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DPLVO: Direct Point-Line Monocular Visual Odometry
Lipu Zhou1, Shengze Wang2 and Michael Kaess3

Abstract—In this paper, we present a direct visual odometry
(VO) using points and lines. Direct methods generally choose
pixels with sufficient gradients to minimize the photometric error
for the status estimation. Pixels on lines are generally involved
in this process. But the collinear constraint among these points
are generally ignored, which may result in less accurate depth
estimation. This paper introduces the collinear constraint into
the state-of-the-art direct visual odometry DSO [1] to overcome
this problem. The 3D lines, points and poses within a sliding
window are jointly optimized. DSO implicitly establishes the
data association for points among the keyframes within a sliding
window by direct image alignment. This scheme is typically
suitable for points, as points are generally only visible within
a short time window. However, as lines are unbounded entities,
they can be observed by a camera significantly longer than
points. Thus, we seek to establish the long-term data association
for lines among the keyframes. The 3D collinear points that
are removed from the sliding window are served as collinear
priors for the following windowed optimization. We prove that
the prior collinear constraints of a 3D line can be compressed
into six residuals in the optimization. This significantly reduces
the computational complexity, and enables real-time performance
for incorporating long 3D line segments into the windowed
optimization. We present a new 3D line representation which
reduces the four degrees of freedom (DoF) of a 3D line into
two DoF by parameterizing the 3D line in the back-projection
plane of its first 2D line observation. The experimental results
show that our algorithm outperforms the state-of-the-art direct
monocular VO algorithms.

Index Terms—SLAM, Mapping, Localization

I. INTRODUCTION

S Imultaneous localization and mapping (SLAM) is a fundamental
problem in robotics and computer vision community. Due to

its importance, SLAM using various sensors has been extensively
studied. Among them, monocular visual SLAM (VSLAM) and visual
odometry (VO) have received tremendous attentions, as a monocular
camera is widely available. Generally, VSLAM and VO algorithms
can be classified into two categories: feature-based and direct meth-
ods. In the feature-based method, such as PTAM [2] and ORB-SLAM
[3], the descriptors of salient features are extracted and matched along
the video sequence. On the other hand, the direct approaches, such
as LSD-SLAM [4] and DSO [1], leverage raw pixel intensities and
minimize the photometric error. As the direct method can employ
more information, it is generally more robust in poorly textured
scenes [1]. Direct methods typically adopt pixels with sufficient

Manuscript received: February 24, 2021; Revised: May 31, 2021; Accepted:
June 24, 2021.

This paper was recommended for publication by Editor Javier Civera upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
partially done when the first two authors were with the Robot Perception Lab
at Carnegie Mellon University.

1Lipu Zhou is with Magic Leap, 1376 Bordeaux Dr, Sunnyvale, CA 94089,
USA lzhou@magicleap.com

2Shengze Wang is with Department of Computer Science, Univer-
sity of North Carolina, 3175 Brooks, Chapel Hill, NC 27599, USA
shengzew@cs.unc.edu

3Michael Kaess is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA kaess@cmu.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1. An example of long-term line association. As lines are unbounded,
they can generate long-term associations. This increases the correlation among
poses, which benefits reducing drift, but may also significantly increase the
runtime of the optimization if all the poses where a long 3D line segment
is observed are jointly optimized. Thus it is important to design a scheme
to balance the efficiency and accuracy. In addition, the line matching is also
challenging. Since different parts of a line may be captured at different time,
as demonstrated above, the feature-based matching scheme which is well-
established for points is not suitable for lines.

gradients, which generally include pixels on lines. These pixels may
have one dimensional freedom along the line during photometric
tracking, which may result in less accurate depth estimation. We
introduce collinear constraints into DSO [1] to improve the depth
accuracy of the points on lines.

Lines widely exist in man-made environments. They are good
complements to points. However, it is not trivial to exploit lines into
VSLAM or VO. A line is an infinite object. Thus it can exist in the
field of view (FoV) of a camera much longer than a point, which adds
more correlation among poses, as demonstrated in Fig. 1. Although
this benefits reducing the drift, it may increase the runtime of the
optimization as well. In feature-based methods, the general strategy
to employ lines is to detect and match lines [5]–[14]. As the line
detection algorithm, such as LSD [15], generally cannot ensure to
detect the same line segment in each frame, this may cause the line
matching unstable. The deep learning based line detector [16] has
got significant progress in recent years. But these algorithms require
a powerful GPU, which is generally not available for embedded
systems where the computation resource is limited. Additionally, once
a part of a line segment moves out or emerge into the camera’s
FOV, the line matching may also fail. Furthermore, the line detection
and matching significantly increase the computational load [5]. On
the other hand, direct methods minimize the photometric error. This
strategy is suitable for points, but it is difficult to be extended to
lines. Thus, the number of studies on extending the direct method
with lines is relatively small. In the literature, lines are generally not
involved in the optimization in direct methods [17], [18]. Moreover, it
is considered infeasible to add geometry prior on points in the direct
method for real-time applications [1].

This paper seeks to improve the accuracy of the state-of-the-art
direct method DSO [1] by establishing long-term line association and
introducing collinear constraints into the windowed optimization. The
main contributions of the paper are:

• We introduce the collinear constraint into the photometric error
of DSO [19]. We establish long-term data association among
different 2D line observations of a 3D line. We fix the poses of
the keyframes that are removed from the sliding window and
the depths of the collinear points in these removed keyframes to
yield the prior collinear constraints for the following windowed
optimization. We prove that the prior collinear constraints of a
line are equivalent to six residuals in the optimization, which
is independent of the number of prior collinear constraints.
This makes incorporating long 3D line segments into the
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optimization and keeping the real-time performance feasible.
• We present a new singular-free 3D line representation with two

degrees of freedom (DoF). It is known that a 3D line has four
DoF. The key point of our approach is to represent a line in the
back-projection plane of the first 2D line observation.

II. RELATED WORK
Points are the most common features used in VSLAM and VO

algorithms [1]–[3], [19], [20]. On the other hand, Lines are abundant
in man-made scenes. Thus as an important complement to points,
lines have received extensive attention in recent years.

Feature-based method with lines The feature-based method
using points alone is prone to fail in low textured scenes, where
abundant lines generally exist. As a counterpart of points, it seems
natural to extend the well established feature-based framework of
points to lines [5]–[14]. In these algorithms, lines are matched along
the sequence as done for points. The drawback of this scheme is
that there is no guarantee that the same segment of a 3D line can
be repetitively detected along the sequence. Since the descriptors
may represent different parts of a 3D line, the line matching may
be unstable. Furthermore, this scheme cannot establish long-term
data association. As a line is an infinite object, the segment of a 3D
line captured by a moving camera generally changes. For instance,
a new part of a 3D line may gradually emerge into the camera’s
FoV, meanwhile an observed part may move out of the camera’s
FoV, as demonstrated in Fig. 1. The feature-based method focuses on
matching the first detected 2D line segment in the following frames,
thus it probably fails once the captured line segment changes.

Direct method with lines The direct method minimizes the
photometric error, which is difficult to be extended for lines. Thus the
number of studies on the direct method with lines is relatively small.
As direct methods generally employ pixels with sufficiently high
gradients, pixels on lines are generally selected in the photometric
cost. In previous works [17], [18], the 3D lines are used to force the
collinear 3D points to meet the collinear constraint. Specifically, the
depths of the collinear points are estimated as done for the normal
points. The 3D lines are fitted from the estimated 3D points. Then
the 3D points are projected into the corresponding 3D lines. Gomez-
Ojeda et al. [21] introduce lines into the semi-direct method SVO
[22]. In [21], a line is represented by two points, and the depth filter
introduced in [22] is adopted to estimate the depth of the endpoints
of lines. In these methods, the 3D lines themselves are not jointly
optimized with the keyframe poses and points. This may results in
suboptimal results.

Structural Line The indoor scenario is generally structured,
known as the Manhattan world model that has three perpendicular
line directions. The lines with these directions are called the struc-
tural lines [23], [24]. Vanishing points estimated from the parallel
structural lines can be used to identify these directions, which in
turn benefit the estimation of the camera orientation [25]–[27]. Some
works [23], [24] introduce the structural lines into the extend Kalman
filter (EKF) framework. Recently, Zou et al. [24] adopt the Atlanta
world model to generalize the Manhattan world model. Non-structural
lines, which are also important for pose estimation in the low texture
areas, are ignored in these works. Besides, the Manhattan assumption
limits its applicable scenarios.

Line Representation Representing a 3D Line in the optimization
is not trivial. It is known that a 3D line has four DoF [28]. A 3D
line can be straightforwardly represented by two 3D points, which is
adopted in some previous works [5], [7], [9]. This representation has
six DoF. Solà et al. [29] present five 3D line representations. But none
of them are minimal representation. The overparameterization may
result in a rank-deficient Hessian matrix, which may lead to slow
convergence and suboptimal results for the Levenberg-Marquardt
(LM) algorithm [30]. In [31] and [32], two minimal representations
for 3D lines depending on the representation of the rotation matrix
are presented. As every minimal representation of the rotation matrix
has singular cases, the two representations heritage these singularities.
Furthermore, both representations are singular when a 3D line passes

Fig. 2. The back-projections of a 2D line l and a point p on the image
plane are a plane and a 3D line which pass through the origin of the camera
coordinate system, respectively. l and p determine the normal n of the back-
projection plane and the direction α of the back-projection line, respectively.
The 3D line L is on the back-projection plane of l. The 3D point P is on
the back-projection line of p.

through the origin of the coordinate system. Kottas et al. [33] adopt
a quaternion and a distance scalar to represent a 3D line. Yang and
Huang [34] multiply the quaternion and the distance scalar together
to generate a four DoF representation, named the closed point (CP)
representation. Like [31] and [32], the CP representation is singular
when a 3D line passes through the origin. In [23] and [24], they
customize the representation for the structural line in the Manhattan
world. Li et al. [13] propose a parameterization for co-planar lines.
This paper presents a 2D singularity-free representation for 3D lines
using the back-projection plane of the first 2D line observation.

III. SYSTEM OVERVIEW

This work introduces lines into DSO [1]. Thus we extend the back
end and font end of DSO for lines.

In the back end, we introduce a novel singular-free line parame-
terization which only has 2 DoF. We impose the collinear constraint
on the depths of the 2D points sampled from a 2D line. To adapt
the windowed optimization framework of DSO, we introduce the
collinear prior for the collinear points that are removed from the
sliding window. We prove that, no matter how many collinear priors
there are, they can be compressed into six residuals, and can be
calculated incrementally. This significantly reduces the computational
complexity for long 3D line segments.

In the front end, we introduce the line management which consists
of line detection, line initialization and line association. We adopt
the LSD algorithm [15] to detect lines, and seek to combines lines
with similar parameters. We only detect lines in the area that is
not associated to an existing line. For each new 2D line segment,
we sample some points from it according to the length of the line
segment. The depth of each point is estimated as the ordinary points
in DSO. These depths are then used to initialize the 3D line. To
avoid the disadvantage of the descriptor-based line matching scheme
mentioned above, we introduce a tracking-extension-redistribution
method to establish the long-term line association among keyframes.

IV. NOTATIONS AND PRELIMINARIES

In this paper, we use boldfaced letters to represent vectors and
matrices, and employ italic lowercase and italic uppercase to represent
scalars and functions, respectively.

Camera Pose Let us denote the rotational and translational
components of a camera pose transforming a point from the world
coordinate system to the camera coordinate system as R ∈ SO (3)
and t ∈ R3, respectively. The pose of a camera is then represented

by T =

[
R t
0 1

]
∈ SE(3).

Projection and Back-projection In this paper, the projection
from a 3D point to the image plane is denoted as Πc : R3 → Ω,
where c represents the camera parameters. Accordingly, given a pixel
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Fig. 3. A schematic of Plücker Coordinates (a) and our new line parame-
terization (b). Given a 2D line, the 3D line is on its back-projection plane,
as demonstrated in Fig. 2. Thus we can represent a 3D line by 2 parameters
(i.e., τL and θL). The parameterization is introduced in section V-B1.

and its depth, the back-projection is defined as Π−1
c : Ω×R → R3,

as demonstrated in Fig. 2 (b). Let us assume p ∈ Ωi is a point in a
reference image Ii with the inverse depth dp that is observed at p′

in a target image Ij . Suppose the poses of Ii and Ij are Ti and Tj ,
respectively. Then the relationship between p and p′ has the form

p′ = Πc

(
RijΠ

−1
c (p, dp) + tij

)
, (1)

where Rij and tij are the rotational and translational component of
TjT

−1
i .

Plücker Coordinates A 3D line L can be represented by
the Plücker coordinates, as illustrated in Fig. 3 (a). The following
formulas used in this paper are according to [28] and [35].

Let π denote the plane determined by L and the origin of the
coordinate system, and τL the distance from the origin to L. Then
the Plücker coordinates of L is a six-dimensional vector defined as

L = [m;d] , s.t. ||d||2 = 1, dTm = 0, (2)

where d is the direction of L, and m is referenced to as the moment
vector, which is perpendicular to π with ||m||2 = τL. The Plücker
coordinates are homogeneous coordinates. Here we impose ||d||2 = 1
on them to remove the scale ambiguity. Besides, this formulation can
lead to simpler formulas in the following calculation.

Using the Plücker coordinates in (2), we can write the residual
vector of the distance from a point X ∈ R3 to L as

e (L,X) = m−X× d. (3)

Given R and t, the transformation matrix of the Plücker coordi-
nates has the form

H (R, t) =

[
R [t]× R
0 R

]
. (4)

Using (4), we can write the transformation of the Plücker coordinates
from one coordinate system to another as

L′ = H (R, t)L. (5)

The Plücker coordinates are convenient for computation. However,
due to the constraints in (2), this representation is not convenient in
optimization. In this paper, we represent the Plücker coordinates by
two parameters, which leads to unconstrained optimization.

V. DIRECT POINT-LINE MODEL

A. Photometric Error
Direct method minimizes the photometric error. We adopt the

photometric error model introduced in [1]. The photometric error
for p with inverse depth dp in Ii observed by Ij is defined as:

Epj =
∑
p∈Np

wp

∥∥∥∥(Ij [p′]− bj
)
− tje

aj

tieai
(Ii [p]− bi)

∥∥∥∥
γ

, (6)

Fig. 4. Line support region. As introduced in [15], a real line segment has
a support region due to the quantization or motion blur, which can represent
the uncertainty of a line. We use this information to weigh the collinear
constraints. ρ is the width of the line support region.

where ai, aj , bi and bj are the affine brightness transform parameters,
ti and tj are the exposure time of Ii and Ij , wp is a gradient-
dependent weighting factor, Np is a set of neighborhoods around p,
and ∥·∥γ is the Huber norm. The relationship between p and p′ is
given in (1). Consequently, the full photometric error over all frames
F has the form as

Ephoto =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj , (7)

where Pi is the set of points in frame i, and obs(p) is the set of
frames where p is visible.

B. Collinear Constraint
We impose the collinear constraints on the points on lines. We

first present a novel 3D line representation. Next, we introduce the
cost function of the collinear constraint for the keyframes in the
sliding window. Finally, we discuss the collinear prior yielded by
the removed collinear points.

1) 3D Line Representation: We call the image where a 3D line
L is first observed as the anchor image of L. On the other hand,
we call the subsequent images observing L as the associate images.
Here we show that L in (2) can be parameterized by two unknowns
in the coordinate system of the anchor image of L, as demonstrated
in Fig. 3 (b).

We assume the image has been undistorted and the camera matrix
is K, and suppose l⊥ is the captured image of L in the anchor image.
The back-projection of l⊥ is a plane demonstrated in Fig. 2. Assume
ē1 and ē2 are the homogeneous coordinates of the two endpoints of
l⊥, and E1 and E2 are the corresponding 3D points on L. Then we
have l⊥ = ē1 × ē2, and the direction of L is d = E2−E1

∥E2−E1∥2
. The

norm of the back-projection plane πl⊥ of l⊥ in the camera coordinate
system is n = KT l⊥

||KT l⊥||2
. The direction of the back-projection ray

of ē1 is α = K−1ē1

∥K−1ē1∥2

. Assume θL is the angle from α to d, and

τL is the distance from the camera origin to the 3D line. Then the
Plücker coordinates L defined in (2) can be parameterized by θL and
τL as below

m = τLn,

d = cos (θL)α+ sin (θL)β,
(8)

where β = n×α.
2) Collinear Constraint from Anchor Image of L: Suppose

pL
⊥ with depth dpL

⊥
is a point on l⊥ in the anchor image Ii of L.

Then the corresponding 3D point of pL
⊥ in the coordinate system of

Ii has the form XL
⊥ = Π−1

c

(
pL
⊥, dpL

⊥

)
. Here XL

⊥ and L are in
the same coordinate system. Directly using (3), we get the collinear
constraint on XL

⊥ as below

EL
pL
⊥
=

∥∥∥e(L,XL
⊥

)∥∥∥2

2
. (9)
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Fig. 5. A schematic of the Hessian matrix of the photometric error (7) and
the photometric error with the collinear constraint (15). 3 points are sampled
from each 2D line. By properly aligning the variables, the Hessian matrix of
(15) also has a sparse pattern. Thus the resulting linear system of the iterative
algorithm can be efficiently solved [36].

Let us denote the set of sampled points on l⊥ as AL. The collinear
constraint on the 3D points of AL is given by

EL
⊥ =

∑
pL
⊥∈AL

EL
pL
⊥
. (10)

3) Collinear Constraint from Associate Image of L: Let
us use lLj to denote the 2D line of L in the associate image Ij .
Assume pL

j is a pixel on lLj . Given its depth dpL
j

, we can get the

corresponding 3D point coordinates XL
j = Π−1

c

(
pL
j , dpL

j

)
in the

camera coordinate system of Ij . Here XL
j and L are in different

coordinate systems. Using (3) and (5), we get the collinear constraint
on XL

j

EL
pL
j
=

∥∥∥e(Lj ,X
L
j

)∥∥∥2

2
, Lj = H (Rij , tij)L, (11)

where Rij and tij are defined in (1). Assume BL
j denotes the set of

sampled points on lj . Then the constraint on the 3D points of BL
j

has the form as
EL

j =
∑

pL
j ∈BL

j

EL
pL
j
. (12)

4) Collinear Constraints: As shown in Fig. 4, a line segment
has a support region [15] due to the quantization or motion blur,
which represents the uncertainty of the line segment. Let us denote
the width of the support region as ρ. We use 1

ρ
to weigh the collinear

constraints. Unlike [18] that samples the same number of points for
each line, we split the support region into several segments with a
fixed length ϵ. In each segment, we select the point with the largest
gradient. As a longer line generally has a lower uncertainty on its
parameters, this sampling method can increase the weight of a longer
line by introducing more points.

The 3D line L is observed in its anchor image and the subsequent
associate images. Let HL denote the set of associate images of L.
Using (10) and (12), we get the collinear constraint from L as

EL =
1

ρL⊥
EL

⊥ +
∑
j∈HL

1

ρL⊥ + ρLj
EL

j , (13)

where ρL⊥ and ρLj are the widths of the support region of the line
segments in the anchor and associate images. Let L denote the set
of all the 3D lines. Then the full cost function over L has the form

Eline =
∑
L∈L

EL. (14)

C. Full Cost Function
In our algorithm, the camera poses, 3D points and lines are jointly

adjusted to minimize the photometric error as well as to meet the
collinear constraint. Specifically, the full cost function over all frames,
points and lines is the combination of (7) and (14)

E = Ephoto + Eline, (15)

Fig. 5 demonstrates the Hessian matrix of (15). It is of the general
sparse pattern, thus the resulting linear system of the iterative
algorithm can be efficiently solved [36].

D. Windowed Optimization
Minimizing the full cost (15) is computationally demanding.

Thus we adopt the sliding window approach in [1] to balance the
computational complexity and accuracy. For the removed keyframes,
we adopt different strategies for Ephoto and Eline.

1) Marginalization: For Ephoto, we adopt the marginalization
strategy used in [1]. Briefly, inactive keyframes and points are
marginalized using the Schur complement, and all the remaining
observations related to the inactive keyframes are removed to preserve
the sparsity of the Hessian matrix. This leads to a quadratic function
on the remaining unknowns that can be used in the subsequent
optimization and marginalization. For 3D lines, we want to use the
old observations to constrain the subsequent optimization, and update
the line parameters when new observations emerge. Thus, we do not
marginalize them. Instead, we introduce prior collinear constraints for
a 3D line when its anchor image or associate images are removed
from the sliding window.

2) Prior Collinear Constraint: We fix the poses of the
keyframes removed from the sliding window and the depths of the
collinear pixels in these keyframes. Given a fixed pose, we can trans-
form the collinear points in this local camera coordinate system to the
global coordinate system. These fixed points provide collinear priors
to the corresponding lines in the subsequent windowed optimization.
We denote the set of fixed points on L as XL

f . Suppose χL
k is the

kth point in XL
f . Based on (3) and (5), the prior collinear constraint

from χL
k on L has the form

EL
χL

k
=

∥∥∥e(χL
k ,L

′
)∥∥∥2

2
, L′ = H(RT

i ,−RT
i ti)L, (16)

where Ri and ti are the rotation matrix and translation vector from
the global coordinate system to the coordinate system of the anchor
image Ii of L, respectively. Stacking the constraints in (16) for all
χL

k ∈ XL
f , we get the collinear prior on L

EL
prior =

∥∥∥fL
∥∥∥2

2
,fL =

[
· · · , e

(
χL

k ,L
′
)T

, · · ·
]T

. (17)

Suppose the size of XL
f is NL. Then the size of fL is 3NL.

3) Compressed Prior Collinear Constraint: As keyframes are
removed, the size of fL in (17) enlarges, which seemingly inevitably
increases the runtime of the optimization. Here we show that the
computational complexity of the collinear prior in the optimization
can be independent of NL. We first consider the form of fL and its
Jacobian matrix in terms of the introduced line parameterization (8).
We have the following lemma:

Lemma 1: For the parameterization (8) of L, fL and its Jacobian
matrix JfL can be respectively factorized as follows

fL = ALL and JfL = ALBL, (18)

where L is the Plücker coordinates given in (8), and AL and BL are
defined in (25) and (23) with size 3NL × 6 and 6× 2, respectively.

Let us define ML = (AL)TAL. We have the following lemma
for ML:

Lemma 2: ML can be factorized as ML =
(
CL

)T
CL, where

CL is a 6× 6 matrix.
We define the compressed residual vector for fL as

gL = CLL. (19)

The size of gL is independent of the number of points in XL
f . In

the following theorem,we show that gL is sufficient for the Gauss-
Netwon or LM algorithm.

Theorem 1: gL can replace fL in the Gauss-Newton or LM
algorithm.

The computational complexity for calculating the compressed
residual vector gL, the Jaccobian matrix JgL , JT

gLJgL and JT
gLg

L

are 6
NL of the corresponding ones for fL. This can significantly

reduce the computational cost when NL is large as demonstrated in
Fig. 1. We prove Lemma 1, 2 and Theorem 1 in the appendix.
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Fig. 6. Our line association between the keyframe In and In+1 consists of
three steps: tracking, extension and redistribution. In the tracking step, each
point on line lLn is individually tracked by minimizing the photometric error.
Here we only require that the matched point in In+1 is on the corresponding
line, and we do not require an exact point-to-point correspondence. Then we
seek to extend the line lLn+1 obtained from the tracking to reflect the new
observation of the line in In+1. Finally, we resample some points from lLn+1.

4) Incremental Calculation of ML: The most important step
to get gL in (19) is to calculate ML. The computational complexity
will increase when NL enlarges. Here we show that it is not
necessary to compute ML from scratch every time. Instead, ML can
be calculated incrementally. Assume Ik is removed from the sliding
window and NL

k 3D points on L are observed in Ik. We can calculate
Ak for the new coming NL

k 3D points by (22). Next we append AL
k

to the current AL to generate the new one AL
new = [AL;AL

k ]. Then
ML

new has the form

ML
new = (AL

new)
TAL

new = (AL)TAL +AT
k Ak

= ML +AT
k Ak

(20)

VI. FRONT END

The front end determines and initializes the points, lines and
keyframe poses used in the back end. We introduce the line man-
agement into the front end of DSO, and slightly change the point
and frame management of DSO.

A. Line Management
The line management includes line detection, initialization and

association.
1) Line Detection: We adopt the LSD algorithm [15] to detect

lines. Except for the first keyframe, the line detection is conducted
after the line association described in the section VI-A3. Thus,
starting from the second keyframe, we only detect lines in the regions
which are not associated with the existing lines. As a line segment
may be detected as several shorter ones, we seek to merge the line
segments with similar parameters. Specifically, assume the two line
segments l1 and l2 have the directions v1 and v2, and the distances
from the origin to l1 and l2 are c1 and c2. If angle(v1,v2) < ϑ and
|c1 − c2| < ϱ, we calculate a new line l3 using all the points of l1
and l2. Here angle(·, ·) represents the angle between two vectors. If
more than q% of the points are within a distance ζ to the new line,
we merge l1 and l2. In our experiments, we set ϑ = 10◦, ϱ = 10
pixels, q = 95 and ζ = 2 pixels. The new 3D lines are initialized as
described below.

2) Line Initialization: Assume lnm is the mth new 2D line
segment detected in the latest keyframe In. We sample N 2D points
from it. In subsequent frames, the N points are then individually
tracked along the epipolar line, and their depths are estimated as
done for the ordinary point in DSO. After their depths are estimated,
we check the quality of these depths. Specifically, given the depths,
we calculate the 3D points using the back-projection function Π−1

c .
Then we conduct the principal component analysis (PCA) on these
3D points. Assume λ1, λ2 and λ3 are the 3 resulting principal
component variances in descending order. For an idea 3D line, we
have λ2 = λ3 = 0. Thus, we consider the initialization succeeds
if λ1

λ1+λ2+λ3
> κ. If the initialization succeeds, we compute the

parameters of the 3D line as introduced in section V-B1, and all the
3D points are projected onto the line and their depths are revised
accordingly. We set κ = 0.7 in our experiments.

3) Line Association: We conduct line association for each
initialized lines in a new keyframe In+1. Instead of adopting the
feature-based line matching strategy [37], we introduce a tracking-
extension-redistribution method to establish the line association
among keyframes, as shown in Fig. 6.

Tracking: Let lLn denote the image of the 3D line L in the nth
keyframe In. Assume pL

n,k is the kth point on lLn . We compute the
corresponding point of pL

n,k in In+1 by (1), and denote it as p̂L
n+1,k.

If p̂L
n+1,k is out of In+1, it is ignored. Inspired by [22], we compute

a correct δu ∈ R2 for p̂L
n+1,k by minimizing the photometric error

(6). Unlike [22], here the corrected point p̃L
n+1,k = p̂L

n+1,k + δu
does not have to match pL

n,k. Instead, we only require p̃L
n+1,k can

get closer to the line. Then we fit a line lLn+1 in In+1 using these
corrected points.

Extension: As a new part of L may be captured in In+1, we seek
to extend lLn+1 to include the new observation. Motivated by [15],
we introduce a directional region growing method to extend lLn+1.
Assume the length of lLn+1 is dLn+1. Let ḡ, δ and gmin denote the
mean, standard deviation and minimum of the norms of the gradients
at ⌈dLn+1⌉ points uniformly distributed on lLn+1, respectively. Here
⌈·⌉ represents the ceiling of a real number. Let eL

n+1 denote one of
the endpoints of lLn+1, and ηL

n+1 represent the direction of lLn+1. For
each step, we first seek to extend eL

n+1 with ν pixels. Specifically, we
check the candidate endpoint eL

n+1 = eL
n+1+νηL

n+1. If the norm of
the gradient at eL

n+1 is larger than max(ḡ− 2δ, gmin) and the angle
between its gradient and the normal of lLn+1 is less than 22.5◦, eL

n+1

is considered as the new endpoint of lLn+1. The threshold 22.5◦ is
recommended by [15]. We continue this process until the test fails.
We set ν = 5 pixels in our experiments.

Redistribution: We sample N points from lLn+1. Let pL
n+1,k

denote the kth point on lLn+1. The depth of pL
n+1,k is initialized

as the depth of the 3D point on the back-projection ray of pL
n+1,k

that is closest to L.

B. Point and Frame Management
We slightly change the point and frame management in DSO [1].

For the point management, when selecting the candidate points, we
avoid choosing the point whose distance to any of the lines is less than
f pixels. For the frame management, we introduce a new criterion
to determine whether a new keyframe is needed for lines. In detail,
we add a new keyframe if there are more than k new lines have
been initialized or the total length of the initialized lines exceeds γ
pixels. We sample some points from each 2D line segment according
to the length of the 2D line segment. For frame pose estimation,
these collinear points are treated as ordinary points and combined
with the ordinary points to get the pose of a new frame by direct
image alignment. So lines do not impact on the runtime of the motion
estimation. In our experiments, we set f = 5, k = 3 and γ = 100.

VII. EXPERIMENTAL RESULTS

In this section, we compare the performance of our algorithm with
the state-of-the-art VO or SLAM algorithms using the TUM monoVO
dataset [38], ICL NUM [39], EuRoC MAV Dataset [40] and TUM
RGB-D dataset [41].

A. The TUM monoVO Dataset
The TUM monoVO dataset contains 50 photometrically calibrated

and loop-closed sequences without the ground-truth pose. We run
each sequence forwards and backwards 10 times to account for
the nondeterministic behavior. As this dataset does not provide the
ground-truth trajectory but has the loop-closure-ground-truth, we
adopt the alignment error ealign, rotational drift er and scale drift es
introduced in [38] to evaluate the performance. As in [1], we adopt
the cumulative error plots to present the results, which reveal both
accuracy and robustness of an algorithm by counting how many runs
its errors are below a certain threshold.
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Fig. 7. The trajectory, lines and points generated by our algorithm on the TUM monoVO dataset [38].

Fig. 8. The cumulative error of alignment error ealign, rotational drift er
and the revised scale drift e′s = max(es, e

−1
s ) of different algorithms on the

TUM monoVO dataset [38].

Fig. 9. The cumulative error of the absolute trajectory error eate of our
algorithm, DSO [1] and ORB-SLAM [3] on the and ICL NUM [39] dataset
and the EuRoC MAV dataset [40].

Ablation Study We first use the TUM monoVO dataset [38] to
evaluate the different design options of our algorithm. We compare
the following two variants of our algorithm:

• DPLVO - LA: The line association is removed from our
algorithm. That is to say this version does not include EL

j

defined in (12) in the cost function.
• DSO + ORB: We add the feature-based point matching for the

corners and the resulting reprojection errors in DSO.
The results in Fig. 8 show that the collinear constraint alone can

improve the performance of DSO. The proposed line association
scheme can further increase the accuracy. The difference between
the results of DSO and DSO + ORB is marginal. The optical flow
tracking for the corner feature is well defined. Additional feature-
based matching cannot significantly improve the performance. On
the other hand, the number of edge points is generally much larger
than the number of corner features in the man-made scenarios, as
demonstrated in Fig. 1, and the photometric tracking for the points on
the line is problematic. The collinear constraint and line association
can alleviate this problem, thus they improve the results.

Comparison with the State-of-the-art We compare the per-
formance of our algorithm with DSO [1] and ORB-SLAM [3]. Fig.
8 presents the results. It is clear that our algorithm outperforms
DSO and ORB-SLAM. Our algorithm establishes long-term line
association among keyframes which reduces the drift.

B. The EuRoC MAV and ICL NUM Dataset
The ICL NUM dataset [39] and EuRoC MAV dataset [40] con-

sist of 11 and 8 sequences, respectively. In these sequences, the

Fig. 10. The trajectories estimated by our algorithm and DSO [1] on sequence
40 of the TUM monoVO dataset [38]. The start point and the end point of
this sequence are at the small place. The gap between the start and the end
points of DSO is clearly larger than the one of our algorithm.

TABLE I
ABSOLUTE TRAJECTORY ERROR (CM) ON THE TUM RGBD BENCHMARK

[41]. THE RESULTS ARE THE MEDIAN OVER 5 EXECUTIONS FOR EACH
SEQUENCE.

Sequence Ours DLGO [18] DSO [1] PL-SLAM [5] ORB-SLAM [3]
fr1 xyz 3.85 5.38 6.37 1.21 0.9

fr3 walk xyz 9.7 27.5 15.5 1.54 1.24
fr3 walk half 23.4 37.4 32.6 1.60 1.74

photometric calibration and the exposure time are not available. As
the two datasets provide the ground-truth trajectories, we adopt the
absolute trajectory error eate (ATE) to evaluate the performance.
Again, we run each sequence 10 times forwards and backwards,
and adopt the cumulative error plot to present the results in Fig.
9. The results show that our algorithm outperforms ORB-SLAM
[3] and DSO [1] on the ICL NUM dataset. ORB-SLAM achieves
a better accuracy but less robust than DSO [1] and our algorithm.
But our algorithm significantly reduces the gap between DSO and
ORB-SLAM. One drawback of DSO is that it does not establish the
accurate data correspondence. Our line association scheme overcomes
this drawback, thus our algorithm improves the accuracy.

C. The TUM RGB-D Dataset
We also use the TUM RGB-D dataset [41] to evaluate the

performance of our algorithm. The results are listed in table I. It
is clear that our algorithm outperforms the state-of-the-art direct
methods [1] and [18]. The TUM RGB-D dataset is challenging for
the direct method. This dataset does not provide the photometric
calibration and the exposure time. In addition, since the camera in the
TUM RGB-D dataset is a rolling shutter camera, simply employing
the direct method does not work well [42]. Thus the feature-based
methods PL-SLAM [5] and ORB-SLAM surpass the direct methods
in this dataset.

D. Runtime
We ran the runtime experiments on a laptop with an i7 3.4GHZ

CPU and 16G memory. On the TUM monoVO dataset, the average
runtime for the back end of our algorithm and DSO is 166.5 ms and
140.5 ms, respectively. Lines introduce more parameters, thus the
time for optimization increases. The average runtime for the direct
frame alignment, and point and frame management in the front end is
18.2 ms and 15.9 ms for our algorithm and DSO, respectively. Our
algorithm treats the collinear points as ordinary points in the front
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end, thus the runtime is similar. As our algorithm may introduce more
points into these steps, thus the runtime is a bit longer. Our algorithm
requires an additional 11.3 ms for the line management on average,
but these computation only requires when a new keyframe is added.
In addition, as the line management is independent of the point and
frame management, we can run them in parallel. Therefore, the front
end of our algorithm can achieve the real-time performance.

E. Qualitative Results
Fig. 7 demonstrates the 3D lines and point could generated by

our algorithm. Fig. 10 shows the trajectories of our algorithm and
DSO on sequence 40 of the TUM monoVO dataset. This sequence
contains a loop. The camera returns back to the original location. The
gap between the start and the finial points of DSO is larger than the
one of our algorithm.

VIII. CONCLUSION

In this paper, we introduce the collinear constraint into DSO
[1]. We establish long-term data association for lines. The collinear
constraints in the removed keyframes are treated as priors in the
following windowed optimization. We prove that no matter how many
prior collinear constraints a line has, they can be compressed into six
constraints. So the computation will not increase as new observations
emerge. Furthermore, the resulting Hessian Matrix is still sparse,
thus the optimization is efficient. Experimental results show that our
algorithm significantly improves DSO and outperforms the state-of-
the-art direct VO algorithms.

APPENDIX

A. Proof of Lemma 1
Proof. Let us first expand e

(
χL

k ,L
′) in (16). Substituting the

definition of H in (4) into (16), we have

e
(
χL

k ,L
′
)
= RT

i m−
[
RT

i ti
]
×
RT

i d−
[
χL

k

]
×
RT

i d

= RT
i m−

([
RT

i ti
]
×
RT

i +
[
χL

k

]
×
RT

i

)
︸ ︷︷ ︸

Uk

d

= RT
i m−Ukd

(21)

Substituting the line parameterization (8) into (21), we get

ek (τL, θL) = τLR
T
i n− cos (θL)Ukα− sin (θL)Ukβ

=
[
RT

i , −Uk

]︸ ︷︷ ︸
AL

k

[
τLn

cos (θL)α+ sin (θL)β

]
︸ ︷︷ ︸

L

= AL
k L.

(22)

Then we can calculate the Jacobian matrix Jk of ek (τL, θL). It
has the form

JL
k =

[
RT

i , −Uk

]︸ ︷︷ ︸
AL

k

[
n, 0
0, −sin (θL)α+ cos (θL)β

]
︸ ︷︷ ︸

BL

= AL
k B

L

(23)

Stacking all the residual vector from XL
f , we can rewrite fL

defined in (17) as

fL =
[
· · · ,

(
AL

k

)T
, · · ·

]T
︸ ︷︷ ︸

AL

L = ALL. (24)

Similarly, stacking the Jacobian matrix JL
k for χL

k ∈ XL
f , we get

the Jacobian matrix of fL

JfL =
[
· · · ,

(
AL

k

)T
, · · ·

]T
BL = ALBL. (25)

B. Proof of Lemma 2
Proof. For any non-zero x ∈ R6, we have xTMLx =
xT (AL)TALx ≥ 0. Thus ML is a symmetric positive semi-definite
matrix. Let us denote the eigendecomposition of ML as QTΛQ.
Here Λ is a diagonal matrix. Denote the ith diagonal element of
Λ as λi. As ML is positive semi-definite, we have λi ≥ 0. Let
us define C = Λ

1
2Q, where Λ

1
2 is a diagonal matrix whose ith

diagonal element is
√
λi. It is easy to verify that ML = (CL)TCL.

Here C is a 6× 6 matrix, whose size is independent of the number
of points.

C. Proof of Theorem 1
Proof. Let us divide the residual vector δ into two parts. One is
fL defined in (17), and the other one is h containing the remaining
residuals. We use gL to replace fL to form a compressed residual
vector δr . Denote as JfL , JgL and Jh the Jacobian matrix of fL, gL

and h, respectively. Then δ and δr , and their corresponding Jacobian
matrices J and Jr have the form:

δ =

[
h
fL

]
, δr =

[
h
gL

]
, J =

[
Jh

JfL

]
, Jr =

[
Jh

JgL

]
. (26)

The key step of the LM algorithm to minimize the least-squares
problems ||δ||22 and ||δr||22 is to calculate the following linear
equations

JTJ+ λI = JT δ and JrTJr + λI = JrT δr. (27)

For the Gauss-Newton algorithm, we set λ = 0. According to (26),
JTJ and JrTJr can be written as

JTJ = JT
hJh + JT

fLJfL , JrTJr = JT
hJh + JT

gLJgL . (28)

Based on Lemma 1, the Jacobian matrices of fL and gL in the
residual vectors δ and δr respectively have the form:

JfL =
[
0 · · · A

L
B

L · · · 0
]
, JgL =

[
0 · · · C

L
B

L · · · 0
]
. (29)

Let us first focus on JT
fLJfL . Using (29), we have

JT
fLJfL =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · ·
(
BL

)T (
AL

)T
ALBL · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · 0


. (30)

JT
gLJ

L
g has the same form as JT

fLJ
L
f . It only has one non-zero

block
(
BL

)T (
CL

)T
CLBL. As

(
CL

)T
C =

(
AL

)T
A, we have(

JL
f

)T
JL
f =

(
JL
g

)T
JL
g . So we have

JTJ = JT
r Jr. (31)

We next consider JT δ and JrT δr . Substituting the definitions in (26)
into JT δ and JrT δr , we have

JT δ = JT
hh+ JT

fLf
L, JrT δr = JT

hh+ JT
gLg

L. (32)

Substituting (29) and (24) into JT
fLf

L, we get

JT
fLf

L =
[
0 · · · (BL)T (AL)TALL · · · 0

]
. (33)

Using (29) and the definition of gL in (19), we know that JgLgL

has the same form as JT
fLf

L. Specifically, there only exists one
non-zero block (BL)T (CL)TCLL. As (CL)TCL = (AL)TAL,
we have JT

fLf
L = JgLgL. Using (32), we get

JT δ = JrT δr. (34)

Thus, using (27), (31) and (34), we know that gL can replace fL in
the Gauss-Newton or LM algorithm.
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[4] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale monoc-
ular SLAM,” in European conference on computer vision. Springer,
2014, pp. 834–849.

[5] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-
Noguer, “PL-SLAM: Real-time monocular visual SLAM with points
and lines,” in 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 2017, pp. 4503–4508.

[6] X. Zuo, X. Xie, Y. Liu, and G. Huang, “Robust Visual SLAM with
Point and Line Features,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1775–1782.

[7] F. Zheng, G. Tsai, Z. Zhang, S. Liu, C.-C. Chu, and H. Hu, “Trifo-
vio: Robust and efficient stereo visual inertial odometry using points
and lines,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 3686–3693.

[8] S. J. Lee and S. S. Hwang, “Elaborate monocular point and line slam
with robust initialization,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 1121–1129.

[9] R. Gomez-Ojeda, F.-A. Moreno, D. Zuñiga-Noël, D. Scaramuzza, and
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