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Abstract
Robotic manipulation of cloth remains challenging due to the complex dynamics

of cloth, lack of a low-dimensional state representation, and self-occlusions. Particu-
larly, self-occlusion makes it difficult to estimate the full state of the cloth, which poses
significant challenges to policy learning and dynamics modeling. Ideally, a robot try-
ing to unfold a crumpled or folded cloth should be able to reason about the cloth’s
occluded regions. In this thesis, we aim to investigate different strategies of enabling
the robot to reason about occlusion in a closed-loop manner.

In the first project, we propose to learn a particle-based dynamics model from a
partial point cloud observation. To overcome the challenges of partial observability,
we infer which visible points are connected on the underlying cloth mesh. We then
learn a dynamics model over this visible connectivity graph. Since the partial point
cloud only captures the structure of visible cloth, we design a graph imitation learning
method that reason about occlusion implicitly. Compared to previous learning-based
approaches, our model poses strong inductive bias with its particle based representa-
tion for learning the underlying cloth physics; it can generalize to cloths with novel
shapes; it is invariant to visual features; and the predictions can be more easily visual-
ized.

In the second project, we explore explicit occlusion reasoning via cloth reconstruc-
tion. We leverage recent advances in pose estimation for cloth to build a system that
uses explicit occlusion reasoning to unfold a crumpled cloth. Specifically, we first
learn a model to reconstruct the mesh of the cloth. However, the model will likely
have errors due to the complexities of the cloth configurations and due to ambiguities
from occlusions. Our main insight is that we can further refine the predicted recon-
struction by performing test-time finetuning with self-supervised losses. The obtained
reconstructed mesh allows us to use a mesh-based dynamics model for planning while
reasoning about occlusions. We evaluate MEDOR (MEsh-based Dynamics with Oc-
clusion Reasoning) both on cloth flattening as well as on cloth canonicalization, in
which the objective is to manipulate the cloth into a canonical pose. Our experiments
show that our method significantly outperforms prior methods that do not explicitly
account for occlusions or perform test-time optimization.

Although MEDOR produces impressive reconstruction results in simulation, we
observe a huge sim-to-real gap when deploying it to real world. In the third project, we
propose a self-supervised method to finetune a mesh reconstruction model in the real
world. Since the full mesh of crumpled cloth is difficult to obtain in the real world, we
design a special data collection scheme and an action-conditioned model-based cloth
tracking method to generate pseudo-labels for self-supervised learning. By finetuning
the pretrained mesh reconstruction model on this pseudo-labeled dataset, we show
that we can improve the quality of the reconstructed mesh without requiring human
annotations.
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Chapter 1

Introduction

Robotic manipulation of cloth remains difficult due to several reasons. Particularly, state estimation
poses a specific challenge due to the deformability, high dimensional state representation, and self-
occlusions. In this thesis, we study the problem of occlusion and investigate several strategies to
tackle it.

Why do we need to tackle with self-occlusion? Ideally, a robot trying to unfold a crumpled or
folded cloth should be able to reason about the cloth’s occluded regions. For example, suppose
the robot try to unfold a shirt whose sleeve is folded below, if the robot doesn’t have that piece
of information, it cannot come up with the action to reveal it. Our assumption is that occlusion
reasoning provide useful information for downstream cloth manipulation task.

Why is self-occlusion a difficult problem for cloth? For rigid object, the configuration of the
occluded region can be easily determined by the visible part. However, since cloth is “deformable“,
the configuration of occluded part can be arbitrary. Another consequence of the deformability is
the high dimensional representation required for specifying the full configuration, which makes it
a challenging task for learning-based method.

In this thesis, we investigate two possible solutions: implicit occlusion reasoning and explicit
occlusion reasoning by reconstruction.

• In the chapter [2], we introduce VCD (Visible Connectivity Dynamics), a particle-based
dynamics model on partial point cloud. The particle-based dynamics model captures the
inductive bias of the underlying physics dynamics, thus naturally generalize to clothes of
different shapes. Since the partial point cloud only contains information of the visible sur-
face, we propose to use graph imitation learning to implicitly reason the effect of occluded
part. Our experiment shows that implicit occlusion reasoning can improve the accuracy of
learned dynamics model.

• However, implicit reasoning is insufficient for tasks like cloth unfolding, so we further in-
vestigate the role of explicit occlusion reasoning by reconstructing the whole cloth. While
prior works [54, 59, 72, 62, 61, 60, 19] also attempt to estimate the state of the occluded
regions, they only allow open-loop cloth manipulation. In chapter [3], we propose MEDOR
to reconstruct the whole cloth in close-loop manner by self-supervised test-time finetuning.
We show the explicit reconstruction reduce the rollout error of dynamics model, and provide
more informative reward signal for planning

• One caveat of MEDOR is that it is fully trained in the simulation, thus suffers from a sim-to-
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real gap when deployed in real world. Training cloth reconstruction model in real world is
challenging due to the difficulty of obtaining ground-truth label. In chapter [4], we proposed
a method for self-supervised cloth reconstruction in real world by using cloth tracking.



Chapter 2

Learning Visible Connectivity Dynamics for
Cloth Smoothing

2.1 Introduction

Robotic manipulation of cloth has wide applications across both industrial and domestic tasks such
as laundry folding and bed making. However, cloth manipulation remains challenging for robotics
due to the complex cloth dynamics. Further, like most deformable objects, cloth cannot be easily
described by low-dimensional state representations when placed in arbitrary configurations. Self-
occlusions make state estimation especially difficult when the cloth is crumpled.

One approach to cloth manipulation explored by previous work, which we also adopt, is to
learn a cloth dynamics model and then use the model for planning to determine the robot actions.
However, given that a crumpled cloth has many self-occlusions and complex dynamics, it is un-
clear how to choose the appropriate state representation. One possible state representation is to use
a mesh model of the entire cloth [50]. However, fitting a full mesh model to an arbitrary crumpled
cloth configuration is difficult. Recent work have approached fabric manipulation by either com-
pressing the cloth representation into a fixed-size latent vector [127, 126, 73] or directly learning
a visual dynamics model in pixel space [38]. However, these representations do not enforce any
inductive bias of the cloth physics, leading to suboptimal performance and generalization.

In contrast to a pixel-based or latent dynamics model, particle-based models have recently been
shown to be able to learn dynamics for fluid and plastics [63, 97, 88]. A particle-based dynamics
representation has the following benefits: first, it captures the inductive bias of the underlying
physics, since real-world objects are composed of underlying atoms that can be modeled on the
micro-level by particles. Second, we can incorporate inductive bias by directly applying the effect
of the robot gripper on the particle being grasped (though the effect on the other particles must
still be inferred). Last, particle-based models are invariant to visual features such as object colors
or patterns. As such, in this paper we aim to learn a particle-based dynamics model for cloth.
However, the challenges in applying the particle-based model to cloth are that we cannot directly
observe the underlying particles composing the cloth nor their mesh connections. The problem is
made even more challenging due to the partial observability of the cloth from self-occlusions when
it is in a crumpled configuration.

Our insight into this problem is that, rather than fitting a mesh model to the observation, we

3
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Figure 2.1: Cloth smoothing by planning using a dynamics model with a visible connectivity graph.

should learn the visible connectivity dynamics (VCD): a dynamics model based on the connectivity
structure of the visible portion of the cloth. To do so, we first learn to estimate the visible connectiv-
ity graph: we estimate which points in the point cloud observation are connected in the underlying
cloth mesh (see Figure 2.1). Estimating the mesh connectivity of the observation is a simplification
of the problem of fitting a single full mesh model of the entire cloth to the observation; however,
it is significantly easier to learn, since we do not need to find a globally consistent explanation
of the observation which requires reasoning about occlusion; to estimate the mesh connectivity
of the observation, we only need to consider the visible local cloth structure. While the graph is
constructed only based on the visible points, we show that the dynamics model can be trained to
be robust to partial observation.

In this work, we focus on the task of smoothing a piece of cloth from a crumpled configu-
ration. We propose a method that infers the observable particles and their connections from the
point cloud, learns a visible connectivity dynamics model for the observable portion of the cloth,
and uses it for planning to smooth the cloth. We show that for smoothing, planning with a visi-
ble connectivity dynamics model greatly outperforms state-of-the-art model-based and model-free
reinforcement learning methods that use a fixed-size latent vector representation or learn a pixel-
based visual dynamics model. We then demonstrate zero-shot sim-to-real transfer where we deploy
the model trained in simulation on a Franka arm and show that the learned model can successfully
smooth cloths of different materials, geometries, and colors from crumpled configurations.

2.2 Related Work
Vision-based Cloth Manipulation: Some papers on cloth manipulation assume that the cloth is
already lying flat on the table [77, 105, 106]. If the cloth starts in an unknown configuration, then
one approach is to perform a sequence of actions that are designed to move the cloth into a set
of known configurations from which perception can be performed more easily [25, 71, 119]. For
example, the robot might first grasp the cloth by an arbitrary point and raise it into the air; it can
then detect the lowest point, either while the cloth is held in the air [25, 85, 52, 53, 54, 72] or after
throwing the cloth on the table [119]. By constraining the cloth to this configuration set, the task
of perceiving the cloth or fitting a mesh model [50] is greatly simplified. However, these funneling
actions are usually scripted and are not generalizable to different cloth shapes or configurations. In
contrast, our work aims to enable a robot to interact with cloth from arbitrary configurations and
shapes.

Other early works designed vision systems for detecting cloth features that can be used for
downstream tasks, such as a Harris Corner Detector [124] or a wrinkle-detector [111]. More
examples of such approaches are described in [50]. However, these approaches require a task-



specific manual design of vision features and are typically not robust to different variations of the
cloth configuration.
Policy Learning for Cloth Manipulation: Recently, there have been a number of learning based
approaches to cloth folding and smoothing. One approach is to learn a policy to achieve a given
manipulation task. Some papers approach this using learning from demonstration. The demonstra-
tions can be obtained using a heuristic expert [100] or a scripted sequence of actions based on cloth
descriptors [30]. Another approach to policy learning is model-free reinforcement learning (RL),
which has been applied to cloth manipulation [73, 126, 57]. However, policy learning approaches
often lack the ability to generalize to novel situations; this is especially problematic for cloth ma-
nipulation in which the cloth can be in a wide variety of crumpled configurations. We compare
our method to a state-of-the-art policy learning approach [126] and show greatly improved perfor-
mance.
Model-based RL for Cloth Manipulation: Model-based RL methods learn a dynamics model
and then use it for planning. Model-based reinforcement learning methods have many benefits
such as sample efficiency, interpretability, and generalizability to multiple tasks. Previous works
have tried to learn a pixel-based dynamics model that directly predict the future cloth images after
an action is applied [28, 38]. However, learning a visual model for image prediction is difficult
and the predicted images are usually blurry, unable to capture the details of the cloth. Another
approach is to represent the cloth with a fixed-size latent vector representation [127] and to plan in
that latent space. However, cloth has an intrinsic high dimension state representation; thus, such
compressed representations typically lose the fine-grained details of their environment and are
unsuitable for capturing the low-level details of the cloth’s shape, such as folds or wrinkles, which
can be important for folding or other manipulation tasks. Our method also falls into the model-
based RL category; unlike previous works, we learn a particle based dynamics model [63, 97],
which can better capture the cloth dynamics due to the inductive bias of the particle representation.
Additionally, the particle representation is invariant to visual features and enables easier sim-to-real
transfer.

2.3 Method
An overview of our method, VCD(Visible Connectivity Dynamics), can be found in Figure 2.2.
We represent the cloth using a Visible Connectivity Graph, in which we connect points of a partial
point cloud with nearby edges and the inferred mesh edges. Next, we learn a dynamics model over
this graph, and finally we use this dynamics model for planning robot actions.

2.3.1 Graph Representation of Cloth Dynamics
We represent the state of a cloth with a graph ⟨V,E⟩. The nodes V = {vi}i=1...N represent the parti-
cles that compose the cloth, where vi = (xi, ẋi) denotes the particle’s current position and velocity,
respectively. There are two types of edges E in the graph, representing two types of interactions
between the particles: mesh edges and nearby edges. The mesh edges, EM , represent the connec-
tions among the particles on the underlying cloth mesh. The mesh connectivity is determined by
the structure of the cloth and does not change throughout time. Each edge eij = (vi, vj) ∈ EM

connects nodes vi to vj and models the mesh connection between them. The other type of edges
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Figure 2.2: (a) Overview of our visible connectivity dynamics model. It takes in the voxelized point cloud, constructs
the mesh and predicts the dynamics for the point cloud. (b) Architecture for the edge prediction GNN which takes
in the point cloud connected by the nearby edges and predicts for each nearby edge whether it is a mesh edge. (c)
Architecture for the dynamics GNN which takes in the point cloud connected by both the nearby edges and the mesh
edges and predict the acceleration of each point in the point cloud.

are nearby edges, EC , which model the collision dynamics among two particles that are nearby in
space. These can be different from the mesh edges due to the folded configuration of the cloth,
which can bring two particles close to each other even if they are not connected by a mesh edge.
Unlike the mesh edges which stay the same throughout time, these nearby edges are dynamically
constructed at each time step based on the following criteria:

EC
t =

{
eij
∣∣ ||xi,t − xj,t||2 < R

}
, (2.1)

where R is a distance threshold and xi,t, xj,t are the positions of particles i, j at time step t.
Throughout the paper, we use the subscript t to denotes the state of a variable at time step t if
the variable changes with time. Additionally, we assume that EM ⊂ EC , since a mesh edge
connects nodes that are close to each other and hence should also satisfy Eqn. 2.1.

2.3.2 Inferring Visible Connectivity from a Partial Point Cloud

In the real world, we observe the cloth in the form of a partial point cloud. In this case, we represent
the nodes of the graph using the partial point cloud and infer the connectivity among these observed
points. We denote the raw point cloud observation as Praw = {xi}i=1..Nraw , where xi is the position
of each point and Nraw is the number of points. We first pre-process the point cloud by filtering
it with a voxel grid filter: we overlay a 3d voxel grid over the observed point cloud and then take
the centroid of the points inside each voxel to obtain a voxelized point cloud P = {xi}i=1,...,Np .
This preprocessing step is done both in simulation training and in the real world, which makes
our method agnostic to the density of the observed point cloud and more robust during sim2real
transfer.



We create a graph node vi for each point xi in the voxelized point cloud P . The nearby edges
are then constructed by applying the criterion from Eqn. 2.1. However, inferring the mesh edges
is less straightforward, since in the real world we cannot directly perceive the underlying cloth
mesh connectivity. To overcome this challenge, we use a graph neural network (GNN) [5] to infer
the mesh edges from the voxelized point cloud. Given the positions of the points in P , we first
construct a graph ⟨P,EC⟩with only the nearby edges based on Eqn. 2.1. As we assumeEM ⊂ EC ,
we then train a classifier, which is a GNN, to estimate whether each nearby edge e ∈ EC is also a
mesh edge. We denote this edge GNN as Gedge. The edge GNN takes as input the graph ⟨P,EC⟩,
propagates information along the graph edges in a latent vector space, and finally decodes the
latent vectors into a binary prediction for each edge e ∈ EC (predicting whether the edge is also a
mesh edge). For the edge GNN, we use the network architecture in previous work [97] (referred to
as GNS). See Appendix A.1 for the detailed architecture. The edge GNN is trained in simulation,
where we obtain labels for the mesh edges based on the ground-truth mesh of the simulated cloth.
After training, it can then be deployed in the real world to infer the mesh edges from the point
cloud. We defer the description of how we obtain the ground-truth mesh labels in Sec. 2.3.5.

2.3.3 Modeling Visible Connectivity Dynamics with a GNN
In order to predict the effect of a robot’s action on the cloth, we must model the cloth dynamics.
While there exists various physics simulators that support simulation of cloth dynamics [24, 64,
82], applying these simulators for a real cloth is still challenging due to two difficulties: first,
only a partial point cloud of a crumpled cloth is observed in the real world, usually with many
self-occlusions. Second, the estimated mesh edges from Sec. 2.3.2 may not all be accurate. To
handle these challenges, we learn a dynamics model based on the voxelized partial point cloud
and its inferred visible connectivity (Sec. 2.3.2). Formally, given the cloth graph Gt = ⟨V,E⟩, a
dynamics GNN Gdyn predicts the particle accelerations in the next time step, which can then be
integrated to update the particle positions and velocities. Here, V refers to the voxelized point
cloud, and E refers to inferred visible connectivity that includes both the predicted mesh edges
EM as well as the nearby edges. Our dynamics GNN Gdyn uses the similar GNS architecture
as the Gedge. It takes a cloth mesh as input with state information on each node, propagates the
information along the graph edges in a latent vector space, and finally decodes the latent vectors
into the predicted acceleration on each node. See Appendix A.1 for the detailed architecture of the
GNN.

2.3.4 Planning with Pick-and-place Actions
We plan in a high-level, pick-and-place action space over the VCD model. For each action a =
{xpick, xplace}, the gripper grasps the cloth at xpick, moves to xplace, and then drops the cloth. As
the GNN dynamics model is only trained to predict the changes of the particle states in small
time intervals in order to accurately model the interactions among particles, we decompose each
high-level action into a sequence of low-level movements, where each low-level movement is a
small delta movement of the gripper and can be achieved in a short time. Specifically, we generate
a sequence of small delta movements ∆x1, ...,∆xH from the high-level action, where xpick +∑H

i=1 ∆xi = xplace. Each delta movement ∆xi moves the gripper a small distance along the
pick-and-place direction and the motion can be predicted by the dynamics GNN in a single step.



When the gripper is grasping the cloth, we denote the picked point as u. We assume that the
picked point is rigidly attached to the gripper; thus, when considering the effect of the tth low-
level movement of the robot gripper, we modify the graph by directly setting the picked point u’s
position xu,t = xpick +

∑t
i=1 ∆xi and velocity ẋu,t = ∆xi/∆t, where ∆t is the time for one

low-level movement step. The dynamics GNN will then propagate the effect of the action along
the graph when predicting future states. For the initial steps where the historic velocities are not
available, we pad them with zeros for input to the dynamics GNN. If no point is picked, e.g.,
after the gripper releases the picked point, then the dynamics model is rolled out without manually
setting any particle state.

The objective of the task to smooth a piece of cloth from a crumpled configuration. To compute
the reward r based on either the observed or the predicted point cloud, we treat each point in
the point cloud as a sphere with radius R and compute the covered area of these spheres when
projected onto the ground plane. Due to computational limitations, we greedily optimize this
reward over the predicted states of the point cloud after a one-step high-level pick-and-place action
rather than optimizing over a sequence of pick-and-place actions. Given the current voxelized
point cloud of a crumpled cloth P , we first estimate the mesh edges using the edge predictor
EM = Gedge(⟨P,EC⟩). We keep the mesh edges fixed throughout the rollout of a pick-and-place
trajectory since the structure of the cloth is fixed. In theory, it could be helpful to update the mesh
edges based on the newly observed point cloud at each low-level step, but this is challenging due to
the heavy occlusion from the robot’s arm during the execution of a pick-and-place action. After the
execution of each pick-and-place action, new particles may be revealed and we update the mesh
edges when re-planning the next action. The pseudocode of the planning procedure can be found
in the appendix.

2.3.5 Training in Simulation

The simulator we use for training is Nvidia Flex, a particle-based simulator with position-based
dynamics [78, 70], wrapped in SoftGym [64]. In Flex, a cloth is modeled as a grid of particles,
with spring connections between particles to model the bending and stretching constraints.

One challenge that we must address is that the points in the observed partial point cloud do
not directly correspond to the underlying grid of particles in the cloth simulator. This presents
a challenge for obtaining the ground-truth labels used for training the dynamics GNN and the
edge GNN, including the acceleration for each point in the observed point cloud and the mesh
edges among them. To address this issue, we perform bipartite graph matching to match each
point in the voxelized point cloud to a simulated particle by minimizing the Euclidean distance
between the matched pairs. Details about the matching can be found in the Appendix A. After we
get the mapping from the points to the simulator particles, the ground-truth acceleration of each
point is simply assigned to be the acceleration of its mapped particle, which is used for training
the dynamics GNN. For training the edge GNN, a nearby edge is assumed to be a mesh edge if
the mapped simulation particles of the edge’s both end points are connected by a spring in the
simulator.

=



2.3.6 Graph-imitation Learning for Occlusion Reasoning

Figure 2.3: A graphical illustration of privileged graph imitation learning. The privileged teacher has the same
model architecture as student, but takes full cloth as input. Following [56], we initialize the encoder and decoder of
student model by weights of pretrained teacher. Then we freeze the teacher and transfer the privileged information
by matching the node embedding and global embedding of two models. The target nodes to imitate are obtained by
bi-partite matching as described in A.1.2.

Although VCD performs decently under partial observability, we found dynamics model trained
on full mesh model usually converges faster and obtains better asymptotic performance. This is
well expected since incomplete information caused by self-occlusion results in ambiguity of state
estimation.

Therefore, we introduce graph-imitation learning to inject prior knowledge of the full cloth into
the dynamics model. The prior encodes structure of the full cloth and incentivizes the model to
reason about occlusion implicitly.

Privileged Graph-imitation Learning

The main spirit of privileged graph-imitation learning is to train a student model which takes partial
point cloud as input, to imitate a privileged agent which has access to privileged information. We
hope the student to learn a recover function that recovers true states from partial information. A
visual illustration is shown in Figure 2.3.

To do so, we first train a privileged agent with all simulated particles(including the occluded
ones) and ground-truth mesh edges. The privileged teacher model shares identical architecture as
the student model, but with complete information. We train the teacher model with acceleration
loss and the auxiliary reward prediction loss.

Graph-based imitation learning is not straightforward because the graphs of two models have
very different structures. Typically, the graph of teacher model will have more vertices since it
can observe occluded particles while the student only observes the voxelized partial point cloud.
To tackle with this challenge, we conduct bipartite matching to match student nodes with teacher
nodes as described in A.1.2.

Once we have the node correspondence, we retrieve the intermediate node features of both
teacher and student model, hLT and hLS , and force the node feature of student hLS to be similar to hLT .
The final output is still supervised by groundtruth acceleration. We copy the weights of encoder and



decoder from teacher model to initialize student since we find it accelerate training. The weights of
the teacher model is frozen during imitation learning. By imitating the intermediate node features,
we provide high capacity training signal to the student to recover groundtruth acceleration by
proper message passing. To successfully imitate the teacher, the student have to conduct occlusion
reasoning, and take the effects of occluded particles and erroneous mesh edges into account. In
addition to node features, the student model also mimic the global embedding of teacher model to
make more accurate reward prediction. We use mean square error for imitation learning.

Auxiliary Reward Prediction

Following [44], we additionally train our dynamics model to predict reward in order to regularize
the model. The groundtruth reward, which is the coverage of cloth after one time step, is calculated
by approximation as described in A.1.3. The coverage is calculated over all particles, thus it
provides information from a global view to the model. The reward model is a three-layer MLP
which takes global embedding cL as input. We use mean square error to train the model.

It should be noted that at test time, we still use the heuristic reward function, which models
particles as spheres and calculate an approximate coverage on the partial point cloud. Although
the learned reward model predicts a global reward, which theoretically will take into the newly re-
vealed occluded regions into account, we found it perform slightly worse than the heuristic reward
function.

2.4 Experiments

2.4.1 Experimental Setup

Simulation Setup As mentioned, we use the Nvidia Flex simulator wrapped in SoftGym [64] for
training. The robot gripper is modeled as a spherical picker that can move freely in 3D space and
can be activated so the nearest particle will be attached to it. For training, we generate random pick-
and-place trajectories on a square cloth. The side length of the cloth varies from 25 to 28 cm. For
evaluation, we consider three different shapes: 1) the same type of square cloth as used in training;
2) Rectangular cloth, with its length and width sampled from [19, 21]× [31, 34] cm. 3) Two layered
T-shirt (the square cloth used for training was single-layered). For each shape, the experiment was
run 40 times, each time with a different initial configuration of the fabric. We report the 25%, 50%
and 75% (Q25, Q50, Q75) percentiles of the performance. For all our quantitative results, numbers
after ± denotes max(|Q50 −Q25|, |Q75,−Q50|).

Our goal for cloth smoothing is to maximize the covered area of the cloth in the top-down
view. We report two performance metrics: Normalized improvement (NI) and normalized coverage
(NC). NI computes the increased covered area normalized by the maximum possible improvement
NI = s−s0

smax−s0
, where s0, s, smax are the initial, achieved, and maximum possible covered area of

the cloth. Similarly, NC = s
smax

computes the achieved covered area normalized by the maximum
possible covered area. We report NI in the main paper and NC in the appendix.

We evaluates two variants of our method: Visible Connectivity Dynamics (VCD) and VCD
with graph imitation learning. We compare with previous state-of-the art methods for cloth smooth-
ing: VisuoSpatial Foresight (VSF) [38], which learns a visual dynamics model using RGBD data;



Figure 2.4: Normalized improvement on square cloth (left), rectangular cloth (middle), and t-shirt (right) for varying
number of pick-and-place actions. The height of the bars show the median while the error bars show the 25 and 75
percentile. For detailed numbers, see the appendix.

Contrastive forward model (CFM) [127], which learns a latent dynamics model via contrastive
learning; Maximal Value under Placing (MVP) [126], which uses model-free reinforcement learn-
ing with a specially designed action space. More implementation details can be found in the
appendix.

Real World Setup We use our dynamics model trained in simulation to smooth cloth in the real
world with a Franka Emika Panda robot arm and a standard panda gripper, with FrankaInterface
library [129]. We obtain RGBD images from a side view Azure Kinect camera. We use color
thresholding for segmenting the cloth and obtain the cloth point cloud. We evaluate on three pieces
of cloth: Two square towels made of cotton and silk respectively, and one t-shirt made of cotton.
We use our dynamics model trained in simulation without any fine-tuning. More details are in the
appendix.

2.4.2 Simulation Results

For each method, we report the NI after different numbers of pick-and-place actions. A smoothing
trajectory ends early when NI>0.95. We note that the edge GNN can achieve a high prediction
accuracy of 0.91 on the validation dataset. See appendix for visualizations of the edge GNN
prediction.

We first test all methods on the same type of square cloth used in training. The results are shown
in Figure 2.4 (left). Under any given number of pick-and-place actions, VCD greatly outperforms
all of the baselines. The graph imitation learning approach described in Section ?? further improves
the performance. To test the generalization of these methods to novel cloth shapes that are not seen
during training, we further evaluate on a rectangular cloth and a t-shirt. For this experiment we
only compare VCD to VSF, since VSF achieves the best performance on the square cloth among
all the baselines. The results are summarized in Figure 2.4 (middle and right). VCD shows a larger
improvement over VSF on the rectangular cloth. T-shirt is more different from the training square
cloth and VSF completely fails, while VCD still shows good generalization. The graph imitation
learning still leads to marginal improvement and better stability on rectangular since it has a similar
shape to the square cloth. However, as the t-shirt has very different shape compared to the square



cloth, VCD-graph-imitation does not lead to much improvement and has larger variance on it.
Since VCD learns a particle-based dynamics model, it incorporates the inductive bias of the

cloth structure, which leads to better performance and stronger generalization across cloth shapes,
compared to RGB based method like VSF. Please see the appendix for examples of some planned
pick-and-place action sequences of our method on all cloth shapes as well as visualizations of the
predictions of our model.

Figure 2.5: Smoothing cloths of different colors, materials and shapes with our method on a Franka robot: square
cotton (top), square silk (middle), cotton t-shirt (bottom). Each row shows one trajectory. Frame 0 shows the initial
configuration of the cloth, and each frame after shows the observation after some number of pick-and-place actions,
with the number labeled on the frame. The green arrow shows the 2D projection of the pick-and-place action executed.

Material

# of pick-and-place
actions 5 10 20 Best

Cotton Square Cloth 0.342± 0.265 0.725± 0.445 0.941± 0.360 0.941± 0.153
Silk Square Cloth 0.456± 0.197 0.643± 0.391 0.952± 0.229 0.952± 0.095

Cotton T-Shirt 0.265± 0.119 0.356± 0.096 0.502± 0.135 0.619± 0.155

Table 2.1: Normalized improvement of VCD in the real world.

2.4.3 Real-world Results
We also evaluate our method for smoothing in the real world. We only evaluate VCD (i.e., without
graph imitation learning) since it works more stably in simulation. Unfortunately, we were not able
to evaluate the baselines in the real world due to the difficulties of transferring their RGB-based
policies from simulation. All of the baselines use RGB data as direct input to the dynamics model
or the learned policy, making them sensitive to the camera view and visual features. In contrast,
our method uses a point cloud as input, which makes it robust to the camera position as well as
variation in visual features such as the cloth color or patterns. The point cloud representation
allows our method to easily transfer to the real world.

We evaluate 12 trajectories for each cloth. The quantitative results are in Table 2.1 and a
visualization of smoothing sequences is shown in Figure 2.5. Despite the drastic differences of
the cotton and silk cloths in visual appearances, shapes, as well as the different dynamics, our
model is able to smooth the cotton and silk cloths and generalize well to t-shirt. We also report the
performance if our method is able to terminate optimally in hindsight and choose the frame with the



highest performance in each trajectory; the result is shown in the last column of Table 2.1. Videos
of complete trajectories and the model predicted rollouts can be found on our project website.

2.4.4 Ablation Studies

Algorithm Normalized Improvement
VCD (Our method) 0.778± 0.206

Replace dynamics GNN with Flex 0.616± 0.143
No edge GNN (dynamic nearby edges) 0.531± 0.298

No edge GNN (fixed nearby edges) 0.599± 0.327
Remove edge GNN at test time 0.259± 0.118

Table 2.2: Normalized improvement of all ablations in sim-
ulation after 10 pick-and-place actions.

We perform the following ablations to study
the contribution of each component of our
method. The first ablation replaces the
learned GNN dynamics model with the Flex
simulator to test whether a learned dynamics
model performs better for our task than the
physical simulator. In more detail, after we
use the edge GNN to infer the mesh edges on
the point cloud, we create a cloth using Flex
where a particle is created at each location of the voxelized points and a spring connection is added
for each inferred mesh edge. The results is shown in Table 2.2, row 2. We see that using the Flex
simulator instead of the dynamics GNN produces worse performance. The main reason is that the
cloth created from the partial point cloud with the inferred mesh edges deviates from the common
cloth mesh structure used in Flex; thus, using the Flex simulator under this condition does not cre-
ate realistic dynamics. Besides, planning with FleX is much slower than planning with the learned
GNN dynamics model (∼330s for 1 pick-and-place with FleX and ∼40s with VCD). On the other
hand, the dynamics GNN is trained directly on the partial point cloud; therefore it can learn to
compensate for the partial observability when predicting the cloth dynamics. This ablation vali-
dates the importance of using a dynamics GNN to learn the dynamics of the partially observable
point cloud.

The next set of ablations aims to test whether using an edge GNN to infer the mesh edges
as described in Section 2.3.1 is necessary for learning a good dynamics model. First, we train
a dynamics GNN without using the edge GNN, where the edges are constructed solely based on
distance by Eqn. (2.1). Since this ablation does not use an edge GNN, it cannot have two different
edge types (nearby edges vs mesh edges). Thus at test time, all edges can either be kept fixed
throughout the trajectory (similar to the mesh edges in our model), or dynamically reconstructed
using Eqn. (2.1) at each time step (similar to the nearby edges in our model). The results of these
two ablations are shown in Table 2.2, rows 3 and 4. As can be seen, the performance is worse
without the edge GNN.

Additionally, we perform another ablation where we train with both nearby edges and mesh
edges, but at test time, we do not use an edge GNN to infer the edge type; instead we consider the
edges that satisfy the criteria of Eqn. (2.1) in the first time step as the mesh edges. The result of this
ablation is shown in Table 2.2, row 5. The performance is again much worse. All these ablations
validate the importance of using an edge GNN to infer the mesh edges.





Chapter 3

Mesh-based Dynamics with Occlusion
Reasoning for Cloth Manipulation

3.1 Introduction

Manipulation of clothing has wide applications but remains a challenge in robotics. Cloth has
nearly infinite degrees of freedom (DoF), making state estimation difficult and resulting in com-
plex dynamics. Furthermore, cloth is often subject to severe self-occlusions, especially when it is
crumpled.

Due to self-occlusions, prior methods typically rely on visible features for manipulation, such
as wrinkles [111] or corners [71]. Data-driven methods have been proposed that can learn a dy-
namics model in the pixel space [38] or in a latent space [127]. Recently, Lin, Wang, et al. [65]
proposed to learn a mesh dynamics model on the observed partial point cloud of a crumpled cloth
(VCD). However, VCD only considers a graph over the visible points and does not reason explic-
itly about the occluded regions of the cloth. This simplification sometimes prevents the planner
from finding optimal cloth unfolding actions.

Some prior work [54, 59, 72, 62, 61, 60, 19] attempt to reconstruct the full cloth structure. To
simplify the task, these approaches typically first grasp and lift the cloth in order to limit the diver-
sity of possible cloth configurations. However, this approach prevents continual state estimation
throughout a manipulation task, since the pose can only be estimated while being held in the air by
the gripper at a single point. In contrast, we aim to estimate the cloth pose from a more diverse set
of poses, such as while it is crumpled on a table in arbitrary configurations.

In chapter 3, we propose MEDOR (MEsh-based Dynamics with Occlusion Reasoning) which

Planning

MeshCrumpled 
Cloth

Flattened
Cloth

Reconstruct

Figure 3.1: Our method, MEDOR (MEsh-based Dynamics with Occlusion Reasoning), explicitly reasons about oc-
clusions by reconstructing the full mesh of a cloth; we then use a learned mesh-based dynamics model to plan the
robot actions.
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is built on top of previous methods for mesh-based dynamics learning [65, 88, 97]. MEDOR ex-
plicitly reasons about occlusions by reconstructing the full cloth mesh from a single depth image.
While previous work such as GarmentNets [19] has demonstrated promising results for mesh re-
construction, we show that, by itself, it is not robust enough for a robot cloth manipulation system.
Due to the inherent ambiguity induced by self- occlusions from the crumpled cloth, the recon-
structed mesh will likely have many errors, which will create difficulties for downstream planning.
Our insight is that we can improve the mesh reconstruction using test-time optimization with self-
supervised losses, which can be easily computed without access to the ground-truth mesh and can
be directly optimized on real data.

We evaluate our method on two tasks: cloth smoothing and cloth canonicalization, which re-
quires aligning the cloth with a canonical flattened pose. We show that our method of mesh re-
construction, with test-time finetuning, enables a robot to smooth or canonicalize the cloth from
crumpled configurations more accurately than previous methods. Our contributions include:

1. a novel perception model that can better estimate the full cloth structure from crumpled
configurations, including a self-supervised test-time optimization procedure.

2. a cloth manipulation system that plans over the reconstructed cloth mesh and can perform
both cloth flattening and cloth canonicalization.

3.2 Related works

3.2.1 Perception for Cloth Manipulation
There has been a long history of work on cloth perception for manipulation. We refer to Jimenez
et al. [49] for a comprehensive overview.

Earlier works usually estimate specific visual features of the cloth for manipulation. These
include detecting edges and corners for re-grasping [71] or grasping and un-folding [84, 124, 92],
or detecting wrinkles for smoothing [111]. If the cloth is loosely extended, simplified models such
as the parameterized shape model [77] or the polygonal model [105] can also be used for folding.
Other works also detect category-specific features such as collars and hemlines [93]. These features
have been used with hand-designed controllers and strategies; in this work, we aim to learn mesh
reconstruction and a cloth dynamics model that we can use to plan a cloth manipulation action
sequence.

There are also prior works on more generic pose estimation for clothes. One line of works tries
to estimate the pose of on-body clothing from video by leveraging a human body shape prior [48,
26, 87, 96, 89, 37, 107]. Another line of works assumes the initial configuration of the cloth is
known and uses tracking to estimate the full configuration of the cloth under occlusion [18, 121,
114]. In contrast, we assume that the cloth may be initially crumpled on a table in an unknown
initial configuration.

Some other works [54, 59, 72, 62, 61, 60, 19] simplify the problem by lifting up the cloth
using the robot gripper for the purpose of easier pose estimation; lifting up the cloth significantly
reduces the set of possible poses and simplifies the reconstruction task. After lifting the cloth,
Kita et al. [54] deform a set of predefined representative shapes to fit the observed data. Other
works create a dataset of clothes grasped at different locations and retrieve the observed pose at
test-time by classification [59, 72, 61, 60] or using nearest neighbor [62]. In contrast, our method



can estimate the cloth directly from a crumpled state on the table, which enables our method to
continually re-estimate the cloth state throughout a manipulation sequence.

Recently, GarmentNets [19] performed categorical cloth 3D reconstruction by mapping the
cloth point cloud into a normalized canonical space (NOCS) defined for each cloth category [120].
However, like the above methods, GarmentNets also requires grasping and raising the cloth into
the air and obtaining four different camera views to reduce the amount of occlusion. In contrast,
our perception module only requires a single view of the cloth crumpled on the table. Further, we
find that the reconstructions produced by GarmentNets are not sufficient for accurate cloth manip-
ulation. Also, unlike GarmentNets that only considers the perception task, we demonstrate a full
cloth manipulation system and show the effectiveness of our perception method for manipulation.

3.2.2 Data-driven Methods for Cloth manipulation
Prior works in data-driven cloth manipulation can be categorized as model-free or model-based.
Model-based methods train a policy that outputs actions for cloth manipulation. The policies
are trained by either reinforcement learning [73, 126], imitation learning [100], or by learning
a value function [35]. Alternatively, the policies can be learned as a one-step inverse dynamics
model [123, 81].

The second approach is to learn a dynamics model and then plan over the model to find the robot
actions. Hoque et al. directly learn a video prediction dynamics model [38] and Wilson et al. learn
a latent dynamics model with contrastive losses [127]. These models do not explicitly reason about
the cloth structure, making generalization difficult. Recent work (VCD) trains a mesh dynamics
model [65] over the visible points. However, without reasoning about the occluded regions, the
planner will often fail to find the optimal smoothing actions. In contrast, our approach plans over
a full reconstructed mesh dynamics model.

3.2.3 Test-time Optimization
Test-time optimization has been widely used for view-synthesis [76, 128], 3D particle reconstruc-
tion [16] and 3D scene flow [90]. For example, Chen et al. [16] trained a network to predict an
object point cloud that is consistent with a set of object masks in different camera views. However,
these approaches have not been applied to cloth reconstruction or robot manipulation tasks.

3.3 Background

3.3.1 Problem Formulation
We consider the task of manipulating clothes in a planar workspace with a single robot arm. A
cloth at time t is represented by a mesh M t = (V t, Et) with vertices V t = {vi}i=1...N and mesh
edges Et. Each vertex consists of a position xi and velocity ẋi that will change with the cloth
configuration. The ground-truth configuration of the cloth M t is unknown, and the robot only ob-
serves the RGB-D image I t, which includes severe self-occlusions for crumpled garments (though
our method only uses the color to segment the cloth from the background). Given the camera
intrinsics and the segmentation mask, we can also back-project I t to a partial point cloud of the
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Figure 3.2: System overview: First, we obtain an initial estimate of the full shape of an observed instance of a cloth
from a depth image. In this phase, we obtain an estimate of the cloth shape in both canonical space and observation
space. Then, we conduct test-time finetuning to improve the prediction to better match the observation. Last, we plan
with the predicted mesh using a learned mesh-based dynamics model.

cloth. The observation is captured by a top-down camera mounted on the robot end-effector in our
setting. As in prior works [126, 38, 65], we use pick-and-place action primitives for performing
cloth manipulation.

3.3.2 GarmentNets
GarmentNets [19] is a previous work that performs categorical cloth reconstruction from a partial
point cloud. It contains three steps: first, a normalized canonical space (NOCS [120]) is defined
for each cloth instance by simulating the cloth worn by a human in a T-pose. A canonicalization
network (using a PointNet++ architecture [91]) is trained to map an observed partial point cloud
to the canonical space (see Figure 3.2, top). Second, a 3D CNN performs volumetric feature
completion to obtain a dense feature grid. An MLP is then used to predict the winding number [43]
for each point, which is used for surface extraction. In the last step, GarmentNets samples points
on the extracted surface and trains a warp field network to map each point in the canonical space
back to its location in the observation space.

GarmentNets requires a multi-view depth image to reduce occlusions; it also requires the cloth
to be grasped in the air to limit the set of possible poses of the cloth. In contrast, we consider the
more general setup where the cloth is on the table in an arbitrary configuration.

3.4 Approach
Our goal is to build a general cloth manipulation system that can reason about the occluded cloth
regions of a cloth from a partial observation and plan robot actions based on these estimates. To do



so, we propose a three-part approach: (1) First, given only a partial observation of a crumpled cloth,
we train a model to generate a complete mesh of the cloth; (2) Due to the difficulty of occlusion
reasoning, a neural network alone often fails to accurately reconstruct the cloth mesh. Therefore,
we design a test-time finetuning scheme to adapt the predicted mesh to match the observation. (3)
Last, we plan with the predicted mesh using a learned dynamics model to find optimal actions for
the manipulation task.

3.4.1 Estimating the pose of a cloth
Reconstruction of the full cloth structure is fundamentally challenging due to the high-dimensional
state space and the ambiguity induced by self-occlusion. As discussed in Section 3.3.2, Garment-
Nets [19] simplifies the problem by using a robot to grasp and lift the cloth and capture 4 observa-
tions from different views. In contrast, we tackle the harder problem of estimating the cloth state
from a crumpled configuration on the table, so that the cloth state can be re-estimated throughout
a manipulation sequence.

To tackle this challenge of cloth pose estimation from crumpled configurations, we make sev-
eral modifications to GarmentNets that greatly improve its performance:
HRNet: First, since the cloth is not lifted up, we represent the cloth as a depth image captured
by a single top-down camera instead of as a point cloud merged from 4 observations. In this case,
the Pointnet++ [91] architecture is no longer able to provide reasonable estimates of the cloth
configuration, as we show in the ablation 2.2. Instead, we use an architecture designed for depth
images. In particular, we find that PointNet++ is not able to distinguish whether a piece of cloth
is folded above or folded below the rest of the cloth. Differentiating these two cases requires
capturing the subtle depth changes at the boundary where two layers meet. Therefore, we replace
Pointnet++ with a High Resolution Network (HRNet) [110] which is a convolutional architecture
that specializes in producing a high-resolution and spatially precise representation.
Relative predictions: We found that the reconstruction model sometimes inaccurately estimates
the configuration of the cloth in observation space, but it often predicts the canonical shape reason-
ably well (see Figure 3.2 for a visualization of these two spaces). Thus, we learn to predict the delta
between the position of a point in canonical space and its corresponding location in observation
space. Specifically, given the predicted mesh in canonical space, M̃ c = (Ṽ c, Ẽc), Ṽ c = {ṽi}i=1...n,
where the coordinate of each vertex in canonical space is x̃ci , we predict a 3-dimensional residual
vector f̃i for each point i. The predicted coordinates in the observation space x̃oi are obtained by

x̃oi = x̃ci + f̃i (3.1)

As shown in the ablation experiments in Table 3.1, both modifications described above are impor-
tant for the performance of the method.

3.4.2 Test-time finetuning
Estimating the complete structure of cloth is inherently challenging due to the high degrees of
freedom and the ambiguity induced by occlusion. As a result, the network described above still
has significant prediction errors, as shown in Fig. 3.3.

To tackle this issue, we design a test-time finetuning scheme that further optimizes the predicted
mesh using self-supervised losses that can be computed without knowledge of the ground-truth



cloth state. We deform the predicted mesh by optimizing the location of each vertex to optimize
an objective consisting of the sum of two loss terms: unidirectional Chamfer loss and mapping
consistency loss.
Unidirectional Chamfer loss. The first self-supervised loss term penalizes any deviations between
the predicted mesh and the observed cloth surface (depth image) so that geometric details are
preserved. Since the observation only contains information about the visible surface, optimizing
the mesh with a standard bi-directional Chamfer loss will result in undesirable results, i.e., the
predicted mesh will move entirely to the visible surface and no part of the mesh will remain in the
occluded region. Therefore, we use a unidirectional Chamfer loss as described below.

Suppose at timestep t, the point cloud observation of the cloth is P t = {pi}i=1..L and the
predicted mesh in observation space is M̃ t = (Ṽ t, Ẽt). The coordinate of each vertex is specified
by a 3-dimensional vector. Then the loss term is formulated as:

LC(Ṽ
t;P t) =

1

|P t|
∑
pi∈P t

min
ṽj∈Ṽ t

d(pi, ṽj) (3.2)

where d(·, ·) can be any distance metric, and we use Euclidean distance. In other words, for each
point in the observed point cloud, we find the distance to the nearest point in the predicted mesh
and minimize the sum of such distances.
Mapping consistency loss. Since the exact correspondence between the predicted mesh and the
partial point cloud is not available, directly optimizing the uni-directional Chamfer loss above may
lead to a local minimum. To alleviate this issue, we observe that the mapping from the observation
space to canonical space and then back to observation space (see Figure 3.2, top) creates a cycle;
thus we add a loss that, for each visible point, this cycle should end at the location where it started.

Let P t be the point cloud observation of the cloth; let f be the learned mapping from each
observation point to a location in the canonical space; and let g be a learned mapping from each
location in the canonical space to a position back in the observation space (shown in Figure 3.2,
top). Note that g operates on the predicted completed cloth surface which includes both observed
and occluded points. The mapping consistency loss term can be expressed as:

LM(P t) =
1

|P t|
∑
pi∈P t

d(g(f(pi)), pi) (3.3)

In other words, this loss penalizes the distance between the original location of each observed point
pi and its predicted location g(f(pi)).
Optimization. We use gradient descent with the Adam optimizer [51] to optimize the losses
above. The optimization is divided into two phases. In the first 50 steps, we optimize the mesh
using the Chamfer loss together with mapping consistency loss; then we optimize the mesh using
the Chamfer loss alone for another 50 iterations.

We do not perform a joint optimization throughout the optimization process because multiple
pixels in the depth image might be mapped to the same voxel in the canonical space. Enforcing
mapping consistency throughout the optimization process will create implausible meshes whose
vertices converge to a set of clusters. Instead, we use the mapping consistency loss to provide
a good initialization (beyond the initial network prediction), and then we use the uni-directional
Chamfer loss to refine the geometric details. As shown in the ablation in Table 3.1, the two-stage
optimization is critical for the performance.
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Figure 3.3: An example showing the benefits of test-time finetuning: The network is able to correctly estimate the
main cloth structure, but the initial predicted mesh may be overly smooth (center). Test-time finetuning significantly
improves the quality of predicted mesh (right). For more examples, see our project website.

3.4.3 Planning with GNN-based dynamics model

Once we have reconstructed the cloth mesh, we use the reconstructed mesh to plan the robot actions
using a dynamics model. One option would be to use a physical simulator as a dynamics model.
However, our experiments show that using a learned dynamics model can be more accurate and
faster than a simulator when planning with a reconstructed mesh; these results (shown in Sec. 3.5.3)
are consistent with previous papers [65]. We suspect that a learned dynamics model can be more
robust to errors in the mesh reconstruction compared to a physics-based simulator.

As a first step towards learning a dynamics model, we downsample the mesh by vertex cluster-
ing [68] for faster computation. We apply vertex clustering in the canonical space (defined as the
pose of the cloth when worn by a human in a T-pose) because the cloth surfaces are well separated
and thus will avoid undesirable artifacts such as merging different layers.

Given a down-sampled mesh from the simulator M̄ t = (V̄ t, Ēt), we train a dynamics Graph
Neural Network (GNN) [97, 88]. A GNN encodes the input feature on the nodes and on the edges
and then conducts multiple message passing steps between the nodes and edges [98]. The decoder
will decode the latent features of each node into the predicted acceleration for that node. The GNN
dynamics model that we use is the same as the dynamics model in VCD [65]: the input feature on
each node is the historic particle velocities and an indicator of whether the node is picked by the
gripper or not. The edge features includes the distance vector of connected vertices (xj − xk), its
norm ||xj − xk||, and the current displacement from the rest position ||xj − xk|| − rjk. We use
Euler integration to obtain the states of the cloth in the next time step. The action is encoded to
the dynamics model by directly modifying the position and velocity of the grasped point on the
cloth. We refer the reader to previous work [65] for details on the graph dynamics model. Once we
have the dynamics model, we use random shooting to plan over different pick-and-place actions
and pick the action with the highest predicted reward. At each time step, we plan over a horizon of
one, i.e., one pick-and-place action.

3.4.4 Implementation details

All models are trained in simulation and data are generated by Nvidia Flex wrapped in Soft-
gym [64]. To obtain a diverse dataset with garments of different sizes and shapes, we port the
CLOTH3D dataset [6] into Softgym. We choose five categories of garments from CLOTH3D:
Trousers, T-shirts, Dress, Skirt and Jumpsuit. Each category contains 400-2000 different meshes
and covers a wide range of variations, such as shirts with short and long sleeves, with and without

https://sites.google.com/view/occlusion-reason/home


an opening in front. We divide the CLOTH3D dataset into a train set and test set in a 9:1 ratio.

Mesh reconstruction model Initial crumpled cloth configurations are generated by a random
drop or random pick-and-place actions from flattened states, with a ratio of 1:1. The mesh recon-
struction model is trained in a category-dependent manner, i.e. one mesh reconstruction model
per category, similar to GarmentNets [19]. For each category, the training set contains 20,000
observations.

Dynamics model The GNN dynamics model is trained only on Trousers and is evaluated across
all object categories. The dynamics model is trained on a dataset with 5,000 pick-and-place actions,
which equals 500,000 intermediate timesteps. The training of the mesh reconstruction model and
the dynamics model each take around 3 days.

Runtime At test-time, the mesh reconstruction model and test-time finetuning take around 2.5
and 3 seconds per mesh respectively. For planning, we randomly sample 500 pick-and-place ac-
tions and rollout each action with the GNN dynamics model, which takes around 100 seconds. For
additional implementation details, please refer to the supplementary materials.

3.5 Experiments
To evaluate the effectiveness of our method, we conduct comprehensive experiments on the tasks
of cloth flattening and canonicalization (described below). To demonstrate the generalizability
and robustness of our method, we evaluate in both the real world and in simulation on 5 different
categories of garments. Through the experiments, we would like to answer the following questions:

1. Does explicit occlusion reasoning improve the performance of cloth manipulation? How
does it compare to methods that operate only on the visible points?

2. Does test-time finetuning improve the quality of predicted mesh as well as the performance
in cloth manipulation tasks?

3. Can our method work on a physical robot?

3.5.1 Tasks
Flattening. Our goal is to flatten a crumpled cloth, that is, spreading it on the table. Following
prior works [65], we compute the coverage of the cloth as the objective for planning and evaluation.
Canonicalization. Usually, flattening is the first step of a cloth manipulation pipeline [62, 61,
60, 72, 30], which makes the subsequent tasks such as folding easier. However, for certain types
of clothing, such as skirts or unbuttoned shirts, the flattening objective can produce undesirable
results, as shown in Figure 3.4a, in which the robot maximizes the area covered by the cloth in a
manner that is not conducive for downstream folding.

Therefore, we also evaluate our method on a task that we call “cloth canonicalization,” where
the goal is to manipulate the cloth and align it with the flattened canonical pose, as shown in
Figure 3.4b. To account for the ambiguity due to rotation and reflection symmetries, we define
a set of symmetries for each type of cloth. Using these symmetries, we define a canonical goal
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Figure 3.4: Flattening (i.e. maximizing the covered area of the cloth) may not always give us a good starting point for
folding. Left: Undesirable results of actions that optimize for the flattening task (maximizing the coverage). Right:
Examplar goal poses for canonicalization of each category.

set of flattened poses G = {GN×3
i }i=1...A for each cloth instance, where A is the number of valid

canonical poses. For example, for Trousers, we can rotate the canonical pose by 180 degrees to
obtain another valid goal. The cost is computed as the minimum of the average pairwise distance
to each of the possible canonical poses. Suppose that the current configuration of the cloth in the
simulator is V ∈ RN×3, where N is the number of vertices. Then the cost is computed as

Costcanon = min
Gi∈G

1

N

N−1∑
j=0

(gj − vj)2 (3.4)

Note that Gi and V have the same number of vertices because both refer to the simulated cloth in
different configurations. In this work, we allow for our method to canonicalize the cloth without
penalizing for errors with respect to a rigid transformations; this is because, for the task of cloth
folding, the rotation and translation of the cloth is of lesser importance. To evaluate this, we first
align the goal with the current state by computing an optimal rigid transformation using the Kabsch
algorithm [3], and then we compute the cost by Equation B.1.

For each task, we show the normalized improvement (NI) of each method, where 0 indicates
no change from the initial state and 1 is the best possible performance. For flattening, we use the
normalized improvement metric defined in previous work [65]; for canonicalization, we compute
the normalized improvement as NIcanon = costinit−costcur

costinit
where costinit, costcur are the costs of

initial and current cloth configurations computed by Eq. B.1.

3.5.2 Simulation Experiments

Baselines

We compare our method to 4 baselines, including two state-of-the-art cloth manipulation methods:
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Figure 3.5: Normalized improvements on 2 tasks and 5 different categories of cloths. The height of the bar represents
the median and the error bars show the 25 and 75 percentile of the performance.

• VisuoSpatial Foresight (VSF) [38]. This baseline learns a visual dynamics model in the
RGB-D observation space. It is trained on each category separately.

• Visible Connectivity Graph (VCD) [65]. Similar to our method, VCD learns a particle-
based dynamics model. However, unlike our method, VCD only operates on the visible
points on the cloth, without explicitly reasoning about occlusions. An edge GNN is used
to infer the mesh structure on the partial point cloud. To make a fair comparison with our
method, the edge GNN is trained in a category-specific manner, while the dynamics model
is only trained on Trousers (similar to our approach).

• GarmentNets [19]. In this baseline, we use the original implementation of GarmentNets for
mesh reconstruction, which processes a partial point cloud with PointNet++ [91] and doesn’t
use relative prediction. For planning, we evaluate this baseline with the same mesh-based
dynamics model as our method.

• MEDOR-no-finetuning. This is a variant of our method that removes the test-time finetun-
ing step (Section 3.4.2).

• MEDOR. This is our full method, which is essentially a modified version of GarmentNets
with test-time finetuning.

For VSF and VCD, we provide the ground-truth RGB-D image and the ground-truth mesh (re-
spectively) in the canonical pose to use for the reward computation. Note that our method does not
have access to this information. More details on the baselines can be found in the Supplement.

Results

A trajectory is terminated after ten picks or when NI>0.95.
For each category, we generate 40 initial configurations by random drops. As shown in Fig-



ure 3.5, compared to methods without explicit occlusion reasoning (VCD [65] or VSF [38]), our
methods MEDOR and MEDOR-no-finetuning both achieve competitive performance in all cate-
gories and both tasks. This shows the benefits of occlusion reasoning in cloth manipulation and
the benefits of recovering the full configurations explicitly. Comparing MEDOR against MEDOR-
no-finetuning, we can see the importance of test-time finetuning to adapt the mesh to better fit the
observation. Qualititative examples are shown in Figure 3.3 as well as on the website, which show
the differences in the mesh prediction before and after test-time finetuning.

For VSF (orange) and VCD (yellow), we see that the canonicalization task remains challenging
even after being provided with the ground-truth RGB-D image or mesh for reward computation.
This demonstrates the importance of planning with the completed cloth shape instead of planning
only over the visible parts of the cloth.

We can also see that without our modifications, the original GarmentsNets [19] (green) has
poor performance. The variant of our method MEDOR-no-finetuning includes the modifications to
GarmentNets described in Section 3.4.1: HRNet and Relative Prediction. The huge performance
gap between GarmentNets and MEDOR-no-finetuning demonstrates that these modifications lead
to large performance benefits.

3.5.3 Ablations
To further examine each component and design choice in the paper, we conduct the following
ablations on both the flattening and canonicalization tasks. Table 3.1 shows the normalized im-
provements averaged over 3, 5, and 10 picks, averaged over the flattening and canonlicalization
tasks, and averaged over all 5 garment categories.

Why is occlusion reasoning beneficial to cloth manipulation? Explicit occlusion reasoning
improves the performance of our framework on cloth manipulation in two aspects: (1) Using the
reconstructed mesh helps with the reward computation, and (2) Using the reconstructed mesh helps
with the dynamics model. We differentiate these benefits in the following experiments:

(1) In the 8th row Ours w/ Partial Reward, we use only the visible portion of the cloth for
reward computation, while the dynamics uses the full reconstruction (visible + occluded regions).
Compared to our full method, the performance drops by 29%, showing the benefits of occlusion
reasoning for the reward computation.

(2) Using the reconstructed mesh improves the accuracy of the dynamics model: In VCD,
the GNN dynamics model is trained and tested on the visible portion of the mesh. We compute
the open loop rollout error of the VCD dynamics model on the visible mesh, and we likewise
compute the rollout error of our method using the reconstructed mesh; we find that the rollout
error of the VCD dynamics model (on the partial mesh) is 64.2% higher than the rollout error on
the reconstructed mesh. This demonstrates the importance of using the reconstructed mesh for
accurate cloth dynamics.

To further this analysis, we also perform an experiment in which we use the full reconstructed
mesh for the dynamics model but use only the partial mesh for the reward computation (Ours w/
Partial Reward). If we compare the performance of this version to the 2nd row (No Mesh Recon-
struction (VCD [65])) we see the benefits of using the full reconstructed mesh for the dynamics
model instead of the partial mesh (0.462 vs 0.391).

How much does test-time finetuning help, and are both losses necessary? When other com-
ponents remain unchanged, we see that finetuning with only the Chamfer loss (No Consistency

https://sites.google.com/view/occlusion-reason/home


Method Normalized
Improvement

GarmentNets [15] 0.320 ± 0.146
No Mesh Reconstruction (VCD [65]) 0.391 ± 0.174

MEDOR-no-finetuning-and-no-relative-prediction 0.560 ± 0.163
MEDOR-no-finetuning 0.585 ± 0.171

Joint Optimization 0.614 ± 0.157
No Consistency Loss 0.623 ± 0.148

Replace GNN by GT Dynamics 0.631 ± 0.161
Ours w/ Partial Reward 0.462 ± 0.210

Ours (full method) 0.651 ± 0.138
GT Mesh + Learned Dynamics 0.800 ± 0.096

GT Mesh + GT Dynamics 0.870 ± 0.076

Table 3.1: Ablation experiments.

Loss) already improves the performance over no finetuning (No Finetuning) by 6.5%. Adding the
Mapping Consistency Loss further boosts the performance from 0.623 (No Consistency Loss) to
0.651 (Ours (full method)); the combined improvement is 11.3%. Also, we find that without the
2-stage optimization scheme (Joint Optimization), the mapping consistency loss hurts the perfor-
mance (comparing No Consistency Loss vs Joint Optimization).

HRNet [110] vs PointNet++ [91]: Looking at Table 3.1, the only difference between the
methods in the first and third row is the use of HRNet instead of PointNet++. The huge difference
in performance shows the benefits of the HRNet architecure for this task.

Does Relative Prediction help? Comparing the performance of MEDOR-no-finetuning-and-
no-relative-prediction with MEDOR-no-finetuning, we see that this simple modification (described
in Section 3.4.1) improves performance.

Do we need to learn the dynamics model instead of using the ground-truth dynamics
model from the simulator? Once we reconstruct the full cloth mesh, one option is to plan using
the physics-based dynamics of Nvidia Flex simulator, as similarly done in [16]. This ablation is
shown as Replace GNN by GT Dynamics in Table 3.1. We can see that this ablation yields a slight
performance drop compared to our full method. We speculate that this is because the analytical
dynamics model is more sensitive to mesh prediction errors than the learned dynamics model. As
an additional point, planning with a simulator is 1.4 times slower than using a GNN dynamics
model even after heavy parallelization (247 seconds vs. 103 seconds for 500 rollouts).

Where are the remaining gaps in performance? As we can see in the last two rows, using
the ground-truth mesh (instead of a learned mesh reconstruction) improves the performance by
23.1%. We can improve performance another 7% by also using the ground-truth dynamics model.
The remaining gap come from the sampling-based planner itself, which might fail to sample good
actions.



Observation Reconstructed mesh 
(Top view)

Sampled action
(Good, bad)

(a) Example reconstruction results in the real-world, after test-time fine-
tuning. In the 1st row, the trousers are successfully reconstructed, in-
cluding the occluded legs and wrinkles on the surface. The planner (right
column) is able to distinguish good actions from bad ones given the recon-
structed mesh. In the 2nd row, our model failed to capture the left-bottom
corner which is folded under the visible layer. As such, the planner failed
to choose actions to reveal the occluded part.

(b1)

(b2)

(b) Grasping failures: In (a), the cloth is deformed when the gripper moves
down, resulting in missed grasping. In (b), the robot is supposed to grasp
the upper layer and unfold it, but it mistakenly grasps the bottom layer as
well.

Figure 3.7: We evaluate our method of 5 pieces of clothing. Please refer to our website for videos.

3.5.4 Physical Experiments

We also evaluate our method in the real world by deploying it on a 7-DOF Franka Emika Panda
robot. We mount an Azure Kinect depth sensor on the end-effector of the robot. When taking the
depth image, the end-effector will move to be centered above the cloth. To obtain a valid plan for
pick and place actions, we use MoveIt! [20].

We evaluate our method on Trousers (3 instances) and Dress (2 instances) on the cloth flattening
task. For each article of clothing, we run 5 trajectories with at most 10 pick-and-place actions each.
The trajectories will be terminated if the normalized improvements exceed 95%. We obtain ran-
dom configurations by performing a random drop three times. We compare our method with two
baselines. Random is a heuristic policy that performs random pick-and-place actions. The picked
points are biased towards contour of the cloth and the place points are always outside the cloth re-
gion. VCD [65] is a prior method that plans with a partial point cloud instead of reconstructing the
full mesh. As shown in Fig. 3.7, our model can efficiently smooth the clothes by only a few pick-
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and-place actions. The performance of our method compared to the baselines is shown in Table 3.2.

Random VCD [65] MEDOR (Ours)

Trousers 0.044 0.562 0.647

Dress 0.036 0.361 0.468

Table 3.2: Results of physical robot experiments.

We do observe a gap between the per-
formance in simulation and in the real-
world. The first source of error is the
reconstruction error. Since the model is
trained in simulation, it suffers from a dis-
tribution shift resulting from the difference
in modeling the cloth physics and material properties, e.g., stiffness, thickness. In Figure 3.6a, we
show a successful and a failed reconstruction result. Another source of error comes from the grasp
execution, which mostly occur when multiple layers of cloth are stacked together. There are two
main failure modes: (1) The robot gripper deforms the cloth, causing a failed grasp; (2) The robot
grasps the wrong number of cloth layers. Figure 3.6b illustrates the two cases.



Chapter 4

Self-supervised Cloth Reconstruction via
Action-conditioned Cloth Tracking

4.1 Introduction

Unlabeled 
Real-world Data Simulator

Mesh 
Reconstruction 

Model

Action-conditioned
Cloth Tracker

Finetune

Pseudo Mesh

Train

Action

Action

Figure 4.1: We propose a self-supervised cloth reconstruc-
tion method that uses action-conditioned cloth tracking to
generate pseudo-labels of the full mesh on real world data.

Despite the ubiquitous presence of cloth in
real-world, manipulating it with a robot re-
mains a difficult task. Specifically, the high di-
mensionality and self-occlusion of cloth pose
significant challenges for precise state estima-
tion. Prior works [48, 26, 96, 107, 19] try to
reconstruct the full mesh of cloth from an RGB
or depth observations; the mesh reconstruction
model can be used for robot cloth manipula-
tion [60, 59, 72, 61, 72, 39]. However, the
mesh reconstruction model is typically trained
in simulation and suffers from a sim2real gap
between simulated cloth and real cloth. One
approach to mitigate the distribution shift from
sim2real is to finetune the model with real world data. On the other hand, obtaining the ground-
truth full mesh of crumpled clothes is extremely challenging, because the occluded regions are not
observable; this presents a challenge for real-world finetuning.

In this work, we present a self-supervised method that leverages a dynamics model and test-
time optimization to generate pseudo-ground-truth for mesh reconstruction from a depth image.
The high-level idea is to use a human to collect real-world trajectories via a sequence of pick-
and-place actions. Then we reconstructed the initial mesh and track the motion of clothes during
action execution. By doing so, we are able to obtain full mesh annotations that are previously only
available in simulation.

However, tracking the full cloth reliably is a challenging problem. Motivated by the theory
of Bayes Filtering, we propose an action-conditioned model-based tracking method. First, we
roll out a dynamics (motion) model conditioned on the action to obtain an initial estimate of the
motion. This estimate of motion is grounded in physics and accounts for all particles, including
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the occluded ones. However, there will inevitably be gaps between the dynamics model and the
real world [29, 69, 55], due to incorrect physical parameters and simplified dynamics. To account
for dynamics model errors, we further design a test-time optimization method to minimize the
discrepancy with the observations at each simulation step, similar to a measurement model of
Bayes Filtering.

Our primary contributions are as follows:
1. We propose a new method for self-supervised fine-tuning in the real world of a mesh recon-

struction model.

2. To do so, we introduce an action-conditioned model-based cloth tracking method that is
robust to occlusions and errors in the dynamics model.

We use our tracking method to fine-tune a mesh reconstruction model on unlabeled real world
data. Our experiments 4.4 demonstrate that our method is able to generate plausible pseudo-labels
for cloth with complex configurations. We also examine the importance of each component of our
method using an ablation study.

4.2 Related works
Cloth Perception and Manipulation. Perception and manipulation of clothes has a long his-
tory [49]. Earlier works design heuristic features for specific tasks [71, 84, 124, 92, 111, 77, 105].
More recently, data-driven methods have shown promising results in learning policies [73, 126, 35]
or dynamics model [100, 65, 39] for cloth smoothing and folding. Particularly for model-based
approaches, prior works have shown that learning a dynamics model over the full mesh with oc-
clusion reasoning can significantly improve the planning performance [39]. While there has been a
line of research dedicated to estimating the full mesh of the cloth [19, 39, 48, 26, 87, 96, 107, 60],
most of these methods are trained on synthetic data and then transfer to the real world, since ob-
taining mesh data in the real world can be difficult [6]. As such, this work aims to narrow the
sim2real gap by training on real world data collected from cloth tracking.

Deformable Object Tracking. Numerous deformable object tracking algorithms have been
developed, such as template-based tracking [58, 132], or simultaneous tracking and reconstruc-
tion [83, 42, 34, 102, 11, 10, 12]. Another line of works frame point cloud-based tracking as point
set registration [22, 21, 80, 18, 121]. However, these methods are not guaranteed to satisfy physical
constraints; further, they do not explicitly model occluded regions. To circumvent the drawbacks
of model-free methods, Tang et al. [115] propose to refine the result of CPD by inputting it to a
physical simulator. Schulman et al. [99] designed a modified expectation-maximization (EM)
algorithm and perform inference through calls to a physics simulator. These approaches are ap-
plied to tracking rope, sponge, and folded cloth. In contrast, we are able to track the configuration
of cloth in highly crumpled configurations, which has not been achieved in prior work. We also
demonstrate how model-based tracking can be used for self-supervised fine-tuning of a mesh re-
construction model.

Closing the Gap Between Sim and Real. Simulation has shown considerable promise for gen-
erating large amounts of labelled data at low cost, especially for domains where groundtruth super-
vision is difficult to obtain, such as optical flow and scene flow estimation [27, 41, 109, 125, 116]
or 3D reconstruction [86, 17, 75, 19]. However, models trained in simulation do not always read-
ily transfer to the real-world due to the sim2real distribution shift. One strategy to bridge this



gap (“sim2real”) is to randomize the simulation parameters to create a diverse set of training
data [95, 117, 45, 46, 73, 47, 1], and adapting the model by making it domain-invariant [31, 67, 8]
or domain-transferable [113, 9, 101, 108, 32, 13, 33]. However, it has not been demonstrated
how to effectively apply sim2real methods to the task of mesh reconstruction from depth im-
ages. An alternate approach is to use real world data to calibrate the simulator to the real world
(“real2sim”) [94, 14, 74, 4, 40, 66, 79, 112]. We show that our method is robust to simulator errors.

The main challenges for finetuning a mesh reconstruction model in the real-world is the absence
of ground-truth data (i.e., the full mesh). While there exists several real world datasets [7, 131] for
on-body cloth reconstruction, directly obtaining the ground-truth full mesh of crumpled clothes in
the real-world is very challenging due to self-occlusion, i.e., the occluded portion of the clothes is
not observable. Therefore, we propose to generate pseudo labels using model-based tracking.
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Figure 4.2: Left: The figure on the left demonstrates the workflow for generating pseudo labels for one trajectory.
We first reconstruct the initial mesh by using the pretrained mesh reconstruction model fθ. Then, we estimate the
deformation caused by each pick-and-place action through action-conditioned tracking. By tracking all transitions
sequentially, we obtain the pseudo mesh for crumpled clothes. Right: Before the tracking starts, we first run a
parameter search to calibrate the simulation. Then we iterate over all low-level actions by: 1) rolling out the simulation
with the picker action for one step; 2) running test-time optimization (TTO1) to align the simulation result with
observation, which produces a per-vertex “pseudo action“; 3) running the simulation again with a line search. After all
the low-level actions within a pick-and-place action is executed, we run another optimization step (TTO2) to account
for the tracking errors.

4.3 Method
The goal of this project is to reconstruct the mesh of a cloth and estimate its (possibly crumpled)
configuration, from a depth image observation. Past work in this area has trained a mesh recon-
struction model in simulation and transferred the trained model to the real world [48, 26, 96, 107,
19, 60, 39, 87]. However, such methods can suffer from a performance drop in the real-world due
to the sim2real gap between simulated clothes and real clothes. To circumvent the issue, we design
a self-supervised learning method for finetuning a mesh reconstruction model with unlabeled real
data.

The high-level idea of our method is as follows: suppose that we know the full configuration
of the current mesh and a dynamics model of the cloth. If we take an action on the cloth, then
we can use the dynamics model to estimate the configuration of the cloth at the next timestep.



However, since the dynamics model might not be perfect, we augment the rollout by aligning the
predicted mesh with the observation through an optimization procedure. We view this procedure
as the motion update and measurement update of Bayesian filtering.

Given an initial mesh reconstruction model trained in sim, the whole system can be divided
into 3 stages (Fig. 4.1):

1. Collect real-world trajectories

2. Track the motion of the clothes with our action-conditioned model-based tracking method.

3. Use the tracking output to generate pseudo-ground truth labels and finetune the mesh recon-
struction model.

We describe our method in more detail below.

4.3.1 Data Collection in Real-world
In this section, we explain how we instrument and collect real-world trajectories. In order to fine-
tune the mesh reconstruction model, we need to collect real-world data of clothes in random config-
urations. We use a top-down camera placed above the workspace to capture all the observations.We
initialize the state of the cloth into some configuration in which our mesh reconstruction model
works reasonably accurately; we then perform a sequence of pick-and-place actions. Then we reset
the cloth into a new configuration in which our mesh reconstruction model works reasonably accu-
rately and repeat. When executing each

Top-down Camera
(Azure Kinect)

Tweezer

Figure 4.3: A human col-
lector uses a tweezer to con-
duct pick-and-place actions.
RGB-D videos are captured
by a top-down camera.

action, we record a full RGB-D video including the intermediate states.
The actions are conducted with a tweezer, which helps reduce the
amount of occlusion compared to a robot gripper or human hand
(Fig.4.3).

Considering each pick and place action, since we record the inter-
mediate states, we obtain a sequence of point clouds P1:T and low-level
picker actions a1:T where T is the length of the trajectory. Note that
the entire sequence a1:T corresponds to a single pick and place action,
and we have a separate action and point cloud sequence for each pick
and place action. In our experiments, we set initial configuration to be
flattened clothes, and apply 3 pick-and-place actions (N = 3) in each
trajectory, which takes around one minute (per trajectory) for an expe-
rienced human collector.

4.3.2 Pseudo Label Generation by Model-based Cloth
Tracking
Given an initial depth image D0, a pretrained mesh reconstruction
model, an (imperfect) dynamics model, as well as the action and point cloud sequences recorded
in the previous section, our next goal is to estimate the full meshes for every state recorded in
the dataset. We assume that the initial depth image D0 is recorded from the cloth in a flattened
state in which the pre-trained mesh reconstruction model is reasonably accurate. Let us denote the
estimated reconstruction of this initial mesh as M0, where a mesh is defined as M = (V,E) with
vertices V and edges E ⊆ V × V .



Given the initial estimated mesh M̄0, a sequence of point clouds P1:T , and a sequence of actions,
a1:T , our objective is to estimate a sequence of meshes corresponding to each timestep M̄1:T .
To obtain an accurate estimate of the motion of the clothes, we developed an action-conditioned
model-based cloth tracking method that is robust to occlusions. We first simulate the action with
the imperfect dynamics model to obtain an initialization of the motion. We then run an optimization
to match the visible mesh with the observed point cloud. Finally, we use the dynamics model again
to obtain the final prediction.

Initialize the Motion with a Dynamics Model

Our method falls under the category of “model-based tracking” [99, 115, 121]. Compared to
model-free tracking, one of the most appealing properties of model-based tracking is that it models
the whole object, including the occluded part. This is significant when we track double-layer
clothes, because part of the clothes might be occluded through out the entire trajectory. In this case,
model-free tracking is only able to estimate the motion of the visible part while leaving occluded
portion of the mesh unchanged. On the other hand, model-based tracking can use a physics prior
of cloth to estimate the motion of the occluded regions and estimate the configuration of the full
mesh that satisfies physical motion constraints.

At each timestep t, we directly modify the position of the picked particle according to the
picker action, at. We then run the dynamics model dyn for one step to propagate the effect to
the whole cloth, holding fixed the position of the picked particle. Suppose xt ∈ R|V |×3 are the
positions of all vertices; given the vertices xt and action at, the dynamics model will predict the
next state xdynt+1 = dyn(xt, at). The motion of all vertices, ∆xdynt+1 = xdynt+1− xt, will be recorded and
used as an initialization for the test-time optimization step.

In order to make the dynamics model as realistic as possible, we calibrate the simulation by
searching for the optimal physical parameters(such as friction and stiffness). To do so, we first
simulate the entire action sequence a1:T to obtain the final predicted mesh M̂T . We then use a
z-buffer to compute the visible portion of the mesh M̂ vis

T . Next, we run a grid search over the
dynamics model paraemeters to minimize the Chamfer distance between the visible portion of
the simulated mesh M̂ vis

T and the point cloud at the final step PT . Then we use the optimized
parameters to obtain xdynt+1 as explained above. For our dynamics model, we use a position-based
cloth dynamics model implemented in the Nvidia FleX simulator [64, 35].

Augment Imperfect Dynamics Model by Aligning with Measurement

Due to the complexity of real-world dynamics and the challenges of system calibration, our dy-
namics model will have errors. Even with accurate estimation of the initial state, it will deviate
from the real-world rollout with errors accumulating over time. To tackle this challenge, we draw
inspiration from Bayesian Tracking [2]: we eliminate the compounding errors due to the inaccu-
rate dynamics model by running a test-time optimization (TTO1 in Fig. 4.2) and thereby reduce
the discrepancy between the dynamics prediction and the measurement (the observed pointcloud).

From the dynamics model (Sec. 4.3.2), we obtain an initial estimate of the state of cloth xdynt+1

. The goal of the test-time optimization step is to compute a correction term ∆xcorrt+1 that adjusts
the predicted mesh to better match the observed point cloud. Thus, we optimize a 3-D translation



for each vertex ∆xcorrt+1 so that xt+1 = xdynt+1 +∆xcorrt+1 is aligned with the observation. The specific
optimization objectives are:

Chamfer Loss. The first objective we have is the one-way Chamfer distance between the next
point cloud Pt+1 and the visible portion of the mesh xvist+1, given by LChamf = Dchamf (Pt, x

vis
t+1).

We use the one-way Chamfer distance because the observed point cloud is incomplete due to
occlusions induced by the tweezer. For each point on the observed point cloud, we find the nearest
neighbor within the visible set of mesh vertices.

Laplacian Loss. To avoid implausible artifacts in the predicted mesh, we introduce a smooth-
ing term to regularize the mesh. Given the mesh Mt = (Vt, Et), with vertices Vt and edges Et,
we use xt,k to denote the position of the k-th vertex and Et,i to denote the set of edges that are
connected to the k-th vertex. The Laplacian loss pulls each vertex to the average positions of its
neighbors:

LLap =
1

K

K∑
k=1

∥∥∥∥∥∥
(

1

|Et,k|
∑

j∈Et,k

xt,j

)
− xt,k

∥∥∥∥∥∥
2

2

(4.1)

We also use other losses to regularize the mesh, such as mesh edge loss, collision loss, sparsity
loss, and rigidity loss. The details of these additional losses can be found in the appendix. At each
step, we optimize ∆xcorrt+1 with respect to the losses defined above for 100 iterations by using Adam
optimizer [51].

Rollout Augmented Dynamics with Line Search

In the previous section, we described how to compute a correction term for simulated results based
on the measurement. However, the optimized mesh is not guaranteed too satisfy all physical con-
straints. Similar to [115, 114], we use the dynamics model again to verify the physical plausibility
of the mesh. Therefore, rollout the dynamics model again from the original state xt; this time, we
use both the picker action at as well as a “pseudo-action” ãt = ∆xdynt+1 +∆xcorrt . The picker action
is executed as described in Sec. 4.3.2. On the other hand, the pseudo-action ãt is applied to all
visible particles. We then use the dynamics model to adjust the positions of the occluded particles.

As mentioned above, although pseudo action ãt helps align the rollout with observation, it
may potentially create physically infeasible configurations. Therefore, we run a line search on
the correction component ∆xcorrt . If the simulation produces an error, we multiply ∆xcorrt with a
decaying factor γ (in our experiments, we set γ = 0.7). If the simulation fails for 10 times, we set
ãt = 0.

After executing the dynamics model, we run another test-time optmization (TTO2) procedure
(Alg.1 line 9) to ensure that the estimated mesh M̄t matches the observation. The losses we use are
similar to the test-time optmization (TTO1) in Sec. 4.3.2, excluding the rigidity loss and sparsity
loss which are used for regularizing the correction term. Finally, we use optimized mesh as the
initial state for the next pick-and-place action and iterate until all pick-and-place actions have been
tracked.

4.3.3 Model finetuning
Using the above tracking model, we obtain a pseudo-labeled dataset, with an estimated mesh for
each observed point cloud or depth image. Our dataset consists of the final estimated mesh at



Algorithm 1: Pseudo label generation by model-based tracking
Input : A sequence of depth image sequences {D1:T}Ni=0, picker actions {a1:T}Ni=0, point

cloud sequence {P1:T}Ni=0, a pretrained mesh reconstruction model fθ, and a
dynamics model dyn.

Output: A pseudo-labeled dataset that includes paired observations and pseudo labels:
B={(Di, M̄ i)}Ni=0

1 Reconstruct initial mesh M̄0
0 by reconstruction model fθ

2 Initialize the pseudo-labeled dataset B with (D0, M̄0)
3 for i← 0 to N do
4 for t← 1 to T do
5 Mdyn,i

t+1 ← SimulationStep(M̄ i
t−1, a

i
t),

6 ãit ← Compute pseudo action through test-time optimization (Sec. 4.3.2)
7 M̄ i

t ← SimulationStepWithLineSearch(M̄ i
t−1, a

i
t, ã

i
t)

8 end
9 Optimize M̄ i

T with test-time optimization
10 Add depth image Di

T and pseudo mesh M̄ i
T to the pseudo-labeled dataset B

11 Use the final mesh in the current iteration as the initialization of next iteration:
M̄ i+1

0 ← M̄ i
T

12 end
13 return Pseudo-labeled dataset B

the end of each pick and place action M̄T and the corresponding point cloud PT . After curat-
ing this pseudo-ground-truth dataset, we use it to finetune the mesh reconstruction model. In
our experiments, we finetune the mesh-reconstruction model in MEDOR [39], which is built off
GarmentNets [19]. Given a depth image, GarmentNets [19] and MEDOR [39] first predict the
canonical coordinates of each pixel. They then complete the shape in canonical space and finally
transform the completed shape back to observation space. It should be noted that our method not
only provides the pseudo ground-truth mesh for the observation space, but our method also can
compute a pseudo-ground-truth mesh in the canonical space. This is because GarmentNets [19]
and MEDOR [39] simultaneously reconstruct both meshes in the initial configuration; tracking the
meshes helps preserve the mapping between canonical space and observation space. Thus, we are
able to fine-tune both the model that maps from observation space to canonical space as well as the
model that maps from canonical space back to the observation space (i.e. both parts of the mesh
reconstruction model). In terms of the GarmentNets [18] componnents, we train the canonicaliza-
tion model, as well as the shape completion and warp field prediction model. For details, please
refer to GarmentNets [18].

4.4 Experiments

Through the experiments, we seek to the answer the following questions:
1. Can our method generate approximately correct pseudo labels for mesh reconstruction and

dynamics learning?



2. Can our model adapt quickly after being finetuned on the pseudo labels?

4.4.1 Evaluation on the Quality of Pseudo Labels
Setup. We collect 50 trajectories in the real world, each of which contains 3 pick-and-place actions.
Including the initial state, there are 200 pseudo labels in total.

Baselines. We compare our method to 4 baselines:
• No Pseudo Action. The goal of pseudo action ãt is to “patch” the inaccuracies of the dy-

namics model. We verify its effectiveness by removing it from the method and only rollout
with the picker action a1:T .

• No Action Conditioning. In this baseline, we assume the picker action information is not
known, which has two implications. 1) When computing the pseudo action, since we don’t
know the picker action, we cannot roll out the simulator to initialize TTO; 2) When we
simulate the pseudo action with line search, we only apply the pseudo action alone (not the
picker action).

• No Dyn Init. In this baseline, we directly run TTO on the current mesh Mt instead of
the simulated next mesh Mdyn

t+1 . This is to verify whether using simulation to bootstrap the
optimization is critical to the performance.

• No Test-time Finetuning (TTO2). Although we conduct TTO in between the simulation
process, the rollout may still drift due to imperfect dynamics. In this baseline, we remove the
optimization step at the end of the tracking procedure (TTO2) to see whether this component
is necessary.

Metrics. Evaluating the quality of pseudo label is challenging, due to the absence of ground-
truth mesh. To evaluate the quality of generated pseudo label, we use the bidirectional Chamfer
distance between the visible surface of pseudo mesh and the observed point cloud, which we
refer as Chamfer PC. Our assumption is that if the tracking is accurate, then the visible sur-
face of the pseudo mesh should match the observed point cloud, which is the visible surface
of ground-truth mesh. We compute the metric with the mesh before Test-time optimization 2.
This is because optimizing a point set is too flexible. Even for completely erroneous prediction,
the shape can match the observation and achieve a low cost, even if the structure is completely
wrong. Therefore, comparing the loss after TTO2 is not very indicative of accurate tracking.

Method Chamfer PC
(1× 10−4)

No Pseudo Act 2.22± 1.8
No Dyn Ini 1.82± 1.72

No Act Cond 8.73± 7.28
No TTO2 2.20± 2.49
MEDOR 3.0± 2.1

Ours (full method) 1.46± 1.75

Table 4.1: Quantitative results of
different variants of our method.

Results. In the Fig. 4.4, we show the side-by-side comparison
of the tracking results of the different methods. Videos and 3D
visualizations of the pseudo mesh can be found on our anonymized
website. Our full method (second row) is able to track the clothes
even under complicated configurations, i.e., multiple folds (right
figure). In contrast, the other methods all produce pseudo meshes
that don’t align with the observations.

In Table. 4.1, we show the quantitative results of the baselines
and our method. Means and standard deviations of the generated
pseudo meshes are computed across the whole dataset. Comparing our method with No Pseudo
Act, we see that dynamics errors can be significantly reduced by aligning with measurements
during the rollout. By comparing No Dyn Ini with our method, we see the importance of using

https://sites.google.com/view/ss-mesh-recon/home
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Figure 4.4: Qualitative results of pseudo label generation. First row is the real-world rollout, with pick points and
place points denoted by red and green circles respectively.

dynamics prior as the initialization for the optimization problem. Since tracking is a correspon-
dence problem, our conjecture is that initializing with a dynamics rollout makes it easier to find
correspondences. Looking at No Act Cond, we see the benefits for tracking deformable objects con-
ditioned on the action, and a pure optimization method failed in this case. Comparing No TTO2
with our method, we observe that TTO2 helps reduce the compounding error; thus removing it
hurts the performance.

4.4.2 Model Performance After Finetuning

Method Chamfer PC Chamfer Mesh

MEDOR [39] w/o ft 3.0± 2.1 2.2± 1.7
MEDOR [39] w/ ft 1.6± 1.4 1.2± 0.8

Table 4.2: Performance of the method before and
after finetuning. We show that after finetuning, the
model is able to achieve lower chamfer distance to the
observed point cloud and L2 distance to validation set
of pseudo label.

In this section, we investigate whether the pseudo
label generated from our proposed workflow is ben-
eficial for the self-supervised learning of a mesh
reconstruction model. We finetune MEDOR [39]
which is purely trained in simulation (code obtained
from the authors), and show its performance before
and after finetuning.

In Table 4.2, we show 2 metrics. The Cham-
fer PC is the bidirectional Chamfer distance be-
tween the visible predicted mesh and the partial
point cloud, which is the same metric as in Table. 4.1. Chamfer PC indicates how well the predic-



tion aligns with the observation. Chamfer Mesh is the chamfer distance between the full predicted
mesh and pseudo mesh, which indicates how well the model learns from this pseudo dataset. As
we can see from the Table 4.2, both metrics are significantly improved after finetuning (46% for
Chamfer PC and 45% for Chamfer Mesh).

4.4.3 Limitations
Although our proposed method provides a viable way to train a mesh reconstruction model in the
real world in a self-supervised manner. There are several limitations: 1) The data collection system
relies on a human (instead of using a robot) due to the difficulty of using a robot for flattening and
grasping arbitrary clothes reliably. 2) We record full RGB-D videos during data collection, while
only use depth information for tracking. Potentially, our method can set up an extra optimization
objective based on RGB information [42, 10]. 3) We don’t leverage of the intermediate full meshes
generated during tracking, which can potentially be used for a learned dynamics model.



Chapter 5

Conclusion

In this thesis, we investigate how to enable to reason about occlusion to attain more efficient cloth
manipulation. Specifically, we studied the problem of reasoning about occlusion both implicitly
and explicitly.

In the first part of thesis, we describe how to leverage inductive bias to build a more generaliz-
able dynamics model. Concretely speaking, we infer a visible connectivity graph from the partial
point cloud and learn a particle-based dynamics model. Since partial point cloud only captures
the structure of the visible parts, the unmodeled occluded regions confounds the dynamics model.
To alleviate this issue, we propose graph imitation learning to build an occlusion-aware dynamics
model.

In the second part of the paper, we introduce a cloth manipulation system that explicitly rea-
sons about the occluded regions of cloth. At test-time, we optimize the predicted mesh with self-
supervised losses. Then we use a learned mesh-based dynamics model to plan over the predicted
mesh and find optimal actions for cloth manipulation. We compare against state-of-the-art cloth
manipulation methods that do not account for partial observability and show significant improve-
ments from explicit occlusion reasoning and test-time fine-tuning. We also demonstrate the effi-
cacy of our method in real world experiments.

Lastly, we proposed a self-supervised mesh reconstruction in the real world, via action-conditioned
cloth tracking. We show that by leveraging a dynamics model and point cloud observations, we
can accurately track the clothes and compute pseudo-labels of the reconstructed mesh for crumpled
clothes. By finetuning a simulation-trained mesh reconstruction model on the pseudo labels, we
can partially close the sim2real gap and improve the reconstruction results in the real world.
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Chapter 6

Future Work

In this thesis, we investigate how to reason about occlusion in different ways, and use it for model-
based cloth manipulation. Although showing impressive performance, there remains several chal-
lenges that are left for future work.

• Visuo-tactile cloth grasping. One of the failure modes in the physical experiment is the
cloth grasping. Due to the thin structure of the cloth, precise grasping of the cloth is very
difficult. For example, the gripper may collide with the cloth and result in deformation. It
will be interesting to see how to integrate visual and tactile information to grasp cloth more
intelligently.

• Probabilistic occlusion reasoning. One property of the problem of occlusion reasoning is
ambiguity. Since the configurations of the occluded part cannot be fully determined by
the visible surface, there is a whole distribution of possible poses for the occluded part.
Therefore, one interesting direction for future work might be modeling the uncertainty and
predict the distribution of possible configurations.

• Occlusion-aware policy learning. All the methods presented in this paper rely on the dynam-
ics model. While the model-based method is effective and performs well, it is usually very
slow. One solution for the issue is to train a model-free policy. It will be interesting to see
whether explicit occlusion reasoning is also helpful for model-free method, or implicit one
is already good enough.
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A.1 VCD Implementation

A.1.1 GNN Architecture

As mentioned in the main paper, we take the network architecture in previous work [97] (referred
to as GNS) for our dynamics GNN Gdyn and the edge GNN Gedge. Both GNN consists of three
parts: encoder, processor and decoder. Since the dynamics and edge GNNs have very similar
architectures, we first describe the architecture of the dynamics GNN, and then describe how the
edge GNN architecture differs from that.

Input: The input to the dynamics GNN is a graph, where the nodes are the points in the
voxelized point cloud of the cloth, and the edges consist of the collision edges (built using Eq. (1))
and mesh edges (inferred by a trained edge GNN). The node feature for a point vi consists of the
concatenation of its past m velocities, a one-hot encoding of the point type (picked or unpicked -
see details about picking in Section 3.4 in the main paper and Section A.1.3 in the appendix), and
the distance to the table plane. For edge ejk that connects nodes vj and vk, its edge feature consists
of the distance vector (xj − xk), its norm ||xj − xk||, a one-hot encoding of the edge type (mesh
edge or collision edge), and the current displacement from the rest position ||xj−xk||−rjk, where
rjk is the distance between xj and xk at the rest positions. The displacement from the rest positions
are set to zero for collision edges which do not have rest positions.

We now describe how the robot action is incorporated into the input graph of the dynamics
GNN as follows. As mentioned in Section 3.4 of the main paper, when we want to use the dynamics
GNN to predict the effect of a pick-and-place robot action a = {apick, aplace} on the current cloth,
we first decompose the high-level action into a sequence of low-level movements, where each
low-level movement is a small delta movement of the gripper and can be achieved in a short time.
Specifically, we generate a sequence of small delta movements ∆x1, ...,∆xH from the high-level
action, where xpick +

∑H
i=1∆xi = xplace. Each delta movement ∆xi moves the gripper a small

distance along the pick-and-place direction and the motion can be predicted by the dynamics GNN
in a single step. We then incorporate the small delta movement into the input graph as follows.
When the gripper is grasping the cloth, we denote the picked point as u. We assume that the
picked point is rigidly attached to the gripper; thus, when considering the effect of the tth low-level
movement of the robot gripper, we modify the input graph by directly setting the picked point u’s
position xu,t = xpick +

∑t
i=1∆xi and velocity ẋu,t = ∆xi/∆t, where ∆t is the time for one low-

level movement step. The dynamics GNN will then propagate the effect of the robot action along
the graph when predicting future states.

Encoder: The encoder consists of two separate multi-layer perceptrons (MLP), denoted as
ϕp, ϕe, that map the node and edge feature, respectively, into latent embedding. Specifically, the
node encoder ϕp maps the node feature for node vi into the node embedding hi, and the edge
encoder ϕe maps the edge feature for edge ejk into the edge embedding gjk.

Processor: The processor consists of L stacked Graph Network (GN) blocks [5] that update
the node and edge embedding, with residual connections between blocks. We use L = 10 in both
edge GNNGedge and dynamics GNNGdyn. The lth GN block contains an edge update MLP f l

e and
a node update MLP f l

p that take as input the edge and node embedding gl and hl respectively and
outputs updated embedding gl+1 and hl+1 (we denote g0 and h0 as the edge and node embedding
output by the encoder). It also contains a global update MLP f l

c that takes as input a global vector
embedding cl, and outputs the updated global embedding cl+1. The initial global embedding c0 is



set to be 0. For each GN block, first the edge update MLP updates the edge embedding; it takes as
input the current edge embedding gljk, the node embedding hlj, h

l
k for the nodes that it connects, as

well as the global embedding cl: gl+1
jk = f l

e(h
l
j, h

l
k, g

l
jk, c

l)+gljk, ∀ejk ∈ E. The node update MLP
then updates the node embedding; its input consists of the current node embedding hli, the sum of
the updated edge embedding for the edges that connect to the node, and the global embedding cl:
hl+1
i = f l

p(h
l
i,
∑

j g
l+1
ji , c

l)+hli, ∀i = 1, ..., Np. Note the edge and node updates both have residual
connections between consecutive blocks. Finally, the global update MLP takes as input the current
global embedding cl, the mean of the updated node and edge embedding, and updates the global
embedding as: cl+1 = f l

c(c
l, 1

|V |
∑|V |

i=1 h
l+1
i , 1

|E|
∑

ejk
gl+1
jk ).

Decoder: The decoder is an MLP ψ that takes as input the final node embedding hLi output by
the processor for each point vi; the decoder outputs the acceleration for each point: ẍi = ψ(hLi ).
The acceleration can then be integrated using the Euler method to update the node position xi. We
train the graph GNN Gdyn using the L2 loss between the predicted point acceleration ẍi and the
ground-truth acceleration obtained by the simulator; see Sec. A.1.2 for details.

Edge GNN: The edge GNN Gedge has nearly the same architecture as the dynamics GNN,
with the following differences: first, the input graph to the edge GNN encoder consists of only the
voxelized point cloud and the collision edges ⟨P,EC⟩; the edge GNN aims to infer which collision
edges are also mesh edges. The node feature is 0 for all nodes. The edge feature for edge ejk
consists of the distance vector (xj − xk) and its norm ||xj − xk|| (without the edge type, since
this must be inferred by the edge GNN). The processor is exactly the same as that in the dynamics
GNN. The decoder is an MLP that takes as input the final edge embedding output by the processor
and outputs the probability of the collision edge being a mesh edge. We use a binary classification
loss on the prediction of the mesh edge for training.

Hyperparameters In simulator, we set the radius of particles to be 0.00625, an All MLPs that
we use has three hidden layers with 128 neurons each and use ReLU as the activation function. The
detailed parameters of the GNN architecture, as well as the simulator parameters, can be found in
Supplementary Table B.5.

A.1.2 VCD Training Details

Details about training in simulation: We train the dynamics GNN with one-step prediction
loss: suppose that we sample a transition (Vt, at, Vt+1), where at is a low-level action. Then
we assign the velocity at timestep t that is input to the network to be the ground-truth velocity
obtained from the simulator (after matching the points to their corresponding simulator particles).
This strategy enables us to sample arbitrary timesteps for training rather than needing to always
simulate the dynamics from the first timestep.

For training the edge GNN, we need to obtain the ground-truth of which collision edges are
also mesh edges. During simulation training, a collision edge is assumed to be a mesh edge if
the mapped simulation particles of the edge’s both end points are connected by a spring in the
simulator.

We train our dynamics GNN with the ground-truth mesh edges, and directly use it with the
mesh edges predicted by the edge GNN at test time. We find this to work well without fine-
tuning the dynamics GNN on mesh edges predicted by the edge GNN, due to the high prediction
accuracy(91%) of the edge GNN.



Details about bipartite graph matching: As mentioned in the main paper, we need bi-partite
graph matching to find a mapping from the voxelized point cloud to the simulation particles, in
order to obtain the state and connectivity of the voxelized point cloud for training the dynamics
and edge GNN. Given N points in the voxelized point cloud pi, i = 1 . . . N and M simulated
particles of the cloth in simulation xj, j = 1 . . .M , the goal of the bipartite graph matching here
is to match each point in the point cloud to a simulated particles. The simulated cloth mesh is
downsampled by three times to improve computation efficiency, e.g., a cloth composed of 40× 40
particles is downsampled to be of size 13 × 13. The bi-partite matching is only performed on the
downsampled particles. We build the bipartite graph by connecting an edge from each pi to xj ,
with the cost of the edge being the distance between the two points. In our experiments, we always
have M > N since we use a large grid size for the voxelization.

Training data: We collect 2000 trajectories, each consisting of 1 pick-and-place action. The
pick point is randomly chosen among the locally highest points on the cloth; this is only done
to generate the training data for the dynamics model, not for planning (we do this for training
the VSF and CFM baselines as well; the MVP baseline uses the behavioral policy to generate its
training data). The unnormalized direction vector p = (∆x,∆y,∆z) for the pick-and-place action
is uniformly sampled as follows: ∆x,∆z ∈ [−0.5, 0.5], ∆y ∈ [0, 0.5]. The direction vector is
then normalized and the move distance is sampled uniformly from [0.15, 0.4]. The high-level pick-
and-place action is decomposed into 100 low-level steps: the pick-and-place is executed in the 60
low-level actions, and then we wait 40 steps for the cloth to stablize. We train our dynamics model
in terms of low-level actions.

We choose the voxel size (0.0216) to be three times of the particle radius (0.00625) to keep it
consistent with the downsampled mesh. The neighbor radius, which determines the construction
of collision edges, is set to be roughly two times of the voxel size, so as to ensure that particles in
adjacent voxels are connected.

Training parameters: We use Adam [51] with an initial learning rate of 0.0001 and reduce
it by a factor of 0.8 if the training plateaus. We train with a batch size of 16. The training of
the dynamics GNN takes roughly 4 days to converge on a RTX 2080 Ti. The training of the edge
GNN usually converges in 1 or 2 days. Detailed training parameters can be found in Supplementary
Table B.5.



Model parameter Value

Encoder(same for both node encoder and edge encoder)
number of hidden layers 3
size of hidden layers 128

Processor
number of message passing steps 10
number of hidden layers in each edge/node update MLP 3
size of hidden layers 128

Decoder
number of hidden layers 3
size of hidden layers 128

Training parameters Value

learning rate 0.0001
batch size 16
training epoch 120
optimizer Adam
beta1 0.9
beta2 0.999
weight decay 0

Others Value

dt 0.05 second
particle radius 0.00625 m
downsample scale 3
voxel size 0.0216 m
neighbor radius R 0.045 m

Supplementary Table A.1: Summary of all hyper-parameters.

A.1.3 VCD Planning Details

We summarize the planning procedure of VCD in Algorithm 3. We sample K high-level pick-
and-place actions. For each sampled high-level action, we roll out our dynamics model using that
action for H low-level steps and obtain the sequence of predicted point positions.

Action sampling during planning in simulation As described in the main text, we sample
500 pick-and-place actions, where the pick point is first uniformly sampled from a bounding box
of the cloth and then projected to be on the cloth mask. For generating the bounding box, we
first obtain the cloth mask from the simulator. We then obtain the minimal and maximal pixel
coordinates u, v value of the cloth mask. The bounding box is the rectangle with corners (min(u)−
padding,min(v)− padding) and (max(u)+ padding,max(v)+ padding), where padding is set
to be 30 pixels for the 360 × 360 image size we use. We use rejection sampling to make sure the
place point is within the image to keep the action within the depth camera view. The unnormalized
direction vector p = (∆x,∆y,∆z) (y is the up axis) of the pick-and-place is uniformly sampled as
follows: ∆x,∆z ∈ [−0.5, 0.5], and ∆y ∈ [0, 0.5]. The vector is normalized and then the distance



Algorithm 2: Planning with pick-and-place actions
input : Voxelized partial point cloud P , Edge GNN Gedge, Dynamics GNN Gdyn, number

of sampled actions K
output: pick-and-place action a = {xpick, xplace}

1 Build collision edges EC
0 with P ; Infer mesh edges EM ← Gedge(P,E

C
0 )

2 for i← 1 to K do
3 Sample a pick-and-place action xpick, xplace
4 Compute low-level actions ∆x1, ...,∆xH
5 Get picked point vu from xpick
6 Pad historic velocities with 0: x0 ← P, ẋ−m...0 ← 0
7 for t← 0 to H do
8 Build collision edges EC

t with xt

9 Move picked point according to gripper movement by :
10 xu,t ← xu,t +∆xt, ẋu,t ← ∆xt/∆t
11 Predict accelerations using Gdyn: ẍt ← Gdyn(xt, ẋt−m...t, u, E

M , EC
t )

12 Update point cloud predicted positions & velocities:
13 ẋt+1 = ẋt + ẍt∆t, xt+1 = xt + ẋt+1∆t
14 Readjust picked point according to gripper movement by
15 xu,t ← xu,t +∆xt, ẋu,t ← ∆xt/∆t

16 end
17 Compute reward r based on final point cloud predicted position xH

18 end
19 return pick and place action with maximal reward



is separately sampled from [0.05, 0.2] meters. We decompose the pick-and-place action into 10
low-level actions and wait for another 6 steps for the cloth to stabilize.

Action sampling during planning in the real world The robot action space is pick-and-
place with a top down pinch grasp. For each action, we sample 100 pick-and-place actions to
be evaluated by our model. Each action sample is generated as follows: We first sample a pick-
point location corresponding to the segmented cloth, denoted as (px, py). We then generate a
random direction θ ∈ [0, 2π] and distance l ∈ [0.02, 0.1] meters. Then the place point will be
(px+ l cos θ), py + l sin θ. We only accept an action if both the pick and the place points are within
the work space of the robot. We additionally filter out actions whose place points are overlapping
with the cloth. This heuristic saves computation time without sacrificing performance.

Reward computation in planning: As described in the main text, to compute the reward
function r for planning, we treat each node in the graph as a sphere with radius R and compute
the covered area of these spheres when projected onto the ground plane. To prevent the planner
from exploiting the model inaccuracies, we do the following: if the model predicts that there are
still points above a certain height threshold after executing the pick-and-place action and waiting
the cloth to stabilize, then the model must be predicting inaccurately and we set the reward of such
actions to 0. The threshold we use is computed as 15×0.00625 meters, where 0.00625 is the radius
of the cloth particle used in the simulation.

A.2 Baselines Implementation
For all the baselines, we try our best to adjust the SoftGym cloth environment to match the cloth
environment used in the original papers. For VSF, we place the camera to be top-down and zoomed
in so that the cloth covers the entire image when fully flattened. We also changed the color of
the cloth to be bluish as in the original paper. We collect 7115 trajectories, each consisting of
15 pick-and-place actions for training the VSF model (same as in the VSF paper). For CFM,
we also use a top-down camera and change the color of the cloth to be the same on both sides,
following the suggestion of the authors (personal communication). We collect 8000 trajectories
each consisting of 50 pick-and-place actions for training the contrastive forward model (same as
in the CFM paper). For MVP, we collect 5000 trajectories each with 50 pick-and-place actions
and report the performance of the best performing model during training. We trained each of the
baselines for at least as many pick-and-place actions as they were trained in their original papers.
For training our method, , we collect 2000 trajectories, each consisting of 1 pick-and-place action
decomposed into 20 low-level actions for training. Note that this is fewer pick-and-place actions
than any of the baselines used for training. We now describe each compared baseline in more
details below:

A.2.1 VisuoSpatial Forsight (VSF)
We use the official code of VSF provided by the authors1.

Image: Following the original paper, we use images of size 56 × 56. we place the camera
to be top-down and zoomed in so that the cloth covers the entire image when fully flattened. An
example goal image of the smoothed cloth for VSF is shown in Supplementary Figure A.1.

1https://github.com/ryanhoque/fabric-vsf



(a) VSF goal image. (b) VSF observation. (c) CFM goal image. (d) CFM observation.

Supplementary Figure A.1: Images of cloth configurations used by the baseline methods.

Training data & Procedure: For training the VSF model, we collect 7115 trajectories for
training (same as in the VSF paper), each consisting of 15 pick-and-place actions. Following the
VSF paper, the pick-and-place action first moves the cloth up to a fixed height, which is set to be
0.02 m in our case, and then moves horizontally. The horizontal movement vector is sampled from
[−0.07, 0.07] × [−0.07, 0.07] m. This range is smaller than what is used for VCD, as we follow
the original paper to set the maximal move distance roughly half of the cloth/workspace size. We
use rejection sampling to ensure the after the movement, the place point is within the camera view.
Similar to VCD, the pick point is uniformly sampled among the locally highest points on cloth
(only during training). It takes 2 weeks for VSF to converge on this dataset.

Action sampling during planning: Similarly to VCD, the pick point is sampled uniformly
from a bounding box around the cloth and then projected to the cloth mask. The padding for the
bounding box here we use is 6. Other than the pick point, other elements of the pick-and-place
action is sampled following the exact same distribution as in the training data collection.

A.2.2 Contrastive Forward Model (CFM)

We use the official code of CFM provided by the authors2.
Image: Following the original paper, we use images of size 64×64. We also place the camera

to be top-down and adjust the camera height so the cloth contains a similar portion of the image as
in the original paper. Following the suggestions from the authors (personal communication), we
also set the color of the cloth to be the same on both sides. See Supplementary Figure A.1 for an
example of the images we use.

Training data: For training, we collect 8000 trajectories each consisting of 50 pick-and-
place actions, which is the same as in the original paper. Similar to VCD and VSF, the pick point
is sampled among the locally highest points on the cloth (only during training). The movement
vector is sampled from [−0.04, 0.04]× [0, 0.04]× [−0.04, 0.04] m, where the y-axis is the negative
gravity direction. We use pick-and-place actions with such small distances following the original
paper. We also use rejection sampling to ensure the place point is within the camera view.

Action sampling during planning: Similar to VCD, the pick point is sampled uniformly
from a bounding box around the cloth and then projected to the cloth mask. The padding size here
we use for the bounding box is 5. Other than the pick point, other elements of the pick-and-place
action are sampled following the exact same distribution as in training data collection.

2https://github.com/wilson1yan/contrastive-forward-model



Supplementary Figure A.2: Images of the square cloth, rectangular cloth, and t-shirt used in simulation.

A.2.3 Maximal Value under Placing (MVP)
We use the official code of MVP provided by the authors3.

Image: Following the original paper, we use images of size 64×64. We also place the camera
to be top-down.

Training data: For training, we collect 8000 trajectories each consisting of 50 pick-and-place
actions, which is the same as the original paper. However, the Q function starts to diverge after
5000 trajectories and the performance starts to drop. Thus we report the best policy performance
when it has been trained for 5000 trajectories. This corresponds to around 15000 training iterations.

Action space: The action space for the MVP policy is in 5 dimension: (u, v,∆x,∆y,∆z),
where u, v is the image coordinate of the pick point and is sampled for the segmented cloth pixel.
We use the depth information to back project the pick point to 3d space. (∆x,∆y,∆z) is the
displacement of the place location relative to the pick point and is clipped to be within 0.5. Addi-
tionally, the height ∆y is clipped to be non-negative.

A.3 Experimental Setup

A.3.1 Simulation Setup
We use the Nvidia Flex simulator, wrapped in SoftGym [64], for training. In SoftGym, the robot
gripper is modeled using a spherical picker that can move freely in 3D space and can be activated
so the nearest particle will be attached to it. For the simulation experiments, we use a nearly square
cloth, composed of a variable number of particles sampled from [40, 45]×[40, 45]; this corresponds
to a cloth of size in the range of [25, 28]× [25, 28] cm. Detailed cloth parameters such as stiffness
are listed in the appendix. For all methods, we randomly generate 20 initial cloth configurations
for training. The initial configurations are generated by picking the cloth up and then dropping it
on the table in simulation. For evaluation, we consider three different geometries: 1) the same type
of square cloth as used in training; 2) Rectangular cloth. The length and width of the rectangular
cloth is sampled from [19, 21] × [31, 34] cm. 3) T-shirt. Images of these three shapes of cloth in
simulation are shown in Supplementary Figure A.2.

We set the stiffness of the stretch, bend, and shear spring connections to 0.8, 1, 0.9, respectively.
3https://github.com/wilson1yan/rlpyt



A.3.2 Real-world Setup
Real World Setup Our real robot experiments use a Franka Emika Panda robot arm with a standard
panda gripper. We obtain RGBD from a side view Azure Kinect camera and crop the RGBD
image into the size of [345, 425], which corresponds to a workspace of 0.4 x 0.5 meters. To obtain
the cloth point cloud, we first use color thresholding to remove the table background and obtain
the cloth segmentation mask and then back project each cloth pixel to 3d space using the depth
information. We evaluate on three pieces of cloth: Two squared towels made of silk and cotton
respectively and one shirt made of cotton. We use the covered area as described in Sec. A.1.3 as
our reward function.

For each cloth, we evaluate 12 trajectories each with a maximum of 20 pick-and-place actions.
For each trajectory, the robot stops if the normalized performance is higher than 0.95 or if the pre-
dicted rewards of all the sampled actions are smaller than the current reward. For each trajectory,
we reset the cloth configuration using the following protocol: Each time, the arm picks a random
point on the cloth, lifts it up to 0.4 meters above the table and drop it at a fixed point on the table.
This procedure is done three times in the beginning of each trajectory.

A.4 Additional Experimental Results

A.4.1 Simulation Experiments
Normalized Improvement and Normalized Coverage in Simulation

NI and NC of our simulation experiments are reported in Supplementary Table B.4 and Supple-
mentary Table A.3. With different metrics, our method consistently outperforms all baselines.

Method

# of pick-and-
place actions 5 10 20 50

Square

(Ours) 0.624± 0.217 0.778± 0.222 0.968± 0.307 1.000± 0.043
-graph-imitation (Ours) 0.692± 0.258 0.919± 0.377 0.990± 0.122 1.000± 0.039

VSF [38] 0.321± 0.112 0.561± 0.127 0.767± 0.134 0.968± 0.021
CFM [127] 0.053± 0.051 0.077± 0.053 0.109± 0.066 0.105± 0.106
MVP [126] 0.399± 0.210 0.435± 0.137 0.421± 0.361 0.307± 0.310

Rectangular
(Ours) 0.585± 0.359 0.918± 0.413 0.973± 0.341 0.979± 0.399

-graph-imitation (Ours) 0.556± 0.372 0.912± 0.393 0.985± 0.164 1.000± 0.028
VSF [38] 0.268± 0.090 0.356± 0.163 0.542± 0.177 0.715± 0.162

T-shirt
(Ours) 0.595± 0.279 0.533± 0.285 0.738± 0.465 0.979± 0.399

-graph-imitation (Ours) 0.595± 0.385 0.633± 0.357 0.838± 0.450 0.969± 0.8860
VSF [38] −0.009± 0.125 0.004± 0.188 0.176± 0.237 0.219± 0.218

Supplementary Table A.2: Normalized Improvement (NI) of all methods in simulation, for varying numbers of
allowed pick and place actions.

Visualization of Edge GNN

We compare predictions of our edge prediction model with the ground-truth edges used for training
the edge model in Supplementary Figure A.3. As shown, the edge GNN prediction reasonably
matches the ground-truth, and thus well captures the cloth structure; it can also correctly disconnect



Method

# of pick-and-
place actions 5 10 20 50

Square

(Ours) 0.776± 0.132 0.872± 0.128 0.985± 0.1873 1.000± 0.023
-graph-imitation (Ours) 0.837± 0.150 0.966± 0.236 0.994± 0.076 1.000± 0.021

VSF [38] 0.629± 0.053 0.762± 0.093 0.878± 0.090 0.984± 0.010
CFM [127] 0.445± 0.052 0.466± 0.044 0.494± 0.031 0.538± 0.044
MVP [126] 0.667± 0.121 0.667± 0.124 0.661± 0.194 0.609± 0.179

Rectangular
(Ours) 0.785± 0.182 0.957± 0.233 0.985± 0.183 0.998± 0.017

-graph-imitation (Ours) 0.768± 0.191 0.949± 0.215 0.992± 0.080 1.000± 0.015
VSF [38] 0.622± 0.078 0.664± 0.078 0.765± 0.119 0.860± 0.072

T-shirt
(Ours) 0.837± 0.107 0.828± 0.096 0.897± 0.150 0.991± 0.189

-graph-imitation (Ours) 0.867± 0.143 0.901± 0.179 0.960± 0.218 0.991± 0.331
VSF [38] 0.636± 0.086 0.653± 0.090 0.676± 0.079 0.698± 0.075

Supplementary Table A.3: Normalized coverage (NC) of all methods in simulation on the regular cloth, for varying
numbers of allowed pick and place actions.

Ground-truth mesh edges Estimated mesh edges

Supplementary Figure A.3: The edge prediction result of our edge GNN. Red lines visualize the ground-truth (left)
or inferred (right) mesh connections.

the top layer from the bottom layer when the cloth is folded, e.g., the top left part of the first
example and the bottom right part of the second example. Note our method uses only the point
cloud as input and the color in this figure is only used for visualization. The edge GNN is trained
on the same dataset as the dynamics GNN (described in Sec. A.1.2), and on the validation set, it
achieves a prediction accuracy of 0.91.

Visualizations of Planned Actions in Simulation

Supplementary Figure A.4 shows three planned pick-and-place action sequences of in simulation.
As shown, VCD successfully plans actions that gradually smooths the cloth. We observe note that
VCD favours picking edge / corner points and pulling outwards, which is an effective smoothing
strategy, demonstrating the effectiveness of VCD for planning.

Visualizations of Open-loop Predictions in Simulation

In order to understand better what our model is learning, we visualize the prediction of our model
compared to the simulator output in Supplementary Figure A.5, A.6, A.7. Given a pick-and-
place action decomposed into 75 low-level actions, the model is given the 5th point cloud in the
trajectory with the past 4 historical velocities, and the dynamics model is used to generate the
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Supplementary Figure A.4: Three example planned pick-and-place action sequences for square cloth, rectangular
cloth, and t-shirt. All trajectories shown achieve a normalized improvement above 0.98.

future predictions. As shown, even if the prediction horizon is as long as 70 steps, is able to give
relatively accurate predictions on all cloth shapes, indicating the effectiveness of incorporating the
inductive bias of the cloth structure into the dynamics model.

A.4.2 Robot Experiments

Running Time

In average, it takes 12.7 seconds for VCD to plan each pick-and-place action (100 samples) on 4
RTX 2080Ti and 10.2 seconds for Franka to execute the action. With additional communication
overhead, our current system takes around 40 seconds for computing and executing each pick-and-
place action.
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Supplementary Figure A.5: Two open-loop predictions of on square cloth. Blue points are observable particles/point
cloud points and red lines are mesh edges. For each prediction, the top row is the ground-truth observable particles
connected by the ground-truth mesh edges in simulator. The bottom row is the predicted point clouds by , in which
the mesh edges are inferred by the edge prediction GNN.

Normalized Coverage (NC) of Robot Experiments

For the robot experiments, the main text reports the normalized improvement (NI). NC are reported
here in Supplementary Table A.4.

Material

# of pick-and-place
actions 5 10 20 Best

Cotton Square Cloth 0.690± 0.166 0.884± 0.293 0.959± 0.193 0.959± 0.080
Silk Square Cloth 0.744± 0.180 0.876± 0.314 0.964± 0.075 0.964± 0.054

Cotton T-Shirt 0.548± 0.114 0.601± 0.093 0.688± 0.068 0.773± 0.141

Supplementary Table A.4: Normalized coverage (NC) of VCD in the real world.

Visualization of Sampled Actions in The Real World

We show in Supplementary Figure A.8 VCD’s predicted score for each of the sampled action
during smoothing of the cloth. Interestingly, though there is no explicit optimization for this,
favours picking corner or edge points and pulling outwards, which is a very natural and effective
strategy for smoothing. This demonstrates the effectiveness of for planning.
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Supplementary Figure A.6: Two open-loop predictions of on rectangular cloth. Note VCD is only trained on square
cloth. Blue points are particles/point cloud points and red lines are mesh edges. For each prediction, the top row is
the ground-truth observable particles connected by the ground-truth mesh edges in simulator. The bottom row is the
predicted point clouds by , in which the mesh edges are inferred by the edge prediction GNN.
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Supplementary Figure A.7: Two open-loop predictions of on t-shirt. Blue points are particles/point cloud points
and red lines are mesh edges. Note VCD is only trained on square cloth. For each prediction, the top row is the ground-
truth observable particles connected by the ground-truth mesh edges in simulator. The bottom row is the predicted
point clouds by , in which the mesh edges are inferred by the edge prediction GNN.



Supplementary Figure A.8: Examples of 50 sampled actions used for planning. Each arrow goes from the 2D
projection of the pick location to that of the place location. The actions with the higher predicted reward are shown in
greener color and the actions with the lower predicted reward are shown in redder colors.



A.5 Planning with VCD for Cloth Folding
We show that VCD can also be used for cloth folding. We assume an initially flattened cloth is
given, which can be obtained via planning with VCD for smoothing. Given a goal configuration
of a target folded cloth (e.g., a diagonal fold for square cloth), we use VCD with CEM to plan
actions that fold the cloth into the target configuration. We explore the following three different
goal specifications and cost functions for the CEM planning:

• A ground-truth cost function and goal specification that assumes access to the simulator
cloth particles. The goal configuration of the cloth is specified as the goal locations of all
particles. Given the voxelized point cloud of the initially flattened cloth, we first find a
nearest neighbor mapping from each point in the point cloud to the simulator particles. The
cost is then computed as the distance between the points in the achieved point cloud and
their corresponding nearest-neighbor particles in the goal configuration.

• We use the point cloud of the cloth for goal specification and Chamfer distance as the cost.
Specifically, the cost is the Chamfer distance between the achieved point cloud and the goal
point cloud.

• We use the depth image of the cloth for goal specification and 2D IOU as the cost. Specif-
ically, we compute the intersection over union between the segmented achieved depth map
and the segmented goal depth map as the cost.

We evaluate VCD on three goals as shown in Supplementary Figure A.9, A.10, A.11: (1) one-
corner-in, which folds one corner of the square cloth towards the center; (2) diagonal, which folds
one corner of the square cloth towards the diagonal corner; (3) arbitrary, which folds one corner
of the square cloth towards the middle point of the opposite edge. For evaluation, we report the
average particle distance between the achieved cloth state and the goal cloth state. The numerical
results are shown in Supplementary Table A.5 and the qualitative results are shown in Supplemen-
tary Figure A.9, A.10, A.11.

As the result shows, VCD can be applied for folding with the above three ways for goal spec-
ification. For the ground-truth goal specification and cost computation using simulator particles,
VCD performs fairly well for folding (average particle error within 0.3 - 1.3 cm, also see Supple-
mentary Figure A.9, A.10, A.11 for qualitative results). With goal specification via point cloud and
Chamfer distance as the cost, the performance of VCD is also reasonable (average particle error
0.3 - 2 cm, also see below for qualitative results), making it a practical choice to apply VCD for
folding in the real world.

We also note that this VCD model is trained with random pick-and-place actions; the fold-
ing performance could be further improved if we add bias (such as corner grasping) during data
collection to train VCD with more folding motions.

One-corner-in Diagonal Arbitrary
Ground-truth mapping 3.480 13.466 4.136

Chamfer distance 3.311 19.398 18.132
IOU 36.897 15.744 19.871

Supplementary Table A.5: Average particle distance (mm) between final achieved cloth state and goal cloth state.



(a) Cost: groundtruth mapping

(b) Cost: Chamfer distance

(c) Cost: IOU

Supplementary Figure A.9: VCD for folding, one-corner-in goal. The left column is the planned action, the middle
column is the final achieved cloth state, and the right column is the goal.



(a) Cost: groundtruth mapping

(b) Cost: Chamfer distance

(c) Cost: IOU

Supplementary Figure A.10: VCD for folding, diagonal goal. The left column is the planned action, the middle
column is the final achieved cloth state, and the right column is the goal.



(a) Cost: groundtruth mapping

(b) Cost: Chamfer distance

(c) Cost: IOU

Supplementary Figure A.11: VCD for folding, arbitrary goal. The left column is the planned action, the middle
column is the final achieved cloth state, and the right column is the goal.



A.6 Robustness to Depth Sensor Noise
When deployed in the real world, VCD might suffer from the depth camera noise. To investigate
this, we manually add different levels of noise (Gaussian noise with different levels of variance) to
the depth map in the simulation and test VCD’s planning performance (with a maximal number of
10 pick-and-place actions). The result is shown in Supplementary Figure A.12. The dashed vertical
line is the noise level of Azure Kinect depth camera that we use in the real world, as measured by
Michal et al. [118]. As shown, VCD is quite robust within the noise range of the Azure Kinect
depth sensor.

Supplementary Figure A.12: Normalized Improvement of VCD under different levels of depth sensor noise, with a
maximal number of 10 pick-and-place actions for smoothing. The vertical dashed line represents the typical level of
Azure Kinect noise, which is the depth sensor that we use for the real-world experiment. The error bars show the 25%
and 75% percentile.

A.7 Comparison to Oracle using the FleX Cloth Model
How good can the system be if we know the full cloth dynamics? To answer this question, for our
simulation experiments (shown in Supplementary Figure A.13), we additionally show the perfor-
mance of an oracle that uses the FleX cloth model for planning in Supplementary Figure A.13.
Here, oracle uses the same planning method as VCD and achieves perfect results in different
clothes. This shows that better performance can be achieved if the full cloth model and dynamics
can be better estimated, which we leave for future work.



Supplementary Figure A.13: Normalized improvement on square cloth (left), rectangular cloth (middle), and t-shirt
(right) for varying number of pick-and-place actions. The height of the bars show the median while the error bars
show the 25 and 75 percentile.



A.8 Ablations on architectural choices
For our edge and dynamics GNNs, we adopt the model architecture from GNS [97], as described in
Appendix A.1.1. In Sanchez-Gonzalez, et al [97], a comprehensive analysis on architectural design
decisions for the GNS model was investigated. We modify the GNS architecture by adding a global
model in each GN block of the processor, which has the potential to speed up the propagation of
information across the graph. The global model has been widely used in previous works in graph
neural networks [5, 122, 36]. Supplementary Figure A.14 (left) shows that using a global model in
the dynamics model yield better planning performance than without it.

We also evaluate the sensitivity of our dynamics model to the number of message passing steps
(L). As shown in the right figure of Supplementary Figure A.14, our dynamics model is robust
to a broad range of values for the number of message passing steps. We speculate that, when the
number of message passing is too small, the effect of action cannot propagate to the particles that
are distant from the picked point. With too many message passing steps, the model is prone to
overfitting. Nonetheless, Supplementary Figure A.14 (right) shows that there is a broad of values
for the number of message passing steps that lead to similar performance; thus, our model is fairly
robust to this parameter.

Supplementary Figure A.14: We evaluate the effects of a global model and the number of message passing steps
in the dynamics GNN on the square cloth. The left figure shows that the usage of a global model is helpful to the
planning performance. The right figure shows that our model is generally robust to the number of message passing
steps as long as the number lies within the range of [3, 10].
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B.1 Experiments Setup

B.1.1 Simulation Setup

We conduct all simulation experiments in Softgym [64], a simulation environment for deformable
objects built on the particle-based simulator, Nvidia Flex. We model a flying gripper as a spherical
picker that can move freely in the 3D space. When a cloth particle is “picked“, it will move rigidly
with the gripper. The simulation parameters of softgym can be found in Table. B.1. We obtained
the 3D cloth models from CLOTH3D dataset [6]. Considering the physical experiments, we rescale
the cloth models so that they could fit in the workspace of our real robot. Also, to make the GNN
dynamics computationally feasible, we create a downsampled version of the cloth models. During
data collection, we still use the original dense mesh in softgym, but register the downsampled
mesh onto the dense mesh by finding the nearest neighbor of each vertex. Therefore, we obtain the
trajectory of downsampled mesh and use that for dynamics learning. The detailed specifications of
the preprocessed CLOTH3D dataset can be found in Table. B.3. We use a top-down camera and
it’s placed at a fixed height of 0.65 m. The valid workspace is 0.53 m × 0.53 m.

Flattening For flattening task, the goal is to maximize the coverage of the cloth in the current
configuration. To compute the coverage, we treat each node on the graph as a sphere with a radius
of 0.005 and compute the covered area when projected to the ground plane.

Canonicalization In CLOTH3D, the canonical pose of the cloth is defined to be the pose of
cloth when wore by a T-pose human. However, since we are considering cloth manipulation on
a planar surface, it is not achievable and cannot be used as the goal pose directly. Therefore,
we use gravity (10 times the gravity on Earth) to obtain a flattened version of the canonical pose.
Another thing that needs to be handled is the ambiguity caused by reflection symmetry and rotation
symmetry. For example, trousers are approximately 180◦ rotation symmetry, which means that the
shapes before and after rotating around the center axis for 180◦ are the same. Therefore, during the
evaluation of cloth canonicalization, we define a canonical goal set G = {GN×3

i }i=1...A, for each
type of cloth. A is the number of valid canonical poses. The cost is computed as the minimum
of average pairwise distance to each of the possible canonical poses. Suppose that the current
configuration of the cloth is V N×3, where N is the number of vertices, gj and vj is the j-th vertex
of the mesh, the cost is computed as

Costcanon = min
Gi∈G

N∑
j=n

(gj − vj)2
N

(B.1)

The rotation symmetry of each category is described in Table. B.2. It should be noted that
since we maintain a discrete set of plausible goal pose, although skirt has infinite order of rotation
symmetry, we cannot iterate over all possible cases. Instead, we make an approximation that the
order of rotation symmetry of skirt is 12. The order of rotation symmetry is the times the shape fits
onto itself when rotating for 360 degrees. An order of 2 means that the shape remains unchanged
when rotating for 180 or 360 degrees.



Supplementary Figure B.1: Examplar trajectories of canonicalization task in simulation. As we can see, our method
is able to quickly unfold the cloths from extremely crumpled configurations in a few steps.

B.2 Additional results

B.2.1 Simulation Experiments

The full results of simulation are shown in the Table. B.4, best performance within each category
is bolded. We also show several trajectories of cloth canonicalization in Fig. B.1.

Observation

Reconstructed mesh 
(Top view)

Supplementary Figure B.2: Reconstruction results in real world.

B.2.2 Physical Experiments

Some additional results of physical experiments are shown in Fig. B.2 and Fig. B.3.



Supplementary Figure B.3: Rollout of cloth flattening in real world.

B.3 Implementation details of MEDOR

B.3.1 GarmentNets-style Mesh Reconstruction Model

As described in the main paper, we employ a GarmentNets-style model to reconstruct the mesh
from depth image. GarmentNets formulates the pose estimation problem of clothes as a shape
completion task in the canonical space. By doing so, the model learns meaningful correspondence
between There are several advantages about GarmentNets: 1) it reconstructs the occluded part of
the clothes due to self-occlusion; 2) it estimates the correspondence between clothes in canonical
space and observation space; 3) it estimates the pose of the clothes (per-vertex location).

Model Architecture

We build our mesh reconstruction model based on GarmentNets [19] with some decisive modifi-
cations to make it fit in our setup. Here, we give a brief description of the reconstruction pipeline
and the modifications we made. For details, please refer to GarmentNets [19].

Canonicalization Given the observation at current state, we first use canonicalization model to
map it to canonical space by conducting pixel-wise canonical coordinate prediction. We don’t pick
up the clothes for state estimation, because it may disrupt the configuration of partially folded or
almost smooth clothes. We use depth images captured by a top-down camera as the observation and
High-Resolution Network (HRNet-32) [110] as the backbone of canonicalization model. HRNet
is a convolutional architecture that specializes in producing high-resolution and spatially precise
representations. It uses smaller convolutional kernels and avoids overly downsampling the feature
map. This is critical for our task because our model needs to infer the structure of crumpled
clothes by subtle changes at the contour of different layers. The architecture change improves the
performance on cloth smoothing and canonicalization tasks for 75%. Following GarmentNets [19],



we formulate the prediction problem as a classification task by dividing each axis into 64 bins and
use Cross-entropy loss for training. Feature Scattering Given the predicted canonical coordinate,
we scattered the features of each pixel to corresponding locations in the canonical space. The
aggregated feature volume is further transformed by a 3D UNet [23], which is trained by shape
completion and flow prediction.

Shape Completion Before estimating the pose of occluded surface, we first perform volumetric
shape completion in the canonical space, which helps capture the shared structure within the same
category. Since the structure of clothes are thin and non-watertight, GarmentNets [19] proposes
to use Winding Number Field [43] as the shape representation. The shape completion network is
instantiated as an implicit network. It takes the dense feature produced by 3D UNet and a canonical
coordinate and output the winding number field in that coordinate.

Predicting pose in the observation space After we complete the shape of clothes in the canon-
ical space, we estimate the pose of the clothes in observation space. We cast it as a 3D flow pre-
diction problem by predicting per-vertex flow that transforms the clothes from canonical space to
observation space.

x̃oi = x̃ci + f̃i (B.2)

Training and Testing Details

. Now we describe how we train and test the model.
Dataset collection. Our model is category-specific, so we collect a dataset for each category

separately in Softgym [64]. We obtained 3D clothes models from CLOTH3D dataset [6].
Each dataset contains 4,000 trajectories of length 5 for training and 400 for testing. The At the

beginning of each trajectory, we randomly sample a clothes mesh and initialize it by random drop
or flattened pose with equal probability. Then we disrupt the clothes with random pick-and-place
actions. Random actions are biased towards picking corners (obtained by Harris corner detection[?
]) 90% of the time, otherwise it is sampled uniformly on the clothes. The distance between the
pick point and the place point is uniformly sampled between [25, 150] pixels.

Training details The model is trained in two-stage. In the first stage, we train the canoni-
calization network with Cross-entropy loss till convergence. In the second stage, we freeze the
canonicalization network and train the rest of the models for shape completion and flow prediction
by Mean-square error.

Inference details At test-time, given a depth image, we first use canonicalization network and
3D UNet to obtain dense feature volume in the canonical space. Then we discretize the canonical
space into 128x128x128 grid and evaluate shape completion network at every cell. To retrieve
the mesh, we compute the Gaussian derivatives for the predicted winding number field and run
Marching Cube algorithm [? ].

B.3.2 Dynamics Model

Similar to VCD [65], we use a learned GNN-based dynamics model proposed in GNS [97]. The
difference between VCD and ours is that we don’t have a GNN edge model because edges are
estimated by our mesh reconstruction model. The original mesh models in CLOTH3D [6] (see
Table. B.3) are too dense that the rollout becomes computationally infeasible. Therefore, we down-



sample the mesh by using Vertex Clustering [68] with a voxel size of 0.025m. For the complete
list of hyperparameters of the GNN dynamics model, please refer to Table B.6.

B.3.3 Planning

The planning algorithm is outlined in Algorithm 3. We plan in the space of pick-and-place prim-
itive with horizon equal to 1. To simulate the effect of each pick-and-place, we divide them into
low-level actions and roll out by the dynamics model in parallel. Following [65], the action is
encoded into the input mesh by directly modifying the position and picked point, and the displace-
ment will be propagated to the rest of mesh during message passing.

Action sampling during planning For both cloth flattening and canonicalization, we bias the
actions sampling toward the contour of the cloth. More specifically, we first obtain the bounding
box of the cloth in current observation and expand it by 30 pixels in each direction. Then we
randomly sample picked points within the the bounding box region. For points that are not on the
cloth, we map them to the nearest point on the cloth. The place direction is uniformly sampled in
all directions and place distance is sampled uniformly from [0.05, 0.2]. A dummy action which
corresponds to ”no action” is added to the list of candidate actions. We sample 500 pick-n-place
actions at each timestep.

Reward computation For flattening, we treat each mesh vertex as a sphere of radius 0.01, and
the total reward is the covered area of the projection of all vertices to the ground plane. For canon-
icalization, we rotate the predicted canonical pose according to the predefined rotation symmetry
(see Table. B.2). For each valid canonical pose, we input it into the simulator to flatten by gravity,
which constitutes a predicted goal set. The reward is computed as negative of smallest distance to
goals in goal set. We use pairwise l2 distance.

B.4 Implementation Details of Baselines

B.4.1 VisuoSpatial Forsight (VSF)

We use the official codebase of VSF1. Image: we train the model with RGB-D images of size 56
x56 pixels, according to the original paper. To reproduce the performance of the original paper, we
collected 7115 trajectories with 15 pick-and-place actions for each category. In total, it amounts to
100,000 environment steps, which is 5 times the data compared to our methods.

Action sampling We use a similar action sampling strategy as MEDOR for VSF, that is, bound-
ing box sampling B.3.3. We use a smaller padding size (6 pixels) because of the smaller image
size.

Reward computation For flattening, we use color thresholding to compute the coverage of
cloth. For canonicalization, we project the predicted and goal RGB-D image into 3D rgb point
cloud. The RGB values are scaled to be similar to the coordinate values. Then we run ICP [130]
for 5 iterations to align the predicted point cloud with the goal point cloud.

1https://github.com/ryanhoque/fabric-vsf



Algorithm 3: Planning pipeline of MEDOR
input : Depth Image D, partial point cloud P , mesh reconstruction Model ϕ, dynamics

GNN Gdyn, number of sampled actions K
output: pick-and-place action a = {xpick, xplace}

1 Estimate the full mesh of clothes by mesh reconstruction model: M̃init = ϕ(D)

2 Perform test-time fine-tuning: M̃0
tuned = finetune(M̃init) = (Ṽ 0, ẼM).

3 for i← 1 to K do
4 Sample a pick-and-place action xpick, xplace
5 Compute low-level actions ∆x1, ...,∆xH
6 Get picked point vpicked from xpick
7 Pad historic velocities with 0: x0 ← Ṽ 0, ẋ−m...0 ← 0
8 for t← 0 to H do
9 Build collision edges Et

C with xt

10 Move picked point according to gripper movement by :
11 xu,t ← xu,t +∆xt, ẋu,t ← ∆xt/∆t
12 Predict accelerations using Gdyn: ẍt ← Gdyn(xt, ẋt−m...t, EM , E

t
C)

13 Update point cloud predicted positions & velocities:
14 ẋt+1 = ẋt + ẍt∆t, xt+1 = xt + ẋt+1∆t
15 Readjust picked point according to gripper movement by
16 xu,t ← xu,t +∆xt, ẋu,t ← ∆xt/∆t

17 end
18 Compute reward r based on final mesh nodes position xH

19 end
20 return pick and place action with maximal reward



B.4.2 Visible Connectivity Dynamics (VCD)
We use the official code of VCD, with modifications so that it works well on our dataset.

Given point cloud and mesh, the original VCD conduct bipartite matching to map point cloud
to mesh nodes. If the corresponding mesh nodes are connected by mesh edges, we also construct
mesh edges for the point cloud points. We found that this approach is highly sensitive to density
of point cloud and mesh. Imagine the mesh is denser than the point cloud, there might be many
mesh vertices between two adjacent points on point cloud. Thus they are not connected although
they should.

To solve this issue, we design a more robust approach for mesh edges construction that is
agnostic to the density of mesh. First, for each point on the point cloud, we find the nearest mesh
vertex. Then we compute the distance between neighboring points on point cloud by the pairwise
geodesic distance of corresponding mesh vertices. A mesh edge is constructed if the geodesic
distance is below a threshold.

Training To makes a fair comparison, we train the edge GNN dataset of different categories
separately. Each dataset contains 20,000 envrironment steps, which is same as the dataset used for
training the mesh reconsctruction model of MEDOR. For dynamics model, similar to MEDOR,
we train a single model on Trousers dataset but use it for all categories at test-time.

Planning Same as MEDOR, except that we run ICP [130] for 5 iterations to align the predicted
point cloud with the goal point cloud before computing the cost function for canonicalization task.



Simulation parameters Value

Camera view Top-down
Camera position [0, 0.65 m, 0]
Field of view 90
Picker radius 0.01 m
Picker threshold 0.00625 m
dt 0.01 second
Damping 1
Dynamic friction 1.2
Particle friction 1
Stiffness (strech, bend, shear) [1.2, 0.6, 1]
Mass 0.0003
Particle radius 0.005
Gravity -9.8

Supplementary Table B.1: Hyper-parameters of softgym.

Trousers Shirt Dress Skirt Jumpsuit

2 1 2 12 2

Supplementary Table B.2: Order of rotation symmetry of different types of cloth. The order of rotation symmetry
is the times the shape fits onto itself when rotating for 360 degrees. An order of 2 means that the shape remains
unchanged when rotating for 180 or 360 degrees. We use it to construct goal sets for cloth canonicalization task.

Trousers Shirt Dress Skirt Jumpsuit
No. of Meshes 1691 1111 2037 468 2279
Avg. No. of Vertices 7050± 1954 5308± 996 8030± 2159 4643± 1225 10686± 2572
Avg. No. of Vertices (downsampled) 278± 87 214± 59 291± 99 190± 80 215± 58
Rescaling Factor 0.42 0.36 0.29 0.28 0.28
Avg. X (m) 0.29± 0.03 0.32± 0.10 0.24± 0.07 0.20± 0.05 0.19± 0.08
Avg. Y (m) 0.12± 0.02 0.11± 0.02 0.15± 0.05 0.15± 0.05 0.09± 0.02
Avg. Z (m) 0.27± 0.08 0.19± 0.04 0.31± 0.06 0.18± 0.05 0.31± 0.06

Supplementary Table B.3: The statistics of the CLOTH3D dataset [6] after pre-processing.



Task Flattening Canonicalization
Number of Pick-and-Place 1 2 3 1 2 3

Trousers

VSF [38] 0.09± 0.13 0.15± 0.07 0.14± 0.13 0.02± 0.02 0.03± 0.04 0.05± 0.05
VCD [65] 0.34± 0.15 0.41± 0.14 0.53± 0.24 0.22± 0.14 0.26± 0.17 0.46± 0.16

GarmentNets [19] 0.27± 0.15 0.37± 0.14 0.53± 0.16 0.14± 0.06 0.21± 0.09 0.33± 0.14
MEDOR (no fine-tuning) 0.41± 0.14 0.57± 0.16 0.72± 0.08 0.48± 0.16 0.64± 0.10 0.77± 0.10

MEDOR 0.52± 0.12 0.69± 0.12 0.79± 0.10 0.59± 0.13 0.73± 0.10 0.77± 0.07

Shirt

VSF [38] 0.12± 0.07 0.15± 0.08 0.20± 0.09 0.01± 0.02 0.01± 0.03 0.03± 0.04
VCD [65] 0.39± 0.14 0.51± 0.23 0.70± 0.20 0.10± 0.20 0.14± 0.23 0.22± 0.21

GarmentNets [19] 0.34± 0.21 0.47± 0.17 0.55± 0.22 0.08± 0.12 0.10± 0.14 0.11± 0.16
MEDOR (no fine-tuning) 0.59± 0.17 0.78± 0.26 0.94± 0.22 0.46± 0.26 0.60± 0.12 0.62± 0.24

MEDOR 0.59± 0.22 0.77± 0.19 0.96± 0.13 0.53± 0.26 0.56± 0.12 0.61± 0.09

Dress

VSF [38] 0.12± 0.07 0.15± 0.08 0.20± 0.09 0.02± 0.03 0.03± 0.03 0.04± 0.04
VCD [65] 0.39± 0.14 0.51± 0.23 0.70± 0.20 0.18± 0.17 0.25± 0.16 0.34± 0.19

GarmentNets [19] 0.38± 0.16 0.51± 0.22 0.57± 0.16 0.07± 0.10 0.13± 0.13 0.21± 0.19
MEDOR (no fine-tuning) 0.43± 0.15 0.63± 0.19 0.69± 0.18 0.36± 0.17 0.53± 0.22 0.65± 0.15

MEDOR 0.50± 0.14 0.65± 0.11 0.80± 0.17 0.51± 0.14 0.60± 0.08 0.72± 0.09

Skirt

VSF [38] 0.25± 0.13 0.32± 0.19 0.27± 0.24 0.06± 0.04 0.07± 0.05 0.10± 0.07
VCD [65] 0.56± 0.13 0.67± 0.15 0.87± 0.12 0.19± 0.14 0.20± 0.14 0.21± 0.19

GarmentNets [19] 0.46± 0.16 0.59± 0.13 0.70± 0.13 0.12± 0.10 0.20± 0.12 0.25± 0.16
MEDOR (no fine-tuning) 0.56± 0.16 0.63± 0.19 0.73± 0.16 0.39± 0.14 0.41± 0.17 0.46± 0.21

MEDOR 0.58± 0.12 0.78± 0.14 0.91± 0.13 0.42± 0.14 0.47± 0.18 0.56± 0.21

Jumpsuit

VSF [38] 0.12± 0.06 0.15± 0.07 0.19± 0.10 0.02± 0.03 0.03± 0.03 0.04± 0.05
VCD [65] 0.36± 0.10 0.45± 0.15 0.64± 0.19 0.23± 0.09 0.19± 0.11 0.45± 0.19

GarmentNets [19] 0.33± 0.12 0.41± 0.12 0.55± 0.14 0.13± 0.15 0.18± 0.14 0.33± 0.21
MEDOR (no fine-tuning) 0.45± 0.17 0.65± 0.14 0.78± 0.19 0.59± 0.14 0.67± 0.09 0.76± 0.08

MEDOR 0.53± 0.17 0.73± 0.17 0.82± 0.10 0.57± 0.14 0.74± 0.09 0.81± 0.05

Supplementary Table B.4: Normalized Improvement (NI) of cloth flattening and cloth canonicalization, for varying
numbers of allowed pick and place actions.



Model parameter Value

Canonicalization Network
Backbone HRNet-32
Dimension of output feature 489

3D CNN
Backbone 3D Unet
Level 4
Feature maps 32
Dimension of output feature 128

Implicit Shape Completion Network
Backbone MLP
Number of hidden layers 3
Size of hidden layers 512

Implicit Shape Completion Network
Backbone MLP
Number of hidden layers 3
Size of hidden layers 512

Training parameters Value

Optimizer Adam
Learning rate 0.0001
Gaussian noise std 0.005
Random rotation [-180, 180]

Supplementary Table B.5: Hyper-parameters of mesh reconstruction model



Model parameter Value

Encoder(same for both node encoder and edge encoder)
Number of hidden layers 3
Size of hidden layers 128

Processor
Number of message passing steps 10
Number of hidden layers in each edge/node update MLP 3
Size of hidden layers 128

Decoder
Number of hidden layers 3
Size of hidden layers 128

Training parameters Value

Number of trajectories 5000
Learning rate 0.0001
Batch size 16
Training epoch 120
Optimizer Adam
Beta1 0.9
Beta2 0.999
Weight decay 0

Others Value

dt 0.05 second
Particle radius 0.005 m
Vertex clustering voxel size 0.025 m
Neighbor radius R 0.036 m

Supplementary Table B.6: Hyper-parameters of GNN dynamics model.
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C.1 Real-world Cloth Flattening

In order to further demonstrate the potential of our self-supervised mesh reconstruction method for
robotic application, we deploy it in real world for a cloth flattening task.

C.1.1 Experiment Setup

The objective of the experiment is to flatten a crumpled Tshirt by using a 7-DoF Franka robot and
pick-and-place action. The evaluation metric is the normalized improvements of coverage (0 if
no changes, 1 if maximum coverage is reached). Since our goal is to evaluate whether the pseudo
label sufficiently accurate to improve the performance of manipulation task, we use the same Tshirt
for flattening as we collect the pseudo label dataset.

C.1.2 Model-based Cloth Manipulation System

After finetuning the mesh reconstruction model with pseudo label dataset, we integrate it with a
learned graph dynamics model for planning. At each step, we first reconstruct the cloth with mesh
reconstruction model. Then we sample 100 random pick-and-place actions and roll out with the
dynamics model. We use cloth coverage as the reward function and execute the action the results
in highest coverage.

C.1.3 Results

Method Tshirt

MEDOR [39] w/o finetuning 0.23
MEDOR [39] w finetuning 0.3

We test the model with and without finetuning for 6 trajecto-
ries separately, and calculate the average normalized improve-
ment. In each trajectory contains 10 pick-and-place actions. It
should be noted that flattened a double-layer Tshirt is a very
challenging task. And we can observe a performance gain after
finetuning with the pseudo label dataset, which shows that the quality is sufficiently accurate for
improving downstream manipulation task.

C.2 Additional Details

C.2.1 Simulation Calibration

Parameters Range

Stiffness [0.2, 0.55, 0.9, 1.25, 1.6]
Dynamic Friction Coefficient [0.5, 1.4, 2.3, 3.2, 4.1, 5]
Particle Friction Coefficient [0.5, 1.4, 2.3, 3.2, 4.1, 5]

Supplementary Table C.1: Types and range of physical
parameters that we optimize during simulation calibration
phase.

Before we start to track to motion of cloth,
we firstly calibrate the simulation by identify-
ing the values of several critical physical pa-
rameters. Due to the simplified dynamics of
simulation, one may not able to find a single
set of parameters that allow the simulation to
match real world in every possible transitions.
Therefore, for each pick-and-place action, we



search for the optimal system parameters that
best simulate the current action.

We use Nvidia Flex as our simulator, and we find clothes stiffness and friction to be the most
parameters. During the simulation calibration, we directly roll out the dynamics model with actions
a1:T , without any bells and whistles. We run a grid search over all combinations of parameters (see
Table. C.1). On a single Nvidia GTX 2080Ti, it takes around 70 seconds to run over the 125
combinations of parameters.

C.2.2 Test-time Optimization
Test-time Optimization (TTO) is an important component in our framework. It is applied twice
in our action-conditioned tracking pipeline. TTO1 is applied iteratively inside the simulation loop
of tracking process. The main goal of TTO1 is to augment the dynamics model by computing a
pseudo action that aligns the simulated result with the measurement. (2) Due to the inevitable gap
between real world and simulation, it is possible that simulation cannot fully match the real world
even with the help of pseudo action. For example, if the clothes in the simulation is thicker than the
real world’s, then the simulated mesh will always differ from the real mesh, otherwise the physics
constraint will be violated. Therefore, after the inner simulation loop, we apply another test-time
optimization, which we refer as TTO2.

Since the purpose of TTO1 and TTO2 are not exactly the same, we use different combinations
of regularization losses. In the following section, we will first describe the definitions of all the
regularization losses. Then, we will list the combinations of losses for TTO1 and TTO2 separately.

Rigidity Loss. As-Rigid-As-Possible (ARAP) [104] is a common assumption for modeling
cloth-like shapes. In TTO1, the correction term ∆xcorrt+1 can be viewed as motion that transforms
the mesh to match the partial point cloud at next timestep. Based on the ARAP, we assume the
clothes move as rigidly as possible. Since we only model the motion by a translation (∆xcorrt+1 ), we
obtain a simplified rigidity loss:

LRig =
1

|Et|
∑
i,j∈Et

∥∥∆xcorrt+1,i −∆xcorrt+1,j

∥∥2
2 (C.1)

Intuitively, this loss helps improve the consistency of motions of adjacent particles.
Collision Loss. This loss is the ensure the nearby vertices are at least r m away from each

other. For each vertex i, we find k nearest neighbors Ni that are within radius r of itself.

LCol = −
1

K

K∑
i=0

∑
j∈Ni

1

|Nis|
∥xi − xj∥22 (C.2)

Edge Loss. This loss is also to ensure the plausibility of mesh by constraining adjacent vertices
not to be too far again from each other. First we compute the mean ue and standard deviation σe
of edge length in the original mesh. Then we constrain the edge length of optimized mesh by a
margin loss.

LEdge =
1

|Et|
∑
i,j∈Et

∥max(0, dis(xi, xj)− σe)∥22 (C.3)

where we use euclidean distance for dis.



Chamfer Laplacian Rigidity Collision Edge L2

1 0.01 10 10 1 0.01

Supplementary Table C.2: The weight of different losses.

L2 regularization. We also add a L2 regularization on correction term ∆xcorrt+1,i, which helps
avoid noisy motions and encourage simple solutions.

LRig =
1

K

K∑
i=0

∥∥∆xcorrt+1,i

∥∥2
2

(C.4)

C.2.3 Finetuning for MEDOR
MEDOR [39, 19] consists of 3 components, a canonicalization network that maps pixel from
observation space to canonical space, a implicit shape completion network that predicts winding
number field [43], and a warp field prediction network that predicts a per-vertex transformation
from canonical pose to observation space. The model is finetuned in a two-stage process similar to
training [39, 19].

In the first stage, we train the canonicalization network alone. It should be noted that at the be-
ginning of the tracking procedure, we use a pretrained MEDOR model to reconstruct the flattened
mesh. This can be seen as registrating the mesh to canonical space because we have the correspon-
dence between observation space to canonical space. Then, by tracking the positions of vertices in
the subsequent steps, we obtain the pseudo training label for the canonicalization network.

In the second stage, we train the shape completion network, and warp field prediction network
with the reconstructed mesh in the canonical space and observation space separately. We use
Adam [51] optimizer with cyclic learning rate [103] between 1e−5 and 1e−6. The model is trained
for 1000 epochs in the first stage and 2000 epochs in the second training stage.
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