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Abstract— Operating under real world conditions is challeng-
ing due to the possibility of a wide range of failures induced
by execution errors and state uncertainty. In relatively benign
settings, such failures can be overcome by retrying or executing
one of a small number of hand-engineered recovery strategies.
By contrast, contact-rich sequential manipulation tasks, like
opening doors and assembling furniture, are not amenable to
exhaustive hand-engineering. To address this issue, we present
a general approach for robustifying manipulation strategies
in a sample-efficient manner. Our approach incrementally
improves robustness by first discovering the failure modes of
the current strategy via exploration in simulation and then
learning additional recovery skills to handle these failures.
To ensure efficient learning, we propose an online algorithm
called Meta-Reasoning for Skill Learning (MetaReSkill) that
monitors the progress of all recovery policies during training
and allocates training resources to recoveries that are likely to
improve the task performance the most. We use our approach
to learn recovery skills for door-opening and evaluate them
both in simulation and on a real robot with little fine-tuning.
Compared to open-loop execution, our experiments show that
even a limited amount of recovery learning improves task
success substantially from 71% to 92.4% in simulation and
from 75% to 90% on a real robot.

I. INTRODUCTION

It is common for robots to make mistakes while attempting
a task due to noise in state estimation and actuation. For
example, a robot may miss the handle or drop the key
while trying to open a door due to an incorrect handle pose
estimate. In practice, such mistakes are often handled with
hand-engineered or heuristic behaviors and state machines.
While practical for relatively simple tasks in controlled envi-
ronments, this approach cannot scale to systems deployed in
the real-world which can fail in a variety of different ways.
Hence, there is a need for an algorithmic way to (1) discover
potential failures and (2) quickly improve the robot when
new failures are discovered.

To this end, we propose an approach to incrementally
improve a robot’s robustness by discovering potential failures
in simulation and learning recovery skills that allow the robot
to recover. While our approach can robustify against failures
due to uncertainty in both execution and state estimation,
we focus on the latter as it is more challenging. We assume
the robot is given a nominal set of policies which can
complete the task under ideal conditions. These could be
hand-designed controllers or policies learned from human
demonstrations. In reality, the state is rarely known perfectly
but is estimated using an online state estimation module.
Consequently, the robot may make mistakes during execution
and enter a state from which it cannot continue— a failure
state. We discover such failures in simulation by executing
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Fig. 1: To open a door, the robot has to (1) grasp the handle (2)
rotate it and (3) pull the door. However, it can fail during any of
these three stages due to incorrect state information and erroneously
enter a failure state from which none of its skills can be applied. We
propose an approach that (1) discovers such failures in simulation
and (2) uses meta-reasoning to efficiently learn recoveries to the
preconditions of the robot’s existing skills.

the nominal policies under a simulated state estimation
model. Next, we cluster similar failures and learn recovery
skills for each of the clusters that allow the robot to recover
to the precondition of one of its nominal policies.

There are multiple potential recoveries from every failure
cluster, each corresponding to a precondition the robot could
recover to. For n failure clusters and m preconditions, this
results in a total of n × m potential recovery skills. Since
attempting to learn all of these recoveries is computation-
ally expensive and redundant, prior works use heuristics to
choose where to recover. Recoveries generated in such a way
can be sub-optimal as these heuristics don’t reason about the
quality of the recovery. For example, a common heuristic
is to recover to a previous state upon detecting a failure.
However, it is preferable to recover closer to the goal in terms
of execution cost. On the other hand, it is not known a priori
if recovering close to the goal is feasible. To this end, we
propose Meta-Reasoning for Skill Learning (MetaReSkill),
an algorithm that builds a predictive model of improvement
in skill performance and decides online which skills to devote
training resources to such that the overall task performance
improves maximally.

Our main contributions are (1) a hierarchical reinforce-
ment learning-based framework for learning recovery skills
to handle failures due to state uncertainty. Compared with
open-loop execution, this improves success at opening doors
from 71% to 92.4% in simulation and from 75% to 90%
on a real robot. (2) a novel meta-reasoning algorithm
MetaReSkill for sample-efficient recovery learning. Not only
does MetaReSkill improve performance significantly faster
than round-robin in all our experiments, but it also achieved
the best performance of round-robin using only 70% of the
training budget in 3/5 of the experiments. Additional details,



experiments and videos are available at https://sites.
google.com/view/recoverylearning/home.

II. RELATED WORK

Recovery from Failures: Robotic systems are usually
deployed with hand-designed recovery behaviors in the an-
ticipation of failures. Common recovery strategies include
retrying the previous step [1], [2], backtracking [3] and hand-
designed corrective actions [4], [5]. To execute a recovery,
it is important to first detect [6], [7], [8], [9] what kind
of failure has happened or is about to happen. Pastor et
al. [10] propose Associative Skill Memories which associate
stereotypical sensory events with robot movements. Parashar
et al. [11] propose an architecture for robot assembly which
uses meta-reasoning to identify the cause of a failure and re-
pair the knowledge that caused the failure. In all these works,
the recovery behaviors are either manually designed, which
limits their scalability, or are generated using a heuristic,
which limits their complexity and quality. By contrast, we
learn recovery behaviors with reinforcement learning which
offers the possibility of learning complex recoveries. Pacheck
et al. [12] encode the robot’s capabilities in Linear Temporal
Logic which allows them to suggest additional skills that
would make an infeasible task feasible. However, they do
not deal with failures due to state uncertainty. More recently,
there has been interest in learning a policy to recover to a
safe state [13], [14]. However, these works learn a single
recovery policy, assume full observability and do not focus
on the efficiency of learning.

Meta-Reasoning: In cognitive science, meta-
reasoning [15] refers to processes that monitor the progress
of human reasoning activities (metacognitive monitoring)
and allocate time and effort devoted to cognitive tasks
(metacognitive control). It is a key component of human
intelligence which allows the human mind to solve a wide
range of problems using a fixed amount of computation
and limited experience [16], [17], [18]. Meta-reasoning has
been used in artificial intelligence to design agents that
operate in resource constrained environments. One such
approach is to compute the value of computation [16] for
every computation that could be executed and pursue the
computation with the highest value.

Hierarchical Reinforcement Learning: Hierarchical re-
inforcement learning (HRL) [19] is a powerful approach for
difficult long-horizon decision making problems. It enables
autonomous decomposition of the problem into tractable sub-
tasks, often building hierarchies of states and policies. A
number of prior works propose algorithms for skill discovery
and learning [20], [21], [22] with the goal of covering the
whole state space By contrast, we seek to discover and cover
the part of the state space most relevant to the task. Second,
we focus on resource efficiency due to the difficulty and high
complexity of skill learning in robotics.

III. BACKGROUND

Options Framework: We model each robot skill as
an option as per the options framework [23], [24]. Each
option consists of three components: (a) a robot control
policy π (b) an initiation set which defines the states from

which the option can be executed and (c) a termination
condition which defines the states in which the option must
terminate. In continuous spaces, the initiation set is typically
estimated using a binary precondition classifier, called the
precondition [25]. The skill precondition ρ(s) : S → [0, 1]
is a function that returns the probability that the skill can be
successfully executed at a given state.

Recovery Skill: A recovery skill is an option that brings
the system to a state from which one of its nominal skills can
be executed. Formally, let Π = {π1, · · · , πk} be the set of
nominal skills and let {ρ1, · · · , ρk} be their preconditions.
We say that the robot has reached a failure state if none
of the preconditions is satisfied. A recovery skill (figure 1)
drives the robot to a safe state where at least one of the
preconditions is satisfied so that the robot can complete the
task.

Acting under Uncertainty: The problem of acting under
partial or uncertain state information is optimally solved by
formulating it as a Partially Observable Markov Decision
Process (POMDP) [26], [27]. A POMDP is defined by the
tuple ⟨S,A, T,R,Ω, O, γ⟩, where S is the underlying state
space and Ω is the observation space. In this formulation,
the robot acts on its state belief b, which is a probability
distribution over all possible current states. However, solv-
ing a POMDP exactly is intractable in manipulation [28].
Instead, we use a common heuristic technique of using a
state estimator to maintain a belief over world states based
on observations and actions, while the robot acts on the most
likely state [29].

IV. PROBLEM SETUP

We are interested in solving a manipulation task defined by
a distribution of start states D and a goal indicator function
fgoal : S → {0, 1}. The robot incurs costs based on its
actions and a penalty of cfail if it ends up in a dead-end or
is unable to complete the task in T timesteps. We are given
a set of nominal control policies {π1, · · · , πk} and a high
level policy Π which chooses among these control policies.
We assume that they can reliably complete the task under
no uncertainty. Our goal is to improve the robustness of the
robot by discovering and learning additional recovery skills
that can handle failures due to state uncertainty. Formally,
we seek to maximize the expected return of the high-level
policy on the task distribution:

Eτ∼D

T∑
t=0,s0=τ

at∼π(st),π∼Π(st)

R(st, at) (1)

where R(s, a) = −c(s, a)− cfail1failure and st is the most
likely state at time t as determined by a state estimator.

A. Hierarchical Reinforcement Learning Framework

Instead of reasoning with low-level ground states, which
are high dimensional, we build a compact symbolic skill
graph G = (V,E). Each vertex in this graph is a symbolic
state corresponding to a set of continuous states defined by its
precondition ρ : S → {0, 1}. There exists an edge between
two vertices u, v ∈ V if there is a skill whose precondition
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Fig. 2: Failure Discovery: We execute the nominal skills under a
simulated state estimator to induce failures (shown in red). These
failure states ∈ S are clustered into failure modes using a Gaussian
Mixture Model (GMM). This GMM is used as a failure classifier
during execution.

contains u and its effect is contained in v. We initialize
this graph as a chain with vertices V = {ρ1, · · · , ρk, ρgoal}
corresponding to the preconditions of the nominal skills and
edges E corresponding to the nominal policies. Let πij be
the skill from ρi to ρj and qij be its probability of success. If
πij fails then we assume it ends up in an absorbing failure
state Fail incurring a penalty of cfail. πij can be learnt
using off-the-shelf RL algorithms where ρi is the initial state
distribution and ρj is the goal condition. While we could use
ρj to define a binary reward function for RL, this is usually
impractical for high-dimensional domains. Fortunately, ρj
can also be used to define a dense reward, for example, by
computing the distance to the decision boundary or using the
probability ρj(s) as the reward. Finally, the high level policy
Π for choosing which skill to execute at every symbolic state
can be computed using Value Iteration as the skill graph is
discrete.

Precondition Chaining: The preconditions of the nominal
skills can either be hand-designed or learnt. We use an
approach similar to skill chaining [20], [21] to learn the
preconditions backwards from the goal. This involves two
steps:

1) We collect successful trajectories by executing the
nominal policies in simulation. Let {s1, · · · , sk, sgoal}
be one such trajectory consisting of only the start and
end states of each policy and sgoal is a state that
satisfies the goal function. For every policy πi, we learn
a corresponding positive distribution D+

i over its start
states S+

i .
2) We train the precondition classifiers backwards from

the goal. To learn the precondition ρi, we sample
states in the vicinity of D+

i and execute πi from
there. We verify its success using ρi+1 (ρgoal for ρk).
This helps us gather informative negative samples S−

i

and additional positive samples which are crucial for
learning a tight decision boundary. The precondition
classifier ρi is trained using S+

i and S−
i .

V. APPROACH

Our approach consists of two steps- failure discovery and
learning recovery skills using meta-reasoning.

A. Failure Discovery

We procedurally generate failure states in simulation by
executing the nominal skills under noisy state information.
Concretely, let s be the true current state and o be a
noisy observation. While the true state is known to us in
simulation, we provide only the observation to the nominal
skills. Because of the mismatch between o and s, the skill
may not work as intended and the robot may end up in a new
state s′ with observation o′. If none of the existing skills is
applicable at s′, we record s′ as a failure state as the robot
would not be able to recover from it even if it could observe
the true state. Note that we do not record o′ as it may not
even be a valid world state. While a recovery for s′ does not
allow the robot to deal with its current observation o′, it will
be useful when the robot observes o ≈ s′. We propose two
failure discovery strategies:

1) Pessimistic Discovery: The robot executes its nominal
policies open-loop under simulated high state uncer-
tainty. This strategy discovers a larger and more diverse
set of failures than what may actually be encountered
during execution. While this makes recovery learning
computationally more expensive, it doesn’t require a
model of the state estimator.

2) Early Termination: The robot executes its nominal
policies using observations from a simulated state
estimator and terminates if none of the preconditions
are satisfied. This strategy discovers a more accurate
failure distribution and is preferable if a model of the
state estimator is available.

Let Sfail be the set of failures discovered. We cluster Sfail

into n failure clusters {ρf1 , · · · , ρfn} and add them as states
to our symbolic skill graph. For failures discovered using
the early termination strategy, the size of a failure cluster
corresponds to the likelihood that the robot will end up in
that failure. Both of these failure discovery strategies lead
to recoveries that provide significant improvement in perfor-
mance over heuristic recovery strategies in our experiments.

B. Meta-Reasoning for Skill Learning (MetaReSkill)

The robot may recover to one of the k + 1 preconditions
{ρ1, · · · , ρk, ρgoal} from every failure cluster. However,
many of these recoveries are redundant or infeasible. Instead
of trying to learn all of them, our algorithm identifies and
prioritizes the most promising recoveries.

Value of Failures (VoF): We define the Value of Failures
to measure the performance of the robot at its failure states.
Consider a failure cluster ρfi in figure 3 at the start of
recovery learning. ρfi is not connected to any precondition as
the success probability qij of all the recoveries is 0. Hence,
the value of this failure cluster is V (ρfi ) = −cfail. With
further training, the value improves to

max
j

qijV (ρj)− (1− qij)cfail

ρj’s are high value states as nominal skills can be executed
reliably from there. To take into account multiple failure
modes, we take a weighted sum of the values of all the



Fig. 3: Optimistic Recovery Learning: We learn recoveries using
the most likely state heuristic, i.e., we optimistically assume the
state becomes fully observable after the robot ends up in a failure
state. We can potentially learn a recovery (shown in dotted lines)
to each of the preconditions. At the start of recovery learning, none
of these recoveries have been learnt and the robot always incurs
a penalty cfail for failing. After some training, the recoveries are
partially learnt and have success probabilities qij . Note that it is
preferable to recover to preconditions closer to the goal as they
have a higher value than those away from the goal.

failure clusters:

V oF =
∑
i

|ρfi |∑
j |ρ

f
j |
V (ρfi ) (2)

where |ρfi | is the number of ground states in the cluster ρfi .
Intuitively, a high VoF implies that failures during execu-

tion are less problematic as the robot is highly confident
of recovering. Learning recoveries that optimize the VoF
improves robustness to failures. A good first meta-strategy
is to train all the recoveries in a round-robin manner as we
do not know a priori what the best recovery from every
failure mode will be. While this works well in the initial
stages of learning, we observed in our experiments that it is
quite inefficient as the VoF quickly saturates (figure 5). To
address this issue, we propose a meta-reasoning algorithm
that tracks the progress of all the recoveries and chooses
which failure modes to focus on and which precondition to
recover to such that the VoF improves maximally with high
probability in every training episode.

Model of Task Performance: The key idea of
MetaReSkill is to build a model of improvement in task
performance by estimating the rate of improvement (ROI)
of individual skills. We use confidence interval estimation
to compute optimistic upper bounds ∆qUij of the ROI ∆qij
of the success probabilities qij of all the recoveries. This
provides an optimistic estimate of how much a recovery
could improve after another round of training.

Let θ be a parameter we wish to estimate. An α-confidence
interval [30] for θ is an interval (L,U) such that θ is
contained in the interval with confidence α. This also implies
that U is an upper bound on θ at least with confidence
α. Let θ1, · · · , θw be a random sample of the parameter.
Under the assumption that the underlying population is
normally distributed, the mean µ of the distribution lies in
the following interval with probability α:

θ − t(1−α)/2,w−1
s√
w
≤ µ ≤ θ + t(1−α)/2,w−1

s√
w

where tα,w is the upper α percentage point of the student’s t-
distribution with w degrees of freedom and s is the standard

Algorithm 1 Meta-Reasoning for Skill Learning
1: procedure TRAIN
2: Qij ← queue of max size w,∀i, j
3: for 1 ≤ t ≤ B do
4: if all policies have been trained ≥ K times then
5: for all i, j do
6: T ← transition matrix of skill graph
7: T (i, j)← qUij
8: JU

ij ← OBJECTIVE(T,R)

9: (i∗, j∗)← argmax JU

10: else
11: (i∗, j∗)← least trained policy
12: train recovery (i∗, j∗) for η episodes
13: q ← estimate new success rate of πi∗j∗

14: qbest ← max(q, qi∗j∗)
15: qi∗j∗ ← qbest, Qij .insert(qbest)
16: qUi∗j∗ ← COMPUTEUCL(i∗, j∗)

return πij ,∀i, j
17: procedure OBJECTIVE(T,R)
18: V ← VALUEITERATION(T,R)
19: return

∑
i

|ρf
i |∑

j |ρf
j |
V (ρfi ) ▷ Value of Failures

20: procedure COMPUTEUCL(i, j)
21: ∆Qij ← compute forward differences of Qij

22: n← |∆Qij |
23: ∆qUij ← ∆Qij + t(1−α)/2,n−1

s√
n

▷ UCL of ROI
24: qUij ← qij +∆qUij return qUij

error.
We compute the upper confidence limit (UCL) of ∆qij

using only the w most recent forward differences of qij as
the rate of improvement is a non-stationary quantity (w is
a domain-dependent hyper-parameter). For every recovery
with current success probability qij , qUij = qij +∆qUij is an
optimistic upper bound on its success probability after an
additional round of training. Let JU

ij be the VoF computed
by replacing qij with qUij in the transition matrix of the
recovery learning graph 3. JU

ij is then an optimistic prediction
of the VoF if we were to train πij for another round. Our
algorithm greedily picks a recovery for training that promises
the highest VoF in the next round. We initialize MetaReSkill
with K rounds of round-robin to estimate the UCL. Priors
on ∆qij , if available, can further speed up learning.

VI. EXPERIMENTS

We evaluate our approach on the task of door opening
under noisy handle position information both in simulation
and in the real world. The goal is to open a door by at least
0.3 rad with the Franka Panda robot under high initial state
uncertainty.

Simulation Environment: We adapt the door environment
from the MuJoCo-based robosuite [31], [32] framework to
match our real door. The world state is 18 dimensional and
includes the robot’s joint angles and poses of the door and
the handle. The initial state uncertainty is sampled from
N (0, σ = 2cm) each in the x, y and z positions of the handle.



Fig. 4: Handles Used in Evaluation: We compare our approach with open-loop execution on 5 different lever latch handles and a
full-sized door with a real robot. Only handle 1 and a small door was used during training; handles 2-5 and the full-sized door are unseen.

Success Rate (%) Cost (m)

Recovery-skills (Ours) 92.4 0.95 (± 0.34)
Retry 66.9 0.80 (± 0.02)
Recover-to-prev 75.5 0.86 (± 0.19)
Recover-to-start 73.6 0.87 (± 0.26)
No-recovery 64.4 0.80 (± 0.02)
Open-loop 71.0 0.80 (± 0.02)

TABLE I: Simulation results: We compare recovery skills trained
with our approach using 150 REPS queries with heuristic recovery
strategies. Our approach significantly improves the success rate.
The statistics are averaged over 5 sets of recovery skills learnt with
different seeds, each evaluated 200 times using a simulated state
estimator and a limit of 10 skills per evaluation.

We design 3 open-loop skills to be executed in sequence -
REACHANDGRASPHANDLE, ROTATEHANDLE and PULL-
HANDLE- as the nominal skills. Each skill consists of one
or more 7D waypoints that the robot tries to reach using
task space impedance control, where each target consists of
a gripper open/close state and a 6D end-effector pose. These
skills are able reliably to open doors in simulation and the
real world if accurate state information is available.

Symbolic Skill Graph: We train the preconditions of
the nominal skills by precondition chaining using a total of
1223 positive and negative samples. Each precondition is a
generative classifier with the positive distribution D+ learnt
as a Gaussian distribution and the negative distribution D−

learnt as a Gaussian Mixture Model. The 3 nominal skills
result in 4 symbols for the start, subgoals, and the goal.

Recovery Skill: Each recovery skill πij is a parameterized
skill [33] that uses a regression model to predict robot
actions θ ∈ Θ based on the start state s. We use k-nearest
neighbours regression to predict a 21D vector, a sequence of
three 6D poses with respect to the initial end-effector pose
and gripper open/close states, as robot actions. Collecting
data of the form (s, θ) for training this regression model
involves sampling a start state s from the failure mode ρfi
and computing the robot action parameters θ for recovery to
ρj using Relative Entropy Policy Search (REPS) [34]. For
learning a recovery to precondition ρ, REPS uses the reward
function R(s) = 0.1 log fD+(s) + 10ρ(s), where fD+ is the
probability density function of the corresponding D+. Each
REPS query takes about 2 minutes to solve on our Intel®
Core™ i7-9700K CPU.

A. Evaluation of Learnt Recovery Skills
We first evaluate the effectiveness of our overall approach

using the pessimistic failure discovery strategy we described

Open-loop (%) Recovery (%)

Handle 1 (Train) 75 (15/20) 90 (18/20)
Handle 2 (Test) 50 (5/10) 80 (8/10)
Handle 3 (Test) 80 (8/10) 80 (8/10)
Handle 4 (Test) 80 (8/10) 90 (9/10)
Handle 5 (Test) 60 (6/10) 90 (9/10)

Full-sized door (Test) 30 (3/10) 50 (5/10)

TABLE II: Success Rate on a Real Robot: Learnt recovery skills
significantly outperform open-loop execution on a real robot across
5 different handles. Open-loop fails almost half the time on handles
2 and 5 which are, respectively, the smallest and the thinnest of the
5 handles. By contrast, the learnt recoveries use a caging grasp to
re-grasp the handle close to the handle’s axis of rotation and are
robust to these variations. We also test recovery skills on a full
sized door where the success rate of our approach drops to 50%
due to the slip-prone cylindrical handle of the door.

earlier. We execute the nominal skills 1000 times for failure
discovery to collect a total of 1400 failure states which we
group into 6 clusters using the Gaussian Mixture Model
(GMM) [35]. Common failure modes include the robot
missing the handle and the robot slipping while pulling the
handle due to an improper grasp. We learn recovery skills in
simulation using a budget of just 150 REPS queries. With
24 potential recovery skills, this means that each recovery
policy can get only 6 data-points on average.

Evaluation in Simulation: We simulate a state estimator
by assuming that the standard deviation of the noise dis-
tribution halves after every robot action. As we show in
table I, learnt recoveries are significantly better than heuristic
recovery strategies in improving success rate. Recovering
from failures during door opening often requires the robot
to (1) carefully move the handle so as not to weaken the
grasp and (2) avoid collision with the environment. Heuristic
recoveries are unable to account for this and hence perform
poorly. Compared to open-loop execution, our approach
substantially improves task success rate from 71% to 92.4%.
This indicates that (1) the failures discovered using our
pessimistic failure discovery do cover a number of failures
encountered by the robot when using a state estimator and
(2) recoveries can be reliably learnt with a generic reward
function defined using preconditions which promises better
scalability than reward shaping.

Evaluation on a Real Robot: We transfer the precon-
ditions, failure classifier, nominal skills and recovery skills
learnt in simulation to a real Franka Panda robot and run
experiments with (a) 5 different lever latch handles on a



small door and (b) a full-sized door in our building with
a cylindrical handle (figure 4). We fine-tune only the gains
of the impedance controller on the real robot by increasing
their values to achieve similar tracking as in simulation.
As in simulation, the robot is controlled by a Cartesian-
space impedance controller that executes each skill open-
loop. We evaluate the recovery skills learnt in simulation
under an idealized state estimator. The ground-truth handle
position is known to us but at T = 0, we only provide
a noisy handle position estimate to the robot, where, noise
∼ N (0, σ = 2cm). The robot executes its nominal skill
using this noisy state information. At T = 1, by the time the
robot finishes executing the first skill, we assume that the
state estimator has converged to the ground-truth. Hence,
the robot has access to the accurate handle position at this
point. The robot uses its preconditions to check if any of
its nominal skills can be executed. If so, it executes the
remaining nominal skills. If not, it uses the failure classifier
to identify the failure mode and execute the best recovery
from that mode.

We compare our approach (RECOVERY) with open-loop
execution (OPEN-LOOP) of nominal skills (table II). The
success rate of OPEN-LOOP is sensitive to the handle and
varies from 50 − 80% By contrast, RECOVERY improves
the success rate to 80 − 90% consistently across all of
the 5 handles even though it was trained only for handle
1. Both OPEN-LOOP and RECOVERY struggle at the full-
sized door due to the slippery cylindrical handle. However,
our approach still does significantly better than OPEN-LOOP
which only succeeded in 3/10 attempts. We expect recovery
performance to improve with further training and by the
use of a good state estimator which will enable closed-
loop behavior. Importantly, our approach did not induce
any additional failures which indicates good transfer of the
preconditions and failure classifier learnt in simulation.

B. Evaluation of MetaReSkill

In this evaluation, we assume that we have access to an
accurate model of the state estimator so that we can estimate
the failure distribution accurately. We discover failures using
our early termination discovery strategy along with a sim-
ulated state estimator that halves the standard deviation of
the noise distribution after every robot action. We discover
a total of 2000 failure states which we group into 5 clusters
using the GMM. These failures are less diverse than the
failures discovered by pessimistic discovery and are more
concentrated near the door handle. We compare round-robin
learning of recoveries with MetaReSkill in figure 6 using 5
different seeds. We use α = 0.95 to compute the confidence
interval, window size w of 3 and query REPS for a new
data-point in every round, i.e. η = 1. We initialize the UCL
estimates by training every recovery twice in a round-robin
order. Not only does MetaReSkill improve significantly faster
than round-robin, but also it converges to a better objective
in all the trials. In 3/5 trials, MetaReSkill used only 70% of
the training budget to achieve the best objective achieved by
round-robin, i.e., 1 hour earlier. This shows that it can make
better use of training resources to improve robustness.

Fig. 5: (left) VoF Saturates: After quick initial improvement, the
objective saturates when recoveries are trained in a round-robin
order. (right) Allocation: We show how many rounds each of the 20
recoveries were trained for by Round-robin and MetaReSkill. Each
recovery is identified by the pair (i, j), where, i is the failure cluster
it is meant for and j is the precondition it recovers to. Round-robin
trains all of them equally while MetaReSkill prioritizes a small
number of promising recoveries that improve the VoF by the most.

Fig. 6: We compare MetaReSkill with round-robin learning of
recoveries over 100 REPS training episodes with 5 different seeds.
MetaReSkill is initialized by training each recovery twice initially
in a round-robin manner. Hence, we see a difference in performance
from episode 40 when MetaReSkill kicks in. MetaReSkill imme-
diately focuses on the most promising recoveries which allows it
to optimize the VoF significantly faster, also converging to a better
VoF in every trial.

VII. CONCLUSION

We propose a scalable algorithmic framework to efficiently
robustify a given manipulation strategy against failures due
to state uncertainty. Our method consists of discovering
failures in simulation by evaluating the given strategy under
simulated state uncertainty and then using meta-reasoning
to efficiently train recovery skills. Our algorithm Meta-
Reasoning for Recovery Learning (MetaReSkill) monitors
the progress of all potential recovery skills during training
and adaptively chooses which recoveries to train to best
improve the robot’s robustness. Compared to baselines, the
learnt recovery skills significantly improve task success both
in simulation and in the real world. We also find that
MetaReSkill makes a much better use of computation than
round-robin skill learning. In our future work, we would like
to combine failure discovery in the real world with discovery
in simulation to further improve robustness. Finally, we are
also interested in investigating if we can provide theoretical
bounds on the performance of MetaReSkill.
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planning in belief space,” The International Journal of Robotics
Research, vol. 32, no. 9-10, pp. 1194–1227, 2013.

[29] M. T. Spaan, “Partially observable markov decision processes,” in
Reinforcement Learning. Springer, 2012, pp. 387–414.

[30] W. W. Hines, D. C. Montgomery, and D. M. G. C. M. Borror,
Probability and statistics in engineering. John Wiley & Sons, 2008.

[31] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[32] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n, “robosuite: A
modular simulation framework and benchmark for robot learning,” in
arXiv preprint arXiv:2009.12293, 2020.

[33] B. Da Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” arXiv preprint arXiv:1206.6398, 2012.

[34] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 24,
no. 1, 2010.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.


	Introduction
	Related Work
	Background
	Problem Setup
	Hierarchical Reinforcement Learning Framework

	Approach
	Failure Discovery
	Meta-Reasoning for Skill Learning (MetaReSkill)

	Experiments
	Evaluation of Learnt Recovery Skills
	Evaluation of MetaReSkill

	Conclusion
	References

