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Abstract

3D reconstruction is at the heart of many computer vision applications, including au-

tonomous driving, visual inspection in manufacturing, and augmented and virtual re-

ality (AR/VR). Because monocular 3D sensing is fundamentally ill-posed, many recon-

struction techniques achieve high accuracy by using multiple captures to solve the in-

verse problem. Depending on the amount of change in these captures relative to the

scale of the scene, we can broadly categorize imaging techniques into two groups: non-

differential imaging and differential imaging. For example, a stereo system with a large

baseline is non-differential, whereas one with a tiny baseline is differential.

Differential imaging offers a few advantages. On the hardware side, because of the

tiny changes in measurements, differential imaging systems can be made compact and

portable. There are commercially-available sensors at our disposal that already facili-

tate differential imaging, such as light field cameras and dual-pixel cameras that capture

images of a scene under differentially-varying viewpoints. On the algorithm side, dif-

ferential imaging makes it possible to locally linearize originally nonlinear phenomena

so that inverse problems become easier to solve.

In this thesis, we leverage differential imaging to solve three challenging reconstruc-

tion problems. First, we introduce a method for non-line-of-sight (NLOS) imaging, an

imaging scenario where the scene of interest is not directly visible to the camera. We

apply differential imaging by densely scanning a visible surface using a transient imag-

ing system. We then extract a geometric feature that we call the Fermat paths (defined

as light paths that satisfy Fermat’s principle) from each transient measurement of pho-

tons bouncing between the visible surface and the NLOS object. Using the collection of

Fermat paths at all scan points, we apply tools from differential geometry to conduct

differential analysis and reconstruct the surface of the NLOS objects.

Second, we introduce a method for reconstructing purely specular objects. Our setup

illuminates the unknown object with a near-field point light source, and images it with

a differentially translating camera. The interaction of light with specular surfaces, spec-

ular reflection, is a consequence of Fermat’s principle. Therefore, our method for spec-

ular shape reconstruction also leverages the theory of Fermat paths. We examine both

the geometric and radiometric information in these paths to show that it is possible to

uniquely reconstruct the unknown specular object.

Third and last, we introduce a method for single-shot depth from defocus. This is a
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fundamentally ill-posed problem when using a conventional camera. To address this,

we propose to use a commercially-available dual-pixel sensor, which emulates a stereo

system with a differential baseline. We study the image formation model of a dual-pixel

camera in the presence of defocus blur, and propose a method to simultaneously esti-

mate the defocus map and the latent all-in-focus image from a single dual-pixel capture.

We hope this thesis will inspire the use of more differential imaging hardware sys-

tems and algorithms for 3D reconstruction. The techniques we introduce in this thesis,

especially the theory of Fermat paths, will also apply to other domains, including wave-

front sensing, acoustic and ultrasonic imaging, lensless imaging, and seismic imaging.
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1.5 Thesis contributions. We apply differential imaging to solve three chal-
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ing camera and a near-field point light source. We first apply the theory

of Fermat paths for an initial reconstruction, and then refine it with ra-

diometric measurements of specularities. (c) A commercial off-the-shelf

dual-pixel (DP) camera can be considered as a differential stereo system

with a tiny baseline. In the presence of defocus blur in the captured DP

image, we propose a method to jointly estimate the defocus map and the

all-in-focus image using a single DP image. . . . . . . . . . . . . . . . . . . 10

2.1 Theory of Fermat paths. We consider light paths starting from and end-

ing at point v to surface X . Among all points x ∈ X , some points on

the surface (xF ,2,xF ,3) and boundary (xF ,1) will create paths that satisfy

Fermat’s principle, corresponding to local minima (xF ,1,xF ,2) or maxima

(xF ,3) of the pathlength function τ (x; v) (right). The paths for the non-

boundary points (xF ,2,xF ,3) will additionally be specular. . . . . . . . . . . 17

2.2 The Fermat flow equation. We consider the Fermat path connecting the
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2.4 The Fermat flow equation (non-confocal case). In the non-confocal case,

we can compute the gradient with respect to either of the two visible

points, vs or vd, and it will be parallel to the vector xF − vs or xF − vd,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Non-line-of-sight (NLOS) imaging. We consider the problem of recon-

structing surfaces that are: (a) outside the field of view of sensor, or (b)

occluded from it by a diffuser. We develop an algorithm that can use tran-

sient imaging measurements to accurately reconstruct the shape of the

NLOS surface. The figure shows example reconstructions of a US quarter

from measurements captured by a femtosecond-scale transient imaging

system. In (c), we compare our reconstructions against groundtruth, ob-

tained using a direct depth scan of the object with the same transient

imaging system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Fermat paths in NLOS imaging. We illuminate and image an NLOS sur-

face X from a point v on a visible surface V . (We show the camera and

light sources in Figure 3.1.) Among all points x ∈ X , some points on

the surface (xF ,2,xF ,3) and boundary (xF ,1) will create paths that satisfy

Fermat’s principle, corresponding to local minima (xF ,1,xF ,2) or maxima

(xF ,3) of the pathlength function τ (x; v) (bottom right). The paths for the

non-boundary points (xF ,2,xF ,3) will additionally be specular. We can

identify the lengths of these Fermat paths from the fact that the transient

I (τ; v) (bottom left) will be discontinuous at the corresponding path-

lengths (τF ,1,τF ,2,τF ,3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Experimental demonstration. We measure transients for three objects in

a looking-around-the-corner configuration: A plane, a paraboloid, and a

concave sphere. We measure each object twice, once with the object cov-

ered with diffuse paint, and a second time with the object covered with

aluminum foil. As predicted by our theory, the measured transients have
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of the discontinuities is not affected by the change in BRDF. . . . . . . . . 36
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3.4 Reconstruction pipeline. (a) We first collect transient measurements I (τ; v)

at multiple points v on the visible surface V . (b) For each measured tran-

sient, we detect pathlengths where the transient is discontinuous. These

correspond to samples of the multi-valued Fermat pathlength function
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τF (v), we interpolate to compute the gradient ∇vτF (v). (d) Finally,
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branch a set of points, either on the boundary (branch τF ,1 (v), blue) or at

the interior (branch τF ,2 (v), red) of the NLOS shape. . . . . . . . . . . . . 37

3.5 Comparison with groundtruth. We perform one-dimensional scans of

3D-printed objects, in a looking-around-the-corner configuration. For

each object, we show a photograph under ambient light (left), and re-

construction results (red points) superimposed against the groundtruth

mesh used to fabricate the object (middle and right). . . . . . . . . . . . . . 38
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specular kettle, shown in the left under ambient light. We reconstruct an
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cloud, shown to the right under two views. . . . . . . . . . . . . . . . . . . 39

3.7 Table-top objects. We scan objects that span a variety of shapes (convex,

concave) and reflectances (translucent, glossy, specular). For each object,

we show a photograph under ambient light, and two views of its surface

reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Reconstructions under different BRDFs. We show reconstructions from

simulated transient measurements for a vase, rendered under three dif-

ferent BRDFs: Lambertian, mixture of Lambertian and specular, and spec-

ular. (a) Comparison of rendered transients for the three cases (represen-

tative sample). (b)-(d) For each case, we show reconstructed points col-

ored by normal (left) and by branch of the Fermat pathlength function

(middle and right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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3.9 Reconstructions under different noise levels. We show reconstructions

from simulated transient measurements for a vase, rendered with three

different noise levels. (a) Comparison of rendered transients for the three

cases (representative sample). (b)-(d) For each case, we show reconstructed

points colored by normal (left) and by branch of the Fermat pathlength

function (middle and right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Near-light differential imaging for specular object reconstruction. (a)

Our imaging setup consists of a near-field point light source vs and a

translating camera vd, which emulates a multi-camera array with optical

centers sampled on a 2D regular grid. We assume the object has a smooth

mirror reflectance. (b) At each camera location vd, the captured image

will exhibit one or more specular highlights, corresponding to some spec-

ular paths vs → xS → vd. In this specific example, there is only one

highlight h within each image. (c) Zisserman et al. [198] examines the

geometric information associated with these specularities, i.e., the direc-

tions of specular reflections ŵS , and show that they can be integrated to

obtain a one-parameter family (OPF) of surfaces. We review their work

in Section 4.2. In this work, we show that radiometric information, i.e.,

the absolute image irradiances of specularities, can be used to further dis-

ambiguate within the OPF. This is detailed in Section 4.3. (d) We apply
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4.2 Geometric wavefronts and one-parameter family (OPF) of specular sur-

face reconstruction. A point light source vs emits a spherical wavefront

(dotted curves in red) towards the specular surface. After specular re-

flection, the reflected wavefront (dotted curves in blue) gets modulated

by the specular surface. (a) For planar surfaces, the reflected wavefront

does not change its shape and remains spherical. (b) For surfaces of

general shapes, the reflected wavefront evolves into a new shape. In

both cases, the reflected wavefront propagates to the translating camera

(shown as a multi-camera array). The measured directions of specular

reflections ŵS (vs, vd) can be integrated to reconstruct a OPF of reflected

wavefronts (Equation (4.1)), which can then be converted to a OPF of

specular surfaces. The OPF of specular surfaces do not share the same

shape, as shown in (c) and (d), which motivates additional regulariza-

tions to uniquely determine the surface. . . . . . . . . . . . . . . . . . . . . 47

4.3 Verifying Equation (4.7) using Monte Carlo rendering. We verify the

correctness of (a) the image irradiance model using (b) images rendered
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Chapter 1

Introduction

3D reconstruction is at the heart of many computer vision applications, including au-

tonomous driving, robot navigation, visual inspection in manufacturing, as well as aug-

mented and virtual reality (AR/VR). Because 3D reconstruction from a single image is

fundamentally ill-posed, many techniques aiming for accurate reconstruction use mul-

tiple captures to solve the inverse problem. There are a series of ways to take multiple

images by changing one or more factors in the imaging process, e.g., a change of illu-

mination in photometric stereo, movement of a dynamic scene in optical flow, a change

of viewpoint in stereo and multiview geometry, and a change of optical power in depth

from focus/defocus. Depending on the amount of change relative to the scale of the

scene, we can categorize 3D reconstruction methods into two groups: non-differential

imaging and differential imaging.

Differential imaging makes small changes, which offers benefits and at the same

time poses challenges when compared to their non-differential counterpart. The goal

of this thesis to leverage differential imaging to develop systems and algorithms for

challenging 3D reconstruction problems. In Section 1.1, we introduce already-existing

differential imaging systems, both in nature and in computer vision. In Section 1.2,

we discuss the advantages and disadvantages of differential imaging. In Section 1.3,

we provide a thesis overview and introduce the three reconstruction problems we have

explored using differential imaging.
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(a) what a fly sees (b) what a jumping spider sees

Figure 1.1: Differential imaging systems in nature. Differential imaging mechanisms

can be found in many living creatures. (a) Many insects, such as flies, have compound

eyes which allow them to simultaneously record their surroundings from thousands of

slightly different viewpoints. Thus, they possess a strong capability for detecting fast

motions. (b) Jumping spiders have a compact stack of translucent retinas in their eyes.

Images formed on each layer exhibit different amounts of defocus blur and are exploited

by jumping spiders for depth sensing.

1.1 Differential Imaging Systems

Differential imaging systems can be found both in nature and in computer vision.

Differential imaing systems in nature. Humans perceive the 3D world with a binocular

visual system. We can, however, still perceive 3D structure with one eye closed. In this

monocular case, a number of visual cues are still in effect. One of them is the scanning

mechanism with tiny eye movements [127, 150, 151]. The change in images formed on

the retina, termed motion parallax, provides us with a sense of depth—objects that are

farther away moves slower than those that are closer [50].

Differential imaging mechanisms can be found in other living creatures as well, as

shown in Figure 1.1. Many insects, such as flies, have compound eyes which allow

them to simultaneously record their surroundings from thousands of slightly different

viewpoints. Thus, they possess a strong capability for detecting fast motions. Jumping

spiders have a compact stack of translucent retinas in their eyes. Images formed on each

layer exhibit different amounts of defocus blur and are exploited by jumping spiders for

depth sensing.

Differential imaging in computer vision. Almost all 3D imaging techniques have dif-

ferential versions. As shown in Figure 1.2, by changing camera locations, multiview 3D

reconstruction algorithms, such as stereo, multiview geometry, and structure from mo-

tion, establish correspondences across images to triangulate 3D structure. Correspond-
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light field camerastereo

structure from motion

(a) stereo with large baseline (b) stereo with differential baseline

dual-pixel sensor
Left photodiode Right photodiode

Figure 1.2: Multiview systems with large and small camera baselines. By changing

camera locations, 3D reconstruction algorithms, such as stereo, multiview geometry,

and structure from motion, establish correspondences across images to triangulate 3D

structure. Correspondingly, differential imaging in this case refers to imaging systems

with a tiny baseline.

(a) photometric stereo (b) differential photometric stereo

Figure 1.3: Photometric stereo and differential photometric stereo. In active imaging

systems, such as photometric stereo, one can also control the light source and use the

shading information captured under varying illumination to infer surface shape. Differ-

ential photometric stereo works in a similar way, but the movement of the light source

is very small compared to the scale of the scene. Image courtesy of [33, 110].

ingly, differential imaging in this case refers to imaging systems with tiny baselines,

such as multi-camera arrays [186], light field cameras [104], and the recent innovations

of dual-pixel (DP) and quad-pixel(QP) sensors in consumer electronics, which can be

seen as two-sample and four-sample light field cameras, respectively.
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(b) depth from differential defocus (a) depth from defocus 

Figure 1.4: Depth from defocus and depth from differential defocus. Depth from de-

focus methods capture images with distinctive focus settings or camera apertures. On

the other hand, depth from differential defocus is inspired by the eys of jumping spi-

ders, and instead explores differential constraints for depth estimation. Image courtesy

of [60, 194].

As shown in Figure 1.3, in active imaging systems, such as photometric stereo, one

can also control the light source and use the shading information captured under vary-

ing illumination to infer surface shape. Differential photometric stereo works in a sim-

ilar way, but the movement of the light source is tiny compared to the scale of the

scene [33, 110].

In addition to changing camera or light source locations, there are also methods

that use images captured with different camera intrinsic parameters. For example, as

shown in Figure 1.4, depth from defocus methods capture images with distinctive focus

settings [48, 141, 173, 185] or camera apertures [194]. On the other hand, inspired by the

eyes of jumping spiders, depth from differential defocus techniques work by making a

slight change to the aperture size, the optical power, the lens location, or a combination

of these factors [6, 7, 60].

1.2 Motivation and Challenges

In this section, we discuss the advantages and disadvantages of differential imaging in

comparison to non-differential imaging, which we summarize in Table 1.1.
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differential imaging non-differential imaging

form factor compact and portable relatively large form factor

local linear approximation possible impossible

higher-order surface information computable unavailable

finding correspondence easy hard

scene coverage small large

estimation uncertainty large small

robustness to noise less robust robust

Table 1.1: Comparison of differential imaging and non-differential imaging.

1.2.1 Motivation

We are motivated to use differential imaging because of the following benefits it offers.

Compactness and portability. On the hardware side, because differential imaging sys-

tems make tiny changes, they can be made more compact and portable. There are com-

mercially available sensors at our disposal that already facilitate differential imaging,

including light field cameras, and the recent innovation of dual-pixel (DP) and quad-

pixel sensors which can be seen as two-sample and four-sample light field cameras,

respectively.

Enbabling local linear approximation. Differential imaging makes it possible to locally

linearize originally nonlinear phenomena so that 3D reconstructon problems become

easier to solve. Prior works have addressed the problem of recovering various scene

properties under differential changes in illumination, camera, and scene, by solving a

linearized system. For example, optical flow methods aim to estimate a dense motion

field between two image frames taken at small time intervals [16, 77, 115]. Assuming the

motion is small, these methods linearize the brightness constancy constraint and solve

for a linear system at each pixel. Chandraker and collaborators extensively explore

the scene information available with differential motions of illumination, camera, and

scene, for various reflectance and camera models with local linear approximation [30,

31, 32, 33, 34, 35, 183].

Obtaining higher-order 3D shape information. As we will see soon in Chapter 2, by

adopting differential imaging and performing differential analysis on 3D geometry, one

can further obtain higher-order 3D shape information such as normals and curvatures.

Easier correspondence. Differential imaging also makes it easier to establish correspon-

dences across measurements. Because of the tiny change, correspondences across im-
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ages can usually be found in a local window rather than a global search within the entire

image.

1.2.2 Challenges

Although differential imaging offers the aforementioned benefits, we have to be aware

of its challenges.

Small scene coverage. Because of the tiny change made in differential imaging systems,

the scene coverage is small compared to its non-differential counterparts.

Larger estimation uncertainty. Differential imaging brings in larger estimation uncer-

tainty. For example, in triangulation-based 3D reconstruction methods, there is an in-

verse correlation between the baseline and the estimation uncertainty. The same is true

for other types of differential imaging systems as well. As the change reduces, redun-

dancy becomes higher across multiple captures. In the extreme case of a zero change,

additional measurements impose no further constraints to the 3D scene and the problem

boils down to monocular 3D sensing.

Less robustness to noise. Differential analysis usually involves computing spatial or

temporal derivatives. This differentiation procedure will amplify high-frequency com-

ponents as well as noise.

1.3 Thesis Overview

In this thesis, we leverage differential imaging to solve three challenging 3D reconstruc-

tion problems, including non-line-of-sight imaging, specular object reconstruction, and

single-shot depth from defocus and defocus deblurring.

The wide spectrum of reconstruction problems allow us to explore various aspects

of differential imaging. We have applied differential imaging in highly-controlled lab

settings with active imaging setups and also in the wild passively using a commercial

smartphone camera. The differential imaging scheme adopted in all tasks can be classi-

fied as spatial scanning, implemented by differentially translating the sensor, the light

source, or both co-locatedly. The number of scan points ranges from millions, thou-

sands, to as few as two.

We have examined geometric and/or radiometric information of light traversed in

the scene. For problems exploiting geometric information, differential imaging allows
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us to use well-established tools in differential geometry to conduct higher-order analysis

on the shape of interest. For problems exploiting radiometric information, we model the

image formation and propose ways to invert the process.

We hope this thesis will contribute towards the goal of 3D reconstruction in the wide,

especially on systems with limited form-factors, in applications where real-time perfor-

mance is required, and in scenarios where higher-order surface information is needed.

Our specific contributions are listed as follows and are summarized in Figure 1.5.

1.3.1 A Theory of Fermat Paths

Light paths, defined as trajectories of photons traversed in the scene, are determined

by the object’s geometry and reflectance. For surfaces of aribtrary shapes and general

reflectance, the space of paths is infinite. Among all the paths that light can travel,

the ones that satisfy Fermat’s principle are particularly informative and encode rich

geometric information of the surface. We call them the Fermat paths.

In Chapter 2, we present the theory of Fermat paths by making connections to the

well-knowned signed distance function (SDF) and show that Fermat paths are a super-

set of the shortest path. Using tools from differential geometry, we analyze the higher-

order properties of the lengths of Fermat paths. Based on this theory, we propose shape

reconstruction algorithms from a collection of differentially measured attributes of Fer-

mat paths, including pathlengths or path directions.

1.3.2 Fermat Paths for Non-line-of-sight Imaging

Non-line-of-sight (NLOS) imaging is the problem of reconstructing the shape of one

or more objects that are completely occluded and outside the line of sight of both the

sensor and the light source. The goal is to perform this reconstruction through indirect

observations of the objects, through reflections on intermediate surfaces such as walls or

the ground. For example, in the common so-called “looking around the corner” setting

(Figure 1.5(a)), an NLOS object is reconstructed through the photons that bounce three

times between the source and the sensor, first on the wall, then on the object, and then on

the wall once again. This problem was introduced to vision and graphics communities

in 2009, by researchers from Ramesh Raskar’s group at MIT [91]. They proposed using

a time-of-flight sensor, instead of traditional intensity camera, which makes it possible
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to separate the three-bounce photons that reflect on the NLOS object, from the single-

bounce photons return to the sensor after reflecting on the visible surface. This first

paper spurred a new research area, where various groups have been coming up with

better time-of-flight imaging systems for capturing these three-bounce photons, as well

as better algorithms for reconstructing NLOS scenes from them.

In Chapter 3, we propose a purely geometric solution to NLOS imaging based on

theory of Fermat paths. In the context of NLOS imaging, the theory states that a signifi-

cant amount of photons will travel along Fermat paths between the visible surface and

the NLOS object. We apply differential imaging by densely scanning the visible surface

using a trasient imaging system comprising a laser and a time-of-flight (ToF) sensor.

We propose an approach to extract Fermat paths information from these transient mea-

surements, and apply the shape reconstruction algorithm developed in Chapter 2 to

reconstruct high-resolution shapes of objects with arbitrary reflectance in an NLOS set-

ting as if the objects were directly visible to the camera, even though the camera never

actually sees them.

1.3.3 Fermat Paths for Specular Object Reconstruction

3D reconstruction of purely specular mirror-like objects has important applications in

automated inspection of optical mirrors [109], metal components [154], and astronomi-

cal telescopes [158]. However, reconstructing specular objects is often considered chal-

lenging in computer vision because they violate the common assumption of Lambertian

reflectance in well-established techniques, including photometric stereo [19, 41] and

multiview geometry [64]. Therefore, their reconstruction requires algorithms tailored

for specular objects, which are known as shape from specular reflection [22, 78, 97, 119,

128, 130, 153, 198] or deflectometry [28, 94, 154, 190].

Differential imaging is commonly used in reconstucting mirror surfaces, implemented

by using light field cameras or wavefront sensors [119, 195]. In our work, we consider an

equivalent imaging setup with a differentially-translating camera. The need for dense

measurements is because specular surfaces only reflect light in the mirror reflecting di-

rection, in contrast to Lambertian objects which scatter light in all directions. Therefore,

capturing these reflections can be challenging in the first place and reflections could be

missed if they are not densely measured.

Because the law of specular reflection is derived from Fermat’s principle, all light
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paths reflecting off a purely specular object are Fermat paths. Once they get measured,

we can again apply the theory of Fermat paths for specular shape reconstruction. We

show that the reconstruction using only the geometric information of Fermat paths is a

one-parameter family of surfaces. We propose to further resolve the remaining ambigu-

ity using the radiometric information of specularities. We detail this work in Chapter 4.

1.3.4 Defocus Map Estimation and Deblurring from a Single Dual-

Pixel Image

Depth from defocus techniques have a long history in computer vision. Most of them re-

quire multiple captures at different focus settings, which can be impractical for dynamic

scenes [48, 141, 173, 185]. Other techniques use specialized optics, e.g., coded apertures,

to enable single-shot depth from defocus, overcoming the ambiguities inherent in this

problem with a conventional camera [43, 101, 102]. We provide a simple alternative

solution by using off-the-shelf dual-pixel(DP) sensors. These sensors were introduced

in commercial cameras, such as DSLRs and smartphones to improved autofocus, and

nowadays they are becoming increasingly commonplace [2, 74]. Each pixel of a DP sen-

sor is split into two halves, and thus the sensor simultaneously captures two sub images

per exposure. As a result, it can be seen as a two-sample light field camera [129] or a

stereo system with a differential baseline.

In Chapter 5, We propose a method that takes as input a single dual-pixel image,

and simultaneously estimates the image’s defocus map—the amount of defocus blur

at each pixel—and recovers an all-in-focus image. Prior works have solved the two

recovery problems independently of each other, and often require large labeled datasets

for supervised training. By contrast, we show that it is beneficial to treat these two

closely-connected problems simultaneously. To this end, we set up an optimization

problem that, by carefully modeling the optics of dual-pixel images, jointly solves both

problems. We use data captured with a consumer smartphone camera to demonstrate

that, after a one-time calibration step, our approach improves upon prior works for both

defocus map estimation and blur removal, despite being entirely unsupervised.
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Figure 1.5: Thesis contributions. We apply differential imaging to solve three chal-

lenging 3D reconstruction problems. (a) Non-line-of-sight (NLOS) imaging aims to re-

construct hidden scens that are occluded and outside the line of sight of the imaging

system. We densely scan a visible surface. At each scan point, we extract geometric

features, which we call Fermat paths, from time-of-flight measurements. Then we ap-

ply tools in differential geometry to reconstruct the surface of NLOS objects using the

collection of Fermat paths at all scan points. (b) We tackle the problem of reconstructing

specular objects. We capture images using a translating camera and a near-field point

light source. We first apply the theory of Fermat paths for an initial reconstruction, and

then refine it with radiometric measurements of specularities. (c) A commercial off-the-

shelf dual-pixel (DP) camera can be considered as a differential stereo system with a

tiny baseline. In the presence of defocus blur in the captured DP image, we propose a

method to jointly estimate the defocus map and the all-in-focus image using a single DP

image.

10



Chapter 2

A Theory of Fermat Paths

In this chapter, we introduce the theory of Fermat paths, which are light paths in the scene

that satisfy Fermat’s principle. Fermat’s principle, proposed by the French mathemati-

cian Pierre de Fermat in 1662, is a fundamental principle in geometric optics. The goal

of this chapter is to formally define Fermat paths and prove their properties through dif-

ferential analysis. Most of the discussion in this chapter is based on a so-called confocal

setting, but they have straightforward generalization to a non-confocal one.

In Section 2.1, we introduce notations and scene settings. In Section 2.2, we begin

our analysis on signed distance functions (SDFs), which is closely related to the shortest

path—a special type of Fermat paths. In Section 2.3, we extend the shortest path to gen-

eral Fermat paths. In Section 2.4, we propose surface reconstruction algorithms using

Fermat paths based on their properties. Finally, in Section 2.5, we generalize the theory

and algorithms of Fermat paths from a confocal setting to a non-confocal one.

2.1 Problem Setting

We assume a piecewise smooth oriented 2D manifold X is embedded in the 3D Eu-

clidean space R3, formed as the union of smooth surfaces that are at least twice dif-

ferentiable. For any point x ∈ X with a well-defined surface normal, we use n̂ (x) to

denote its outward unit normal direction. We use ∂X ⊂ X to denote the set of points

on X where a surface normal is not defined. We will be referring to ∂X as the boundary

of X for simplicity, but note that, in addition to boundary points, it also includes points

at discontinuous intersections of the smooth surfaces that make up X .
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We explore the space of paths that light can travel from a point A to a point B un-

dergoing one reflection event (bounce) on the surface X . Specifically, we consider two

setups: the confocal setup where A and B are co-located and the non-confocal one where

the two points are at distinctive locations. We devote most of our discussion on the con-

focal case for a simpler presentation, but our theory extends to the non-confocal setup

as well, which we will present at the end of this chapter.

In the confocal case, we denote a single-bounce light path originates and ends at the

same point v as

p (x; v) , v→ x→ v , (2.1)

and its pathlength as

τ (x; v) , ‖x− v‖+ ‖x− v‖ = 2 ‖x− v‖ . (2.2)

2.2 Signed Distance Function

Within the infinite space of potential paths that light can follow {p (x; v) , ∀x ∈ X}, the

shortest one is often of interest because it is a strong geometric representation of X .

The shortest path is one of the Fermat paths as we will see soon in the next section. In

fact, it is considered as the Fermat path because Fermat’s principle is often incorrectly

interpreted as the “shortest path principle”. Although the statement is not entirely true,

it provides an instructive special case that we are very familiar with.

From Equation (2.1), we know that for any point v, the shortest round-trip path-

length exactly equals twice the SDF: τmin (x; v) = 2D (v), where D (v) denotes the SDF

defined as follows.

We start by defining the nearest set of v.

Definition 1. The nearest set. For any point v, the nearest setN (v) ⊂ X consists of points

x ∈ X that have the shortest distance to v:

N (v) =

{
x : argmin

x∈X
‖x− v‖

}
. (2.3)

We can then define the SDF as follows.

Definition 2. Signed distance function (SDF). Given an oriented surface X , an SDF D :
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R3 → R is a scalar field by mapping v to the signed distance to points in its nearest set:

D (v) ,


‖xN − v‖ , xN ∈ N (v) , if v ∈ X+ ,

−‖xN − v‖ , xN ∈ N (v) , if v ∈ X− ,

0, if v ∈ X .

(2.4)

The sign is determined by whether v is in the positive (X+) or the negative side of (X−) of the

oriented surface X .

Definition 2 shows that D (v) = 0 is an implict representation of the surface, which

is often referred to as the zero set in literatures. An SDF encodes rich geometric infor-

mation and various analysis can be done using its properties. Next, we use tools from

differential geometry to conduct first- and second-order differential analyses to obtain

gradient and curvature information of an SDF. In all analyses, we assume that v ∈ X+

is on the positive side of the surface.

Note on differentiablity. An SDF is differentiable almost everywhere, i.e., depending

on X , there could exist a sparse set of points v where SDF is non-differentiable. These

special points are on the skeleton (or medial axis) of the surface [124], whose nearest set

N (v) contains more than one point. For an extreme example, let us consider the center

of a concave hemisphere being equidistant to all points on the surface. The following

analyses are performed only on the points that are differentiable.

2.2.1 First-order Analysis—the Eikonal Equation

In first-order analysis, we evaluate the spatial gradient of the SDF.

Proposition 3. The eikonal equation. Consider the SDF D (v) evaluated at v. Assume that

there is a unique point xN ∈ N (v). Then, the spatial gradient ŵ : R3 → R3 is a unit vector

field

ŵ (v) = ∇vD (v) = − xN − v
‖xN − v‖ , (2.5)

and naturally

‖ŵ (v)‖ = 1 . (2.6)

Proof. We use v = [vx, vy, vz]T to denote the 3D coordinates of the point v, and similarly

for all other vectors. We consider each coordinate of the vector ∇vD (v) separately.

13



Differentiating D (v) with respect to vx yields:

∂D (v)
∂vx =

∂ ‖xN − v‖
∂vx (2.7)

=

〈
xN − v
‖xN − v‖ ,

∂ (xN − v)
∂vx

〉
(2.8)

=

〈
xN − v
‖xN − v‖ ,

∂xN
∂vx − [1, 0, 0]T

〉
(2.9)

=
1

‖xN − v‖

(〈
xN − v,

∂xN
∂vx

〉
−
〈

xN − v, [1, 0, 0]T
〉)

. (2.10)

Because xN lies on X , any derivative of xN is tangent to the surface X at xN . Addition-

ally, given that we assume xN ∈ N (v), we know the vector from xN − v is normal to

X at xN , i.e., parallel to the surface normal n̂ (xN ), therefore
〈

xN − v, ∂xN
∂vx

〉
= 0 and

Equation (2.10) becomes

∂D (v)
∂vx =

1
‖xN − v‖

(
0−

〈
xN − v, [1, 0, 0]T

〉)
= − (xN − v)x

‖xN − v‖ . (2.11)

Exactly analogously, we can prove that

∂D (v)
∂vy = − (xN − v)y

‖xN − v‖ and
∂D (v)

∂vz = − (xN − v)z

‖xN − v‖ . (2.12)

Considering all three coordinates yields

ŵ (v) = ∇vD (v) = − xN − v
‖xN − v‖ , (2.13)

and

‖ŵ (v)‖ = 1 . (2.14)

Proposition 3 is the well-known eikonal equation for SDFs [131, 159, 160]. The

uniqueness requirement guarantees diffentiability. When the uniqueness condition is

violated, the spatial gradient simply does not exist. Proposition 3 reveals two important

first-order properties of an SDF. First, the spatial gradient has a unit normal wherever

differentiable. Second, the gradient points toward the nearest surface point. Intuitively,

if we describe an SDF as a propagating wavefront from the surface, then these two

properties indicate that the wavefront is propagating at a constant unit speed along its

normal direction.
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2.2.2 Second-order Analysis

We can further obtain curvature information of an SDF through second-order analysis

by evaluating the Hessian matrix of SDFHD, or equivalently the Jacobian of its gradient

Jŵ:

HD (v) = Jŵ (v) =


∂2D(v)
∂vx∂vx

∂2D(v)
∂vx∂vy

∂2D(v)
∂vx∂vz

∂2D(v)
∂vx∂vy

∂2D(v)
∂vy∂vy

∂2D(v)
∂vy∂vz

∂2D(v)
∂vx∂vz

∂2D(v)
∂vy∂vz

∂2D(v)
∂vz∂vz

 . (2.15)

Proposition 4. Eigen decomposition of the Hessian matrix. At a point v, the eigen de-

composition of the Hessian of an SDF D (v) has the following form

HD (v) =
[
ŵ (v) t̂min (v) t̂max (v)

] 
0 0 0

0 −κmin (v) 0

0 0 −κmax (v)




ŵ (v)

t̂min (v)

t̂max (v)

 , (2.16)

where κmin (v) and κmax (v) are the principal curvatures of D (v), and t̂min (v) and t̂max (v)

the corresponding principal directions.

Proof. From Proposition 3, we have ‖ŵ (v)‖2 = 1. Differentiating both sides with re-

spect to v, we have

Jŵ (v) · ŵ (v) = HD (v) · ŵ (v) = 0 , (2.17)

i.e., ŵ is in the null space of the HessianHD.

Equation (2.17) implies that rows of HD (v) are orthogonal to ŵ (v), therefore are

all tangent vectors to the level set at D (v). Among all tangent vectors, two of them

are along the principal directions t̂min (v) and t̂max (v), corresponding to the principal

(smallest and largest) curvatures, leading to the above eigen decomposition.

Given the Hessian matrix, one can also compute the Gaussian K and mean H curva-

tures of the SDF as follows:

K = κminκmax =

∣∣∣∣∣
∂2D(v)
∂vx∂vx

∂2D(v)
∂vx∂vy

∂2D(v)
∂vx∂vy

∂2D(v)
∂vy∂vy

∣∣∣∣∣+
∣∣∣∣∣

∂2D(v)
∂vx∂vx

∂2D(v)
∂vx∂vz

∂2D(v)
∂vx∂vz

∂2D(v)
∂vz∂vz

∣∣∣∣∣+
∣∣∣∣∣

∂2D(v)
∂vy∂vy

∂2D(v)
∂vy∂vz

∂2D(v)
∂vy∂vz

∂2D(v)
∂vz∂vz

∣∣∣∣∣ , (2.18)

H =
1
2
(κmin + κmax) = −

1
2

(
∂2D (v)
∂vx∂vx +

∂2D (v)
∂vy∂vy +

∂2D (v)
∂vz∂vz

)
. (2.19)

15



2.3 Fermat Paths

Fermat paths is a superset of the shoretest paths. We define Fermat paths as paths that

satisfy Fermat’s principle, which characterizes paths of stationary length with respect

to their local variations. Obviously, the shortest path, as a global minimum, is a Fer-

mat path. But there could be more: The local stationarity indicates that any paths that

are locally shortest, locally longest, or saddle-point paths (locally longest in one direc-

tion and locally shortest in the crossing directions) are also Fermat paths. We note that

the naming of Fermat paths is given by following classical proposition of geometric op-

tics [38, 81, 122, 168].

Fermat paths follow either the law of specular reflection or reflect at specific points

at the object’s boundary. We define the corresponding surface points x ∈ X generating

these two categories of Fermat paths as follows.

Definition 5. the Fermat set. For any point v:

• The specular set S (v) ⊂ X consists of all points x ∈ X \ ∂X such that the vector v− x

is orthogonal to the tangent plane TxX of X at x; or equivalently, the vector v − x is

parallel to the surface normal n̂ (x).

• The boundary set B (v) ⊂ ∂X consists of all points x ∈ ∂X such that the vector v− x

is orthogonal to the tangent vector t̂ (x) of ∂X at x.

• The Fermat set F (v) ⊂ X is the union of these two sets, F (v) , S (v) ∪ B (v).
S (v) and B (v) can also be formally specified using Fermat’s principle as follows.

Proposition 6. Fermat’s principle. Let (p, q) ∈ [0, 1]2 be a parameterization of the surface

X . Then, for any point v,

S (v) =
{

x ∈ X : ∇(p,q)τ (x (p, q) ; v) = 0
}

. (2.20)

Let r ∈ [0, 1] be a parameterization of the surface boundary ∂X . Then, for any point v,

B (v) = {x ∈ ∂X : ∂τ (x (r) ; v) /∂r = 0} . (2.21)

We provide a proof in Appendix A.1. Proposition 6 is the formal defintion as Fer-

mat’s principle which characterizes paths of stationary length with respect to their local

variations.

We now define the Fermat pathlength function (FPF) τF (v) corresponding to the

Fermat set F (v).
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Figure 2.1: Theory of Fermat paths. We consider light paths starting from and ending

at point v to surface X . Among all points x ∈ X , some points on the surface (xF ,2,xF ,3)

and boundary (xF ,1) will create paths that satisfy Fermat’s principle, corresponding to

local minima (xF ,1,xF ,2) or maxima (xF ,3) of the pathlength function τ (x; v) (right). The

paths for the non-boundary points (xF ,2,xF ,3) will additionally be specular.

Definition 7. Fermat pathlength function (FPF) τF (v).

τF (v) = {2 ‖xF − v‖ : xF ∈ F (v)} . (2.22)

We note the similarity between the FPF τF (v) and the SDF (Definition 2). In fact,

SDF (multiplied by 2) is one branch of the FPF because the nearest set is a subset of the

Fermat set, i.e., N (v) ⊂ F (v). When F (v) contains more than one points, as shown

in Figure 2.1, FPF becomes a multi-valued function. In this case, the differential analysis

should be done individually on each branch of the FPF.

The good news is that the analysis on all branches can be performed exactly the

same as we did on the shortest path (SDF). In the following subsections, we generalize

the differential analysis on SDF in the previous section to FPF, leaving their proof in the

appendix.

2.3.1 First-order Analysis

We refer to the following first-order analysis on an FPF as the Fermat flow equation.

Proposition 8. The Fermat flow equation. Consider a branch of the Fermat pathlength func-

tion τF (v) evaluated at v. Assume that there is a unique point xF ∈ F (v) with τ (xF ; v) =
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X
xF

v

Sph (τF (v) ; v)

∇vτF (v)
2

Figure 2.2: The Fermat flow equation. We consider the Fermat path connecting the

point v with a surface point xF ∈ F (v). The spatial gradient ∇vτF (v) /2 of the length

of this path is a unit vector parallel to the vector xF − v. If the Fermat path is also

specular, then ∇vτF (v) /2 will additionally be the surface normal at xF .

τF (v). Then,

∇vτF (v) = −2
xF − v
‖xF − v‖ = −2ŵF (v) . (2.23)

We provide the proof in Appendix A.2. Proposition 8 generalizes the eikonal equa-

tion (Proposition 3) to apply to all branches of τF (v), corresponding to all stationary

points F (v) of τ (x; v) and not only those in the nearest set N (v) for the shortest path.

The scalar 2 is due to Fermat path being a round-trip path between xF and v, in contrast

to the SDF D (v) of a single-trip. This is shown in Figure 2.2.

A lemma of Proposition 8, which we call the integral form of the Fermat flow equa-

tion, can then be given by integrating the directions of Fermat paths.

Proposition 9. Integral form of Fermat flow equation. Consider a branch of unit directions

of Fermat paths ŵF (v) evaluated at v. Assume that there is a unique point xF ∈ F (v) with

τ (xF ; v) = τF (v). Then,

τF (v) =
∫

v
−2ŵF (v) dv + τ0 , (2.24)

where τ0 denotes an unknown constant.

Proposition 9 is the inverse of Proposition 8. However, unlike differentiation, the in-

tegration comes with an unknown constant, i.e., the integrated FPFs is a one-parameter

family (OPF). Proposition 9 is essentially the normal integration technique [76, 145, 187]

applied to individual branches of the directions of Fermat paths.
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Figure 2.3: Integral form of Fermat flow equation. We consider a branch of unit di-

rections of Fermat paths ŵF (v). We can integrate them to obtain the FPF τ (v) using

the integral form of Fermat flow equation (Proposition 9). The unknown constant in the

integral leads to a one-parameter family of FPFs.

2.3.2 Second-order Analysis

We can further conduct second-order analysis on the FPF. Because computing the Hes-

sian matrix requires twice differentiability, the analysis is only applicable to specular

paths and not boundary paths because the curvature of a boundary point is not well-

defined. We denote the Hessian of one branch of the FPF HτS , or equivalently the Jaco-

bian of its gradient JŵS as

HτS (v) = 2JŵS (v) = 2


∂2τS (v)
∂vx∂vx

∂2τS (v)
∂vx∂vy

∂2τS (v)
∂vx∂vz

∂2τS (v)
∂vx∂vy

∂2τS (v)
∂vy∂vy

∂2τS (v)
∂vy∂vz

∂2τS (v)
∂vx∂vz

∂2τS (v)
∂vy∂vz

∂2τS (v)
∂vz∂vz

 , (2.25)

then the analysis can be done exactly as in Section 2.2.2.

In addition, because Fermat paths contain not only the globally shortest path, but

also many other locally stationary paths, the stationarity type of specular paths already

provides us with some “weaker” local curvature information about X . Therefore, in-

stead of a quantitative curvature computation, it is also possible to evaluate the local

convexity/concavity of the surface X at xS , qualitatively.

Proposition 10. Let a point xS ∈ S (v) belong to the specular set. If κmin, κmax are the principal

curvatures of X at xS , then:

• If τS is a local minimum of τ (x; v), 2/τS < κmin.
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• If τS is a local maximum of τ (x; v), κmax < 2/τS .

• If τS is a saddle point of τ (x; v), κmin ≤ 2/τS ≤ κmax.

We provide the proof in Appendix A.3, but we can use Figure 2.1 to provide intu-

ition: The pathlength τF ,2 of point xF ,2 is a local minimum. All X points in the neigh-

borhood of xF ,2 are at a distance from v greater than τF ,2, and therefore outside the

tangent sphere Sph (τF ,2/2; v). This implies that the (minimal, in 3D) principal radius

of curvature is greater than τF ,2/2. And conversely for the pathlength τF ,3 of point

xF ,3, which is a local maximum. We note that a sufficient condition for X to produce

only locally-minimum specular pathlengths is that X is convex. However, this is not

a necessary condition: As explained in Proposition 10, it is possible for X to contain

concavities and still produce only locally-minimum specular pathlengths.

2.4 Surface Reconstruction Using Fermat Paths

Based on the the first- and second-order properties of Fermat paths, we propose recon-

struction algorithms based on two types of Fermat paths measurements. We leave the

discussion on the employed imaging systems in the next two chapters, and focus on dis-

cussing the algorithms we will be using once we extract these measurements of Fermat

paths.

In Section 2.4.1, we consider using a time-of-flight sensor, which measures the pho-

tons’ travelling time. Time measurements, multiplied by the speed of light, can be con-

verted to pathlength measurements. We will discuss the usage of a time-of-flight sensor

and how we exact pathlength information of Fermat paths in Chapter 3. In Section 2.4.2,

we consider using a directional sensor that measures the directions of light rays, e.g., a

light field camera or a wavefront sensor. An application will be discussed in Chapter 4.

2.4.1 Reconstruction Using the Lengths of Fermat Paths

Given a Fermat pathlength measurement τF (xF ; v) taken at v, we can first associate the

point xF ∈ F (v) with the sphere Sph (τF (v) /2; v) of center v and radius τF (v) /2. We

call this the tangent sphere, because Proposition 6 implies that, for x ∈ S (v) or x ∈ B (v),
the sphere Sph (τF (v) /2; v) is tangent to X or ∂X , respectively, at x [122, 168]. See

Figure 2.1 for an illustration.
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However, this sphere alone is not sufficient for us to determine the point xF . In

the following, we develop a procedure for completely determining the point xF and

its normal and curvature. We show that the Fermat flow equation provides a simple

constraint that uniquely determines both the depth and normal of a surface point. This

derivative is estimated numerically by fitting a smooth pathlength function to a set of

measurements. This procedure will produce an oriented point cloud for the surface X .

We then apply a final refinement step that computes a smooth mesh by combining both

the depth and normal information [39, 89].

Fermat flow algorithm. Knowing the tangent sphere alone is insufficient—we still do

not know where exactly the point is on the sphere. To derive the directional (ray) con-

straint, we use the Fermat flow equation (2.23) and compute the direction from v to xF
as:

ŵF (v) =
xF − v
‖xF − v‖ = −∇vτF (v) /2 . (2.26)

Together with the sphere Sph (τF (v) /2; v), we can reconstruct the point xF as

xF = v +
τF (v)

2
· ŵF (v) = v− τF (v)

4
∇vτF (v) . (2.27)

Equation (2.27) states that a surface point xF ∈ F (v) generating a Fermat path can

be uniquely reconstructed from the corresponding point v, the length τF (v), and the

gradient ∇vτF (v). This reconstruction can be done with a simple geometric operation,

by intersecting the sphere Sph (τF (v) /2; v) with the line v− λ∇vτF (v) /2. If the Fer-

mat path is also specular, xF ∈ S (v), then we can also reconstruct the normal at xF as

n̂ (xF ) = ∇vτF (v) /2. This is shown in Figure 2.2.

In addition to reconstructing points and normals, we can also recover the curva-

ture of X at xS . This can be done in two steps. First, we differentiate ŵS (v) (Equa-

tion (2.15)) to obtain the Hessian matrix, and compute Gaussian and mean curvatures

(Equations (2.18) and (2.19) ). Second, we “back-propagate” the curvature from v to xF .

Curvature propagation can be cast as a wavefront tracing problem. Similar to an SDF,

we can also consider a branch of FPF as a propagating wavefront from a local patch of

the surface to the point v. The wavefront is a geometric wavefront, defined as the sur-

face of constant pathlength, and should not be confused with the wave-like behaviors of

light, such as diffraction and interference. In 2D, a wavefront with curvature κ evolving

by a distance τS (v) /2 has a new curvature

κ′ =
κ

1 + τS (v)
2 κ

. (2.28)
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Equivalently, back-propagating the wavefront by τS (v) /2, the curvature becomes

κ =
κ′

1− τS (v)
2 κ′

. (2.29)

In 3D, by considering the evolution of both principal curvatures κmin and κmax, we can

relate the curvature of the FPF at v to the surface curvature at point xS , which yields

K (xS) = κmin (xS) κmax (xS) (2.30)

=
κmin (v)

1− κmin (v) · τS (v)
2

· κmax (v)

1− κmax (v) · τS (v)
2

(2.31)

=
K (v)

1− H (v) · τS (v) + K (v) ·
(

τS (v)
2

)2 . (2.32)

H (xS) =
1
2
(κmin (xS) + κmax (xS)) (2.33)

=
1
2

(
κmin (v)

1− κmin (v) · τS (v)
2

+
κmax (v)

1− κmax (v) +
τS (v)

2

)
. (2.34)

Differential imaging. Using Equations (2.27), (2.32), and (2.34) requires knowing the

first- and second-order derivatives of the FPF at v. Using a time-of-flight sensor, we can-

not directly measure the derivatives. Also, measurements taken at an isolated point v

do not provide us with derivative information. Therefore, in order to infer gradients,

we need to take measurements densely with differential intervals.

Although the spatial gradient∇vτF (v) is a 3-vector, according to Equation (2.23), it

has only 2 degree-of-freedom (its norm has to be 2). Therefore, it is unnecessary to take

measurements in three dimensions. Instead, measurements taken on a 2D manifold will

suffice. The 2D manifold can be of arbitrary shapes. In fact, in some imaging settings

(e.g., non-line-of-sight imaging as we will see in Chapter 3), v is constrained to lie on

some (uncontrollable) surface V in 3D. For simplicity, we discuss here only the case

when V is planar, deferring the general case in Appendix A.4. We adopt a scanning

scheme by taking measurements densely on a canonical grid on a planar surface v ∈ V .

Without loss of generality, we further assume V aligns with the x− y plane of the world

coordinate frame.

Given a Fermat pathlength τF (v) at a point v, we can estimate its partial derivatives

∂τF/∂x and ∂τF/∂y by locally interpolating Fermat pathlengths measured at nearby

points on the plane. We can then infer the derivative with respect to z by noting that
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Equation (2.23) implies that ‖∇vτF (v)‖ = 2,

∇vτF (v) =

∂τF
∂x

,
∂τF
∂y

,

√
4−

(
∂τF
∂x

)2

−
(

∂τF
∂y

)2
∣∣∣∣∣∣

v

. (2.35)

Once we compute the gradient, for specular paths, we can estimate the Hessian

matrix based on the fact that the gradient is in the null space of the Hessian (Equa-

tion (2.17)): 
∂2τS
∂x2

∂2τS
∂x∂y

∂2τS
∂x∂z

∂2τS
∂x∂y

∂2τS
∂y2

∂2τS
∂y∂z

∂2τS
∂x∂z

∂2τS
∂y∂z

∂2τS
∂z2


∣∣∣∣∣∣∣∣
v

·


∂τS
∂x

∂τS
∂y

∂τS
∂z


∣∣∣∣∣∣∣∣
v

= 0 . (2.36)

We can estimate the partial derivatives ∂2τS
∂x2 , ∂2τS

∂x∂y , and ∂2τS
∂y2 by differentiating τS (v)

twice along x and y directions. Once the top left 2× 2 submatrix is estimated, we can

compute ∂2τS
∂x∂z and ∂2τS

∂y∂z from the first two rows of the matrix, and then plug them in

the third row to recover ∂2τS
∂z2 . Once the entire Hessian matrix is recovered, we can then

compute the Gaussian and mean curvatures at v accordingly.

Note on differentiability. We note that the above estimations fail when the τF is non-

differentiable at v, e.g., when the uniqueness condition of Proposition 8 is not satis-

fied. Additionally, we note that the above estimation procedure needs to be performed

separately for each branch of the FPF τF (v); otherwise, differentiation across multiple

branches would be meaningless and lead to incorrect reconstruction results.

Surface fitting and optimization. The above procedure produces an oriented point

cloud, of density comparable to the density of measurements on V . We can then use

algorithms that take advantage of normal information to fit a surface representation

(e.g., triangular mesh) to the point cloud with increased accuracy [89]. Given such an

initial surface reconstruction, in Appendix A.5 we describe an optimization procedure,

based on the theory of specular path perturbations [39, 81], that refines the fitted surface

to account for possible errors due to inaccurate estimation of the gradients ∇vτF (v).

2.4.2 Reconstruction Using the Directions of Fermat Paths

Given the directional measurement of a Fermat path measurement ŵF (v) taken at v,

we have a ray constraint, forcing the point xF to be on line v + λŵF (v). However, we

do not have the pathelength information indicating how far to go along the line.
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Fermat pathlength reconstruction. In order to reconstruct the pathlength, we use the in-

tegral form of the Fermat flow equation (2.24). The integration also requires taking mea-

surements densely with a differential interval. Therefore, after obtaining a colletions of

directions with scanning, one can apply standard normal integral techniques to recover

the FPF. It is worth noting that the integration comes with an unknown constant τ0.

Without resolving the ambiguity, we can reconstruct a OPF of surfaces. Once the ambi-

guity is resolved, reconstructing points, normals, curvatures, and surface fitting can be

performed exactly the same as described in the previous section.

2.5 Generalization to a Non-confocal Setup

So far in this chapter, we have focused on discussing the theory and algorithm de-

veloped for the confocal case. There are straightforward generalizations to the non-

confocal case where the two end points of a single-bounce light path are at different

locations. This section states the analogues of definitions, propositions, and algorithms,

for the non-confocal case.

In the non-confocal case, we denote a single-bounce light path originates and ends

at points vs and vd as

p (x; vs, vd) , vs → x→ vd , (2.37)

and its pathlength as

τ (x; vs, vd) , ‖x− vs‖+ ‖x− vd‖ . (2.38)

We additionally denote by h (x; vs, vd) the half-vector corresponding to the directions

parallel to vs − x and vd − x.

Definition 5 in the non-confocal case becomes as follows.

Definition 5′. For any two points vs, vd:

• The specular set S (vs, vd) ⊂ X consists of all points x ∈ X \ ∂X such that the half-

vector h (x; vs, vd) is orthogonal to the tangent plane TxX of X at x, or equivalently, the

half-vector h (x; vs, vd) is also parallel to the surface normal n̂ (x).

• The boundary set B (vs, vd) ⊂ ∂X consists of all points x ∈ ∂X such that the vector

h (x; vs, vd) is orthogonal to the tangent vector t̂ (x) of ∂X at x.

• The Fermat set F (vs, vd) ⊂ X is the union of these two sets, F (vs, vd) , S (vs, vd)∪
B (vs, vd).

We state the analogue of Proposition 6 (Fermat’s principle) for the non-confocal case.
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Figure 2.4: The Fermat flow equation (non-confocal case). In the non-confocal case,

we can compute the gradient with respect to either of the two visible points, vs or vd,

and it will be parallel to the vector xF − vs or xF − vd, respectively.

Proposition 6′. Fermat’s principle. Let (p, q) ∈ [0, 1]2 be a parameterization of the surface

X . Then, for any pair of points vs and vd,

S (vs, vd) =
{

x ∈ X : ∇(p,q)τ (x (p, q) ; vs, vd) = 0
}

. (2.39)

Let r ∈ [0, 1] be a parameterization of the surface boundary ∂X . Then, for any pair of points vs

and vd,

B (vs, vd) = {x ∈ ∂X : ∂τ (x (r) ; vs, vd) /∂r = 0} . (2.40)

We provide the proof in Appendix A.6.

We state the analogue of Definition 7 for the non-confocal case.

Definition 7′. Fermat pathlength function (FPF) τF (vs, vd).

τF (vs, vd) = {‖xF − vs‖+ ‖xF − vd‖ : xF ∈ F (vs, vd)} . (2.41)

2.5.1 First-order Analysis

We state the analogue of Proposition 8 (Fermat flow equation) and Proposition 9 (inte-

gral form of Fermat flow equation) for the non-confocal case.

Proposition 8′. Fermat flow equation. Consider a branch of the Fermat pathlength function

τF (vs, vd) corresponding to points vs, vd. Assume that there is a unique point xF ∈ F (vs, vd)
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with τ (xF ; vs, vd) = τF (vs, vd). Then,

∇vs τF (vs, vd) = −
xF − vs

‖xF − vs‖
= −ŵF (vs, vd) , and (2.42)

∇vd τF (vs, vd) = −
xF − vd

‖xF − vd‖
= −ŵF (vs, vd) . (2.43)

We provide the proof in Appendix A.7. We note that, in the proof of Proposition 8′,

we effectively use the orthotomic to convert the problem into an equivalent problem for

a confocal case [26, 27]. Please refer to the appendix for more details.

Proposition 9′. Integral form of Fermat flow equation. Consider a branch of directions of

Fermat paths ŵF (vs, vd) corresponding to points vs, vd. Assume that there is a unique point

xF ∈ F (vs, vd) with τ (xF ; vs, vd) = τF (vs, vd). Then,

τF (vs, vd) =
∫

vd

−ŵF (vs, vd) dvd + τ0 , and (2.44)

τF (vs, vd) =
∫

vs
−ŵF (vs, vd) dvs + τ0 , (2.45)

where τ0 represents an unknown constant.

2.5.2 Second-order Analysis

We state the analogue of Proposition 10 for the non-confocal case.

Proposition 10′. Let a point xS ∈ S (vs, vd) belong to the specular set. Let E (τS ; vs, vd) be

the corresponding osculating ellipsoid. If κmin, κmax are the principal curvatures of X at xS , and

λmin, λmax the principal curvatures of E (τS ; vs, vd) at xS , then:

• If τS is a local minimum of τ (x; vd, vs), then λmin ≤ κmin.

• If τS is a local maximum of τ (x; vd, vs), then κmax ≤ λmax.

We provide the proof in Appendix A.8.

2.5.3 Surface Reconstruction using Fermat Paths

Reconstructing surface points, normals, and curvatures for the non-confocal case fol-

lows exactly as in the confocal case (Section 2.4) . The analogue of the tangent sphere is

the osculating ellipsoid E (τF (vs, vd) ; vs, vd) of pathlength τF (vs, vd) and foci vs and vd.

Using the Fermat flow equation, we can obtain a ray constraint vd + λŵF (vs, vd) , λ ∈
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[0, ∞], and reconstruct the point x through an ellipsoid-ray intersection. We can addi-

tionally reconstruct the surface normal at the specular point n̂F as the bisector of the

incident and outgoing directions. This is shown in Figure 2.4.

The geometric operation of ellipsoid-ray intersection can also be described alge-

braically by the incident and outgoing pathlengths given the total Fermat pathlength

and the ray direction. We use τ
(i)
F and τ

(r)
F to denote the incident and outgoing path-

lengths, respectively,

τ
(i)
F = ‖xF − vs‖ and τ

(r)
F = ‖vd − xF‖ . (2.46)

We provide the expressions as follows, and refer to Appendix A.9 for the derivations.

τ
(i)
F (vs, vd) =

τF 2 + 2 〈vd − vs, ŵF 〉 τF + ‖vd − vs‖2

2 (τF + 〈vd − vs, ŵF 〉)
, and (2.47)

τ
(r)
F (vs, vd) =

τF 2 − ‖vd − vs‖2

2 (τF + 〈vd − vs, ŵF 〉)
. (2.48)

2.6 Summary

In this chapter, we have introduced a novel theory of Fermat paths. We started our dis-

cussion on a special Fermat path—the globally shortest path, which is closely related

to the well-known SDF. We presented and proved the important properties of an SDF

through differential analysis. We then formally define the Fermat paths and generalize

the previous analyses on SDFs to FPFs. Based on the properties of an FPF, we pro-

pose reconstruction algorithms based on two types of measurements of Fermat paths,

their pathlengths or directions. In order to apply the algorithms in practice, one needs

to adopt differential imaging to densely measure information of Fermat paths. These

measurements can then be differentiated or integrated for shape reconstruction. We

discussed practical considerations of the algorithm, including gradient estimation and

surface fitting and optimization. In the last section, we generalize the analyses for the

confocal case to a non-confocal one. In the following two chapters, we will apply the

theory and algorithms of Fermat paths to solve two concrete real-world reconstruction

problems—non-line-of-sight imaging and specular object reconstruction.
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Chapter 3

Fermat Paths for Non-line-of-sight

Shape Reconstruction

In Chapter 2, we have introducted the theory of Fermat paths and presented surface

reconstruction algorithms based on dense measurements of Fermat paths using a dif-

ferential imaging scheme. In this chapter, we apply the theory to tackle a challenging

problem called non-line-of-sight (NLOS) imaging.

3.1 Non-line-of-sight (NLOS) Imaging

Most computer vision research assumes that the scene of interest is directly visible to

the camera. In other words, the photons from a source that reach a camera are assumed

to have interacted with only the visible scene. However, some of the source photons are

reflected by the visible scene toward parts—say, the back of an object facing a camera,

an object around a corner, or an object viewed through a diffuser—that are hidden from

the direct line of sight of the camera. In turn, the hidden scene scatters the photons back

toward the visible scene, which then redirects photons toward the camera. Imaging and

understanding the scene hidden from the camera’s view is of significant importance to

many security and safety applications.

Capturing non-line-of-sight (NLOS) photons is challenging as they are vastly out-

numbered by line-of-sight (LOS) photons. Passive approaches analyze the subtle um-

bra and penumbra of the shadow cast by the hidden scene to estimate rough motion

and structure [15, 24, 155], or use coherence properties of light to localize hidden ob-
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Figure 3.1: Non-line-of-sight (NLOS) imaging. We consider the problem of recon-

structing surfaces that are: (a) outside the field of view of sensor, or (b) occluded from

it by a diffuser. We develop an algorithm that can use transient imaging measurements

to accurately reconstruct the shape of the NLOS surface. The figure shows example

reconstructions of a US quarter from measurements captured by a femtosecond-scale

transient imaging system. In (c), we compare our reconstructions against groundtruth,

obtained using a direct depth scan of the object with the same transient imaging system.

jects [20, 23]. These approaches do not have sufficient information to compute pre-

cise 3D shape of an unknown arbitrary hidden scene. Extracting additional informa-

tion about the hidden scene is possible by using active illumination, including coherent

lighting [21, 87, 88, 165] and steady-state intensity sources [93, 171, 174, 189]. The major-

ity of approaches for reconstructing hidden shape information employ fast modulated

light sources together with time-resolved sensors (e.g., continuous-wave ToF [70, 85],

ultrafast photodiodes [92], streak cameras [62, 179, 180], and single-photon avalanche

photodetectors (SPADs) [55, 134]). These sensors record not only the number of incident

photons (intensity) but also their arrival times, at a range of temporal resolutions (milli-

to femto-seconds) [55, 56, 82, 133, 134, 180]. Such measurements are called transients

and the approach is called transient NLOS imaging.

By measuring transients at various locations of a known visible scene, most active

techniques perform a volumetric 3D reconstruction by attempting to invert the time-

resolved radiometric image formation process. Examples include elliptic backprojec-

tion [9, 29, 98, 139, 179], regularized linear system approaches [62, 70, 71, 85], the light-

cone transform [135], and analysis-by-synthesis using rendering [138, 176]. These meth-

ods have two fundamental disadvantages: (1) they rely on radiometric information and

existing SPADs produce poor intensity estimates due to effects such as pile-up and after-

pulsing [73], as well as due to extreme sensitivity to photon noise and ambient lighting;

and (2) to simplify the inverse problem, all existing reconstruction techniques rely on
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an assumption of Lambertian reflectance for the NLOS object.

In this chapter, we overcome the above limitations by developing techniques that use

only geometric, rather than intensity, constraints derived from transient measurements of

an NLOS scene. For this, we apply the theory of Fermat paths (Chapter 2) in the context

of NLOS imaging by extracting NLOS photons that follow Fermat paths between the

LOS and NLOS scene. We prove that Fermat paths correspond to discontinuities in the

transient measurements. The temporal locations of the discontinuities are a function

of only the shape of the NLOS object and not its reflectance (BRDF). We additionally

show that the shape of the transient around the discontinuity is related to the curvature

of the hidden surface. The theory of Fermat paths generalizes previous work on the

shortest paths of first-returning photons [175], which are a special case of Fermat paths

as discussed in Chapter 2.

We then use the Fermat flow algorithm developed in Section 2.4.1 for accurate NLOS

shape reconstruction. While most previous approaches reconstruct an albedo volume of

the NLOS object, our approach is one of the few that reconstruct its surface. Compared

to alternative surface reconstruction algorithms based on analysis-by-synthesis from

intensity measurements [176], our approach uses only geometric constraints, which

makes it BRDF-invariant and robust to imperfections in intensity measurements.

Our theory is agnostic to the specific transient imaging technology used. We val-

idate our theory and demonstrate results at both pico-second and femto-second tem-

poral scales, using a pulsed laser and SPAD for the former and interferometry for the

latter. Hence, for the first time, we are able to compute millimeter-scale and micrometer-

scale NLOS shapes of curved objects with BRDFs ranging from purely diffuse to purely

specular. In addition, our theory applies to both reflective NLOS (looking around the

corner) and transmissive NLOS (seeing through a diffuser) scenarios. Figure 3.1 shows

the estimated micrometer-scale relief of a coin seen around the corner as well as through

thick paper (diffuser). The obtained height profiles compare well with the reconstruc-

tion of the coin when imaged in the line of sight. This result demonstrates the significant

theoretical and practical contribution of this work to active NLOS imaging, pushing the

boundary of what is possible.
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3.2 Fermat Paths in NLOS Transients

Imaging setup. We consider a transient imaging system [83], comprising a light source

and detector, located at points s, d ∈ R3, respectively. Our theory is agnostic to the

specific transient imaging technology used, and in Section 3.4 we describe implemen-

tations, one based on a pulsed laser and a picosecond detector, and another based on

interferometry. The visible scene V ⊂ R3 is the union of surfaces contained within the

common line of sight of the source and detector. In addition to V , we assume that there

exist surfaces outside their line of sight; this could be because either these surfaces are

outside the field of view, or they are inside it but occluded by another surface. We are

only interested in such surfaces that can indirectly receive light from the light source by

means of a single reflection or transmission through the visible scene, and can indirectly

send light to the detector in a likewise manner. We call the union of such surfaces the

non-line-of-sight (NLOS) scene X . Some situations where these conditions apply, and

which will be relevant to our experiments, are shown in Figure 3.1.

We assume that the light source and detector are illuminating and imaging the same

visible point v ∈ V , which can be any point in the visible scene. This corresponds to

the confocal scanning scheme, proposed by O’Toole et al. [135]. We emphasize that this

assumption is only to simplify exposition: As we have discussed in Section 2.5, all of

our theory generalizes to the non-confocal case. In particular, in Section 3.4, we show

results from non-confocal experiments.

The detector records a transient I (t; v), which equals the irradiance from photons

with time of flight t. We assume that all recorded photons follow paths of the form

s → v → x → v → d, where x ∈ X . This three-bounce assumption is commonplace

in NLOS imaging applications, for two reasons: First, NLOS transient imaging systems

typically have time-gating mechanisms that can be used to remove direct photons that

only interact with the visible scene. Second, photons with more than one interactions

with the NLOS scene X have greatly reduced signal-to-noise ratio, and in practice are

difficult to detect [29, 138].

Finally, we assume that we have calibrated the distance τV (v) , ‖s− v‖+ ‖d− v‖
from the source to the visible point, and from there to the detector. Then, we can use

the pathlength traveled in X , τ , ct− τV (v) where c is the speed of light, to uniquely
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reparameterize transients as I (τ; v). Under these assumptions, we can write [45, 140]:

I (τ; v) =
∫
X

f (x; v) δ (τ − τ (x; v)) dA (p, q) , (3.1)

where τ (x; v) , 2 · ‖x− v‖, (p, q) ∈ [0, 1]2 is a parameterization of the NLOS surfaceX ,

A (p, q) is the corresponding area measure, and the throughput f absorbs inverse-square

fall-off, shading, reflectance, and visibility. Through this reparameterization, we have

effectively converted the NLOS imaging setup to the same setup as in Section 2.1, as if

light paths directly starting from and ending at v.

3.2.1 Fermat Pathlengths as Transient Discontinuities

Except when the BRDF of the NLOS surface X is perfectly specular, transients I (τ; v)

will include contributions from photons that follow both Fermat and non-Fermat paths

p (x; v) , v→ x→ v. Without prior knowledge of the scene, it would seem impossible

to identify parts of the transient due to Fermat paths. However, we make the following

observation.

Proposition 11. Assume that the BRDF of the surface X is non-zero in the specular direction.

Then, for all x ∈ F (v), the transient I (τ; v) will have a discontinuity at pathlength τ (x; v).

If x ∈ S (v), then I (τ; v) will additionally have a vertical asymptote at τ (x; v).

Proof sketch. We sketch a proof for the specular case, and provide the full proof in Ap-

pendix B.1. Let Sph (ρ; v) be the sphere of center v and radius ρ. Let the curve C (ρ; v)

be the intersection of Sph (ρ; v) with X , parameterized by r ∈ [0, 1]. Then, we can use

(r, ρ) ∈ [0, 1]× [0, ∞) to reparameterize X , and rewrite the integral of Equation (3.1):

I (τ; v) =
∫
X

f (x; v) δ (τ − τ (x; v))
∣∣∣J (r,ρ)

(p,q) (x)
∣∣∣−1

dA (r, ρ) , (3.2)

where J (r,ρ)
(p,q) (x) is the Jacobian of the transformation (p, q) 7→ (r, ρ). We now consider

a point xS ∈ S (v). Recognizing that ρ (xS) = τ (xS ; v)/2, we have from Equation (2.20)

that ∇(p,q)ρ (xS) = 0. Consequently,∣∣∣J (r,ρ)
(p,q) (xS)

∣∣∣ = ∂ρ (xS)
∂p

∂r (xS)
∂q

− ∂ρ (xS)
∂q

∂r (xS)
∂p

= 0. (3.3)

Then, from Equation (3.2), at τ = τ (xS ; v), the transient converges to infinity, resulting

in a discontinuity.
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Figure 3.2 visualizes this proposition for a two-dimensional Lambertian scene X , and

a visible point v such that S (v) = {xF ,2, xF ,3}, B (v) = {xF ,1}. We note that, in two

dimensions, the boundary ∂X is not a curve but just isolated points, and therefore the

tangency property of Definition 5 and the tangent sphere are not meaningful.

BRDF invariance. Proposition 11 implies that the pathlengths where the transient

I (τ; v) is discontinuous are determined completely by the function τ (x; v). In turn,

τ (x; v) depends only on the geometry of v and X . Therefore, the discontinuity path-

lengths are independent of the BRDF of the NLOS surface X . The BRDF is included in

the throughput term f in Equation (3.2), and thus only affects the intensity of the tran-

sient at the discontinuity pathlength. Figure 3.3 demonstrates this reflectance invariance

property.

Identifying type of stationarity. Proposition 11 allows us to identify the lengths of all

Fermat paths that contribute to a transient I (τ; v), as the pathlengths where I (τ; v) is

discontinuous. From Proposition 6 in Chapter 2, each of these pathlengths is a station-

ary point of the function τ (x; v). When the BRDF of X is not perfectly specular, we

can additionally identify the type of stationarity from the shape of the transient at a

neighborhood of the discontinuity. We use Figure 3.2 for intuition. Specifically, let τF
be a Fermat pathlength where the transient is discontinuous. If τF is a local maximum,

the discontinuity in the transient I (τ; v) occurs at the limit from the left, τ → τ−F , and

the transient decreases to the right of τF (Figure 3.2, τF ,3). Conversely, when τF is a

local minimum, the discontinuity occurs at the limit from the right, τ → τ+
F (Figure 3.2,

τF ,1,τF ,2). Finally, when τF is a saddle point, the discontinuity and intensity rise are

two-sided. An example of this is shown in Figure 3.3 (paraboloid case).

Identifying the stationarity type of specular discontinuities provides us with curva-

ture information about X (Proposition 10).

Relationship to first-returning photons. Fermat paths are a superset of the paths of

the first-returning photons, i.e., the shortest paths, described by Tsai et al. [175]. In par-

ticular, the pathlength of the first-returning photon is the global minimum of τ (x; v).

Observations 2 and 3 of Tsai et al. [175], which make an assumption of local smooth-

ness, correspond to the case where additionally x ∈ S (v): Observation 3 describes the

specular path p (x; v), and Observation 2 describes the tangent sphere.
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Figure 3.2: Fermat paths in NLOS imaging. We illuminate and image an NLOS sur-

face X from a point v on a visible surface V . (We show the camera and light sources

in Figure 3.1.) Among all points x ∈ X , some points on the surface (xF ,2,xF ,3) and

boundary (xF ,1) will create paths that satisfy Fermat’s principle, corresponding to local

minima (xF ,1,xF ,2) or maxima (xF ,3) of the pathlength function τ (x; v) (bottom right).

The paths for the non-boundary points (xF ,2,xF ,3) will additionally be specular. We can

identify the lengths of these Fermat paths from the fact that the transient I (τ; v) (bottom

left) will be discontinuous at the corresponding pathlengths (τF ,1,τF ,2,τF ,3).

3.2.2 Experimental Demonstration

To demonstrate our theoretical findings in practice, we use a picosecond-resolution tran-

sient imaging setup (see Section 3.4.1) to capture measurements of a few real-world ob-

jects, in a looking-around-the-corner configuration (Figure 3.1(a)). Figure 3.3 shows the

objects: A concave hemisphere, an extruded paraboloid, and a plane. All objects have

size 20 cm× 20 cm and are painted with diffuse paint.

We place each object at a distance 40 cm from the visible wall, then measure a tran-

sient from a visible point such that there is a specular path corresponding roughly to the
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Figure 3.3: Experimental demonstration. We measure transients for three objects in a

looking-around-the-corner configuration: A plane, a paraboloid, and a concave sphere.

We measure each object twice, once with the object covered with diffuse paint, and a

second time with the object covered with aluminum foil. As predicted by our theory, the

measured transients have discontinuities corresponding to specular paths of type local

minimum, saddle point, and local maximum, respectively. Additionally, the location of

the discontinuities is not affected by the change in BRDF.

center of the object. We observe from the measured transients (Figure 3.3, orange) that,

in agreement with Proposition 10, the hemisphere produces a local maximum disconti-

nuity, the paraboloid a saddle point, and the plane a local minimum.

We then cover each object with aluminum foil, to create a rough specular BRDF, and

repeat our measurements. We notice that the measured transients (Figure 3.3, purple)

are discontinuous at the same locations as the diffuse transients, in agreement with our

discussion of BRDF invariance.

These measurements additionally help evaluate the robustness of our theoretical

predictions in the presence of the Poisson noise and temporal jitter inherent in SPAD

measuremens [73]: Even though the discontinuity shapes deviate from the ideal shapes

in the simulated transient of Figure 3.2, the theoretically predicted features are still vis-

ible.

3.3 NLOS Shape Reconstruction Using Fermat Paths

Using the results of Section 3.2, given a transient measurement I (τ; v), we can identify

its discontinuities as the lengths τF of Fermat paths contributing to the transient. Each

length τF constrains the corresponding point xF ∈ F (v) to lie on the tangent sphere

Sph (τF/2; v) and, if xF ∈ S (v), also constrains its normal and curvature. Then, given

a collection of Fermat pathlengths, we apply the Fermat flow algorithm (Section 2.4.1)
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Figure 3.4: Reconstruction pipeline. (a) We first collect transient measurements I (τ; v)

at multiple points v on the visible surface V . (b) For each measured transient, we de-

tect pathlengths where the transient is discontinuous. These correspond to samples of

the multi-valued Fermat pathlength function τF (v). In the example shown, τF (v) has

two branches τF ,1 (v) and τF ,2 (v), shown in blue and red respectively. (c) Within each

branch of τF (v), we interpolate to compute the gradient ∇vτF (v). (d) Finally, by ap-

plying the Fermat flow equation (2.23), we reconstruct from each branch a set of points,

either on the boundary (branch τF ,1 (v), blue) or at the interior (branch τF ,2 (v), red) of

the NLOS shape.

to produce an oriented point cloud (locations and normals) for the NLOS surface X , and

then perform surface fitting to obtain a surface reconstruction. Figure 3.4 visualizes our

reconstruction pipeline.

Algorithmic details. We detect discontinuities in each measured transient I (τ; v) with

a basic one-dimensional edge detection procedure, by filtering each transient with a set

of derivative-of-Gaussian filters, and performing non-max-suppression. To compute

gradients ∇vτF (v) in the Fermat flow algorithm, we use quadratic interpolation on

Fermat pathlength values at a 5× 5 neighborhood around each point v.

3.4 Experiments

We discuss results from NLOS reconstruction experiments we have performed to val-

idate and evaluate the Fermat flow algorithm. All experiments are based on measure-

ments captured with two transient imaging setups, one operating at picosecond and the

other at femtosecond temporal scales.
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Figure 3.5: Comparison with groundtruth. We perform one-dimensional scans of 3D-

printed objects, in a looking-around-the-corner configuration. For each object, we show

a photograph under ambient light (left), and reconstruction results (red points) super-

imposed against the groundtruth mesh used to fabricate the object (middle and right).

3.4.1 Picosecond-scale Experiments

Imaging system. We use a SPAD-based transient imaging system [55, 133, 135], consist-

ing of a picosecond laser (NKT SuperK EXW-12), a SPAD detector (MPD module), and

a time-correlated single photon counter (TCSPC, PicoQuant PicoHarp). The temporal

binning resolution of the TCSPC unit is 4 ps, for an absolute upper bound in depth res-

olution of 1.2 mm. In practice, the resolution is lower, because of laser and TCSPC jitter.

We use galvo mirrors to independently control viewpoint and illumination direction,

and perform both confocal and non-confocal scanning in the looking-around-the-corner

setting of Figure 3.1(a).

Comparison with ground truth. We fabricated small objects from CAD meshes, pro-

viding us with ground-truth shape for comparison. The objects were painted with

matte white paint to create Lambertian reflectance. The objects are approximately 15 cm

in each dimension, and are placed at a distance 25 cm from a planar visible surface.

All objects are ruled surfaces, to allow reconstruction of their profile from only one-

dimensional scans. We capture measurements under a non-confocal setting, by fix-

ing the point imaged by the SPAD and scanning the point illuminated by the source

along multiple horizontal lines on the visible wall. Along each line, we scan 200 points,

at a distance of approximately 1 mm from each other. Figure 3.5 shows point clouds

reconstructed from these measurements using the Fermat flow procedure, superim-

posed against the meshes used for fabrication. The reconstructions closely reproduce
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Figure 3.6: Comparison of point cloud and surface reconstructions. We scan a rough

specular kettle, shown in the left under ambient light. We reconstruct an oriented point

cloud, shown in the middle from two views, where points are colored according to their

normal. Finally, we fit a surface to the point cloud, shown to the right under two views.

(a) plastic jug (b) glass vase (c) plastic bowl (d) metal sphere

Figure 3.7: Table-top objects. We scan objects that span a variety of shapes (convex,

concave) and reflectances (translucent, glossy, specular). For each object, we show a

photograph under ambient light, and two views of its surface reconstruction.

the shape of the objects, including their concave and convex surfaces, and match the

groundtruth within 2 mm.

Table-top objects. We scanned a variety of every day objects (Figures 3.6 and 3.7),

with convex and concave geometry of different BRDFs, including translucent (plastic

jug), glossy (bowl, vase), rough specular (kettle) and smooth specular (sphere). Most

of the objects have a major dimension of approximately 20− 30 cm, and are placed at a

distance of 80 cm from the visible wall. We use confocal scanning with a grid of 64× 64

points distributed in an area of 80 cm× 80 cm on the visible wall.

Figure 3.6 visualizes point cloud, normal, and final surface reconstruction for one of

the objects, an electrical kettle with rough-specular reflectance. We observe that our re-

construction procedure produces a point cloud that closely matches the shape of the ob-
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ject, including accurate normals on its front surface. We note that we do not reconstruct

normals at the handle of the object: This is expected, because these parts of the object

produce Fermat paths of boundary, rather than specular, type, and such paths do not

provide normal information. The final fitted surface further improves the reconstruc-

tion quality. Figure 3.7 shows reconstructions for the remaining table-top objects. In all

cases, the reconstruction closely matches the object shape, demonstrating the ability of

our algorithm to handle a variety of complex geometry and reflectance combinations.

3.4.2 Femtosecond-scale Experiments

Imaging system. We use a time-domain, full-frame optical coherent tomography sys-

tem [56]. We use this system to perform confocal scans under both the looking-around-

the-corner and looking-through-diffuser settings (Figure 3.1). We use spatially and tem-

porally incoherent LED illumination, which allows us to combine transient imaging

with diagonal probing [132]. In the context of confocal scanning, this means that we

can simultaneously collect transients I (τ, v) at all points on the visible surface without

scanning, as transient measurements taken at one point will not be contaminated with

light emanating from a different point. Our implementation has depth resolution of

10µm.

Coin reconstructions. We perform experiments in both looking-around-the-corner and

looking-through-diffuser settings (Figure 3.1), where for the diffuser we use a thin sheet

of paper. In both cases, the NLOS object is a US quarter, with the obverse side facing the

visible surface. We place the coin at a distance of 10 mm from the visible surface, and

collect transient measurements on an area of about 40 mm× 40 mm, at an 1 MPixel grid

of points. For validation, we additionally use the same setup to directly scan the coin

without occlusion. Figure 3.1 shows our results. In both cases, we can reconstruct fine

detail on the coin, sufficient to infer its denomination. The reconstructed detail is also

in close agreement with the groundtruth shape measured with the coin directly in the

line-of-sight.

3.4.3 Simulated Experiments

We also performed simulated experiments to evaluate the performance of our recon-

struction algorithm under different BRDF and noise conditions. In all cases, the syn-
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(a) simulated transients (b) reconstruction for diffuse case (c) reconstruction for diffuse + specular case (d) reconstruction for specular case
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Figure 3.8: Reconstructions under different BRDFs. We show reconstructions from

simulated transient measurements for a vase, rendered under three different BRDFs:

Lambertian, mixture of Lambertian and specular, and specular. (a) Comparison of ren-

dered transients for the three cases (representative sample). (b)-(d) For each case, we

show reconstructed points colored by normal (left) and by branch of the Fermat path-

length function (middle and right).

(a) simulated transients (b) reconstruction for low noise case (c) reconstruction for mid noise case (d) reconstruction for high noise case
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Figure 3.9: Reconstructions under different noise levels. We show reconstructions

from simulated transient measurements for a vase, rendered with three different noise

levels. (a) Comparison of rendered transients for the three cases (representative sample).

(b)-(d) For each case, we show reconstructed points colored by normal (left) and by

branch of the Fermat pathlength function (middle and right).

thetic transient data was simulated using physically-accurate Monte Carlo rendering [80],

and noise was added using the SPAD model of Hernandez et al. [73].

Reconstructions under different BRDFs and noise levels. Figures 3.8 and 3.9 show

simulated experiments for a vase object. We render 64× 64 transients under a confocal

scanning scheme. The Fermat pathlength function for the vase object has two branches,

both specular, one corresponding to the convex body of the vase, and another to the

concave neck of the vase.

In Figure 3.8, we compare rendered data and reconstructions for three different

BRDFs, ranging from fully Lambertian to fully specular. We observe that both the recon-

structed points and normals remain largely invariant to the BRDF change, as expected

from our theory. In Figure 3.9, we compare rendered data and reconstructions for three

different noise levels. We observe again that the reconstructions of both points and nor-
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mals remain robust as the noise increases.

3.5 Discussion and Summary

We discuss some limitations of our approach. Our reconstruction procedure based on

the theory of Fermat paths does not require radiometric calibration, as it does not use

intensity information, instead relying on estimating the pathlengths where measured

transients are discontinuous. Consequently, our reconstructions can be sensitive to in-

accurate discontinuity detection. Reconstruction quality can additionally suffer if we

do not have sufficiently dense measurements for estimating Fermat pathlength gradi-

ents through interpolation, i.e., when differential imaging is not adopted. Finally, using

only pathlength information provides BRDF invariance, but it also means that we do

not take advantage of the information available in measured intensities about the NLOS

scene.

The theory of Fermat paths offers new insights into the NLOS imaging problem,

linking it to classical areas such as specular and differential geometry, and providing

ample opportunity for transfer of ideas from these areas to the NLOS imaging setting.

By allowing us to treat NLOS reconstruction from a purely geometric perspective, our

theory introduces a new methodology for tackling this problem, distinct from but com-

plementary to approaches such as (elliptic) backprojection [135, 179] and analysis-by-

synthesis [176], which focus on the radiometric aspects of the problem.

Interestingly, concurrent work [112] has uncovered an intriguing link between our

and backprojection approaches, by showing that the latter cannot reconstruct NLOS

points not on Fermat paths, even if those points otherwise contribute to measured tran-

sients. Therefore, both approaches reproduce the same part of the NLOS scene. Further

exploration of connections between the geometric and backprojection approaches can

help shed light into their fundamental limits and strengths, potentially by allowing us

to derive results applicable to both classes of approaches using whichever mathematical

framework (geometric, radiometric) is more convenient for analysis.

More broadly, an exciting future direction of research is combining the two classes of

approaches, not only for NLOS imaging, but also for other related applications, includ-

ing acoustic and ultrasound imaging [108], lensless imaging [188], and seismic imag-

ing [161].
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Chapter 4

Fermat Paths for Specular Shape

Reconstruction

In Chapter 3, we have discussed how we apply the theory of Fermat paths for NLOS

shape reconstruction. In this chapter, we apply the theory to specular (mirror-like) ob-

ject reconstruction, this time in a line-of-sight setting. Because the law of specular reflec-

tion is derived from Fermat’s principle, all light paths reflecting off a specular object are

Fermat paths (more precisely, specular paths, and not boundary ones). This allows us to

directly measure information of Fermat paths and apply the reconstruction algorithms

in Chapter 2.

In Section 4.1, we introduce the imaging setup. In Section 4.2, we explore the ge-

ometric information available in the specularities captured by a differentially moving

camera. Zisserman et al. [198] and our derived integral form of Fermat flow algorithm

have shown that the locations of moving specularities can be used for reconstructing

a one-parameter family (OPF) of specular surfaces. The algorithm is exactly the inte-

gral form of the Fermat flow algorithm. The remaining ambiguity influences the recon-

structed shape significantly to be of use to computer vision applications. In order to

determine a unique solution from the OPF, regularization is required, e.g., by exploiting

prior knowledge of the mirror shape or a known point on the true surface. However,

it is often the case that the surface shape is not known in advance and explicitly deter-

mining one point on the surface requires extra efforts, e.g., by coating the surface with

diffuse paint and use methods for diffuse object reconstruction.

Inspired by shape from shading methods that target surface reconstruction in the

presence of specular highlights, e.g., surfaces with both diffuse and specular compo-
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nents or rough specular surfaces [13, 14, 79, 119, 142, 146], we address the following

problem: What does radiometric information of specularities observed by a moving

camera tell us about the shape of a purely specular mirror and can it help reduce the

ambiguity within the aforementioned OPF?

In Section 4.3, we explore the radiometric information of moving specularities for

resolve the ambiguity in the OPF. We conduct theoretical analysis and prove that a pair

of image irradiances of specularities observed at two camera locations can be used to re-

duce the ambiguity down to a maximum of 16 discrete possibilities for general shapes.

By considering all available irradiances, we develop an optimization approach to em-

pirically eliminate the ambiguity to determine the true surface. Our analysis does not

require a careful radiometric calibration and is only based on the assumption that the

mirror has a homogeneous specular albedo and the incident angles for all measured

points on the mirror do not vary much such that the Fresnel term in all reflection events

are assumed to be constant.

In Section 4.4, We perform simulations to support our theory on planar and curved

mirrors. We verify the correctness of the specularity irradiance model by comparing it

against images rendered with a Monte Carlo ray tracer [80]. We then demonstrate that

using our proposed optimization approach, radiometric information of moving specu-

larities can be used as a regularization to empirically determine a unique surface within

the OPF.

4.1 Imaging Setup

Our imaging setup, shown in Figure 4.1(a), comprises a near-field point light source

and a camera, located at vs, vd ∈ R3, respectively. The camera vd is differentially trans-

lated along the two directions orthogonal to its optical axis and sampled on a dense 2D

rectangular grid. The moving camera essentially emulates a multi-camera array/light

field camera/wavefront sensor. This setting corresponds to the non-confocal case dis-

cussed in Section 2.5. We assume the scene X ⊂ R3 is a piecewise smooth mirror of

general unknown shapes placed in close proximity to the imaging setup comparable to

its scale. We also assume that light emitted from the point source bounces only once on

the specular surface before reaching the sensor and ignore higher-order bounces, such

as interreflections. At each camera location vd, the captured image will exhibit one or
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Figure 4.1: Near-light differential imaging for specular object reconstruction. (a) Our

imaging setup consists of a near-field point light source vs and a translating camera

vd, which emulates a multi-camera array with optical centers sampled on a 2D regular

grid. We assume the object has a smooth mirror reflectance. (b) At each camera location

vd, the captured image will exhibit one or more specular highlights, corresponding to

some specular paths vs → xS → vd. In this specific example, there is only one highlight

h within each image. (c) Zisserman et al. [198] examines the geometric information

associated with these specularities, i.e., the directions of specular reflections ŵS , and

show that they can be integrated to obtain a one-parameter family (OPF) of surfaces. We

review their work in Section 4.2. In this work, we show that radiometric information,

i.e., the absolute image irradiances of specularities, can be used to further disambiguate

within the OPF. This is detailed in Section 4.3. (d) We apply surface fitting to the oriented

point cloud and obtain the final surface reconstruction. Ground truth surface is shown

in gray.

more specularities, corresponding to different specularly reflected rays. By considering

images at all camera locations, we obtain a mosaic of specularities (Figure 4.1(b)), whose
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pixel locations and image irradiances provide geometric and radiometric information of

the specularly reflected rays (Figure 4.1(c)), respectively. In the example shown in Fig-

ure 4.1, there is only one specularity per image. Depending on the specular surface,

there could exists more specularities per view. In this case, as discussed in Chapter 2,

each branch of specularities should be processed separately.

4.2 Geometric Information from Specularities

We first explore how geometric information of moving specularities help reconstruct

the specular surface. Let path p (x; vs, vd) be a specular path. Assume the reflected

ray xS → vd creates a highlight on the image plane with homogeneous coordinate

h = M (xS − vd), where M denotes the camera’s intrinsic matrix. Given M, we can

back-project h to the specularly reflected ray: wS (vs, vd) = xS − vd = M−1h. Further

normalizing wS yields the unit direction ŵS (vs, vd) = wS (vs,vd)
‖wS (vs,vd)‖ . ŵS (vs, vd) is the

surface normal of the reflected wavefront (shown as blue dotted curves in Figure 4.2(a)

and (b)), or equivalently the gradient of the FPF (Equation (2.43)).

Given one branch of directional measurements of specularly reflected rays ŵS (vs, vd),

we can apply the integral form of the Fermat flow algorithm (Proposition 9′ in Chap-

ter 2) to reconstruct a OPF of specular surfaces. We restate the equation here for conve-

nience:

τS (vs, vd; τ0) =
∫

vd

−ŵS (vs, vd) dvd + τ0 . (4.1)

Note that we explicitly include the unknown constant τ0 in the parameterization. Each

τ0 determines one reflected wavefront, which can be converted to the specular surfaceX
through an ellipsoid-ray intersection (Section 2.5.3). In the context of reconstructing

specular surfaces from moving specularities, Equation (4.1) is closely realted to the the-

orem proposed by Zisserman et al. [198].

The influence of the unknown pathlength offset τ0 on specular shape reconstruction.

Without resolving τ0, the OPF of reflected wavefronts in our near-light setup gets con-

verted to a OPF of specular surfaces that of dramatically different shapes (Figure 4.2(c)

and (d)). Specifically, for a planar surface, an incorrect τ0 leads to a surface reconstruc-

tion that is no longer planar, but rather be convex or concave. The surface can even

degenerate and collapse into a point (which is exactly the mirror reflection of the light

source vs about the plane). For general shapes, the reconstructed OPF contains surfaces
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ŵS (vs, vd)

(b) general surfaces

OPF of reconstructed surfaces
ground truth specular surface

X

vs

vd
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Figure 4.2: Geometric wavefronts and one-parameter family (OPF) of specular surface

reconstruction. A point light source vs emits a spherical wavefront (dotted curves in

red) towards the specular surface. After specular reflection, the reflected wavefront

(dotted curves in blue) gets modulated by the specular surface. (a) For planar surfaces,

the reflected wavefront does not change its shape and remains spherical. (b) For surfaces

of general shapes, the reflected wavefront evolves into a new shape. In both cases,

the reflected wavefront propagates to the translating camera (shown as a multi-camera

array). The measured directions of specular reflections ŵS (vs, vd) can be integrated to

reconstruct a OPF of reflected wavefronts (Equation (4.1)), which can then be converted

to a OPF of specular surfaces. The OPF of specular surfaces do not share the same

shape, as shown in (c) and (d), which motivates additional regularizations to uniquely

determine the surface.

that can be discontinuous and “grow” new patches. We can think of it as the inverse

of converging rays forming caustics; this time, a point can expand into a new surface

patch as τ0 changes.
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Because of the dramatically varying shapes in the OPF, it is important to uniquely

determine the surface for the reconstruction to be of practical use, e.g., controlling the

quality of manufactured mirror objects. To resolve the ambiguity, additional regular-

ization is needed, which remains an open-research problem [28]. Zisserman et al. [198]

propose to further locate one point on the specular surface. However, explicitly de-

termining one point on a mirror requires extra efforts, e.g., by coating the object with

diffuse paint and applying reconstruction methods for Lambertian objects.

4.3 Radiometric Information from Specularities

In this section, we show it is possible to use radiometric information of specularities

to reduce the number of feasible solutions of τ0 from infinity to a maximum of 16, and

empirically down to a unique solution. In Section 4.3.1, we derive image irradiances

of specularities involving a single reflection event and show that they encode curva-

ture information of the specular surfaces. Through a reparameterization described in

Section 4.3.2, we express image irradiances as a function of the pathlenght offset τ0. In

Section 4.3.3, we perform a theoretical analysis on the uniqueness of solutions when

using radiometric information for resolving τ0.

4.3.1 Image Irradiances of Specularities

Our derivation follows prior works [122, 168] for tracing multiple specular reflection or

refraction events. We adapt the derivation to our setup involving only a single reflection

from a point source.

Proposition 12. Let us consider the specular path vs → xS ∈ X → vd, and denote the

Gaussian curvature of the wavefront: (1) emitted from the point light source to xS as K(i), (2)

immediately after reflection as K(r), and (3) further propagating to the camera as K(c), where the

superscripts (i) , (r) and (c) denote incident, reflected, and wavefronts arriving at the camera,

respectively.

Let Ivs be the radiant intensity of the near-field point light source. Let θi and θc be the inci-

dent angle of specular reflection, and the angle between the specularly reflected ray and camera

viewing direction, respectively. Let ρ be the specular albedo of the smooth homogeneous spec-

ular surface. Let Fr (θi) be the Fresnel term dependent on the incident angle. Then, the image
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irradiance of the specular highlight can be expressed as

E(c) = Fr (θi) ρIvs K
(i)

∣∣∣K(c)
∣∣∣∣∣K(r)
∣∣ cos (θc) . (4.2)

Proof. The key idea is to keep track of the Gaussian curvature change of the wavefront

as it propagates because irradiance at any point is proportional to the Gaussian curva-

ture of the wavefront at that point [122]. The tracking consists of three steps. First, the

point light source vs emits an initial spherical wavefront and propagates to the specular

surface at point xS . Second, immediately after reflection, the wavefront gets modu-

lated by the specular surface. Third, the reflected wavefront further propagates to the

camera vd.

Incident wavefront. Given the radiant intensity of the near-field point light source Ivs ,

we compute the irradiance of the initial spherical wavefront at point xS according to the

inverse-square law, also known as the quadratic falloff:

E(i) =
Ivs

‖xS − vs‖2 = Ivs K
(i) , (4.3)

where K(i) = 1/‖xS − vs‖2 is the Gaussian curvature of the incident spherical wavefront

arriving at xS .

Reflected wavefront. After reflection, the wavefront evolves into a new shape which is

dependent on the shape of the specular surface. According to the law of conservation

of energy, an idealized 100% reflective mirror reflects all received flux in the outgoing

direction. In practice, we need to also consider specular albedo ρ and Fresnel coefficient

Fr (θi), which leads us to the following:

E(r) = Fr (θi) ρE(i) . (4.4)

Reflected wavefront propagating to the camera. Finally, we propagate the reflected

wavefront in the free space towards the camera. Again, based on conservation of energy,

the irradiance along reflected ray is proportional to the Gaussian curvature, therefore

E(c)
⊥

E(r)
=

∣∣∣K(c)
∣∣∣∣∣K(r)
∣∣ , (4.5)

where E(c)
⊥ denotes the wavefront irradiance along the reflected ray when arriving at

the camera. The ⊥ subscript represents the irradiance received by a sensor placed per-

pendicularly to the outgoing ray direction. A derivation of Equation (4.5) can be found

in Mitchell and Hanrahan [122].
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When the camera viewing direction and the reflected ray direction span an angle θc,

we account for the foreshortening term cos (θc):

E(c) = E(c)
⊥ cos (θc) . (4.6)

Combining Equations (4.3)-(4.6) completes the proof.

4.3.2 Reparameterization of Equation (4.2)

We reparameterize Equation (4.2) using vs, vd and the unknown pathlength offset τ0.

First, simplifying the notation leaving the curvature terms yields

Ẽ(c) = Ĩvs K
(i)

∣∣∣K(c)
∣∣∣∣∣K(r)
∣∣ , (4.7)

where Ẽ(c) = E(c)/cos (θc) denotes image irradiances absorbing the camera orientation

and Ĩvs = Fr (θi) ρIvs is the scaled light source intensity absorbing material properties.

The curvature terms K(i) and
∣∣∣K(c)

∣∣∣/∣∣∣K(r)
∣∣∣ can be expressed using four geometric quan-

tities, including the incident and outgoing pathlengths denoted as τ
(i)
S and τ

(r)
S , as well

as the Gaussian and mean curvatures of the reflected wavefront arriving at the camera,

denoted as K(c) and H(c). All four geometric quantities can be computed by integrt-

ing or differentiating ŵS (vs, vd), whose derivations were already provided in Equa-

tions (2.47), (2.48), (2.32), and (2.34), respectively. We restate their expressions as fol-

lows. Note that we explicitly include τ0 in the parameterization.

τ
(i)
S (vs, vd; τ0) =

τS2 + 2 〈vd − vs, ŵS〉 τS + ‖vd − vs‖2

2 (τS + 〈vd − vs, ŵS〉)
, and (4.8)

τ
(r)
S (vs, vd; τ0) =

τS2 − ‖vd − vs‖2

2 (τS + 〈vd − vs, ŵS〉)
. (4.9)

K(r) (vs, vd; τ0) =
K(c)

1− 2H(c)τ
(r)
S + K(c)τ

(r)
S

2 . (4.10)

Plugging Equation (4.10) and K(i) = 1/τ
(i)
S

2
to Equation (4.7), we obtain a reparame-

terization of irradiance expressed in terms of the unknown pathlength offset τ0:

Ẽ(c) (vs, vd; τ0) = Ĩs

∣∣∣∣1− 2H(c)τ
(r)
S + K(c)τ

(r)
S

2
∣∣∣∣

τ
(i)
S

2 . (4.11)
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4.3.3 Resolving τ0 using Radiometric Information of Specularities

Equation (4.11) indicates that irradiances of specularities are dependent on τ0 by relating

geometric quantities of the wavefront. As a result, we propose to invert the process and

recover τ0 given radiometric measurements Ẽ(c).
In this work, we assume that the specular object has a homogeneous specular albedo ρ

and the angle of incidence θi are all within a certain range excluding extreme angles
(usually less than 60° for most metal materials) such that the Fresnel term Fr (θi) remains
approximately constant. Therefore, the scaled light source intensity Ĩvs = Fr (θi) ρIvs

now becomes a global constant. 1 Rearranging Equation (4.7), the following expression
is assumed to be constant across all measurements:

Ĩs =

≡N︷ ︸︸ ︷
Ẽ(c)τ

(i)
S (τ0)

2∣∣∣∣1− 2H(c)τ
(r)
S (τ0) + K(c)τ

(r)
S (τ0)

2
∣∣∣∣︸ ︷︷ ︸

≡D

, (4.12)

where N and D denote the numerator and the denominator (inside the absolute sign),

respectively. Therefore, for image irradiances of two specularities observed at two cam-

era locations, N1/|D1| = N2/|D2|. Or equivalently,

N1D2 ±N2D1 = 0 . (4.13)

Plugging Equations (4.8) and (4.9) to Equation (4.13) and noting that numerators of both

τ
(i)
S and τ

(r)
S are second-order polynomials of τ0, we have Equation (4.13) as two eighth-

order polynomials in terms of τ0. The roots are potential solutions of τ0, therefore the

ambiguity is reduced down to 16 given a pair of image irradiances.

As will be demonstrated in simulated experiments, empirically we do not get 16 fea-

sible solutions, mainly due to two reasons. First, potential solutions of τ0 can be imagi-

nary, or real but physically infeasible, e.g., an offset leading to a surface reconstruction

behind the camera plane. Second, by taking measurements with a differentially trans-

lating camera (or a light field camera/wavefront sensor), we usually have not only two

but much more irradiance measurements. For example, a spatial sampling of m pro-

vides (m− 1) unique irradiance pairs, and we can write a system of (m− 1) constraints
1When the assumption fails, e.g., when there exist extreme angles of incidence and the Fresnel term

varies across measurements, one can perform a radiometric calibration of the scaled light intensities Ĩvs

by taking measurements of a specular object of a known ground truth shape and composited of the same

specular material as the mirror of interest.
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in the form of Equation (4.13). Common roots of the entire system will usually be much

fewer than 16.

In the following, we first prove that for planar specular surfaces, τ0 has a unique an-

alytical solution given the system of polynomials. We then consider surfaces of general

shapes which do not have closed-formed solutions, and propose to solve for τ0 through

an optimization instead.

Planar surfaces: a unique solution. As shown in Figure 4.2(a), a planar specular surface

does not change the shape of the incident wavefront after reflection—it merely reflects

it. As a result, the Gaussian curvatures before and after reflection remain the same, i.e.

K(i) = K(r) and Equation (4.7) can be simplified as

Ẽ(c) (vs, vd; τ0) = Ĩs

∣∣∣K(c)
∣∣∣ = Ĩs

τ2
S

. (4.14)

Equation (4.14) can be derived by following the wavefront tracing procedure described

in [122, 168] and noting that the curvature of a plane equals 0. Intuitively, we can imag-

ine placing a virtual point light source at the mirror location of the light source about

the planar surface, and directly computing the image irradiance arriving at the cam-

era, which is proportional to the Gaussian curvature of a spherical wavefront 1/τS2.

Equation (4.14) leads us to the following proposition on the uniqueness of surface re-

construction if the ground truth surface is planar. It is important to note that we do not

assume the planarity of the mirror, but rather examine whether it is possible to uniquely

determine the planar surface within the OPF given radiometric information.

Proposition 13. Let X be planar. Let paths vs → xS1 ∈ X → vd1 and vs → xS2 ∈ X → vd2

be two specular paths, and τS1 and τS2 be the ground truth pathlengths, respectively. Assume

the pathlengths τS1 + τ0 and τS2 + τ0 also satisfy radiometric constraints (Equation(4.13)).

Plugging Equation (4.14) to Equation(4.13) leads to the following seventh-order polynomial in

terms of τ0 :

τ0

(
τ2

0 − l2
)2 [

τ2
0 + (m1 + m2) τ0 + l2

]
= 0 , (4.15)

where l is twice the distance from the point light source vs to X , and m1 and m2 are defined as
follows:

l = 2 · dist (vs,X ) , and (4.16)

mj = τS j +
〈

vd j − vs, ŵS
(

vs, vd j

)〉
, j ∈ {1, 2} . (4.17)
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We provide the proof in Appendix C.1. Proposition 13 implies that for a planar sur-

face, τ0 has five unique solutions:
{

0,±l, −(m1+m2)±
√

(m1+m2)
2−4l2

2

}
. The trivial solution

τ0 = 0 yields the ground truth specular shape. τ0 = ±l correspond to zero denomi-

nators and are degenerate. The last two solutions are also infeasible because they are

imaginary: m1, m2 < l ⇒ (m1 + m2)
2 − 4l2 < 0. As a result, for a planar surface, a pair

of radiometric measurements of two specularities already let us resolve τ0 and uniquely

determine the specular surface within the OPF.
General surfaces: an optimization problem. For general surfaces, Equation (4.13) does
not have analytical solutions. As a result, we turn to a joint estimation of Ĩvs and the
pathlength offset τ0. Assuming Gaussian noise in radiometric measurements, we opti-
mize for the two unknowns by minimizing the L2-loss over all specularities:

L
(

Ĩvs ; τ0
)
=
∥∥∥E(c) − Ĩvs e (τ0)

∥∥∥
2

, (4.18)

where e (τ0) =

∣∣∣∣1−2H(c)τ
(r)
S (τ0)+K(c)τ

(r)
S (τ0)

2
∣∣∣∣

τ
(i)
S (τ0)

2 cos (θc), and the bold symbol denotes the vec-

torization of the respective variables.

The above 2D optimization problem can be transformed into a 1D problem on τ0

because Ĩvs is a scalar whose optimal solution is dependent on e (τ0): given any τ0,

minimizing L over Ĩvs is a least-square problem with an analytical solution:

Ĩ?vs (τ0) =
e (τ0)

> E(c)

e (τ0)
> e (τ0)

. (4.19)

Therefore, minimizing the L2-loss L is equivalent to maximizing the cosine similarity
(minimizing the angle) between e (τ0) and E(c):

min
Ĩvs ,τ0

L
(

Ĩvs ; τ0
)

(4.20)

≡min
τ0
L
(

Ĩ?vs
(τ0) ; τ0

)
(4.21)

≡min
τ0
Lcos (τ0) = 1−

〈
E(c)∥∥∥E(c)

∥∥∥ ,
e (τ0)

‖e (τ0)‖

〉
(4.22)

The solution to Equation (4.22) is the minimizer of the system of polynomials in the

form of Equation (4.13). Because of the non-convexity of the optimization problem, in

practice we first conduct a coarse 1D line search over a reasonable range [τ0min, τ0max]

for a good initialization of τ0, and then refine the initialization with gradient descent.
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(a) Equation (4.7) (b) Mitsuba [80] (c) residual

Figure 4.3: Verifying Equation (4.7) using Monte Carlo rendering. We verify the cor-

rectness of (a) the image irradiance model using (b) images rendered with Mitsuba [80].

(c) The residual (maximum difference less than 6%) shows that our model matches well

with Monte Carlo ray tracing.

4.4 Simulated Experiments

In this section, we discuss the simulated experiments we have performed to verify

our theory. We start by verifying the image irradiance model (Equation (4.2)) in Sec-

tion 4.4.1. We then evaluate the uniqueness of τ0 in Section 4.4.2. Finally, we test the

robustness of our optimization method in the presence of radiometric noise in Sec-

tion 4.4.3. In all simulations, we translate the camera both horizontally and vertically to

cover a 51× 51 regular grid.

4.4.1 Verifying the Forward Image Irradiance Model

We verify the forward model by comparing it against images rendered with Mitsuba [80],

which is a physics-based Monte Carlo ray tracer. We set the reflectance of the object to be

slightly rough specular, instead of a smooth mirror reflectance, for rendering stability.

Specifically, we choose the GGX microfacet model with roughness 0.001, and select the

“none” material profile which produces an idealized 100% reflecting mirror and ignores

the computation of the Fresnel term.

Preprocessing. Given rendered images, we detect specular highlights and process them

to obtain the geometric and radiometric measurements of the reflected wavefront. Be-

cause of the finite image resolution and slightly rough specular reflectance, specularities

usually appear as blobs spreading across multiple pixels. For geometric processing, we
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compute the centroids of specularities and convert them to directions of specular reflec-

tion. For radiometric processing, we compute irradiances of specularities by summing

up all image irradiances within the blob. Figure 4.3 shows the image irradinces com-

parison for a concave sphere. Results show that our forward irradiance model matches

well with the Mitsuba rendering, with a residual smaller than 6%.

4.4.2 Uniqueness of τ0 from Radiometric Information of Two or More

Specularities

Next, we explore the uniqueness of τ0 for general quadrics of the form z = f0 + fxx +

fyy + fxxx2 + fxyxy + fyyy2, which we believe are general enough to represent the local

shape of most manufactured mirror objects. Specifically, we consider planes, convex

and concave paraboloids, and saddles, as shown in Figure 4.4.

We start by exploring the number of feasible roots of Equation (4.13) given one pair

of randomly picked image irradiances, or equivalently constructing a 2-vector of E(c)

and e (τ0) in Equation (4.22). We first compute ground truth pathlengths τS (vs, vd) for

all camera locations, and manually offset them such that the smallest value becomes 0.

This step makes sure that negative roots will be physically infeasible because they cor-

respond to surfaces that are behind the camera plane. Consider the blue (or magenta)

curve in Figure 4.4(c), which is a polynomial-τ0 plot. The ground truth offset is shown

as the green dot. As we can see, there are multiple zero-crossing points for each polyno-

mial, especially for non-planar surfaces, but many of them are negative and infeasible,

which suggests that we have already reduced the ambiguity of τ0 from infinity to a

sparse set of feasible solutions and the size of the feasible set is usually smaller than 16.

We then consider two polynomials (both blue and magenta curves) and observe that

they rarely share the same set of roots except for the ground truth τ0. The observation

suggests that as we include more radiometric measurements, we can gradually reduce

the feasible set of τ0, which leads us to Figure 4.4(d), where we show the loss curve

versus τ0 when we consider all measurements.

These empirical results show that using radiometric measurements we obtain a unique

solution of τ0 for all the shapes we simulated. The zero-crossing points in Figure 4.4(d)

also align well with their respective ground truth, suggesting a correct recovery of τ0,

and hence a correct solution of the mirror surface.
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4.4.3 Robustness to Gaussian Noise in Radiometric Measurements

To evaluate the robustness of our proposed method in the presence of Gaussian image

noise, we add extensive noise (signal-to-noise ratios (SNRs) being 10dB, 7dB, and 5dB,

respectively) to the noiseless irradiances computed based on our model, as shown in

Figure 4.5. The loss curves plotted in Figure 4.5(e) show that despite the large amount

of noise, our method can robustly recover an offset τ0 that remains very close to the

ground truth.

4.5 Discussion and Summary

In this work, we have conducted a theoretical analysis on using radiometric informa-

tion of specularities as a regularization to the OPF of surfaces obtained using the in-

tegral form of the Fermat flow algorithm. We have proven that image irradiances of

two specularities already reduce the ambiguity down to a maximum of 16 solutions.

We then show through simulated experiments on general quadric shapes that by collec-

tively considering radiometric information of all available specularities, it is possible to

empirically get a unique surface reconstruction within the OPF, even in the presence of

severe Gaussian noise. In order to bring the method into practical use, we envision as a

future work to conduct real experiments to further verify the proposed method.
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Figure 4.4: Simulation results on the uniqueness of τ0 using radiometric measure-

ments. We consider specular objects of general quadric shapes (shown as depth maps

in (a)) and compute (b) image irradiances of specularities observed by a translating

camera. (c) The blue and magenta curves both correspond to the polynomial (Equa-

tion (4.13)) formulated using one pair of image irradinaces. Multiple zero-crossing

points can be found for each polynomial, especially for non-planar surfaces, but many

of them are negative and infeasible, which suggests that we have already reduced the

ambiguity of τ0 from infinity to a sparse set of feasible solutions. When considering

both polynomials, we see that they usually do not share the same roots except for the

ground truth τ0. The observation suggests that as we include more radiometric mea-

surements, we can further reduce the feasible set of τ0. (d) Eventually, by considering

all irradiances, we obtain a unique solution of τ0 for all the shapes we simulated.
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Figure 4.5: Simulation results on demonstrating the robustness of the optimization.

We add extensive Gaussian noise to the (a) noiseless radiometric measurements, with

signal-to-noise ratios (SNRs) being (b) 10dB, (c) 7dB, and (d) 5dB, respectively. We then

run our optimization algorithm using radiometric measurements of all 51× 51 specular-

ities. (e) Loss plots show that although the orginal radiometric signal gets corrupted ex-

tensively, the global optimum of our formulated optimization remains robustly aligned

with the ground truth.
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Chapter 5

Defocus Map Estimation and

Deblurring from a Single Dual-Pixel

Image

Modern DSLR and mirrorless cameras feature large-aperture lenses that allow collect-

ing more light, but also introduce defocus blur, meaning that objects in images appear

blurred by an amount proportional to their distance from the focal plane. A simple

way to reduce defocus blur is to stop down, i.e., shrink the aperture. However, this also

reduces the amount of light reaching the sensor, making the image noisier. Moreover,

stopping down is impossible on fixed-aperture cameras, such as those in most smart-

phones. More sophisticated techniques fall into two categories. First are techniques that

add extra hardware (e.g., coded apertures [101], specialized lenses [43, 102]), and thus

are impractical to deploy at large scale or across already available cameras. Second are

focus stacking techniques [169] that capture multiple images at different focus distances,

and fuse them into an all-in-focus image. These techniques require long capture times,

and thus are applicable only to static scenes.

Ideally, defocus blur removal should be done using data from a single capture. Un-

fortunately, in conventional cameras, this task is fundamentally ill-posed: a captured

image may have no high-frequency content because either the latent all-in-focus image

lacks such frequencies, or they are removed by defocus blur. Knowing the defocus map,

i.e., the spatially-varying amount of defocus blur, can help simplify blur removal. How-

ever, determining the defocus map from a single image is closely-related to monocular
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Figure 5.1: Given left and right dual-pixel (DP) images and corresponding spatially-

varying blur kernels, our method jointly estimates an all-in-focus image and defocus

map.

depth estimation, which is a challenging problem in its own right. Even if the defocus

map were known, recovering an all-in-focus image is still an ill-posed problem, as it

requires hallucinating the missing high frequency content.

Dual-pixel (DP) sensors are a recent innovation that makes it easier to solve both

the defocus map estimation and defocus blur removal problems, with data from a sin-

gle capture. Camera manufacturers have introduced such sensors to many DSLR and

smartphone cameras to improve autofocus [2, 74]. Each pixel on a DP sensor is split

into two halves, each capturing light from half of the main lens’ aperture, yielding

two sub-images per exposure (Figure 5.1). These can be thought of as a two-sample

lightfield [129], and their sum is equivalent to the image captured by a regular sensor.

The two sub-images have different half-aperture-shaped defocus blur kernels; these are

additionally spatially-varying due to optical imperfections such as vignetting or field

curvature in lenses, especially for cheap smartphone lenses.
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In this chapter, we present a method to simultaneously recover the defocus map

and all-in-focus image from a single DP capture. Specifically, we perform a one-time

calibration to determine the spatially-varying blur kernels for the left and right DP im-

ages. Then, given a single DP image, we optimize a multiplane image (MPI) representa-

tion [170, 197] to best explain the observed DP images using the calibrated blur kernels.

An MPI is a layered representation that accurately models occlusions, and can be used

to render both defocused and all-in-focus images, as well as produce a defocus map. As

solving for the MPI from two DP images is under-constrained, we introduce additional

priors and show their effectiveness via ablation studies. Further, we show that in the

presence of image noise, standard optimization has a bias towards underestimating the

amount of defocus blur, and we introduce a bias correction term. Our method does not

require large amounts of training data, save for a one-time calibration, and outperforms

prior art on both defocus map estimation and blur removal, when tested on images

captured using a consumer smartphone camera.

5.1 Related Work

Depth estimation. Multi-view depth estimation is a well-posed and extensively studied

problem [65, 157]. By contrast, single-view, or monocular, depth estimation is ill-posed.

Early techniques attempting to recover depth from a single image typically relied on

additional cues, such as silhouettes, shading, texture, vanishing points, or data-driven

supervision [11, 18, 25, 40, 63, 75, 76, 95, 99, 107, 147, 156, 162]. The use of deep neu-

ral networks trained on large RGBD datasets [46, 52, 106, 111, 152, 164] significantly

improved the performance of data-driven approaches, motivating approaches that use

synthetic data [10, 61, 118, 126, 199], self-supervised training [54, 57, 58, 84, 116, 196], or

multiple data sources [47, 148]. Despite these advances, producing high-quality depth

from a single image remains difficult, due to the inherent ambiguities of monocular

depth estimation.

Recent works have shown that DP data can improve monocular depth quality, by re-

solving some of these ambiguities. Wadhwa et al. [181] applied classical stereo matching

methods to DP views to compute depth. Punnappurath et al. [144] showed that explic-

itly modeling defocus blur during stereo matching can improve depth quality. How-

ever, they assume that the defocus blur is spatially invariant and symmetric between the
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left and right DP images, which is not true in real smartphone cameras. Depth estima-

tion with DP images has also been used as part of reflection removal algorithms [143].

Garg et al. [53] and Zhang et al. [192] trained neural networks to output depth from DP

images, using a captured dataset of thousands of DP images and ground truth depth

maps [8]. The resulting performance improvements come at a significant data collec-

tion cost.

Focus or defocus has been used as a cue for monocular depth estimation prior to

these DP works. Depth from defocus techniques [48, 141, 173, 185] use two differently-

focused images with the same viewpoint, whereas depth from focus techniques use

a dense focal stack [59, 68, 169]. Other monocular depth estimation techniques use

defocus cues as supervision for training depth estimation networks [167], use a coded

aperture to estimate depth from one [101, 178, 193] or two captures [194], or estimate a

defocus map using synthetic data [100]. Lastly, some binocular stereo approaches also

explicitly account for defocus blur [37, 105]; compared to depth estimation from DP

images, these approaches assume different focus distances for the two views.

Defocus deblurring. Besides depth estimation, measuring and removing defocus blur

is often desirable to produce sharp all-in-focus images. Defocus deblurring techniques

usually estimate either a depth map or an equivalent defocus map as a first process-

ing stage [42, 86, 137, 163]. Some techniques modify the camera hardware to facilitate

this stage. Examples include inserting patterned occluders in the camera aperture to

make defocus scale selection easier [101, 178, 193, 194]; or sweeping through multiple

focal settings within the exposure to make defocus blur spatially uniform [125]. Once a

defocus map is available, a second deblurring stage employs non-blind deconvolution

methods [51, 96, 101, 120, 184, 191] to remove the defocus blur.

Deep learning has been successfully used for defocus deblurring as well. Lee et

al. [100] train neural networks to regress to defocus maps, that are then used to deblur.

Abuolaim and Brown [1] extend this approach to DP data, and train a neural network

to directly regress from DP images to all-in-focus images. Their method relies on a

dataset of pairs of wide and narrow aperture images captured with a DSLR, and may

not generalize to images captured on smartphone cameras, which have very different

optical characteristics. Such a dataset is impossible to collect on smartphone cameras

with fixed aperture lenses. In contrast to these prior works, our method does not require

difficult-to-capture large datasets. Instead, it uses an accurate model of the defocus blur

characteristics of DP data, and simultaneously solves for a defocus map and an all-in-
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Figure 5.2: Dual-pixel (DP) image formation. (a) A regular sensor and a DP sensor

where each green pixel is split into two halves. (b) For a finite aperture lens, an in-focus

scene point produces overlapping DP images, whereas an out-of-focus point produces

shifted DP images. Adding the two DP images yields the image that would have been

captured by a regular sensor. In (c), we show the corresponding pinhole camera where

all scene content is in focus. Ignoring occlusions, images in (b) can be generated from

the image in (c) by applying a depth-dependent blur.

focus image.

5.2 Dual-Pixel Image Formation

We begin by describing image formation for a regular and a dual-pixel (DP) sensor, to

relate the defocus map and the all-in-focus image to the captured image. For this, we

consider a camera imaging a diffuse scene with two points, only one of which is in focus

(Figure 5.2(b)). Rays emanating from the in-focus point (blue) converge on a single

pixel, creating a sharp image. By contrast, rays from the out-of-focus point (brown) fail

to converge, creating a blurred image.

If we consider a lens with an infinitesimally-small aperture (i.e., a pinhole camera),

only rays that pass through its center strike the sensor, and create a sharp all-in-focus

image Is (Figure 5.2(c)). Under the thin lens model, the blurred image Io of the out-of-

focus point equals blurring Is with a depth-dependent kernel kd, shaped as a d-scaled

version of the aperture—typically a circular disc of radius d = A + B/Z, where Z is the
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point depth, and A and B are lens-dependent constants [53]. Therefore, the per-pixel

signed kernel radius d, termed the defocus map D, is a linear function of inverse depth,

thus a proxy for the depth map. Given the defocus map D, and ignoring occlusions, the

sharp image Is can be recovered from the captured image Io using non-blind deconvo-

lution. In practice, recovering either the defocus map D or the sharp image Is from a

single image Io is ill-posed, as multiple (Is, D) combinations produce the same image

Io. Even when the defocus map D is known, determining the sharp image Is is still

ill-posed, as blurring irreversibly removes image frequencies.

DP sensors make it easier to estimate the defocus map. In DP sensors (Figure 5.2(a)),

each pixel is split into two halves, each collecting light from the corresponding half of

the lens aperture (Figure 5.2(b)). Adding the two half-pixel, or DP, images Il
o and Ir

o

produces an image equivalent to that captured by a regular sensor, i.e., Io = Il
o + Ir

o.

Furthermore, DP images are identical for an in-focus scene point, and shifted versions

of each other for an out-of-focus point. The amount of shift, termed DP disparity, is pro-

portional to the blur size, and thus provides an alternative for defocus map estimation.

In addition to facilitating the estimation of the defocus map D, having two DP images

instead of a single image provides additional constraints for recovering the underlying

sharp image Is. Utilizing these constraints requires knowing the blur kernel shapes for

the two DP images.

Blur kernel calibration. As real lenses have spatially-varying kernels, we calibrate an

8 × 6 grid of kernels. To do this, we fix the focus distance, capture a regular grid of

circular discs on a monitor screen, and solve for blur kernels for left and right images

independently using a method similar to Mannan and Langer [117]. When solving for

kernels, we assume that they are normalized to sum to one, and calibrate separately for

vignetting: we average left and right images from six captures of a white diffuser, using

the same focus distance as above, to produce left and right vignetting patterns Wl and

Wr. We refer to Section 5.4.2 for more details.

We show the calibrated blur kernels in Figure 5.3. We note that these kernels deviate

significantly from parametric models derived by extending the thin lens model to DP

image formation [144]. In particular, the calibrated kernels are spatially-varying, not

circular, and not symmetric.
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(a) left DP image blur kernels (b) right DP image blur kernels

(c) (d) (e) kernels from [144]

Figure 5.3: Calibrated blur kernels (a) and (b) for the left and right DP images. (c) and

(d) show example pairs of left and right kernels marked in red and cyan. Compared

to the parametric kernels (e) from [144], calibrated kernels are spatially-varying, not

circular, and not left-right symmetric.

5.3 Proposed Method

The inputs to our method are two single-channel DP images, and calibrated left and

right blur kernels. We correct for vignetting using Wl and Wr, and denote the two

vignetting-corrected DP images as Il
o and Ir

o, and their corresponding blur kernels at

a certain defocus size d as kl
d and kr

d, respectively. We assume that blur kernels at a de-

focus size d′ can be obtained by scaling by a factor d′/d [144, 194]. Our goal is to optimize

for the multiplane image (MPI) representation that best explains the observed data, and

use it to recover the latent all-in-focus image Îs and defocus map D̂. We first introduce

the MPI representation, and show how to render defocused images from it. We then

formulate an MPI optimization problem, and detail its loss function.

5.3.1 Multiplane Image (MPI) Representation

We model the scene using the MPI representation, previously used primarily for view

synthesis [177, 197]. MPIs discretize the 3D space into N fronto-parallel planes at fixed
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Figure 5.4: Multiplane image (MPI) representation. An MPI consists of discrete fronto-

parallel planes where each plane contains intensity data and an alpha channel. We use

it to recover the defocus map, the all-in-focus image, and render a defocused image

according to a given blur kernel.

depths (Figure 5.4). We select depths corresponding to linearly-changing defocus blur

sizes [d1, . . . , dN]. Each MPI plane is an intensity-alpha image of the in-focus scene that

consists of an intensity channel ci and an alpha channel αi.

All-in-focus image compositing. Given an MPI, we composite the sharp image using

the over operator [114]: we sum all layers weighted by the transmittance of each layer ti,

Îs =
N

∑
i=1

tici =
N

∑
i=1

[
ciαi

N

∏
j=i+1

(
1− αj

)]
. (5.1)

Defocus map rendering. We can synthesize a continuous-valued defocus map D̂ in a

similar way as discussed by Tucker and Snavely [177], by replacing all pixel intensities
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in Equation (5.1) with the defocus blur size di of that layer:

D̂ =
N

∑
i=1

[
diαi

N

∏
j=i+1

(1− αi)

]
. (5.2)

Defocused image rendering. Given the left and right blur kernels k{l,r}di
for each layer,

we render defocused images by convolving each layer with its corresponding kernel,

then compositing the blurred layers as in Equation (5.1):

Î{l,r}b =
N

∑
i=1

[(
k{l,r}di

∗ (ciαi)
)
�

N

∏
j=i+1

(
1− k{l,r}dj

∗ αj

)]
, (5.3)

where ∗ denotes convolution. In practice, we scale the calibrated spatially-varying left

and right kernels by the defocus size di, and apply the scaled spatially-varying blur to

each intensity-alpha image ciαi. We note that we render left and right views from a

single MPI, but with different kernels.

5.3.2 Effect of Gaussian Noise on Defocus Estimation

Using Equation (5.3), we can optimize for the MPI that minimizes the L2 loss
∥∥∥Î{l,r}b − I{l,r}o

∥∥∥2

2

between rendered images Î{l,r}b and observed DP images I{l,r}o . Here we show that, in

the presence of noise, this optimization is biased toward smaller defocus sizes, and we

correct for this bias.

Assuming additive white Gaussian noise N{l,r} distributed asN (0, σ2), we can model

DP images as:

I{l,r}o = I{l,r}b + N{l,r} , (5.4)

where I{l,r}b are the latent noise-free images. For simplicity, we assume for now that all

scene content lies on a single fronto-parallel plane with ground truth defocus size d?.

Then, using frequency domain analysis similar to Zhou et al. [194], we prove in Ap-

pendix D.1 that for a defocus size hypothesis di, the expected negative log-energy func-

tion corresponding to the MAP estimate of the MPI is:

E
(

di|K{l,r}d? , σ
)
=∑

f
C1

(
K{l,r}di

, σ, Φ
) ∣∣∣Kl

d?Kr
di
− Kr

d?Kl
di

∣∣∣2 +
σ2 ∑

f

[
|Kl

d? |2 + |Kr
d? |2 + σ2|Φ|2

|Kl
di
|2 + |Kr

di
|2 + σ2|Φ|2

]
+ C2 (σ) , (5.5)
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where K{l,r}di
and K{l,r}d? are the Fourier transforms of kernels k{l,r}di

and k{l,r}d? respectively,

Φ is the inverse spectral power distribution of natural images, and the summation is

over all frequencies. We would expect the loss to be minimized when di = d?. The first

term measures the inconsistency between the hypothesized blur kernel di and the true

kernel d?, and is indeed minimized when di = d?. However, the second term depends

on the noise variance and decreases as |di| decreases. This is because, for a normalized

blur kernel (
∥∥∥k{l,r}di

∥∥∥
1
= 1), as the defocus kernel size |di| decreases, its power spectrum∥∥∥K{l,r}di

∥∥∥
2

increases. This suggests that white Gaussian noise in input images results in

a bias towards smaller blur kernels. To account for this bias, we subtract an approxi-

mation of the second term, which we call the bias correction term, from the optimization

loss:

B
(

di|K{l,r}d? , σ
)
≈ σ2 ∑

f

σ2 |Φ|2∣∣∣Kl
di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2
. (5.6)

We ignore the terms containing ground truth d?, as they are significant only when d? is

itself small, i.e., the bias favors the true kernels in that case. In an MPI with multiple

layers associated with defocus sizes [d1, . . . , dN], we subtract per-layer constants B (di)

computed using Equation (5.6).

We note that we use a Gaussian noise model to make analysis tractable, but captured

images have mixed Poisson-Gaussian noise [66]. In practice, we found it beneficial to

additionally denoise the input images using burst denoising [67]. However, there is

residual noise even after denoising, and we show in Section 5.4.4 that our bias correction

term still improves performance. An interesting future research direction is using a

more accurate noise model to derive a better bias estimate and remove the need for any

denoising.

5.3.3 MPI Optimization

We seek to recover an MPI {ci, αi} , i ∈ [1, . . . , N] such that defocused images rendered

from it using the calibrated blur kernels are close to the input images. But minimizing

only a reconstruction loss is insufficient: this task is ill-posed, as there exists an infinite

family of MPIs that all exactly reproduce the input images. As is common in defocus

deblurring [101], we regularize our optimization (Figure 5.5):

L = λ1Ldata + λ2Laux + λ3Lintensity + λ4Lalpha + λ5Lentropy . (5.7)
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Figure 5.5: Overview of our proposed method. We use input left and right DP images

to fit a multiplane image (MPI) scene representation, consisting of a set of fronto-parallel

layers. Each layer is an intensity-alpha image containing the in-focus scene content at

the corresponding depth. The MPI can output the all-in-focus image and the defocus

map by blending all layers. It can also render out-of-focus images, by convolving each

layer with pre-calibrated blur kernels for the left and right DP views, and then blending.

We optimize the MPI by minimizing a regularized loss comparing rendered and input

images.

where Ldata is a bias-corrected data term that encourages rendered images to resemble

input images, Laux is an auxiliary data term applied to each MPI layer, and the remain-

ing are regularization terms. We discuss all loss terms below, and specify the scaling

factors λ1-λ5 used in our experiments in Section 5.4.3.

Bias-corrected data loss. We consider the Charbonnier [36] loss function ` (x) =
√

x2/γ2 + 1,

and define a bias-corrected version as `B (x,B) =
√

(x2−B)/γ2 + 1, where we choose the

scale parameter γ = 0.1 [17]. We use this loss function to form a data loss penalizing

the difference between left and right input and rendered images as:

Ldata = ∑
x,y

`B
(

Î{l,r}b (x, y)− I{l,r}o (x, y),B{l,r}all

)
, (5.8)

B{l,r}all =
N

∑
i=1

[
k{l,r}di

∗ αi

N

∏
j=i+1

(
1− k{l,r}dj

∗ αj

)]
B(di) . (5.9)

We compute the total bias correction B{l,r}all as the sum of all bias correction terms of

each layer, weighted by the corresponding defocused transmittance. Equation (5.9) is

equivalent to Equation (5.3) where we replace each MPI layer’s intensity channel ci
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with a constant bias correction value B (di). To compute B (di) from Equation (5.6), we

empirically set the variance to σ2 = 5 · 10−5, and use a constant inverse spectral power

distribution |Φ|2 = 102, following previous work [172].

Auxiliary data loss. In most real-world scenes, a pixel’s scene content should be on

a single layer. However, because the compositing operator of Equation (5.3) forms a

weighted sum of all layers, Ldata can be small even when scene content is smeared

across multiple layers. To discourage this, we introduce a per-layer auxiliary data loss

on each layer’s intensity weighted by the layer’s blurred transmittance:

Laux = ∑
x,y,i

(
k{l,r}di

∗ ti(x, y)
)
� `B

(
k{l,r}di

∗ ci(x, y)− I{l,r}o (x, y),B (di)
)

, (5.10)

where � denotes element-wise multiplication. This auxiliary loss resembles the data

synthesis loss of Equation (5.8), except that it is applied to each MPI layer separately.

Intensity smoothness. Our first regularization term encourages smoothness for the all-

in-focus image and the MPI intensity channels. For an image I with corresponding edge

map E, we define an edge-aware smoothness based on total variation V(·), similar to

Tucker and Snavely [177]:

V E (I, E) = ` (V (I)) + (1− E)� ` (V (I)) , (5.11)

where `(·) is the Charbonnier loss. We refer to Appendix D.2 for detials on E and V(·).
Our smoothness prior on the all-in-focus image and MPI intensity channels is:

Lintensity = ∑
x,y

V E
(
Îs, E

(
Îs
))

+ ∑
x,y,i

V E (tici, E (tici)) . (5.12)

Alpha and transmittance smoothness. We use an additional smoothness regularizer on

all alpha channels and transmittances (sharpened by computing their square root), by

encouraging edge-aware smoothness according to the total variation of the all-in-focus

image:

Lalpha = ∑
x,y,i

[
V E
(√

αi, E
(
Îs
))

+ V E
(√

ti, E
(
Îs
))]

. (5.13)

Alpha and transmittance entropy. The last regularizer is a collision entropy penalty on

alpha channels and transmittances. Collision entropy, defined for a vector x as S (x) =

− log ‖x‖2
2/‖x‖2

1, is a special case of Renyi entropy [149], and we empirically found it to be

better than Shannon entropy for our problem. Minimizing collision entropy encourages

sparsity: S (x) is minimum when all but one elements of x are 0, which in our case
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encourages scene content to concentrate on a single MPI layer, rather than spread across

multiple layers. Our entropy loss is:

Lentropy=∑
x,y

S
(
[
√

α2 (x, y) , . . . ,
√

αN (x, y)]T
)
+∑

x,y
S
([√

t1 (x, y) , . . . ,
√

tN (x, y)
]T) .

(5.14)

We extract the alpha channels and transmittances of each pixel (x, y) from all MPI layers,

compute their square root for sharpening, compute a per-pixel entropy, and average

these entropies across all pixels. When computing entropy on alpha channels, we skip

the farthest MPI layer, because we assume that all scene content ends at the farthest

layer, and thus force this layer to be opaque (α1 = 1).

5.4 Experiments

We capture a new dataset, and use it to perform qualitative and quantitative compar-

isons with other state of the art defocus deblurring and defocus map estimation meth-

ods.

5.4.1 Data Collection

Even though DP sensors are common, to the best of our knowledge, only two cam-

era manufacturers provide an API to read DP images—Google and Canon. However,

Canon’s proprietary software applies an unknown scene-dependent transform to DP

data. Unlike supervised learning-based methods [1] that can learn to account for this

transform, our loss function requires raw sensor data. Hence, we collect data using the

Google Pixel 4 smartphone, which allows access to the raw DP data [44]. We capture

a total of 17 scenes, both indoors and outdoors. Similar to Garg et al. [53], we centrally

crop the DP images to 1008× 1344.

“Ground truth” generation. The Pixel 4 captures DP data only in the green channel.

To compute ground truth, we capture a focus stack with 36 slices sampled uniformly in

diopter space, where the closest focus distance corresponds to the distance we calibrate

for, 13.7 cm, and the farthest to infinity. Following prior work [144], we use the com-

mercial Helicon Focus software [72] to process the stacks and generate ground truth

sharp images and defocus maps, and we manually correct holes in the generated de-

focus maps. Still, there are image regions that are difficult to manually inpaint, e.g.,
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(a) captured image (left

+ right)

(b) calibration pattern (c) left vignetting (d) right vignetting

Figure 5.6: Blur kernel calibration. We show (a) the captured DP image (left + right)

of (b) the calibration pattern that is used to calibrate the blur kernels. In addition to

blur kernels, we calibrate for different vignetting in (c) left and (d) right DP images by

capturing a white sheet through a diffuser.

near occlusion boundaries or curved surfaces. We ignore such regions when computing

quantitative metrics. There may be a small shift between the ground truth all-in-focus

image and the all-in-focus image from the deblurring algorithms we evaluate. This is

because one can apply an arbitrary transform to the blur kernels and an inverse trans-

form to the recovered all-in-focus image to yield the same blurred image. We determine

this shift for each algorithm by using OpenCV to align the ground-truth all-in-focus im-

age with the all-in-focus image from the algorithm via an affine transform for a single

specific scene, and then using that transform to align all images before computing the

metrics for all-in-focus images. We also crop a small border of 8 pixels before computing

the metrics as it may contain invalid pixels after alignment. We note that we only use

the generated ground truth for quantitative evaluations, and not for training.

5.4.2 Blur Kernel Calibration

We provide more information about our calibration procedure for the left and right blur

kernels used as input to our method. As shown in Figure 5.6, we image a regular grid

of circular discs on a monitor screen at a distance of∼ 45 cm from the camera. We apply

global thresholding and binarize the captured image, perform connected component

analysis to identify the individual discs and their centers, and generate and align the

binary sharp image M with the known calibration pattern by solving for a homography

between the calibration target disc centers and the detected centers. In order to ap-

ply radiometric correction, we capture all-white and all-black images displayed on the
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(b) DP blur kernels with respect to focus distance

Figure 5.7: DP blur kernels with respect to scene depth and focus distance. We choose

focus settings such that all scene contents are at or behind the focus plane, and calibrate

for blur kernels either (a) with the same focus settings but at different depths, or (b) at

the same depth but with various focus distances.

same screen, denoted as Iw and Ib, respectively. We then generate the grayscale latent

sharp all-in-focus image as Is = M� Iw + (1−M)� Ib, where � represents pixel-wise

multiplication. Once we have the aligned latent image and the captured image, we can

solve for spatially-varying blur kernels using the optimization proposed by Mannan

and Langer [117]. Specifically, we solve for an 8× 6 grid of kernels corresponding to

1344× 1008 central field of view.

In addition to the blur kernels, we calibrate for different vignetting in left and right

DP images. Specifically, for the same focus distance as above, we capture six images of

a white sheet through a diffuser. We then average all left and right images individually

to obtain the left and right vignetting patterns Wl and Wr, respectively.

Next, we explore how DP blur kernels change with respect to scene depth and focus

distance (Figure 5.7). As observed by Tang and Kutulakos [172], we find that kernels

behave differently on the opposite sides of the focus plane. Therefore we choose fo-
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cus settings such that all scene contents are at or behind the focus plane for all of our

experiments, including this kernel analysis. We observe that DP blur kernels are ap-

proximately resized versions of each other as the scene depth or focus distance changes,

similar to the expected behavior for blur kernels in a regular image sensor.

5.4.3 Implementation Details

We discuss implementation details of our method.

Data normalization. Before running the optimization, we first compute an intensity

scaling factor s = 0.5/mean
(

I{l,r}o

)
, and normalize the inputs Ī{l,r}o = sI{l,r}o to account for

global intensity variations. After optimization, we undo the normalization by dividing

the all-in-focus image by s.

MPI Optimization. We use N = 12 MPI layers for all scenes in our dataset. We manu-

ally determine the kernel sizes of the front and back layers, and evenly distribute layers

in diopter space. As mentioned in Section 5.4.2, we choose focus settings such that all

scene contents are at or behind the focus plane. Therefore, the kernel size of the front

MPI layer is usually set to a small positive number, e.g., in the range of 1× 1 to 3× 3,

to mimic a 2D delta function, while the kernel size corresponding to the back MPI layer

is set to a large enough value, e.g., in the range of 57× 57 to 61× 61, to represent blur

kernels at infinity.

Recall our optimization loss (Equation (5.7)) is L = λ1Ldata + λ2Laux + λ3Lintensity +

λ4Lalpha + λ5Lentropy. We set the same weight on Ldata and Laux: λ1 = λ2 = 2.5 · 104.

For most scenes, λ3 = 30, λ4 = 7.5 · 104, and λ5 = 12. We set higher weights on the

regularization terms Lintensity, Lalpha, and Lentropy for scenes with less texture, e.g., data

from Abuolaim and Brown [1].

Each optimization runs for 10,000 iterations with Adam optimizer [90], and takes

2 hours on an Nvidia Titan RTX GPU. We gradually decrease the global learning rate

from 0.3 to 0.1 with exponential decay.

5.4.4 Results

We evaluate our method on both defocus deblurring and depth-from-defocus tasks, and

compare to state-of-the-art methods for defocus deblurring ( DPDNet [1], Wiener decon-

volution [172, 194]) and defocus map estimation (DP stereo matching [181], supervised
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(a) input image (b) GT all-in-focus

image

(c) ours (d) Wiener

deconv. [194]

(e) DPDNet [1] (Orig.

Input)

(f) DPDNet [1]

Figure 5.8: Qualitative comparisons of various defocus deblurring methods. We show

(a) input images as the average of two DP views, (b) ground truth all-in-focus images

computed from focus stacks, and recovered all-in-focus images (c) from our method

and other methods (d)-(f). We improve the accuracy of (e) DPDNet trained on Canon

data by providing (f) vignetting-corrected images. Our method performs the best in

recovering high-frequency details and presents fewer artifacts.

learning from DP views [53], DP defocus estimation based on kernel symmetry [144],

Wiener deconvolution [172, 194], DMENet [100]). For methods that take a single image

as input, we use the average of the left and right DP images. We also provide both the

original and vignetting corrected DP images as inputs, and report the best result. We

show quantitative results in Table 5.1 and qualitative results in Figures 5.8 and 5.9. For

the defocus map, we use the affine-invariant metrics from Garg et al. [53]. Our method

achieves the best quantitative results on both tasks.

Defocus deblurring results. Despite the large amount of blur in the input DP images,

our method produces deblurred results with high-frequency details that are close to the

ground truth (Figure 5.8). DPDNet makes large errors as it is trained on Canon data

and does not generalize. We improve the accuracy of DPDNet by providing vignetting

corrected images as input, but its accuracy is still lower than ours.

Defocus map estimation results. Our method produces defocus maps that are closest

to the ground truth (Figure 5.9), especially on textureless regions, such as the toy and

clock in the first scene. Similar to [144], depth accuracy near edges can be improved by
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(a) input im-

age

(b) ground

truth

(c) ours (d) ours w/

GF

(e)

Wiener [194]

(f)

DMENet [100]

(g) [144] (h) Garg

[53]

(i) Wadhwa

[181]

Figure 5.9: Qualitative comparisons of defocus map estimation methods. Input im-

ages (a) shown as the average of two DP views, ground truth defocus maps (b) from

focus stacks with zero confidence pixels in white, our defocus maps (c), and our defocus

maps with guided filtering (d), and defocus maps from other methods (f)-(i). Overall,

our method produces results that are closest to the ground truth, and correctly handles

textureless regions as well.

method
all-in-focus image defocus map

PSNR ↑ SSIM ↑ MAE ↓ AIWE(1) ↓ AIWE(2) ↓ 1− |ρs| ↓
Wiener deconv. [194] 25.806 0.704 0.032 0.156 0.197 0.665

DPDNet [1] 25.591 0.777 0.034 - - -

DMENet [100] - - - 0.144 0.183 0.586

Punnappurath et al. [144] - - - 0.124 0.161 0.444

Garg et al. [53] - - - 0.079 0.102 0.208

Wadhwa et al. [181] - - - 0.141 0.177 0.540

ours 26.692 0.804 0.027 0.047 0.076 0.178

ours w/ guided filtering 26.692 0.804 0.027 0.059 0.083 0.193

Table 5.1: Quantitative evaluations of defocus deblurring and defocus map estima-

tion methods on our DP dataset. “-” indicates not applicable. We use the affine-

invariant metrics from [53] for defocus map evaluation. Our method achieves the best

performance (highlighted in red) in both tasks.

guided filtering [69] as shown in Figure 5.9(d).

Ablation studies. We investigate the effect of each loss function term by removing them

one at a time. We show quantitative results in Table 5.2, and qualitative comparisons in

Figure 5.10. Our full pipeline has the best overall performance in recovering all-in-focus

images and defocus maps. Lintensity and Lalpha strongly affect the smoothness of all-in-
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method
all-in-focus image defocus map

PSNR ↑ SSIM ↑ MAE ↓ AIWE(1) ↓ AIWE(2) ↓ 1− |ρs| ↓
full 26.692 0.804 0.027 0.047 0.076 0.178

no Lintensity 14.882 0.158 0.136 0.047 0.078 0.185

no Lalpha 24.748 0.726 0.037 0.161 0.206 0.795

no Lentropy 27.154 0.819 0.026 0.057 0.085 0.190

no Laux 26.211 0.768 0.030 0.148 0.190 0.610

no B 26.265 0.790 0.028 0.063 0.092 0.214

Table 5.2: Quantitative comparisons of ablation studies. We compare the full pipeline

with removals of the regularization terms Lalpha, Lintensity and Lentropy, the auxiliary

data loss Laux, and bias correction term B respectively. For all ablation experiments, we

set the weights on remaining terms to be the same as the ones in the full pipeline. Best

and second best results are highlighted in red and orange.

focus images and defocus maps, respectively. Without Lentropy or Laux, even though

recovered all-in-focus images are reasonable, scene content is smeared across multi-

ple MPI layers, leading to incorrect defocus maps. Finally, without the bias correction

term B, defocus maps are biased towards smaller blur radii, especially in textureless

areas where noise is more apparent, e.g., the white clock area. We further show quan-

titatively that without B, the estimated defocus size is smaller on average as predicted

by our analysis (Figure 5.11).

Results on data from Abuolaim and Brown [1]. Even though Abuolaim and Brown [1]

train their model on data from a Canon camera, they also capture Pixel 4 data for qual-

itative tests. We run our method on their Pixel 4 data, using the calibration from our

device, and show that our recovered all-in-focus image has fewer artifacts (Figure 5.12).

This demonstrates that our method generalizes well across devices of the same model,

even without re-calibration.

5.5 Discussion and Summary

We presented a method that optimizes an MPI scene representation to jointly recover

a defocus map and an all-in-focus image from a single dual-pixel capture. We showed
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(a) input im-

age

(b) ground

truth

(c) ours full (d) no

Lintensity

(e) no Lalpha (f) no

Lentropy

(g) no Laux (h) no B

Figure 5.10: Ablation studies. Input images (a), ground truth all-in-focus images, and

defocus maps (b) with zero confidence pixels in white, our results (c), and our results

with different terms removed one at a time (d)-(h). Removing Lintensity and Lalpha

strongly affects the smoothness of all-in-focus images and defocus maps respectively.

Results without entropy regularization Lentropy, Laux, or the bias correction B, exhibit

more errors in defocus maps on textureless regions (clock).
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Figure 5.11: Quantitative evaluation of the effect of the bias correction term B through

an ablation study. We show the mean of the predicted defocus map for our full pipeline

versus an ablation where bias correction term is not applied. Defocus is measured as the

relative scaling applied to the calibrated kernels. Without bias correction B, the mean

defocus is lower in 14 of the 17 scenes, i.e., the prediction is biased towards smaller

defocus size.

that image noise introduces a bias in the optimization that, under suitable assumptions,

can be quantified and corrected for. We also introduced additional priors to regular-
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(a) input from [1] (b) DPDNet [1] (c) our results

Figure 5.12: Generalization to other Google Pixel 4 cameras. We show results on data

from [1]. Our method recovers all-in-focus images with fewer artifacts, while using the

calibration data from our device.

ize the optimization, and showed their effectiveness via ablation studies. Our method

improves upon past work on both defocus map estimation and blur removal, when

evaluated on a new dataset we captured with a consumer smartphone camera.

We discuss some limitations of our method, which suggest directions for future re-

search. First, our method does not require a large dataset with ground truth to train on,

but still relies on a one-time blur kernel calibration procedure. It would be interesting

to explore blind deconvolution techniques [49, 103] that can simultaneously recover the

all-in-focus image, defocus map, and unknown blur kernels, thus removing the need

for kernel calibration. The development of parametric blur kernel models that can ac-

curately reproduce the features we observed (i.e., spatial variation, lack of symmetry,

lack of circularity) can facilitate this research direction. Second, the MPI representation

discretizes the scene into a set of fronto-parallel depth layers. This can potentially re-

sult in discretization artifacts in scenes with continuous depth variation. In practice,

we did not find this to be an issue, thanks to the use of the soft-blending operation to

synthesize the all-in-focus image and defocus map. Nevertheless, it could be useful to
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replace the MPI representation with a continuous one, e.g., neural radiance fields [121],

to help better model continuously-varying depth. Third, reconstructing an accurate

all-in-focus image becomes more difficult as defocus blur increases (e.g., very distant

scenes at non-infinity focus) and more high-frequency content is missing from the input

image. This is a fundamental limitation shared among all deconvolution techniques.

Using powerful data-driven priors to hallucinate the missing high frequency content

(e.g., deep-learning-based deconvolution techniques) can help alleviate this limitation.

Fourth, the high computational complexity of our technique makes it impractical for

real-time operation, especially on resource-constrained devices such as smartphones.

Therefore, it is worth exploring optimized implementations.
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Chapter 6

Conclusion and Future Directions

In this thesis, we apply differential imaging to solve three challenging 3D reconstruction

problems: NLOS imaging, specular object reconstruction, and single-shot depth from

defocus. We have shown that differential imaging enables local differential analysis

through interpolation and imaging systems with small form-factors.

In Chapter 2, we introduce a novel theory of Fermat paths—light paths that satisfy

Fermat’s principle. Fermat paths encode rich geometric information of the shape of in-

terest, and their pathlength function can be thought of as a generalized multi-branched

SDF. Based on the properties of Fermat paths through first- and second-order differen-

tial analyses, we propose surface reconstruction algorithms based on measurements of

lengths or directions of Fermat paths.

In Chapter 3, we propose a geometric solution to NLOS imaging based on the theory

of Fermat paths. We apply differential imaging by densely scanning the visible surface

using a transient imaging system and extract, from these transient measurements, a

colletion of pathlength information of the Fermat paths travelled between the visible

surface and the hidden object. We then used the Fermat flow algorithm developed in

Chapter 2 to reconstruct accurate NLOS shapes.

In Chapter 4, we present a method for recovering the shape of a specular mirror-

like surface that is illuminated by a near-field point light source and is imaged by a

differentially moving camera. The theory of Fermat paths allows us to reconstruct a

OPF of surfaces. We then propose a method to resolve the remaining ambiguity using

radiometric information of the moving specularities.

In Chapter 5, we propose a method to simultaneously estimate the defocus map and

recover the latent all-in-focus image from a single dual-pixel (DP) image. The differen-
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tial baseline in the left and right views of a DP image provides more constaints than a

single capture using a conventional sensor. Therefore, the single-shot depth from defo-

cus problem becomes less ill-posed and our optimization method achieves state-of-the-

art performance by inverting the image formation with the help of a few regularization

terms.

6.1 Future Directions

Fermat paths for complex scene reconstruction. In both NLOS imaging (Chapter 3)

and specular object reconstruction (Chapter 4), we have presented results on only sim-

ple smooth surfaces. Real-world scenes are typically much more complex than single

isolated objects. Higher scene complexity leads to the following two issues when ap-

plying the theory of Fermat paths.

First, extracting information of Fermat paths become challenging. Simple smooth

objects generate transient measurements with clearly detectable discontinuities or iso-

lated specularities. As scene complexity increases, there will likely be more transient

discountinuties or specularities present in the measurement and even affecting each

other, e.g., two transient discontinuities or specularities merge into one and violating

the uniqueness constraint of the Fermat flow algorithm.

Second, differential analysis should be applied separately to each branch of the

multi-valued Fermat paths function. A simple scene tends to create less branches that

are well-separable, whereas a complex scene may lead to overlapping branches—making

the separation extremely challenging. One needs to properly establish correspondences

across measurements at all scan points before applying the Fermat flow reconstruction

algorithm.

Handling the above issues will allow the reconstruction of more complex scenes

in both NLOS imaging and specular object reconstruction. One possible solution is to

use the reconstruction results from other methods as guidance and refine their results

using the theory of Fermat paths. In the case of NLOS imaging, one could consider

combining our method with volumetric methods that use all transient measurements

to reconstruct an albedo volume by solving an inverse radiometric problem [5, 113,

136, 179]. Volumetric methods usually produce lower resolution results than geometric

methods like ours, but are better at handling complex scenes. Therefore, one might
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consider using their reconstructions to facilitate the detection and branch assignement

of Fermat paths, and then use the Fermat flow algorithm to refine the geometry.

Fermat paths for transparent object reconstruction. For transparent objects, the refrac-

tion of light follows Snell’s law, which is also derived from Fermat’s principle. As a

result, all of our theory and analyses of Fermat paths of single-bounce reflection nat-

urally apply to single-bounce refraction as well. One needs to account for refractive

indices when generalizing the theory to refraction events. A potential application is the

reconstruction of dynamic fluid surfaces by placing the light source or the sensor under

water [123] and diffrentially translating one of the two.

Experimental validation of the radiometric reconstruction method for specular object

reconstruction. In Chapter 4, we propose to use radiometric information of specularites

to disambiguate within the OPF of specular surfaces reconstructed using the integral

form of the Fermat flow algorithm. We conduct theoretical analysis on reducing the

ambiguity using a pair/collection of image irradiances of specularities.

A natural next step is to build a hardware prototype and conduct real experiments

to fully verify the effectiveness of the proposed method. In fact, we once built a hard-

ware implmentation, but noticed an unneglectable deviation of the measured irradi-

ances of specularities from the theoretical model (although the model has been verified

through a physics-based renderer), which caused trouble to disambiguating within the

of surfaces. We speculate that the deviation was due to many factors not aligning with

the assumptions of the imaging setting. First, the light source was not a perfect point

light source and had a non-uniform intensity profile. Second, we noticed that radio-

metric measurements are very sensitive to any surface imperfection such as scratches

and dents on the specular surface. We envision as a future work to carefully build a

prototype and robustly handle these real-world imaging challenges, which, if sucess-

ful, could open the door to a practical shape from shading technique tailored for mirror

surfaces.

Combining differential imaging and other imaging modalities. It is worth exploring

how we may combine differential imaging with other imaging modalities. For example,

smartphones, such as iPhone 14 Pro, now adopts quad-pixel (QP) sensors, which can be

seen as four-sample light field cameras. Although these RGB QP images do not provide

depth information directly, we may apply differential imaging to infer depth, similar

to how autofocus works and how we conduct depth from defocus using DP images.

And such a depth map would be of high spatial resolution, but with relatively low
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certainty. On the other hand, the Lidar scanner on iPhone provides more accurate depth

information, but is sparse and can suffer from noise of time-of-flight sensors. If we

develop an algorithm that combines the depth cues provided by both differential RGB

images and the Lidar data, then smartphones may have a more refined depth estimation

pipeline for downstream tasks, leading to new capabilities of 3D scene understanding

on mobile devices.
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Appendix A

Appendix to Chapter 2

In this appendix, we cover the following topics:

1. In Section A.1, we prove Proposition 6 (Fermat’s principle).

2. In Section A.2, we prove Proposition 8 (Fermat flow equation).

3. In Section A.3, we prove Proposition 10.

4. In Section A.4, we discuss how to estimate the gradients used in the Fermat flow

equation in the case of a non-planar manifold V .

5. In Section A.5, we discuss our approach for surface fitting under specular path-

length constraints.

6. In Section A.6, we prove Proposition 6′, which is the the analogue of Proposition 6

for the non-confocal case.

7. In Section A.7, we prove Proposition 8′, which is the the analogue of Proposition 8

for the non-confocal case.

8. In Section A.8, we prove Proposition 10′, which is the the analogue of Proposi-

tion 10 for the non-confocal case.

9. In Section A.9, we derive the incident and outgoing pathlengths of a Fermat path

given its total pathlength.

A.1 Proof of Proposition 6

We prove Proposition 6, which we restate here for convenience.
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Proposition 6. Fermat’s principle. Let (p, q) ∈ [0, 1]2 be a parameterization of the surface

X . Then, for any point v,

S (v) =
{

x ∈ X : ∇(p,q)τ (x (p, q) ; v) = 0
}

. (A.1)

Let r ∈ [0, 1] be a parameterization of the surface boundary ∂X . Then, for any point v,

B (v) = {x ∈ ∂X : ∂τ (x (r) ; v) /∂r = 0} . (A.2)

Proof. For the first part of the proposition, Equation (A.1), we have,

∂τ (x (p, q) ; v)
∂p

=

〈
x (p, q)− v
‖x (p, q)− v‖ , xp (p, q)

〉
=

4
τ (x (p, q) ; v)

〈
x (p, q)− v, xp (p, q)

〉
(A.3)

where xp (p, q) is the partial derivative of x with respect to p. The vector xp (p, q) is

tangent to the surface X at x, and therefore orthogonal to the surface normal n̂ (x) at

that point. If x (p, q) ∈ S (v), then from the specular reflection property, the vector

x (p, q)− v is parallel to the normal n̂ (x). Therefore,

x (p, q)− v ‖ n̂ (x) and xp (p, q) ⊥ n̂ (x)⇒
〈

x (p, q)− v, xp (p, q)
〉
= 0, (A.4)

and from Equation (A.3),
∂τ (x (p, q) ; v)

∂p
= 0. (A.5)

The proof for ∂τ(x(p,q);v)
∂q = 0 is exactly the same. Therefore, if x (p, q) ∈ S (v), then

∇(p,q)τ (x (p, q) ; v) = 0. Conversely, if ∇(p,q)τ (x (p, q) ; v) = 0, from Equation (A.3)

we have that either v = x (p, q), or that x (p, q)− v is orthogonal to both xp (p, q) and

xq (p, q), and therefore parallel to the normal n̂ (x). By assuming that v /∈ X , this implies

that x (p, q) ∈ S (v). This concludes the proof of the first part of the proposition.

For the second part of the proposition, Equation (A.2), we have,

∂τ (x (r) ; v)
∂r

=

〈
x (r)− v
‖x (r)− v‖ , xr (r)

〉
=

4
τ (x (r) ; v)

〈x (r)− v, xr (r)〉 (A.6)

where xr (r) is the partial derivative of x with respect to r. The vector xr (r) is parallel

to the tangent t̂ (x) of the curve ∂X at x. If x (r) ∈ B (v), then from the property of

boundary Fermat paths, the vector x (r)− v is orthogonal to the tangent t̂ (x). Therefore,

x (r)− v ⊥ t̂ (x) and xr (r) ‖ t̂ (x)⇒ 〈x (r)− v, xr (r)〉 = 0, (A.7)
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and from Equation (A.6),
∂τ (x (r) ; v)

∂r
= 0. (A.8)

Conversely, if ∂τ(x(r);v)
∂r = 0, from Equation (A.3) we have that either v = x (r), or that

x (r) − v is orthogonal to xr (r), and therefore orthogonal to t̂ (x). By assuming that

v /∈ ∂X , this implies that x (r) ∈ B (v). This concludes the proof of the second part of

the proposition.

A.2 Proof of Proposition 8—the Fermat flow equation

Proposition 8. The Fermat flow equation. Consider a branch of the Fermat pathlength func-

tion τF (v) evaluated at v. Assume that there is a unique point xF ∈ F (v) with τ (xF ; v) =

τF (v). Then,

∇vτF (v) = −2
xF − v
‖xF − v‖ . (A.9)

Proof. We will be using v = [vx, vy, vz]T to denote the 3D coordinates of the point v, and

similarly for all other vectors.
We first prove the proposition for the case of a specular path, that is, xF ∈ S (v).

Let (p, q) ∈ [0, 1]2 be a parameterization of the surface X in a neighborhood around
xF , such that xF = x (p (v) , q (v)). We consider each coordinate of the vector∇vτF (v)
separately. For the first coordinate, we have

∂τF (v)
∂vx = 2

∂ ‖xF − v‖
∂vx (A.10)

= 2
∂ ‖x (p (v) , q (v))− v‖

∂vx (A.11)

= 2
〈

x (p (v) , q (v))− v
‖x (p (v) , q (v))− v‖ ,

∂ (x (p (v) , q (v))− v)
∂vx

〉
(A.12)

= 2
〈

xF − v
‖xF − v‖ , xp (p (v) , q (v))

∂p (v)
∂vx + xq (p (v) , q (v))

∂q (v)
∂vx − [1, 0, 0]T

〉
(A.13)

=
2

‖xF − v‖

(〈
xF − v, xp (p (v) , q (v))

〉 ∂p (v)
∂vx +

〈
xF − v, xq (p (v) , q (v))

〉 ∂q (v)
∂vx −

〈
xF − v, [1, 0, 0]T

〉)
.

(A.14)

In Equation (A.14), the vectors xp (p (v) , q (v)) and xq (p (v) , q (v)) are tangent to the

surface X at xF . Given that we assumed that xF ∈ S (v), and from the definition of

the specular set, the vector xF − v is parallel to the normal n̂ (xF ) of X at xF . There-

fore, xF − v is orthogonal to xp (p (v) , q (v)) and xq (p (v) , q (v)), and Equation (A.14)
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becomes

∂τF (v)
∂vx =

2
‖xF − v‖

(
0 · ∂p (v)

∂vx + 0 · ∂q (v)
∂vx −

〈
xF − v, [1, 0, 0]T

〉)
= −2

(xF − v)x

‖xF − v‖ .

(A.15)

Exactly analogously, we can prove that

∂τF (v)
∂vy = −2

(xF − v)y

‖xF − v‖ and
∂τF (v)

∂vz = −2
(xF − v)z

‖xF − v‖ . (A.16)

Combining Equations (A.15) and (A.16) completes the proof for the specular case.

We now prove the proposition for the case of a boundary path, that is, xF ∈ B (v). Let

r ∈ [0, 1] be a parameterization of the surface boundary ∂X in a neighborhood around

xF , such that xF = x (r (v)). We again consider each coordinate of the vector ∇vτF (v)

separately. For the first coordinate, we have

∂τF (v)
∂vx = 2

∂ ‖xF − v‖
∂vx (A.17)

= 2
∂ ‖x (r (v))− v‖

∂vx (A.18)

= 2
〈

x (r (v))− v
‖x (r (v))− v‖ ,

∂ (x (r (v))− v)
∂vx

〉
(A.19)

= 2
〈

xF − v
‖xF − v‖ , xr (r (v))

∂r (v)
∂vx − [1, 0, 0]T

〉
(A.20)

=
2

‖xF − v‖

(
〈xF − v, xr (r (v))〉

∂r (v)
∂vx −

〈
xF − v, [1, 0, 0]T

〉)
. (A.21)

In Equation (A.21), the vector xr (r (v)) is parallel to the tangent t̂ (xF ) of the surface

boundary ∂X at xF . Given that we assumed that xF ∈ B (v), and from the definition

of the boundary set, the vector xF − v is orthogonal to the tangent t̂ (xF ). Therefore,

xF − v is also orthogonal to xr (r (v)), and Equation (A.21) becomes

∂τF (v)
∂vx =

2
‖xF − v‖

(
0 · ∂r (v)

∂vx −
〈

xF − v, [1, 0, 0]T
〉)

= −2
(xF − v)x

‖xF − v‖ . (A.22)

Exactly analogously, we can prove that

∂τF (v)
∂vy = −2

(xF − v)y

‖xF − v‖ and
∂τF (v)

∂vz = −2
(xF − v)z

‖xF − v‖ . (A.23)

Combining Equations (A.22) and (A.23) completes the proof for the boundary case.
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A.3 Proof of Proposition 10

Proposition 10. Let a point xS ∈ S (v) belong to the specular set. If κmin, κmax are the principal

curvatures of X at xS , then:

• If τS is a local minimum of τ (x; v), 2/τS < κmin.

• If τS is a local maximum of τ (x; v), κmax < 2/τS .

• If τS is a saddle point of τ (x; v), κmin ≤ 2/τS ≤ κmax.

Proof. As τS is a discontinuity corresponding to a specular path, the sphere Sph (ρS ; v)

of radius ρS = τS/2 and center v will be tangent to the surface at point xS .

We consider first the case where τS is a local minimum of τ (x; v). Then, there

will be some neighborhood N (xS) ⊂ X of xS on X such that, for all points x ∈
N (xS), τ (x; v) ≥ τS . Equivalently, all of N (xS) lies outside the sphere Sph (ρS ; v),

and is tangent to that sphere at the point xS . Therefore, the curves on N (xS) pass-

ing through xS in all possible tangent directions are also tangent to and outside of the

sphere Sph (ρS ; v). Consequently, all normal curvatures of X at xS are greater than

the inverse of the radius of Sph (ρS ; v). From the definition of principal curvatures, we

conclude that 2/τS = ρS ≤ κmin.

The case when τS is a local maximum of τ (x; v) proceeds very similarly: In this

case, all of N (xS) is inside the sphere Sph (ρS ; v), and tangent to it at xS . Therefore, the

curves on N (xS) passing through xS in all possible tangent directions are also tangent

to and inside of the sphere Sph (ρS ; v). Consequently, all normal curvatures of X at xS
are smaller than the inverse of the radius of Sph (ρS ; v). From the definition of principal

curvatures, we conclude that κmax ≤ ρS = 2/τS .

Finally, we proceed similarly for the case τS is a saddle point of τ (x; v): In this

case,N (xS) lies partially inside and partially outside the sphere Sph (ρS ; v). Therefore,

while all the curves on N (xS) passing through xS in all possible tangent directions

are still tangent to the sphere Sph (ρS ; v); some of them will be inside and some out-

side of the Sph (ρS ; v). Consequently, there exist normal curvatures of X at xS that are

smaller, and others that are greater than the inverse of the radius of Sph (ρS ; v). From

the definition of principal curvatures, we conclude that κmin ≤ ρS = 2/τS ≤ κmax.
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A.4 Gradient Estimation on General Scanning Manifolds

We can still estimate the gradient from perturbations of v on any general manifolds

V . For this, we assume that V can be parameterized by (m, n) ∈ [0, 1]2, and therefore

v = [vx (m, n) , vy (m, n) , vz (m, n)]T. If xF is specular, xF ∈ S (v) then, by performing a

calculation similar to the one in Equations (A.10)-(A.15), we have

∂τF (v)
∂m

= 2
∂ ‖xF − v‖

∂m
(A.24)

= 2
∂ ‖x (p (v) , q (v))− v‖

∂m
(A.25)

= 2
〈

x (p (v) , q (v))− v
‖x (p (v) , q (v))− v‖ ,

∂ (x (p (v) , q (v))− v)
∂m

〉
(A.26)

= 2
〈

xF − v
‖xF − v‖ , xp (p (v) , q (v))

∂p (v)
∂m

+ xq (p (v) , q (v))
∂q (v)

∂vx − vm

〉
(A.27)

=
2

‖xF − v‖

(〈
xF − v, xp (p (v) , q (v))

〉 ∂p (v)
∂m

+
〈

xF − v, xq (p (v) , q (v))
〉 ∂q (v)

∂m
− 〈xF − v, vm〉

)
.

(A.28)

where vm =
[

∂vx(m,n)
∂m , ∂vy(m,n)

∂m , ∂vz(m,n)
∂m

]T
is tangent to the manifold V at v. Using the fact

that the vectors xp (p (v) , q (v)) and xq (p (v) , q (v)) are tangent to the surface X at xF ,

and therefore orthogonal to xF − v, Equation (A.28) becomes

∂τF (v)
∂m

= −2
〈

xF − v
‖xF − v‖ , vm

〉
. (A.29)

Exactly analogously, we have,

∂τF (v)
∂n

= −2
〈

xF − v
‖xF − v‖ , vn

〉
. (A.30)

We can also prove Equations (A.29) and (A.30) for the boundary case, xF ∈ B (v), by

likewise adapting the calculation of Equations (A.17)-(A.22).

We can select the parameterization (m, n) such that the tangent vectors vm, vn are

of unit norm and orthogonal to each other (e.g., by making the tangent vectors be the

principal curvature directions). Then Equations (A.29) and (A.30) correspond simply to

rotating coordinate system axes, from the global coordinate system to the local coordi-

nate system at v with axes vm, vn, vm × vn. In this coordinate system, the gradient will
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equal: ∂τF (v)
∂m

,
∂τF (v)

∂n
,

√
4−

(
∂τF (v)

∂m

)2

−
(

∂τF (v)
∂n

)2
 , (A.31)

where the first two terms can be estimated by perturbing the point v on the scanning

manifold V and interpolating. Finally, by performing a rotation, we can obtain from

Equation (A.31) the gradient ∇vτF (v) in the global coordinate system. For a planar

manifold V , the above discussion reduces to Equation (2.35).

A.5 Surface Fitting Under Specular Pathlength Constraints

We provide details about the surface fitting procedure discussed in Section 2.4.1. The

fact that our reconstruction relies on interpolated estimates, rather than direct mea-

surements, of ∇vτF (v) can potentially introduce some error in the reconstructed point

cloud and fitted surface. We can improve the accuracy of an initial surface reconstruc-

tion by modifying it so that it more closely matches the set {τF (vm) , m = 1, . . . , M} of

Fermat pathlength measurements available to us. This requires solving an optimization

problem of the form:

min
S

M

∑
m=1
‖τF (vm)− τF (S , vm)‖2 , (A.32)

where for a surface S and a point v, the function τF (S , v) returns the length of the Fer-

mat path between v and points on S . This is a challenging geometric optimization prob-

lem, because of the difficulty of evaluating τF (S , v), and because the function τF (S , v)

can be multi-valued.

To simplify exposition, we consider the case where we perform fitting for a single

Fermat pathlength measurement τF (v). We also assume that the surface S is a triangu-

lar mesh of fixed topology, consisting of K triangles, S =
⋃K

k=1 Tk, and V vertices. For

each triangle Tk, the 3× 3 matrix V k contains the 3D coordinates of the triangle’s three

vertices. We use V to denote the 3×V matrix containing the 3D coordinates of all mesh

vertices.

Then, Equation (A.32) is simplified to:

min
V
‖τF (v)− τF (S , v)‖2 , (A.33)

To approximately solve the optimization problem of Equation (A.33), we begin by
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identifying specular points on the current mesh S with respect to v. This involves solv-

ing the specular forward projection problem [3, 4, 12]):

min
Tk,k=1,...,K

min
x∈Tk

∥∥∥∥1−
〈

v− x
‖v− x‖ , n̂ (x)

〉∥∥∥∥2

. (A.34)

Within each triangle Tk, the inner optimization problem of Equation (A.34) can be solved

by parameterizing points on the triangle using barycentric coordinates and then us-

ing gradient descent on this parametric representation. To accelerate both the inner

and outer optimization problems, we use the sub-triangle search and triangle-prunning

techniques from Walter et al. [182]. We denote by T ∗ the triangle containing the point

x ∈ S where the minimum of Equation (A.34) occurs. When Equation (A.34) has mul-

tiple solutions (multiple points on x ∈ S forming specular paths with respect to v), we

select among these solutions the point that minimizes the difference ‖τF (v)− τ (x; v)‖;
that is, the point that most closely matches the available Fermat pathlength measure-

ment.

We then approximate the problem of Equation (A.33) with the simpler problem

min
V∗
‖τF (v)− τ (x∗, v)‖2 , (A.35)

where

x∗ = argmin
x∈T ∗

∥∥∥∥1−
〈

v− x
‖v− x‖ , n̂ (x)

〉∥∥∥∥2

, (A.36)

and V∗ are the vertices of triangle T ∗. The difficulty in solving the optimization problem

of Equation (A.35) comes from the fact that the point x∗ is defined implicitly as a func-

tion of the vertices V∗, through the second optimization problem of Equation (A.36).

Nonetheless, we can use the implicit function theorem [166] to compute the derivative

of x∗ with respect to the vertex coordinates V∗. This derivative is given by Jakob and

Marschner [81], and in our case, we use automatic differentiation to compute the corre-

sponding Jacobian terms. Given this, we can optimize Equation (A.35) using gradient

descent.

In using the above procedure, we have made a number of assumptions:

• We assume that the available Fermat pathlength measurement τF (v) is a specular

pathlength, when it can also be a boundary pathlength. In practice, we use the

following heuristic to remove measurements that are likely to be boundary path-

lengths: We discard any measurements for which the forward projection prob-
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lem of Equation (A.34) does not have a good solution (loss function below some

threshold).

• We identify the measurement τF (v) with the point x ∈ S , among the solutions

of the forward projection problem, whose pathlength τ (x; v) is the closest to the

measurement. It is possible that τF (v) may correspond to a different specular

point. In practice, we found this heuristic to work well.

• When approximating Equation (A.33) with Equation (A.35), we do not take into

account that, as the surface deforms, the triangle T ∗ that contains the point x pro-

ducing the specular path may change. In practice, we address this by alternating

between the optimization problems of Equations (A.35) and (A.34).

Finally, we mention that when we have more than one Fermat pathlength measure-

ments {τF (vm) , m = 1, . . . , M}, the same vertex in V can be used by more than one

triangles T ∗m , each corresponding to the solution of the forward projection for measure-

ment τF (vm). In that case, during optimization, each vertex is updated by the sum of

the gradients for all problems (A.35) affecting it.

A.6 Proof of Proposition 6′

Proposition 6′. Fermat’s principle. Let (p, q) ∈ [0, 1]2 be a parameterization of the surface

X . Then, for any pair of points vs and vd,

S (vs, vd) =
{

x ∈ X : ∇(p,q)τ (x (p, q) ; vs, vd) = 0
}

. (A.37)

Let r ∈ [0, 1] be a parameterization of the surface boundary ∂X . Then, for any pair of points vs

and vd,

B (vs, vd) = {x ∈ ∂X : ∂τ (x (r) ; vs, vd) /∂r = 0} . (A.38)

Proof. For the first part of the proposition, Equation (A.37), we have,

∂τ (x (p, q) ; vs, vd)

∂p
= 2 ·

〈
x (p, q)− vs

‖x (p, q)− vs‖
+

x (p, q)− vd

‖x (p, q)− vd‖
, xp (p, q)

〉
= s

〈
h (x (p, q) ; vs, vd) , xp (p, q)

〉
(A.39)

where xp (p, q) is the partial derivative of x with respect to p, h (x (p, q) ; vs, vd) is the

half-vector corresponding to the directions parallel to x (p, q)− vs and x (p, q)− vd, and
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s some scalar. The vector xp (p, q) is tangent to the surface X at x, and therefore or-

thogonal to the surface normal n̂ (x) at that point. If x (p, q) ∈ S (vs, vd), then from the

specular reflection property, the half-vector h (x (p, q) ; vs, vd) is parallel to the normal

n̂ (x). Therefore,

h (x (p, q) ; vs, vd) ‖ n̂ (x) and xp (p, q) ⊥ n̂ (x)⇒
〈

h (x (p, q) ; vs, vd) , xp (p, q)
〉
= 0,

(A.40)

and from Equation (A.39),
∂τ (x (p, q) ; vs, vd)

∂p
= 0. (A.41)

The proof for ∂τ(x(p,q);vs,vd)
∂q = 0 is exactly the same. Therefore, if x (p, q) ∈ S (vs, vd),

then∇(p,q)τ (x (p, q) ; vs, vd) = 0. Conversely, if∇(p,q)τ (x (p, q) ; vs, vd) = 0, from Equa-

tion (A.39) we have that either h (x (p, q) ; vs, vd) = 0, or that h (x (p, q) ; vs, vd) is or-

thogonal to both xp (p, q) and xq (p, q), and therefore parallel to the normal n̂ (x). By

assuming that the points vs and vd must be on the same side of the scene X , this implies

that x (p, q) ∈ S (vs, vd). This concludes the proof of the first part of the proposition.

For the second part of the proposition, Equation (A.38), we have,

∂τ (x (r) ; vs, vd)

∂r
= 2 ·

〈
x (r)− vs

‖x (r)− vs‖
+

x (r)− vd

‖x (r)− vd‖
, xp (r)

〉
= s

〈
h (x (r) ; vs, vd) , xp (r)

〉
(A.42)

where xr (r) is the partial derivative of x with respect to r. The vector xr (r) is paral-

lel to the tangent t̂ (x) of the curve ∂X at x. If x (r) ∈ B (v), then from the property

of boundary Fermat paths, the half-vector h (x (r) ; vs, vd) is orthogonal to the tangent

t̂ (x). Therefore,

h (x (r) , vs, vd) ⊥ t̂ (x) and xr (r) ‖ t̂ (x)⇒ 〈h (x (p, q) ; vs, vd) , xr (r)〉 = 0, (A.43)

and from Equation (A.42),
∂τ (x (r) ; vs, vd)

∂r
= 0. (A.44)

Conversely, if ∂τ(x(r);vs,vd)
∂r = 0, from Equation (A.39) we have that either h (x (p, q) ; vs, vd) =

0, or that h (x (p, q) ; vs, vd) is orthogonal to xr (r), and therefore orthogonal to t̂ (x). By

assuming that the points vs and vd are at the same side of the boundary ∂X , this im-

plies that x (r) ∈ B (vs, vd). This concludes the proof of the second part of the proposi-

tion.
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A.7 Proof of Proposition 8′

Proposition 8′. Fermat flow equation. Consider a branch of the Fermat pathlength function

τF (vs, vd) corresponding to points vs, vd. Assume that there is a unique point xF ∈ F (vs, vd)

with τ (xF ; vs, vd) = τF (vs, vd). Then,

∇vs τF (vs, vd) = −
xF − vs

‖xF − vs‖
= −ŵF (vs, vd) , and (A.45)

∇vd τF (vs, vd) = −
xF − vd

‖xF − vd‖
= −ŵF (vs, vd) . (A.46)

Proof. We will prove Equation (A.46) only for∇vs τF (vs, vd), as the proof for∇vd τF (vs, vd)

is exactly analogous. We will be using vs =
[
vx

s , vy
s , vz

s
]T

to denote the 3D coordinates of

the point vs, and similarly for all other vectors.

We first prove the proposition for the case of a specular path, that is, xF ∈ S (vs, vd).

Let (p, q) ∈ [0, 1]2 be a parameterization of the surface X in a neighborhood N ⊂ X
around xF , such that xF = x (p (vs, vd) , q (vs, vd)).

We use O to denote the orthotomic surface corresponding to N with respect to the

point vd [26, 27]. For each pair of points vs and xF ∈ S (vs, vd), the orthotomic contains

a corresponding point oF = o (p (vs, vd) , q (vs, vd)) such that

‖oF − vs‖ = τF , and n̂ (oF ) = −
xF − vs

‖xF − vs‖
= − oF − vs

‖oF − vs‖
, (A.47)

where n̂ (oF ) is the normal of the orthotomic O at oF . Additionally, the parameteri-

zation (p, q) can be used to parameterize the orthotomic as well, through the mapping

from points of the neighborhood N to O. For more about the properties of the ortho-

tomic, we refer to [26, 27].

We now consider each coordinate of the vector∇vs τF (vs, vd) separately. For the first

coordinate, and using Equation (A.47), we have

∂τF (vs, vd)

∂vx
s

=
∂ ‖oF − vs‖

∂vx
s

(A.48)

=
∂ ‖o (p (vs, vd) , q (vs, vd))− vs‖

∂vx (A.49)

=

〈
o (p (vs, vd) , q (vs, vd))− vs

‖o (p (vs, vd) , q (vs, vd))− vs‖
,

∂ (o (p (vs, vd) , q (vs, vd))− vs)

∂vx
s

〉
(A.50)

=

〈
oF − vs

‖oF − vs‖
, op (p (vs, vd) , q (vs, vd))

∂p (vs, vd)

∂vx
s

+ oq (p (vs, vd) , q (vs, vd))
∂q (vs, vd)

∂vx
s

− [1, 0, 0]T
〉

.

(A.51)
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In Equation (A.51), we can use Equation (A.47) to replace n̂ (oF ), which gives us

∂τF (vs, vd)

∂vx
s

=−
〈
n̂ (oF ) , op (p (vs, vd) , q (vs, vd))

〉 ∂p (vs, vd)

∂vx
s

−
〈
n̂ (oF ) , oq (p (vs, vd) , q (vs, vd))

〉 ∂q (vs, vd)

∂vx
s

−
〈

n̂ (oF ) , [1, 0, 0]T
〉

. (A.52)

In Equation (A.52), the vectors op (p (vs, vd) , q (vs, vd)) and oq (p (vs, vd) , q (vs, vd)) are

tangent to the orthotomic surfaceO at oF , and therefore orthogonal to the normal n̂ (oF )

at that point. Consequently, and using Equation (A.47), Equation (A.52) becomes

∂τF (vs, vd)

∂vx
s

= −0 · ∂p (vs, vd)

∂vx
s

− 0 · ∂q (vs, vd)

∂vx
s

− (n̂ (oF ))
x = − (xF − vs)

x

‖xF − vs‖
. (A.53)

Exactly analogously, we can prove that

∂τF (vs, vd)

∂vy
s

= − (xF − vs)
y

‖xF − vs‖
and

∂τF (vs, vd)

∂vz
s

= − (xF − vs)
z

‖xF − vs‖
. (A.54)

Combining Equations (A.53) and (A.54) completes the proof for the specular case.

We now prove the proposition for the case of a boundary path, that is, xF ∈ B (vs, vd).

Let r ∈ [0, 1] be a parameterization of the surface boundary ∂X in a neighborhood

M⊂ ∂X around xF , such that xF = x (r (vs, vd)).

As in the specular case, we consider the orthotomic curveQ ofMwith respect to the

point vd [26, 27]. For each pair of points vs and xF ∈ B (vs, vd), the orthotomic contains

a corresponding point qF = q (r (vs, vd)) such that

‖qF − vs‖ = τF , and t̂ (qF ) ⊥ −
xF − vs

‖xF − vs‖
= − qF − vs

‖qF − vs‖
, (A.55)

where t̂ (qF ) is the tangent to the orthotomic Q at qF . Additionally, the parameteriza-

tion r can be used to parameterize the orthotomic curve as well, through the mapping

from points of the neighborhoodM to Q.

We now consider each coordinate of the vector∇vs τF (vs, vd) separately. For the first
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coordinate, and using Equation (A.55), we have

∂τF (vs, vd)

∂vx
s

=
∂ ‖qF − vs‖

∂vx
s

(A.56)

=
∂ ‖q (r (vs, vd))− vs‖

∂vx (A.57)

=

〈
q (r (vs, vd))− vs

‖q (r (vs, vd))− vs‖
,

∂ (q (r (vs, vd))− vs)

∂vx
s

〉
(A.58)

=

〈
qF − vs

‖qF − vs‖
, qr (r (vs, vd))

∂r (vs, vd)

∂vx
s

− [1, 0, 0]T
〉

(A.59)

=

〈
qF − vs

‖qF − vs‖
, qr (r (vs, vd))

〉
∂r (vs, vd)

∂vx
s

−
〈

qF − vs

‖qF − vs‖
, [1, 0, 0]T

〉
.

(A.60)

In Equation (A.60), the vector qr (r (vs, vd)) is parallel to the tanget t̂ (qF ) of the ortho-

tomic Q at qF . Therefore, using Equation (A.55), we can write

∂τF (vs, vd)

∂vx
s

= 0
∂r (vs, vd)

∂vx
s

−
〈

qF − vs

‖qF − vs‖
, [1, 0, 0]T

〉
= − (xF − vs)

x

‖xF − vs‖
(A.61)

Exactly analogously, we can prove that

∂τF (vs, vd)

∂vy
s

= − (xF − vs)
y

‖xF − vs‖
and

∂τF (vs, vd)

∂vz
s

= − (xF − vs)
z

‖xF − vs‖
. (A.62)

Combining Equations (A.61) and (A.62) completes the proof for the boundary case.

A.8 Proof of Proposition 10′

Proposition 10′. Let a point xS ∈ S (vs, vd) belong to the specular set. Let E (τS ; vs, vd) be

the corresponding osculating ellipsoid. If κmin, κmax are the principal curvatures of X at xS , and

λmin, λmax the principal curvatures of E (τS ; vs, vd) at xS , then:

• If τS is a local minimum of τ (x; vd, vs), then λmin ≤ κmin.

• If τS is a local maximum of τ (x; vd, vs), then κmax ≤ λmax.

Proof. We consider first the case where τS is a local minimum of τ (x; vs, vd). Then,

there will be some neighborhood N (xS) ⊂ X of xS on X such that, for all points

x ∈ N (xS), τ (x; vs, vd) ≥ τS . Equivalently, all of N (xS) lies outside the ellipsoid

E (τS ; vs, vd), and is tangent to that ellipsoid at the point xS . Therefore, the curves on

N (xS) passing through xS in all possible tangent directions are also tangent to and
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outside of the ellipsoid E (τS ; vs, vd). Consequently, all normal curvatures of X at xS
are greater than the smallest normal curvature of the ellipsoid E (τS ; vs, vd) at xS . From

the definition of principal curvatures, we conclude that λmin ≤ κmin.

The case when τS is a local maximum of τ (x; vs, vd) proceeds very similarly: In this

case, all of N (xS) is inside the ellipsoid E (τS ; vs, vd), and tangent to it at xS . Therefore,

the curves on N (xS) passing through xS in all possible tangent directions are also tan-

gent to and inside of the ellipsoid E (τS ; vs, vd). Consequently, all normal curvatures of

X at xS are smaller than the largest normal curvature of the ellipsoid E (τS ; vs, vd) at xS .

From the definition of principal curvatures, we conclude that κmax ≤ λmax.

A.9 Derivation of Incident and Outgoing Pathlengths (Equa-

tions (2.47) and (2.48))

Let the light path vs → xF ∈ X → vd be a Fermat path. We use τ
(i)
F and τ

(r)
F to denote

the incident and outgoing pathlengths, respectively,

τ
(i)
F = ‖xF − vs‖ , and τ

(r)
F = ‖vd − xF‖ . (A.63)

The point xF is τ
(r)
F away from vd in the direction of ŵF :

xF = vd + τ
(r)
F ŵF . (A.64)

Plugging it into τ
(i)
F yields

τ
(i)
F = ‖xF − vs‖ =

∥∥∥vd + τ
(r)
F ŵF − vs

∥∥∥ . (A.65)

Noting that the total pathlength equals τF = τ
(i)
F + τ

(r)
F , we have∥∥∥vd + τ

(r)
F ŵF − vs

∥∥∥ = τF − τ
(r)
F . (A.66)

Taking the square of both sides and noting that ‖ŵF‖2 = 1, we get

‖vd − vs‖2 + 2 〈vd − vs, ŵF 〉 τ
(r)
F + τ

(r)
F

2
= τF 2 − 2τFτ

(r)
F + τ

(r)
F

2
. (A.67)

Canceling out the second-degree terms, and rearranging the rest of the terms, we have

τ
(r)
F =

τF 2 − ‖vd − vs‖2

2 (τF + 〈vd − vs, ŵF 〉)
, (A.68)
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and then

τ
(i)
F = τF − τ

(r)
F =

τF 2 + 2 〈vd − vs, ŵF 〉 τF + ‖vd − vs‖2

2 (τF + 〈vd − vs, ŵF 〉)
, (A.69)

which completes the derivation of Equations (2.47) and (2.48).
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Appendix B

Appendix to Chapter 3

In this appendix, we provide more details for the proof of Proposition 11.

B.1 Proof of Proposition 11

Proposition 11. Assume that the BRDF of the surface X is non-zero in the specular direction.

Then, for all x ∈ F (v), the transient I (τ; v) will have a discontinuity at pathlength τ (x; v).

If x ∈ S (v), then I (τ; v) will additionally have a vertical asymptote at τ (x; v).

Proof. Let Sph (ρ; v) be the sphere of center v and radius ρ. Let C (ρ; v) be the inter-

section of Sph (ρ; v) with X , parameterized by c ∈ [0, 1]. Then, we can use (c, ρ) ∈
[0, 1] × [0, ∞) to reparameterize X . We note, however, that this parameterization is

continuously-differentiable only locally, separating the surface X into submanifoldsMi

within which this condition holds. These submanifolds are separated by occluding con-

tours or surface boundaries (including surface discontinuities). We can then express the

transient I (τ; v) as

I (τ; v) = ∑
Mi

∫
Mi

f (x; v) δ (τ − τ (x; v))
∣∣∣J (c,ρ)

(p,q) (x)
∣∣∣−1

dA (c, ρ) , (B.1)

where (p, q) is the parameterization of X J (c,ρ)
(p,q) (x) is the Jacobian of the transformation

(p, q) 7→ (c, ρ). We also consider the transient produced by each submanifold,

IMi (τ; v) =
∫
Mi

f (x; v) δ (τ − τ (x; v))
∣∣∣J (c,ρ)

(p,q) (x)
∣∣∣−1

dA (c, ρ) , (B.2)
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Within each submanifold, the parameter ρ has a range ρ ∈ [ρmin, ρmax]. Recognizing that

at each point x ∈ Mi, ρ (x) = τ (x; v) /2, and from the definition of the boundary and

specular sets, the extrema of ρ will occur either at points on an occluding contour (in

which case the corresponding value of IMi will be zero), at boundary points x ∈ B (v),
or at specular points x ∈ S (v). In the boundary case, the corresponding transient IMi

will be discontinuous at τ = 2ρ:

• If ρ is a maximum, then IMi > 0 as τ → 2ρ−, and IMi = 0 as τ → 2ρ+.

• If ρ is a minimum, then IMi > 0 as τ → 2ρ+, and IMi = 0 as τ → 2ρ−.

Consequently, the transient I will also have a discontinuity at the same point.

We now consider the particular case of a point xS ∈ S (v). Recognizing that ρ (xS) =

τ (xS ; v) /2, we have from Equation (2.20) that ∇(p,q)ρ (xS) = 0. Consequently,∣∣∣J (c,ρ)
(p,q) (xS)

∣∣∣ = ∂ρ (xS)
∂p

∂c (xS)
∂q

− ∂ρ (xS)
∂q

∂c (xS)
∂p

= 0. (B.3)

Then, from Equations (B.2) and (B.3), at τ = τ (xS ; v), the corresponding transient IMi

and the total transient I converge to infinity, resulting in a discontinuity. As in the

boundary case, we can distinguish whether I converges to infinity as τ → 2ρ (xS)
− or

τ → 2ρ (xS)
+ depending on whether τ (xS ; v) is a minimum or maximum, respectively.

We note that the discussion in Section 3.2.1 about identifying the type of stationarity

of a discontinuity follows directly from the above proof of Proposition 11.

We additionally state and prove the analogue of Proposition 11 for the non-confocal

case.

Proposition 11′. Assume that the BRDF of the surface X is non-zero in the specular direction.

Then, for all x ∈ F (vs, vd), the transient I (τ; vs, vd) will have a discontinuity at pathlength

τ (x; vs, vd). If x ∈ S (vs, vd), then I (τ; vs, vd) will additionally have a local maximum at

τ (x; vs, vd).

Proof. Let E (τ; vs, vd) be the ellipsoid of foci vs and vd, and pathlength τ. Let C (τ; vs, vd)

be the intersection of E (τ; vs, vd) with X , parameterized by c ∈ [0, 1]. Then, we can use

(c, τ) ∈ [0, 1]× [0, ∞) to reparameterize X . The rest of the proof follows exactly analo-

gously to the proof of Proposition 11 for the confocal case.
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Appendix C

Appendix to Chapter 4

In this appendix, we provide the proof of Proposition 13.

C.1 Proof of Proposition 13

Proposition 13. Let X be planar. Let paths vs → xS1 ∈ X → vd1 and vs → xS2 ∈ X → vd2

be two specular paths, and τS1 and τS2 be the ground truth pathlengths, respectively. Assume

the pathlengths τS1 + τ0 and τS2 + τ0 also satisfy radiometric constraints (Equation(4.13)).

Plugging Equation (4.14) to Equation(4.13) leads to the following seventh-order polynomial in

terms of τ0 :

τ0

(
τ2

0 − l2
)2 [

τ2
0 + (m1 + m2) τ0 + l2

]
= 0 , (C.1)

where l is twice the distance from the point light source vs to X , and m1 and m2 are defined as
follows:

l = 2 · dist (vs,X ) , and (C.2)

mj = τS j +
〈

vd j − vs, ŵS
(

vs, vd j

)〉
, j ∈ {1, 2} . (C.3)

Proof. We define the potentially feasible pathlengths with a global offset τ0 as

τ′S j = τS j + τ0, j ∈ {1, 2} . (C.4)

For a planer surface, both principal curvatures of the wavefront arriving at the camera

are

κ
(c)
1j = κ

(c)
2j =

1
τS j

, j ∈ {1, 2} . (C.5)
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We can then simplify the global scaled intensity (Equation (4.12)) by plugging in ground

truth Ẽ(c)
j (Equation (4.14)) and the principal curvatures κ

(c)
1j :

Ĩs =
Ẽ(c)

j τ
′(i)
S j

2∣∣∣(1− κ
(c)
1j τ

′(r)
S j

) (
1− κ

(c)
2j τ

′(r)
S j

)∣∣∣ =
Ẽ(c)

j τ
′(i)
S j

2

(
1− κ

(c)
1j τ

′(r)
S j

)2 =

Ĩs
τS j

2 · τ′(i)S j

2

(
1− τ

′(r)
S j
τS j

)2 =
Ĩs · τ′(i)S j

2

(
τS j − τ

′(r)
S j

)2 .

(C.6)

Substituting the incident and outgoing pathlengths (Equations (2.47) and (2.48)) in
Equation (C.6), we have

Ĩs =

Ĩs ·
(

τ′S j
2 + 2

〈
vd j − vs, ŵS j

〉
τ′S j +

∥∥∥vd j − vs

∥∥∥2
)2

(
2
(

τ′S j +
〈

vd j − vs, ŵS j

〉)
τS j − τ′S j

2 +
∥∥∥vd j − vs

∥∥∥2
)2 . (C.7)

Ignoring Ĩs, the numerator Ni can be further expanded:

Ni =

((
τS j + τ0

)2
+ 2

〈
vd j − vs, ŵS j

〉 (
τS j + τ0

)
+
∥∥∥vd j − vs

∥∥∥2
)2

(C.8)

=
(

τ2
0 + 2mjτ0 + l2

j

)2
, (C.9)

where

mj = τS j +
〈

vdj − vs, ŵS j

〉
, and (C.10)

lj
2 = τS j

2 + 2
〈

vdj − vs, ŵS j

〉
τS j +

∥∥∥vdj − vs

∥∥∥2
. (C.11)

One thing to note here is that for a planar surface, lj, j = {1, 2} remains constant.

This can be proved geometrically. We use oS to denote the mirror reflection of vs about

the plane. We define l as the distance between oS and vs as:

l = ‖vs − oS‖ = 2 · dist (vs,X ) , j ∈ {1, 2} . (C.12)

We notice that τS = ‖vd − oS‖. We denote γ as the angle between vectors vs − vd and

oS − vd. Then based on the law of cosines in trigonometry, we can relate the sides of

triangle4vsvdoS by

l2 = τS2 − 2τS ‖vd − vs‖ cos (γ) + ‖vd − vs‖2

= τS2 + 2 〈vd − vs, ŵS〉 τS + ‖vd − vs‖2 . (C.13)
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Therefore, comparing Equation (C.11) and (C.13), we have

lj = l = 2 · dist (vs,P) , j ∈ {1, 2} . (C.14)

Similarly, for the denominator Di, we have

Di =

(
2
(

τS j + τ0 +
〈

vdj − vs, ŵS j

〉)
τS j −

(
τS j + τ0

)2
+
∥∥∥vdj − vs

∥∥∥2
)2

=
(

τ2
0 − l2

)2
. (C.15)

Finally, plugging Ni and Di to Equation (4.13) and noticing that D1 = D2 and are
both positive, we obtain following polynomial:(

τ2
0 − l2)2

[(
τ2

0 + 2m1τ0 + l2)2 −
(
τ2

0 + 2m2τ0 + l2)2
]
= 0

⇒ 4 (m1 −m2) τ0
(
τ2

0 − l2)2 [
τ2

0 + (m1 + m2) τ0 + l2] = 0

⇒ τ0
(
τ2

0 − l2)2 [
τ2

0 + (m1 + m2) τ0 + l2] = 0 (C.16)
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Appendix D

Appendix to Chapter 5

In this appendix, we cover the following topics:

1. In Section D.1, we provide the derivation of the bias correction term.

2. In Section D.2, we define the total variation function V (·) and the edge map E

used in the regularization terms.

3. In Section D.3, we show comparison results and ablation studies on more data in

our collected Google Pixel 4 dataset.

D.1 Proof of Equation (5.5)

In this section, we provide a detailed derivation of the bias correction term. For conve-

nience, we restate here our assumed image formation model. Given an MPI representa-

tion, its corresponding DP images can be expressed as:

I{l,r}o = I{l,r}b + N{l,r} , (D.1)

where I{l,r}b are the latent noise-free left and right defocused images, and N{l,r} is addi-

tive white Gaussian noise with entries independent identically distributed with distri-

bution N
(
0, σ2). Our goal is to optimize for an MPI with intensity-alpha layers (ĉi, α̂i),

with defocus sizes di, i ∈ [1, . . . , N], such that the L2 loss
∥∥∥Î{l,r}b − I{l,r}o

∥∥∥2

2
is minimized.

We show that, in the presence of image noise, minimizing the above loss biases the esti-

mated defocus map towards smaller blur values. Specifically, we quantify this bias and

then correct for it in our optimization.
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For simplicity, we assume for now that all scene contents lie on a single fronto-

parallel plane with ground truth defocus size d?, and our scene representation is an

MPI with a single opaque layer (i.e., α̂i = 1) with a defocus size hypothesis di. Under

this assumption, the defocused image rendering equation (Equation (5.3))

Î{l,r}b =
N

∑
i=1

[(
k{l,r}di

∗ (ciαi)
)
�

N

∏
j=i+1

(
1− k{l,r}dj

∗ αj

)]
(D.2)

reduces to

Î{l,r}b = k{l,r}di
∗ ĉi . (D.3)

Similarly, Equation (D.1) becomes:

I{l,r}o = k{l,r}d? ∗ ci + N{l,r}. (D.4)

We can express the above equations in the frequency domain as follows:

I{l,r}o = K{l,r}d? Ci +N {l,r} , (D.5)

where I{l,r}o , K{l,r}d? , Ci, and N {l,r} are the Fourier transforms of I{l,r}o , k{l,r}d? , ci, and N{l,r},

respectively. Note that the entries of N {l,r} are also independent identically distributed

with the same Gaussian distribution N
(
0, σ2) as the entries of N{l,r}.

We can obtain a maximum a posteriori (MAP) estimate of Ĉi and di by solving the

following optimization problem [194]:

arg max P
(
I l

o,I r
o|Ĉi, di, σ

)
P
(
Ĉi, di

)
= arg max P

(
I l

o,I r
o|Ĉi, di, σ

)
P
(
Ĉi
)

. (D.6)

According to Equation (D.5), we have

P
(
I l

o,I r
o|Ĉi, di, σ

)
∝ exp

− 1
2σ2 ∑

v={l,r}

∥∥∥Kv
di

Ĉi − Iv
o

∥∥∥2

 . (D.7)

We also follow Zhou et al. [194] in assuming a prior for the latent all-in-focus image

such that:

P
(
Ĉi
)

∝ exp
(
−1

2

∥∥ΦĈi
∥∥2
)

, (D.8)

where we define Φ such that

|Φ ( f )|2 =
1∣∣Ĉi ( f )
∣∣2 , (D.9)
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and f is the frequency. As Ĉi is the unknown variable, we approximate Equation (D.9)

by averaging the power spectrum over a set of natural images {Ci}:

|Φ ( f )|2 =
1∫

Ci
|Ci ( f )|2 µ (Ci)

, (D.10)

where µ (Ci) represents the probability distribution of Ci in image domain.

Maximizing the log-likelihood of Equation (D.6) is equivalent to minimizing the fol-

lowing loss:

E
(

di|I l
o,I r

o, σ
)
= min

Ĉi

 ∑
v={l,r}

∥∥∥Kv
di

Ĉi − Iv
o

∥∥∥2

+
∥∥σΦĈi

∥∥2 . (D.11)

di can be estimated as the minimizer of the above energy function. Then given di, setting

∂E/∂Ĉi = 0 yields the following solution of Ĉi, known as a generalized Wiener deconvo-

lution with two observations:

Ĉi =
I l

oKl
di
+ I r

oKr
di∣∣∣Kl

di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2
, (D.12)

where K{l,r}di
is the complex conjugate of K{l,r}di

, and
∣∣∣K{l,r}di

∣∣∣2 = K{l,r}di
K{l,r}di

.

We then evaluate the defocus size hypothesis di by computing the minimization loss

given the latent ground truth depth d?, and the noise level σ, that is,

E
(

di|Kl
d? , Kr

d? , σ
)
= ECi,I l

o,I r
o
E
(

di|Kl
d? , Kr

d? , σ, Ci,I l
o,I r

o

)
(D.13)

= ECi,I l
o,I r

o

 ∑
v={l,r}

∥∥∥Kv
di

Ĉi − Iv
o

∥∥∥2

+
∥∥σΦĈi

∥∥2

 , (D.14)

where E (·) is the expectation. Substituting Ĉi with Equation (D.12) gives us:

E
(

di|Kl
d? , Kr

d? , σ
)

=ECi,I l
o,I r

o


 ∑

v={l,r}

∥∥∥∥∥∥∥Kv
di

I l
oKl

di
+ I r

oKr
di∣∣∣Kl

di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2
− Iv

o

∥∥∥∥∥∥∥
2
+

∥∥∥∥∥∥∥σΦ
I l

oKl
di
+ I r

oKr
di∣∣∣Kl

di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2

∥∥∥∥∥∥∥
2
 .

(D.15)
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Then substituting Iv
o with Equation (D.5), we get:

E
(

di|Kl
d? , Kr

d? , σ
)

=ECi,N l ,N r

[ ∑
v={l,r}

∥∥∥∥∥∥∥Kv
di

(
Kl

d?Ci +N l
)

Kl
di
+
(
Kr

d?Ci +N r)Kr
di∣∣∣Kl

di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2
− (Kv

d?Ci +N v)

∥∥∥∥∥∥∥
2
+

∥∥∥∥∥∥∥σΦ

(
Kl

d?Ci +N l
)

Kl
di
+
(
Kr

d?Ci +N r)Kr
di∣∣∣Kl

di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2

∥∥∥∥∥∥∥
2 ]

. (D.16)

We now define B =
∣∣∣Kl

di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2. We can rearrange the above equation as:

E
(

di|Kl
d? , Kr

d? , σ
)

=ECi,N l ,N r

[ ∑
v={l,r}

∥∥∥∥∥∥
Ci

[
Kv

di

(
Kl

d?Kl
di
+ Kr

d?Kr
di

)
− Kv

d?B
]

B
+

Kv
di

(
N lKl

di
+N rKr

di

)
B

−N v

∥∥∥∥∥∥
2+

∥∥∥∥∥∥σΦ
Ci

(
Kl

d?Kl
di
+ Kr

d?Kr
di

)
B

+ σΦ
N lKl

di
+N rKr

di

B

∥∥∥∥∥∥
2 ]

. (D.17)

Given that the entries of N {l,r} are independent identically distributed with distribution

N
(
0, σ2), we have E (N v) = 0, E

(
N v2

)
= σ2 and E

(
N lN r

)
= 0, and we can

simplify the above equation as:

E
(

di|Kl
d? , Kr

d? , σ
)

=ECi,N l ,N r

[ ∑
v={l,r}

∥∥∥∥∥∥
Ci

[
Kv

di

(
Kl

d?Kl
di
+ Kr

d?Kr
di

)
− Kv

d?B
]

B

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
Kv

di

(
N lKl

di
+N rKr

di

)
B

−N v

∥∥∥∥∥∥
2+

∥∥∥∥∥∥σΦ
Ci

(
Kl

d?Kl
di
+ Kr

d?Kr
di

)
B

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥σΦ
N lKl

di
+N rKr

di

B

∥∥∥∥∥∥
2 ]

(D.18)

=ECi

{ ∑
v={l,r}

∥∥∥∥∥∥
Ci

[
Kv

di

(
Kl

d?Kl
di
+ Kr

d?Kr
di

)
− Kv

d?B
]

B

∥∥∥∥∥∥
2

+ σ2

∥∥∥∥∥Kv
di

2 + σ2 |Φ|2

B

∥∥∥∥∥
2

+

∥∥∥∥∥Kl
di

Kr
di

B

∥∥∥∥∥
2

+

∥∥∥∥∥∥σΦ
Ci

(
Kl

d?Kl
di
+ Kr

d?Kr
di

)
B

∥∥∥∥∥∥
2

+ σ2

∥∥∥∥∥σΦ
Kl

di

B

∥∥∥∥∥
2

+

∥∥∥∥∥σΦ
Kr

di

B

∥∥∥∥∥
2
} . (D.19)
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Recall that, in Equation (D.10), we defined Φ ( f ) such that 1
|Φ( f )|2 =

∫
Ci
|Ci ( f )|2 µ (Ci) .

Then we can further simplify E
(

di|Kl
d? , Kr

d? , σ
)

as:

E
(

di|Kl
d? , Kr

d? , σ
)

=∑
f

 1
|Φ|2

∣∣∣Kl
d?Kr

di
− Kr

d?Kl
di

∣∣∣2
B

+ ∑
f


1
|Φ|2 σ2 |Φ|2

(∣∣∣Kl
d?

∣∣∣2 + ∣∣Kr
d?
∣∣2)

B

+

∑
f

σ2


∥∥∥∥∥∥Kl

di

2
+ σ2 |Φ|2

B

∥∥∥∥∥∥
2

+

∥∥∥∥∥Kr
di

2 + σ2 |Φ|2

B

∥∥∥∥∥
2

+ 2

∥∥∥∥∥Kl
di

Kr
di

B

∥∥∥∥∥
2

+

∥∥∥∥∥σΦ
Kl

di

B

∥∥∥∥∥
2

+

∥∥∥∥∥σΦ
Kr

di

B

∥∥∥∥∥
2



(D.20)

=∑
f

 1
|Φ|2

∣∣∣Kl
d?Kr

di
− Kr

d?Kl
di

∣∣∣2
B

+ σ2 ∑
f


∣∣∣Kl

d?

∣∣∣2 + ∣∣Kr
d?
∣∣2

B
+

σ2 |Φ|2
B

+ 1

 (D.21)

=∑
f

 1
|Φ|2

∣∣∣Kl
d?Kr

di
− Kr

d?Kl
di

∣∣∣2∣∣∣Kl
di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2

+ σ2 ∑
f


∣∣∣Kl

d?

∣∣∣2 + ∣∣Kr
d?
∣∣2 + σ2 |Φ|2∣∣∣Kl

di

∣∣∣2 + ∣∣∣Kr
di

∣∣∣2 + σ2 |Φ|2
+ 1

 . (D.22)

If we define C1
(
K{l,r}di

, σ, Φ
)
=

1
|Φ|2∣∣∣Kl

di

∣∣∣2+∣∣∣Kr
di

∣∣∣2+σ2|Φ|2
, and C2(σ) = σ2 ∑ f 1, then Equa-

tion (D.22) boils down to Equation (5.5).

D.2 Edge-aware Total Variation Function

We first define a pixel-wise total variation function of a single-layer image I that in

used in both the intensity smoothness prior Lintensity and the alpha and transmittance

smoothness prior Lalpha:

V (I) =
√

I2 ∗ g− (I ∗ g)2 , (D.23)

where g is a two-dimensional Gaussian blur kernel:

g =


1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

 . (D.24)
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Each “pixel” in V (I) (x, y) is equivalent to, for the 3 × 3 window surrounding pixel

(x, y) in I, computing the sample standard deviation (weighted by a Gaussian kernel)

of the pixel intensities in that window. This follows easily from two facts: 1) as g sums

to 1 by construction, I ∗ g produces an image whose pixel intensities can be viewed

as expectations of their surrounding 3× 3 input patch; and 2) the standard deviation√
E [(X−E [X])2] can be written equivalently as

√
E [X2]−E [X]2.

As done in prior work [177], we would like to encourage edge-aware smoothness in

addition to minimizing total variation, so a bilateral edge mask is computed using this

total variation:

E (I) = 1− exp

(
− I2 ∗ g− (I ∗ g)2

2β2

)
. (D.25)

In this equation, β is set to 1/32 (assuming pixel intensities are in [0, 1]). A joint total

variation function that takes into account both the original and the edge-aware total

variation is then defined as:

V E (I, E) = ` (V (I)) + (1− E)� ` (V (I)) . (D.26)

D.3 Additional Experimental Results

We show qualitative results on more data in our collected Google Pixel 4 dataset in

Figures D.1-D.3.
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(a) input image (b) GT all-in-focus

image

(c) ours (d) Wiener

deconv. [194]

(e) DPDNet [1] (f) DPDNet w/

calib [1]

Figure D.1: More qualitative comparisons of various defocus deblurring methods.

(a) input im-

age

(b) ground

truth

(c) ours (d) ours w/

GF

(e)

Wiener [194]

(f)

DMENet [100]

(g) [144] (h) Garg

[53]

(i) Wadhwa

[181]

Figure D.2: More qualitative comparisons of defocus map estimation methods.
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(a) Input

image

(b) Ground

truth

(c) Ours

full

(d) No

Lintensity

(e) No

Lalpha

(f) No

Lentropy

(g) No

Laux

(h) No B

Figure D.3: More qualitative results on ablation study.
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parametric blur map regression for depth of field extension. IEEE Transactions on

Image Processing, 2016. 5.1

[43] Edward R. Dowski and W. Thomas Cathey. Extended depth of field through

wave-front coding. Applied optics, 1995. 1.3.4, 5

[44] Dual Pixel Capture App. Dual pixel capture app. https://github.com/

google-research/google-research/tree/master/dual_pixels. 5.4.1
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[63] Christian Häne, L’ubor Ladický, and Marc Pollefeys. Direction matters: Depth es-

timation with a surface normal classifier. IEEE/CVF Conference on Computer Vision

120



and Pattern Recognition, 2015. 5.1

[64] Richard Hartley. A. zisserman multiple view geometry in computer vision, 2000.

1.3.3

[65] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vi-

sion. Cambridge University Press, 2003. 5.1
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