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Abstract

Robotic systems such as unmanned ground vehicles (UGVs) often depend
on GPS for navigation in outdoor environments. In GPS-denied envi-
ronments, one approach to maintain a global state estimate is localizing
based on preexisting georeferenced aerial or satellite imagery. However,
this is inherently challenged by the significantly differing perspectives
between the UGV and reference images. In this thesis, we introduce a
system for global localization of UGVs in remote, natural environments.
We use multi-stereo visual inertial odometry (MSVIO) to provide local
tracking. To overcome the challenge of differing viewpoints we use a
probabilistic occupancy model to generate synthetic orthographic images
from color images taken by the UGV. We then derive global information
by scan matching local images to existing reference imagery and then use
a pose graph to fuse the measurements to provide uninterrupted global
positioning after loss of GPS signal. We show that the system generates
visually accurate orthographic images of the environment, provides reliable
global measurements, and maintains an accurate global state estimate in
GPS-denied conditions.
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Chapter 1

Introduction

1.1 Motivation

A global state estimate is often crucial to robotic platforms during autonomous

navigation. In particular, planning algorithms require a global state estimate whenever

their mission objectives are tied to global locations. When available, a GPS receiver is

the best source for global state information. These sensors are relatively accurate and

good signals are common in most places. However, GPS is not infallible: natural and

urban terrain can disrupt GPS signals, GPS can be jammed in adversarial settings,

and the global navigation satellite system itself can experience failures. Failing to

provide global localization estimates can at best impede a robot’s operation and

at worst result in a failed mission and the loss of the robot. We therefore concern

ourselves with overcoming these GPS failure modes by providing a global state

estimate to an unmanned ground vehicle (UGV) after the loss of signal.

1.2 Contributions

In this thesis, I introduce a system for real-time global position estimation in remote,

natural environments using preexisting aerial or satellite imagery. The system consists

of four modules. First is a multi-stereo visual inertial odometry (MSVIO) module

that provides robust local odometry using multiple stereo-camera pairs. Second
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Figure 1.1: An example of the localization process where synthetic orthographic images generated by
the UGV are matched to corresponding locations in the reference aerial imagery, with an example
alignment shown in the green box. Successful registrations, or green dots, are used as global
measurements to correct the drift of the orange MSVIO trajectory, resulting in a blue corrected
trajectory. After global optimization, the corrected trajectory exhibits less drift from the dashed
black ground truth trajectory than MSVIO.

is a mapping module that uses a probabilistic 3D occupancy model to generate

visually accurate synthetic orthographic images of the UGV’s local surroundings.

Third is a registration module that derives global state measurements by registering

images from the mapping module with georeferenced aerial or satellite imagery via

a robust scan matching algorithm1. Finally, the fourth module combines MSVIO

1This module, described in section 3.3, describes joint work with Daniel McGann.
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1. Introduction

measurements with registration results in a global pose graph to provide a continuous

and consistent global state estimate. The complete system can operate in real-time

and its localization performance is shown in Fig. 1.1.

In sum, this thesis presents the following four main contributions:

1. An MSVIO formulation for efficient and fault-tolerant local state estimation.

2. An image generation method that provides visually accurate orthographic views

of the UGV’s local environment and overcomes challenges to existing work in

visual registration and matching.

3. A full localization pipeline to provide real-time global position estimates.

4. A comparison of the method to the state of the art for GPS-denied visual

localization on real world datasets.

1.3 Overview

In Chapter 2, we begin with a discussion of previous related work in GPS-denied

localization that utilized different ways to match sensed data to previously acquired

data. Then, Chapter 3 introduces the localization pipeline and its individual module

components in depth. Chapter 4 compares the pipeline with other state of the art

GPS-denied localization methodologies and then qualitatively discusses the benefits

of the proposed pipeline. Lastly, Chapter 5 concludes the thesis and discusses some

of the limitations of the methodology as well as some proposed directions for future

work.
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Chapter 2

Related Work

2.1 GPS-Denied Localization

The historically standard solutions to GPS-denied localization are dead reckoning

and simultaneous localization and mapping (SLAM). These methods are well studied,

efficient, and widely used. However, both solutions can drift relative to the global

frame even with known initial state. SLAM solutions can account for drift via loop

closures but such measurements require re-visitations which, in general operation,

cannot be assumed.

Yet, because it is not guaranteed that scenes will be seen repeatedly in a sequence,

another solution has been to pair the system with a priori georeferenced global

information in order to give a global localization estimate in GPS-denied settings.

Such comparisons can then be used to correct for drift relative to the global frame in

an existing local (dead reckoning or SLAM) solution.

2.2 Georeferenced Information

2.2.1 HD Maps

One source of georeferenced information are high definition (HD) maps which have

been popularized by autonomous vehicles in recent years. HD maps have been

formulated in many ways. All formulations include at a minimum the geometric
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2. Related Work

and semantic structure of roadways and often also include the geometric and visual

structure of the environment represented by visual features, point clouds, or even dense

geometric reconstructions [4, 22]. These maps are created through the aggregation

of data from many sources, including satellite imagery, public street maps, and

importantly data collection using ground vehicles in the environment [8, 24, 29]. These

maps provide rich and highly accurate reconstructions of the environment, and in

turn enable high accuracy global localization. However, the creation and maintenance

of HD maps is prohibitively expensive even in urban centers [27]. Constructing

and maintaining these maps for much larger and less frequently transited remote

environments would be impractical given current state-of-the-art methods.

To operate in natural, remote environments we need alternative source of geo-

referenced information to the HD map that can be collected and maintained at

scale. There are two clear candidates for this role: 1. Satellite and aerial imagery,

considered as the reference imagery, and 2. Digital elevation models (DEMs). Both

provide sources of georeferenced information for global localization and exist for the

entire landmass of the Earth. While the appearance of the Earth changes with high

frequency aerial imagery is collected across the planet at a daily rate. DEM data

collection is less frequent as its content changes at a much slower geologic rate. The

data availability and ease of collection for both DEMs and satelite imagery make

them ideal for fast robot deployment and localization.

2.2.2 Digital Elevation Models

One method to perform localization using a DEM is to perform horizon matching

[3, 25]. The horizon’s profile is extracted from UGV images and is matched to a DEM.

However, all horizon matching methods assume a clear view of the true horizon. While

this assumption holds for extraterrestrial environments and some environments on

Earth, it is violated when operating in and around vegetation or man made structures

that partially or fully obstruct the horizon. Another method to localize using a DEM

is to construct a local DEM that can be matched against the reference DEM [14].

However, matching to the reference DEM requires observation of unique features

which exist in the DEM at the scale of hills, mountains, and valleys. The local map

would therefore have to be large enough to contain such features. While observing
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these features was possible for a large aerial platform, it is very likely that any UGV

local state estimate will drift significantly before a sufficiently large model could be

constructed. Such drift would result in the construction of a self-inconsistent local

DEM that would not represent the true structure of the terrain.

2.2.3 Satelite Imagery

Unlike DEMs, reference imagery contains unique features at a scale that are practical

for a UGV to observe. However, UGV global localization to reference imagery is

challenged by the significant view point difference, e.g., a UGV sees a much different

scene than that from a satellite. One approach [35] addresses the view point challenge

to approximate the viewpoint of an aerial image, where a 360◦ image is warped onto

the ground plane (assumed flat) to create a synthetic top down image. However, it is

noted in this work that where the flat ground assumption is violated (by vegetation,

objects, buildings), significant artifacts appear in the resulting image which leads to

decreased performance. To address this, localization is performed using a particle

filter where the probability of the measurement given UGV location is computed

from the distance between whole image SIFT descriptors computed on the warped

ground image and a sample of the reference imagery taken at each particle’s position.

Another approach to tackle the view-point challenge is to learn a deep model to

embed matching ground and aerial images closely in feature space [17, 21]. These

methods are notably inspired from geolocalization work [1, 36] with the added

complexity of handling “cross view” image pairs. In geolocalization applications,

one attempts to localize a single image, rather than continuously localize a robot.

Thus, like [35], the image descriptors are used in a particle filter to localize the robot.

A shortcoming of both of these methods is that the use of embedded descriptors

results in noisy individual measurements. It is only through the aggregate of many

measurements in the form of a particle filter that a reasonable solution is found. As

such these methods benefit from a particle filter’s strengths (i.e. no need for initial

state estimate), but also suffer from a particle filter’s downsides (i.e. non-determinism,

and computational cost for tracking high dimensional state). While these approaches

were able to avoid issues visual differences better than in classical approaches due to

a higher space representation, they required extensive computational resources that
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Figure 2.1: A comparison of state of the art work on visual matching of sensed data to georeferenced
imagery. The images are from [35] [37], and [38] from left to right, respectively. All three methods
were designed to operate in different spaces, from natural to urban environments, without exception,
with varying levels of success.

are difficult to place in robots, and, because the models are trained with the same

maps used for testing, also suffer from a lack of operational scope, in addition to the

challenge of collecting data for learning.

On the other hand, other approaches that fused visual and inertial sensors with

global estimates have shown that tracking could be done with very high accuracy and

at a high rate [7, 26, 30] by reducing the drift in the global frame of reference. This

offers an avenue for solving the issue of poor localization estimates from the particle

filter by using additional sensing that is superior and better modelled to counteract

the higher uncertainty in registration estimates.

A parallel line of work has studied localization of aerial vehicles using refer-

ence imagery, where the view point difference is often negligible. Given a common

viewpoint, methods similar to those explored for UGVs are possible including deep

feature matching [2, 33], and classical feature matching [32]. In addition, many more

measurement methods are possible including visual scan matching [9], visual feature

matching [5], semantic feature alignment [6, 23], and pose optimization [13, 28, 39].

Many of these methods provide more accurate, lower variance measurements than

those for ground images and enable the use of modern optimization techniques for

recovering a global state estimate [7, 20, 26, 30].

Related work has shown promising results for UGV localization when aerial

imagery is used as a georeferenced source, yet the issue of viewpoint differences
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remains, especially in the context of conducting accurate localization. Different

approaches have been proposed to address this issue, as shown in Fig. 2.1, all with

certain benefits and drawbacks, but they all heavily rely on structural cues in the

specific environment in which robots operate. This motivates our work to construct a

UGV localization pipeline that allows for the construction and registration of synthetic

top down images that are visually accurate to existing reference imagery, such that

the system does not overly depend on persistent structural cues in its environment.

Furthermore, by fusing the registration results with visual inertial sensing and jointly

optimizing, we can conduct high accuracy state estimation in real time that is globally

consistent.
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Chapter 3

Approach

In this section I present a global localization pipeline formulation that consists of

four modules which carry out the following consecutive operations: 1) obtain local

position estimates from MSVIO, 2) use the MSVIO estimates to build a local map,

3) register the local map to reference aerial imagery with scan matching, and 4) fuse

the global registration measurements with the local odometry from MSVIO into a

pose graph to produce global position estimates.

3.1 Multi-Stereo Visual-Inertial Odometry

Our MSVIO module is driven by the design described in [19]. Instead of running

multiple independent VIO algorithms across individual cameras, we opt to track

features across frames from all camera pairs and gather the features into a single

set. Given the disparity calculated via semi-global block matching (SGBM) [15] from

the previous frame, points can be triangulated and matched to existing 2D features

from the current frame. Instead of performing RANSAC with a generalized camera

model, which may require a large sample size, we opt for a simpler solution. Points

from the front camera are selected for P3P, but the inlier check is performed across

all cameras. Since the side cameras are easily occluded by vegetation, they may not

always provide reliable points, while the front camera does as it faces the direction

of motion. Finally we pass the collection of inliers and inertial measurements into a

fixed-lag smoother to jointly optimize for the relative motion of the UGV.

11
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Figure 3.1: A local map shown on the left can exhibit artifacts like blue sky pixels due to noise in
disparity. By explicitly modeling the occupancy probability in a 3D occupancy grid, we can filter
out voxels of low occupancy probability by rendering a local map with only voxels of high occupancy
probability, shown in dark in the center image. This removes the most significant artifacts from the
final local map shown on the right. For visualization, voxels with occupancy probability below 0.5
are ignored.

MSVIO is substantially more robust than the more common single stereo VIO.

The main advantage of using multiple cameras is a wider field of view. In situations

where one stereo pair captures an image that may be too challenging for tracking

visual features, the system uses the features from other frames that are tracking

well. Thus, the system is able to compute accurate odometry in challenging scenarios

where traditional single stereo VIO approaches would fail. Alternatively, this can be

done with a single fish-eye camera, but at the cost of reduced resolution.

3.2 Local Map Construction

With the position estimation from the MSVIO and color images from each stereo

pair, the local map construction module generates the image used for the global

registration process. First, we use the computed disparity to project a dense sampling

of pixels from each image into 3D space around the robot. This provides us with a

3D point cloud for which each point has an associated RGB value. From this step we

could directly generate the orthographic image by spatially binning this point cloud

into a 2D image.

However, stereo matching often provides noisy results when applied in real-world

scenarios. This causes significant artifacts in the resulting local map, as shown

in Fig. 3.1, and would in turn decrease registration performance. To address this

12
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challenge we accumulate points into a 3D probabilistic occupancy grid based on the

binary Bayes filter derived in [16]. Since our UGV traverses over long distances, we

implement a scrolling occupancy grid which is centered around the vehicle and purges

voxels that are outside the grid’s bounds. This ensures the local map remains visually

consistent with the reference imagery and not affected by drift from MSVIO.

With the stereo depth data zt1:t2 and VIO poses xt1:t2 , the probability that a

voxel is occupied or free is denoted as p(v | zt1:t2 ,xt1:t2). Note that t1 to t2 is the

timeframe where the voxel is inside the 3D grid. This can be efficiently computed

with a log-odds formula that uses the prior occupancy probability, which we set as

p(v) = 0.5 as we do not have any occupancy information at the beginning:

l(v | zt1:t2 ,xt1:t2) = log

(
p(v | zt1:t2 ,xt1:t2)

1− p(v | zt1:t2 ,xt1:t2)

)
(3.1)

The sensor model we use for determining occupancy raytraces from the vehicle

position until it hits the position of the voxel containing the computed 3D point from

stereo depth. Using the log-odds equation, the occupancy probability is incremented

at the hit voxel and decremented for missed voxels. Our stereo depth model weighs

hits higher than misses, and constrains the maximum and minimum occupancy

probability for each voxel as in [16]. In addition to occupancy, our model tracks

the color for each occupied cell by interpolating the color of all points within it

independently for each channel.

Using this tracked occupancy and color information we generate the local map as a

synthetic orthographic image. A 2D image is initialized to the exact width and length

as the occupancy grid. Each pixel in the image is colored using the color information

provided by the top most cell at the corresponding position in the occupancy grid

whose occupancy probability is greater than a predefined threshold. An example

local map generated with and without our occupancy modeling is shown in Fig. 3.1.

3.3 Registration

We can derive global state measurements by registering the local maps onto reference

imagery. In addition to the local map, our registration algorithm requires a current

global state estimate that is provided by the global pose graph module.

13
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With the global pose estimate and local map, we perform scan matching over

translation and rotation differences ∆r = [∆x,∆y,∆θ]⊤ between the local map and a

subset of the georeferenced imagery defined around the current global state estimate.

We then extract the optimum from the resulting volume, as shown in Fig. 3.2. This,

along with the known location of the reference image and the vehicle’s position

relative to the local map resolve the vehicle’s global location and heading. Finally,

to fully constrain the vehicle’s translation we perform a lookup on a DEM at the

measured global location to determine the UGV’s altitude.

The scan matching process can make use of any similarity or difference measure.

Our algorithm uses normalized cross correlation (NCC). Due to sparsity in the local

map we employ a variant of NCC that uses an image mask M to calculate the cost

volume C between our reference imagery R and the local map T. For a single rotation

angle, such that T has been rotated by ∆θ around the vehicle’s location in the local

map to form T∆θ, we compute NCC as

C∆r = ∑
i,j(T∆θi,j ·R∆x+i,∆y+j ·Mi,j)√∑

i,j

(
T∆θi,j ·Mi,j

)2 ·∑i,j (R∆x+i,∆y+j ·Mi,j)
2

(3.2)

This is performed for each ∆θ in the search space to construct the cost volume.

An alternative to scan matching is to perform a non-linear optimization over the

cost function. However, this cost function is non-convex and therefore optimization

is highly susceptible to converging to local optima. Scan matching provides a global

(or pseudo-global given we limit our search to a region) view of the cost function.

Therefore, at the cost of computation, scan matching ensures that we find the true

optimum within the search region. Additionally, the pseudo-global view of the cost

function enables us to perform covariance estimation and outlier rejection that would

not be possible within an optimization based registration algorithm.

To calculate the covariance we first threshold C to retain only weights that are

within one standard deviation of the optimum to create Cth. The remaining non-zero

entries represent weighted samples from the measurement distribution. Next, the

weights for these samples are normalized into probabilities p(∆r). NCC weighs are

14
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Figure 3.2: The search region in the top left is extracted from reference imagery around the current
global position estimate. The local map in the top right is matched against this region with 3D
scan matching. The 3D cost volume Cth after thresholding is shown on the bottom for a subset of
search angles. Overlaid on the cost volume is the optimum’s location and covariance denoted by the
red “+” and ellipses, respectively.

strictly positive and normalized according to

p(∆ri) =
Cth

∆ri∑
j C

th
∆rj

(3.3)

and the covariance is calculated with the mean µ as

Σ∆r =
∑
i

p(∆ri)(∆ri − µ)(∆ri − µ)⊤ (3.4)

15
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Figure 3.3: An example of an outlier registration. On the right is a top down view of the non-zero
entries of the cost volume after thresholding. We can see three distinct modes in this volume
indicating a poor or ambiguous measurement. On the left is the alignment according to the cost
volume optimum. The correct registration would align the red and blue dots at the proper angle.

The costmap produced by scan matching also allows for robust outlier rejection.

We expect a good registration to produce a single peak within the interior of the

cost volume. This indicates that the search region contains what is likely the global

optimum and that this optimum is well defined and unique. This expected behavior

leads to two heuristics used for outlier rejection. First, a measurement is considered an

outlier if the optimum lies on the edge of the cost volume. Such positioning suggests

that the true optimum is outside the current search region and the registration should

be performed again. Second, a measurement is considered an outlier when less than a

specified proportion (e.g., 90%) of samples in the Cth are within the same 6-neighbor

connected component as the optimum. This condition is violated when there are

multiple significant peaks indicating a poor or ambiguous registration. An example

of an registration identified as an outlier by these heuristics can be seen in Fig. 3.3.

3.4 Global Registration Pose Graph

After we get the global measurements, we pair them with the local odometry estimates

from MSVIO into one pose graph optimization scheme, motivated by [30]. We

represent our estimation as a maximum a posteriori (MAP) problem where we

16



3. Approach

Figure 3.4: An illustration of the global pose graph. The white nodes represent the 6 DOF pose of
the vehicle in the global frame, the black factors represent the MSVIO relative constraints, the red
and green factors represent the registration and elevation constraints, respectively, and the blue
factor is a prior on the initial state.

estimate the poses of all frames up to a time t

Xt = {x0, . . . ,xt} (3.5)

For our scenario, MSVIO measurements are used as the relative constraints

between states and registration and elevation measurements, denoted by h, are used

as unary factors. The elevation factor is constructed using the elevation value obtained

directly from a DEM at the given registration measurement coordinates and a constant

Gaussian noise derived from the DEM’s resolution. We also impose a 6 DOF prior

which comes from the assumption that our localization pipeline starts after loss of

GPS signal and therefore that the initial state is known. The complete pose graph

scheme, or solution to the MAP, is seen in Fig. 3.4. This is under the assumption

that the measurement noises follow a zero-mean noise Gaussian distribution, and

thus the MAP solution simplifies to a nonlinear least-squares problem [11] as

X ⋆
t = argmin

Xt

||x0||2Σ0︸ ︷︷ ︸
•Prior

+
t∑

i=1

(
||P (xi−1,xi)||2ΣP︸ ︷︷ ︸
• MSVIO Factor

)

+

t/N∑
i=1

(
||H(xNi, hNi)||2ΣH︸ ︷︷ ︸
• Elevation Factor

+ ||R(xNi, rNi)||2ΣR︸ ︷︷ ︸
• Registration Factor

) (3.6)

where the measurement covariances for the corresponding factors are Σ0,ΣP ,ΣH ,ΣR,

||v||2Σ is the squared Mahalanobis distance of v, and N is the number of frames

17
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between adding registration and elevation factors.

It is important to note that sequential MSVIO odometry measurements are in

reality correlated, as features can be tracked between sequential segments. They

are, however, assumed independent in the factor graph. We build the graph using

the GTSAM framework [10] and incrementally optimize in real time as MSVIO and

registration measurements are acquired. Since this is a nonlinear problem, we solve

using the Gauss-Newton method.
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Chapter 4

Experiments

Data was collected by a UGV platform with 5 stereo pairs which are synchronized with

an IMU through an on-board FPGA, shown in Fig. 4.1. The extrinsic parameters of

the cameras were estimated using the method described in [12]. Images are captured

at a rate of 4 Hz, and IMU outputs data at 100 Hz. The vehicle was driven around a

field testing site in Pittsburgh to collect data for two trajectories, with ground truth

provided by real time kinematic GPS.

Reference aerial imagery of the test site was acquired from a third party1. The

imagery was captured in the same season but a year prior to data collection at a

resolution of approximately 0.23 meters per pixel. I used a DEM from the National

Elevation Dataset [34]. I generated and registered the local map against the reference

imagery every 50 frames.

For comparison we implement two alternative methods based on [35] and [17],

referred to as “ORB” and “CVM” respectively, owing to the basis of their imple-

mentation. For more details, the reader should refer to Sec. 2. The implementations

of both methods use the same particle filter and a motion model derived for the

data collection platform. We make two modifications to the implementation of [35].

First, we use the open source ORB descriptor [31] in favor of the SIFT descriptor

used in the original work. Second, we compute the query descriptor on our synthetic

local map images to match the view point achieved by image warping in the original

work. For the approach described in [17], we use the publicly available pre-trained

1Nearmap: nearmap.com
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4. Experiments

Figure 4.1: A diagram of the vehicle used for data collection, with an example of the stereo images
(one from each stereo pair). The vehicle was equipped with five stereo pairs as well as an IMU
module, all time synchronized with an FPGA.

weights for the CVM-Net-II model [18]. We compute the CVM query descriptor

from a panorama stitched from the UGV’s forward facing cameras to match the

panoramic image format with which the network was trained. For both we report

the trajectory taken by the location of the most probable particle at every timestep.

We also compare against an alternate version of our method, referred to as ”Ours

(Binning)” in which we replace our probabilistic mapping technique with spatial

binning of the colored pointcloud generated by the mapping module.

Experiments were run on a machine equipped with an Intel i7-8650 CPU and 16

GB of RAM. The MSVIO, local mapping, and registration processes are all modular

and run on separate threads. We first outline our system’s performance with respect

to the GPS groundtruth on the first sequence of approximately 650 meters in length,

and then compare our system’s performance to the alternative methods on the second

sequence of approximately 2.3 kilometers.

The results of the first experiment can be seen in Fig. 1.1. Our results are

expressed in terms of the absolute trajectory error (ATE). The maximum error for

MSVIO and our position estimation was 16.28 meters and 4.87 meters, while the
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Table 4.1: Quantitative localization metrics for all methods, in meters.

MSVIO ORB CVM Ours Ours (Binning)

Max Error 45.27 20.13 59.09 8.28 75.13
RMSE 18.75 9.53 23.33 2.94 34.85

RMSE was 7.72 meters and 2.11 meters, respectively. The final drift of our approach

was 3.73 meters, or 0.57% of the total trajectory length, showing that while MSVIO

alone can experience significant amounts of drift, our method recovers from drift

and converges toward the ground truth. We also observe that our outlier rejection is

very effective. All registrations that deviate significantly from the ground truth are

correctly rejected, while a majority (8 out of 12) are correctly identified as inliers.

In our second experiment we compare our system to the state-of-the-art methods

outlined above. The qualitative and quantitative comparisons can be found in Fig. 4.2,

Table. 4.1 respectively. Overall, we see that our method outperformed the state of

the art and maintained the most accurate global estimate across the 2.3 kilometers

long sequence and that, similarly to the first sequence, it was able to correct the

drift that arises from using only MSVIO for estimation. Notably, we observe that

our method significantly out preforms the non-probabilistic variant indicating that

our probabilistic mapping technique has a significant positive impact on performance.

In addition, only our method was able to function in real time. The ORB method’s

runtime was 8× slower than ours while CVM’s was 100× slower.

Both comparison methods produced significantly less accurate estimates than our

approach. We hypothesize that the cause of this decreased performance is derived

from the fact that the descriptor comparison measurement model has high variance.

This can cause the most probable particle to jump around the true vehicle location

at every sensor measurement, and in extreme cases cause the entire distribution to

diverge from the ground truth trajectory.

It is also necessary to note that both comparison methods had, unfortunately,

non-optimal experimental conditions. The ORB descriptor was designed for dense

patches, but the ORB method computed its query descriptor on our sparse local

map images as it was the only top down image we could provide. Additionally, the

CVM-Net used in this experiment was trained using data on roadways. Therefore,

it is possible that the model was not able to generalize for the natural environment
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of our experiments. These conditions, however, are likely representative of those

experienced in real-world operation where a dense top down image may be impossible

to acquire due to occlusions, and data may not exist for the deployment environment

to pre-train a neural model. Our method is able to generalize to never-before-seen

environments and perform well even with significant occlusion from environmental

features like vegetation.
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Figure 4.2: Trajectories for all methods are shown in the top image while the position on the 3 axes
with respect to time is shown in the bottom 3 figures.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, I outlined the design of a global localization pipeline for GPS-denied

scenarios. A multi-stereo VIO module was extended to provide robust odometry for

challenging environments. A probabilistic 3D occupancy grid was created to generate

accurate synthetic top down images without significant artifacts and thus address

the issue of drastically differing perspectives between vehicle and aerial imagery. A

registration module was designed to align these images with reference imagery to

measure global location. Finally, a pose graph was formulated to fuse odometry

and global measurements and provide a continuous global state estimate for robot

operation after loss of GPS signal. We show that our system can localize in real time

and outperforms existing state-of-the-art methods on real world datasets.

5.2 Limitations

At the moment, the pipeline’s biggest limitation is the fact that it cannot be easily

deployed due to difficulties with visual registration and parameter tuning. In many

cases, the pipeline could not be deployed without previous parameter testing to derive

the best registration performance, by tuning parameters such as occupancy threshold

and cell size in the 3D grid, registration frequency, etc.
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In its current form we have also found that our method is sensitive to visual

differences between the local map and reference imagery. Such differences can be

induced due to photometric qualities of the captured ground images (e.g. exposure,

white balance) or by temporal changes (e.g. reference imagery was captured during

a different season). Such visual differences can cause decreased performance of our

image registration method and in-turn degraded localization accuracy. Because we

use color information directly from the images, we could transform the color of the

generated local maps as desired. Since no such transformation is applied in our

formulation, our approach works best by registering the local map to georeferenced

imagery of similar visual properties. Thus, if the system uses georeferenced imagery

captured in a different season, it may lead to reduced performance during global

registration. This is due to visual differences in colors and illuminations of what the

UGV is seeing and what the georeferenced imagery contains.

5.3 Future Work

In future work, I plan to explore registration techniques that generalize to a wider

variety of visual conditions as well as methods to normalize the sensed and reference

imagery to mitigate visual differences. Both directions focus on robustifying the

method to a variety of different scenarios. One approach to mitigate the differences

between the imagery data could be through the use of a deep learning model to

improve registration against visual differences. Another approach could be employing

digital signal processing on the sensed imagery data or local map to make it invariant

to visual qualities in captured ground images, all while keeping intact structural

patterns present in the images. Additional work could be apply the pipeline to

multi-robot mapping and registration for collaborative exploration and more efficient

distributed computing. Lastly, future work should look at the possibility of porting

the system to robots functioning beyond natural rural environments such as indoors,

inside cities, forests, etc. It should also be explored how to take into account the fact

that the robot could travel in between these environments.
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Marchand. Vision-based absolute localization for unmanned aerial vehicles. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3429–3434, 2014. doi: 10.1109/IROS.2014.6943040. 2.2.3

31


	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Overview

	2 Related Work
	2.1 GPS-Denied Localization
	2.2 Georeferenced Information
	2.2.1 HD Maps
	2.2.2 Digital Elevation Models
	2.2.3 Satelite Imagery


	3 Approach
	3.1 Multi-Stereo Visual-Inertial Odometry
	3.2 Local Map Construction
	3.3 Registration
	3.4 Global Registration Pose Graph

	4 Experiments
	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Limitations
	5.3 Future Work

	Bibliography

