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Abstract— We aim to assess the performance of LiDAR-to-
map registration on compressive maps. Modern autonomous
vehicles utilize pre-built HD (High-Definition) maps to perform
sensor-to-map registration, which recovers pose estimation fail-
ures and reduces drift in a large-scale environment. However,
sensor-to-map registration is usually realized by registering the
sensor to a dense 3D model, which occupies massive storage
space in the HD map and requires much data processing
overhead. Although smaller 3D models are preferable, the
optimal compressive map format for preservation of the best
registration performance remains unclear.

In this paper, we propose a novel and challenging bench-
mark to evaluate existing LiDAR-to-map registration methods
from three perspectives: map compressibility, robustness, and
precision. We compared various map formats, including raw
points, hierarchical GMMs, and feature points, and show their
performance trade-offs between compressibility and robustness
on real-world LiDAR datasets: KITTI Odometry Dataset and
Argoverse Tracking Dataset. Our benchmark reveals that
state-of-the-art deep feature point based methods outperform
traditional methods significantly when the map size budget is
high. However, when map size budget is low, deep methods are
outperformed by the methods using simpler models in Argov-
erse Tracking Dataset due to poor spatial coverage. In addition,
we observe that the recently published TEASER++ significantly
outperforms RANSAC for the feature point methods. Our
analysis provides a valuable reference for the community to
design budgeted real-world systems and find potential research
opportunities. We will release the benchmark for public use.

I. INTRODUCTION

Maps are essential for modern autonomous driving sys-
tems. A map with rich prior knowledge provides valuable,
offline-refined information that is not observable by online
sensors, and thus improves the system performance. Modern
maps, such as the HD maps used by autonomous vehicles,
mostly contain high-quality dense 3D models and semantic
labels. However, these dense 3D models require vast storage
space and cause extra online data processing overhead.

The dense 3D model is mainly used to achieve accurate
sensor-to-map registration, which is a crucial task for the au-
tonomous vehicles to re-localize against the map when pose
estimation fails, and also to reduce pose drifting errors in
large-scale environments. Recently, Martinez et al. proposed
a benchmark for retrieval-based localization methods because
the dense HD maps are too expensive to collect and build
at scale [2]. However, without the prior knowledge from the

1Ming-Fang Chang, Wei Dong, Michael Kaess, Simon Lucey are with
Carnegiec Mellon University {mingfanc, weidong, kaess,
slucey}@andrew.cmu.edu
Joshua Mangelson is  with
joshua-mangelson@byu.edu
3 Simon Lucey is also part of the Australian Insitute of Machine Learning
(AIML) at the The University of Adelaide

Brigham  Young  University

offline :

% /" —> compression
Compressive map
lcrop

—>| registration —> pose

(a)

ICP (pt2pt)
ICP (pt2pl)

GICP

Go-ICP

HGMR (L2)

HGMR (L3)
FilterReg

03 ‘ FCGF (RANSAC)

02 . FCGF (TEASER++)
D3Feat (RANSAC)
D3Feat (TEASER++)
FPFH (RANSAC)
FPFH (TEASER++)

success

10 10° 10

it
map size (bytes/m>) map size (bytes/m?)
(b)

Fig. 1. (a) The system pipeline of the proposed compressive registration.
We compress the map offline, and register the online LiDAR input to the
compressive map. (b) The success rate trends of the evaluated methods under
different map size budgets on KITTI Odometry Dataset (left) and Argoverse
Tracking Dataset (right).

map, such retrieval-based methods require much training data
and generalize poorly in unseen environments.

In practice, the dense 3D models are unnecessary for the
essential tasks in autonomous driving other than relocal-
ization. For example, motion planning, motion forecasting,
object tracking, and obstacle avoidance only require the
sensor input and the semantic map labels with rough 3D
information, such as lane directions and the bounding boxes
of the traffic lights. Since other information in the HD
map is much lighter in size, eliminating the need of dense
3D models in the sensor-to-map registration process would
reduce the total HD map size significantly.

Although eliminating the need of the dense 3D model is
desirable, it deserves more research attention. Most existing
point cloud registration studies focused only on the accuracy
and speed of registering two scans with similar data distribu-
tions, while the data distributions of a sensor scan and a map
are very different. Relevant benchmarks evaluate the point
cloud compression performance by reconstruction accuracy,
not by sensor-to-map registration accuracy [3]. In fact, load-
ing a perfectly reconstructed dense 3D model is unnecessary
if accurate sensor-to-map registration can be achieved with
a lighter map. Although some works have evaluated sensor-
to-map registration against map compression ratio [4], [5]
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The maps and input LiDAR scans from (a) KITTI Odometry Dataset and (b) Argoverse Tracking Dataset. The input noisy poses are shown in

red, and the ground truth poses are shown in green. We removed other vehicles using PV-RCNN [ 1] for (a) and the provided driveable region map for (b).

for the proposed specific data formats, there is no universal
standard available for a fair quantitative comparison among
different compressive map formats.

In this paper, we focus on a popular setting — registering
a 3D LiDAR scan to a 3D map, which is the most common
configuration for the modern autonomous vehicles to perform
sensor-to-map registration. The raw map in this case is a
high-quality, dense, and large-scale point cloud built of-
fline. We propose that a sensor-to-map registration algorithm
should operate directly on a certain compressive map format,
instead of the raw point cloud, to eliminate the need of
storing and processing the original large-scale point cloud.
We refer to this pipeline as compressive registration in the
following. The proposed compressive registration pipeline, as
shown in Figure 1, has several advantages over the methods
using raw point cloud maps: 1) The map feature can be pre-
computed offline since it does not require any online input.
2) The online map data decompression, if needed, takes less
time since it does not need to recover a dense 3D map. 3) It
takes much less storage space and data transmission time. As
a result, we are interested in the sensor-to-map registration
methods that directly operate on compressive formats.

We propose the first benchmark for compressive LiDAR-
to-map registration. Given initial inaccurate LiDAR pose
estimations, we evaluated the LiDAR-to-map registration
performance on various compressive maps, including raw
points, hierarchical GMMs, and feature points, under dif-
ferent map size budgets. Our benchmark is challenging due
to the different data distribution of the LiDAR scans and the
maps. We design universal map size based metrics for quanti-
tative comparison. Our results illustrate the different trade-off
trends between map size and robustness of the recent deep-
learning based methods and classical methods. We show
that the deep-learning based methods performed the best
under high map size budgets but might perform worse than
the classical methods using simpler models under low map
size budgets, depending on the local map structure. As an
additional contribution, we analysed the robust registration
methods, RANSAC and recent TEASER++ [0] together with
various 3D features and show that TEASER++ in general
outperforms RANSAC. To summarize, our contributions are:

o We propose the first compressive LiDAR-to-map reg-

istration benchmark. Our benchmark evaluates the map
compressibility, robustness, and precision, and can be
applied to various map formats.

e We evaluated both recent deep learning based and
classical point cloud registration methods, including
raw point based, GMM based, and feature point based
methods. Our quantitative results reveal the trade-offs
made by different methods and provide a valuable
reference for future research.

o We will release the benchmark for the community to
evaluate more methods conveniently in the future.

II. RELATED WORK

In this section, we categorize and discuss existing point
cloud registration methods by the corresponding compressive
map formats. Due to space limitation, we refer to [3] for
additional compression tools that focus on reconstruction
accuracy — they can be applied on top of the following
compressive maps, such as Octree [7] and bzip2 [8].

A. Raw Point Clouds

We list raw point cloud based methods in this section.
Iterative Closest Point (ICP) [10] registers two point clouds
by iteratively finding the closest point pairs and computing
the transformation matrix based on the found pairs. Since
its debut in the early 90s, researchers have proposed a
tremendous amount of ICP variants. ICP and its variants
are still arguably the most widely adopted point cloud
registration method in practical systems nowadays, despite
its well-known drawback of being easily trapped in a local
minimum.

The efficiency and accuracy of ICP variants mainly depend
on the method of point correspondence search between
source and target point clouds, and the quality of initial-
ization. Greenspan and Yurick [I1] proposed speeding up
the correspondence search using a k-D tree. Generalized
ICP (G-ICP) provides a probabilistic formulation that unifies
point-to-point and point-to-plane ICP [12]. Modern off-the-
shelf ICP tools such as PCL (Point Cloud Library) [13] and
Open3D [14] are still vulnerable to local minima and require
good initialization. Yang et al. [15] proposed Go-ICP that
performs a global search to avoid the local minima at the cost
of slow speed. As for reducing the size of the raw point cloud



Fig. 3.

Visualization of different compressive map formats (a) hierarchical GMM tree from HGMR [9]. The red, green, and blue colored ellipsoids

represent a three-level GMM tree (b) Randomly downsampled points (red) (c) score-based downsampling used with D3Feat [4].

maps, Yin et al. [5] proposed to use the hit frequency as an
indicator to prune LiDAR maps. Dubé et al. [16] proposed
SegMap, which compresses semantic map segments with a
3D auto-encoder network and reconstructs raw point clouds
for registration.

B. Feature Points

Compressing an input point cloud into representative key
points with descriptors can potentially reduce the map size
and improve the robustness of correspondence search. Fea-
ture point correspondences can be extracted by comparing
the feature descriptors and the registration can be solved
globally in a closed form using the Procrustes algorithm [17].
Rusu er al. [18] proposed Fast Point Feature Histograms
(FPFH) as the descriptor for finding robust point corre-
spondences. The noisy initial correspondences found by the
descriptor matching can be filtered by robust methods such
as RANSAC and the recently proposed TEASER++ [6].

Deep networks can be used to detect feature points and
extract descriptors from raw point clouds. Wang et al. used
attention-based modules and the information from the other
point cloud to learn the feature descriptors and the correspon-
dences [19]. Choy et al. [20] proposed Fully Convolutional
Geometric Features (FCGF), which uses a 3D sparse fully-
convolutional network to extract per-point descriptors, and
a follow-up work [17] uses a 6-D sparse fully-convolutional
network to predict point correspondences. Bai et al. proposed
D3Feat [4] that uses KPConv [21] to extract dense point
features, and trains point features by distance-learning losses
for robust matching and importance scores. Points with low
importance scores are pruned to compress the map.

C. Shape Models

The local point cloud structure can be represented by
compressive shape models, and registration can be performed
without recovering the raw points. GMM-based methods
use Gaussian models to approximate the local shape of
point clouds and perform GMM-to-GMM or point-to-GMM
registration using the EM algorithm [22]. Normal Distri-
butions Transform (NDT) based methods perform efficient
registration between NDT models [23]. Eckart et al. [9]
propose a hierarchical, anisotropic GMM tree for coarse-
to-fine registration. Gao and Tedrake [24] proposed Filter-
Reg that accelerates the EM algorithm by formulating the

E-Step as a 3D filtering problem. Yuan et al. proposed
DeepGMR [25] that replaces the E-Step using an end-to-
end trainable network. Without keeping the local structure,
PointNetLK [26] compresses a whole point cloud into a
single feature embedding using PointNet and performs direct
feature registration with the feature embeddings.

Beyond the scope of this paper, the intensity information
is proven to be useful in LiDAR-based localization [27]. It
would be interesting to explore the role of intensity in LIDAR
map compression as a future work.

III. OVERVIEW

We propose a universal benchmark for compressive
sensor-to-map registration for various compressive map for-
mats. The proposed compressive registration pipeline is
illustrated in Figure 1. In the pipeline, we first perform offline
map feature computation and compression, crop the local
map using a noisy initial pose, and then register an input
LiDAR scan to the cropped compressive map. The LiDAR
scan is converted into the corresponding format used in the
evaluated registration methods, such as feature points or
GMMs. Let P be the source point cloud and the input LIDAR
scan, Q be the target point cloud and the cropped map, and
T € SE(3) be the transformation matrix that comprises the
rotation matrix and the translation. The problem of point
cloud registration can be defined as:

T* = arg min ['(f(Tv P)a Q>7 (1)
T

where f(.) denotes the point cloud transformation function,
and £ denotes the cost function used in the point cloud reg-
istration method. The cost function £ varies among different
methods. For example, point-to-point ICP uses Euclidean
distances between selected point pairs and point-to-plane ICP
uses squared distance from a point to a paired local plane
patch. For methods that operate on other formats instead
of raw point clouds, denoting ¢(.) as the general feature
extraction function, Eq. (1) becomes:

T —argnin £(f(T.0,(P).0,@). @

Notice that ¢,(.) and ¢,(.) are not necessarily the same.
For example, one can register a raw point cloud to a GMM
model.



We assume a noisy initial pose is available — in practice,
an autonomous vehicle receives the GPS signal and performs
pose estimation on-the-go. In reality, the map is stored in
the world coordinate frame. Let the transformation from
the local LiDAR frame to the world frame be T}" and
ideally f((T)~!,Q) would be aligned with P. And the
map feature extraction ¢,(Q) should happen in the world
coordinate frame since the initial pose is not available in the
offline map preprocessing step. Letting T;,; be an initial
noisy estimation of T}”, Eq. (2) can be rewritten as:

T = argmin £<f<T,¢p<P>>,f<T;;,¢q<Q>>). 3)

IV. METHOD CATEGORIES

We categorize registration methods by map data types and
techniques used for compression. A list of related methods is
shown in Table I, whose attributes are explained as follows:

o Map type: the actual data format used for registration,
such as raw points, GMMSs, and feature points.

o Data dimension: the dimension of the used data format.
For example, point-to-point ICP uses only zyz coor-
dinates so the dimension is 3. Point-to-plane ICP and
GICP use the additional 3D normals thus the dimension
is3+3=6.

o Global: the method does not require a good initial pose.

e Scalable: the method is feasible for building a large-
scale compressive map.

o Deep: the method is deep learning based.

Some methods are not considered to be scalable for practi-
cal reasons: Go-ICP [15] and CPD [22] are much slower than
other methods when running with our LiDAR point clouds.
The feature dimensions of DCP [19] and LORAX [29] are
very high and lead to huge map size if we compute and
store the features in the map. The sparse 6-D convolutional
network in DGR [17] is not applicable to very sparse inputs
when map size budget is slow. The PointNet backbones used
by DeepGMR [25] and PointNetLK [26] are only suitable for
small object-scale point clouds.

V. BENCHMARK FOR COMPRESSIVE REGISTRATION

A major difference between our benchmark and other
existing evaluations is the asymmetry between the source
(the LiDAR scan) and the target (the map). A LiDAR scan
is sparser, noisier and contains moving objects (e.g.other
vehicles), while a map is denser, pre-built, and refined by
denoising and moving object removal. Please see Figure 2
for the visualizations of our LiDAR scans and the maps.

To cover the initial error range in the real environment,
we applied uniformly distributed noise within [—10, 10]m
to the zyz dimensions of translation and [—10,10]° to the
roll, pitch, and yaw rotation angles. This error range covers
most of the possible GPS errors of a modern autonomous
vehicle, according to [2]. To evaluate the pipeline in Figure 1
with large-scale maps, we first preprocess the dataset into
pairs of local maps and lidar scans. For each pair, We
cropped a local map region within a 40m range around the

initial pose, and then compress the local the map region
to perform registration. The order of map cropping and
compression does not affect the compression result for the
compression methods used in this work. For the feature
extraction methods such as FPFH [18], FCGF [20], and
D3Feat [4], we precomputed feature extraction in the world
coordinate frame, since the initial pose was not available
when performing offline map compression.

A. Data Preparation

For this work, we focus on the autonomous driving sce-
nario and prepared data from two real-world autonomous
driving datasets: the KITTI Odometry Dataset [30] and the
Argoverse Tracking Dataset [31] (KITTI and Argoverse for
short). We aggregated the LiDAR scans to build a dense point
cloud map. For KITTI, the provided ground truth poses are
noisy, so we used the the poses estimated by SLAM [32].
We used the provided ground truth poses for the Argoverse.
Considering that vehicles are the most common moving
objects in the autonomous driving scenario, we removed
vehicles form the maps. For KITTI, the vehicles were first
detected by PV-RCNN [1] and then removed from the input
LiDAR scans before building the map. For Argoverse, the
vehicles were removed by pruning the driveable regions in
the LiDAR scans before building the maps.

As for source clouds, we used the LiDAR scans from
sequence 00 of KITTI and the test set from Argoverse. The
KITTTI sequences 03, 05, 07, 09 and the Argoverse training
set were used to train the deep learning based methods.
We applied a simple threshold-based ground removal to the
input scans of Argoverse to match the map point distribution,
as visualized in Figure 2. The KITTI data contains 2271
scans and a map area of 4,678,598 m?2. The Argoverse data
contains 1545 scans and a map area of 3,590,315 m2. The
map area is computed by the area of occupied regions at the
m? resolution. A LiDAR scan of both datasets contain 64
bins and the FoV of a Argoverse LiDAR scan is wider (50°)
than a KITTI LiDAR scan (26.9°).

B. Evaluation Metrics

We define evaluation metrics with the robustness and
precision at different map sizes. The robustness is measured
by success rate (also referred to as recall), and the precision
is measured by the translation and rotation errors among
successful samples. Because the total map area varies, we
quantify map size with density bytes/m?. Since the actual
speed evaluation largely depends on the implementations and
varies across different platforms, we refer the readers to the
original papers for detailed speed comparisons.

Let R € SO(3) be a rotation matrix and t € R3 be a
translation vector from T. We measure the precision by:

o Translation Error (TE): the median of the L2 distance
between the translation vectors of the successful pairs:

TE = ||t — tg5- 4)



TABLE I
A LIST OF RELATED REGISTRATION METHODS AND THE CORRESPONDING CATEGORIES.

Map type Method Name Data Dim. | Deep | Global | Scalable
ICP (pt2pt) [10] 3 v
raw points ICP (pt2pl)® [28] 6 v
GICP [12] 6 v
Go-ICP [15] 3 v
CPD [22] 3
NDT [23] 9 v
GMMs HGMR[9] 10 v
FilterReg [24] 3’ v
DeepGMR [25] 54 v v
FPFH [18] 36 v v
DCP [19] 515 v v
feature points FCGF [20] 35 v v v
D3Feat [4] 35 v v v
DGR [17] 35 v v
global embedding || PointNetLK [20] | 1024 | v | |
hybrid || LORAX [29] 1035’ v v

« Rotation Error (RE): the median of the rotation angle
between the rotation matrices of the successful pairs:

tr(RR;Ft) -1
5 .
Here the subscript gt denotes the ground truth.

We measure the robustness by:

o Success Rate (SR): the ratio of the pairs with both
translation and rotation error lower than the assigned
successful threshold. We choose the successful thresh-
olds to be 2m for TE and 5° for RE as [4], [33].

We attach numbers to the metrics to represent the value

under a map size budget. For example, SR10 refers to the
success rate measured give map size budget 10 bytes/m?.

®)

RE = arccos

VI. EVALUATION

We evaluated the state-of-the-art point cloud registration
methods using the proposed benchmark. Overall our bench-
mark successfully spotted interesting trade-offs between the
map size and the success rate in real-world environments.
Note that our benchmark is very challenging due to the map
size constraints and the different data distribution between
input LiDAR scans and the map. The detailed results are
shown in Table III and IV. The success rate curves using
different success thresholds are shown in Figure 6.

Since data dimensions of different methods vary as shown
in Table I, we used the raw point format as the standard for
feature point based methods. Let the number of raw points
be N,., x be the name of a method, £, be the data dimension

'ICP (pt2pt)represents point-to-point ICP

2ICP (pt2pl)represents point-to-plane ICP, which requires normal input.

3We evaluated the FilterReg version with fixed covariance and equal
weights [24], so the data dimension is the same as raw points.

4DeepGMR uses weighted isotropic GMM formulation [25]

SThis is the dimension of the super points used in LORAX. An additional
ICP refinement with the dense raw point cloud is required by LORAX
besides the super points [29].

of method z. We computed the number of feature points IV,
of method z by
3N,
F,
For example, corresponding to raw point based methods
with 5000 raw points, a feature point based method with
feature descriptor dimension 32 has a total dimension 32 +
3 = 35, so the number of feature points corresponding
to the 5000 raw points is approximately w ~ 429.
For HGMR, constrained by the predefined tree structure,
we evaluated with tree levels 2 and 3, and spanning node
numbers n € [4,6,12,16]. This generated the different map
size range of HGMR (L2) and HGMR (L3) against other
methods in Figure 1. See Table II for an intuitive data size
comparison. Here we computed the raw data size despite the
possibility of using additional compression tools, which can
be applied on top of all the methods.

Ny = (6)

A. Raw Points

Among the methods using raw points for registration,
we evaluated the classical point-to-point ICP, point-to-plane
ICP, GICP, and the global method, Go-ICP. We compressed
the map by randomly downsampling the raw points. Note

TABLE I
DATA SIZE COMPARISON AND THE CORRESPONDING AVERAGE MAP
SIZES. THE METHODS WITH HIGHER DATA DIMENSION CAN AFFORD

LESS Ny.
| unit | dim. | N
Raw point # points 3 100 1000 | 5000
Feature point # point 35 9 86 429
GMMs # weighted Gauss. 0 30 300 1500
KITTI bytes/m? - 0.58 | 5.82 | 29.12
Argoverse bytes/m? - 0.52 | 516 | 258




that we computed the normals for GICP and point-to-plane
on the raw dense map before downsampling to maintain
precision. Overall, the success rate dropped as map size
budget decreased. Go-ICP, as a global method, outperforms
others by avoiding the local minima, but took at least seconds
for a registration [15] thus is less practical. The global
optimum found by Go-ICP was also not guaranteed to be
the ground truth, especially for the Argoverse, since the point
distributions were different in the source and the target point
clouds.

B. GMMs

We evaluated the recent HGMR [9] and FilterReg [24] as
the representatives of the GMM-based methods. We found
that HGMR with a level-2 tree outperformed all the other
evaluated methods significantly in the Argoverse when the
map size is small. Given a fixed map size budget, the Gaus-
sian model by HGMR is much smaller than the descriptors
used by feature point based methods and thus allows more
components as shown in Table II. Therefore, it had a better
spatial coverage than the feature point methods that used
sparse feature point map. We also observed that increasing
the tree size for HGMR did not lead to better registration
results, as also shown in [9] for LiDAR datasets.

(b) FCGF

(a) FPFH (c) D3Feat

Fig. 4. Cropped maps of feature point based methods. The features were
projected to three-dimensional space and visualized by the RGB colors.
This visualization was downsampled to contain 10000 points so that the
difference between random downsampling (FPFH and FCGF) and score-
based downsampling (D3Feat) can be observed.

C. Feature Points

We considered feature point based methods together with
robust registration algorithms, RANSAC and TEASER++
[6]. We first searched for the correspondence candidates by
the descriptor matching and then filtered out noisy correspon-
dences with RANSAC or TEASER++. In our experiments,
the deep features, D3Feat [4] and FCGF [20], when used
with either RANSAC or TEASER++, significantly outper-
formed the hand-crafted FPFH [18] in both datasets. For
D3Feat, we downsampled the maps to fit the map size
budgets by selecting points with higher learned scores. For
FCGF and FPFH, we randomly downsampled the maps. A
visualization of the downsampled maps for FPFH, FCGF,
and D3Feat is shown in Figure 4.

We observed that overall TEASER++ outperformed
RANSAC. In addition, the success rates of FCGF and D3Feat
in Argoverse were much worse than KITTI with smaller
maps. As visualized in Figure 5, the local cropped maps
in KITTI overlap better with the LiDAR scans than in

P

N

(a) KITTI Odometry Dataset (b) Argoverse Tracking Dataset

Fig. 5. An extremely downsampled case to show the differences between
two datasets. The cropped maps are in dark green, the LiDAR scans are in
red, and the downsampled maps are the light-green dots. (a) Many LiDAR
scans overlap well with the cropped map and the FCGF (TEASER++)
method can successfully find good correspondences (blue) in this case. The
LiDAR scan is shown with the estimated pose here. (b) The LiDAR scan
only overlaps by relatively smaller regions, and the downsampled cropped
map does not overlap with the LiDAR scan well. This is common in
Argoverse. The LiDAR scan is shown with the ground truth pose.

Argoverse, because the latter contains large regions that are
invisible to the LiDAR scan. A severely downsampled feature
point based map in Argoverse is more unlikely to overlap
with the LiDAR scan and leads to lower success rate than the
GMM-based method which covers more environment under
the same map size budget.

VII. DISCUSSION

In our experiments, we used a cropped map as the tar-
get and a LiDAR scan as the source. For the asymmetric
methods, switching the source and the target might impact
the results. Among the asymmetric methods we evaluated,
we used the normals computed from the map for GICP and
point-to-plane ICP because the map is much denser and less
noisy. For HGMR, we build a GMM tree on the map because
the compression ratio of GMM trees is more significant than
downsampling the raw points. We also swapped the source
and target for FilterReg and found it performing worse than
the current configuration.

For the point based methods, we randomly downsampled
the points if a score is not provided by the registration
method. It is also possible to apply other downsampling
techniques together with the evaluated methods to improve
the performance. For example, Yin et al. [5] used point
repeatibility to prune the raw map for ICP.

Our results on feature point based methods suggest
that, both the feature extraction and the correspon-
dence filtering methods are crucial for the final perfor-
mance. TEASER++ [0] in general outperforms the classical
RANSAC, but works best only when used together with the
deep descriptors under our map size budget.

We also notice that the deep learning based methods
failed when map size is small mostly because the target
map is feature point based and too sparse after intensive
downsampling. A deep shape model based method might
potentially increase the spatial coverage of the downsampled
map and improve the performance. Further reducing the
feature dimension without sacraficing the global feature
matching accuracy is also worth more research.
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Fig. 6. The success rate curves. We observed that FCGF (TEASER++) and HGMR (L2) outperformed all other methods in the case of map size = 1
byte/m? in KITTI and Argoverse.

TABLE III
RESULTS ON THE KITTI ODOMETRY DATASET. OVERALL FCGF (TEASER++) AND D3FEAT (TEASER++) OUTPERFORMED ALL OTHER METHODS
IN ROBUSTNESS UNDER ALL MAP SIZE BUDGETS.

Metric name | SRO1  TE01 REO1 || SRO3 TE03 RE03 || SR10 TE10 REI0 || SR30 TE30 RE30
map size(bytes/m?) | 1 [ 3 [ 10 [ 30
ICP (pt2pt) 019 LIl 228 031 082 138 || 030 074 122 || 027 076 1.2
ICP (pt2pl) 0.10 123 262 || 045 067 139 || 053 048  1.03 060 021 056
GICP 015 117 26l 047 071 117 || 053 050 077 || 049  0.09 020
Go-ICP 022 123 266 || 062 068 134 || 067 051  1.02 || 064 027  0.60
HGMR (L2) 034 082 137 || 033 022 034 - - - - - -
HGMR (L3) 016 101 184 | 018 073 128 || 019 039 059 || 009 028 055
FilterReg 015 115 192 | 031 050 093 || 034 032 060 || 042 011  0.07

FCGF (RANSAC) 0.11 0.81 2.89 0.70 0.45 1.84 0.87 0.34 1.38 1.00 0.19 0.74
D3Feat (RANSAC) 0.02 0.80 3.09 0.24 0.59 2.76 0.46 0.49 2.34 0.97 0.23 1.00
FPFH (RANSAC) 0.00 - - 0.00 - - 0.01 0.59 3.44 0.11 0.46 2.63

FCGF (TEASER++) 0.38 0.48 1.94 0.86 0.33 1.54 0.95 0.28 1.32 1.00 0.20 0.92
D3Feat (TEASER++) | 0.23 0.62 1.98 0.65 0.56 1.79 0.79 0.51 1.63 0.97 0.40 1.09
FPFH (TEASER++) 0.00 - - 0.00 - - 0.01 1.18 3.38 0.30 0.93 2.54
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