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Abstract— In this work, we present a method to extract
the skeleton of a self-occluded tree canopy by estimating the
unobserved structures of the tree. A tree skeleton compactly
describes the topological structure and contains useful infor-
mation such as branch geometry, positions and hierarchy. This
can be critical to planning contact interactions for agricultural
manipulation, yet is difficult to gain due to occlusion by
leaves, fruits and other branches. Our method uses an instance
segmentation network to detect visible trunk, branches, and
twigs. Then, based on the observed tree structures, we build
a custom 3D likelihood map in the form of an occupancy
grid to hypothesize on the presence of occluded skeletons
through a series of minimum cost path searches. We show
that our method outperforms baseline methods in highly
occluded scenes, demonstrated through a set of experiments on
a synthetic tree dataset. Qualitative results are also presented
on a real tree dataset collected from the field.

I. INTRODUCTION

With increasing global population and labor shortages,
modern agriculture is adopting new technologies to enhance
sustainability and profitability. There is growing effort in
developing robotic solutions to automate repetitive and la-
borious tasks that often require complex and delicate in-
teraction with crops. Harvesting and pruning, for example,
may require the agent to manipulate crops by pushing aside
leaves or branches to reach occluded regions before picking
or cutting. Understanding the unstructured and cluttered task
environment is critical to automating such challenging tasks.

In this work, we address the perception problem, where
robots must be able to sense and understand the complex task
environment prior to crop interaction. We are particularly
interested in extracting the skeleton of a self-occluded tree
canopy by estimating the unobserved parts of the tree. A tree
skeleton is useful as it describes the topological structure
and contains useful information such as branch dimensions,
positions, and hierarchy. This knowledge is helpful in pheno-
typing crop characteristics for growth assessment and can be
critical for planning contact interactions, such as determining
optimal pruning locations or generating trajectories to pick
fruits by pulling a branch into its workspace.

One of the main challenges faced during the extraction of
the tree skeleton from sensor data (typically in the form of
point clouds obtained from laser scanners or depth cameras)
stems from noise and occlusion, which is exacerbated by the
presence of foliage as depicted in Fig. 1(a). Although there
exists prior works that address skeletonization of occluded
tree canopies, they are tailored towards sparse point clouds
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(a) (b)
Fig. 1. (a) The 3D reconstruction (middle) and skeletonization (right) of
a heavily occluded tree canopy (left). (b) Tree crops are tightly organized
in rows in industrial orchard settings.

obtained from terrestrial laser scanners (TLS) and can be
ineffective when applied to dense point clouds acquired
from RGB-D or stereo cameras. Furthermore, it is generally
assumed in prior works that the tree point cloud to be
skeletonized is pre-registered from a 360 degree scan, which
is difficult to obtain in industrial orchard settings where trees
are tightly organized in rows as shown in Fig. 1(b).

We present a novel skeletonzation method that extracts
tree skeletons from one-sided views of the tree canopy
by using a depth camera attached to a robot arm. Our
method particularly addresses the challenge of skeletonizing
heavily occluded tree canopies by observing that branches in
nature generally extend linearly. We use this as a heuristic
assumption to approximate a 3D likelihood map in the form
of an occupancy grid to predict presence of occluded branch
structures by searching for minimum cost paths. We validate
the effectiveness of our approach by presenting quantitative
assessment on a synthetic tree dataset with known ground
truth, and present qualitative results from a real tree dataset
collected at an apple orchard.

II. RELATED WORK

A skeleton can be defined as a curve expressing the shape
of an object that is consistent with the topological structure
as well as the connectivity of the original object shape.
Many methods have been proposed to extract skeletons from
unordered 3D point clouds. A skeleton can be extracted by
measuring the L1-median to determine local centers of the
point cloud [1]. A Laplacian-based contraction method is
proposed in [2], which collapses the input point cloud into
a minimal volume using an iterative Laplacian smoothing
process. In [3], a skeleton is extracted by defining a new
feature representation called rotational symmetry axis. The
aforementioned methods work well with limited noise and
occlusion, while we are particularly interested in skeletoniz-
ing point cloud of botanical trees which are often noisy and
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Fig. 2. Our system pipeline for tree skeletonization. It takes as input a series of RGB-D images of a self-occluded tree from multiple viewpoints and
outputs the underlying tree skeleton.

occluded.
There is particular interest in extracting the skeleton of a

tree canopy due to implications in automating agricultural
tasks [4] such as pruning [5], harvesting [6], or phenotyping
to estimate crop characteristics for growth assessment [7].
Prior knowledge about tree structures are commonly used
to extract tree skeletons, such as branching properties [8],
cylindrical shape priors [9] and upright offshoots [10]. Tree
skeletons are commonly represented as graphs composed of
vertices and edges; [11] and [12] uses graph-based methods
to extract tree skeletons. A geometry-based method is used to
fit cylinders on the point cloud in a hierarchical data structure
to encapsulate parent-child relations of branches [13].

While the above mentioned tree skeletonization meth-
ods are tailored for trees without leaves, we address a
more challenging problem in which tree canopies are self-
occluded by leaves, fruits, or other branches. To address the
problem of missing data, [14] proposes an iterative data-
completion method to recover data for 3D tree modelling.
Tree point clouds with leaves are often first separated into
branches and leaves before skeleton extraction [15], while
[16] directly generates visually convincing tree skeletons
based on optimization driven by biological priors. Several
works improve skeleton connectivity by joining disconnected
skeletal structures through geometry-based methods [17],
[18]; we use it as a baseline method and quantitatively show
that our method outperforms [17] in occluded scenes. Despite
addressing the issue of occlusion, these methods are built for
sparse TLS point clouds and are inapplicable to dense point
clouds. More importantly, it is assumed that the tree point
cloud to be skeletonized is pre-registered from a 360 degree
scan, which may be unpractical in industrial orchard setting
where trees are organized in rows. The key contributions of
this paper are:

• A novel skeletonzation method that extracts tree skele-
tons from one-sided views of the tree canopy;

• A method to reason about the unobserved structures of
the tree to predict the presence of occluded skeletons;

• Experimental results on a synthetic dataset quantita-
tively compared against existing baselines, as well as
qualitative results on a real tree dataset collected from
the field.

III. METHODOLOGY

A. System Overview

Our tree skeletonization method aims to improve the
knowledge of occluded regions in the tree that is often self-
occluded by foliage, fruits, or other branches. Driven by a
heuristic assumption on tree structures, we approximate a 3D
likelihood map in the form of an occupancy grid that stores
information of visible as well as occluded structures of a tree
canopy to extract its skeleton. Fig. 2 shows an overview of
our framework. The system takes as input a series of color
and depth images from varying viewpoints obtained from
a camera attached to a robot arm with known poses. The
images are passed onto an instance segmentation network to
generate a semantic point cloud of branch clusters (Sec. III-
B). The occupancy probability distribution of the 3D likeli-
hood map is updated based on the observed branch clusters
over a sequence of images (Sec. III-C). The final skeleton is
generated by joining disconnected branch skeletons through
a series of minimum cost path searches in the likelihood map
(Sec. III-D).

B. Semantic Point Cloud Acquisition

We first acquire a 3D point cloud semantically labeled
with visible parts of the tree trunk, branches, and twigs
(collectively referred to as branches from this point on) that
are not occluded. This is achieved by projecting branch seg-
mentation masks in 2D color images on to the 3D point cloud
obtained from the depth image. The points corresponding to
branches in the semantic point cloud are clustered based on
the projected masks.

Our branch segmentation is based on the Mask R-CNN
[19] instance segmentation network with a Feature Pyramid
Network and ResNet50 backbone. The model takes as input
1440×1080 images and outputs instance segmentation masks
as well as its confidence scores ranging from 0 to 1. The
network was trained on 130 manually labeled images (105
real images and 25 synthetic images) for 2000 iterations
on an NVIDIA GeForce RTX 3070. Sample segmentation
results are depicted in Fig. 3(a). In order to perform line-
fitting on the point clusters (further described in Sec. III-C),
we deliberately labeled each branch instances in the training
images to be a slender polygon such that the projected



(a)

(b)
Fig. 3. (a) Instance segmentation results on a real tree image (left) and a
synthetic tree image (right). (b) Tree forks (left) or angled branch instances
(right) are labeled as multiple branch instances in the training dataset.

branch point cloud cluster in 3D space is also piece-wise
slender. For example, a tree fork or a branch instance with
a significant change in direction is labeled as two or more
branch instances instead of a single instance as shown in
Fig. 3(b).

C. Skeleton Occupancy Likelihood Map

We now propose our novel approach to hypothesize on
the presence of occluded branches by approximating a 3D
likelihood map in the form of an occupancy grid, where the
i-th grid voxel mi stores the skeleton occupancy probability
p`(mi) ∈ [0, 1]. The approximation is driven by a heuristic
assumption: Given a visible branch instance, it is likely that
the branch structure extends longer along its growth direction
based on the observation that branches in nature generally
grow straight. We model this as individually observed prob-
ability distributions po with an ellipsoidal contour obtained
from the branch point cloud clusters as follows.

(a) (b)

(c) (d)

PC1

PC2

cp1
cp2 cp3

cp4

1.0

0.0

p`

po
cp2

cp3

dl
dr

l

r

Fig. 4. (a) A single instance of a segmented branch component with
a confidence score of 0.88. (b) The branch instance is projected into 3D
space as a dense point cloud cluster. We compute the principal components
(PCi) and fit a B-spline curve with four control points (cpi) on the point
cloud cluster. (c) po is obtained from each line segment, (d) which updates
p` using equation (2).

A 3-dimensional B-Spline curve of degree-one with four
control points is approximated on a point cloud cluster using
the least squares method [20]. This results in three connected
line segments that best represent the skeletal geometry of
the point cloud cluster as shown in Fig. 4(b), which are

Observed
Branch Instances

Accumulated
Line Segments

Joint 3D
Likelihood Map

−→ −→

Fig. 5. Visualization of the overall joint 3D likelihood map (right)
obtained from accumulated line segments (middle), which were extracted
from observed branch clusters over the sequence of images (left).

accumulated over the sequence of images (Fig. 5). The
radius of the branch instance is also estimated by performing
principal component analysis on the point cloud cluster
(see Fig. 4(b)), where the distance between the maxima
and minima points along the second principal component
is approximated to be the diameter of the branch instance.
The probability distribution of the joint likelihood map p` is
updated by po based on the following rules:

1) po of the voxels containing the line segment is equal to
the mask confidence score obtained from the instance
segmentation network.

2) po of the voxels in the proximity of the line segment
diminishes in the axial and radial directions along an
ellipsoidal contour (Fig. 4(c)):

po = c− c

k

√(
dl
l

)2

+

(
dr
r

)2

(1)

where c is the mask confidence score, l is the line
segment length, and r is the estimated radius. dl and
dr is the axial and radial distance of the voxel from
the line segment, and k is a parameter that controls
the rate at which po decreases as dl and dr increases.
For example, a large k results in a small decreasing
rate, effectively enlarging the size of the ellipsoid. We
empirically set k = 3 in our experiments.

3) The voxel mi of the 3D likelihood map is updated by
the observed occupancy probability po according to the
following equation (Fig. 4(d)):

p`(mi) = 1− [1− p`(mi)][1− po(mi)] (2)

The resulting joint likelihood map updated by po from all
line segments is depicted in Fig. 5. The 3D likelihood map
effectively has higher occupancy probability in voxels that
are directly intersected by a line segment, as well as in voxels
that are jointly influenced by more than one line segment.

D. Skeleton Extraction

The final tree skeleton GT = (VT , ET ) is an undirected
acyclic graph with vertices VT and edges ET representing
the topological structure of the tree canopy. This is obtained
by post-processing the accumulated line segments with the
joint likelihood map as follows.

We first obtain an initial tree skeleton Ginit = (Vinit, Einit)
by consolidating the accumulated line segments. To do so,



all line segments are converted into a set of vertices by
sampling points equally spaced along the line (in practice,
we set the spacing to be the voxel size of the likelihood map).
The vertices are consolidated into a skeletal curve using the
Laplacian smoothing method which repositions each vertex
to the mean of its k-nearest neighbors:

vi =
1

k

N∑
j=1

vj (3)

where k is the number of neighborhood vertices, vj is the
position of neighbor vertex j, and vi is the new position of
vertex i. Laplacian smoothing is iteratively applied until the
total change in vertex position per iteration converges below
a threshold, which results in a set of well-refined skeletal
vertices Vinit. The edges Einit are initialized by building a
Euclidean minimum spanning tree from Vinit with edges that
are longer than the voxel size removed.

(a) (b)

gi

Minimum
cost path

G`

Fig. 6. (a) The initial skeleton Ginit shown as the curves colored black
overlapped with the weighted likelihood graph G`. Ginit is composed of
disjoint subgraphs gi due to occlusion. (b) We search for minimum cost
paths in G` to join disconnected subgraphs gi.

Due to occlusion by leaves and branches, Ginit = {gi}
is composed of disjoint skeletal subgraphs gi of a single
tree. In order to predict the occluded parts of the tree, we
join maximally connected subgraphs in Ginit by searching for
minimum cost paths in the 3D likelihood map as illustrated
in Fig. 6 and summarized in Algorithm 1. The likelihood
map is first converted into a weighted graph G` by adding
undirected edges between all 3× 3× 3 adjacent nodes (Line
2, Algorithm 1). The cost of an edge connecting vertex u
and v is set to be the negative log of the average occupancy
probability:

c(euv) = − log

(
p`(mu) + p`(mv)

2

)
(4)

which results in low cost for edges between nodes with high
occupancy probability. Using the weighted likelihood graph
G`, the minimum cost path between all pairwise subgraph
combinations in GT (initialized with Ginit) are computed
(Line 5-7, Algorithm 1). The path with the minimum cost
is added to GT (Line 9-10, Algorithm 1). This process is
repeated until no more paths are found resulting in our final
skeleton output GT , composed of skeletal curves that were
directly observed, as well as predicted skeletal curves that
were unobservable due to occlusion.

Algorithm 1 Likelihood Map Path Search

Input: Initial Skeleton Ginit, Likelihood Map p`
Output: Tree Skeleton GT

1: GT ← Ginit
2: G` ← WeightedUndirectedGraph(p`)
3: Repeat
4: P ← EmptyArray()
5: for all pairwise subgraph combination (gu, gv) ∈ GT do
6: ρ← DijkstrasMinPath(gu, gv, G`)
7: P.append(ρ)
8: end for
9: ρmin ← MinCostPath(P)
10: GT ← JoinSubgraphs(GT , ρmin)
11: Until no more paths are found

(a) (b)

Foliage Density Level
1© 2© 3© 4©

Fig. 7. (a) Synthetic meshes of an oak tree (top row), apple tree (middle
row), and a walnut tree (bottom row) with varying foliage density increasing
from left to right. Trees in the same row have the same structural topology.
Our synthetic dataset consists of ten unique topology per tree species. (b)
The robot is controlled to take images of the tree canopy from 10 different
viewpoints in the Gazebo simulation environment.

IV. EXPERIMENTS

We evaluate our proposed tree skeletonization method
through quantitative evaluation and visual assessment. For
the former, we collected a synthetic tree mesh dataset with
known ground truth skeleton and propose metrics to measure
the precision of the skeleton as well as the effectiveness
of predicting unseen branch skeletons. Visual assessment is
presented for the simulated dataset as well as a real tree
dataset collected from an apple orchard.

A. Experiments on Synthetic Trees

Experiments in simulation were performed on three differ-
ent types of synthetic trees including oak, apple, and walnut
trees. For each species, ten different structural topologies
with four levels of varying foliage density were generated
as depicted in Fig. 7(a), totalling to 120 trees. The synthetic
tree meshes were created in SpeedTree1 which were imported
into a Gazebo2 simulation environment to model an RGB-D
camera attached to a UR5 robot arm. For each tree, the robot
is controlled to collect images from 10 different viewpoints
as shown in Fig. 7(b), which are sequentially passed onto
our skeletonization pipeline.

We propose the following metrics to assess the correctness
of the constructed skeleton as well as the effectiveness of our
approach:

1www.speedtree.com
2www.gazebosim.org

www.speedtree.com
www.gazebosim.org
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Fig. 8. Experiment results of synthetic trees including oak (top row), apple (middle row), and walnut (bottom row) trees with foliage density level 3©. We
compare our method against MST-based and FTSEM-based methods. The extracted skeleton is color coded: TP , TPocc, and FP vertices are colored blue,
green, and red, respectively. The right-most column depicts the skeleton extracted from our method with recovered volume based on the radius information
of the skeletal vertices.

• Skeleton Precision and Recall: For each synthetic tree,
vertices of the output skeleton with a corresponding
point in the ground truth skeleton within a 0.02m
radius are labeled as true positives (TP ), while vertices
without correspondence are labeled as false positives
(FP ). Vertices of the ground truth skeleton without a
corresponding point in the output skeleton are labeled
as false negatives (FN ).

• Occluded Skeleton Ratio (OSR): To quantify the
effectiveness of our approach with regards to predicting
occluded branch skeletons correctly, we measure the
percentage of true positive vertices that were obtained
from the minimum cost paths (TPocc) versus the total
number of vertices in the constructed skeleton:

OSR =
TPocc

TP + FP
(5)

We compare our results to those obtained from a minimum
spanning tree (MST) based method [16], [21] as well as
a method presented in FTSEM [17]. For the MST-based
method, our process of connecting disjoint subgraphs via
searching for minimum cost paths in the likelihood map (de-
scribed in Sec. III-D) is replaced by returning the Euclidean
minimum spanning tree built from Vinit as the final skeleton.
For FTSEM, we use the breakpoint connection method [17]
to connect disjoint subgraphs by checking for distance and
angle conditions between vectors computed from edges in
subgraph pairs. Since the code for FTSEM is not open
sourced, we implement it ourselves based on the available
details.

The results are summarized in Table I and visualized
in Fig. 8. The precision, recall, and OSR of our method
averaged over all 120 synthetic trees is 0.98, 0.59 and 0.11,

TABLE I
EXPERIMENT RESULTS OF TREE SKELETONIZATION

ON SYNTHETIC TREES.

Tree
Type FD

MST FTSEM Ours

P R OSR P R OSR P R OSR

Oak

1 0.99 0.88 0.05 0.97 0.86 0.03 0.99 0.91 0.04
2 0.96 0.78 0.08 0.93 0.73 0.04 0.98 0.82 0.08
3 0.89 0.51 0.14 0.88 0.46 0.11 0.96 0.54 0.15
4 0.86 0.29 0.17 0.90 0.27 0.16 0.98 0.32 0.19

Apple

1 0.94 0.71 0.14 0.91 0.64 0.07 0.98 0.73 0.12
2 0.95 0.62 0.16 0.94 0.51 0.05 0.99 0.65 0.13
3 0.95 0.49 0.14 0.91 0.40 0.05 0.99 0.52 0.14
4 0.94 0.39 0.15 0.91 0.32 0.06 0.97 0.42 0.16

Walnut

1 0.95 0.70 0.10 0.95 0.65 0.07 0.99 0.72 0.08
2 0.93 0.64 0.12 0.93 0.56 0.06 0.98 0.66 0.10
3 0.86 0.48 0.15 0.84 0.39 0.10 0.96 0.49 0.16
4 0.80 0.34 0.16 0.84 0.29 0.13 0.97 0.34 0.17

* FD: Foliage Density, P: Precision, R: Recall
* Each score is averaged over 10 trees belonging to the tree type and
foliage density.

respectively. Our method outperforms both baselines in terms
of precision and recall as it joins disconnected skeletons only
when a path in the likelihood map exists. In contrast, the
MST-based method greedily joins all disconnected skeletons.
Although this results in higher OSR in less occluded scenes
(Table I, foliage density 1 & 2), the relative performance of
MST deteriorates with increasing foliage density (Table I,
foliage density 3 & 4). As a result, our method outperforms
MST in terms of precision, recall and OSR where there is
high occlusion.

B. Experiments on Real Trees

Experiments on real trees were performed on a dataset
that consists of 7 apple trees (Fig. 9) collected from the



Fig. 9. Experiment results of seven real apple trees. The first row shows the images of the apple tree. The region bounded by the red dashed square is
imaged by the robot with a stereo camera, corresponding to the 3D reconstructed point cloud depicted in the second row. The result of our skeletonization
method is shown in the third row with recovered volume by replacing skeleton vertices with spheres of corresponding radius.

(a) (b)

Stereo Camera
UR5 Robot Arm

Fig. 10. (a) Our hardware setup for collecting real world data at the UMass
Cold Spring Orchard, featuring a stereo camera attached to the UR5 robot
arm. (b) The robot motion path is shown by the red arrows, where it collects
70 stereo image pairs of each tree canopy at equally distributed waypoints
throughout the motion path.

University of Massachusetts Amherst Cold Spring Orchard.
For each tree, stereo images were collected from 70 different
viewpoints using a flash stereo camera [22] attached to the
UR5 robot arm (Fig. 10(a)). The robot was controlled to
follow a motion path as depicted in Fig. 10(b), where the
viewpoints are set to be at equally distributed waypoints
throughout the motion path. Due to the robot’s limited
workspace, we were able to capture a range of approximately
1.5 meters in height for each tree canopy.

Our results are visualized in Fig. 9. The OSR averaged
over all seven trees is 0.14, consistent with the results
obtained from the synthetic dataset. As it is difficult to obtain
the ground truth skeleton for real trees, we visually compare
the extracted skeleton with the 3D reconstructed tree using
known camera poses from the robot. Despite considerable
occlusion and noise evident in the reconstructed point cloud,
the extracted skeleton is topologically correct and shows
good correspondence.

The quality of the skeleton obtained from our pipeline is
contingent on the sufficiency and correctness of the detected
branches. We expect that a control policy to collect images
from optimal viewpoints [23] (rather than fixed viewpoints as
in our experiments) to perceive sufficient amount of branches
will further improve our proposed skeletonization pipeline.

V. CONCLUSION

Our tree skeletonization method outperforms the baselines
in situations with highly occluded canopies by accurately
estimating unobserved skeletons. As future work, we plan
to improve the algorithm runtime in addition to conducting
a more rigorous evaluation on real tree datasets. Other pos-
sible directions for future work include next-best viewpoint
optimization to increase the information of occluded regions
in the tree canopy. We are also interested in estimating the
dynamics of the tree in response to external forces to plan for
contact interactions. Ultimately, the digitized model of a tree
crop in the form of a skeleton presents promising direction to
developing safe and robust agricultural robotic manipulation.
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