
Preprocessing-based Methods for Robotic
Manipulation

Yash Oza

CMU-RI-TR-22-29

July 15, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Dr. Maxim Likhachev, chair

Dr. Oliver Kroemer
Dhruv Mauria Saxena

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Yash Oza. All rights reserved.





To my family.



iv



Abstract

Robotic manipulation is a key problem for several applications such as welding,
pick-and-place, and automated assembly. However, motion planning for
manipulation can be computationally expensive as it requires planning in
the high-dimensional configuration space of the manipulator. Additionally,
task-specific constraints such as strict time limits or constraints on end-effector
motion further increase the complexity of this problem. In order to solve the
planning problem tractably, several methods heavily rely on preprocessing, in
which relevant information about the planning problem is gathered beforehand
in order to enhance the performance of the planner. In this thesis, we propose
algorithmic and system-level contributions to preprocessing-based methods for
robotic manipulation.

In the first part of the thesis, we demonstrate how planning for constrained
manipulation can be sped up by adding additional actions to the action set of a
search-based planner. Macro-actions are ordered combinations of primitive
actions and can help make faster progress towards the goal and reduce planning
time. However, this introduces a trade-off as additional actions will increase
the branching factor of the search. We leverage preprocessing to compute a set
of macro-actions that provide probably approximately correct (PAC) bounds on
the performance of the planner. We demonstrate the benefits of our approach
on a container-opening task with a PR2 robot arm.

In the second part of the thesis, we present a planning and perception framework
for intercepting projectiles using robotic manipulators. We focus on the problem
of intercepting a projectile moving towards a robot equipped with a manipulator
holding a shield. To successfully perform this task, the robot needs to (i)
detect the incoming projectile, (ii) compute a trajectory that can intercept the
projectile, and (iii) execute the found trajectory. These three steps need to be
executed as fast as possible (<= 1 second in our setting) in order to maximize
the number of episodes where the projectile is successfully intercepted. To this
end, we propose a planning framework that constructs a trajectory database,
wherein the individual trajectories can be used in order to intercept the projectile.
Additionally, we also present a perception pipeline that continually provides
state estimates of a fast-moving projectile within a short time window. We
evaluate our approach both in simulation and on the physical PR2 robot with
RGB-D cameras.

v



vi



Acknowledgments

First and foremost, I want to thank my thesis advisor, Dr. Maxim Likhachev.
Right from selecting me for a staff position at CMU to advising me during my
Master’s, you’ve played an instrumental role in my professional development
at each and every stage. You gave me the opportunity to work on some really
interesting projects and collaborate with lots of folks from the lab. Your
method of approaching new problems, working with various stakeholders, and
building simple yet efficient algorithms has been extremely inspiring. My time
at CMU and the work that I did here would not have been possible without your
guidance. I would also like to thank my thesis committee - Dr. Oliver Kroemer
and Dhruv Mauria Saxena for providing me with their valued guidance that
helped me accomplish the work discussed in this thesis.

I would also like to thank all members of the Search-Based Planning Laboratory
for all the collaborations and friendships that we’ve built over the years. I’d
also like to thank my friends from the MSR cohort that I’ve had the chance to
interact with and learn from.

Most of all, I’d like to thank my family for the love and support that they’ve
provided me with over the years. I will be forever grateful to all of you.

vii



viii



Contents

1 Introduction 1

2 Learning Macro Actions 7
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Motion Primitives and Macro-actions . . . . . . . . . . . . . . . 8
2.3 Algorithmic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Compute a Set of Macro-Actions . . . . . . . . . . . . . . . . . . 11

2.4 Find A Near-Optimal Set of Macro-actions . . . . . . . . . . . . . . . . 11
2.4.1 On Practicality of Near Optimal Arm Identification . . . . . . . . 12

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Performance of (ε, δ)-optimal algorithms . . . . . . . . . . . . . 15

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Shield CTMP 19
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 CTMP-based Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Constant-Time Motion Planning . . . . . . . . . . . . . . . . . . 22
3.3.2 Straw man Approach . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Proposed Approach Building Blocks . . . . . . . . . . . . . . . . 24
3.3.5 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.6 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Perception Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Projectile Estimation . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Detection-based calibration . . . . . . . . . . . . . . . . . . . . 30

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Perception Module . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Motion Planning Module . . . . . . . . . . . . . . . . . . . . . . 32
3.5.3 Evaluation in simulation . . . . . . . . . . . . . . . . . . . . . . 33
3.5.4 Experiments on Real Robot . . . . . . . . . . . . . . . . . . . . 33

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



4 Conclusion and Future Work 35

Bibliography 37

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

x



List of Figures

1.1 In this toy example, the macro-actions in the action space (blue) can help
avoid the local minima represented by the cul-de-sac. . . . . . . . . . . . 2

1.2 PR2 robot with a shield attached to the end-effector of its right arm (left).
The robot executes a trajectory that successfully intercepts the incoming
projectile (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 (L): True vs Empirical Reward in NV (R): Number of times each arm was
sampled until termination in SE . . . . . . . . . . . . . . . . . . . . . . 16

3.1 (a) and (b) show the inner (red) and outer (blue) domes surrounding the robot. (c) shows
the PR2 robot with a shield attached to its arm (in simulation). . . . . . . . . . . . . 24

3.2 (a) shows a tunnel formed by a pair of cells (shown in green) in Do and Di. (b) shows the
centers of the cells on both domes. For Do we only show the discretization for the front side. 25

3.3 Snapshots from a video showing PR2 robot deflecting a white ball thrown
at it (sequenced top left to bottom right). . . . . . . . . . . . . . . . . . . 31

xi



List of Tables

2.1 Performance of (ε, δ)-PAC algorithms (seconds) . . . . . . . . . . . . . . 15
2.2 Comparison against baselines (seconds) . . . . . . . . . . . . . . . . . . 16

3.1 Prediction accuracy as number of detections increase . . . . . . . . . . . 32
3.2 Evaluating the planning module in simulation . . . . . . . . . . . . . . . 33

xii



Chapter 1

Introduction

Robots are increasingly being used to perform a wide variety of tasks around us. This
includes using ground robots for performing delivery tasks [27], robotic manipulators for
automated part assembly [24], and quadcopters for autonomous inspection and monitoring
[32]. Different tasks that the robot has to perform present different constraints that the
robot must satisfy in order to successfully complete the task. In this thesis, we focus on
developing efficient motion planning algorithms for robotic manipulators.

In our first work, we demonstrate how planning for constrained manipulation can be
sped up by adding additional actions to the action set of a search-based planner. Heuristic
search-based planning grows a graph of candidate solutions for any planning problem by
using a set of actions provided to it. Any solution found by these algorithms is composed of
a sequence of these elementary ‘motion primitives’ joining the start and goal configurations.
Macro-actions are longer-horizon actions composed of a sequence of the elementary motion
primitives. Since they are longer-horizon actions, they can help the search make quick
progress towards the goal, and potentially avoid local minima of the heuristic illustrated in
Figure 1.1. At the same time, they increase the branching factor of the search as they add an
additional successor state for every state expanded.

Prior work on using macro-actions with heuristic search has primarily concerned itself
with finding one (or a few) good macro-actions after solving one (or a few) planning
problems. There is no straightforward way to extend these approaches, which we list in
Section 2.1, to compute a good set of macro-actions for use in planning. Adding elements
to this set can increase planning times by increasing the branching factor, and macro-actions

1



1. Introduction

Figure 1.1: In this toy example, the macro-actions in the action space (blue) can help avoid
the local minima represented by the cul-de-sac.

that perform well on some test cases might not render the same benefit in other cases. To
the best of our knowledge, our work is the first to provide PAC style bounds for a set of
macro-actions.

In our second work, we present a planning and perception framework for intercepting
projectiles using robotic manipulators. Robots superior ability to perform (repetitive) tasks
has made them ubiquitous in various industries. And with time we have also seen a transition
in the kinds of environments these machines operate in; from extremely controlled settings
to unstructured and unpredictable environments (like factory floors [26], space robotics [25],
and domestic settings [16]). However, the unpredictability of the environment potentially
poses safety hazards for the robots - for example, an object/machine part could unexpectedly
fall onto the robot while it is operating on a factory floor or a stray space debris could collide
with a robot manipulator mounted on a satellite. And it is important that these expensive
machines are capable of protecting themselves during such unexpected accidents.

In this work, we focus on tackling a version of this problem, where a robot is tasked with
protecting itself from incoming projectiles using a small shield attached to its manipulator
arm (Fig. 1.2). Although repetitive, the time-critical nature of the task calls for an intelligent
framework that can maximize the robots chances of intercepting projectiles. Based on the
range of the vision system and average velocities of the incoming projectiles in our setting,
the robot typically has about 1 second from when the projectile is first detected until it
hits the body of the robot. Within this time frame, our framework should be capable of

2



1. Introduction

Figure 1.2: PR2 robot with a shield attached to the end-effector of its right arm (left). The
robot executes a trajectory that successfully intercepts the incoming projectile (right).

performing 3 major tasks: (i) detecting and accurately predicting the motion of the incoming
projectile, (ii) querying a motion planner for a manipulator trajectory that would enable
the robot to safely intercept the projectile, and (iii) executing the trajectory returned by the
motion planner in the real world. The fast nature of the task combined with the physical
limitations of the robot (typical executions of blocking maneuvers consume about 700 of
the 1000 milliseconds available to us), calls for a quick, yet accurate framework.

In this manuscript, we present our Bliss (BLink and you’ll mISS) framework that
comprises of (i) an off-the-shelf RGB-D sensor based perception module that provides
continuous estimates of the incoming projectile and of its predicted trajectory, and (ii)
a preprocessing-based planning pipeline based on the Constant-Time Motion Planning

3



1. Introduction

(CTMP) paradigm [12] that guarantees to return a blocking trajectory if it exists (based on
the perception estimates) within a significantly small time budget (1ms).

The perception module utilizes a simple point cloud filtering technique to detect the
projectiles state (position and velocity) and predicts its future trajectory while accounting
for air drag. These predictions continually improve through the course of the projectiles
flight owing to the improvement in performance of the RGB-D sensor in closer proximity
(as opposed to when the projectile is farther away from the vision sensor) and the ability to
better predict the future trajectory of the projectile with more samples of its past states.

The extremely limited time budget available for planning forced us to resort to a
preprocessing based planning module, wherein a database of manipulator trajectories
starting from a fixed start configuration and leading to various interception configurations
is created and queried online. Given the infinite space of interception configurations, an
intelligent dome-based discretization technique was employed to limit the preprocessing
time significantly while guaranteeing the existence of an interception configuration in this
discretized set (if one exists at all) for all possible projectile trajectories.

Due to the time consuming nature of the execution phase (∼700ms), it is initiated as
quickly as possible based on the initial estimates of the projectile. However, when updated
estimates are available from the perception system, the planning module dynamically reroutes
the manipulator to a new interception configuration if required. These replanning/rerouting
maneuvers are also created as part of the preprocessed database.

The performance of our framework was evaluated in simulation and in the real world
using the Willow Garage PR2 robot with projectiles moving at speeds of up to 10m/s. An
extensive ablation study and comparison with baselines has been presented to elicit the
impact of our contributions.

Concisely put, our contributions include

• The formulation of the problem of robot protection against incoming projectiles and
the development of the Bliss framework.

• A point cloud filtering based perception module that returns continuous estimates of
the predicted trajectory of the projectile.

• A theoretically sound preprocessing-based motion planning module that guaranteedly
returns blocking trajectories within an extremely small time window (including
rerouting maneuvers).

4



1. Introduction

• A dome-based discretization technique that makes preprocessing tractable while still
providing strong guarantees.

• Demonstration of the effectiveness of our pipeline in the real world, by deploying it
on a PR2 robot and an RGB-D camera setup.

5



1. Introduction

6



Chapter 2

Learning Macro Actions

Heuristic search-based planning algorithms systematically build a graph using a specified set
of primitive actions in order to find a least-cost path. This action set can be augmented with
macro-actions which are ordered combinations of the primitive actions, and let the search
evaluate successors which would otherwise have required multiple steps to be generated.
Macro-actions can help make faster progress towards the goal and potentially reducing
planning times, at the expense of an increase in the branching factor of the search and
an increase in planning time. The trade-off affects the determination of a beneficial set
of macro-actions for a planning domain, not just specific instances of the problem. In
this work, we use results from probably approximately correct (PAC) learning to select a
close-to-optimal set of macro-actions. We consider the domain of constrained manipulation
with a robot arm, where robot motions are restricted to lie on a known lower-dimensional
manifold. As the number of candidate macro-actions grows exponentially with the size
of the primitive action set, we formulate the learning problem using multi-armed bandits,
and devote computation power to macro-actions that seem promising for our domain. Our
evaluation shows that the set of macro-actions selected by our approach outperforms baseline
approaches for finding macro-actions.

2.1 Related Work

The idea of adding macro-actions to the action set for improving planning performance
has been investigated in different domains. Macro-actions have been used in search-based

7



2. Learning Macro Actions

planning to jump across regions of the search space that might be expensive for the planner
to evaluate without macro-actions [17]. Some existing approaches to find macro-actions
look at information about planned solutions, such as the heuristic function profile along the
path [6], or the evaluation function [11], and generate macro-actions based on some criteria.
Another approach looks at the solution path itself and selects macro-actions based on some
filtering criterion (possibly as simple as frequency counts of action sequences) [2]. Methods
that generate macro-actions using genetic algorithms[23] have also been shown to work well
in practice. The key difference between these algorithms and ours is bounded optimality of
the solution and the explicit use of sets of macro-actions for heuristic search-based planning,
rather than an arbitrary number of unrelated macro-actions.

2.2 Preliminaries

Let X denote the d-dimensional configuration space, Xfree ⊂ X the free space, and
Xobs = X\Xfree the obstacle space. Let A be the basic action set available to a motion
planner. f : Xfree × A → X is the transition function such that x′ = f(x, a), where
x ∈ Xfree, a ∈ A and action a is valid in state x. The successors of a state x, denoted
by x, are a set of configurations reachable from x given an action space A. Formally,
x = GetSuccs(x,A) = {x′ : f(x, ai)∀ ai ∈ A valid from x}.

2.2.1 Motion Primitives and Macro-actions

Motion primitives are feasible atomic actions ai ∈ A∀ i ≤ |A|1. A heuristic search-based
planning algorithm for robots systematically calls the GetSuccs function to build a lattice
of states in X [30]. Each motion primitive ai has an associated cost ci. This means the cost
of every feasible transition, c(x, x′) = ci if x′ = f(x, ai).
Definition 1. A macro-actionm is any ordered sequence of motion primitives {a1, · · · , an},
such that x′ = f(x,m) ∈ X for x ∈ Xfree, ai ∈ A∀ ai ∈m.

The transition function f that takes a macro-action as an argument is applied suc-
cessively as we describe here. Consider a macro-action m = {a1, · · · , an}. Let x′

j =

f(x′
j−1, aj), 1 ≤ j ≤ n, aj ∈ m, x′

0 = x. If action aj is valid in state x′
j−1 ∀ 1 ≤ j ≤ n,

1For a four-connected grid, these are unit steps in the four cardinal directions. In our domain of robot arm
manipulation, these correspond to individual movements of each joint.

8



2. Learning Macro Actions

x′ = f(x,m) = x′
n. Since a macro-action is made up of motion primitives, the cost of the

transition c(x, f(x,m)) =
∑n

i=1 ci. We denote a set of macro-actions asMA to make the
dependency on action set A explicit. Our focus in this work is to determine the elements of
MA such that we reduce planning times of heuristic search-based planning algorithms that
use an augmented action space A′ = A ∪MA. Note thatMA ⊂ ℘(A) where ℘(·) is the
power set operator.

Planning Times with Macro-actions

Consider a planning problem defined as the tuple φ = (ξ,A) where the environment
ξ = (X , xs, xg). xs ∈ Xfree and xg ∈ Xfree are the given start configuration and goal
respectively. Let t(φ) denote the planning time for solving φ, i.e. the time taken by an
algorithm to find a feasible path from xs to xg using action set A.

For search-based planning algorithms, the branching factor of the search graph is |A|. In
general, t(φ) increases with the branching factor [6, 23]. However, macro-actions provide
extended reachability in X , which might reduce state expansions in the search, thereby
decreasing t(φ). t(φ) is also affected by ξ as a change in the obstacle positions changes
Xobs, and different start and goals require traversal through different regions of X .

Given a distribution of environments P(Ξ), we associate an expected planning time
with A,

tA = Eξ∼P(Ξ)t(φ), φ = (ξ,A) (2.1)

For every environment ξ, there exists an optimal set of macro-actionsM∗
A(ξ) which trivially

contains a singleton, the optimal path fromxs toxg. However, such sets suffer from incredibly
poor generalisation across P(Ξ), leading to large values of tA′ for A′ = A ∪M∗

A(ξ). Our
goal in this work is to find a set of macro-actions that generalises well over P(Ξ). We do
this by restricting ourselves to macro-actions of length at most n, and denote a set of such
macro-actions asMA(n). We aim to solve the following optimisation problem for the
optimal setM∗

A(n),

M∗
A(n) = arg min

MA(n)

tA′ , A′ = A ∪MA(n) (2.2)

Let ℘n(A) be a subset of ℘(A) with all elements of length at most n, i.e. ℘n(A) = {m :

m ∈ ℘(A) ∧ |m|≤ n}. We note thatM∗
A(n) ⊂ ℘(℘n(A)).

9



2. Learning Macro Actions

2.3 Algorithmic Framework

2.3.1 Problem Formulation

Since equation 2.2 is doubly exponential in |A|, it is intractable for any reasonably sized A.
We relax equation 2.2 in two ways. Given P(Ξ), and A we,

1. Compute a set of macro-actionsMA(n) from A.

2. Find a probably approximately correct (PAC) set of macro-actions M̂∗
A(n) ⊂

℘(MA(n)) that is (ε, δ)-optimal.

Let Â′ = A ∪ M̂∗
A(n) and A′ = A ∪M∗

A(n). M̂∗
A(n) is (ε, δ)-optimal if,

P(tÂ′ ≤ tA′ + ε) ≥ 1− δ (2.3)

To determine an (ε, δ)-optimal set M̂∗
A(n) ⊂ ℘(MA(n)) under the PAC framework,

we require iid samples of planning times, i.e. compute t(φ) for φ = (ξ,A′) where
ξ ∼ P(Ξ) is a randomly drawn environment, and the action set A′ = A ∪M(n) for any
M(n) ∈ ℘(MA(n)). As discussed in Section 2.4.1, a lower bound on the number of
such samples required (sample complexity) to obtain an (ε, δ)-optimal solution M̂∗

A(n) is

given by Ω(

∣∣℘(MA(n))

∣∣
ε2

ln(1
δ
)). Since

∣∣℘(MA(n))
∣∣ = 2|MA(n)| grows exponentially with

|MA(n)|, computing an initial set of macro-actionsMA(n) efficiently is crucial. Moreover,
it is import thatMA(n) contain good candidate macro-actions to keep the sampled values
of t(φ) low, which should reduce the sample complexity for computing M̂∗

A(n).

We model the problem of determining the (ε, δ)-optimal set of macro-actions M̂∗
A(n) ⊂

℘(MA(n)) as a best arm identification problem in stochastic multi-armed bandits (MABs).
MABs form a powerful framework for problems in decision theory. Analogous to the MAB
problem, we have a set of alternatives to choose from. In our case, each alternative (or arm)
is a set of macro-actionsM(n). Each of these alternatives has a stochastic reward that is
drawn from a fixed unknown distribution and is independent of each other. In our case, the
stochastic reward is inversely proportional to t(φ).

10



2. Learning Macro Actions

2.3.2 Compute a Set of Macro-Actions

Let γφ = {xs, x2, · · · , xg} be the ordered set of states that make up the solution path for a
planning problem φ found by any heuristic search-based planner such as A* or Weighted
A* [31]. Let τi be the timestamp at which xi ∈ γφ was expanded during the search. We
use ∆τi = τi − τi−1 as the expansion delay for state xi. Intuitively, ∆τi is the time spent by
the search algorithm between expansions of consecutive states on a solution path. Large
values of ∆τi imply that the search did not make desirable progress towards xg between
expansions of xi−1 and xi. This represents the amount of search effort required between
expansions of states xi−1 and xi. More generally, for i < j,∆τ ji =

∑j
k=i+1∆τk gives us

the corresponding estimate for states xi and xj .
Given a threshold on search effort ∆τthres, we can construct a macro-action mj

i for any
∆τ ji ≥ ∆τthres. mj

i = {ai+1, · · · , aj} where x′
u = f(xu−1, au) = xu for (xu−1, xu) ∈ γφ

as before. To construct our candidate set of macro-actions,MA(n), Algorithm 2 solves
a few randomly drawn planning problems φ = (ξ,A), ξ ∼ P(Ξ), and appends macro-
actions mj

i to the setMA(n) until |MA(n)|= K for a pre-specified size K ofMA(n).
Algorithm 2 calls a sub-routine HeuristicPlanner which returns the solution γφ and the
corresponding set of timestamps τ = {0, τ2, · · · , t(φ)}2. Mall is a max priority queue
sorted in order of ∆τtotal values which are associated with each macro-action and computed
in ChainTopMPrims.

Our assumption in this approach is that macro-actions mj
i computed in this way might

help the planner avoid spending large amounts of search effort in the future for previously
unseen planning problems drawn from P(Ξ) in the same way. However, a macro-action
computed for one planning problem may not perform well in other planning problems from
the same distribution, and so we still need to compute an (ε, δ)-optimal set of macro-actions
M̂∗

A(n) ⊂ ℘(MA(n)).

2.4 Find A Near-Optimal Set of Macro-actions

To determine an (ε, δ)-optimal set of macro-actions, we look into the algorithms that solve
the best arm identification problems in MABs. Additionally, we are interested in PAC like

2With a slight abuse of notation, τxs
= 0 since the start state is expanded at the outset of planning, and

τxg
= t(φ) since planning terminates when the goal state is expanded.

11



2. Learning Macro Actions

confidence bounds on the solution to guarantee the optimality of our selection. We also
argue that it is more practical in terms of sample complexity to determine an (ε, δ)-optimal
set of macro-actions, rather than the optimal set. Thus, we only discuss (ε, δ)-PAC class
of algorithms, which are expected to return an ε-optimal solution with probability at least
(1− δ). We compare and contrast three such algorithms, namely Naïve (NV), Successive
Elimination (SE), and Median Elimination (ME) [8]. This discussion informs our decision
to not test the performace of ME for calculating M̂∗

A(n). The SE algorithm provided in
[8] is a (0, δ)-PAC algorithm, but we convert it to a (ε, δ)-PAC version and present it in
Algorithm 3.

Let f : R≥0 → [0, 1] be some function that maps planning time t(φ) to rewards rA associ-
ated with the action set used for planning, and let r̂A = f

(
1
n

∑n
j=1 t (φj = (ξj ∼ P(Ξ),A))

)
be the empirical reward. For our domain, rewards are inversely proportional to planning
times, and an arm in the MAB framework refers to an elementM(n) ⊂ ℘(MA(n)), so for
simplicity of notation we denote ri and r̂i to be the properties of element i of ℘(MA(n)).

2.4.1 On Practicality of Near Optimal Arm Identification

From [8] we know that the upper bound sample complexities for NV and ME areO( n
ε2

log(n
δ
))

and O( n
ε2

log(1
δ
)) respectively given n arms. The (ε, δ)-PAC SE algorithm also has a upper

bound sample complexity of O( n
ε2

log(n
δ
)). The current lower bound on sample complexity

for any algorithm that returns a single ε-optimal arm with probability at least (1 − δ) is
Ω( n

ε2
log(1/δ)) [21]. While the average sample complexity of these algorithms have been

well studied in the literature [5, 14, 21], we present some practical comments on choosing
one among the three based on the problem at hand.

Algorithm 1 ComputeExpansionDelay(S, T )
Require: Path γφ and timestamps τ
Ensure: Set E of expansion delay tuple (xi, xi−1∆τi)

1: E ← ∅
2: for xi ∈ γφ\xs do
3: E ← E ∪ (xi, xi−1∆τi)
4: end for

12



2. Learning Macro Actions

Algorithm 2 Create Macro Actions
Require: Set of Basic Motion-primitivesA. Distribution of environments P(Ξ). Threshold

on expansion delay ∆τthres. Desired number of macro-action candidates K. Number of
planning problems to consider L.

Ensure: Set of macro-actionsMA(n)
1: procedure ChainTopMPrims(E, ∆τthres, A)
2: M← ∅; m← ∅
3: ∆τtotal ← 0; RecordMA← False
4: for (xi, xi−1,∆τi) ∈ E do
5: if ∆τi ≥ ∆τthres then
6: RecordMA← True
7: m←m ∪ ai . xi = f(xi−1, ai)
8: ∆τtotal ← ∆τtotal +∆τi
9: else if ∆τi < ∆τthres and RecordMA then

10: M←M∪ (∆τtotal,m)
11: m← ∅
12: ∆τtotal ← 0; RecordMA← False
13: end if
14: end for
15: returnM
16: end procedure
17: procedure CreateMActions(A,P(Ξ),∆τthres, K, L)
18: Mall ← ∅ . Empty Priority Queue
19: i← 1
20: for i ≤ L do
21: φ← (ξ ∼ P(Ξ),A)
22: (γφ, τ )← HeuristicPlanner(φ)
23: E ← ComputeExansionDelay(γφ, τ )
24: Mi ← ChainTopMPrims(E, ∆τthres)
25: Mall ←Mall ∪Mi

26: end for
27: return Top K macro-actions inMall
28: end procedure

13



2. Learning Macro Actions

Median Elimination (ME)

s presented above, this algorithm has the lowest upper bound sample complexity, which
also matches with the lower bound sample complexity. At every iteration of the algorithm,
it eliminates half of the arms, but the number of samples it requires per non-eliminated
action at any iteration i is given by 64

(ε×(3/4)i−1)2
ln(3×2i

δ
). Note that the sample requirement

increases exponentially with i, and the algorithm does not adapt to the observed empirical
rewards. Given ε, δ and n, the algorithm will return after log2(n) iterations. On the other
hand, NV requires 4

ε2
ln(2n

δ
) samples per arm. The number of samples required per arm by

ME at the first iteration (i = 1) becomes equal to that of NV when n = 616/(2 · δ15). Thus,
in practice NV would require significantly fewer samples in most of the cases until n is large.

Successive Elimination (SE)

The upper bound sample complexity for both (ε, δ)-PAC SE and NV algorithms are same.
However, the former eliminates arms based on the error margins of the empirical rewards as
captured by maxj∈n(n) r̂i(t)− r̂j(t) > 2εt where n(t) are the arms remaining at iteration
t, and r̂i(t) is the best empirical reward observed until iteration t. On the contrary, NV
samples all the arms equal number of times in each iteration. Elimination in SE depends on
the true rewards, and there might be cases when (ε, δ)-PAC SE would not eliminate any
arm if all the arms are ε-optimal. In such cases, (ε, δ)-PAC SE would sample more arms
than NV. This has contributed to the fact that (ε, δ)-PAC SE being an iterative algorithm
needs to maintain an any-time confidence bound [9]. However, in some cases (ε, δ)-PAC SE
return the best arm with sample complexity lower than that of NV. Thus, one may decide to

Algorithm 3 (ε, δ)-PAC Successive Elimination (SE)
Require: Number of arms n. δ. ε

1: t← 1; χt = {1, 2, . . . , n}
2: Pull each arm in χt once and compute r̂i,t
3: while |χi| > 1 and εt > εthres do
4: χt+1 = χt\{i ∈ χt | maxj∈χt r̂j,t − r̂i,t > 2εt}
5: Pull each arm in χt once and compute r̂i,t
6: t← t+ 1
7: end while
8: return arg maxj∈χt

r̂j,t

14



2. Learning Macro Actions

use (ε, δ)-PAC SE over NV given some (even approximate) domain knowledge on the true
rewards.

2.5 Experimental Results

We demonstrate our approach on a challenging constrained manipulation task, similar to
the one presented in [29]. Specifically, the task is for a robot with a 7 Degrees-of-freedom
(Dof) arm to open the lid of a container. The end-effector of the arm is constrained to lie on
the manifold that the lid follows.

The distribution of planning problems, D, that we use for coming up with the macro-
actions are generated from the above mentioned setting. The start state is a 7-Dof position
of the arm in the joint space. The goal state is specified in terms of the position of the
end-effector of the arm. The planner has access to fourteen basic motion-primitives, wherein
the arm can move any of the 7 joints in the positive or the negative direction. All the
planning problems are solved using the ARA* planner, with a timeout of 600 seconds. To
generate the initial set of plans that we use in Algorithm 1, we sample planning problems
from the aforementioned distribution.

For our experiments, we sample 2 planning problems and plot the expansion delay plots
for the obtained solution. The top five macro-actions are extracted and are then used to
come up with the ε-optimal set of macro-actions.

We have evaluated our algorithm using the naive algorithm and successive elimination
algorithms. We have also compared our algorithm with the existing state-of-the-art
macro-action selection algorithms MACRO-FF[2] and Marvin [6]. Baseline without any
macro-actions is referred to as “No MA”.

2.5.1 Performance of (ε, δ)-optimal algorithms

Table 2.1: Performance of (ε, δ)-PAC algorithms (seconds)

No MA 1-set 2-set 3-set 4-set 5-set
NV 46.85 1.41 0.17 0.13 0.07 0.08
SE 46.85 1.30 0.16 0.14 0.06 0.08

15



2. Learning Macro Actions

Figure 2.1: (L): True vs Empirical Reward in NV (R): Number of times each arm was
sampled until termination in SE

Table 2.2: Comparison against baselines (seconds)

No MA Our 4-set MACRO-FF MARVIN
Planning
Time

46.8597 0.06797 12.3813
(0.07932)

11.8961
(9.4367)

For running the (ε,δ)-optimal algorithms, we enumerate the entire power-set of the set
of five macro-actions obtained previously. All the experiments are performed by setting ε =
0.3 and δ = 0.3 (70% confidence).

Naive algorithm

The naive algorithm is run using the above-mentioned ε and δ. For each of the arms,
134 different planning problems are sampled (based on the derivation in [8]) from the
distribution D. Figure 2.1(L) is a plot that depicts the sample mean and ε (in blue) and the
true mean (in red). The naive algorithm correctly identifies an ε-optimal arm. In the first
row in Table 2.1, we can see the planning times for the best set of macro-actions for each
cardinality of the set. We observe that the planning times are lowest for the set containing
four macro-actions.

Successive Elimination algorithm

For successive elimination, the number of samples drawn for each arm is as shown in the
Figure 2.1(R). During the runtime, SE is able to eliminate 17 of the 32 arms. It draws 872

16



2. Learning Macro Actions

samples for each of the arms that is remaining at the last iteration, and correctly identifies
an ε-optimal arm. In the second row in Table 2.1, we can see the planning times for the best
set of macro-actions after running the SE algorithm. We again observe that the planning
times are lowest for the set containing four macro-actions.

Comparison against other methods

We compare our method with MACRO-FF and Marvin. MACRO-FF gives out a ranked set
of macro-actions that can be used for any graph-search algorithm. Marvin gives out a set
of macro-actions, but does not rank them. We evaluate the performance of MACRO-FF
and Marvin based on two metrics - (1) planning time obtained while appending each
macro-action individually to the action set, and (2) planning time obtained by appending
a set of four macro-actions to the action set. We choose to append sets of macro-actions
containing four elements because of the fact that set of four macro-actions had the least
planning time when we ran our algorithm. Table 2.2 contains the values of planning times
obtained using our algorithm, MACRO-FF and Marvin. The planning times mentioned
in the parenthesis is the planning time obtained by appending four macro-actions to the
set of basic motion primitives. We can see that our method gives lower planning times as
compared to the other two methods.

2.6 Conclusion

We present an algorithm for computing a set of macro-actions that are Probably Approxi-
mately Correct. Our approach computes this set by solving a best-arm identification problem
for a multi-armed bandit. In this work, since the multi-armed bandit problem has 2N arms
when given N macro-actions, we heuristically select our candidate set of N macro-actions.
This leaves room both for selecting this set more intelligently, and using a more efficient
best-subset selection algorithm for future work.

17



2. Learning Macro Actions

18



Chapter 3

Shield CTMP

In this work, we focus on the problem of intercepting a projectile moving towards a
robot equipped with a manipulator holding a shield. To successfully perform this task,
the robot needs to (i) detect the incoming projectile, (ii) compute a trajectory that can
intercept the projectile, and (iii) execute the found trajectory. These three steps need to be
executed as fast as possible (≤ 1 second in our setting) in order to maximize the number
of episodes where the projectile is successfully intercepted. To this end, in this work we
propose (i) a Constant-Time Motion Planning-based planning framework that queries a
pre-computed database of trajectories that can be used to intercept the projectile, and (ii)
a perception pipeline that continually provides state estimates of a fast-moving projectile
within a short time window. Further, as improved state estimates of the object are received
from the perception pipeline, our planning algorithm provides replanned trajectories that
can help intercept the projectile. We evaluate our approach both in simulation and on the
physical PR2 robot with RGB-D cameras. On the physical robot, our pipeline is capable
of intercepting projectiles moving at speeds of up to 10 meters/second using only RGB-D
cameras, achieving a success rate of 70%.

3.1 Related Work

There are several works in literature that have tackled the problem of object pose estimation,
fast trajectory generation and execution. The work that is most closely related to our
approach is [13]. Here, an experience-based planner [28] is used to generate a set of

19



3. Shield CTMP

root-paths, which are stored for online lookup. In addition, the authors also allow the use
of a motion planner online, whose trajectories have been verified during the offline phase.
Though our approach is similar, our task does not allow for any computation online that is
more than a few milliseconds. One of the earliest in the domain of preprocessing-based
motion planning is Probabilistic Roadmaps [15]. [10] is a comparative study of probabilistic
roadmap planners.

[4] performs a similar task to ours, where the robot performs a ball catching maneuver
using a mobile manipulator. A VICON motion-capture system is used to obtain very
precise and high-frequency position and velocity estimates of the incoming objects. For
the planning module, the authors formulate the catching problem as a bi-level optimization
problem, which produces a joint configuration that can successfully complete the task. A
key difference between [4] and our work is that they solve an optimization problem online
while the projectile is in flight, and the optimization is not guaranteed to return a solution
within a strict time-limit. Additionally, in our setting, we do not use a motion capture
system as we believe that it is practically infeasible to assume that we know a very precise
and high-frequency estimate of the incoming projectile. And moreover in a real-setting,
given that there will be error in estimation, the planner should account for that. Thus, in our
setting, we assume access only to off-the-shelf RBG-D cameras and a non-mobile platform.

RGB-D cameras are very noisy and thus require special filtering techniques to detect
incoming projectile. Model specific methods like [1] attempts to fit a known 3D model to
the point cloud to efficiently find the location of the projectile. However, this assumes that
the model of the projectile is known. More generic approaches like [18] does not have the
requirement.

Machine learning based methods have also been used to learn policies. [3], [22] use
reinforcement learning in a model-free setting to learn policies that are capable of playing
dynamic strokes for the table-tennis task. In contrast to our work, these works require
significantly more data in order to learn useful policies.

3.2 Problem Formulation

Consider a manipulator connected to a robot body with a shield rigidly attached to the
end-effector of the manipulator. A projectile is launched in the direction of the robot, and
the manipulator is tasked with intercepting the projectile before it collides with the robot.

20



3. Shield CTMP

The state of the projectile, ρ, is represented as a tuple (ρp, ρv), where ρp ∈ R3 represents the
position, and ρv ∈ R3 represents the velocity of the projectile. The goal of the problem is
to intercept the projectile before it collides with the robot. To solve this problem, we make
certain simplifying assumptions -

• The manipulator always starts from a “home" configuration shome.

• When the manipulator is in motion, there are no objects other than the robot body
and the incoming projectile that the manipulator can collide with.

• The projectile is launched from within the field of view of the camera, allowing us to
get early estimates of its trajectory ρ.

• At any point in time, only a single object is launched in the direction of the robot.

Let Tt be the time of flight of the projectile, measured from the time it is first observed
to when it collides with the robot. Let Td be the time when the first state estimate of the
projectile is obtained by the planning module from the perception module. Finally, let Tconst
be the time taken to retrieve a trajectory from the database, and Te be the time taken by the
manipulator to execute that trajectory.

In order for the manipulator to successfully intercept the object, two conditions need to
be satisfied. First, given a long enough time-out, a motion planner must be able to compute a
trajectory from shome to a goal configuration which can intercept the projectile. Second, the
manipulator also needs to ensure that it reaches the goal configuration before the projectile
passes that location (in R3). Specifically, the following equation needs to be satisfied -

Tt ≥ Td + Te + Tconst (3.1)

The goal of the perception module is to provide a projectile estimate ρ from time-series
detections of the incoming projectile. It should also provide a new projectile estimate if a
better estimate is available. Finally, the projectile estimate would be extrapolated to predict
where would the incoming projectile hit the robot before it collides. Thus, we are interested
in minimizing the prediction error.

21



3. Shield CTMP

3.3 CTMP-based Motion Planning

The constraints laid out by the problem call for deriving an approach that minimizes time
spent on any online operation, hence budgeting as much time as possible for execution
and perception. To this end, we propose an approach that is based on the Constant-Time
Motion Planning (CTMP) class of algorithms [12]. At a high-level, we first solve a set
of planning problems, and store their solutions in a database. During execution time, we
observe the incoming projectile, and, if available, execute a trajectory that would intercept
the projectile and prevent it from coming in collision with the robot body. In the remainder
of the section, we briefly go over Constant-Time Motion Planning (Section 3.3.1), discuss a
straw man approach (Section 3.3.2) that turns out to be impractical for our task, then discuss
the proposed approach and its building blocks in detail (Section 3.3.3), and finally provide
the complete algorithm (Section 3.3.5).

3.3.1 Constant-Time Motion Planning

A CTMP approach (as formailzed in [12]) develops a strategy to solve a set of planning
problems P offline and use the pre-computed solutions to P online to perform the required
task. In our setting, we have a fixed start stare shome and a set of goals G which the robot
needs to reach to in order to protect itself from the incoming object. To formally analyze
our approach, we use the following definitions (originally presented in [12], presented here
for completeness).

Definition 1: CTMP Algorithm. Let ALG be a motion planning algorithm, Tbound
a user-controlled time bound and Tconst < Tbound a small time constant whose value is
independent of the size and complexity of the motion planning problem. ALG is said
to be a CTMP algorithm if it is guaranteed to answer any motion planning query withinTbound.

Definition 2. Reachability. A goal g ∈ G is said to be reachable from a state sstart if P
can find a path to it within a (sufficiently large) time bound TP

Definition 3. Goal Coverage. A reachable goal g ∈ G is said to be covered by the
CTMP algorithm for a state sstart if (in the online phase) it can plan from sstart to G while

22



3. Shield CTMP

satisfying Definition 1.

We are now equipped to define CTMP-Completeness.

Definition 4. CTMP-Completeness. An algorithm is said to be CTMP-complete if it
covers all the reachable goals g ∈ G for sstart.

3.3.2 Straw man Approach

To ensure protection against all possible attacks, we have G as a discretized set of all
projectiles that can intersect the robot body. A projectile ρ is represented as (ρp, ρv) ≡
{px, py, pz, vx, vy, vz}, that is the position and velocity of the incoming object in R3. Thus,
the dimensionality of G is six. With this representation of G, firstly defining the bounds of G
is difficult for the given problem setup as we do not want to make strong assumptions about
the range of incoming attacks. Second, loosely bounded G with a fine-enough granularity
could be extremely large because of its high dimensionality. Additionally, to only preprocess
for the attacks that would hit B, it would require substantial rejection sampling, increasing
the preprocessing overhead.

The naive CTMP approach thus computes and stores paths for all projectiles in G which
requires a massive amount of preprocessing time and memory given the size of G, making
it infeasible for practical purposes.

3.3.3 Proposed Approach

Our approach differs from the straw man approach in the representation of G. In our
approach, we define two domes around the robot body, an inner dome Di and an outer dome
Do. Di approximates the geometry of the robot and Do captures the robot’s reachable space
so that it can intercept the projectiles with the shield S positioned anywhere in the 3D space
between Di and Do. The two domes are discretized into cells. Our planning approach is
divided into two stages - the preprocessing stage and the query stage. In the preprocessing
stage, for each pair of cells (with one cell from Di and one cell from Do), we plan a path
to a pose of S that can block all projectiles passing through the pair of cells. These paths
are stored in a lookup table mapping the pair of cells to the corresponding path. In the

23



3. Shield CTMP

query stage, for an incoming projectile ρ, we first identify the pair of cells through which ρ

passes. Second, we look up the corresponding path π from the look up table in constant
time. For replanning, additional paths are computed from the states on these paths. This
process runs recursively as newly computed paths create new replannable states which also
must be processed. To facilitate replanning, besides the pair of cells, the current state of the
robot is also appended to the key of the lookup table.

With this approach, the size of the G becomes equal to the total number of pairs of
cells. Note that these cells are computed only with two-dimensional discretization of the
domes’ surfaces as opposed to six-dimensional discretization of the space of projectiles.
This greatly reduces the size of G compared to the straw man approach.

3.3.4 Proposed Approach Building Blocks

Domes Specification

The geometry of Di is such that it tightly encapsulates the robot body, or in other words over
approximates the geometry of the robot body with a simple shape. With this, we simplify
the problem setup by making a more conservative requirement that Di must be protected
instead of the robot body. We define Di as a cuboid.

(a) Front view (b) Top view (c) Side view

Figure 3.1: (a) and (b) show the inner (red) and outer (blue) domes surrounding the robot. (c) shows the
PR2 robot with a shield attached to its arm (in simulation).

The outer dome Do captures the reachable workspace of the robot. For simplicity, we
also define Do as a cuboid. We keep Do co-centric with Di but it is larger than Di. A
larger Do would allow more freedom to the robot but would also increase the preprocessing
demand. On the other hand, a smaller Do would restrict the robot and limit its protection
capability. We choose the size of Do such that the robot’s manipulator can reach the side
it faces at full arm extension. While our approach is simple, a more rigorous reachability
analysis could be performed to optimize for the geometry of Do. Figure 3.2 shows the two

24



3. Shield CTMP

domes configured for the PR2 robot’s body. The volume between the Do and Di is where
the robot manipulates the shield to intercept any incoming projectiles.

Domes Discretization and Shield geometry

Each side of Di and Do are discretized into cells. The discretization is correlated with the
shape and size of S. We use a square-shaped S of in our setup. The discretization of the
two domes is shown in Figure 3.2 (b).

The protrusion of each pair of cells (with one cell from Di and one cell from Do) along
a straight line into the volume between Do and Di constitutes a tunnel. A line segment
connecting the centers of the cells forming the tunnel is called centerline. Our key idea is
that if S is positioned such that it fully blocks this tunnel, all possible attacks that cross the
pair of cells are blocked by it. This idea is illustrated in Figure 3.2 (a).

(a) Tunnel diagram (b) Dome discretization

Figure 3.2: (a) shows a tunnel formed by a pair of cells (shown in green) in Do and Di. (b) shows the
centers of the cells on both domes. For Do we only show the discretization for the front side.

The size of the cells is proportional to the size of S . Specifically, we choose the cell size
to be smaller than the size of S to allow some tolerance for the pose of S that blocks the
tunnel. This tolerance is needed for possible planning and execution errors. We performed
a thorough geometric analysis of the magnitude of reduction in cell size that is needed to
account for these errors. The related derivations and equations have been left out of this
thesis for brevity.

We approximate the portion of the projectile that lies between the two domes by a line
segment. This approximation is made under the assumption that the objects move in a
straight line within that region and therefore do not breach the boundaries of the tunnel
which they enter. This is not too strong of an assumption if the distance between Di and Do

is small compared to the distance from which the attacks are launched. This assumption
can be lifted by performing an analysis for the reduction in cell size needed to account for
the projectile to line segment approximate error. We leave this analysis for future work.

25



3. Shield CTMP

Goal Condition

The goal g ∈ G is defined as the centerline of a tunnel. For the motion planner, the goal
condition is any pose of S along the centerline, such that S is oriented orthogonal to it (see
Figure 3.2 (a)). For ease of planning, we allow small tolerance in SE(3) for the goal pose.

In our implementation, we sample equidistant points along the tunnel’s centerline and
compute SE(3) poses at each point which are orthogonal to it. The motion planner then
attempts to plan to each of these poses sequentially, until it succeeds. If it fails to do so,
then the corresponding G is marked as unreachable.

Motion Planner

We use a heuristic search-based planning approach with motion primitives (see, e.g, [20],
[19], [31]) as they have strong optimality guarantees. The states and the transitions implicitly
define a graph = (S,E) where S is the set of all states and E is the set of all transitions
defined by the motion primitives. We use the Anytime Repairing A* algorithm [20] to find
a path in from a given state s to a goal pose. ARA* is an anytime heuristic search algorithm
that first computes a sub-optimal path to the goal, and then refines that path such until it
finds an optimal path, or the time runs out.

3.3.5 Algorithm Details

We are now ready to describe the preprocessing and query stages of our CTMP approach
for solving the shield-based protection task.

Preprocessing Stage

In the preprocessing stage, for each pair of cells, the tunnel centerlines are computed. Each
tunnel is checked for feasibility. Namely, the tunnels whose volume snaps to zero anywhere
along the length are discarded because no incoming object coming through such a tunnel
can reach the tunnel’s end on Di. The centerlines of all the feasible tunnels constitute the
goal region G We pick a constant number of equidistant goals on the line segment to plan to
for the manipulator (computeTargetPoses method on line 4 in Algorithm 4).

First, our algorithm computes the paths from shome to cover G by satisfying the goal
criteria described above. These paths are then time-profiled and then discretized evenly in

26



3. Shield CTMP

time to get a set of replannable states. The algorithm then recursively computes additional
paths to cover the goal regions from these replannable states.

Even though our dome-based formulation makes the number of goals in G tractable
such that they can be computed using the heuristic-search based planner, computing the
replanning trajectories in the same manner is expensive. The reason for this is because a
new perception update could arrive at any arbitrary time when the manipulator is executing
the previous trajectory. As a result, to obtain the set of replanning trajectories, we compute
the linear interpolation from each replannable state to all goals in G (lines 4 and 5 in
Algorithm 5). During the offline phase, we also collision-check the resulting trajectory with
the rest of the robot body. As this linear interpolation is an inexpensive operation (time
for computing the interpolation is in the order of a few milliseconds), we do not store the
resulting trajectory. Instead, we maintain a 3D tensor, where the first axis represent the
current goal prescribed by the perception stack, the second axis represents the new goal
based on the perception update, and the third axis represents the index of the wapoint on the
current trajectory. If a path exists from the current waypoing to the new goal, that index is
marked as True, else it is marked as False. In cases when the interpolation fails (could be
because of a self-collision or the manipulator hitting the joint limits), we invoke a motion
planner that attempts to compute the required trajectory. If successful, the trajectory is
stored in the database.

The outcome of the preprocessing stage is a lookup table.

M : S ×G→ {π1, π2, ...}

Query Stage

In the query stage, for a given query g ∈ G, in the first step, the corresponding centerline is
identified. This is done by first computing the points of intersection of the projectile on Do

and Di and then finding the the cells within which the points lie. In the second step, the
associated path is retrieved fromM.

Specifically, for the initial estimate received by the planning module, we queryM to
obtain a manipulator trajectory from shome to g1. For all the remaining estimates, we use
the tensor to check if a transition from gi to gj is possible. If its is, then the corresponding
trajectory is executed by the manipulator.

27



3. Shield CTMP

Algorithm 4 - Generate trajectory database
1: Inputs: Set of goals G, Planner P , Home configuration shome

2: function ComputeBaseTrajectories(G,P , shome)
3: for gi in G do
4: Ti← ComputeTargetPoses(li)
5: TrajBuffer = []
6: for t in Ti do
7: if P(shome, t) exists then
8: Add resulting plan to TrajBuffer.
9: else

10: Goto next target pose in Ti
11: end if
12: end for
13: Add the least-time trajectory in TrajBuffer toM.
14: end for

Algorithm 5 - Generate replanning database
1: Inputs: Set of goals G, Planner P , Trajectory DatabaseM containing initial plans
2: function ComputeReplanTrajectories(G,P , shome)
3: for ti inM do
4: for wpj in ti do
5: for gi in G do
6: if LI(wpj, lk) is valid then
7: Add resulting linearly interpolated trajectory toM
8: else
9: if P(wpj, lk) exists then

10: Add resulting trajectory toM

28



3. Shield CTMP

3.3.6 Theoretical Analysis

Lemma 1(Completeness): Given a start state s, and the configuration space of the
manipulator X , our algorithm is guaranteed to find a path, if one exists, from any
intermediate configuration to a goal g ∈ G.

Proof(Sketch): During the first stage of the preprocessing phase (Algorithm 4), we
compute and store trajectories to all feasible goal states. Once the robot starts executing
a particular trajectory, a perception update can require the robot to execute a different
trajectory at any instant. To support this, during the second preprocessing phase (Algorithm
5), we recompute linear interpolation-based trajectories to all feasible goal states. If the
linear interpolation failes, we attempt to reach that goal via a motion planner, hence ensuring
that all feasible goals are reached. Hence, our algorithm is CTMP-Complete.

3.4 Perception Module

Predicting the trajectory of the incoming projectile is crucial for a successful intercept. This
problem introduces three challenges:

1. A projectile moving through the air experiences drag force, and hence we need to
determine the drag parameters to accurately model the projectile motion for prediction.

2. To have a good coverage and detection accuracy, multiple sensors might be placed in
the world relative to the robot. These sensors would require accurate calibration to
determine the extrinsic rigid body transform between the detection frame and the
body frame of the robot.

3. The perception system should update the projectile estimate as it obtains more
information about the projectile during its flight to improve the accuracy of the
prediction.

We solve the first two challenges with detection-based calibration (3.4.2), and solve the
third challenge by performing a least-squares model fitting based on all observations (3.4.1).

3.4.1 Projectile Estimation

The detection of the projectile’s position is a fairly straightforward task, wherein the point
cloud corresponding to the projectile is filtered out and the centroid of the filtered cloud is

29



3. Shield CTMP

assumed to be its position.
To predict the motion of the projectile, we fit multiple position detections at various

time intervals to a projectile equation of motion. The motion of the incoming projectile
is assumed to be on the x − z plane (with z pointing vertically upwards). Movements
perpendicular to this plane which can occur due to wind effects or other external forces are
ignored. We utilize the air drag based projectile equation of motion to model the motion of
the projectile along each axis.

p(t) = pinit +
vinitTV

g

(
1− e−gt/TV

)
(3.2)

Equation 3.2 represents the model of the projectile’s motion along the x-axis, where, pinit,
vinit represent the x-component of the initial position and velocity of the projectile, TV , the
terminal velocity, and g, the gravitational acceleration. We assume the terminal velocity
of the projectile is known (which can be computed from the object’s mass). Given, that
we are able to accurately detect the position of the projectile, pinit can be identified as well,
leaving vinit to be the only unknown. From Equation 3.2 it is easy to see that given the
initial position detection (pinit) and a detection at a later time p(t), vinit can be computed
and hence the motion of the projectile. To reduce the impact of noise, an average over
multiple detections are taken to estimate vinit. A similar computation is done to predict the
z-component of the projectile’s motion.

3.4.2 Detection-based calibration

The goal of this module is to compute the transformation between the external sensors say i

and the body-frame FB of the robot denoted by T FB
Fi

. Each sensor provides us a projectile
estimate at time t, denoted by ρ̂p,i(t) in its own frame. ρ̂p,i(t), ρ̂p,s(t) are the 3-D position
vectors of the projectile as seen by external sensor i and on-board sensor s, respectively in
their homogeneous coordinates. We solve for an optimization function pair-wise for each
sensor i.

min
T

FB
Fi

th∑
t=0

‖T FB
Fi

ρ̂p,i(t)− ρ̂p,b(t)‖2 (3.3)

We assume the mass of the projectile and solve for the above optimization using

30



3. Shield CTMP

Simplicial Homology Global Optimization (SHGO) [7]. We used a zero-order optimization
as we found it to be numerically stable for the air-drag based equations of motion. The
global-optimization helps us search for the global minimum.

Figure 3.3: Snapshots from a video showing PR2 robot deflecting a white ball thrown at it
(sequenced top left to bottom right).

3.5 Experiments and Results

In order to test our framework, we performed several experiments, both in simulation and in
the real world (example of a real world run shown in Figure 3.3). In simulation, we mimiced
the perception module by randomly sampling projectiles from all directions around the
robot. This allowed us to simulate projectiles that might be hard to test in the real world
given our environmental constraints. In this section, we will first go over the experiments
carried out to analyze the performance of the perception module. Next, we will discuss the
experiments performed to test the system in simulation, and in the real world.

3.5.1 Perception Module

In this experiment, we conduct 60 throws on the real-robot and compute the accuracy of
the projectile estimate based on four methods 3.1. We use eucledian distance between the
location on the inner plane where the projectile hit and the predicted location on the inner

31



3. Shield CTMP

plane. The first method makes a prediction based on 5 detections of the projectile from an
external camera which is placed 8m away from the robot. We also measure the percentage of
throws in this the error was higher than 25cm. With the discretization of intercept locations
and the dimensions of the shield, a perception error of 25cm would cause interception to
fail. We observe, that with just one addition projectile detection from an onboard camera
decreases the prediction error. We see a significant decrease in potential failures as well.
Since the onboard camera is working at 30fps, waiting for an additional detection takes
33ms. Thus, there is a tradeoff between the accuracy and time delay between projectile
estimate updates. We used only the first additional detection from the oboard camera.

Table 3.1: Prediction accuracy as number of detections increase

Methods Prediction
Error (cm)

Prediction
Error >25 cm
(%)

Only external
camera (EC) 15.63 14.28

EC + 1 detection
from onboard
camera

9.62 0

EC + 2 detections
from onboard
camera

7.33 0

EC + 3 detection
from onboard
camera

6.37 0

3.5.2 Motion Planning Module

The PR2 robot is surrounded by 2 domes, the inner dome and the outer dome. The outer
dome has a length = 0.75 m, breadth = 0.75 m, and a height of 1.6 m. The inner dome has a
length = 0.4 m, breadth = 0.4 m, and a height of 1.1 m. In total, there are 15,072 tunnels
that connect a cell from the outer dome to a cell on the inner dome. The planner was able to
compute valid trajectories for 4,078 tunnels. These trajectories were generated by setting a
time-out of 0.5 seconds for the motion planner. For our experiments, we uses the ARA*
planner, with the starting sub-optimality factor of 100, and the final sub-optimality factor of

32



3. Shield CTMP

Table 3.2: Evaluating the planning module in simulation

Outer dome planes Our
approach

IK-based
approach

Front plane 575 533
Right plane 358 344

1. The planner was able to converge to a sub-optimality factor of 1 for most trajectories.
These trajectories were generated by inflating the default velocity and acceleration limits by
a factor of 3 in order to operate the robot as fast as possible within the physical constraints.

3.5.3 Evaluation in simulation

We evaluate the motion planning module first in simulation. We sample projectiles that
intersect the all planes surrounding the robot. The launch distance for each projectile was
uniformly sampled from a range of 8 meters to 12 meters. The time between the estimate
obtained for the first projectile and the second projectile was sampled from a uniform
distribution in the range of 0.25 to 0.55 seconds. The points on both the inner and the outer
domes were also randomly picked.

In order to evaluate our system, we sampled 1000 random projectiles for each plane
of the outer dome. The back, left and the top planes had very few valid initial trajectories
to begin with, and hence the number of projectiles that entered via those planes and were
saved was also negligible.

We compare the performance of our planning module with one baseline approach. This
baseline has access only to the linear-interpolation based trajectories for both the initial
trajectories (used when the first perception estimate arrives) as well as during replanning.
We use this baseline as this takes negligible time for preprocessing. Table 3.2 shows the
result of throwing 1000 random projectiles at the robot from the front and the right planes.
We see that our method does better than the baseline, mainly because of collision and joint
limit constraints that invalidate the linear-interpolation operation for certain plans.

3.5.4 Experiments on Real Robot

We tested the full system with integrated perception on the PR2 robot and an external
camera in a lab environment. We set up the range of attacks to be 8–10m. That roughly

33



3. Shield CTMP

translates to a flight time of one second. Out of which, on average, 200ms is used by the
perception system, 700ms is the trajectory execution time for the robot and 50ms is taken
up by other system overheads. That leaves only 50ms for the CTMP planner on average.
Our CTMP planner successfully generates a plan within this time budget.

We performed 50 throws with replanning enabled, and 50 throws with replanning
disabled. We obtained a success rate of 70% when replanning was enabled, and 60% with
replanning disabled. Out of the 35 successful throws in which replanning was enabled,
replanning was invoked 13 times. The reason for this is that the execution times for certain
trajectories is lower than the time taken for the perception module to provide a new estimate.
Out of the 15 cases in which the replanning module failed, replanning kicked in for 6 cases.
The major reason these cases still fail is either that the perception error even after the second
update was high, or that the execution of the full trajectory took more time than that of the
time of flight of the ball.

3.6 Conclusion

In this chapter, we have presented a planning and perception framework for intercepting
incoming projectiles. We developed a Constant-Time Motion Planning based algorithm that
incorporates updated perception estimates for performing replanning. In addition, we also
demonstrated the use of multiple RGB-D cameras to obtain continuous state estimate of the
incoming projectile. We deployed our framework in simulation as well as in the real world,
and discussed our results. In the future, we would like to extend this work to a mobile
manipulator, where the robot can choose to move its base, or to use its arm to intercept
projectiles. In addition, it would be useful to develop more reactive Constant-Time Motion
Planning algorithms that can be used for such dynamic tasks.

34



Chapter 4

Conclusion and Future Work

In this thesis, we investigated two ways in which preprocessing-based methods can be used
to successfully tackle challenging robotic manipulation tasks. The preprocessing step has
various advantages, as well as several disadvantages, which must be kept in mind while
choosing the algorithm for a given task.

In the analysis of the proposed algorithms and the experimental evaluations, we saw
that preprocessing-based methods can be extremely beneficial when robotic manipulators
are performing repetitive tasks in known environments. As discussed in the first part of this
thesis, for solving constrained manipulation tasks, such as opening a closed container, a
useful set of macro-actions can be learnt that can greatly speed up the planning problem.
These macro-actions can be useful for solving not just a selected few planning problems, but
a distribution of planning problems. Similarly, in the second part of the work, we saw that a
set of trajectories can be stored in the trajectory database, which can be used to intercept a
range of incoming projectiles.

Preprocessing-based methods provide a way to store actions and trajectories that might
be too expensive to compute online. This advantage of the preprocessing-based methods
can be clearly seen in the projectile interception task. If the robot does not have access to
preprocessed-trajectories, and it needs to move its arm in a direction in which any one of
its joint exceeds the joint limits while moving in the direction of the goal, the robot will
eventually fail to complete the task. The main cause of this failure is because planning in
the configuration space of the robot can be computationally expensive, and could potentially
not finish within the allocated time budget. Hence, preprocessing-based methods provide

35



4. Conclusion and Future Work

access to high-quality trajectories to the robot, which can help the robot complete the task
within the given constraints.

However, there are also some important disadvantages when it comes to employing
such algorithmic techniques for motion planning. In tasks that are not very constrained,
the overhead of preprocessing can be a wasted effort. For example, if the robot is tasked
with performing a simple task in which the constraints can be easily met without invoking
an expensive call to the motion planner, it might be redundant to spend resources on
preprocessing.

This body of work opens up interesting directions for future research. One common
assumption that was made in both parts of this thesis is that the robot is operating in a
static environment. When we use this assumption, the data that was gathered during the
preprocessing phase can be used as-is. When we relax this assumption, very interesting
algorithmic challenges emerge as to what is the right kind of information that is to be learnt
in order to help the robot successfully complete its task.

Another assumption that was made in both algorithms presented in this thesis is that
the robot arm is set on a stationary base. This assumption should also be relaxed, as many
robotic platforms have a moving base, which can be used to navigate and potentially solve
the task more efficiently. Adding a navigation component would make the planning problem
exponentially more complicated, as it increases the degrees of freedom of the robot, as well
as adds additional kinematic and dynamic constraints that the robot has to adhere to. When
planning in such high-dimensional spaces, and with additional constraints in place, the
preprocessing step would have to be significantly optimized in order to be able to tractably
gather the data that would be required online.

36



Bibliography

[1] Aditya Agarwal, Yupeng Han, and Maxim Likhachev. Perch 2.0: Fast and accurate gpu-
based perception via search for object pose estimation. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 10633–10640. IEEE,
2020. 3.1

[2] Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer. Macro-
ff: Improving ai planning with automatically learned macro-operators. Journal of
Artificial Intelligence Research, 24:581–621, 2005. 2.1, 2.5

[3] Dieter Büchler, Simon Guist, Roberto Calandra, Vincent Berenz, Bernhard Schölkopf,
and Jan Peters. Learning to play table tennis from scratch using muscular robots.
arXiv preprint arXiv:2006.05935, 2020. 3.1

[4] Berthold Bäuml, Thomas Wimböck, and Gerd Hirzinger. Kinematically optimal
catching a flying ball with a hand-arm-system. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2592–2599, 2010. doi: 10.1109/
IROS.2010.5651175. 3.1

[5] Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget
best arm identification bandit problem. In Conference on Learning Theory, pages
590–604, 2016. 2.4.1

[6] Andrew I Coles and Amanda J Smith. Marvin: A heuristic search planner with online
macro-action learning. Journal of Artificial Intelligence Research, 28:119–156, 2007.
2.1, 2.2.1, 2.5

[7] Stefan C Endres, Carl Sandrock, and Walter W Focke. A simplicial homology
algorithm for lipschitz optimisation. Journal of Global Optimization, 72(2):181–217,
2018. 3.4.2

[8] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed
bandit and markov decision processes. In International Conference on Computational
Learning Theory, pages 255–270. Springer, 2002. 2.4, 2.4.1, 2.5.1

[9] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems. Journal
of machine learning research, 7(Jun):1079–1105, 2006. 2.4.1

37



Bibliography

[10] Roland Geraerts and Mark H Overmars. A comparative study of probabilistic roadmap
planners. In Algorithmic foundations of robotics V, pages 43–57. Springer, 2004. 3.1

[11] Glenn A Iba. A heuristic approach to the discovery of macro-operators. Machine
Learning, 3(4):285–317, 1989. 2.1

[12] Fahad Islam, Oren Salzman, Aditya Agarwal, and Maxim Likhachev. Provably constant-
time planning and replanning for real-time grasping objects off a conveyor belt. The In-
ternational Journal of Robotics Research, 0(0):02783649211027194, 0. doi: 10.1177/
02783649211027194. URL https://doi.org/10.1177/02783649211027194. 1,
3.3, 3.3.1

[13] Fahad Islam, Oren Salzman, Aditya Agarwal, and Maxim Likhachev. Provably
constant-time planning and replanning for real-time grasping objects off a conveyor
belt. The International Journal of Robotics Research, 40(12-14):1370–1384, 2021.
3.1

[14] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-
arm identification in multi-armed bandit models. The Journal of Machine Learning
Research, 17(1):1–42, 2016. 2.4.1

[15] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. IEEE
transactions on Robotics and Automation, 12(4):566–580, 1996. 3.1

[16] Gayane Kazhoyan, Simon Stelter, Franklin Kenghagho Kenfack, Sebastian Koralewski,
and Michael Beetz. The robot household marathon experiment. In IEEE International
Conference on Robotics and Automation (ICRA), 2021. URL https://arxiv.org/
abs/2011.09792. Accepted for publication. 1

[17] Richard E Korf. Macro-operators: A weak method for learning. Artificial intelligence,
26(1):35–77, 1985. 2.1

[18] Ryan A Kromer, Antonio Abellán, D Jean Hutchinson, Matt Lato, Tom Edwards, and
Michel Jaboyedoff. A 4d filtering and calibration technique for small-scale point cloud
change detection with a terrestrial laser scanner. Remote Sensing, 7(10):13029–13052,
2015. 3.1

[19] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers
for autonomous vehicles. The International Journal of Robotics Research, 28(8):
933–945, 2009. 3.3.4

[20] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. Ara*: Anytime a*
with provable bounds on sub-optimality. Advances in neural information processing
systems, 16, 2003. 3.3.4

[21] Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the
multi-armed bandit problem. Journal of Machine Learning Research, 5(Jun):623–648,

38

https://doi.org/10.1177/02783649211027194
https://arxiv.org/abs/2011.09792
https://arxiv.org/abs/2011.09792


Bibliography

2004. 2.4.1
[22] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to select

and generalize striking movements in robot table tennis. The International Journal of
Robotics Research, 32(3):263–279, 2013. 3.1

[23] Muhammad Abdul Hakim Newton, John Levine, Maria Fox, and Derek Long. Learning
macro-actions for arbitrary planners and domains. In ICAPS, volume 2007, pages
256–263, 2007. 2.1, 2.2.1

[24] Korbinian Nottensteiner, Arne Sachtler, and Alin Albu-Schäffer. Towards autonomous
robotic assembly: Using combined visual and tactile sensing for adaptive task execution.
Journal of Intelligent & Robotic Systems, 101(3):1–22, 2021. 1

[25] Evangelos Papadopoulos, Farhad Aghili, Ou Ma, and Roberto Lampariello. Robotic
manipulation and capture in space: A survey. Frontiers in Robotics and AI, 8,
2021. ISSN 2296-9144. doi: 10.3389/frobt.2021.686723. URL https://www.
frontiersin.org/article/10.3389/frobt.2021.686723. 1

[26] Kirstin H. Petersen, Nils Napp, Robert Stuart-Smith, Daniela Rus, and Mirko Kovac.
A review of collective robotic construction. Science Robotics, 4(28):eaau8479, 2019.
doi: 10.1126/scirobotics.aau8479. URL https://www.science.org/doi/abs/
10.1126/scirobotics.aau8479. 1

[27] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena.
From perception to decision: A data-driven approach to end-to-end motion planning
for autonomous ground robots. In 2017 ieee international conference on robotics and
automation (icra), pages 1527–1533. IEEE, 2017. 1

[28] Mike Phillips, Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. E-graphs:
Bootstrapping planning with experience graphs. In International Symposium on
Combinatorial Search, volume 3, 2012. 3.1

[29] Mike Phillips, Victor Hwang, Sachin Chitta, and Maxim Likhachev. Learning to
plan for constrained manipulation from demonstrations. Autonomous Robots, 40(1):
109–124, 2016. 2.5

[30] Mihail Pivtoraiko and Alonzo Kelly. Efficient constrained path planning via search
in state lattices. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space, pages 1–7, 2005. 2.2.1

[31] Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1
(3-4):193–204, 1970. 2.3.2, 3.3.4

[32] Jan Quenzel, Matthias Nieuwenhuisen, David Droeschel, Marius Beul, Sebastian
Houben, and Sven Behnke. Autonomous mav-based indoor chimney inspection with
3d laser localization and textured surface reconstruction. Journal of Intelligent &
Robotic Systems, 93(1):317–335, 2019. 1

39

https://www.frontiersin.org/article/10.3389/frobt.2021.686723
https://www.frontiersin.org/article/10.3389/frobt.2021.686723
https://www.science.org/doi/abs/10.1126/scirobotics.aau8479
https://www.science.org/doi/abs/10.1126/scirobotics.aau8479

	1 Introduction
	2 Learning Macro Actions
	2.1 Related Work
	2.2 Preliminaries
	2.2.1 Motion Primitives and Macro-actions

	2.3 Algorithmic Framework
	2.3.1 Problem Formulation
	2.3.2 Compute a Set of Macro-Actions

	2.4 Find A Near-Optimal Set of Macro-actions
	2.4.1 On Practicality of Near Optimal Arm Identification

	2.5 Experimental Results
	2.5.1 Performance of (, )-optimal algorithms

	2.6 Conclusion

	3 Shield CTMP
	3.1 Related Work
	3.2 Problem Formulation
	3.3 CTMP-based Motion Planning
	3.3.1 Constant-Time Motion Planning
	3.3.2 Straw man Approach
	3.3.3 Proposed Approach
	3.3.4 Proposed Approach Building Blocks
	3.3.5 Algorithm Details
	3.3.6 Theoretical Analysis

	3.4 Perception Module
	3.4.1 Projectile Estimation
	3.4.2 Detection-based calibration

	3.5 Experiments and Results
	3.5.1 Perception Module
	3.5.2 Motion Planning Module
	3.5.3 Evaluation in simulation
	3.5.4 Experiments on Real Robot

	3.6 Conclusion

	4 Conclusion and Future Work
	Bibliography

