
HyperMap: Compressed 3D Map for Monocular Camera Registration

Ming-Fang Chang1, Joshua Mangelson2, Michael Kaess1, and Simon Lucey1,3

Abstract— We address the problem of image registration to
a compressed 3D map. While this is most often performed
by comparing LiDAR scans to the point cloud based map,
it depends on an expensive LiDAR sensor at run time and
the large point cloud based map creates overhead in data
storage and transmission. Recently, efforts have been underway
to replace the expensive LiDAR sensor with cheaper cameras
and perform 2D-3D localization. In contrast to the previous
work that learns relative pose by comparing projected depth
and camera images, we propose HyperMap, a paradigm shift
from online depth map feature extraction to offline 3D map
feature computation for the 2D-3D camera registration task
through end-to-end training. In the proposed pipeline, we first
perform offline 3D sparse convolution to extract and compress
the voxelwise hypercolumn features for the whole map. Then at
run-time, we project and decode the compressed map features
to the rough initial camera pose to form a virtual feature image.
A Convolutional Neural Network (CNN) is then used to predict
the relative pose between the camera image and the virtual
feature image. In addition, we propose an efficient occlusion
handling layer, specifically designed for large point clouds,
to remove occluded points in projection. Our experiments on
synthetic and real datasets show that, by moving the feature
computation load offline and compressing, we reduced map size
by 87−94% while maintaining comparable or better accuracy.
Index Terms— autonomous driving, map, 2D-3D registration

I. INTRODUCTION

State-of-the-art autonomous driving systems rely on High-
Definition (HD) maps for localization. By comparing online
sensor measurements with the 3D information stored in the
HD map (usually in the form of a dense point cloud with
additional labels), autonomous vehicles are able to refine the
ego pose estimation and also correct the drift caused by
accumulated error. The nature of the offline map building
process makes additional pre-processing and human-assisted
annotations possible for HD maps, greatly increasing their
utility at run-time. However, current HD map formats are
not optimized for the specific task they will be used for,
such as localization, leading to wasteful storage overhead.

In this paper, we propose a novel strategy to learn on-map
convolutional features to compress the map and preserve the
registration performance. Given a noisy initial camera pose,
our method predicts the relative 6 degree-of-freedom (DoF)
pose of the camera by comparing the image captured by the
camera to a virtual feature image created by projecting a
3D feature map to 2D. Although the methods that perform

1Ming-Fang Chang, Michael Kaess, Simon Lucey are with
the Carnegie Mellon University {mingfanc, kaess,
slucey}@andrew.cmu.edu

2 Joshua Mangelson is with the Brigham Young University
joshua mangelson@byu.edu

3 Simon Lucey is also part of the Australian Institute of Machine Learning
(AIML) at the The University of Adelaide

Fig. 1: Our network predicts the relative camera pose by
comparing the camera image to a high-dimensional feature
image created by projecting our feature map to 2D using the
noisy initial pose.

localization by comparing LiDAR scans collected in real-
time to the HD map usually outperform the camera-based
methods in terms of localization error [1], LiDAR sensors
are substantially more expensive than cameras. Our solution
leverages the robustness of LiDAR sensors in the offline map
building process and then relies solely on cameras to perform
online pose registration. This design significantly reduces
the online system cost while still leveraging the strengths of
LiDAR sensors. In this work, we assume approximate pose
is known, which is reasonable since GPS is very common
in modern devices and the existing global localization or
vehicle pose estimation methods can be used as our input.

The registration of 2D camera images to a 3D point-
cloud map is non-trivial due to the inherent difference in
the modalities. Prior works have tried to solve the problem
by projecting depth information from the 3D map into
2D to form a depth image from which features are then
extracted to enable comparison with the observed camera
image [2]–[4]. We refer to the decision to perform projection
before feature extraction as “early projection” in this paper.
We propose instead the use of “late projection”, a method
which precomputes and compresses the 3D features on the
voxelized point cloud map and then performs projection for
subsequent alignment with the captured 2D RGB image.
Our approach utilizes sparse 3D convolutional layers to



extract features from the HD point cloud map [5]–[8]. The
sparse convolutional layers enable us to process large point
clouds efficiently. Compared with current state-of-the-art
methods [2], [3], which uses “early projection”, our method
compresses the learned features and reduces the required map
voxel resolution significantly, and thus reduces 87− 94% of
map size with comparable performance.

The primary contributions of this paper is as follows: we
propose “late projection” in contrast to “early projection”
for the 2D-3D registration task. Our late projection strategy
precomputes and compresses the 3D map features offline
before online projection, which we refer to as a “HyperMap”
due to the use of hypercolumn features [9].. The proposed
HyperMap outperforms the baseline in map size significantly
while maintaining comparable or slightly better performance.
Although we focus 2D-3D registration in this paper, we
believe that the concept of “late projection” can be extended
to and potentially benefit other map-related tasks.

In addition, we propose an efficient occlusion-handling
layer that enables backpropagation from a projected feature
image to 3D convolutional layers on a large-scale sparse
point cloud map. This occlusion-handling layer is crucial to
the scalability of our proposed HyperMap. We will release
the 2D to 3D registration datasets used in the experiments,
including from both synthetic and real-world modern au-
tonomous driving camera and LiDAR data. Our dataset
contains challenging scenarios such as weather changes,
sensor noise and crowded dynamic scenes.

II. RELATED WORKS

Previous works on registration/localization range from
traditional descriptor matching to deep networks. Due to the
space limitation, we focus on the local registration methods
in this section. In contrast to local registration, there are
global registration methods that do not require an initial pose
but are usually less accurate [10]–[14].

A. Local Registration (Local Localization)

When the map and an rough estimate of the camera
pose are available, previous works have attempted to refine
the pose using camera registration to 3D map. The prior
knowledge of camera pose might be from the GPS mea-
surements, global localization, or pose estimation results in
previous time frames. Local registration, or local localiza-
tion, approaches compare online sensor observations with
information from the map to refine the initial pose estimate.

Leveraging classical visual odometry methods, Caselitz
at el. [15] used Structure-from-Motion (SfM) to reconstruct
sparse point clouds from video sequences and then performed
ICP to register the SfM point cloud to the LiDAR map, which
requires robust feature points and video sequences, not a
single image. Kim et al. proposed to register a stereo camera
to a LiDAR map using the image feature correspondences
in stereo depth and projective LiDAR depth [16]. Mastin et
al. proposed to use mutual information to register an aerial
image to LiDAR images [17].

In autonomous driving applications, the ground plane and
road markings can be especially useful. Lu et al. [18] used
the chamfer distance to align the detected road markings to
a sparse 3D map. Wolcott and Eustice [19] proposed to use
reflectance information derived from the LiDAR ground map,
containing mostly road marking information, to solve the
local registration problem. Their method generated synthetic
projective reflectance images and refined the initial pose by
maximizing the mutual information score to align the syn-
thetic reflectance images with a monocular camera onboard
the vehicle. While the ground plane provides a distinctive
set of features for alignment, methods that depend on it
fail when large portions of the road are occluded or differ
from the pre-built map, such as in the presence of snow or
after construction [20]. This dependence on the ground-plane
can be overcome by taking into account the 3D-volumetric
information. In [20], Wolcott and Eustice proposed the use
of Gaussian-mixture-models (GMMs) to summarize map
height and reflectivity for efficient LiDAR-based localization.
However, this method also depends on having a LiDAR
sensor on-board the vehicle at localization time. Yu et al.
used 2D-3D line correspondences for registration, which only
works when line features exist [21].

Recently, CMRNet [3] and CMRNet++ [2] leveraged a
CNN to solve the local 2D-3D registration problem in a
way that both takes into account 3D-structure information
and only requires a monocular camera at localization time.
It adopted a correlation filter, which is often used in the
optical flow networks [22], to regress the relative 6-DoF pose
between a virtual LiDAR depth image and an RGB cam-
era image. The experiments showed that CMRNet reached
centimeter-level translation error in an unseen environment.
EnforceNet [4] also used a CNN to regress pose between
projected depth and RGB images. To the extent of authors’
knowledge, CMRNet is the only existing method that, like
our HyperMap, is not trained in testing environment, making
it more generalizable to maps other than the ones on which
it was trained. Thus we pick CMRNet as our baseline. Both
CMRNet and EnforceNet perform feature computation after
projection, we refer to this design as “early projection”.

B. Image Compression

Clustering techniques have been used in image com-
pression for decades. In [23], Oehler and Gray proposed
to use Vector Quantization (VQ) to compress and classify
medical images. Agustsson et al. [24] proposed a learned
VQ to compress and decode the latent representation in an
auto-encoder structure. Recently, Wei et al. applied task-
orientation compression to form a 2D binary map [25].

Instead of the general 2D binary code, we perform cluster-
ing on the learned map features and only store the per-voxel
centroid index as the map feature. This is more compact than
the binary code used in [25]. Also, the 2D to 3D registration
problem we solve is more complicated and challenging than
the 2D to 2D registration setting in [25] since it requires
backpropagation through projection.



Fig. 2: System architecture. The sparse convolutional layers are shown by green boxes. We only store the compressed map.

C. Occlusion Handling in 3D Shape Learning

Occlusion handling is an important module in the differ-
ential renderers used in recent 3D shape learning methods
to project 3D information to 2D. Lin et al. proposed using
upsampling and max-pooling process to build a pseudo-
renderer [26]. In [27] and [28], the authors used a differ-
entiable ray tracing method with probabilistic voxel occu-
pancy for occlusion reasoning. Sitzmann et al. proposed an
occlusion-aware projection that first transformed the vox-
elized feature representation to the canonical view grid and
then used a network to predict the per-pixel visibility [29].

In our case, the local map grid range has much larger
scale than the object-level voxel grids used by the existing
3D representation learning methods. The existing methods
are too expensive and memory consuming for our task. We
thus propose an efficient pyramid of max-pooling layers with
different kernel sizes to overcome this challenge.

III. PROBLEM FORMULATION

In this paper, we propose the use of “late projection”,
i.e. the computation of 3D features directly on the map
in offline fashion before projecting into the 2D space to
generate the projective virtual feature image. By compressing
the local statistics into the map features, our method works
with much smaller maps than the raw point cloud map.
We only need the compressed map to perform the online
registration. The system architecture is visualized in Figure 2.
The major challenges associated with “late projection” can
be summarized as the following:

• Although we can reduce the map resolution by repre-
senting the local map statistics by features, the high-
dimensional features might reversely increase the total
map size and takes more time to load and process.

• Due to the sparsity of the LiDAR map, points occluded
in RGB images might appear in the projective feature
images. Thus, we need a differentiable occlusion han-
dling layer for the large-scale sparse point clouds.

We use 3D feature compression and an occlusion handling
layer to overcome the above challenges, as described in
Section IV and Section V.

Our problem formulation is as follows. Let θini represent
the 6-DoF initial camera pose, θgt represent the ground truth
pose, I represent the camera image andM represent the 3D
voxelized feature map. Assuming the camera intrinsics are

fixed, our goal is to estimate the relative pose 4θ that aligns
our initial estimate θini to θgt. We can formulate this as an
estimation problem where we seek to estimate the weights
ω of a network G, that predicts 4θ from θini, I, and M.
Let ◦ be the pose composition operator:

4θ = G(I, π(θini,M);ω)

θ̄ = θini ◦ 4θ
(1)

where π(·) is the 3D to 2D perspective projection function.

IV. MAP FEATURE EXTRACTION

We voxelize the 3D point cloud map in high resolution to
extract the 3D convolutional features and downsample. We
adopt the 3D sparse convolutional filter [5]–[8] due to its
great scability and efficiency. We extract the convolutional
features using a set of 3D sparse convolutional layers, which
only operate on the occupied voxels and are suitable for
sparse point cloud data from sensors like LiDAR.

In order to capture features with different frequencies, we
apply the hypercolumn [9] concept to 3D feature extraction.
We use stride 2 for the first 3D convolutional block and 1 for
all the other blocks. The receptive field of each layer expands
as more convolutional layers are applied, and the feature
dimension also increases correspondingly. Afterwards, we
combine the multiple activations to form a hypercolumn
feature vector for each occupied voxel to preserve both the
precision of earlier layers and the capacity of later layers.
The final voxel resolution was thus reduced by ratio two due
to the stride 2 in the first block.

At training time, we first voxelize the whole raw point
cloud map, crop the local map region using the initial pose,
extract 3D features in the map coordinate frame, and then
transform the cropped feature map to the camera coordinate
frame. Afterwards, n layers of 3D sparse convolutional filters
are applied to the voxelized local map, and the feature output
from the n convolutional layers are concatenated to form a
high-dimensional hypercolumn feature vector.

For a voxel vi in the map, the corresponding hypercolumn
feature vector is first compressed to a lower dimension
feature fi ∈ Rm (dimension 72 → 16) using another
3D sparse convolutional layer. After trained end-to-end, we
apply K-means algorithm to all the fi in the map to obtain
k centroids, and compute the cluster index di of each voxel
(As shown in Figure 3b, we use k = 16 in our experiments,



so we only need 4 bits to represent the centroid index, di ∈
0, 1, 2, ..., 15). We then project the cluster index di to form a
2D virtual feature image, and recover the original feature
fi from di using the corresponding K-means centroids.
Notice that map feature projection required retrieving the
map feature data from the storage and thus projecting di is
cheaper and faster than projecting fi due to its small size.

In the map projection step, we project the voxel grids to
form a depth map and concatenate the depth map to fi as
an additional channel, so the final projective virtual feature
image has m + 1-dimensions. This feature precomputation
step reduces the required voxel resolution while preventing
the performance drop. We use kernel size 3 for all the 3D
sparse convolutional layers.

V. OCCLUSION HANDLING

The compressed map features are projected and decoded
to form a virtual feature image using the camera intrinsics
and the given initial pose. However, because of the nature of
sparse point clouds, the occluded points may appear in the
virtual feature image if not handled. To remove the occluded
points, we design a maxpooling pyramid inspired by the
point cloud occlusion filtering described in [3]. Our occlusion
handling layer is very efficient and is suitable for large-scale
point clouds since it only utilizes the max pooling layers.

We use the voxel size to approximate the occupied neigh-
borhood of the map points in 3D space, and projection of the
occupied neighborhood should only contain the projections
of the map points that are closer to the camera than the
voxel center (with smaller depth value). This means that
if a projective map point has some nearby pixels with
smaller depth, it is likely that this voxel is occluded. We
use efficient maxpooling filters to simulate the 2D occupied
neighborhood. In order to apply the maxpooling layers, we
first make the projective depth negative and set the empty
pixels to the maximum negative depth value. The pixels with
smaller depth values originally would be larger after this
transformation, and thus will be kept after the maxpooling
operation. Afterwards, we recover the original image by
setting the empty pixels back to zero and inverting the sign of
the depth map. The output, maxpooled depth map, is noted
as Mr(p) with kernel size r at pixel position p.

Let D(p) and R(p) be the depth map and its correspond-
ing occlusion filter kernel size map, and f be the focal length.
The map of the occlusion filter kernel size (in pixel) can be
computed from the fixed voxel size in the map:

R(p) =
voxel size× f

D(p)
(2)

Afterwards, we find the pyramid level with smallest Mr(p)
among all levels for each pixel, denoted as:

rmin = argmin
r

Mr(p). (3)

If rmin is larger than the R(p) at this pixel, it means that
this pixel is occluded by a nearby pixel with smaller depth
value and the corresponding feature value should be set to

zero. Let F (p) be the virtual feature image. The final virtual
feature image is computed by:

Ffinal(p) =

{
0, if argminr Mr(p)−R(p) > δ

F (p), otherwise
(4)

We choose δ = 0.5 so the occlusion filter is only effective
when the occluded points are far away from the visible
point. If several layers in Mr(p) have the same pixel value,
which happens when all the maxpooling layer outputs are
dominated by a close-by nearer point, we pick the smallest
r among them. Results are shown in Figure 3a.

VI. CAMERA POSE PREDICTION

Given the virtual feature image and the RGB camera
image, we regress the relative camera pose 4θ using a CNN
following [3]. We use the image feature extraction branch of
PWCNet [22] for RGB feature extraction and simply replace
the dimension of the first convolutional block in the depth
feature extraction branch with our projective map feature
dimension. A correlation filter is then used to match the
features from the RGB image and the virtual map feature
image. Several fully connected layers are used to predict the
translation in xyz directions and the quaternion for rotation
to represent 6-DoF camera pose. We add one additional tanh
layer as an output layer to constrain the range of predicted
translation and rotation. For training, we use Smooth L1 loss
and quaternion angular distance loss as proposed in [3].

VII. EXPERIMENTS

In this section, we describe the evaluations on CARLA
synthetic dataset [30], KITTI Odometry dataset [31], and
Argoverse Tracking dataset [32]. We choose CMRNet [3]
as our baseline and compare with it in 0.1m, 0.2m and
0.4m voxel resolutions. We use n = 4, m = 16, k =
16, and a five-level occlusion pyramid (maxpooling kernel
r = 3, 5, 11, 15, 23) in all experiments (the details of the
parameters are in Section IV).

A. Data Preparation

For the CARLA dataset, we used the official data collector
to collect single camera sequences with ground truth poses.
We collected seven sequences for the training set (14755
frames) and two sequences for the validation (4228 frames).
The validation set contains weather conditions that do not
exist in training set, shown in Figure 5. The point cloud
map (Town01) was downloaded from the official repository.

As for the KITTI Odometry dataset, we used the LiDAR
maps, the ground truth poses and the initial poses for
validation set provided by the authors of CMRNet [3] We
used the sequences 03, 04, 05, 07, 08 and 09 in the KITTI
Odometry dataset as the training set (10581 frames) and the
randomly downsampled sequence 00 as the validation set
(1500 frames). We excluded sequence 06 due to the artifacts
in the generated map. The validation map does not overlap
with training maps except for only 200 frames. We used
SLAM poses from [3] as the ground truth since the KITTI



(a) (b)

Fig. 3: (a) Occlusion handling. We use a max pooling pyramid to implement an occlusion handling layer, described in
Section V. The above figure shows the effect of applying a maxpooling kernel with several different sizes, where the
occluded pixels are set to zeros (shown in black), and the input and output of the occlusion handling layer. Larger depth
values are shown in red and small depth values are shown in dark blue. (b) Accuracy plot of using different number of
centroids in K-means with CARLA dataset. We observed no obvious benefit of using more than 16 centroids.

ground truth poses are noisy. As mentioned in [3], the ground
truth poses in KITTI dataset caused map inconsistency in
loop closures, so we used the ground truth poses provided
by CMRNet authors as well, which was optimized by loop-
closure SLAM method as described in [3], [15].

We built the Argoverse maps by accumulating the LiDAR
scans using the provided ground truth poses. We uniformly
downsampled the original train and validation splits as the
training set (9328 frames from 85 logs), and also downsam-
pled the original test split as the test set (1599 frames from
24 logs). We removed log 3373 and 7d37 from the training
set because the ego vehicle was surrounded by large buses.

We downsampled the maps using voxel resolutions 0.1m,
0.2m, and 0.4m for the baseline experiments, and used the
0.2m resolution as the input of our HyperMap. The final
HyperMap resolution is 0.4m. To simulate erroneous initial
pose, we added translation noise within [-2m, +2m] in xyz
directions, and rotation noise of [-10◦, +10◦] about xyz axes
applied in xyz order following [3]. The initial poses were
generated online in training time and fixed in test time.

B. Implementation Details

Aiming for a fair comparison, we integrated the CMRNet
into our pipeline, so that the only difference in the experi-
ments was the network itself. We added a scaled tanh layer
to the CMRNet implementation at output to leveraging the
prior knowledge of the known noise range, as we did in our
HyperMap. We split the training process into two stages.
First, we cropped the local map around initial camera pose
with radius 50m and voxelized it and then applied the 3D
sparse convolutional layer to the local voxelized map to ex-
tract map features. Afterwards, the extracted map feature was
projected to form a virtual feature image for pose prediction
and initial training. Second, after the map feature is well-
trained, we applied the pretrained sparse convolutional layers
to the whole voxelized map to get the map features fi, using
K-means to get the centroid index di for each voxel, and
only store the di in the map for the map size comparison.
Afterwards, we fixed the map features, only refining the pose

prediction network until convergence. The refinement step
helped to compensate the compression error induced by K-
means. Given the scale of our maps and the efficiency of
the sparse convolutional networks, we were able to process
the whole map offline on our lab server without splitting it
into submaps for the experiments. This approach is scalable
to larger maps with a divide-and-conquer approach since
the convolutional filters are translationally invariant and the
receptive fields are limited.

We implemented all the models in PyTorch. All the models
are trained and timed on an Intel(R) Xeon(R) CPU E5-2660
v4 @ 2.00GHz machine with GeForce GTX TITAN Xp
GPU. We train all the models using learning rate 10−4 and
batch size 40 with Adam optimizer. The occlusion handling
layer takes about 1ms and the pose prediction takes about
14ms on our machine for KITTI odometry dataset.

C. Performance

We observed that our HyperMap has comparable or better
accuracy in both the synthetic and real-world datasets, es-
pecially in translation, and much smaller map size than the
baseline. Our method, as shown in Table I, outperforms the
0.4m baseline significantly and even outperforms the 0.1m
baseline in the Argoverse Tracking dataset where the baseline
map size is more than seven times larger. We adopt a sparse
representation to store the map. The map size is computed
as the total storage required to store all the 3-dimensional
indice (2-byte integer coordinates) of the occupied voxels
(map points) and the corresponding voxel features (4-bit
for the 16 K-means centroid indices). The baseline map
only contains the voxel indices and no feature. Although
increasing the voxel size reduces the map size effectively, the
corresponding baseline performance drops, as shown in Table
I. We used bytes/m2 as the map size unit since the maps in
our scenario are usually very flat. Our method compressed
the local statistics into voxel features, generated feature maps
with voxel size 0.4m, and reached comparable performance
with the baselines using smaller voxel sizes, at the cost of
small storage overhead for storing the features.



Fig. 4: Visualizations of the projected depth maps from KITTI Odometry dataset (upper row) and Argoverse Tracking dataset
(lower row) (further distance is represented by red, closer distance is represented by blue) From left to right are initial pose,
baseline with 0.1m voxel size, baseline with 0.2m voxel size and our HyperMap result. Best viewed in PDF file.

(a) CARLA (b) KITTI 00 (c) Argoverse c691

(d) after rain (e) sunset (f) rain (g) sunny

Fig. 5: Visualization of the maps and the CARLA weathers.

DATASET MODEL VOXEL SIZE(M) TRANS(M) ROT(◦) MAP SIZE (bytes/m2)

CMRNet + tanh 0.1 0.16 0.30 524.2
CARLA CMRNet + tanh 0.2 0.18 0.29 193.5

CMRNet + tanh 0.4 0.24 0.24 52.5
HyperMap 0.4 0.15 0.24 56.7

CMRNet + tanh 0.1 0.45 1.35 1471.2
KITTI CMRNet + tanh 0.2 0.47 1.40 330.3

CMRNet + tanh 0.4 0.63 1.97 75.7
HyperMap 0.4 0.48 1.42 81.8

CMRNet + tanh 0.1 0.60 1.35 717.1
Argoverse CMRNet + tanh 0.2 0.61 0.95 282.7

CMRNet + tanh 0.4 0.65 0.95 89.0
HyperMap 0.4 0.58 0.93 96.0

TABLE I: Quantitative comparisons.Overall, we reduced the
total map size by 87− 94% with comparable accuracy.

VIII. DISCUSSION AND CONCLUSION

In this work, we demonstrated the valuable potential of
the proposed offline map feature preprocessing. It is possible
to apply additional compression methods on top of the raw
formats to further compress the maps. The map compression
advantages from our method would still be valid in this case.
We have so far demonstrated that the proposed approach
is effective with voxel-based downsampling. It would be
interesting to explore different point cloud downsampling
methods, such as uniform downsampling or selective down-
sampling in the future. In addition, although not the focus
of this paper, it is possible to further the performance of
HyperMap using an iterative approach [2], [3]. In addition
to the methods used in this paper, other types of features,
such as semantic labels, loop-closure features, and other 3D
representations (like PointNet [33], FCGF [7]), can be added

(a) (b)

(c) (d)

Fig. 6: Visualizations of (a)(b) the raw point cloud map,
(c) the K-means centroids stored on the map, and (d) the
reconstructed map features from the K-means centroids and
the stored indices in Hypermap. Notice that the LiDAR
sweep pattern from the point cloud map generation process
is also captured by the feature extractor.

to the offline process and potentially improve performance.
The advantage of the lowered voxel resolution is obvious in
reducing map storage and the online query and processing
time. Furthermore, the benefits enabled by the “late pro-
jection” paradigm opens the door to many possibilities in
algorithm and system design, such as iterative optimization,
high-speed localization, and cheaper on-board computers. We
look forward to investigating other applications and methods
that take advantage of the “late projection” way of thinking.

ACKNOWLEDGEMENTS

This work was supported by the CMU Argo AI Center
for Autonomous Vehicle Research. We thank the authors of
CMRNet [3] for providing the maps and the ground truth
poses of the KITTI Odometry Dataset. We also thank our
labmates for the valuable suggestions to improve this paper.



REFERENCES

[1] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Inter-
net of Things Journal (IoT-J), vol. 5, no. 2, pp. 829–846, Mar. 2018.

[2] D. Cattaneo, D. G. Sorrenti, and A. Valada, “CMRNet++: Map and
camera agnostic monocular visual localization in lidar maps,” in Proc.
IEEE Intl. Conf. on Robotics and Automation (ICRA), May 2020.

[3] D. Cattaneo, M. Vaghi, A. L. Ballardini, S. Fontana, D. G. Sorrenti,
and W. Burgard, “CMRNet: Camera to lidar-map registration,” in IEEE
Intelligent Transportation Systems Conference (ITSC), Oct. 2019, pp.
1283–1289.

[4] Y. Chen and G. Wang, “EnforceNet: Monocular camera localization
in large scale indoor sparse lidar point cloud,” arXiv, Tech. Rep., Jul.
2019.

[5] D. Retinskiy, “Submanifold sparse convolutional networks,” Tech.
Rep., Jun. 2017.

[6] Y. Zhou and O. Tuzel, “VoxelNet: End-to-end learning for point cloud
based 3d object detection,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), Jun. 2018, pp. 4490–4499.

[7] C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric
features,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Jun. 2019.

[8] C. Choy, W. Dong, and V. Koltun, “Deep global registration,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Jun.
2020, pp. 2511–2520.

[9] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns
for object segmentation and fine-grained localization,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Jun. 2015,
pp. 447–456.

[10] T. Sattler, B. Leibe, and L. Kobbelt, “Fast image-based localization
using direct 2d-to-3d matching,” in Proc. Intl. Conf. on Computer
Vision (ICCV), Nov. 2011.

[11] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A convolutional
network for real-time 6-dof camera relocalization,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Jun. 2015.

[12] L. Svarm, O. Enqvist, F. Kahl, and M. Oskarsson, “City-scale local-
ization for cameras with known vertical direction,” IEEE Trans. on
Pattern Analysis and Machine Intelligence (TPAMI), vol. 39, no. 7,
Jul. 2017.

[13] A. Gawel, C. D. Don, R. Siegwart, J. Nieto, and C. Cadena, “X-View
: Graph-based semantic multi-view localization,” IEEE Robotics and
Automation Letters (RA-L), vol. 3, no. 3, Jul. 2018.

[14] D. Cattaneo, M. Vaghi, S. Fontana, A. L. Ballardini, and D. G.
Sorrenti, “Global visual localization in lidar-maps through shared 2d-
3d embedding space,” in Proc. IEEE Intl. Conf. on Robotics and
Automation (ICRA), May 2020.

[15] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular
camera localization in 3d lidar maps,” in Proc. IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 1926–1931.

[16] H. Kim, C. D. Correa, and N. Max, “Automatic registration of lidar
and optical imagery using depth map stereo,” in IEEE Intl. Conf. on
Computational Photography (ICCP), May 2014.

[17] A. Mastin, J. Kepner, and J. Fisher, “Automatic registration of lidar
and optical images of urban scenes,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). Institute of Electrical and
Electronics Engineers (IEEE), Jun. 2009.

[18] Y. Lu, J. Huang, Y. T. Chen, and B. Heisele, “Monocular localization in
urban environments using road markings,” in IEEE Intelligent Vehicles
Symposium (IV), Jul. 2017, pp. 468–474.

[19] R. W. Wolcott and R. M. Eustice, “Visual localization within lidar
maps for automated urban driving,” in Proc. IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), Sep. 2014, pp. 176–183.

[20] ——, “Fast lidar localization using multiresolution Gaussian mixture
maps,” in Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA),
no. June, Jun. 2015, pp. 2814–2821.

[21] H. Yu, W. Zhen, W. Yang, J. Zhang, and S. Scherer, “Monocular
camera localization in prior lidar maps with 2d-3d line correspon-
dences,” in Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), Oct. 2020.

[22] D. Sun, X. Yang, M. Y. Liu, and J. Kautz, “PWC-Net: CNNs for
optical flow using pyramid, warping, and cost volume,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Jun. 2018,
pp. 8934–8943.

[23] K. L. Oehler and R. M. Gray, “Combining image compression and
classification using vector quantization,” IEEE Trans. on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 17, no. 5, pp. 461–
473, 1995.

[24] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte,
L. Benini, and L. Van Gool, “Soft-to-hard vector quantization for
end-to-end learning compressible representations,” in Proc. Conf. on
Neural Information Processing Systems (NeurIPS), Dec. 2017, pp.
1142–1152.

[25] X. Wei, I. A. Barsan, S. Wang, J. Martinez, and R. Urtasun, “Learning
to localize through compressed binary maps,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 10 308–
10 316.

[26] C. H. Lin, C. Kong, and S. Lucey, “Learning efficient point cloud
generation for dense 3d object reconstruction,” in Proc. AAAI Conf.
on Artificial Intelligence (AAAI), Aug. 2018, pp. 7114–7121.

[27] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik, “Multi-view supervi-
sion for single-view reconstruction via differentiable ray consistency,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Jun. 2017, pp. 209–217.

[28] E. Insafutdinov and A. Dosovitskiy, “Unsupervised learning of shape
and pose with differentiable point clouds,” in Proc. Conf. on Neural
Information Processing Systems (NeurIPS), Dec. 2018.

[29] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and
M. Zollhöfer, “DeepVoxels: Learning persistent 3d feature embed-
dings,” in Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), Jun. 2019.

[30] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. Conf. on Robot
Learning (CoRL), Nov. 2017.

[31] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Jun. 2012.

[32] M. F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse:
3d tracking and forecasting with rich maps,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Jun. 2019.

[33] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on
point sets for 3d classification and segmentation,” in Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), Jun. 2017.


