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Abstract— This paper introduces a real-time dense planar
LiDAR SLAM system, named 7-LSAM, for the indoor en-
vironment. The widely used LiDAR odometry and mapping
(LOAM) framework [1] does not include bundle adjustment
(BA) and generates a low fidelity tracking pose. This paper
seeks to overcome these drawbacks for the indoor environment.
Specifically, we use the plane as the landmark, and introduce
plane adjustment (PA) as our back-end to jointly optimize
planes and keyframe poses. We present the 7-factor to signifi-
cantly reduce the computational complexity of PA. In addition,
we introduce an efficient loop detection algorithm based on
the RANSAC framework using planes. In the front-end, our
algorithm performs global registration in real time. To achieve
this performance, we maintain the local-to-global point-to-plane
correspondences scan by scan, so that we only need a small local
KD-tree to establish the data association between a LiDAR scan
and the global planes, rather than a large global KD-tree used in
previous works. With this local-to-global data association, our
algorithm directly identifies planes in a LiDAR scan, and yields
an accurate and globally consistent pose. Experimental results
show that our algorithm significantly outperforms the state-of-
the-art LOAM variant, LeGO-LOAM [2], and our algorithm
achieves real time.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a fun-
damental problem in the robotics community. Thus, SLAM
using various sensors has been extensively studied. LiDAR
SLAM has many robotic applications, such as autonomous
navigation and motion planning. This paper focuses on
LiDAR SLAM in the indoor environment.

Nowadays, it is known that bundle adjustment (BA) is
important for a SLAM system. However, many LiDAR
SLAM systems do not include BA. Instead, the iterative
closest point (ICP) [3] framework and its variants [4], [5],
[6], are generally adopted in LiDAR SLAM systems. One of
the most successful LIDAR SLAM frameworks is the LIDAR
odometry and mapping (LOAM) framework [1], which is
based on two parallel registration algorithms. In the LOAM
framework, the map is a point cloud that is generated by
registering LiDAR scans incrementally. As the lack of joint
optimization, the pose estimation error lowers the quality of
the global point cloud, which in turn reduces the accuracy of
the pose estimation. This forms a vicious loop. In addition,
the LOAM framework provides a low fidelity tracking pose
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which is calculated from local scan-to-scan registration. This
paper seeks to overcome the above two problems.

Motivated by [7], we use the plane as the landmark. We
present a new LiDAR SLAM framework, named 7-LiSAM.
The main contributions of this paper are as follows:

a) We introduce plane adjustment (PA), which jointly
optimizes keyframe poses and plane parameters to minimize
the point-to-plane distance, in the back-end.

b) We present the m-factor to significantly reduce the
computational complexity of PA.

¢) We present an efficient method to align two LiDAR
scans using planes for loop closure detection.

d) We introduce an ICP process to enable global reg-
istration in real time. Unlike the traditional ICP that only
considers the data association between two point clouds, our
ICP process maintains the data association scan by scan, as
demonstrated in Fig. 3. This allows us to directly identify
planes in the LiDAR scan without having to explicitly
conduct the time-consuming plane detection in each scan.
In addition, the ICP process allows us to get the local-to-
global data association from a small local KD-tree, rather
than a large global KD-tree in previous works [1], [2], [8].

e) The map in our algorithm is represented as plane
parameters, which is easy to store and update. In contrast,
the map in the ICP-based methods, such as LOAM [1], is
generally organized as KD-trees. Thus, updating the map
requires rebuilding the KD-trees. It would be costly for a
large-scale scene.

Our experimental results show that our algorithm achieves
real time and significantly outperforms the state-of-the-art
LOAM variant, LeGO-LOAM [2].

II. RELATED WORK

As a LiDAR provides 3D measurements directly, the
ICP framework [3] seemingly provides a straightforward
way to align the point clouds. However, since a LiDAR
can only provide a sparse point cloud, it is infeasible to
get the exact point-to-point correspondences. Deschaud [9]
presents a scan-to-model matching framework which uses
the implicit moving least squares surface representation. It
provides accurate pose estimation, but it does not achieve
real time. On the other hand, ICP variants, such as using
planes [4], [5], [6], are generally employed in the LiDAR
SLAM system. LOAM [1] provides a real-time and low-
drift solution based on two parallel registration algorithms
using planes and lines. The first algorithm provides real-
time but low fidelity poses using the scan-to-scan local
registration. The second algorithm carries out the scan-to-
map global registration. It provides high accurate poses with



low frequency. The pose from the second algorithm is then
used to correct the drift of the first one. There are two main
disadvantages in the LOAM framework:

e The real-time pose from the first algorithm is of low
quality [10]. This may cause errors in the motion
planning and control tasks of an autonomous robot.

o There lacks BA in the LOAM framework.

Some works have been presented to improve LOAM.
LeGO-LOAM [2] improves the feature extraction in LOAM,
and leverages the ground plane to facilitate the segmenta-
tion and optimization steps. LOAM is originally designed
for spinning LiDARs. LOAM_livox [8] extends the LOAM
framework to the solid state LiDAR with small FoV. It also
adopts the parallel computing to achieve real-time global
registration. Parallel computing needs a powerful CPU, it
may be not suitable for an embedded system which has
limited computational resources. We present a more efficient
way to solve this problem. LOL [11] combines LOAM and
SegMap [12] which is used for loop closure detection. This
algorithm requires a GPU.

The map of the ICP based method is generally a 3D
point cloud organized as KD-trees. An alternative way is to
organize the map as features. Extracting feature from a point
cloud has been extensively studied [13], [14]. Unlike visual
SLAM, where points are generally used, planes are generally
used in SLAM with depth sensors. In [15], they present a
surfel-based LiDAR SALM algorithm that requires a GPU.
Pathak et al. [16] use planes for pose registration. Planes can
also be used in the EKF framework [17], [18], [19]. These
algorithms do not include BA. As BA is an important part
of a SLAM system, planes are introduced into BA for the
RGBD sensor [7], [20]. The cost function is critical for an
optimization problem [21]. These works employ the plane-
to-plane distance, which evaluates the difference between
two plane parameters, to construct the cost function. As
the recent work [22] shows that the point-to-plane distance
is more robust to initial errors and converges faster than
the plane-to-plane distance, this paper adopts the point-to-
plane distance to construct the cost function. Since each
plane can generate many observations at a pose, the point-
to-plane distance generally results in a large-scale least-
squares problem. Ferrer [23] introduces the Eigen-Factor
to estimate a planar surface by minimizing the point-to-
plane distance. The author derives the closed-form of the
gradient, and adopts a gradient-based optimization method
which is inefficient. The method introduced in [22] can be
used in the Levenberg-Marquardt (LM) algorithm [24]. But it
requires a QR decomposition to compress the multiple point-
to-plane constraints of a plane into four constraints. This
paper introduces the 7-factor to simply integrate the multiple
point-to-plane constraints of a plane into one constraint.

Loop closure is important for a SLAM system. Loop
detection is generally associated with place recognition [25],
[26], [27], [12], [28]. Specifically, the sensor data is encoded
into a descriptor. If the current descriptor is sufficiently close
to a descriptor in the database, it is supposed that a loop
closure has occurred. Manually designing a descriptor for the
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Fig. 1. A keyframe Ly recorded at (t7,t7] has two kinds of pose, i.e.,
Tf: at time ¢, generated by the front-end, and Tz at time t7 used in the
back-end. This is because the measurements within a LiDAR scan are not
recorded at the same time. Our front-end transforms the points in Lg to
the coordinate system at t7. We have T£_1 = Tz. This relationship is
important for drift correction introduced in section V-C.
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Fig. 2. m-LASM system overview. Our front-end generates globally
consistent poses in real time. Our back-end maintains the map and corrects
the drift of the front-end.

LiDAR point cloud is challenging. Although deep learning
based descriptors [12], [28] show breakthrough results, they
generally require a GPU. In [15], they introduce a map-based
loop closure detection method which also needs a GPU.
This paper introduces an efficient loop closure detection
method. As the drift of our system is low, we trigger the
loop detection if the robot approaches a previously visited
place. We align planes in the current scan and the target scan
using the RANSAC method [29]. As the number of planes in
the environment is generally small, this method is efficient.

III. NOTATIONS AND SYSTEM OVERVIEW

In this paper, we use italic, boldfaced lowercase and
boldfaced uppercase letters to represent scalars, vectors and
matrices, respectively.

LiDAR Pose In this work, we represent a pose by T &€
SE (3) which consists of R € SO (3) and t € R?. We use
the angle-axis representation w to parameterize R. Then we
can parameterize T as a vector x = [w;t] € RC. Let us
define the skew matrix of w as [w], € so0(3). Then the
exponential map exp : so (3) — SO (3) has the form

sin ([|w]])
[[wl]

1 — cos (||wl])

exp([w]x) =1+ W], + [(;.J]QX . (D

o]

The points within a LiDAR scan L are not recorded at
the same time. Assume the kth scan L is recorded within
(t5,t5]. If Ly, is a keyframe, it has two kinds of pose: the
real-time tracking pose Tf at time tf from the front-end,
and the smoothed pose Tb from the back end at time ¢35, as
illustrated in Fig. 1. T is the pose when the last point of a
scan is recorded. Our front-end removes the motion distortion
within L. After removing the distortion, the points in Ly
are transformed to the LiDAR coordinate system at time ¢7.
Thus the pose used in our back-end is the pose at t7. Let
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(a) Our ICP process (b) Traditional point-to-plane ICP

Fig. 3. A schematic of our ICP process (a) and the traditional point-to-plane
ICP (b). Here PP;; is the set of points on 7r; observed at pose x;,7 € [1, 5].
In our ICP process (a), the local-to-global data association is propagated
scan by scan. The benefit is that we do not need to build and query a large
KD-tree to get the local-to-global correspondence, and we do not need to
explicitly detect planes in the whole scan, which is required in previous
works [16], [7], [19]. Thus we can perform global registration in real time.
In the traditional point-to-plane ICP (b), the global KD-tree is built on the
first 4 point clouds. Plane parameters are estimated from a small patch of
the global point cloud. Pose estimation errors reduce the quality of the map,
which will in turn increase the pose error. Our framework eliminates this
vicious loop, as 7r; and the poses are jointly optimized in the back-end.

us define as T£_1 the tracking pose of the (k — 1)th scan
Ly—_1. The relationship between the tracking pose and the
smoothed pose is: f b
T, , =T;. 2)
To simplify the notation, we use T to represent T£ or T?, if
the meaning can be identified by the context of the following
description.

Plane In this paper, we use 7 = [n;d] to represent a
plane, where n is the plane normal with ||n||s = 1, and d
is the signed distance between the origin and 7. We use p
to represent the homogeneous coordinates of a 3D point p.
Thus, a point on the plane 7 should satisfy 7#7p = 0. As
7 has 3 degree of freedom (DOF), in the optimization we
adopt the closest point (CP) vector [17] to parameterize 7r,
i.e., CP(m) = dn.

System Overview Fig. 2 provides an overview of our
system. Our system has two components: front-end and back-
end. The front-end establishes local-to-global point-to-plane
correspondences through an ICP process, and provides a
globally consistent pose in real time. The back-end jointly
optimizes planes and keyframe poses, and provides informa-
tion to correct the drift of the pose in the front-end.

IV. FRONT-END
A. Plane Extraction

We only detect the plane in the whole LiDAR scan at the
first pose. We adopt the region growing method introduced
in [30] to extract the plane with the following changes. For
a spinning LiDAR, the LiDAR point cloud has a structure.
We organize the point cloud as a range image [31]. For the
points within one scan line, we sort them according to the
rotation angle. The K nearest neighbors of a certain point
p in scan line ¢ can only come from the same scan line or
the scan line 7 — 1 and 7 + 1. In the region growing step, we
select 5 nearest points for the query point p in scan line ¢ —1,
17 and ¢ + 1, respectively. As there may exist occlusion, one
plane surface may be broken into several pieces. We try to
merge planes with similar parameters. We only keep planes
with more than 50 points. We also extract new planes for a

new keyframe, but this is only done for a small portion of
the LiDAR scan that does not match current global planes.

B. In-Scan Motion

The measurements of a LiDAR scan are not collected at
the same time. Thus, the measurements will suffer from the
motion distortion. This problem can be solved by modeling
the in-scan motion [1], [8]. Specifically, we denote with Ly
and Ly, the kth and (k 4 1)th scans. Assume Ljiq is
collected between the time interval (¢, t;41]. We denote the
relative pose from i1 to ty is T’,j t1 and assume we can
parameterize T} | as @}, | = [wf, ;tF ], where w}, is
the angle-axis representation of the rotation matrix in T’,j i1
and tﬁ 41 is the translation vector in T k 41- Suppose the
velocity, angle velocity and rotating axis are constant during
(tx,try1]. Then the parameterization x¥ of the relative pose
at t € (tg,try1], denoted as T¥, can be computed by the
linear interpolation with the form

T = sz) 4, g= Tt 3)
b1 — Uk
Denote T, and T; are the poses at ¢ and ¢ € (tg,txt1]s
respectively. Thus, we have

T; = T, T}. )
C. Global Registration through ICP Process

We introduce a novel ICP process to establish the local-
to-global point-to-plane correspondences, and estimate the
relative pose T %41 in real time, as demonstrated in Fig. 3.

Data Association Assume that there are N global
planes that are partially observed by the kth scan Ly, i.e.,
{71',, & IP”“}N We combine the N planar point set P
to form Q% = UN PP¥. Then we build a KD-tree on Qk
Let us denote the relative pose estimated from the ¢th ICP
iteration as Tkil We use Tkil to transform Ly into
the coordinate system of L. This forms a point set L ;.
For each point in L} 41, we find the K nearest neighbors in
L (K = 2 in our experiments). If the I nearest neighbors
belong to the same plane r,,, we assign this point to PX+1,
Otherwise, this point does not match any planes. Here we use
the KC nearest neighbors to avoid the ambiguous cases where
points are nearby the intersection boundary of two planes.
Using the above method, we establish the data association
between LL¢ k41 and the N global planes:

{mn & PE o PEHLY (5)

We evaluate the distance between 7, and each point in
PX+1. We only keep the points in P! whose distances to
7, are less than v (v = 0.2m for the first iteration and v =
0.1m for the remaining iterations in our experiments). Then
we use these local-to-global point-to-plane correspondences
to estimate T} ;.

State Estimation Assume p*'!' € PF*+! is captured
at t € (ty,tr.1] and p*11 is its homogeneous coordinates.
Given pnjl < 1, we have the point-to-plane residual:

d¥F (zf ) = mlTepit (6)

1
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(a) m-factor (b) Plane adjustment problem
Fig. 4. In Fig. (a), @; represents the ith keyframe, and 7r; denotes the jth
global plane. IP;; is a set of N;; observations of 7r; captured at @;. d;;x
is the signed distance between the kth point in P;; and 7r;, defined in (7).
We introduce the m-factor to compress the N;; constraints into one. Fig.
(b) illustrates the factor graph for the plane adjustment with N poses and
M planes using the m-factor. @1 is fixed during the optimization.
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where T, is defined in (4). Stacking all the point-to-
plane constraints, we get a residual vector d**!(z¥ 1)
We use the LM algorithm to minimize the cost
d**(x, )Td* (2}, |). The rotation and translation of
@), are initialized as the identity matrix I3 and [0;0;0],
respectively. We adopt the robust Huber loss during optimiza-
tion. After we get TQ_H, we can compute Ty = TkTQH.
We conduct at most three ICP iterations in our experiments.

D. Keyframe Decision

We use the following three criteria to determine whether
a new keyframe is needed:

e More than 30% of the points in L ; are not matched.
« The distance between current frame and latest keyframe
is larger than 7 (7 = 0.15m in our experiments).
o The rotation angle between current frame and latest
keyframe is larger than 6 (8 = 10° in our experiments).
We more aggressively bring new keyframes into the map in
the initial stage (i.e., the trajectory length is less than 2m),
where 7 = 0.1m and § = 5°. This is because the LiDAR
point cloud is sparse, the plane parameters from one scan are
generally of low quality. Not all the keyframes will be kept,
some of them will be deleted afterward as done in [32].

E. New Planes Detection

For a new keyframe, we first detect planes from the points
which do not match the global planes using the algorithm
introduced in Section IV-A. We only keep the planes with
more than 50 points. If a new global plane cannot be tracked
more than three keyframes, it will be deleted.

V. BACK-END

In this section, we introduce our back-end. The back-end
jointly optimizes plane parameters and keyframe poses in a
sliding window, and also detects the loop for global optimiza-
tion. We introduce m-factor to speed up the optimization.

A. Plane Adjustment

Our aim is to jointly optimize the plane parameters and
the keyframe poses, which is similar to BA in visual SLAM,
where 3D points and camera poses are jointly optimized.
As BA has a special meaning for the point feature in visual
SLAM [33], here we name this joint minimization problem
plane adjustment (PA). Fig. 4 demonstrates the factor graph
of a PA problem.

Assume there are N keyframes and M planes. Suppose
IP;; is the set of IV;; points on plane 7; observed at pose
T;, and p;ji is the kth point of P;;. Assume p;j;j is
the homogeneous coordinates of p;;, the signed distance
between p;;; and 7r; has the form:

diji (Ti,7;) = 7] TiDijh- (7)

Here d;ji (T, ;) is a function of T; and ;. To simplify
the notation, we omit T'; and 7r; in the following description.
The cost function of PA is:

- (8)

As N;; is generally very large, PA is generally a very large
least-squares problem even for a small place. We introduce
the 7-factor to solve this problem as described below.

B. m-Factor
Using the definition of d;j;1 in (7), d?j & has the form:
3, = m Tibijubiy T ;. ©)

Then, the least-squares cost for the IV;; points has the form:

Nij Nij
cij(Tiymj) = Y dije = Ti [ Y Pisubise | Tj 7
k=1 k=1 (10)
—_———

Gij
T T
= ﬂ'j TZG”TZ uye

The m-factor for T; and 7r; is defined as

(1)

The m-factor can be easily incorporated into the factor graph,
as shown in Fig. 4. For each IP;;, we only need to compute
G;; once. Gy; is a constant 4 x 4 matrix during the optimiza-
tion. Using the w-factor, we integrate the N;; constraints into
one. This significantly reduces the computational cost of the
LM algorithm. As a plane has three DOF, a plane is added
into (8) if it has been observed more than three times.

Using the definition of the m-factor in (11), we can rewrite
the PA cost function E in (8) as:

mij(Ti,m5) = ¢/ cij (T, m5).

N M

E = %ZZW%(TZ',TFJ').

i=1 j=1

12)

C. Local Plane Adjustment

We adopt a windowed optimization strategy [32] to update
the newest w keyframe poses and the corresponding active
planes for efficiency, named local plane adjustment (LPA).
When the number of keyframe poses is larger than the
window size, the oldest keyframe is removed from the sliding
window. We simply delete this keyframe if the following
conditions are met:

o This keyframe does not include a new plane or all its
new planes have been deleted.

« The distance between this keyframe and the one before
this keyframe is smaller than 0.3m.



o The rotation angle between this keyframe and the one
before this keyframe is smaller than 15°.

Otherwise, we keep this keyframe for global optimization,
and marginalize it and the planes which are not seen by the
remaining keyframes in the sliding window for LPA. The
marginalization is done by using the Schur complement. We
adopt the LM algorithm to solve this minimization problem.
Here we sparsify the keyframes to reduce the runtime of the
global optimization.

Drift Correction After we smooth the pose using the
LPA, we correct the drift in the tracking pose. Let us assume
Tz is the smoothed pose of the latest keyframe. Using the
relationship between the tracking pose and the smoothed
pose in (2), we know the corresponding tracking pose in
the front-end is T',’;_l. Then we can get the correction for

the drift AT = TZ(T{;l)_l. Assume the latest tracking
pose is T/ , we calculate ATT/, to correct the drift. Our
experimental results show that the runtime for the LPA is
generally less than the runtime of the ICP process. This

means we can correct the drift in real time.

D. Global Plane Adjustment

We conduct global plane adjustment (GPA) to minimize
the cost (12) to globally refine keyframe poses and plane
parameters, if a loop is detected.

Trigger Loop Detection We trigger the loop detection,
when we find that the latest keyframe approaches an old
keyframe. Formally, let us denote the latest keyframe as L,,,
and the last keyframe where the loop closure occurred as
L;. Given a previous keyframe IL;, we define the straight
distance from L; to LL,, as d,; = ||t,, — t;||2, where t,, and
t,; are the translation vectors of L,, and L;, respectively, and
we define the distance from LL; to IL,, along the trajectory as
Ny = Z;’;il 0n;j. We trigger loop detection if §;; > 5m and
Api; > 5m and d,; < 0.5m. Here §;; is the straight distance
between L,, and ;. We require J;; > 5m to avoid calling
for unnecessary loop detection at a place where loop closure
just happened. If there are multiple keyframes that satisfy
the above conditions, we choose the one with the smallest
straight distance, and denote it as L,. We try to register LL,,
to L, to determine whether a loop occurs. We adopt the
RANSAC algorithm to achieve this.

Plane Correspondences Although we do not explicitly
extract planes for each scan, the ICP process introduced in
section IV-C actually identifies the planes within a scan, as
shown in (5). We first fit a plane for each planar set in
(5) for L,, and LL,, respectively. Given the estimated poses,
we transform these local plane parameters into the global
coordinate system, and calculate their CP vectors. For one
plane in L,,, we find the plane with the closest CP vector in
L., and vice versa. If one plane pair are mutually closest, we
keep this pair and verify them in the RANSAC algorithm..

RANSAC The pose between two coordinate systems can
be calculated from three plane-to-plane correspondences
[34]. We use the distance between two CP vectors to
determine the number of inliers. Specifically, let us de-
note the ith plane-to-plane correspondences as "¢V <+

9

TABLE I
STATISTICS OF OUR 3 INDOOR DATASETS. #SCAN REPRESENTS THE
NUMBER OF SCANS.

Dataset 1 2 3

#Scan 4427 4504 5812

Length (m) 105.38 117.98 | 215.08

TABLE II
AH(°) AND At(m) BETWEEN THE START POINT AND THE END POINT.
. 1 2 3

Algorithm A0 AL [ A AL | A AL
LeGO-LOAM [2] 563 0.13 | 97.8 3.8 91.2  30.92
7-LASM - Undis 0.72  0.052 | 0.82 0.068 | 0.98 0.082
7-LASM - GPA 095 0.064 | 091 0.083 | 1.71 0.12
7-LASM - GPA - LPA | 427 0.11 | 390 0.18 | 3.63 0.26
w-LASM 0.57 0.043 | 0.36 0.038 | 0.46 0.048

¢4, Given the transformation T¢ from L, to L, which
is estimated from three randomly selected plane-to-plane
correspondences, we treat 7Y <> w4 as an inlier if
|ICP(rpew) — CP(TS wd'd)||; < ¢ (¢ = 0.15 in our
experiment, and C'P(-) is defined in section III). If we find
more than six inliers, we consider that a loop closure occurs,
and we run the GPA to minimize the cost (12) to globally
refine the poses and plane parameters.

Merge Global Planes The local planes in IL,, and LL,, are
all associated to global planes. If the global planes associated
to an inlier local plane pair are not the same, we merge
the two global planes. We average the two CP vectors and
combine the m-factors together.

Update the System The GPA refines all the variables
After GPA, we need to update the whole system. The drift
of the tracking pose is corrected, as done after LPA in section
V-C. In addition, we update the state of the variables in LPA,
and conduct re-marginalization for LPA to make the whole
system consistent. Specifically, the poses out of the sliding
window and all the planes that are not seen by these poses
are marginalized using the new states.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our algo-
rithm. We first perform an ablation study to test the impact
of different components. Then we compare our algorithm
with the state-of-the-art LOAM variant, LeGO-LOAM [2].
Finally, we provide the runtime analysis. We ran the experi-
ments on a computer with an 17-3770 CPU and 16G memory.
A. Dataset

We used a VLP-16 LiDAR to collect three indoor datasets.
Table I lists their statistics. As shown in Fig. 5, the three
datasets are challenging. They all have multiple rapid rotating
motions. The three datasets all contain a closed loop. That
is to say their start and end points are the same. So we
can use the difference between the poses of the start and
the end points to quantitatively evaluate the accuracy of a
SLAM algorithm. Let us denote the poses of the start and
the end points are (RS,ES) and (Re,f,e), respectively. We
use A = Z(Ry(Re)™1) and At = ||t — Ro(Re) 'tel2
to evaluate the performance of different algorithms. Here
A(f{s(f{e)_l) means the angle of the angle-axis representa-
tion of R4 (R.) ™. As the end point in w-LSAM may not be
a keyframe, we compute Af and At for the tracking pose.



TABLE III
COMPUTATIONAL TIME (ms) OF DIFFERENT COMPONENTS OF m-SLAM. NEW PLANE DETECTION IS ONLY REQUIRED FOR A KEYFRAME.

Datasct Front-End Back-End
ICP Keyframe Decision =~ New Plane Detection™ LPA Loop Detection GPA
1 532 £ 89 0.31 £ 0.11 125 £ 3.6 432+ 7.1 212 £49 356.7 £ 50.4
585+ 74 0.28 £ 0.13 13.8+ 4.8 453+ 179 239 £ 53 330.3 +86.8
3 55.7 £ 8.3 0.26 + 0.10 1324+ 4.1 46.3 + 8.3 252 + 5.8 380.7 £89.5
[——O0ur Trajectory * Our Keyframe —Our Trajectory —

;

Dataset 1

Dataset 2
Fig. 5.

LeGO_LOAM Trajectory e LeGO_LOAM Keyframe = Start o End|

Ground Truth | \
P

KITTI 00

Dataset 3

The results of our algorithm and LeGO-LOAM [2]. We show the trajectory (tracking poses) and the keyframe poses. LeGO-LOAM fails to work

on datasets 2 and 3, and its trajectories have obvious jitters. We also show the result of our algorithm on KITTI 00.

B. Ablation Study

Here we evaluate the impact of different components of
our algorithm. The size of the sliding window is set to 10.
We consider the following variants of our algorithm:

e m-LASM - Undis: The motion unditortion is removed,
which means s in (3) is set to 1. We adopt the method
in [35] to solve the point-to-plane registration problem.

o m-LASM - GPA: The GPA is removed.

e m-LASM - GPA - LPA : The GPA and LPA are removed.

Table II shows the pose errors between the start point and
the end point for the above variants. It is clear that the
unditortion, LPA and GPA all benefit the pose estimation.

C. Comparison with the State-of-the-Art

We compare our algorithm with the state-of-the-art LOAM
variant, LeGO-LOAM [2]. The pose errors between the
start point and the end point are listed in Table II. Fig.
5 shows the trajectories (tracking poses) and the keyframe
poses generated by our algorithm and LeGO-LOAM. The
keyframes of our algorithm in Fig. 5 are the keyframes kept
for GPA. As introduced in section V-C, some keyframes are
deleted to balance the efficiency and accuracy. LeGO-LOAM
fails to work on datasets 2 and 3. It is clear that the quality
of the tracking poses and the keyframe poses of LeGO-
LOAM is different. The tracking poses of LeGO-LOAM have
many jitters, and its keyframe poses are smoother. But the
difference between our tracking pose and the keyframe pose
is marginal. This is because the tracking poses of LeGO-
LOAM are computed from registering two consecutive scans.
But our tracking poses are generated from global registration.
On the other hand, we find that 7-LASM - GPA - LPA can
generate better results than LeGO-LOAM. Besides, as we
show in the table III, our LPA component generally achieves
real time, which means the drift can be corrected and the
plane parameters can be updated in real time.

Although our algorithm is designed for indoor scenes, it
is also applicable to outdoor scenes if planes can provide
enough constraints for pose estimation. We tested w-LSAM
on sequence 00 of KITTI [36]. Fig. 5 shows the result. The

relative position errors of w-LSAM and LOAM are 0.72%
and 0.78%, respectively. We achieve a state-of-the-art result.

D. Runtime

Table III provides the runtime analysis of m-LSAM. As it
takes 100ms for a VLP-16 LiDAR to finish one scan, our
front-end achieves real time. The new plane detection is only
required for a new keyframe. As it runs on a small portion of
a scan, it is efficient. We find that even with the new plane
detection, the front-end of m-LSAM still achieves real time.
The time-consuming part is GPA. Its runtime has a large
variance, as the loop closure occurs several times in the three
datasets. The GPA at the earlier stage is faster, as the number
of variables is smaller. The loop detection and GPA are in an
individual thread, so they will not block other components.
We also test the runtime of the plane extraction algorithm
introduced in section IV-A on dataset 3. The runtime for
this algorithm is about 70.1 4 5.8ms on dataset 3. Our ICP
process can avoid this time-consuming step. Finally, we test
the runtime of LPA and GPA without the 7-factor on dataset
3. It shows that the w-factor can on average speed up LPA
and GPA 28 times and 36 times, respectively.

VII. CONCLUSION

In this paper, we present a new LiDAR SLAM algorithm,
7-LSAM, which uses planes as landmarks. We introduce
PA in the back-end, and combine LPA and GPA to balance
the efficiency and accuracy. We introduce the m-factor to
significantly reduce the computational complexity of PA, and
present an efficient loop closure detection algorithm using
planes. We introduce an ICP process in the front-end to
provide accurate globally consistent tracking poses in real
time. The ICP process avoids explicitly extracting planes
in the whole scan, and it allows us to use a small local
KD-tree to establish the local-to-global data association,
which requires large global KD-trees in previous works.
Our experiments show that LPA and GPA can significantly
improve the pose estimation. Furthermore, m-LSAM achieves
real time and significantly outperforms the state-of-the-art
LOAM variant, LeGO-LOAM [2].
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