stationarity loss MIQP
(7.3(c)) exhibits the lowest mean ADE and mean FDE as well as a low standard deviation.

Thus, we select the stationarity loss MIQP to highlight some results on the human
dataset. Figure 7.4 shows results from six scenarios sampled from our dataset. The black
trajectories are the ground truth trajectories of the humans. The green dots indicate their
starting positions. Using these trajectories, we learn the (v̂d, D̂s, γ̂) with (7.14) and then roll
out (7.2) with the learned parameters. The obtained trajectories are plotted in red in 7.4.
Since most of the red trajectories almost overlap with the given demonstrations, we conclude
that the learned parameters do indeed rationalize the ground truth trajectories. In 7.4(e),
there is one pedestrian whose motion changes abruptly exhibiting a turn and so technically
this pedestrian does not satisfy the constant velocity assumption. Yet our algorithm learns
the average behavior giving low FDE error for this pedestrian albeit high ADE. We can Ąx
this problem by including some basis functions in C(x),d(x) in the task-based control ûθ(x)
and relaxing the constant velocity model. Making the nominal task more complex with richer
basis functions will allow us to get additional accuracy in trajectory reconstruction.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 7.4: Validation on human dataset: Comparison between the ground truth trajectories
(solid black lines) and reconstructed trajectories with learned parameters (dotted red lines)
on six selected scenarios. Starting points are marked in green.

7.6 Discussion and Conclusions

We considered the problem of simultaneously inferring task and safety constraint pa-
rameters of individual agents of a multiagent system. We modeled the agents using control
barrier functions and developed the predictability loss MIQP and the stationarity loss MIQP
to solve the inference problem. We demonstrated that the reconstructed parameters ratio-
nalize the observed measurements in a simulated single-agent scenario and also a real human
dataset. There are several directions that we would like to take in future work.

• Richer basis functions C(x),d(x): Sticking to the constant velocity model was a
Ąrst-order choice and this itself gave us accurate reconstructions. However, we hope
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that including richer functions that capture the spatial frequencies of motion can allow
us to get more accuracy. The overall problem complexity will only increase marginally
since as we showed the problem is still an MIQP. This will allow us to capture changes
in human trajectory better.

• Time-varying parameters: In our framework, we assumed that the task and con-
straint parameters (θ, γ,Ds) are constant. However, humans may become more conser-
vative as they come around agents that exhibit uncertain motions. As a result, these
parameters may be time-varying. In our future work, we will adjust our code to allow
for time-varying parameters. The overall problem will still remain an MIQP, although
it will have to learn many parameters.

• Multimodal Learning: Currently, our proposed method learns one set of parameters
for a human. However, humans may exhibit a distribution of behaviors. In future work,
we will explore how to adjust the inference framework so that we can reverse engineer
a distribution of these parameters instead of learning one set of parameter values.
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8 Single Agent’s Control
Through Interactions

Chapters 4 - 7 investigated the multiagent behavior inference problem. We developed
robust algorithms for inferring parameters that encode information about each agentŠs task
as well as its collision avoidance behavior with respect to other agents in the system. By and
large, these algorithms address the Ąrst part of the thesis statement. The next part focuses
on shaping the behavior of individual agents of a multiagent system by inducing interactions
with robots under the control of an observer. This is the focus of this chapter and the next
two chapters.

There is a wide range of domains where controlling multi-agent teams via external robots
Ąnds practical applications. These include the use of robots to herd sheep [56], [57]; crowd
control [58]; protecting aircraft from bird strikes [59], [60] and defense against adversarial
swarms [19]. We use the term shepherding behaviors to collectively represent (a) herding,
(b) defending and (c) herding+defending [21] behaviors. In herding, the shepherd(s) steer a
Ćock from one region to another and ensure that the Ćock stays there, while in defending,
the shepherd(s) protect a designated region and keep the Ćock from entering it. In our
context, the Ćock represents the multiagent system and the shepherd(s) represent the robots
that are under the control of the observer. This is a difficult control problem because the
shepherd does not have direct control over the actuators of the Ćock agents, rather must
rely on the agentsŠ interaction with the shepherd to regulate their behavior. This problem is
also challenging because usually there are not as many shepherding robots as agents in the
Ćock. Therefore, from the perspective of the shepherd, the control problem becomes very
underactuated.

Several prior works have considered the problem of noncooperative shepherding using
robots. Some of these include [22], [63], [64], [65], [66], [67]. They refer to the shepherd-
ing problem as noncooperative because the Ćock agents are not necessarily adversarial i.e.
they do not work against the robots, but at the same time are not cooperative because
the Ćock agents repel from the robots. These works exploit this repulsive interaction to
develop feedback controllers for the robots to steer the Ćock agents to a designated region.
While successful, one issue common among these works is that they fail to consider the self-
motivated dynamics of the Ćock agents i.e. their nominal dynamics without any robots in
the picture. As a result, the Ćock agentsŠ motions are solely driven by repulsions from the
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robots. Secondly, it is assumed that the Ćock agents incorporate these repulsions perpetually
regardless of how far the robots are located relative to the Ćock. These two assumptions
enable the robots to capitalize on this continual fear and gives them more command over the
Ćock than they would have if the Ćock has a mind of its own or if it ignores robots farther
away. Our goal in this chapter is to relax both of these assumptions. Firstly, we want to
make the robots move so that they make their presence acknowledged by the Ćock, and once
this is done, we want to plan motions for the robots that elicit desired behaviors from the
Ćock while being cognizant of the ĆockŠs nominal/natural dynamics. In this chapter and
the next, we assume that the observer and their robots know the true parameters of the
dynamic model of the group agents i.e. Θ (3.16). We are solving the Multiagent Behavior
Shaping With Known Model as deĄned in Def. 2. That is why these parameters will not be
highlighted anywhere in this chapter. This assumption will be relaxed in chapter 10.

The outline of this chapter is as follows: in section 8.1, we describe our choice of the ĆockŠs
dynamics and recall the multiagent behavior shaping problem from Def. 2 in chapter 3.
In section 8.2, we describe our approach for shaping the behavior of a single agent using
one robot. Section 8.3 gives numerical results for the herding and defending behaviors.
Finally, we summarize in section 8.5 and give directions for extending our approach to the
multirobot/multiagent behavior shaping case.

8.1 Problem Formulation

Recall the problem described in section 3.3: suppose there M agents in the group col-
lectively denoted as A := ¶1, 2, · · · ,M♢. Let the position of agent i be xAi

∈ R2. Likewise,
assume there are N robots collectively denoted as R := ¶1, 2, · · · , N♢. Let robot k be lo-
cated at xRk

∈ R2. Consistent with our modeling paradigm so far, we choose to model the
dynamics of the agents using a reactive one-step optimization

ẋAi
= arg min

u
∥u− û(xAi

)∥2

subject to A
(

xAi
, ¶xAj

♢j∈A\i
)

u ≤ bγ,Ds

(

xAi
, ¶xAj

♢j∈A\i
)

constraints with agents

A
(

xAi
, ¶xRk

♢k∈R
)

u ≤ bγ,Ds

(

xAi
, ¶xRk

♢k∈R
)

constraints with robots

:= fi
(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)

(8.1)

The cost function penalizes deviation from a reference task-based control. In addition to the
collision avoidance constraints with other agents in the Ćock, (8.1) considers constraints with
the robots as well. These robots are controlled by the observer. The reference task-based
control û(xAi

) is the control that the Ćock agent would follow should all its constraints be
inactive. Thus, it represents the autonomous self-motivated dynamics of the Ćock agent.
Additionally, if the constraint with robot k is inactive, this would imply that the Ćock agent
has chosen to ignore robot k. This means that robot k cannot control the agent, it can
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only do so when its corresponding collision avoidance constraint is active. Thus robot k will
have to take action to activate that constraint. In the next section, we will describe a formal
strategy for robot k to achieve this. As before, each robot is assumed to be velocity-controlled
with dynamics

ẋRk
= uRk

∀k ∈ R (8.2)

We view (8.1) and (8.2) as a joint system, with its state deĄned by the joint states of all
agents and robots and the velocities of the robots as the control input, i.e.,


















˙xA1
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f1

(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)
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fM
(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)

uR1

...

uRN


















(8.3)

Given this joint model, we now pose the problem of eliciting a desired behavior from the
agents. We denote the observerŠs behavioral requirement expected from agent i by a function
yi : R2 −→ R. DeĄne the set Y ⊂ R2M as

Y := ¶(xA1
, · · · ,xAM

) ∈ R2M ♣yi(xAi
) > 0 ∀i ∈ A♢ (8.4)

Given this set, the multiagent behavior shaping problem is

Problem 1. Provided the initial agent positions (xA1
(0), · · · ,xAM

(0)) ∈ Y, Ąnd robot
controls (uR1

, · · · ,uRN
) such that (xA1

(t), · · · ,xAM
(t)) ∈ Y ∀t > 0. However, if

the positions of the agents (xA1
(0), · · · ,xAM

(0)) /∈ Y , Ąnd (uR1
, · · · ,uRN

) such that
(xA1

(t), · · · ,xAM
(t)) ❀ Y in Ąnite time.

We can express the herding and defending behaviors using the above terminology

1. Herding to a home zone: Suppose the desired region that the observer wants the
agents to converge to is given by B := ¶x ∈ R2♣ ∥x− xG∥ < RG♢. Then, the observer
can choose y(x) = R2

G − ∥x− xG∥2 so that Y := B.

2. Defending a protected zone: Suppose the desired region that the observer wants
the agents to stay away from is given by P := ¶x ∈ R2♣ ∥x− xP∥ < RP♢. Then, the
observer can choose y(x) = ∥x− xP∥2 −R2

P so that Y := Pc.

In the next section, we give a preliminary approach for the single agent shepherding problem.
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8.2 Behavior shaping for one agent with one robot

We begin by considering the simple problem of shaping the behavior of one agent desig-
nated A using one robot designated R by commanding RŠs velocities uR. Since there are no
other agents aside from A, the dynamics of A are

ẋA = fA(xA,xR) = arg min
u

∥u− û(xA)∥2

subject to aT (xA,xR)u ≤ b(xA,xR) ←− CR

(8.5)

Here CR represents the collision-avoidance constraint between the agent and the robot.
Depending on whether it is active or inactive, these dynamics can be rewritten as

ẋA = fA(xA,xR) =







û(xA) if CR inactive

û(xA)− 1
2
µa(xA,xR) if CR active.

(8.6)

The observerŠs behavioral requirement is expressed using the function y(xA) and its zero level
superset Y := ¶xA ∈ R2♣y(xA) > 0♢. The behavior shaping problem for agent A requires the
observer to Ąnd control inputs uR such that xA(t) ∈ Y ∀t ≥ 0 if xA(0) ∈ Y or xA(t) ❀ Y if
xA(0) /∈ Y . Both these problems can be addressed using the theory of exponential control
barrier functions. Informally, if we can Ąnd uR such that

ÿ + αẏ + βy ≥ 0, (8.7)

(where α and β are such that the roots of s2 +αs+ β = 0 have strictly negative real parts),
then we will have a guarantee that the behavior shaping requirement is met. For this, we
treat y(xA) as a control-barrier function to Ąnd the desired uR. Its derivatives are:

ẏ(xA,xR) = ∇xA
yT (xA)fA(xA,xR)

︸ ︷︷ ︸

p(xA,xR)

ÿ(xA,xR) = ∇xA
ẏTfA(xA,xR) +∇xR

ẏTuR

= ∇xA

(

∇xA
yT (xA)fA(xA,xR)

)T

fA(xA,xR)
︸ ︷︷ ︸

g(xA,xR)

+∇xR

(

∇xA
yT (xA)fA(xA,xR)

)T

︸ ︷︷ ︸

G(xA,xR)

uR

= g(xA,xR) +G(xA,xR)uR. (8.8)

Thus, substituting (8.8) in (8.7) gives

ÿ + αẏ + βy ≥ 0

⇐⇒ g(xA,xR) +G(xA,xR)uR + αp(xA,xR) + βy(xA) ≥ 0

⇐⇒ −G(xA,xR)
︸ ︷︷ ︸

A1(xA,xR)

uR ≤ g(xA,xR) + αp(xA,xR) + βy(xA)
︸ ︷︷ ︸

b1

α,β
(xA,xR)

⇐⇒ A1(xA,xR)uR ≤ b1
α,β(xA,xR). (8.9)
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This gives us a linear constraint on uR. This constraint can become infeasible if G(xA,xR) ≡
0. This can happen when

G ≡ 0 ⇐= ∇xR

(

∇xA
yT (xA)fA(xA,xR)

)T

≡ 0 ⇐= ∇xR
fA(xA,xR) ≡ 0 ⇐= CR inactive

(8.10)

Thus, R needs to move such that CR remains active if it is active at t = 0 or becomes
active in a Ąnite-time if it is inactive at t = 0. Intuitively, CR being inactive implies that A
does not have any interaction with R thereby preventing R from exerting any inĆuence on
A. To ensure activeness, we require that AŠs velocity in the absence of R violate AŠs safety
constraint with R, when R is put back in. That is to say in RŠs absence, if the only choice
for AŠs velocity i.e. û(xA) becomes infeasible when R is put back, then CR will become
active, or in other words,

aT (xA,xR)û(xA) > b(xA,xR). (8.11)

Treat y(xA,xR) = aT (xA,xR)û(xA)− b(xA,xR) as yet another barrier function. To ensure
activeness, we require y(xA,xR) ≥ 0. Thus, treating this y as a barrier function, we can get
a yet another linear constraint on uR [88]

ẏ + γsgn(y(xA,xR))
√

♣y(xA,xR)♣ ≥ 0

⇐⇒ ∇xA
yT (xA,xR)fA(xA,xR) +∇xR

yT (xA,xR)uR + γsgn(y(xA,xR))
√

♣y(xA,xR)♣ ≥ 0

⇐⇒ A2(xA,xR)uR ≤ b2
γ(xA,xR), (8.12)

where γ ≥ 0 is another hyperparameter to be chosen by the observer. Thus, uR must satisfy
both (8.12) and (8.9) to be able to shape AŠs behavior. In addition, the robot should stay
collision-free with respect to the agent. This can be expressed using a yet another linear
constraint A3(xA,xR)uR ≤ b3

γcollision
(xA,xR) on the robotŠs velocity. The robot can use the

following optimization to compute its optimal velocity u∗
R that satisĄes all three constraints.

u∗
R = arg min

uR

∥uR∥2

subject to A1(xA,xR)uR ≤ b1
α,β(xA,xR)

A2(xA,xR)uR ≤ b2
γ(xA,xR)

A3(xA,xR)uR ≤ b3
γcollision

(xA,xR).

(8.13)

This problem Ąnds the min-norm velocities that satisfy the constraints in (8.12) and (8.9)
in addition to the collision avoidance constraints. The cost function encourages robot R to
move as little as possible unless either the constraint becomes inactive or breaching occurs
or a collision occurs. In the next section, we present numerical results using this approach.
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8.3 Results

In this section, we present preliminary results that demonstrate the promise of our pre-
sented approach. We consider two shepherding behaviors: (a) defending a protected zone
and (b) preventing escape from a desired zone. For defending a protected zone, we repre-
sent the zone using a circular disc with radius RP and center at the origin. Thus, we use
y(xA) := ∥xA∥2 − R2

P as the barrier function in (8.8). The nominal task based control of
the agent is û = −kp(xA − xdA

) i.e. reaching a goal position xdA
. In our simulations,

we cherrypick the agentŠs goal xdA
and its initial position xA(0) so that the nominal task

would result in breaching of the protected zone. The robotŠs velocities are calculated using
(8.13). The parameters α, β, γ are tuned using the guidelines in [55]. Figure 8.1 shows four
simulation results for this behavior. In these simulations, we varied the initial position of
the robot (blue), the agent (red) and the agentŠs goal. As can be noticed from the pictures,
the robot is able to intercept the agent and prevent it from entering the protected zone.

(a) Simulation 1 (b) Simulation 2 (c) Simulation 3 (d) Simulation 4

Figure 8.1: Defending a protected zone: In these simulations, the robot is shown in blue
and the agent is shown in red. The green disc represents the protected zone. The nominal
task of the red agent is to go straight towards its goal xA. However, since this would result
in inĄltration of the protected zone, the robot intervenes using the optimization problem
presented in (8.13).

Next, we consider the task of preventing the agent from escaping a home zone. Thus, we
use y(xA) := R2

P − ∥xA∥2 as the barrier function in (8.8). The nominal task based control
of the agent is û = −kp(xA − xdA

) i.e. reaching a goal position xdA
. Figure 8.2 shows four

simulation results for this behavior. In these simulations, we varied the initial position of
the robot (blue), the agent (red) and the agentŠs goal. As can be noticed from the pictures,
the robot is able to intercept the agent and prevent it from escaping by creating a deadlock
position. The steady state positions of the robot and the agent end up being collinear with
the agentŠs goal in which deadlock occurs.
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(a) Simulation 1 (b) Simulation 2 (c) Simulation 3 (d) Simulation 4

Figure 8.2: Preventing escape from the home zone: In these simulations, the green disc
represents the region where the robot wants the agent to stay. The nominal task of the red
agent is to go straight towards its goal xA. In all these simulations, the goal is outside the
green region. However, since this would result in the agent escaping, the robot intervenes
using the algorithm presented in section 8.2. Notice that the steady state conĄguration
involves the robot deadlocking with the agent.

8.4 Towards multi-agent behavior shaping

In the previous section, we illustrated how one robot (R) can shape the behavior of
one agent (A) using ideas from non-collocated feedback linearization and control barrier
functions. While the presented formalism is sound for the single agent-single robot case, it is
not straightforward to extend this to the case where there are multiple agents and one robot
R. To see this, let us consider a scenario with one more agent, call it A′. In the presence of
A′ and R, the dynamics of A are

ẋA = fA(xA,xA′ ,xR) = arg min
u

∥u− û(xA)∥2

subject to aT (∆xAR)u ≤ b(∆xAR) ←− CR

aT (∆xAA′)u ≤ b(∆xAA′) ←− CA′ .

(8.14)

The constraint on uR to ensure y(xA) ≥ 0 is similar to (8.9) except that now A1, b1 depend
on xA′ in addition to xA and xR

A1(xA,xR,xA′)uR ≤ b1
α,β(xA,xR,xA′). (8.15)

To ensure feasibility of this constraint, CR must be active. For this, like before, R must
ensure that AŠs dynamics in RŠs absence result in collisions with R when R is put back
in. However, this time we have A′ as well, so due to A′, AŠs dynamics in the absence of R
depend on whether CA′ is active or not. This gives the following two possibilities, thus two
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requirements on uR:

aT (∆xAR)û(xA) > b(∆xAR) =⇒ A2(xA,xR,xA′)uR ≤ b2
γ(xA,xR,xA′)

aT (∆xAR)

(

û(xA)− 1

2
µA′a(∆xAA′)

)

> b(∆xAR) =⇒ A3(xA,xR,xA′)uR ≤ b3
γ(xA,xR,xA′)

(8.16)

The Ąrst is required when CA′ is inactive while the second is required with CA′ is active.
Thus now uR must satisfy both these constraints in addition to (8.15) to be able to shape
AŠs behavior in the presence of A′. Note here that adding one additional agent A′ resulted
in two additional constraints on uR (8.16). In general, adding M agents will result in 2M

additional constraints on uR. As a result of these many constraints, the search for uR will
be very conservative and will likely result in infeasibility. It goes without saying that aside
from this potential infeasibility, this active/inactive constraint bookkeeping is also tedious.
Thus, while this approach is in theory correct, this is not practically viable. To remedy these
issues, we model the dynamics of agent A using the Reynolds-Boids model which captures
the essential components of the model in (8.14). The dynamics of an agent A following this
model can be posed as

ẋA = fA(xA,xA′ ,xR)

= û(xA)
︸ ︷︷ ︸

1

+ kAD
3
s

(xA − xA′)

∥xA − xA′∥3

︸ ︷︷ ︸

2

+ kR
xA − xR

∥xA − xR∥3

︸ ︷︷ ︸

3

− kA(xA − xA′)
︸ ︷︷ ︸

4

= û(xA)− kA
(

1− D3
s

∥xA − xA′∥3

)

(xA − xA′) + kR
(xA − xR)

∥xA − xR∥3 (8.17)

We describe the terms appearing the dynamics individually.

• Term 1 speciĄes the task-related velocity given by û(xA). While the representation
of dynamics in (8.14) require that A′s velocity ẋA merely minimize its deviation from
û(xA), the dynamics representation in (8.17) enforces that A′s velocity ẋA perpetually
contain û(xA).

• Term 2 captures the repulsion of A from A′. This means that A′s velocity ẋA
must always contain a repulsive term i.e. must always treat the collision avoidance
constraint CA′ between A and A′ as active. This is unlike the dynamics in (8.14) where
this constraint may or may not be active. kA is a proportionality constant and Ds is
the safety distance.

• Term 3 captures the repulsion of A from R. Here kR is the repulsion gain constant.
This means that A′s velocity ẋA always acknowledges the presence of R. This is
unlike the dynamics in (8.14) where repulsion from R is only incorporated when the
collision-avoidance constraint CR between A and R as active. Thus, the dynamics in
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(8.17) treats the constraint with R as perpetually active. The beneĄt of this is that
now R does not need to spend additional effort to activate the constraint CR to be
able to inĆuence A′s behavior. Allowing for perpetual repulsions allows us to dispense
with tedious bookkeeping problem we had to deal with while assuming the dynamics
representation in (8.14).

• Term 4 captures cohesion of A towards A′. This ensures that both A and A′ behave
like a Ćock. This term is not captured in the dynamics in (8.14), but is a common
characteristic of Reynolds-Boids models so we include it here.

While (8.17) considers one robot R and two agents A and A′, we can generalize this
representation to N robots R1, R2, · · · , RN and M agents A1, A2, · · · , AM . To simplify no-
tation, recall our two sets- R := ¶1, · · · , N♢ for robots, and A := ¶1, · · · ,M♢ for the agents.
With this generalization, the dynamics of agent i can be written as

ẋAi
= û(xAi

)− kA
∑

j∈A\i



1− D3
s

∥
∥
∥xAi

− xAj

∥
∥
∥

3



(xAi
− xAj

) + kR
∑

k∈R

(xAi
− xRk

)

∥xAi
− xRk

∥3

:= fi
(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)

∀i ∈ A. (8.18)

In the next chapter, we develop scalable algorithms based on optimization, for solving the
multiagent behavior shaping problem written in Def. 1 given the agent dynamics in (8.18).

8.5 Conclusions

In this chapter, we formulated the multiagent behavior shaping problem and derived a
preliminary method to solve this problem. We showed that if the underlying dynamics of the
agents are optimization-based, then keeping track of active and inactive constraints becomes
tedious as the number of agents increases. Hence, we could only solve this problem for the
one robot one agent case. Through simulations, we demonstrated our algorithmŠs success in
Ąnding the velocities for the robot to prevent breach of a zone as well as to prevent escape
from the zone. To scale our proposed behavior shaping approach to multiple agents, we
simpliĄed the underlying representation of the dynamics. In the next chapter, we build on
this representation of dynamics to solve the general problem.
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9 Multi-agent Control
Through Interactions

In this chapter, we present algorithms to solve the multiagent behavior shaping prob-
lem. To keep the discussion simple, we will focus on the defending behavior which requires
preventing the breach of a high-value protected zone by a Ćock of agents using defending
robots. The algorithms we propose in this chapter exploit the interaction dynamics between
the Ćock agents and the robots to Ąnd robotsŠ velocities that result in all agents getting
repelled from the protected zone. These algorithms reactively solve convex optimization
problems online that incorporate defending constraints to compute the desired velocities for
all robots. Numerical and experimental results are presented to illustrate our algorithms.

The outline of this chapter is as follows. Section 9.1 recalls the dynamics of the agents, the
robots and the deĄnition of the behavior shaping problem pertaining to the defending pro-
tected zone behavior. Section 9.2 develops a centralized optimization-based controller that
calculates the velocities of all robots simultaneously. Section 9.3 develops distributed imple-
mentations of the centralized scheme which come with optimality and feasibility guarantees.
Section 9.4 provides numerical results showing the success of our approach for multiple robots
v/s multiple Ćock agents. To test the repeatability of our algorithm, we conduct Monte Carlo
simulations with increasing the number of robots and agents and demonstrate high-success
rates. This provides empirical evidence of the scalability of our approach. Section 9.5 il-
lustrates experimental results for both the distributed and centralized implementations. We
wrap up this chapter in section 9.6 with conclusions and directions for future work.

9.1 Problem Formulation

Recall that we have M Ćock agents denoted by A := ¶1, 2, · · · ,M♢ located at positions
xA1

, · · · ,xAM
respectively. Likewise, we have N robots denoted by R := ¶1, 2, · · · , N♢

located at positions xR1
, · · · ,xRN

respectively. We assume that the agents are exhibiting
Ćocking dynamics i.e. moving towards a common goal while staying close enough to each
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other and getting repelled by the robots. These dynamics are

ẋAi
= −kG(xAi

− xG)− kA
∑

j∈A\i



1− D3
s

∥
∥
∥xAi

− xAj

∥
∥
∥

3



(xAi
− xAj

) + kR
∑

k∈R

(xAi
− xRk

)

∥xAi
− xRk

∥3

:= fi
(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)

∀i ∈ A (9.1)

Each robot is velocity-controlled with dynamics

ẋRk
= uRk

∀k ∈ R (9.2)

There is a protected zone given by

P := ¶x ∈ R2♣ ∥x− xP∥ ≤ RP♢ (9.3)

Given the dynamics of the Ćock agents as in (9.1) and the protected zone in (9.3), the agents
may end up breaching it while en route to their goal. Therefore, the objective of the observer
is to use the robots is to steer the Ćock agents away from this zone. The observerŠs behavioral
requirements are deĄned by functions yi : R2 −→ R given by

yi(xAi
) = ∥xAi

− xP∥2 −R2
P . (9.4)

Requiring yi(xAi
) > 0 enforces that Ćock agent i be located outside P . Since we would like

all Ćock agents to be outside P , we require yi(xAi
) > 0 ∀i ∈ A. We deĄne the zero-level

superset of all these functions to characterize the allowable portion of the state-space where
the states of the Ćock agents can belong. This is denoted as Y ⊂ R2M and deĄned as

Y := ¶x ∈ R2M ♣yi(xAi
) > 0 ∀i ∈ A♢ (9.5)

Given this set, the observerŠs problem can be posed formally as follows,

Problem 1. Assuming (xA1
(0), · · · ,xAM

(0)) ∈ Y, Ąnd robot controls (uR1
, · · · ,uRN

) such
that (xA1

(t), · · · ,xAM
(t)) ∈ Y ∀t > 0. If (xA1

(0), · · · ,xAM
(0)) /∈ Y , Ąnd (uR1

, · · · ,uRN
)

such that (xA1
(t), · · · ,xAM

(t)) ❀ Y in Ąnite time.

Our objective in this chapter is to come up with algorithms to solve this problem. Before
presenting the algorithms, we state the assumptions on the observerŠs knowledge

Assumption 1. The observer a-priori knows the agentsŠ dynamics in (9.1) i.e. both the
structure of the dynamics equations and the parameters (xG, Ds, kG, kA, kR).

Assumption 2. The observer can track the positions and velocities of all agents and robots.

Assumption 1 is not stringent because if the dynamics are unknown, the robots can learn the
dynamics online using multiagent system identiĄcation algorithms, some of which we have
developed in our prior work [27, 28] and use certainty equivalence to design the controllers.
We will demonstrate this in the next chapter. Given these assumptions, we are ready to
develop the Ąrst algorithm to solve problem 1.
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9.2 Centralized Controller

In this section, we present the Ąrst algorithm to solve problem 1. Given the protected zone
as deĄned in (9.3), we Ąrst pose the requirement for defending against one agent, say agent
i located at xAi

. Subsequently, we will generalize this to the rest of the agents in the herd.
For this agent, treat yi(·) (9.4) as a safety index. By our choice, yi ≥ 0 =⇒ xAi

∈ Pc i.e. yi
is non-negative whenever agent i is outside P . Thus, assuming that at t = 0, yi(xAi

(0)) ≥ 0,
we require yi(xAi

(t)) ≥ 0 ∀t ≥ 0. Treating yi(·) as a control barrier function [55], this can
be achieved if the derivative of yi(·) satisĄes the following constraint,

ẏi(xA1
, · · · ,xAM

,xR1
, · · · ,xRN

) + p1yi(xAi
) ≥ 0

=⇒ 2(xAi
− xP )T ẋAi

+ p1yi(xAi
) ≥ 0

=⇒ 2(xAi
− xP )Tfi + p1yi(xAi

) ≥ 0. (9.6)

DeĄning x = (xA1
, · · · ,xAM

,xR1
, · · · ,xRN

), we rewrite this as

2(xAi
− xP )Tfi(x) + p1yi(xAi

) ≥ 0. (9.7)

Here p1 is a design parameter that we choose to ensure that

p1 > 0 and p1 > −
ẏi(x(0))

yi(x(0))
. (9.8)

The Ąrst condition on p1 requires that the pole is real and negative. The second depends on
the initial positions x(0) of the Ćock agents and the robots. Now while (9.7) depends on the
positions of the agent and robots, it is the velocities of the robots i.e. uallR = (uR1

, · · · ,uRN
)

that are directly controllable not their positions. Since these velocities do not show up in
(9.7), we deĄne another function vi(·) : R2(M+N) −→ R

vi(x) = ẏi(x) + p1yi(xAi
). (9.9)

Like before, in order to ensure vi ≥ 0 is maintained, its derivative needs to satisfy

v̇i(x) + p2vi(x) ≥ 0. (9.10)

Here p2 is another design parameter which we choose p2 to ensure that the following is
satisĄed

p2 > 0 and p2 > −
ÿi(x(0)) + p1ẏi(x(0))

ẏi(x(0)) + p1yi(xAi
(0))

(9.11)

Using (9.9) in (9.10), we get,

ÿi(x) + (p1 + p2)
︸ ︷︷ ︸

α

ẏi(x) + p1p2
︸ ︷︷ ︸

β

yi(xAi
) ≥ 0

=⇒ ÿi(x) + αẏi(x) + βyi(xAi
) ≥ 0. (9.12)
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Here α and β are hyperparameters and are chosen by ensuring that p1 and p2 satisfy the
requirements in (9.8) and (9.11). The derivatives of yi(·) required in (9.12) are

ẏi(x) = 2(xAi
− xP )T ẋAi

= 2(xAi
− xP )Tfi(xA1

, · · · ,xAM
,xR1

, · · · ,xRN
)

ÿi(x) = 2ẋTAi
ẋAi

+ 2(xAi
− xP )T

(
M∑

j=1

JAjiẋAj
+

N∑

k=1

JRkiuRk

)

= 2fTi fi + 2(xAi
− xP )T

(
M∑

j=1

JAjifj +
N∑

k=1

JRkiuRk

)

, (9.13)

where JAji and JRki are

JAji := ∇xAj
fi(xA1

, · · · ,xAM
,xR1

, · · · ,xRN
)

JRki := ∇xRk
fi(xA1

, · · · ,xAM
,xR1

, · · · ,xRN
)

Note here that ÿi(x) contains the velocities of robots as we wanted. Substituting (9.13) in
(9.12), we get a linear constraint on the velocities of all the robots to ensure that the ith

agent stays outside P

AHi u
all
R ≤ bHi , (9.14)

where,

AHi := (xP − xAi
)T
[

JR1i JR2i ..... JRNi
]

bHi := fTi fi + (xAi
− xP )T

M∑

j=1

JAjifj + α(xAi
− xP )Tfi + β

yi
2
. (9.15)

While this constraint ensures that only agent i is repelled from P , the observer requires this
for all M Ćock agents, not just agent i. This can be done by augmenting constraints for all
agents in the Ćock as follows








AH1
...

AHM







uallR ≤








bH1
...

bHM








=⇒ AHuallR ≤ bH (9.16)

Here AH ∈ RM×2N and bH ∈ RM . Thus, there are M constraints, one for each agent in
the Ćock. Given these constraints on the robotsŠ velocities, we pose the following QP that
searches for the min-norm velocities that satisĄes these constraints

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to AHuallR ≤ bH (9.17)
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The cost function in (9.17) is
∥
∥
∥uallR

∥
∥
∥

2
=
∑N
i=1 ∥uRi

∥2. Choosing this cost function encourages
the optimizer to Ąnd velocities that consume the least total effort aggregated over all robots.
Thus, the robots will move only if not moving might result in violation of the constraints.
Furthermore, since (9.17) computes the velocities of all robots together, it is a centralized
approach by construction. Now while in the above derivation, we considered preventing
the agents from breaching only one protected zone P , we can just as easily protect an
additional zone P ′ by formulating similar constraints AH2 uallR ≤ bH2 on the robotsŠ velocities
corresponding to P ′. By augmenting (9.17) with new constraints for P ′, we will be able to
defend both zones from all agents simultaneously. This is a beneĄt offered by our constraint
based framework. An experimental validation of this is shown in Fig. 9.5. The following
theorem proves that for the one robot v/s one agent case, (9.17) is always feasible:

Theorem 1. If there is one robot and one agent, then (9.17) always has a solution.

Proof. See appendix 9.7.1.

The defending constraints we posed in (9.16) do not guarantee that the robots wonŠt collide
with the Ćock agents. Even though the agentsŠ dynamics have repulsions from the robots,
the robot velocities computed using (9.17) can result in aggressive behavior. Thus, we aug-
ment the defending constraints with additional constraints to ensure collision-free behavior.
Following the approach in [54], we deĄne a pairwise safety index bik(·) : R2 ×R2N −→ R as:

bik(xAi
,xR1

, · · · ,xRN
) = ∥xAi

− xRk
∥2 −R2

A

=
∥
∥
∥xAi

− CkxallR
∥
∥
∥

2 −R2
A.

bik(·) ≥ 0 iff robot k is atleast RA distance away from agent i. Here Ck is a matrix deĄned
appropriately to extract the position of the kth robot from xallR . If bik(xAi

(0),xallR (0)) ≥ 0
∀k ∈ R, we would like to ensure that bik(xAi

(t),xallD (t)) ≥ 0 ∀t ≥ 0 and ∀k ∈ R. This can
be achieved by requiring that

ḃik(x) + γbik(x) ≥ 0 ∀k ∈ R, (9.18)

where γ > 0. This gives us a total of N linear constraints on the velocity of all robots for
avoiding collisions with the ith agent:

ACi u
all
R ≤ bCi , (9.19)

where,

ACi =








(xAi
− xR1

)TC1

...

(xAi
− xRN

)TCN








and bCi =








γ
2
bi1 + (xAi

− xR1
)Tfi

...
γ
2
biN + (xAi

− xRN
)Tfi







. (9.20)
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To ensure all collision avoidance with all M agents1, we augment constraints (9.19) for all
the herd as follows








AC1
...

ACM







uallR ≤








bC1
...

bCM








=⇒ ACuallR ≤ bC . (9.21)

Next, we combine the defending constraints in (9.16) with the collision avoidance constraints
in (9.21) and incorporate them in the following QP to Ąnd the optimal velocities of the robots

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2
(9.22)

subject to AHuallR ≤ bH

ACuallR ≤ bC .

Here u∗all
R are the optimal velocities for all the robots to ensure both defending and collision

avoidance simultaneously. The cost function penalizes the total speed of the robots, thus en-
couraging them to minimize their movement. This QP is a centralized optimization problem,
in that, we are calculating the velocities of all robots together. From our observations, we
noticed that centralization results in automatic allocation of the robot for defense against the
agent closest to it, so the total movement aggregated over all the robots is minimized. More-
over, we also observed that a small amount of underactuation i.e. fewer robots than Ćock
agents was enough for zone defense in most circumstances. However, this was not repeat-
able; breach occurred whenever (9.17) became infeasible. Thus, while budget-efficient, the
centralized algorithm lacks the feasibility guarantee whenever N < M . In the next section,
we develop an algorithm that can provide a guarantee on zone defense and is also distributed
in its implementation. We also develop another distributed algorithm that attains the same
budget efficiency as promised by the centralized algorithm.

9.3 Distributed Controllers

In the previous section, we developed a centralized algorithm to solve the behavior shap-
ing problem (9.17). We could only provide a proof of feasibility of the centralized algorithm
when the number of agents and robots are both one. In an attempt to generalize that re-
sult, in this section, we develop a distributed algorithm that guarantees that problem (1) is
solvable when the number of robots is equal to the number of Ćock agents i.e. M = N . To
achieve this feasibility, we allocate each Ćock agent to a unique robot and pose a constraint
on that robotŠs velocity to herd its allocated agent away from the protected zone. This
approach allows to guarantee the existence of a solution to problem (9.17) while coming at
the expense of necessitating as many robots as Ćock agents.

1inter-robot collision avoidance constraints can also be added following a similar procedure.
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While this is a strong result in itself, in many experiments and simulations, we observed
that often times, fewer robots than agents were sufficient to repel all agents away from P
i.e. underactuation did not necessarily result in zone breach. This observation led us to
develop a second distributed algorithm. In this algorithm, we develop an iterative approach
that asymptotically attains the same velocities as computed by the centralized algorithm,
thereby attaining the same total optimality (measured in terms of the total movement the
robots exhibit) as the centralized approach and obviating the need to have equal numbers of
robots and Ćock agents. We build on the dual-decomposition algorithms proposed in [89, 90]
for developing this distributed algorithm. Both of our proposed distributed algorithms are
compositional in nature i.e., we can protect multiple zones by including more constraints, as
shown in Ągure 9.1(c). While the Ąrst distributed algorithm favors feasibility, i.e. guarantee-
ing the existence of solutions to (9.17), the other favors optimality i.e inherits the optimality
(i.e. budget efficiency) from the centralized approach. The starting point of both these
algorithms is the the centralized algorithm in (9.17) which we recall here.

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to AHi u
all
R ≤ bHi ∀i ∈ ¶1, 2, · · · ,M♢ where, (9.23)

AHi := (xP − xAi
)T
[

JR1i JR2i ..... JRNi
]

bHi := fTi fi + (xAi
− xP )T

M∑

j=1

JAjifj + α(xAi
− xP )Tfi + β

yi
2

9.3.1 Approach 1: Allocating one agent to one robot

In this approach, we assume that we have an equal number of robots and Ćock agents
i.e M = N . By exploiting this equality, we assign a unique agent Ai for i ∈ ¶1, · · · , N♢ to a
unique robot Rk for k ∈ ¶1, · · · , N♢ and make Rk responsible for herding Ai away from P .
In other words, Rk computes a velocity uRk

that repels Ai from P , thereby ensuring that
xAi

(t) /∈ P ∀t ≥ 0. The premise is that owing to the equality, each agent will end up being
herded by a unique robot, therefore, no agent will breach the protected zone2. Now while
this strategy necessitates having an equal number of robots and agent, the beneĄt of this
approach stems from the feasibility guarantee (that we prove shortly), which the centralized
approach lacks. Simple algebraic manipulation of constraint in (9.23) yields a constraint on
the velocity of Rk as follows

AHikuRk
≤ bHik, where (9.24)

2Note that although Ai is assigned to Rk, the position of the remaining robots ¶1, · · · , N♢\k and the
remaining agent ¶1, · · · , N♢\i do inĆuence RkŠs constraint parameters (AH

i , bH
i ), and in turn, its computed

velocity u∗

Rk
.
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AHik := (xP − xAi
)TJRki

bHik := fTi fi + (xAi
− xP )T

∑

j∈A
JAjifj + α(xAi

− xP )Tfi + β
yi
2
− (xP − xAi

)T
∑

l∈R\k
JRliuRl

Here AHik ∈ R1×2 and bHik ∈ R. The term uRl
in the expression of bHik is computed by using

numerical differentiation of the positions xRl
. We pose a QP to obtain the min-norm velocity

for Rk as follows

u∗
Rk

= arg min
uRk

∥uRk
∥2

subject to AHikuRk
≤ bHik. (9.25)

This optimization problem calculates only the velocity for robot Rk i.e. uRk
subject to

constraints only on uRk
. Furthermore, the cost function also minimizes the effort only for

Rk not the other robots. That is why (9.25) can be implemented locally on robot Rk, making
it a distributed algorithm. It is by no means guaranteed that the R′

ks velocity computed by
the centralized approach in (9.17) will be the same as the one computed by (9.25). We will
remedy this issue in the next distributed algorithm. That being said, the velocity obtained
from (9.25), if feasible, guarantees that the protected zone P will not be breached by Ai.
Since each robot in R is in-charge of herding exactly one agent in A, the feasibility of (9.25)
∀k ∈ R would ensure that no agent breaches P . Thus, all that remains to show is that (9.25)
is feasible. Before showing that, we state some assumptions.

Assumption 3. We make the following assumptions on the distances between pairs of agents:

1. There exists a lower bound and upper bound on the distance between any pair of agents,
i.e, LS ≤

∥
∥
∥xAi

− xAj

∥
∥
∥ ≤MS, ∀i, j ∈ ¶1, · · · , N♢ and i ̸= j.

2. There exists a lower bound on the distance between every agent and robot, i.e.,
∥xAi

− xRk
∥ ≥ LD ∀i ∈ ¶1, · · · , N♢ and k ∈ ¶1, · · · , N♢.

3. There exists a upper bound on the distance between each agent and its goal i.e.,
∥xAi

− xG∥ ≤ MG and between the agent and the center of the protected zone i.e.,
∥xAi

− xP∥ ≤MP .

Theorem 2. In a scenario with ŚN Š robots and ŚN Š agents, with each agent assigned a unique
robot, the herding constraint (9.24) for a given robot is always feasible, provided assumptions
3 are met.

Proof. See appendix (section 9.7.2).

9.3.2 Approach 2: Iterative reformulation of centralized controller

The distributed formulation proposed in (9.25) comes with a feasibility guarantee en-
suring that all agents will be herded away from P . While vital, this comes at the cost of
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requiring as many robots as the number of Ćock agents. This is because, in a way, this equal-
ity ensures that controlling the agents from the perspective of robots is not an underactuated
problem. Be that as it may, in our simulations and experiments involving the centralized
approach with an equal number of robots and agents, we frequently observed that not all
robots needed to move to repel the agents away from P i.e., equality may have been an
overkill. Thus, in terms of budget efficiency, at least empirically, the centralized approach
outweighs the distributed approach.

This raises the question, can we convert the centralized algorithm of (9.23) into a dis-
tributed version that inherits the budget efficiency (optimality) promised by (9.23)? In-
deed, we found out that [89, 90] propose algorithms to convert constrained-coupled con-
vex optimization problems (such as (9.23)) into distributed counterparts. They combine
techniques called dual decomposition and proximal minimization and develop iterative dis-
tributed schemes which consist of local optimization problems. The solutions to these opti-
mization problems asymptotically converge to the solution of centralized optimization under
mild convexity assumptions and connectivity properties of the communication network. In
our case, this network refers to the communication between robots. Below, we present the
distributed dual sub-gradient method of [89, 90] adapted to the costs and constraints of
(9.23). This algorithm calculates an estimate of robot RkŠs velocity ûRk

which, given large
enough iterations Tmax, matches with the kth velocity component in the optimal velocities
u∗all
R returned by (9.23). Ak ∈ RM×2 refers to those columns of AH that correspond to uRk

in uallR .

Algorithm 1 Distributed Dual Subgradient for (9.23) (based on sec. 3.4.2 in [90])

Initialize Lagrange Multiplier: µ0
k = 0 ∈ RM

Evolution: t = 1, 2, · · · , Tmax
Gather Multipliers µt

l from Rl ∀l ∈ ¶1, · · · , N♢\k
Average Multipliers: vt+1

k = 1
N

∑

l∈¶1,··· ,N♢\k µ
t
l

Local Solution: ut+1
Rk

= arg min
u
∥u∥2 + (vt+1

k )T (Aku− 1
N
bH) = −1

2
ATk v

t+1
k

Update Multiplier: µt+1
k =

[

vt+1
k + γt

(

Aku
t+1
Rk
− 1

N
b
)]

+

Return Average: ûRk
= (1/Tmax)

∑Tmax
t=1 utRk

9.4 Simulation Results

In this section, we show results of our centralized and distributed approaches by testing
them on different scenarios with varying numbers of Ćock agents and robots, and varying
initial positions. We represent the protected zone with a circular disc with radius Rp centered
at the origin i.e. xP = 0. We purposefully choose the agentsŠ goal to be the center of the
protected zone i.e. xG = xP . This is done so that the agents are motivated to breach the
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protected zone should the robots not interfere. The initial positions xAi
(0) of all agents are

chosen such that they are all close to each other. This is done to ensure that the agents have
enough time to stabilize as a Ćock before interacting with the robots. The initial positions
xallR (0) of the robots are chosen randomly within the area of operation. The agentsŠ velocities
are calculated using (9.1). The values of the gains in the agent dynamics were taken as
kG = 1, kA = 0.3 and kR = 0.08.

(a) Three robots v/s three agents. (b) Three robots v/s Ąve agents. (c) Three robots v/s three agents.

Figure 9.1: Centralized Controller for preventing the breaching of the protected zone.
In these simulations, the robots are shown in blue and the Ćock agents are shown in red.
The green disc represents the protected zone. The nominal task of the Ćock agents is to go
straight towards goal xG. However, since this would result in inĄltration of the protected
zone, the robots intervene using the control algorithm presented in (9.22). In 9.1(c), we
defend two protected zones from three agents.

9.4.1 Simulations for the Centralized Controller

The velocities of the defending robot were obtained using (9.22). The hyperparameters
α, β, γ are tuned satisfy the conditions given in (9.8) and (9.11). Figure 9.1 shows three
simulation results. In these simulations, we varied the initial positions of the Ćock agents
(red), the robots (blue), the number of Ćock agents and the number of robots. It can be
noticed from the Ągure that in all three scenarios, the robots are able to successfully intercept
all agents and prevent them from entering the protected zone while also avoiding collisions
with the agents.

We further study the performance of the proposed control strategy by using Monte
Carlo simulations by varying the initial conĄgurations and the number of Ćock agents
M and the number of robots N . We vary these from one to ten, and for a given pair
of (M,N), we run the simulation for a hundred times with random initializations of
x0 = (xA1

(0), · · · ,xAM
(0),xR1

(0), · · · ,xRN
(0)) in every run. Table 9.1 reports these re-

sults. Each entry of this table reports the percentage success rate i.e. in how many cases
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the agents got diverted away from the protected zone. As can be seen, almost all entries are
100, which proves the success of our algorithm. The failure cases correspond to scenarios
when during the transition from the initial conĄguration to the Ąnal conĄguration, the QP
becomes infeasible in certain cases and hence leads to breaching of the protected zone. When
the QP becomes infeasible, we assign the robots to have zero velocity.

Further, we considered the impact of including collision avoidance constraints. The met-
rics with these constriants incorporated are reported in Table 9.2. Because it is possible
that these collision avoidance constraints conĆict with the defending constraints, the QP
may become infeasible. Thus, we do not observe as good successes in this case compared to
when there are no collision avoidance constraints. Lastly, we demonstrate one additional

Table 9.1: Performance of the proposed strategy with varying number of Ćock agents and
robots. Here, we did not consider collision avoidance constraints.

M\N 2 4 6 8 10
2 100 100 100 100 100
4 100 100 100 100 100
6 100 98 100 100 100
8 100 98 100 100 98
10 100 98 98 100 96

Table 9.2: Performance of the proposed strategy with varying number of Ćock agents and
robots. Here we considered collision avoidance constraints in the dynamics of the robots.

M\N 2 4 6 8 10
2 72 99 99 100 100
4 62 74 90 97 100
6 28 83 99 99 100
8 63 82 100 100 100
10 70 79 90 91 94

beneĄt of our approach. Since our code relies on using automatic differentiation and sym-
bolic computation tools for calculating all the gradients, we can easily change the behavioral
requirements expected out of the agents. For example, instead of preventing them from
breaching a protected zone (Fig. 9.2(a)), we can prevent them from escaping a home zone
(Fig. 9.2(b)). In the next section, we present the results of our distributed optimization
algorithms.
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(a) Preventing breaching of protected zone (b) Preventing escape from protected zone

Figure 9.2: Centralized Controller: Demonstration of our results showing (a) how to
prevent agent (red) from breaching a protect zone (green) and (b) preventing agent (red)
from escaping the protected zone using robots (blue).

9.4.2 Simulations for the Distributed Controllers

In this section, we demonstrate the effectiveness of the distributed controller developed
in (9.25). This algorithm requires equal numbers of Ćock agents and robots. Figures 9.3(a)
and 9.3(b) shows two examples involving a) two robots vs. two Ćock agents and b) three
robots vs. three Ćock agents. To demonstrate the compositionality of our approach, we
consider two protected zones in Ągure 9.3(c) where we have four robots defending both zones
from four Ćock agents. In all these simulations, none of the Ćock agents breach any zone,
thus demonstrating the correctness of our approach. In the interest of space, we skip the
simulation results for the algorithm in 9.3.2 but do provide experimental results.

9.5 Experimental Results

Finally, we tested our algorithm in robots in the multirobot test arena in our lab. It
consists of a 14ft × 7ft platform, several Khepera IV robots and additionally eight Vicon
cameras for motion tracking. All control inputs are computed on a desktop and conveyed
to the robots over WiFi. While we developed our algorithms assuming that the dynamics of
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(a) Two robots v. two Ćock agents. (b) Three robots v. three agents (c) Four robots v. four Ćock agents

Figure 9.3: Distributed Controller: Preventing the breaching of the protected zone using
our proposed distributed controller in (9.25). Here robots are shown in blue and Ćock agents
in red. The green disc represents the protected zone. The nominal task of the Ćock agents
is to go straight towards goal xG. However, since this would result in inĄltration of the
protected zone, the dog intervenes using the distributed control algorithm. In Fig. 9.3(c),
we defend two protected zones from four Ćock agents.

all agents are single-integrator based, the robots have unicycle dynamics given by






ẋ

ẏ

θ̇







=







v cos θ

v sin θ

ω







(9.26)

Thus, we do a minor adjustment to map the inputs computed from our algorithms to the
angular speed and forward translational speed of these robots. This is done by considering
a point at a distance d on the xb axis of the body frame of the robot:

x =

(

x+ d cos θ

y + d sin θ

)

=⇒ ẋ =

(

cos θ − sin θ

sin θ cos θ

)(

1 0

0 d

)

︸ ︷︷ ︸

M

(

v

ω

)

= ũ

=⇒
(

v

ω

)

= M−1ũ (9.27)

9.5.1 Robot Experiments with the centralized controller

For Ćock agent robots, ũ is obtained from (9.1) while for the defending robots, ũ is
obtained from (9.17). In Fig. 9.4, we have one agent (in red box) and one defending robot
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(in blue box). The protected zone is highlighted in green and the goal of the sheep is the
black dot. We use (9.17) to compute the velocity of the robot and convert it to angular and
translational speeds using (9.27). As can be noted from the snapshots, the defending robot
is able successfully defend the zone from the agent. Finally, in Fig. 9.5 we demonstrate that
our approach can deal with multiple protected zones simultaneously. We purposefully kept
the goal of the agent in the left most protected zone so the agent would be incentivized to
breach both zones. Yet still, our algorithm is able to Ąnd velocities for robots to defend both
the zones from both agents. Figure 9.6 shows a case with 2 robots and 4 Ćock agents. The

(a) t = 0s (b) t = 3s

(c) t = 20s (d) t = 55s

Figure 9.4: Experiments for Centralized Control: One defending robot preventing one
agent from the breaching of the protected zone. The defending robot is highlighted in blue
and the agent in red. The goal position xG is at the center of the protected zone and given
as a black solid circle. The nominal task of the agent is to go straight towards its goal xG.
However, since this would result in inĄltration of the protected zone, the robot intervenes
using the control algorithm presented in (9.17). Video at https://tinyurl.com/2p9fjeft.

robots have a green tail, and the Ćock agents have an orange tail. The tails are pointing in
the opposite direction of the robotŠs heading angle. Another example is shown in Ągure 9.7
where 3 robots successfully prevent breaching against 5 Ćock agents.
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(a) t = 0s (b) t = 7s

(c) t = 10s (d) t = 14s

Figure 9.5: Experiments for Centralized Control: One defending robot preventing two
agent from the breaching of two protected zones. The goal lies in the left most protected
zone. Video at https://tinyurl.com/ycuyhwe6.

9.5.2 Robot experiments with distributed controllers

Following that, multiple experiments were conducted using the distributed algorithm
presented in section 9.3.1, which requires equal number of robots and Ćock agents. Figure
9.8 shows 4 robots against 4 Ćock agents. Here we take two protected zones and show that the
robots can protect both of them. This highlights the compositional nature of our algorithm.
We conducted experiments with 5 robots and 5 Ćock agents, as shown in Figure 9.9. Here
we can see some robots did not move as fewer robots were enough to repel all Ćock agents
from the protected zone. Finally, we test our distributed algorithm presented in section 9.3.2.
Figure 9.10 shows a case where 2 robots prevent the breaching of protected zone against three
robots. This highlights that our distributed approach can handle underactuated scenarios.
Figure 9.11 and Ągure 9.6 can be compared to see both centralized and distributed algorithm
handling a similar scenario of 2 robots against 4 Ćock agents.
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(a) t = 0s (b) t = 5s

(c) t = 12s (d) t = 30s

Figure 9.6: Experiments for Centralized Control: Two robots defending the protected
zone from four Ćock agents using centralized control algorithm (9.17). Video at https:

//bit.ly/3OTAnOu.

9.6 Conclusions

In this chapter, we developed optimization-based control algorithms for a group of robots
to prevent a Ćock of agents from breaching a protected zone. We developed both centralized
and distributed algorithms. Our constraint based framework allowed us to include multuple
protected zones. Through empirical simulations, we concluded that the centralized algorithm
allows for defense against as many as 10 agents using as few as 6 robots. Next, we built on top
of this algorithm to come up with two distributed implementations. For the Ąrst distributed
algorithm, we kept feasibility as the main criterion and provided proof of feasibility of the
controller when the number of Ćock agents and robots are equal. We developed another
distributed algorithm that iteratively computes a solution that agrees with the solution
returned by the centralized problem without requiring equal number of robots and Ćock
agents. We experimentally validated all algorithms on the multirobot arena in our lab. In
future work, we aim to analyze the feasibility of these algorithms in the presence of actuator
limit constraints and evaluate their resilience under sitations where the true model of the
Ćock agents differs signiĄcantly from the model assumed by the robots.
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(a) t = 0s (b) t = 5s

(c) t = 30s (d) t = 50s

Figure 9.7: Experiment for Centralized Control: Three robots (green-tailed robots)
defending a protected zone from Ąve Ćock agents (orange-tailed robots) using centralized
control (9.17). Video at https://youtu.be/2_Xuxnd9jZw.

9.7 Appendix

9.7.1 Proof of feasibility of the centralized controller

Theorem 1. If there is one robot and one agent, then (9.17) always has a solution.

Proof. Let the position of the robot be xR and that of the agent be xA. The agent dynamics
can be simpliĄed to

ẋA = f(xA,xR) = kG (xG − xA) + kR
xA − xR

∥xA − xR∥3 (9.28)

The only case when (9.17) does not have a solution is when the defending constraint AHuR ≤
bH is infeasible. This can occur

• either when AH = 0 and bH < 0 (possibility 1)

• or when bH = −∞ (possibility 2).
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(a) t = 0s (b) t = 6s

(c) t = 12s (d) t = 20s

Figure 9.8: Experiment for the distributed algorithm in section 9.3.1 : Four robots
(green-tailed robots) defending two protected zone from four Ćock agents (orange-tailed
robots). The goal position xG (red disc) is in extreme left that would encourage Ćock agents
to breach both zones. However, our proposed algorithm moves the robots so that none of
the zones get breached. Video at https://bit.ly/3yo9ziC.

For this case AH is:

AH = (xP − xA)TJR11 (9.29)

Thus, if JR11 is non-singular, (xP − xA)TJR11 ̸= 0. From our calculations, we Ąnd that the
determinant of JR11 is

det(JR11) =
−2k2

R

∥xR − xA∥3 (9.30)

As long as the distance between the robot and the agent is Ąnite, det(JR11) is always non
zero. Thus, there exists no null space for the jacobian matrix JR11. This implies AH ̸= 0

∀xA ∈ Rn,xR ∈ R2. This rules out possibility 1 for infeasibility. For possibility 2, we need
to examine when does bH −→ −∞. The expression for bH is:

bH = fTf + (xA − xP )TJA11f + α(xA − xP )Tf + β
y

2
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(a) t = 0s (b) t = 12s

(c) t = 25s (d) t = 40s

Figure 9.9: Experiment for the distributed algorithm in section 9.3.1 : Five robots
(green-tailed robots) defending the protected zone from Ąve Ćock agents (orange-tailed
robots). The Ćock agentsŠs goal (red disc) is in the center of the protected zone. Even-
tually, in this scenario a deadlock occurs where all Ćock agents come to a stop outside the
protected zone. Video at https://bit.ly/3o51Cu1.

We want to Ąnd the worst case lower bound of bH . Here fTf ≥ 0 always. We assume that
at the current time step, the agent is outside the P , this ensures β y

2
≥ 0.

Assumption 4. Assume ∥xA − xG∥ ≤M1, ∥xA − xP∥ ≤M2 and ∥xA − xR∥ ≥M3 ∀t.
With these assumptions, we can lower bound bH as follows:

bH ≥ (xA − xP )TJA11f + α(xA − xP )Tf

≥ −(σmax(J11) + α) ∥f∥ ∥xA − xP∥
≥ −(σF (J11) + α) ∥f∥ ∥xA − xP∥ (9.31)

Here ∥f∥ ≤ kG ∥xA − xG∥ + kR

∥xA−xR∥2 using triangle inequality on (9.28). This

gives ∥xA − xP∥ ∥f∥ ≤ kGM1M2 + kRM2

M2

3

. We can show that σF (J11) ≤ λM :=
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(a) t = 0s (b) t = 4s

(c) t = 15s (d) t = 30s

Figure 9.10: Experiment for distributed algorithm in section 9.3.2 : Two robots
(green-tailed robots) defending the protected zone from three Ćock agents (orange-tailed
robots). The goal position xG (red disc) is at the center of the zone. Video at https:

//youtu.be/IbCjkR1ye0c.

√

2k2
G + 5

k2

R

M6

3

+ 2kGkR

M3

3

. Thus, using this, we obtain the following lower bound for bH

bH ≥ −(λM + α)

(

kGM1M2 +
kRM2

M2
3

)

(9.32)

This shows that bH is lower bounded and thus does not reach −∞. Hence possibility 2 is
also ruled out. Thus, (9.17) is always feasible.

9.7.2 Proof of feasibility of the distributed controller

Theorem 2. In a scenario with ŚN Š robots and ŚN Š agent, with each robot assigned a unique
agent, the herding constraint (9.24) for a given robot is always feasible, provided assumptions
3 are met.

Proof. Our strategy to guarantee feasibility of constraint (9.24) relies on ruling out situations
in which it is infeasible. (9.24) can become infeasible
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(a) t = 0s (b) t = 4s

(c) t = 15s (d) t = 30s

Figure 9.11: Experiment for distributed algorithm in section 9.3.2) : Two robots
(green-tailed robots) defending the protected zone from four Ćock agents (orange-tailed
robots). This case is similar to the one shown in Ąg. 9.6. Video at https://youtu.

be/51FoHZWFYC4.

• either when AHik = 0 and bHik < 0 (possibility 1)

• or when bHik = −∞ (possibility 2).

To determine when possibility 1 may occur, we calculate the determinant of JRki as

det(JRki) =
−2k2

R

∥xRk
− xAi

∥3
.

det(JRki) is non-zero as long as the distance between robot Rk and agent Ai is Ąnite. Therefore,
JRki will have no null space, implying that AHik ̸= 0 ∀xAi

∈ R2,xRk
∈ R2. This rules out

possibility 1 for infeasibility. To rule out possibility 2, we need to check for condition when
bHik −→ −∞. Given bHik in (9.14), we Ąnd its worst case lower bound. Here fTi fi ≥ 0 and as
we assume that at the current time step, the agent is outside P , this ensures β yi

2
≥ 0. By

removing these terms, the lower bound of bHik can be given as

bHik ≥(xAi
− xP )T

M\i
∑

j=1

JAjifj + (xAi
− xP )TJAiifi + α(xAi

− xP )Tfi + (xAi
− xP )T

N\k
∑

l=1

JRliuRl
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Using the triangle and Cauchy-Schwarz inequalities, we get

bHik ≥
M\i
∑

j=1

(

−σmax
(

JAji
)

∥xAi
− xP∥ ∥fj∥

)

− σmax
(

JAii
)

∥xAi
− xP∥ ∥fi∥ − α∥xAi

− xP∥∥fi∥

+
N\k
∑

l=1

(

−σmax
(

JRli
)

∥xAi
− xP∥ ∥uRl

∥
)

where σmax is the largest singular value of a matrix. Further, using the fact that the largest
singular value of a matrix (σmax) is upper bounded by its Frobenius norm (σF ), we obtain

bHik ≥
M\i
∑

j=1

(

−σF
(

JAji
)

∥xAi
− xP∥ ∥fj∥

)

− σF
(

JAii
)

∥xAi
− xP∥ ∥fi∥ − α∥xAi

− xP∥∥fi∥

+
N\k
∑

l=1

(

−σF
(

JRli
)

∥xAi
− xP∥ ∥uRl

∥
)

Now to compute this lower bound we make use of assumption 3. We use the dynamics in
(9.1) to compute JAii and obtain the upper bound on σF

(

JAii
)

and use the bounds on distances
from assumption 3 to get following upper bound:

σF
(

JAii
)

≤
N\i
∑

j=1

kA

(√
2 +

√
5R3

∥xAi
− xAj

∥3

)

+
√

2kG +
N∑

l=1

√
5kR

∥xAi
− xRl

∥3 (9.33)

≤ (N − 1)

(√
2kA +

√
5kAR

3

L3
S

)

+
√

2kG +N

(√
5kR
L3
D

)

:= λM (9.34)

We omit the proof of this computation in the interest of space. Similarly, using the dynamics
in (9.1), we compute an expression for JAji and obtain an upper bound on σF

(

JAji
)

as follows:

σF
(

JAji
)

≤
√

2kA +

√
5kAR

3

∥xAi
− xAj

∥3
≤
√

2kA +

√
5kAR

3

L3
S

:= λS

Likewise, an upper bound of σF
(

JRli
)

, is given by

σF
(

JRli
)

≤
√

5kR
∥xAi

− xRl
∥3
≤
√

5kR
L3
D

:= λD

Lastly, we use obtain an upper bound on the dynamics of each agent fi as:

∥fi∥ ≤
∑

j∈S\i
kA

(

∥xAi
− xAj

∥+
R3

∥xAi
− xAj

∥2

)

+ kG∥xG − xAi
∥+

∑

l∈D
kR
∥xAi

− xRl
∥

∥xAi
− xRl

∥3

Now we need to compute the maximum possible value of the RHS to get the upper bound of
the agent dynamics. The Ąrst term has a local minima at ∥xAi

−xAj
∥ = (2)1/3R. Therefore
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the maximum value can occur at either the lower bound or upper bound of ∥xAi
−xAj

∥. Thus

the maximum value of the Ąrst term can be given as Fmax := max(kALS + kA
R3

L2

S

, kAMS +

kA
R3

M2

S

). Second term is maximum when ∥xG−xAi
∥ = MG. The last term is maximum when

distance of the agent to the robots are minimum, ∥xAi
−xRk

∥ = LD. Using these the upper
bound on the agent dynamics is computed as:

∥fi∥ ≤ (n− 1)Fmax + kGMG + nkR

(

1

L2
D

)

Assuming that the velocity of the robots have an upper bound, and by taking the upper
bound on the dynamics of all the agent to be equal, the lower bound on bHik from is (taking
γ = −(α+ λM + (n− 1)λS)Mp)

bHi ⩾ γ

{

(n− 1)Fmax + kGMG +
nkR
L2
D

}

− (n− 1)λDMP ∥uD∥max

This shows that bHi has a Ąnite lower bound, thus ruling out possibility 2. Thus, the herding
constraint (9.14) for a one robot to repel one agent from the protected zone is always feasible.
Since each agent in S is allocated to one unique robot in D, extension of this feasibility result
to all agent ensures that none of them will breach the protected zone.
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10 Robust Control Through
Interactions

10.1 Introduction

In the last two chapters, we considered the known-model behavior shaping problem as
we deĄned in Def. 2. In solving this problem, we made the assumption that the latent
parameters in the dynamics of the Ćock agents were known a-priori to the dog robots and
they used these parameters to synthesize their velocities that guaranteed that the protected
zone will not get breached (the constraint terms AHi and bHi in (9.23) explicitly depend on the
parameters of the agent dynamics). In this chapter, we relax this assumption and consider
the uncertain model behavior shaping problem as stated in Def. 3. The observerŠs dog
robots instead have estimates of parameters and an upper bound on the estimation error.
Using these two metrics, the dog robots must synthesize velocities to meet the no breach
requirement. We describe how this uncertain model behavior shaping problem can be cast
as a convex optimization problem that can be solved in real time.

The outline of this chapter is as follows. In section 10.2 we recall the dynamic model of
the sheep Ćock, the uncertain model behavior shaping problem and the known-model cen-
tralized control algorithm i.e. (9.23). In section 10.3, we build on this controller and modify
the constraints so that they can accommodate the nominal estimates of ĆockŠs dynamic
parameters and the uncertainties in these parameters. We show how incorporating uncer-
tainty results in a convex semi-inĄnite program solving which is computationally intractable.
Using two independent philosophies, one based on weak duality and another based on the
s-procedure, we convert this problem to a tractable Ąnite-dimensional convex optimization,
to wit, a semideĄnite program (SDP), which is roughly nearly as easy to solve as a modestly
sized QP. Thus, we show that the problem of computing safe controls with uncertainty can
be posed as a tractable convex problem and can be solved online. To validate this strategy,
we show simulations as well as conduct experiments where the dog robots are required to
defend the protected zone with uncertainty in the goal of the Ćock agents. These results are
presented in section 10.4. Finally, we conclude in section 10.6 with outlook for future work.
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10.2 Problem Formulation

Recall that we have M Ćock agents denoted by A := ¶1, 2, · · · ,M♢ located at positions
xA1

, · · · ,xAM
and N robots R := ¶1, 2, · · · , N♢ located at positions xR1

, · · · ,xRN
respec-

tively. The dynamics of the agent i in the Ćock are

ẋAi
= −kG(xAi

− xG)− kA
∑

j∈A\i



1− Ds
3

∥
∥
∥xAi

− xAj

∥
∥
∥

3



(xAi
− xAj

) + kR
∑

k∈R

(xAi
− xRk

)

∥xAi
− xRk

∥3

(10.1)

The parameters indicated in red are unknown to the observer. We deĄne the aggregated set
of parameters as

θ := (kG, kGxG, kA, kAD
3
s , kR) (10.2)

With representation of parameters, the dynamics of Ai in (10.1) can be rewritten as

ẋAi
= Gi

(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)

θ + fi
(

¶xAi
♢i∈A, ¶xRk

♢k∈R
)

(10.3)

Here Gi and fi are matrices of basis functions that depend on the positions of all agents and
the positions of all robots. Each robotŠs dynamics are

ẋRk
= uRk

∀k ∈ R (10.4)

The multiagent behavior shaping problem with uncertainty is recalled from problem 3,

Problem 1 (Multiagent Behavior Shaping With Uncertain Model). Assume that

observer has estimates of the parameters given by θ̂ and an upper bound on estimation error∥
∥
∥θ̂ − θ

∥
∥
∥ ≤ η. If the initial agent positions (xA1

(0), · · · ,xAM
(0)) ∈ Y, Ąnd robot controls

(uR1
, · · · ,uRN

) such that (xA1
(t), · · · ,xAM

(t)) ∈ Y ∀t > 0. However, if the agent positions
(xA1

(0), · · · ,xAM
(0)) /∈ Y, Ąnd (uR1

, · · · ,uRN
) such that (xA1

(t), · · · ,xAM
(t)) ❀ Y in Ąnite

time.

For the task of defending the protected zone P := ¶x ∈ R2♣ ∥x− xP∥ ≤ Rp♢, we chose to
deĄne the set Y as

Y := ¶(xA1
, · · · ,xAM

) ∈ R2M ♣ ∥xAi
− xP∥2 −R2

p ≥ 0 ∀ i ∈ A♢ (10.5)

In chapter 9, we derived the following constraints on the velocities of dog robots to ensure
that the ith agent stays outside P

AHi (θ)uallR ≤ bHi (θ). (10.6)

We explicitly highlight θ to emphasize the dependence of AHi and bHi on θ. In fact, using
the expressions for AHi and bHi derived in (9.15), we can show that AHi exhibits an affine
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dependence on θ while bHi exhibits a quadratic dependence on θ. To defend against all
agents in A, we augmented constraints for all agents in A as follows

AHi (θ)uallR ≤ bHi (θ) ∀ i ∈ A (10.7)

Finally, we incorporated these constraints in a min-norm QP problem to Ąnd the optimal
velocities of the robots

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to AHi (θ)uallR ≤ bHi (θ) ∀ i ∈ A
(10.8)

Since the parameters θ are now unknown, (10.8) cannot be solved in the form as stated.

Instead of the true parameters, we have an estimate θ̂ and an upper bound on estimation
error η i.e.

∥
∥
∥θ̂ − θ

∥
∥
∥

2
≤ η. Denoting the closed ball centered at θ̂ with radius η as Bη(θ̂), we

can rewrite
∥
∥
∥θ̂ − θ

∥
∥
∥

2
≤ η as θ ∈ Bη(θ̂). Thus, if we can solve (10.8) for all θ† ∈ Bη(θ̂), we are

guaranteed that the returned velocities will ensure defense of the protected zone because by
our assumption, the true parameters θ ∈ Bη(θ̂). Thus, the robust version of (10.8) becomes

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to AHi (θ†)uallR ≤ bHi (θ†) ∀ θ† ∈ Bη(θ̂) and ∀ i ∈ A
(10.9)

In the form as stated, (10.9) is a semi-inĄnite program because the inner constraint require-

ment i.e. θ† ∈ Bη(θ̂) is inĄnite dimensional. Hence, the total number of constraints in (10.9)
becomes M×∞ =∞. Hence, as stated, this cannot be solved in a computationally tractable
way. In the next section, we demonstrate how we can exploit the structure of AHi (θ†) and
bHi (θ†) to convert this to a tractable Ąnite-dimensional convex optimization problem.

10.3 Robust Control Formulation

There are two steps we follow to convert (10.9) to a tractable convex problem. Step 1
is constraint normalization while step 2 invokes duality theory to rewrite the normalized
constraint as a Ąnite-dimensional LMI constraint. We can obtain the same LMI as obtained
in step 2 using s-procedure. This approach is also presented. Finally, in step 3, we combine
all LMI constraints to pose the robust tractable version of (9.23).

10.3.1 Step 1: constraint normalization

Here, we exploit our knowledge that AHi and bHi are respectively affine and quadratic in θ†.
Thus, we can write them explicitly as

AHi = θ†T C̃i + d̃Ti

bHi = θ†T H̃iθ
† + f̃Ti θ

† + g̃i. (10.10)
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Here H̃i is the hessian of bHi with respect to θ†, f̃i is its jacobian with respect to θ† and
g̃i is residual term that does not depend on θ†. Similarly, C̃i is the jacobian of AHi with
respect to θ† and d̃i is the residual term in AHi that does not depend on θ†. These terms
can be computed by doing symbolic differentiation of (9.15) with respect to θ†. Substituting

AHi (θ†) and bHi (θ†) from (10.10) in the constraint AHi (θ†)uallR ≤ bHi (θ†) ∀ θ† ∈ Bη(θ̂) from
(10.9), we get,

(

θ†T C̃i + d̃Ti

)

uallR ≤ θ†T H̃iθ
† + f̃Ti θ

† + g̃i subject to
∥
∥
∥θ† − θ̂

∥
∥
∥

2
≤ η. (10.11)

We normalize this constraint with a variable z by substituting θ† as follows

θ† = θ̂ + ηz, (10.12)

which gives,
(

zTCi + dTi

)

uallR ≤ zTHiz + fTi z + gi subject to ∥z∥2 ≤ 1, where,

Ci := ηC̃i

dTi := θ̂T C̃i + d̃i

Hi := η2H̃i

fi := ηf̃i + 2ηH̃iθ̂

gi := θ̂T H̃iθ̂ + f̃Ti θ̂ + g̃i. (10.13)

With this substitution, problem (10.9) can be rewritten as

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to
(

zTCi + dTi

)

uallR ≤ zTHiz + fT
i z + gi subject to ∥z∥2 ≤ 1 ∀ i ∈ A

(10.14)

In the next section, we show how to pose this optimization problem as a semi-deĄnite program
(SDP). To keep the notation light, we will omit the subscript i and simply augment additional
constraints in the Ąnal problem section 10.3.4, one for defense against each agent in the Ćock.

10.3.2 Step 2: SDP formulation using duality theory

Consider the following QP

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to
(

zTC + dT
)

uallR ≤ zTHz + fTz + g subject to ∥z∥2 ≤ 1.

(10.15)
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In this QP, the constraint effectively consists of an inĄnite number of inequality constraints
corresponding to each z in the unit ball. These inĄnite constraints make the overall problem
a convex semi-inĄnite optimization problem. One approach to solve this problem is by
minimizing the objective while requiring the satisfaction of the most difficult constraint
among the inĄnite constraints. This conservative problem can be posed as follows

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to 0 ≤ inf
∥z∥

2
≤1

zTHz + (f − CuallR )Tz + g − dTuallR
︸ ︷︷ ︸

f0(z)

(10.16)

By requiring the inĄmum of f0(z) over the unit ball to be non-negative, we have converted
an inĄnite number of constraints into a single constraint. This inĄmization results in another
optimization problem within the problem of Ąnding u∗all

R . LetŠs consider this inner problem

inf. zTHz + (f − CuallR )Tz + g − dTuallR

subject to ∥z∥2 ≤ 1.
(10.17)

Note that (10.17) is equivalent to the following (possibly non-convex) QCQP

inf. zTHz + (f − CuallR )Tz + g − dTuallR

subject to zTz ≤ 1.
(10.18)

Let z∗(uallR ) be the optimizer of (10.18) (assume it exists). We require z∗(uallR ) to satisfy
f0(z

∗(uallR )) ≥ 0 per the robustness requirement in the constraint of (10.16). Thus, if we can
Ąnd any lower bound for f0(z

∗(uallR )) and constrain that lower bound to be non-negative,
then we will ensure f0(z

∗(uallR )) ≥ 0 as required by the robustness constraint. We use weak
duality to obtain a lower bound for f0(z

∗(uallR )). The Lagrangian for (10.18) is

L(z, λ) := zTHz + (f − CuallR )Tz + g − dTuallR + λ(zTz − 1)

= zT (H + λI)z + (f − CuallR )Tz + g − dTuallR − λ. (10.19)

DeĄne the Lagrange dual function g(λ) as

g(λ) := inf
z∈Rp
L(z, λ). (10.20)

If λ ≥ 0, then from the lower bound property1, we have that g(λ) ≤ f0(z
∗(uallR )) i.e.

if λ ≥ 0, then g(λ) is a candidate lower bound for f0(z
∗(uallR )). Thus, the robustness

constraint in (10.16) can be posed by requiring g(λ) ≥ 0. To impose this constraint, we

1https://web.stanford.edu/class/ee364a/lectures/duality.pdf
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derive an expression for g(λ) in (10.20) by using the Lagrangian deĄned in (10.19).

g(λ) := inf
z∈Rp

zT (H + λI)z + (f − CuallR )Tz + g − dTuallR − λ

=







−∞ if H + λI ⪰̸ 0

−∞ if H + λI ≽ 0 and f − CuallR /∈ R(H + λI)

−1
4
(f − CuallR )T (H + λI)†(f − CuallR ) + g − dTuallR − λ otherwise

(10.21)

Thus, to ensure that g(λ) ≥ 0 when λ ≥ 0, we require

1. −1
4
(f − CuallR )T (H + λI)†(f − CuallR ) + g − dTuallR − λ ≥ 0

2. H + λI ≽ 0

3. f − CuallR ∈ R(H + λI) ⇐⇒
(

I − (H + λI)(H + λI)†
)

(f − CuallR ) = 0.

From the Schur Complement theorem2, these three conditions are equivalent to

[

H + λI 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR − λ

]

≽ 0 (10.22)

This is a linear matrix inequality type constraint. In conjunction with λ ≥ 0 and (10.22),
problem (10.16) becomes

u∗all
R , λ∗ = arg min

uall
R
,λ

∥
∥
∥uallR

∥
∥
∥

2

subject to

[

H + λI 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR − λ

]

≽ 0

λ ≥ 0.

(10.23)

Using the epigraph trick and Schur complement theorem, we can write (10.23) as

u∗all
R , λ∗, t∗ = arg min

uall
R
,λ,t

t

subject to

[

H + λI 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR − λ

]

≽ 0

λ ≥ 0
[

I uallR

uallTR t

]

≽ 0.

(10.24)

2https://chrisyeh96.github.io/2021/05/19/schur-complement.html
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Problem (10.24) is a semi-deĄnite program (SDP) which produces a conservative solution
to problem (10.15). Compared to (10.15), the constraints in this SDP are Ąnite-dimensional
and the overall problem is still convex. Hence, we can solve this problem using off-the-shelf
convex optimization packages. Next, we show that we can arrive at the same SDP from
problem (10.15) following an alternative approach by invoking the s-procedure.

10.3.3 Step 2: SDP formulation using s-procedure

Let us recall problem (10.15) again

u∗all
R = arg min

uall
R

∥
∥
∥uallR

∥
∥
∥

2

subject to
(

zTC + dT
)

uallR ≤ zTHz + fTz + g subject to ∥z∥2 ≤ 1

(10.25)

We write the ∥z∥2 ≤ 1 constraint as follows:

[

z

1

]T [−I 0

0 1

] [

z

1

]

≥ 0 ⇐⇒ z̃TP z̃ ≥ 0, (10.26)

where we have deĄned

z̃ := (zT , 1)T

P :=

[−I 0

0 1

]

(10.27)

Similarly, we write
(

zTC + dT
)

uallR ≤ zTHz + fTz + g as

[

z

1

]T [
H 1

2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR

] [

z

1

]

≥ 0 ⇐⇒ z̃TQz̃ ≥ 0, (10.28)

where we have deĄned

Q :=

[

H 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR

]

(10.29)

Thus we want z̃TP z̃ ≥ 0 =⇒ z̃TQz̃ ≥ 0. Recall the statement of s-lemma3.

Lemma 1. Let M and N be two symmetric matrices such that there exists a u0 satisfying
(u0)TMu0 > 0. Then the implication uTMu ≥ 0 =⇒ uTNu holds true if and only if there
exists λ ≥ 0 such that N ≽ λM .

3https://web.stanford.edu/class/msande314/lecture15.pdf
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Thus, by using M := P and N := Q in the s-lemma, z̃TP z̃ ≥ 0 =⇒ z̃TQz̃ ≥ 0 occurs
when ∃λ ≥ 0 for which Q ≽ λP i.e.,
[

H 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR

]

≽ λ

[−I 0

0 1

]

⇐⇒
[

H + λI 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR − λ

]

≽ 0

(10.30)

Thus, problem (10.15) becomes

u∗all
R , λ∗ = arg min

uall
R
,λ

∥
∥
∥uallR

∥
∥
∥

2

subject to

[

H + λI 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR − λ

]

≽ 0

λ ≥ 0.

(10.31)

Using the epigraph trick and Schur complement theorem, we can write this as

u∗all
R , λ∗, t∗ = arg min

uall
R
,λ,t

t

subject to

[

H + λI 1
2
(f − CuallR )

1
2
(f − CuallR )T g − dTuallR − λ

]

≽ 0

λ ≥ 0
[

I uallR

uallTR t

]

≽ 0.

(10.32)

Note that this SDP is identical to (10.24).

10.3.4 Final Robust SDP

While deriving the LMI constraint in (10.22) from the original problem (10.14), we omitted
the index i, thereby making the implicit assumption that we are Ąnding velocities for all
robots for defense against just one agent. To extend this to accommodating constraints for
all agents in the Ćock, we simply augment additional constraints in (10.32) corresponding to
each agent in A. This gives the Ąnal robust version of (9.23), i.e.,

u∗all
R , ¶λ∗

i ♢i∈A, t
∗ = arg min

uall
R
,¶λi♢i∈A,t

t

subject to

[

Hi + λiI
1
2
(f i − CiuallR )

1
2
(f i − CiuallR )T gi − dTi u

all
R − λi

]

≽ 0 ∀ i ∈ A

λi ≥ 0 ∀ i ∈ A
[

I uallR

uallTR t

]

≽ 0

(10.33)
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(a) One robot v/s two agents (b) Two robots v/s two agents

(c) Three robots v/s four agents (d) Three robots v/s four agents

Figure 10.1: Demonstration of our results showing how to prevent agents (red) from breach-
ing the protect zone (green) in the presence of uncertainty in the goal of the agents. The
true goal is highlighted in black, the estimate of the goal is highlighted with a black dot and
the red discs around it represent the uncertainty.

10.4 Results

We validate our proposed robust centralized controller on several test cases. To show
repeatability, we vary the numbers of Ćock agents and robots, the initial positions of these
agents and the magnitude of uncertainty in the location of the goal of the Ćock agents.
The robots do not know the true goal, they just know an estimate of the location of the
ĆockŠs goal and an upper bound on the estimation error. The initial positions xAi

(0) of all
agents are chosen such that they are all close to each other. This is done to ensure that the
agents have enough time to stabilize as a Ćock before interacting with the robots. The initial
positions xallR (0) of the robots are chosen randomly within the area of operation.
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10.4.1 Simulations

Figure 10.1 shows four simulation results. The robotsŠ velocities are calculated using
(10.33). The values of the parameters are kG = 0.2, kA = 0.7, kR = 0.1, Ds = 0.4, Rp =
1.2, α = 5, β = 6. The true goal of the Ćock is xS and highlighted in black whereas the
estimate is x̂S and the outermost red disc around it represents the magnitude of uncertainty.
It can be noticed from the Ągure that in all four scenarios, the robots are able to successfully
intercept all agents and prevent them from entering the protected zone despite uncertainty
in the goal of the Ćock agents.

10.4.2 Experiments

Next, we conducted experiments in the multirobot arena. These experiments are similar
to the ones we conducted in chapter 9 except that now the dog robots do not know the true
goals of the sheep. To demonstrate the superiority of our proposed robust controller, we
show how the results of a certainty equivalent centralized controller that does not incorporate
estimation error, rather it treats an estimate of the goal as the true goal. Figure 10.2 shows
these results. Here there are two dog robots trying to defend the protected zone against two
sheep agents. Both the true goal and the estimate of the goal are shown. The dog robots
do not know the true goal, so they treat the estimate as the true goal and use the controller
developed in (10.8). As can be seen in the snapshots, the dog robots fail to act quickly
because of which a breach occurs.

Next, we show how our proposed robust controller that explicitly incorporates an upper
bound on estimation error in addition to the estimate of the goal prevents the breach from
occurring. Figure 10.3 shows these results. Here the yellow disc represents all possible
candidates of the goal and the size of this disc represents the uncertainty. As can be seen
from the snapshots, the dog robots are able to defend the protected zone by acting quickly.
Figure 10.5 shows the case of one robot defending against two Ćock agents. As can be seen
in the snapshots, none of the Ćock agents breach the protected zone.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

(e) t = 50.0s (f) t = 50.0s

Figure 10.2: In these images, we can see two sheep agents going towards their goal. The dog
robots only have an estimate of the goal. The dog robots use the (10.8) with the estimate.
Because of this incorrect assumption, the sheep robots are able to breach the protected zone
as the dog robots act too late.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

(e) t = 50.0s (f) t = 50.0s

Figure 10.3: In these images, we can see two sheep agents going towards their goal. The dog
robots have both an estimate of the goal and an upper bound on error shown with the yellow
disc. As the sheep move towards the goal, the dog robots are able to defend the protected
zone despite uncertainty in the goal of the sheep.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

(e) t = 50.0s (f) t = 50.0s

Figure 10.4: In these images, we can see two sheep agents going towards their goal. The
dog robots have both an estimate of the goal and an upper bound on error shown with the
yellow disc. That the estimate of the goal is the same as the true goal is unbeknownst to
the dog robots. Thus, they use the robust controller which ensures successful defense.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

Figure 10.5: In these images, we can see two sheep agents going towards their goal. The
dog robot only has an estimate of the goal and an upper bound on error shown with the red
disc. As the sheep move towards the goal, the dog robot is able to defend the protected zone
despite uncertainty in the goal of the sheep.
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10.5 Online Parameter Adaptation And Control

In our proposed robust control framework, we assumed that the control engineer con-
trolling the robots has an a-priori known nominal estimate of the sheep agentsŠ goal and
an a-priori known upper bound on the error in that estimate. The question then must be
asked, can we learn a nominal estimate of the goal and its associated error online based on
the observed motions of the sheep agents and the structure of the sheep agentsŠ underlying
dynamic model. We addressed this model-based online parameter estimation question in
chapters 4-6 of this thesis. To wit, several parameter estimation algorithms were developed
to learn the desired goals of individual agents in a multiagent system.

Thus, we can now integrate the real-time estimates of goal and associated errors from our
parameter learning algorithms with the developed robust controller to develop an adaptive
robust controller. This is beneĄcial because adaptation of parameters to observed measure-
ments reduces conservatism in the robust controller especially if the initial user speciĄed
uncertainty is high. To demonstrate this, we conducted several experiments in which we
used a Kalman Ąlter to learn the true goal of all the sheep and used the 15σ uncertainty as
the upper bound on the estimation error required by the robust controller. Thus, instead
of providing the constant uncertainty to the algorithm in (10.33), we provide it with time-
varying uncertainty. This is shown in Fig. 10.6 and 10.7 for the two dogs v/s two sheep case.
The red discs represent various uncertainty levels. As can be seen in consecutive snapshots,
the size of the red discs is decreasing which denotes decreasing uncertainty in the goal. As
can be noticed in the snapshots, the sheep agents never breach the protected zone, thus
demonstrating the repeatability and robustness of our proposed control algorithm. We tried
the same approach with a handcrafted estimator that provably monotonically converges to
the true goal and its uncertainty monotonically converges to zero. This is shown in Fig 10.8
for the one dog v/s two sheep case. Figs. 10.9 and 10.10 demonstrate the same for the two
dogs v/s two sheep cases.

10.6 Conclusions

In this chapter, we extended our results in chapter 9 by endowing robustness to the
centralized controllers. Previously, we assumed that the observerŠs robots know the true
latent parameters of the Ćock agents a-priori. In this chapter, we relaxed this assumption
and provided the robots with only an estimate of the parameters and an upper bound on the
estimation error. Using these estimates, we Ąrst developed a convex semi-inĄnite program
that can generate correct velocities for the robots for each instantiation of the parameters
within the uncertainty. Since this is computationally intractable, we used duality theory to
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

(e) t = 70.0s (f) t = 90.0s

Figure 10.6: In these images, we can see two dog robots defending the protected zone from
two sheep agents. Here an initial nominal estimate of the goal and the uncertainty is updated
as a function of time. The outermost red disc represents the 15σ uncertainty which is used
as η in the robust controller. Thus, they use the robust controller which ensures successful
defense.

re-pose this optimization problem as a semi-deĄnite program which can be solved reactively
online. We showed simulation results as well as experimental results demonstrating that
our proposed robust control strategy indeed defends the protected zone from Ćock agents.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

(e) t = 70.0s (f) t = 90.0s

Figure 10.7: In these images, we can see two dog robots defending the protected zone from
two sheep agents. Here an initial nominal estimate of the goal and the uncertainty is updated
as a function of time. The outermost red disc represents the 15σ uncertainty which is used
as η in the robust controller. Thus, they use the robust controller which ensures successful
defense.

Additionally, we also augmented this with our system identiĄcation algorithms to allow the
robust controller to adapt its uncertainty to the measurements of the agentsŠ motions as
observed in real-time.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

Figure 10.8: In these images, we can see two sheep agents (orange tails) going towards their
goal. The dog robots (green tails) do not know the true goal, they only have an estimate of
the goal and an upper bound on error shown with the red disc. The magnitude of uncertainty
is decreasing with time because the dog robots are internally using an identiĄcation algorithm
to learn the goal of the sheep. As the sheep move towards the goal, the dog robots are able
to defend the protected zone despite uncertainty in the goal of the sheep.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

Figure 10.9: In these images, we can see two sheep agents (orange tails) going towards their
goal. The dog robots (green tails) do not know the true goal, they only have an estimate of
the goal and an upper bound on error shown with the red disc. As the sheep move towards
the goal, the dog robots are able to defend the protected zone despite uncertainty in the goal
of the sheep. This uncertainty is decreasing with time because the dog robots use an online
identiĄcation algorithm that is learning this goal.
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(a) t = 0.0s (b) t = 2.0s

(c) t = 10.0s (d) t = 50.0s

Figure 10.10: In these images, we can see two sheep agents (orange tails) going towards their
goal. The dog robots (green tails) do not know the true goal, they only have an estimate of
the goal and an upper bound on error shown with the red disc. As the sheep move towards
the goal, the dog robots are able to defend the protected zone despite uncertainty in the goal
of the sheep. This uncertainty is decreasing with time because the dog robots use an online
identiĄcation algorithm that is learning this goal.
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11 Conclusions and Outlook

We began this thesis with the motivating problem of defending a critical zone from
adversarial/non-cooperative agents by using robots controlled by an observer. This problem
requires the observer to (a) infer the underlying intent of all agents of the group and (b)
incorporate this for planning motions of their robots. Part 1 of this thesis focused on the
intent learning problem whereas part 2 of this focused on the control problem.

In part 1, we developed scalable algorithms for inferring a robust model of group dynam-
ics by monitoring individual agents from their positions and velocities as measured by the
observer. Towards that end, we developed identiĄability conditions using the persistency
of excitation criterion which tell when the task-inference problem is feasible. We devel-
oped online parameter estimators that can learn the task parameters such as goals of agents
and their desired velocities. We developed another identiĄer that infers bounds on these
parameters by identifying the set of active interactions of each agent under observation.
While these estimators relied on perfect noiseless measurements and a-priori known safety
margins, we relaxed these assumptions by taking recourse to inverse optimization. We de-
veloped robust inference algorithms that used KKT-loss and predictability loss as heuristics
and posed mixed-integer quadratic programs to learn both task parameters and safety mar-
gins together. These estimators can account for noise in the measurements, suboptimality
of agents and small amount of model mistmatch. To demonstrate the versatility of these
estimators, we showed how we can use them to infer intents of humans in navigating in an
indoor lab setting.

In part 2 of this thesis, we developed several control algorithms for robots to evoke
a desired behavior out of the agents by orchestrating interactions of the robots with the
agents. We used ideas from non-collocated partial feedback linearization and control barrier
functions to pose this behavior shaping problem. We developed optimization-based control
algorithms for a group of robots to prevent a Ćock of agents from breaching a protected zone
by making the robots expend as little energy as possible. We provided both centralized and
distributed implementations of our algorithms. The constraint based framework allowed us
to include multiple protected zones. While the centralized implementation provided high
budget efficiency and allowed for greater underactuation, it lacked the feasibility guarantee.
The distributed algorithm, on the other hand, provided us with a feasibility guarantee yet
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required equal number of robots as Ćock agents. The proposed centralized and distributed
algorithms required a-priori knowledge of the latent parameters of the group agents. In
chapter 10, we relaxed this assumption and provided only estimates of these parameters and
bounds on estimation error. We developed robust extension of the centralized algorithm
by taking recourse to duality theory and s-procedure. Its correctness was validated by
performing both experiments and simulations.

Finally, we integrated our online parameter learning algorithms and the proposed robust
control algorithm to allow for simultaneous learning and control of the robots to prevent
breach. Future extensions of this work will consider learning time-varying parameters and
robust control techniques for time-varying systems. Additionally, future work should focus
on developing estimation algorithms that allow for multimodal learning i.e. they produce a
family of parameter estimates rather than just one, and similarly, future work should consider
developing multi-modal robust control algorithms that can take multi-modal representations
of agent intents for planning motions of the robots. Lastly, future work should consider
experiments in which the Ćock agents are controlled by the humans to mimic adversarial
agents and develop robust control algorithms that can learn time varying human intents and
defend the zone reactively.
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