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Abstract— We address the problem of class agnostic, joint
instance segmentation of scene data. While learning-based se-
mantic instance segmentation methods have achieved impressive
progress, their use is limited in robotics applications due to
reliance on expensive training data annotations and assump-
tions of single sensor modality or known object classes. We
propose a novel graph-based instance segmentation approach
that combines information from a 2D image sequence and a
3D point cloud capturing the scene. Our approach propagates
information with a general graph representation to produce
a segmentation taking into account both geometric and photo-
metric information. This allows us to leverage information from
complementary sensor modalities without requiring training
data. Our method shows improved object recall and boundary
identification over state-of-the-art RGB-D segmentation meth-
ods. We demonstrate generality by evaluating on both RGB-D
data and a LiDAR+image sensor data.

I. INTRODUCTION

Object-level scene representations are important for
robotics applications. Typically, a scene is represented with
3D data obtained from exteroceptive sensors such as RGB-
D cameras or LiDAR scanners. Object segmentations within
the scene are typically performed on 2D images as a pre-
processing step or directly on a 3D representation such
as a point cloud. 2D data segmentation is challenging as
camera images often contain photometric edges resulting
from lighting, colour and occlusion that do not correspond to
a true object boundary. In 3D data, reconstruction artefacts
and poorly sampled object boundaries limit segmentation ac-
curacy. Improved object level consistency can be achieved by
combining photometric and geometric information acquired
from multiple sensing modalities.

Deep learning methods have been extensively applied in
segmentation of single-sensor data such as point clouds or
images [1], [2], [3]. Recent works operating on 2.5D [4] and
multi-view [3] data have shown a lot of progress on standard
benchmarks, but their use is limited in a robotics context due
to assumptions such as single sensor modality, reliance on
expensive training data annotations and knowledge of a finite
set of object classes. Alternatively, graph-based methods
[5] are able to incorporate multimodal data. Prior work
has applied graph-based methods to segmentation of a 3D
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Fig. 1. Our method addresses joint segmentation of a point cloud and
sequence of images. An example multimodal segment is shown in blue.
Deep-learning methods are popular in segmentation of data from a single
sensor as large annotated training datasets are available. This data-driven
approach is less readily applied to multimodal data or reconstructed scenes
where training data is expensive to obtain.

LiDAR scan with colour information [6], [7] and semantic
labels [8] from a registered 2D image.

In this work, we propose a novel graph-based instance
segmentation approach that combines information from both
2D images and 3D point clouds with a common graph rep-
resentation. While many computer vision applications have
RGB-D image sequences available, we maintain generality
by performing joint segmentation on a single point cloud and
sequence of RGB images. By reasoning jointly over 2D and
3D data, we combine geometric and photometric information
to perform segmentation without training data.

Our contributions are: (i) A general graph representation
that allows data from a variety of sensing modalities to be
incorporated in a joint segmentation problem. (ii) A joint
scene segmentation approach that combines photometric and
geometric information to produce a consistent segmentation
of all objects in a scene. (iii) An evaluation of our method on
real-world RGB-D data [9] with indoor sequences varying in
size and complexity. We compare our performance to state-
of-the-art deep learning methods for segmentation of single
view [4] and multi-view [3] RGB-D data, showing improved
object recall and boundary precision. We also apply our
method to a self-collected LiDAR dataset, demonstrating
generalizability to different sensors and robotics platforms.

II. RELATED WORK

Accurate object segmentation improves perceptual under-
standing of the environment, furthering the capabilities of
mobile robots. Fusion++ [10] uses a state-of-the-art instance
segmentation network [1] to segment image frames and



perform volumetric SLAM at the object level for improved
robustness and efficiency. In the multi-view 3D reconstruc-
tion task [11], [12] incorporate per-pixel semantic labels,
showing that both geometry and label accuracy are improved
when jointly optimised. Segmentation is also useful when a
scene contains challenging geometries. [13] use point cloud
segmentation to extract thin structures from a coarse 3D
reconstruction for further refinement. In the area of grasping,
[14] apply superpixel segmentation to bounding box object
detections in a single image, merging them using known
object geometry to produce accurate segmentation masks for
pose estimation. While deep-learning based instance segmen-
tation methods perform well in terms of object recall, they
have difficulty capturing fine details and classical methods
using photometric information directly are often preferred
when accurate object boundaries are required.

As shown in [13], [14], classical segmentation techniques
such as [15], [5], [16], [17] perform well in real-world
conditions, but are quite sensitive and require careful tuning
for the combination of sensor and deployment environment.
Most recent work in segmentation favours deep-learning
methods [1], [18], [2], [19], [20] which make use of large
labelled datasets [21], [22] for improved robustness, though
segmentation is limited to object classes available in training.

The most relevant example of a modern, semantic
instance-based segmentation method is 3D-SIS [3], a multi-
view RGB-D segmentation network. Learned features from
RGB images are backprojected to associated voxels in a 3D
grid. 3D geometry and learned features are then used to
estimate per-voxel object masks, predicted by combining 3D
region proposals and semantic label estimation. SceneCut [4]
is another relevant method for single view RGB-D images. It
makes use of learned object boundaries rather than semantic
instances so it is able to segment objects of classes it has not
encountered in training. A hierarchical segmentation tree is
computed from detected boundaries and an optimal segmen-
tation combining photometric and geometric information is
obtained with dynamic programming.

Deep learning methods relying on training data are less
readily applied to robotics applications involving multiple
sensors. Graph representations are often used to propagate
segmentation information across data representations. For
segmentation of a LiDAR scan and image, a common
approach [6], [7] is to combine the inputs into a single
graph which is segmented with a popular graph segmentation
method [5]. LDLS [8] use an iterative label diffusion process
to propagate semantic labels from an RGB image to 3D, for
improved instance segmentation of a 3D LiDAR scan. Graph-
based methods have also been used to combine information
across images in multi-view segmentation [23], though this
method extracts only a single object of interest which must
be observed from many vantage points.

While the previous works combine information from mul-
tiple sensors, they only seek to segment a single data type.
Some robotics applications may require a consistent scene
segmentation of multimodal data. In our formulation, joint
segmentation seeks to identify all points from a point cloud

and all pixels from a sequence of images belonging to each
object in the scene. This variant of joint segmentation is
far less studied. Zhang [24] use a graph representation to
propagate information and jointly segment a large scale point
cloud and a registered set of images, though in this case only
semantic segmentation is performed, with pixels or points
assigned to one of five classes.

III. PROBLEM FORMULATION

We refer to the task of decomposing a point cloud and
a set of registered images into a set of objects as joint
instance segmentation. The point cloud is modelled as a
set of N 3D points P = {p1, ...,pN}, pi ∈ R3 expressed in
the global coordinate frame. The set of L images is denoted
I = {I1, ...IL} where Ik ∈ [0,1]W

k×Hk×3. The corresponding
camera viewpoints in the global coordinate frame are Tk ∈
SE(3). Each image can also be considered as a set of Mk =
W k×Hk pixels: Ik = {qk

1, ...,q
k
M}. Each pixel qk

j = (ck
j,xk

j)

consists of a normalised colour vector ck
j ∈ [0,1]3 and image

coordinates xk
j ∈ [0,W k−1]× [0,Hk−1].

Performing segmentation on a point cloud or image is
equivalent to finding a partition of an associated set. For
a set A = {a1, ...,aN}, we denote a segmentation SA as
a partitioning of A into a set of unique, non-overlapping
subsets such that SA = {SA

1 , ...,S
A
K}, where

⋃K
i SA

i = A. A
segmentation has the property that each ai is assigned to
a single segment SA(ai) = SA

j , j ∈ [1,K].
The goal of joint instance segmentation is to find a

segmentation S{P,I} that accurately represents the distribution
of objects in the scene captured by P and I. As shown in
Figure 1 each segment is a set that may contain both points
pi and pixels qk

j and represents a distinct object. In this work,
we perform class-agnostic segmentation, identifying objects
with photometric and geometric information only, without
the use of predefined object models or learned classes.

IV. APPROACH

We use a general graph-based framework to propagate
segmentation information between a 3D pointcloud and a
set of registered 2D images to improve the joint instance
segmentation of the scene. An efficient graph-based seg-
mentation method [5] (FH) is used as the backbone of our
approach. A graph G = (V,E) consists of a set of vertices
vi ∈V and a set of edges ei, j ∈ E, where ei, j = (vi,v j,wi, j).
Edge weight wi, j quantifies the distance between associated

Algorithm 1 Joint instance segmentation approach
1: for Ik ∈ I do
2: GIk ← imageToGraph(Ik)

3: SIk ← graphSegmentation(GIk
)

4: end for
5: GP← pointcloudToGraph(P)
6: GP+← propagate2Dto3D(GP,{SI0

, ...,SIL})
7: SP← graphSegmentation(GP+)
8: for Ik ∈ I do
9: SIk+← segmentationRefinement(SIk

,SP)
10: end for



vertices, smaller wi, j indicating similar vertices more likely
to belong to the same segment. The FH algorithm examines
edges of the graph and performs segment merges by compar-
ing the current edge weight to those in existing segments. By
examining edges by increasing edge weight, regions grow in
a conservative manner.

The joint segmentation approach is outlined in Algorithm
1 and depicted in Figure 2. The 3D point cloud and each
individual image are represented as separate graphs. De-
coupling the problem in this manner reduces computational
complexity, and single-modality preprocessing techniques
can be applied to the raw data and included as inputs.

After conversion to a graph representation, an initial
segmentation of each image is computed. These image
segmentations are propagated to the 3D point cloud graph
as described in IV-B, and used in the 3D segmentation. As
segmentation artefacts caused by occlusion and lighting are
typically not persistent across multiple viewpoints, combin-
ing multi-view photometric information improves the 3D
segmentation. This 3D segmentation information is propa-
gated back to each image graph and used to refine each
image segmentation, detailed in IV-C. This reduces the effect
of occlusion and lighting to produce object-consistent image
segmentations.

A. Initial Image Segmentation

For simplicity, in this section we drop notation indicating
the k−th image and refer to image Ik as I. The initial image
segmentation SI is computed using the FH segmentation
algorithm on a graph constructed from the photometric
information in each image. Shown in Figure 2 (top-left),
boundaries are computed from each image using [25], a
boundary detector using a structured learning framework to
learn basic edge types from local image patches, trained in
a class-agnostic manner with the BSDS500 dataset [16].

To represent an image with a graph, vertices are formed
vI

i = (ci,xi,bi), where pixel values bi are from boundary
image B. Edges are constructed according to an 8-connected

Fig. 2. The proposed joint segmentation method: 2D pixel – 3D point
associations are used to propagate initial segmentation information from
each image to adjust weights in the 3D point cloud graph. The point cloud is
segmented, and this segmentation is used to refine each image segmentation.

Fig. 3. Propagation of image segmentation information to 3D point cloud
graph. For image k, 3D point pi is reprojected into image segmentation SIk

,
and a grid gk

pi
centered at corresponding pixel xk

pi
is extracted. For each

edge in the 3D point cloud graph, the overlap of the two grids associated
with each end point is computed according to Eq. 5.

grid structure, connecting vertices according to Eq. 1.

∀(i, j) s.t. 1≤ ‖xi,x j‖1 ≤ 2, ∃ eI
i, j =

(
vI

i ,v
I
j,w

I
i, j
)

(1)

Edge weights are derived purely from photometric informa-
tion in the image according to Eq. 2. For neighbouring pixels,
the 2-norm of the colour channel and boundary magnitude
are combined with hyperparameters wc and wb. The use
of the minimum boundary value is a design decision that
reduces the effect of noise in the boundary image and pixel-
level error in boundary localization.

wI
i, j = wc‖ci− c j‖2 +wb min(bi,b j) (2)

The FH graph segmentation algorithm is then applied to the
graph GI to produce SI.

B. Point Cloud Segmentation

The point cloud P is represented with a graph GP. Each
3D point is represented with a vertex vP

i = (pi,ni), where ni
is the surface normal estimated at pi with first-order plane
fitting [26]. Edges are constructed by connecting each vertex
with their K nearest neighbours in Euclidean space.

Geometric information used in segmentation combines Eu-
clidean distance and θi, j, the angle between surface normals
of neighbouring points,

θi, j = atan2(ni×n j,ni ·n j) (3)

The edge weights in GP combine this geometric informa-
tion with 2D segmentation information propagated from each
image, using hyperparameters wd ,wθ ,wr according to Eq. 4:

wP
i, j = wd‖pi−pi‖2 +wθ θi, j +wrr

(
SI,pi,p j

)
(4)

The reprojection term r
(
SI,pi,p j

)
quantifies the strength

of the connection between points pi,p j inferred from im-
age segmentations SI. Figure 3 shows the process used to
compute r

(
SI,pi,p j

)
and explains its component parts. As

objects will likely obscure one another, the visibility of



each pi ∈ P from each image viewpoint Tk is determined
with the hidden point removal method [27]. Visibility count
v
(
SI,pi,p j

)
is the number of images in which both points

pi and pi are visible. Each visible point reprojects into a
pixel xk

pi
in image segmentation SIk

. A grid gk
pi

of size t× t
centered at xk

pi
is extracted from SIk

. Associating xk
pi

with a
grid as opposed to a single pixel allows for some error in
image registration. The overlap o shown in Eq. 5 measures
the local similarity of image segmentations.

o
(

gk
pi
,gk

p j

)
=

∑

{
gk

pi

}
∪
{

gk
p j

}
l min

(∣∣gk
pi
= l
∣∣ , ∣∣∣gk

p j
= l
∣∣∣)

min
(∣∣gk

pi

∣∣ , ∣∣∣gk
p j

∣∣∣) (5)

Finally, the hyperparameter ro acts as a mean value for
reprojection term r

(
SI,pi,p j

)
, which is computed according

to Eq. 6.

r
(
SI,pi,p j

)
= 1− ro +

v
(
SI,pi,p j

)
L

(
ro−

L

∑
k=1

o(gk
pi
,gk

p j
)

v(SI,pi,p j)

)
(6)

The workings of Eq. 6 become clear when the domains
of terms are considered: r

(
SI,pi,p j

)
∈ [0,1], ro ∈ [0,1],

v(SI,pi,p j)
L ∈ [0,1] and ∑

L
k=1

o(gk
pi
,gk

p j
)

v(SI,pi,p j)
∈ [0,1]. The effect is

that overlap greater than ro corresponds to low weight and
overlap below ro corresponds to a high weight. Edges with
low visibility count are less certain, so will have less effect
by pulling the value of the reprojection term towards ro.
Conversely, edges with high visibility will have a low or
high r

(
SI,pi,p j

)
and contribute more.

As in the Section IV-A, the FH graph segmentation
algorithm is applied to graph GP to produce SP.

C. Final Image Segmentation
For simplicity, we again drop notation indicating the k-th

image. The final image segmentation SI+ refines SI by prop-
agating information from the 3D point cloud segmentation
SP. As P is sparse, image graph edges cannot be adjusted in
a method similar to IV-B. Instead, segments are merged and
split to achieve consistency with SP.

The method used to propagate point cloud segmentation
information into each image is shown in Figure 4. A vertex
in SP reprojects into image I according to xpi = M (K,T,pi)
where M() models camera extrinsics and intrinsics. Shown
in Figure 4 a), a reprojection graph GR is constructed with
vertices vR

i = (xpi ,S
P(pi)). Edges ER are constructed to

connect vertices within a fixed radius R in the image plane.

∀(i, j) s.t. ||xpi ,xp j ||2 ≤ R, ∃ eR
i, j = (vR

i ,v
R
j ,w

R
i, j) (7)

The segment labels of these reprojected 3D points are
used to partition ER into non-overlapping subsets of internal
ER

int and external ER
ext edges according to Eq. 8, as shown

in Figure 4 b). Internal edges are constructed from points
from same 3D segment, and external edges from 3D points
in different 3D segments.

eR
i, j ∈

{
ER

int if SP(pi) = SP(p j)

ER
ext if SP(pi) 6= SP(p j)

(8)

Fig. 4. Propagation of 3D point cloud segmentation into image for
refinement of image segmentation. a) For each image, a 2D graph is
constructed with set of visible reprojected points. b) Edges of this graph
are internal (blue)/external (red) if the associated 3D points are in the
same/different segment. c) Two image segments are merged if they are
connected by many internal edges (blue boundary). An image segment (red)
is split with the minimum-cut algorithm if it contains many external edges.

Figure 4 c) and d) depict segments in SP that are merged
or split to maintain consistency with the point cloud segmen-
tation which is represented by ER

int and ER
ext.

Internal edges connecting two image segments suggest that
they represent the same object and a photometric edge has
caused an undesired separation. We use the notation eR

i, j ∈(
SI

m,S
I
n
)

to indicate that xpi ∈ SI
m and xp j ∈ SI

n. The numbers
of internal, external and total reprojected edges are denoted:

nint =
∣∣ER

int ∈
(
SI

m,S
I
n
)∣∣ (9)

next =
∣∣ER

ext ∈
(
SI

m,S
I
n
)∣∣ (10)

nR =
∣∣ER ∈

(
SI

m,S
I
n
)∣∣ (11)

In Eq. 12 the ratio of internal edges to the total number
connecting two segments is compared with hyperparameter
rm to determine if they should be merged.

{
SI+

m ,SI+
n
}
←


SI

m∪SI
n if

nint

nR
≥ rm{

SI
m,S

I
n
}

if
next

nR
< rm

(12)

External edges fully contained by a 3D segment suggest
undersegmentation. The greedy FH graph segmentation al-
gorithm will merge segments connected by a low weight
edge regardless of whether connecting edges indicate a
strong boundary. In this case a subgraph representing the
segment is extracted and we perform splitting the minimum-
cut approach based on [17]. While inefficient for an entire
image, minimum-cut is well suited for finding an optimum
boundary in a single segment. It splits a segment along this
boundary according to Eq. 13.

min-cut
(
SI

l
)
=
{

SI
m,S

I
n
}

(13)



where SI
m∪SI

n = SI
l and SI

m∩SI
n = /0.

The number of external edges is compared to hyperparam-
eter ns to determine if the minimum-cut method should be
applied, as shown in Eq. 14. This thresholding is performed
using the number of external edges rather than the fraction
to account for small missed segments that would otherwise
be undetected.

SI+
l ←


{

SI
m,S

I
n
}

if
∣∣ER

ext ∈
(
SI

m,S
I
n
)∣∣≥ ns

SI
l if

∣∣ER
ext ∈

(
SI

m,S
I
n
)∣∣< ns

(14)

Finally, image segments are merged with the mode of repro-
jecting point cloud segments to produce a joint segmentation
of the scene, where each segment represents an object in the
point cloud and across all images it is observed in.

V. EVALUATION

A. ScanNet v2 RGB-D Dataset and Benchmarks

We use the ScanNet v2 [9] RGB-D dataset to evaluate
our method. It contains semantic instance labelled RGB-
D sequences of a variety of indoor scenes. In addition, a
labelled point cloud derived from [28] is available. Our
method uses only the position data in the point cloud and the
colour channels of each image. We evaluate using sequences
144, 378, 423, 427 and 664 which are augmented for use
with 3D-SIS and provided in the Github repository of [3].
These sequences vary in size, lighting conditions and clutter.
Each contains 1–2K images and a point cloud consisting of
100–200K points. We use the same parameter values across
all sequences.

We perform class agnostic instance segmentation evalu-
ation against two state-of-the-art methods. The point cloud
segmentation is compared with 3D-SIS [3]. It uses multi-
view RGB-D images which are roughly equivalent with our
input in terms of available information. Image segmentation
is compared with SceneCut [4], whose off-the-shelf imple-
mentation is not fine tuned on ScanNet v2, and which uses
single RGB-D images so scores are not strictly comparable to
our multi-view approach. Rather, we seek to compare charac-
teristics of the methods that make them suitable for different
tasks. The boundary detection submodules of SceneCut and
our method are both trained on the BSDS500 dataset [16].
We perform a single joint segmentation on each sequence and
compare the point cloud and image sequence segmentations
to 3D-SIS and SceneCut respectively, rather than comparing
with separately derived solutions.

We use symmetric segmentation covering (SSC) and F-
measure for objects and parts (F) described in [29] as

TABLE I
POINT CLOUD SEGMENTATION COMPARISON ON SCANNET V2

Method SSC Pr Re F APo APp

3D-SIS (P) 48.63 72.78 25.31 29.36 19.69 24.30
Ours (P) 50.80 22.33 28.49 19.81 10.22 8.581

3D-SIS (PD) 63.66 67.66 26.20 31.73 16.28 29.50
Ours (PD) 55.02 24.06 33.05 24.51 13.52 29.54

evaluation metrics. F is derived from precision (Pr) and
recall (Re) scores computed in an approach similar to that
used in the standard average-precision (AP) metric. F is
more appropriate for class agnostic segmentation of all
data in an image or point cloud, is it identifies fragments
(undersegmented), objects and parts (oversegmented), rather
than simply counting true and false positive object detections.
We use thresholds γo = 0.75, γp = 0.25, β = 0.1, which are
described in detail in [29]. We use more relaxed values to
better identify objects and parts, as the ScanNet v2 sequences
contain a high amount of clutter. For comparison to 3D-SIS
which is based on object detection, we use Pr and Re to
compute an analogue to standard AP. Where AP varies the
IoU value determining a positive detection, we separately
compute scores varying both the object and part thresholds
γo,γp to compute APo, APp which quantify object and part
segmentation accuracy respectively.

B. ScanNet v2 RGB-D Point Cloud Segmentation

Across the five sequences, approximately 65.38% of the
P is overlapped by 3D-SIS outputs in the form of object
detections and masks. This output is considered in two ways:
(i) As a segmentation of the entire scene, with the undetected
portion considered a background object. We compare using
P. (ii) As detections of objects of interest. Here we extract
a subset PD corresponding to detected ground truth objects
only. Table I shows these computed scores. Scores are
percentages and higher values desired. Across (i) and (ii) our
method achieves higher Re scores. This is seen in Figure 5,
where 3D-SIS produces far fewer segments. Conversely, our
class agnostic method produces oversegmentation resulting
in reduced Pr scores. APp is comparable on PD, as this score
does not penalise oversegmentation of objects. On P, 3D-

Fig. 5. Segmented point clouds from ScanNet v2 sequences 144 (top row),
378 (middle row), 427 (bottom row). In our result, colour differentiates
object segment but does not correspond to any class. Oversegmentation is
common in our method, often present in areas where geometric or colour
information suggest a boundary. 3D-SIS is trained semantically so it can
produce object-consistent segments, but does not segment large regions
shown in black, as training is limited to a finite set of classes.



Fig. 6. Example input images and segmentation results from ScanNet
sequences 144 (top row), 378 (middle row), 427 (bottom row). Our initial
segmentation identifies photometric boundaries well, but is oversegmented
at the object level, while the final result achieves a suitable segmentation
level. SceneCut has strong recall for objects, but tends to oversegment.

SIS has far higher APp as this metric rewards very severe
undersegmentation. We achieve comparable SSC on PD, as
boundary shapes have roughly the same level of accuracy.
Our method performs comparably to 3D-SIS in inference
time. Point cloud normal estimation, graph construction and
segmentation was performed on an i7 CPU with an average
total time of 4.5s, compared to an average 4.1s for GPU
inference on 3D-SIS.

C. ScanNet v2 RGB-D Image Sequence Segmentation

We compare our initial and final image segmentations
with SceneCut, reporting scores in Table II. Our final re-
sult achieves almost equal SSC with SceneCut. As seen
in Figure 6, our result has slight undersegmentation while
SceneCut is oversegmented. Poor Pr in both methods may
be caused by error in ground truth annotations resulting
from reconstruction limitations in dataset generation [28].
However, our higher Pr is justified when comparing boundary
shapes between input images and our results by eye. Fine
boundary details are lost with CNN-based methods due to
image size reduction, while they can be identified with our
graph-based method that uses all photometric information.
Conversely, SceneCut has much stronger Re as it uses a
boundary detector trained with semantic annotations. Our
method incorrectly merges or splits objects due to uneven
point cloud density, such as the table base in Figure 6.

The inference time for our method was greater than that
of SceneCut, in part because of the processing required to
include information from the point cloud segmentation. The
total time for point reprojection, initial image segmentation
and refinement was 14.6s per image, compared to an average
of 5.0s per image for SceneCut inference.

TABLE II
IMAGE SEGMENTATION COMPARISON ON SCANNET V2

Method SSC Pr Re F

Ours-initial (I) 42.34 5.116 42.36 8.474
Ours-final (I) 46.70 10.28 38.11 13.37
SceneCut (I) 46.47 4.701 52.54 7.928

D. LiDAR+Image Dataset Evaluation

To demonstrate the broad applicability of our method to
data from a range of sensor types we perform a quantitative
evaluation on a self-collected dataset previously used in
[30]. It consists of scans from a Velodyne VLP-16 LiDAR
and a FLIR Grasshopper3 camera. We use state estimation
from [31] to align scans into a single point cloud. Figure
7 demonstrates the performance of our joint segmentation
method. The combination of 2D and 3D information is
effective in identifying object boundaries. However, without
object-level semantic knowledge, oversegmentation occurs.

VI. CONCLUSION

We have presented an approach for joint segmentation of
2D and 3D data, a task that is less amenable to deep learning
methods. The use of a general graph representation allows the
method to be applied to data acquired from a variety of sen-
sors. We compare to state-of-the-art segmentation methods
combining 2D and 3D information, showing improved object
recall and boundary shape. Strong performance in terms of
these qualities is essential in robotics applications such as
manipulation and mapping for navigation. The decoupling
of image and point cloud segmentation means that external
techniques can be applied to the input data and incorporated
into our approach. This presents an opportunity to combine
information from deep networks well trained for segmenta-
tion of either 2D or 3D data into our method. Future work
could investigate whether this approach allows data-driven
methods to be widely deployed in challenging, real-world
robotics applications.

Fig. 7. The performance of our method on a LiDAR+Image Dataset. a)
Input images show a challenging environment with many small objects. b)
Initial image segmentations tend to oversegment the scene and harsh lighting
causes artefacts. c) A comparison of a point cloud segmented with geometric
only/combined information (left/right). d) Final image segmentations are
improved (incorrect boundaries on the floor merged).
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