
Complete, Decomposition-Free Coverage Path Planning

Tushar Kusnur and Maxim Likhachev

Abstract— Coverage Path Planning (CPP) requires planning
collision-free paths for a robot that observes all reachable points
of interest in an environment. Most popular CPP approaches
are hierarchical and decomposition-based, involving three steps:
(1) decomposing the environment into sub-regions (rectangles
or polygons) that simplify the generation of space-filling paths,
(2) determining a visitation order over these sub-regions via
graph search or a Traveling Salesman Problem (TSP) solver,
and (3) generation of space-filling paths in each sub-region. This
approach requires significant processing of the environment
and the availability of suitable TSP solvers. Furthermore, step
(1) can sometimes fail in non-convex environments or lead to
“over-decomposition” in cluttered environments. To the best
of our knowledge, existing decomposition-free approaches are
heuristic or random, and therefore typically inefficient and
probabilistically complete. We present a resolution-complete
decomposition-free coverage path planner that effectively folds
steps (1) and (2) above into a single online search routine,
making it significantly easier to integrate into existing robot
architectures and applicable to a larger set of environments.
Our approach leverages a precomputed library of space-filling
coverage patterns and automatically determines where to apply
them. We evaluate our approach on a variety of environments
to demonstrate its benefits and provide an open-source imple-
mentation at https://github.com/ktushar14/cdf_cpp.

I. INTRODUCTION

Coverage Path Planning (CPP) is the problem of com-
puting a feasible, collision-free path for a robot that passes
within some sensor footprint of all reachable points of
interest in an environment [1], [2]. Several real-world tasks
can be cast as 2D coverage problems, including aerial
surveys [3], [4], post-disaster assessment [5], and agricultural
operations [6], [7]. The CPP problem is computationally
expensive—it is related to the covering salesman problem,
where an agent must visit a neighborhood of each city [8],
which is in turn related to the NP-Complete Traveling Sales-
man Problem (TSP) [9]. Further, real robots like unmanned
aerial vehicles (UAVs) often have various constraints on
movement, such as limits on turning radius, translational and
rotational speed, and sensor footprint field-of-view [10], [11].

Prior work (Sec. II) shows that most popular CPP so-
lutions are hierarchical, and typically involve three steps:
(1) Decomposition: This divides the environment into mu-
tually exclusive and exhaustive sub-regions, wherein it is
simple to generate space-filling or sweeping coverage paths.
These paths do not necessarily account for obstacles and
are composed of simple motions—such as straight lines

The authors are with the Robotics Institute in the School of Com-
puter Science at Carnegie Mellon University, Pittsburgh, USA: {tkusnur,
maxim}@cs.cmu.edu. This work was supported by the ONR grant N00014-
18-1-2775.

Fig. 1: A figure illustrating three out of several possible paths our planner
might choose in a toy environment, reasoning over combinations of frontier-
seeking motions and space-filling patterns. Full paths include both the
motion primitive segment and the coverage pattern segment if present.

or circles—to provide simplicity in control. (2) Sub-region
traversal: This involves determining a visitation order over
these sub-regions, typically via a TSP solver. (3) Generation
of space-filling paths: This involves generating sweeping
coverage patterns in each sub-region, such as back and forth
Boustrophedon* motions, spiral patterns, and others.

Decomposition strategies are often tailored to specific
objectives and come with guarantees of satisfying them,
but at the cost of significant effort spent in processing
the environment. However due to the geometric nature of
decomposition strategies, they can fail in among certain types
of environment geometries. They can also lead to over-
decomposition in non-convex environments [2], [12], [13],
amended by post-processing step to merge adjacent sub-
regions. Furthermore, decomposition almost always follows
solving a TSP or similar [14], [12], [15], [16].

Few approaches require no environment decomposition (or
even representation) which Choset categorized as “heuristic
and randomized approaches” [2]. These arguably require the
least development effort, but can be inefficient—they do
not search for paths but randomly select local behaviors or
templates, relying on probabilistic completeness [17], [18].
However they do not suggest methods to combine these
templates to achieve full coverage of a target region [2].

Our key insight is that we can fold the decomposition
and subregion-traversal steps into a single search routine that
can be called repeatedly till coverage is complete (Sec. III).
To that end, our contribution is an online, decomposition-
free, resolution-complete coverage path planner. Our

*Boustrophedon means back-and-forth, like the motion of an ox plough-
ing a field.

2022 IEEE 18th International Conference on Automation
Science and Engineering (CASE)
August 20-24, 2022. Mexico City, Mexico

978-1-6654-9042-9/22/$31.00 ©2022 IEEE 1431

20
22

 IE
EE

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

io
n

Sc
ie

nc
e

an
d

En
gi

ne
er

in
g

(C
A

SE
) |

 9
78

-1
-6

65
4-

90
42

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

A
SE

49
99

7.
20

22
.9

92
64

83

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 22,2022 at 22:39:58 UTC from IEEE Xplore. Restrictions apply.

planner uses a grid-based representation of the environment
and provides continuous coverage paths. We fill a gap in
previous work on CPP by providing completeness guaran-
tees with little environment processing effort (see Fig. 2)
and applicability to a variety of environments. There is of
course no free lunch—to achieve this, our planner leverages
a precomputed set of space-filling patterns. The planner
reasons over these patterns and determines suitable parts
of the environment where they can be applied. We draw
inspiration from node selection strategies in frontier-based
exploration [19] to enable this behavior.

In Sec. IV, we demonstrate our method on a variety of
environments and compare quantitatively with a simpler and
complete decomposition-free baseline that employs frontier-
based exploration. We also qualitatively compare against [12]
to show that our approach yields similar, intuitive paths
without the decomposition and sub-region traversal steps.
However our method does not similarly guarantee optimality
with respect to coverage objectives such as turn- or distance-
minimization. We summarize our work and discuss future
research problems in Sec. V.

II. RELATED WORK

We categorize prior work into decomposition-based and
decomposition-free methods and briefly touch upon frontier-
based exploration planning. We point the reader to [1], [2]
for extensive surveys on coverage path planning. Multi-robot
coverage is beyond the scope of this paper.

Fig. 2: Our approach contextualized within representative prior work
roughly clustered by amount of explicit environmental processing effort
involved and strength of properties provided.

Decomposition-based approaches. These can be catego-
rized into exact (continuous) and inexact (grid-based) cellular
decomposition (CD). Exact CD involves partitioning the
free space of the environment into simple, non-overlapping
regions called cells. Early exact CD approaches include
Trapezoidal, Boustropheon, and Morse-based decomposition.
More recent approaches exist that optimize for specific objec-
tives. These include minimizing turns in coverage paths [20],
minimizing coverage path length [14], and creating intu-
itive, human-like sub-regions [12]. While typically separate
from CPP literature, there also exist closely related “room
segmentation” strategies that operate specifically on indoor
floor plans, of which Bormann et al. provide a thorough
survey [21]. Among exact decomposition strategies, the

simple trapezoidal decomposition can fail in non-polygonal
environments [22], [23], and the more general Morse-based
decomposition fails in rectilinear environments [24].

Inexact or grid-based approaches discretize the environ-
ment into uniform grid cells, typically as large as the robot’s
coverage footprint, and employ various space-filling methods
with backtracking strategies such as spanning trees and
spiral patterns [25], [26]. However these approaches do not
take advantage of smooth sweeping motions such as the
Boustrophedon pattern, except for a recent paper utilizes it
with turn-minimizing cellular decomposition [15].

Decomposition-free approaches. Early approaches like
these are heuristic algorithms where the robot is equipped
with a set of behaviors such as wall-following, obstacle-
avoidance, etc. [17], [27], [28], [29]. There are also com-
mercial floor-cleaning robots based on this approach (the
RC3000 by Karcher, Trilobite by Electrolux, and early ver-
sions of the Roomba by iRobot) [1], [30]. These approaches
do not guarantee completeness but have advantages from a
cost/benefit standpoint—they are easy to implement and do
not require costly localization sensors [31]. Our work can be
thought of as a method to stitch together such local behaviors
to enable complete coverage.

Frontier-based exploration planning In frontier-based
exploration, a robot repeatedly moves toward the closest
point on the frontier—which is the set of cells at the border
between explored and unexplored parts of the environment
(covered and uncovered in our case) [19], [32], [33], [34],
[35], [4], [36]. We employ a frontier-based search to deter-
mine where space-filling coverage patterns should be applied
(details in Sec. III).

III. METHOD

We assume we are given an occupancy grid map of an
uncovered 2D environment, the start configuration of the
robot, and parameters relating to constraints on the robot’s
motion and sensor footprint. We also assume access to a
library of precomputed space-filling coverage patterns. We
require the robot to observe all reachable points of interest
in the environment. Typical desirable properties of coverage
paths include simple motions and minimal overlaps and
number of turns. The precomputed coverage patterns can
individually be optimal with respect to such objectives, but
our approach does not provide any guarantees on optimality
of the overall path.

A. Framework

Control flow. Our framework relies on repeated queries
to a search-based planner which returns a feasible, collision-
free coverage path for the robot. In Alg. 1, we present
pseudocode for our overall framework We begin coverage
by calling PATHPLANNER(sstart , M) to obtain and execute
a path π and then repeatedly do this until the planner does
not return a path (Lines 2–8) At this point (line 4), coverage
is complete because the planner is guaranteed to return a path
as long as reachable uncovered cells exist in the environment.

1432

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 22,2022 at 22:39:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Framework overview—MAIN procedure
Inputs: sstart (robot start configuration), M (grid map)
1: procedure MAIN(sstart ,M)
2: repeat
3: π ← PATHPLANNER(sstart ,M) ▷ See Alg. 2.
4: if π is NULL then
5: done ▷ Coverage complete; terminate
6: Execute π and update M
7: sstart ← last state in π ▷ Assuming perfect execution
8: until done

Search-based planning on lattice graphs. As is common
in search-based planners operating over grids, we discretize
the environment into grid cells with a uniform resolution.
The planner is resolution-complete with respect to this un-
derlying grid. Each cell in the grid falls into one of three
categories: free & uncovered, free & covered, and blocked.
The planner searches for a path over a finite, discrete lattice
graph G = (V, E) where vertices/nodes V represent robot
configurations connected by edges E representing continuous
motions feasible by the robot [37], [38]. These paths are
always start and end on a lattice state, and can either be
motion primitives or space-filling coverage paths (details
follow).

We require a set of motion primitives A, which are simply
short, continuous, feasible motions, that connect pairs of
lattice states. This is standard practice [37], [38] and allows
our approach to operate on a variety of robots given their
kinematic and dynamic constraints.

We also require access to a set of precomputed space-
filling coverage patterns P which completely cover areas of
various simple shapes, each of which is a continuous path
centered at the origin. In this paper, we run experiments only
using Boustrophedon patterns that cover rectangular areas of
various sizes, but any set of patterns that are feasible for the
robot can be used in our framework.

B. Details—Procedure PATHPLANNER

A frontier cell f ∈ F is an uncovered cell in M that has at
least one neighboring cell that is covered. Standard frontier-
based exploration [19] is an iterative approach, where in each
iteration the robot moves to the closest frontier cell, covers
it, and repeats this until coverage is complete. Our approach
is similar, except that in each iteration, the planner reasons
about all combinations of frontier-seeking motions and the
several coverage patterns available to it at each frontier cell.

Multi-Goal search. At any arbitrary point in time during
coverage, let sstart be the node corresponding to the robot’s
current location. We also define a frontier node as a node
that corresponds to a robot configuration whose position
(xR, yR) is a frontier cell in M. The graph representing
the environment contains a set of frontier nodes fi ∈
F , i = 1, . . . , |F|†. To make progress in coverage, the robot
must visit (explore) a frontier node and possibly execute
a coverage pattern. Since there are multiple frontier nodes,
this can be viewed as a multi-goal motion planning problem
where each frontier node is a potential goal.

†For brevity, we represent the sets of both frontier cells and frontier
nodes as F .

Algorithm 2 Method details—Multi-goal Dijkstra’s search
1: procedure PATHPLANNER(sstart ,M)
2: g(sstart)← 0
3: OPEN ← OPEN ∪ {sstart, g(sstart)}
4: while OPEN not empty do
5: x← OPEN.MIN()
6: SUCCS← ∅ // List of successor nodes
7: COSTS← ∅ // List of corresponding edge costs
8: if x == Gimaginary then
9: π ← Backtrack from Gimaginary to sstart

10: return π // Path found
11: else
12: EXPAND (x,M, SUCCS, COSTS)

13: for successor s′ ∈ SUCCS and cost c ∈ COSTS do
14: if g(s′) > g(s) + c then
15: g(s′)← g(s) + c
16: bp(s′)← s
17: OPEN ← OPEN ∪ {s′, g(s)}
18: return NULL // No path found

19: procedure EXPAND(x,M, SUCCS, COSTS)
20: if x is a frontier node then
21: // Apply coverage patterns at frontier cell
22: for collision-free pattern p in P do
23: APPLYPATTERN (x, p,M, SUCCS, COSTS)

24: // Only cover frontier cell (no pattern applied)
25: SUCCS ← SUCCS ∪ Gimaginary

26: COSTS ← COSTS ∪ K − λ · 1
27: else
28: // Apply motion primitives at standard cell
29: for collision-free motion primitive a in A do
30: APPLYMPRIM (x, a,M, SUCCS, COSTS)

31: procedure APPLYPATTERN(x, p,M, SUCCS, COSTS)
32: SUCCS ← SUCCS ∪ Gimaginary

33: COSTS ← COSTS ∪ {ℓp − λ ∗ np
c +K}

34: procedure APPLYMPRIM(x, a,M, SUCCS, COSTS)
35: SUCCS ← SUCCS ∪ {node representing state after a applied at x}
36: COSTS ← COSTS ∪ {a.ℓ}

We introduce an imaginary goal node Gimaginary ∈ V in
G —this node does not correspond to any real location,
but is only present to better formulate our search. Multi-
goal Dijkstra’s search is equivalent to standard Dijkstra’s
search [39] from sstart to Gimaginary. As in standard graph
search terminology [40], (1) the g-value of a node is its cost-
to-come from node sstart, and (2) OPEN is a priority queue
of nodes (in our case, implemented as a min-heap), where
priorities associated with each node are their g-values in the
case of Dijkstra’s search.

In Alg. 2, we initialize the search by inserting sstart into
OPEN with a g-value of 0 (Lines 2–3). We then proceed as in
standard Dijkstra’s search, expanding nodes from OPEN in a
best-first fashion. The steps involved in expanding a node are
key to our approach. Suppose at a point during the search,
node x is obtained (popped) from OPEN. We perform one of
the following three steps:

• If x is not a frontier node, we apply motion primitives
A applicable at x to generate successors SUCCS and costs
COSTS (Lines 17–20).

• If x is a frontier node, we apply coverage patterns P (Lines
10–13). The successor at the end of each applied pattern
is Gimaginary and the costs incorporate distance traversed

1433

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 22,2022 at 22:39:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Multi-goal Dijkstra search tree. For illustration, we show only a
single coverage pattern at each frontier node, but there are often multiple
in reality.

by the pattern as well as the number of cells covered.
(We elaborate on this below.) We also add a successor
corresponding to not executing any pattern at the frontier
node (Lines 14–16). This provides the option of simply
executing a frontier-seeking motion.

• The third and last option for x is that it is node Gimaginary,
in which case we terminate the search, backtrack from
Gimaginary to sstart, and return the resulting path (Lines
7–9).

Edges outgoing from a frontier node incorporate the cost
of the robot traveling and covering cells using a particular
pattern applied at that frontier node in their each of its suc-
cessor nodes. Edges incoming to a frontier node incorporate
the cost of the robot traveling to that frontier node. In this
way, for the given set of patterns and motion primitives, the
search computes a coverage path for the robot to execute in
a query. A visual of this is presented in Fig. 3 for clearer
understanding. The rest of the algorithm (Lines 21–25) is
identical to Dijkstra’s search, where g-values of successor
nodes are updated or inserted into OPEN whenever better
paths to them are found.

C. Details—Procedure APPLYPATTERN

We now detail the cost function used when applying
a coverage pattern. Say executing a pattern p results in
traveling a distance ℓp and covering np

c number of cells in
M that were uncovered before executing the pattern. The
cost function we use for executing this pattern is:

cost(x, p,M) = ℓp − λ · np
c +K (1)

Here, λ > 1 is a user-defined parameter that controls how
much to weigh covering np

c cells at the expense of traveling a
distance ℓp. The larger λ is, the more likely the planner is to
apply coverage patterns, but this might increase non-working
distance as it might result in traveling more often over cells
that are already covered. The constant K ensures that this
cost is always non-negative. Note that this does not distort
the solution by incentivizing shorter paths, as this constant is
not added to every edge in the graph. As mentioned before,
the successor node of applying a pattern is always Gimaginary

(Line 37).

D. Details—Procedure APPLYMPRIM

Finally, in APPLYMPRIM we use the length of the prim-
itive as the cost, to be consistent with ℓp above. For UAV-
like robots, motion primitives practical for planning are
simple, short motions starting and ending at lattice states.
From a coverage perspective, frontier-seeking motions will
contain such short primitives to approach a frontier cell, but
with sweep-coverage patterns we can more easily have long,
smooth paths.

IV. EVALUATION

A. Experiment details

Sweep-coverage patterns. We precompute and store
boustrophedon coverage patterns that each cover a rectan-
gular area of some width and height. Each pattern consists
of long, straight-line segments and circular arc segments con-
necting them. We discretize our map into cells of dimension
D and we choose D = 2R where R is the radius of turns in
the boustrophedon patterns we use in experiments. This is
done so that each pattern exhaustively covers said rectangular
areas without any overlapping paths. Different coverage
patterns for different settings of R,D can be precomputed
and just as easily be used in our approach, provided we have
access to ℓp and np

c (Sec. III-C).
Environments. We evaluate our approach in simulation

across multiple environments, namely, rooms and walls with
random gaps (E1), corridors and rooms (E2), and city-like
maps from the MovingAI benchmark‡ (E3). Several prior
works focus on indoor scenarios due to heavy presence of
non-convex and cluttered shapes and use special methods
to decompose these environments [12], [15], [21], [33].
While we show the completeness of our decomposition-free
approach on such environments, our approach is applicable
to any environment that can be represented as a uniformly
discretized grid map. Dimensions of the environments we
consider are 100 times the sensor footprint diameter D
(small), and 250 times D (large). From previous work on
aerial coverage [4], we know that a typical sensor footprint
diameter for a helicopter-like UAV is ∼ 30m. Thus our
largest environments may represent areas up to ∼ 7500m
× 7500m. Fig. 4 shows representative examples from these
environment categories.

For experiments on environments of 100D× 100D units,
we use use coverage patterns covering rectangles of sizes up
to 30D×30D units in increments of D units—a dense set of
space-filling patterns. We include separate patterns beginning
execution at each of the four corners of the corresponding
rectangular area, which makes over 3000 patterns. For envi-
ronments of 250D × 250D units, we uniformly sample up
to 25 patterns of sizes up to 160D× 160D units to save on
computational effort.

‡https://movingai.com/benchmarks/grids.html

1434

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 22,2022 at 22:39:58 UTC from IEEE Xplore. Restrictions apply.

Finally, as seen in Fig. 6, we also use two handcrafted en-
vironments to compare with decomposition-based baselines§.

Robot. While our approach is general and works with
any type of robot, for experiments we model a planar UAV
with a fixed, circular sensor footprint, the configuration of
which consists of its position and yaw: (x, y, γ) ∈ SE(2) [4].
We use simple unicycle dynamics [41] to generate motion
primitives: ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω. Further, we have
upper bounds on the robot’s translational speed v ≤ vmax :=
8m/s and rotational speed ω ≤ ωmax := 0.14/s (these values
are borrowed from previous work [4]). Lastly, the robot’s
sensor has a circular footprint on the ground of radius D

2
centered at the robot’s position, meaning the robot’s footprint
covers one cell at a time. We measure performance in terms
of the distance traveled while covering the environment, total
planning times, and total path execution times.

B. Decomposition-free comparison.

Few, early decomposition-free approaches exist, which are
are heuristic or random. Running random coverage planning
as in [18] is highly inefficient in the environments we
consider, and so we do not include it in our experiments.
For example, for rooms in E1 with very narrow gaps, the
robot takes a very long time to move to another room when
using random actions. We implement a simple, complete
decomposition-free baseline: a frontier-based approach (akin
to vanilla frontier-based exploration), which we denote this
by “frontier-based coverage” (FBC). This is equivalent to
our approach without any preocmputed space-filling patterns
(i.e., Alg. 2 without lines 21–23). In this approach, the robot
repeatedly covers the frontier cell closest to it until coverage
is complete.

We present results for two measures of efficiency: (1)
The amount of coverage versus distance traveled by the
robot, and (2) total planning times and execution times.
Experiments were run on an Intel® Core™ i7-6700 CPU
@ 3.40GHz × 8 and approaches implemented in C++ and
compiled using g++ 9.4 with the -O3 optimization flag. For
maps of size 100D× 100D, for both environment types E1
and E2, and we run both our framework and the baseline
until complete coverage is achieved for 20 trials. For maps
of size 250D × 250D of environment types E1 and E2
and that of size 256D × 256D of environment type E3, we
terminate our framework when 90% coverage is achieved by
it. At this point of time, FBC has covered a significantly
smaller area of the environment, and we terminate it in
the interest saving computational effort. We would require
FBC to run to completion to compute total planning and
execution times, and so we do not include them for this set of
environments. We run 5 trials for maps of size 250D×250D
of environment types E1 and E2. Note that we use axis-
aligned boustrophedon (back-and-forth) patterns as sweep
coverage patterns available to the planner. These patterns are

§The maps and open-source code for these baselines were not available
at the time of working on this paper. So we manually replicated two
environments for a qualitative comparison.

Fig. 4: Representative examples of environments used in experiments.
Starting from top-left moving clockwise: E1: walls + gaps, E2: corridors
+ rooms, and E3: city maps (Boston_1_256 map shown here) from the
MovingAI benchmark.

highly suitable for environment types E1 and E2, but not
particularly for E3, as the obstacles are less structured. We
run experiments on maps of type E3 (4 trials) to illustrate
that even if coverage patterns are not specifically tailored
to the environment, our framework still shows significant
benefits over FBC.

Our framework (plots in red) significantly outperforms
FBC (plots in blue) in all cases with respect to the distance
traveled to complete coverage, as seen in subfigures A, B,
and C in Fig. 5. We also demonstrate much smaller planning
and execution times as the planner is queried significantly
fewer times in our approach (Tables I and II). We post-
process plans to compute total execution times assuming
constant velocities for the motion primitives and coverage
patterns ranging between 2m/s and 8m/s (same across both
approaches).

In maps of size 250D × 250D for environment types E1
and E2 we see steep increases in coverage (vertical red in-
creases in the plots) whenever a coverage pattern is executed.
The more gentle increases in coverage either correspond to
coverage patterns overlapping with previous paths or several
consecutive frontier-seeking motions. This occurs because, as
mentioned earlier, we uniformly sample coverage patterns to
keep planning times reasonable, and as a result, there does
not exist a coverage pattern that exhaustively covers every
possible rectangular area the planner might encounter.

C. Decomposition-based comparison.

In Fig. 6 we present a qualitative comparison of coverage
paths computed by our approach with representative exam-
ples from Brown and Waslander’s Constriction Decompo-
sition method [12] and the linear-programming based turn-
minimizing approach by Ramesh et al. [15]. Similar to us,
Brown and Waslander do not claim any overall optimal-
ity guarantees. Their approach is based on geometrically
computing “constriction points” in the environment, which
correspond to areas like openings near doors or corridors in
indoor scenarios. We observe that in our approach as well,
constriction points naturally emerge as frontier nodes near
such areas. Unlike the approach by Ramesh et al., we do
not claim any overall optimality guarantees, which is where
the environment partitioning effort of that baseline pays off.
However our approach is complete without needing any
environment partitioning/decomposition and yields intuitive
coverage paths.

1435

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 22,2022 at 22:39:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: All results including plots of coverage versus distance traveled for all environments (A, B, C) and total planning and execution times for environments
of size 100D × 100D (Tables I and II), as well as plots for larger environments of size 250D × 250D.

Fig. 6: Comparison with Brown and Waslander’s Constriction Decomposition method [12] on and the turn-minimizing approach by Ramesh et al. [15] on
representative environments. Subfigures 1–6 show our method on an indoor lab environment and subfigure (7) shows Brown and Waslander’s result on a
similar environment. Subfigure 9 shows our method on another indoor environment and subfigure (8) shows the turn-minimal solution by Ramesh at al. on
a similar environment. (We handcrafted these environments in an occupancy grid format and so they are not fully identical to those used in the baselines.)

V. CONCLUSIONS

We present a decomposition-free approach to complete
coverage path planning. The search reasons over paths con-
sisting of motion primitives and precomputed space-filling
coverage patterns and automatically determines where in
the environment a space-filling pattern should be applied.
We evaluate our approach in a variety of environments and

compare it qualitatively and quantatively with appropriate
baselines. In large environments, we sample patterns to
prevent slow performance and show that it is still effective
and does not require decomposition. For the future, in order
to improve scalability, we wish to look into dynamically
generating these space-filling patterns online by geometric
or data-driven controllers.

1436

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 22,2022 at 22:39:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[2] H. Choset, “Coverage for robotics–a survey of recent results,” Annals
of mathematics and artificial intelligence, vol. 31, no. 1, pp. 113–126,
2001.

[3] K. Shah, G. Ballard, A. Schmidt, and M. Schwager, “Multidrone aerial
surveys of penguin colonies in antarctica,” Science Robotics, vol. 5,
no. 47, p. eabc3000, 2020.

[4] T. Kusnur, S. Mukherjee, D. M. Saxena, T. Fukami, T. Koyama,
O. Salzman, and M. Likhachev, “A planning framework for persistent,
multi-uav coverage with global deconfliction,” in 2019 International
Conference on Field and Service Robotics (FSR), 2019.

[5] A. Nedjati, G. Izbirak, B. Vizvari, and J. Arkat, “Complete coverage
path planning for a multi-UAV response system in post-earthquake
assessment,” Robotics, vol. 5, no. 4, p. 26, 2016.

[6] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of field robotics, vol. 26, no. 8,
pp. 651–668, 2009.

[7] P. Maini, B. M. Gonultas, and V. Isler, “Online coverage planning for
an autonomous weed mowing robot with curvature constraints,” IEEE
Robotics and Automation Letters, 2022.

[8] E. M. Arkin and R. Hassin, “Approximation algorithms for the
geometric covering salesman problem,” Discrete Applied Mathematics,
vol. 55, no. 3, pp. 197–218, 1994.

[9] C. H. Papadimitriou, “The euclidean travelling salesman problem is
np-complete,” Theoretical computer science, vol. 4, no. 3, pp. 237–
244, 1977.

[10] T. Kusnur, D. M. Saxena, and M. Likhachev, “Search-based planning
for active sensing in goal-directed coverage tasks,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 15–21.

[11] S. Arora and S. Scherer, “Pasp: Policy based approach for sensor
planning,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 3479–3486.

[12] S. Brown and S. L. Waslander, “The constriction decomposition
method for coverage path planning,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016,
pp. 3233–3238.

[13] S. Gholami Shahbandi and M. Magnusson, “2d map alignment with
region decomposition,” Autonomous Robots, vol. 43, no. 5, pp. 1117–
1136, 2019.

[14] R. Mannadiar and I. Rekleitis, “Optimal coverage of a known arbitrary
environment,” in 2010 IEEE International conference on robotics and
automation. IEEE, 2010, pp. 5525–5530.

[15] M. Ramesh, F. Imeson, B. Fidan, and S. L. Smith, “Optimal partition-
ing of non-convex environments for minimum turn coverage planning,”
arXiv preprint arXiv:2109.08185, 2021.

[16] R. Bähnemann, N. Lawrance, J. J. Chung, M. Pantic, R. Siegwart,
and J. Nieto, “Revisiting boustrophedon coverage path planning as
a generalized traveling salesman problem,” in Field and Service
Robotics. Springer, 2021, pp. 277–290.

[17] C. Hofner and G. Schmidt, “Path planning and guidance techniques
for an autonomous mobile cleaning robot,” Robotics and autonomous
systems, vol. 14, no. 2-3, pp. 199–212, 1995.

[18] J. Palacin, T. Palleja, I. Valganón, R. Pernia, and J. Roca, “Measuring
coverage performances of a floor cleaning mobile robot using a vision
system,” in Proceedings of the 2005 IEEE international conference on
robotics and automation. IEEE, 2005, pp. 4236–4241.

[19] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97.’Towards New Com-
putational Principles for Robotics and Automation’. IEEE, 1997, pp.
146–151.

[20] S. Bochkarev and S. L. Smith, “On minimizing turns in robot coverage
path planning,” in 2016 IEEE international conference on automation
science and engineering (CASE). IEEE, 2016, pp. 1237–1242.

[21] R. Bormann, F. Jordan, W. Li, J. Hampp, and M. Hägele, “Room
segmentation: Survey, implementation, and analysis,” in 2016 IEEE
international conference on robotics and automation (ICRA). IEEE,
2016, pp. 1019–1026.

[22] J.-C. Latombe, Robot motion planning. Springer Science & Business
Media, 2012, vol. 124.

[23] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,
Principles of robot motion: theory, algorithms, and implementations.
MIT press, 2005.

[24] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull,
“Morse decompositions for coverage tasks,” The international journal
of robotics research, vol. 21, no. 4, pp. 331–344, 2002.

[25] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of contin-
uous areas by a mobile robot,” Annals of mathematics and artificial
intelligence, vol. 31, no. 1, pp. 77–98, 2001.

[26] ——, “Spiral-stc: An on-line coverage algorithm of grid environments
by a mobile robot,” in Proceedings 2002 IEEE International Con-
ference on Robotics and Automation (Cat. No. 02CH37292), vol. 1.
IEEE, 2002, pp. 954–960.

[27] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal on robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[28] D. W. Gage, “Randomized search strategies with imperfect sensors,”
in Mobile Robots VIII, vol. 2058. International Society for Optics
and Photonics, 1994, pp. 270–279.

[29] E. Gat and G. Dorais, “Robot navigation by conditional sequencing,”
1994.

[30] J. M. Palacios-Gasós, E. Montijano, C. Sagues, and S. Llorente,
“Multi-robot persistent coverage using branch and bound,” in ACC,
2016, pp. 5697–5702.

[31] T. Balch, “The case for randomized search,” in Workshop on Sensors
and Motion, IEEE International Conference on Robotics and Automa-
tion, San Francisco, CA, 2000, pp. 213–215.

[32] C. Tovey and S. Koenig, “Improved analysis of greedy mapping,” in
Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 4. IEEE,
2003, pp. 3251–3257.

[33] J. Butzke and M. Likhachev, “Planning for multi-robot exploration
with multiple objective utility functions,” in 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2011,
pp. 3254–3259.

[34] J. Faigl and M. Kulich, “On determination of goal candidates in
frontier-based multi-robot exploration,” in 2013 European Conference
on Mobile Robots. IEEE, 2013, pp. 210–215.

[35] E. Vidal, N. Palomeras, K. Istenič, J. D. Hernández, and M. Carreras,
“Two-dimensional frontier-based viewpoint generation for exploring
and mapping underwater environments,” Sensors, vol. 19, no. 6, p.
1460, 2019.

[36] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786, 2021.

[37] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[38] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[39] E. W. Dijkstra et al., “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[40] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial
intelligence, vol. 1, no. 3-4, pp. 193–204, 1970.

[41] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

1437

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 22,2022 at 22:39:58 UTC from IEEE Xplore. Restrictions apply.

