
Driving by Dreaming: Offline

Model-Based Reinforcement Learning for

Autonomous Vehicles

Swapnil Pande

CMU-RI-TR-22-49

August 5, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Jeff Schneider, chair

Deva Ramanan
David Held
Ian Char

Submitted in partial fulfillment of the requirements
for the degree of Masters in Robotics.

Copyright © 2022 Swapnil Pande. All rights reserved.

To my family, friends, and mentors who have served as role models and supported
me through this journey.

iv

Abstract

While there has been significant progress in deploying autonomous vehicles
(AVs) in urban driving settings, there remains a long-tail of challenging
motion planning scenarios that must be addressed before truly driverless
operation is possible. The current paradigm for motion planner design is
engineering intensive, making it challenging to scale to address the long-
tail. In this work, we explore the use of offline model-based reinforcement
learning as an alternative approach for designing AV motion planners.
We propose an offline RL algorithm which make use of the structure in
the AV domain to create dynamics models and policies that generalize
successfully. Additionally, we propose an extension to this algorithm to a
multi-agent training environment. We demonstrate that these algorithms
can match state-of-the-art performance on simpler driving benchmarks
and explore future works for scaling to the more challenging benchmarks.

v

vi

Acknowledgments

There are countless people who have inspired and supported me throughout
this journey. I would like to take this opportunity to thank a select few.

First, I’d like to thank my advisor, Professor Jeff Schneider, for his
incredible support over the past two years. His guidance and insight on
this project has been invaluable in helping me find interesting research
avenues and making this project successful. I have grown significantly
as a researcher, which he made possible through his thought-provoking
discussions, flexibility in allowing me to explore my interests, and help in
overcoming roadblocks.

Further, I would like thank my other committee members, Professor
Deva Ramanan, Professor David Held, and Ian Char. Their feedback
throughout the process of assembling this thesis has helped strengthen
this work and has provided me different perspectives on how this work
connects to the broader work in this domain, which has deepened my
understanding of the field.

This research was not done in isolation, but rather was supported by
the many members of the Auton lab. I’d like to particularly express my
gratitude to Brian Yang, Yeeho Song, Adam Villaflor, Zhe Huang, Viraj
Mehta, Ian Char, and Conor Igoe, who have all engaged me in stimulating
conversation and helped create an enjoyable work environment.

My family and friends have provided me unconditional support through
the thick and thin of the past two years. I would like to particularly
thank Benjamin Freed, who has been an incredible mentor in helping
me discover my research interests and grappling with the challenges
of academia. Along with Ben, Mateo Guaman Castro, Alex Stephens,
Raunaq Bhirangi, Govind Pande, Nutan Pande, and Apurva Pande have
been immeasurably supportive, helping pick me up through my hardships
and celebrate my victories with me

Finally, I would like to thank Dr. Predrag Punosevac, who maintained the
Auton compute cluster throughout this work. All of the behind-the-scenes
work to keep the cluster operational made this research possible, and I
am very grateful for it.

To all of these people and the many more who have been by my side,
thank you so much for your unwavering support. You have made this

vii

journey enjoyable and have challenged me to grow to my best self.

viii

Funding

This work was supported by the CMU Argo AI Center for Autonomous
Vehicle Research.

ix

x

Contents

1 Introduction 1
1.1 Current Paradigm in Autonomous Vehicle Industry 1

1.1.1 Machine Learning for Motion Planning 2

2 Background 5
2.1 Reinforcement Learning . 5

2.1.1 Preliminaries . 5
2.1.2 Imitation Learning . 5
2.1.3 Online and Offline Reinforcement Learning 6
2.1.4 Model-Free and Model-Based Reinforcement Learning 7

2.2 Related Works . 7
2.2.1 Learning for Self-Driving Cars 7
2.2.2 Offline Reinforcement Learning 8
2.2.3 Multi-Agent Reinforcement Learning 9

3 Problem Formulation 11
3.1 CARLA Simulator . 11

3.1.1 Introduction . 11
3.1.2 Benchmarks . 11

3.2 MDP Formulation . 13
3.2.1 Observation Space . 13
3.2.2 Action Space . 16
3.2.3 Reward and Termination Function 17

4 Offline Model-Based Reinforcement Learning 19
4.1 Why is this hard . 19
4.2 Dynamics Learning . 22

4.2.1 Ego-Vehicle Dynamics . 24
4.2.2 Other Actor Dynamics . 24
4.2.3 Training Procedure . 25

4.3 Policy Learning . 26
4.3.1 Algorithm . 26
4.3.2 Training Details . 27
4.3.3 Results . 27

xi

4.4 Self-Play . 30
4.4.1 Algorithm . 31
4.4.2 Toy Problem . 33
4.4.3 NoCrash . 33

5 Conclusions 35

A Hyperparmeters 39

B Ablation Studies 41

Bibliography 43

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xii

List of Figures

1.1 A typical Motion Planner iteration cycle for autonomous vehicle com-
panies. Failures from the current version of the planner go through
a triage process and get addressed as patches. The triage and patch
development process and very engineering intensive and are challenging
to scale . 2

2.1 A comparison of the training procedure between online and offline
reinforcement learning. In the online setting, the most recent policy
is used to collect experience from the environment. The experience is
used to update the policy, which is then re-deployed to collect more
data. In the offline setting, a behavioral policy collects data from the
environment once and that data is directly used to optimize a policy
without collecting new data. 6

3.1 Visualization of η, the mean angular heading error between the AV to
the next 5 waypoints . 14

4.1 High-level overview of training procedure in Offline MBRL. We first
learn a dynamics model of the environment and then use that as a
simulator to optimize a policy. 20

4.2 Illustrative Toy MDP to demonstrate challenges with Offline RL.
(a) depicts the dataset use to train the policy in the toy MDP. (b)
represents a trajectory planned by the policy in the dynamics model.
In (c), we see that trajectory actually leads to a large negative reward,
which dy namics model was unaware of due to the lack of data 21

4.3 Block Diagram for Ego-Vehicle Closed Loop Control. The policy π
sends controls to the PID controller, which actuates the vehicle. The
observation encodes the new the state of the vehicle, which is estimated
by the state estimator. 23

4.4 Block Diagram with a learned dynamics model. We see that the MLP
models the dynamics of the PID controller, vehicle, and state estimator. 23

xiii

4.5 A diagram of the architecture of the full dynamics model. The learned
vehicle dynamics autoregressively predicts the motion of the ego-vehicle
while the motion of the other vehicles is replayed from the dataset.
These features combined are used to compute the policy observation. 25

4.6 Policy optimization loop for offline MBRL training. The dynamics
model is used as a simulator that a model-free policy optimizer can
use to train the policy . 26

4.7 Example of a scenario requiring the vehicle to negotiate right-of-way
with another vehicle. The ego-vehicle (red car) needs to merge into
the lane with moving traffic (green cars). With the World on Rails
assumption, the green cars do not slow down as the ego-vehicle enters
the lane, resulting in a collision. 30

4.8 A digram of the training loop we use to perform self-play. Instead of
predicting the behavior of just the ego-agent, we predict the behavior
for all actors in the environment using the dynamics. The policy
optimizer can make use of all of the data from these models to train
the policy. 32

xiv

List of Tables

4.1 Quantative Performance Results on the NoCrash benchmarks for Self-
Play. Each value represents the percentage of successful episodes out of
25 routes, averaged over 3 seeds and 3 repeats of each route. Autopilot
refers to the data generation heuristic policy without noise injected
into the actions. Our algorithm achieves a near perfect score on the
benchmark, matching the performance of the state-of-the-art online
RL algorithm MP-PPO. 29

4.2 Leaderboard Evaluation scores on the validation routes. “DS” stands
for Driving Score, the aggregate score computed by the Leaderboard
benchmark. “RC” stands for perecentage of route completion. “Collis.”
stands for collisions (Unit: # / kilometer). “Viol.” combines red light,
stop sign, and off-road violations (Unit: # / kilometer). “Dev.” stands
for route deviations, which are significant deviations from the global
plan (Unit: # / kilometer). “Timeouts” combines the number of
times the episode terminates due to the agent being static (Unit: # /
kilometer). 30

4.3 Quantative Performance Results on the NoCrash benchmarks for Self-
Play. Each value represents the percentage of successful episodes out of
25 routes, averaged over 3 seeds and 3 repeats of each route. Autopilot
refers to the data generation heuristic policy without noise injected
into the actions. Self-Play achieves a perfect score on Empty and
Regular, but performs worse than state-of-the-art on Dense. 34

A.1 Hyperparameters for Dynamics Ensemble Training 39
A.2 Hyperparameters for PPO with World on Rails Assumption 40
A.3 Hyperparameters for MP-SAC . 40

B.1 Performance comparison on the NoCrash benchmark for various ab-
lation studies. Numbers are percentages of successful episodes for 3
seeds for 3 runs on the benchmark. α is the weight of the uncertainty
term in the reward function. Single Model indicates a policy trained
using a single dynamics model, instead of an ensemble. 42

xv

xvi

Chapter 1

Introduction

1.1 Current Paradigm in Autonomous Vehicle

Industry

Over the past 10 years, the goal of autonomous vehicles (AVs) for urban driving

has evolved from a purely academic vision to a large focus of the auto industry.

With the large advances in computer vision driven by the adoption of convolutional

neural networks, there was strong sentiment within the industry that fully driverless

operation was technologically within reach and simply required scale to achieve.

However, after many years of intensive engineering effort, the industry has realized

that there still exist many unsolved problems that need to be addressed before we

can truly scale to full driverless operation.

Particularly, a problem whose magnitude was under-appreciated in the industry

is that of motion planning. Even with access to ground-truth state information from

a “perfect” vision stack, there is a very long-tail of challenging scenarios in day-to-

day urban driving that require a multitude of strategies and challenging contextual

reasoning to solve. Often times, a patch to a motion planner to address a particular

challenging scenario often directly reduces performance on another long-tail scenario.

Thus, it remains unclear what the best strategy is for addressing this long-tail of

scenarios.

Currently, most autonomous vehicle companies in industry follow a software

1

1. Introduction

Figure 1.1: A typical Motion Planner iteration cycle for autonomous vehicle companies.
Failures from the current version of the planner go through a triage process and get
addressed as patches. The triage and patch development process and very engineering
intensive and are challenging to scale

development workflow similar to the one depicted in Figure 1.1 . A triage team will

review driving logs and identify which portion of the stack likely caused a given failure.

These failures are passed onto the relevant team, who develop new features or patches

to address the issues. The patches are then run through an extensive series of unit

tests and regression tests to evaluate performance on key driving metrics, before they

get integrated with the production AV stack. Independently, teams also work torwards

large feature upgrades that hope to handle these issues in a more holistic/principled

way. However, this system of small incremental changes leads to an overly complex

stack with suboptimal choices that become challenging to reverse. Again, in the case

of motion planning, addressing issues in this manner is very engineering intensive due

to the sheer number of challenging scenarios encountered during driving.

1.1.1 Machine Learning for Motion Planning

Drawing from the huge successes of deep learning for computer vision on autonomous

vehicles, there has been a significant growth in interest in applying deep learning

techniques to the motion planning domain. The direct analog to the end-to-end

supervised vision approaches is imitation learning, in which we train a policy to copy

the actions in expert demonstrations. In the case of self-driving, performing imitation

learning would require a very large dataset of human driving demonstrations, which

is expensive to collect. Further, the performance of a policy trained via imitation

2

1. Introduction

learning is upper bounded by the performance of the data-collection agents, which

ultimately does not address the goal of creating AVs that are safer than human

drivers. Another option is to use deep reinforcement learning (RL) algorithms, which

optimize a policy to generate actions that maximize a pre-defined reward function.

In the online formulation of reinforcement learning, which has seen strong success

in literature, the policy is trained by deploying it environment to collect experience,

using that experience to update the policy, and re-deploying the policy in a loop. In

many robotics problems, including driving, collecting data online is usually intractable

due to safety concerns of deploying an untrained policy and because data collection

becomes inefficient with frequent disengagements due to policy failures. Therefore,

another commonly studied approach in robotics is to use high-fidelity simulators for

training, allowing for faster and safer data collection. Depending on the complexity of

the environment, designing and calibrating a high-fidelity simulator is an engineering

intensive task that quickly becomes intractable. In driving specifically, while we can

build strong models of vehicle dynamics, it is difficult to program a wide distribution

of behaviors for the other vehicles, thereby making it expensive to generate challenging

long-tail scenarios.

In this work, we focus applying Offline Model-Based Reinforcement Learning

(Offline MBRL) for learning a motion planning policy as a potential alternative to

the current motion planning paradigm. In the offline setting, we aim to learn a policy

from a pre-collected dataset of driving experience, instead of collecting data with

the policy online. The policy is only deployed in the environment during test time.

This is particularly attractive in the AV industry as all companies already collect

large datasets of driving experience that can be used for training. In model-based

RL, we additionally learn a dynamics model to predict how the environment evolves

given the policy actions, which can be used for policy optimization. Learning a

dynamics model is attractive as the policy can generate trajectories not present in

the dataset and receive a reward signal about them. Again, this is valuable for AV

motion planning as it allows the policy to learn from challenging scenarios that are

not explicitly demonstrated in the dataset. However, offline model-based algorithms

are accompanied with many issues as well. For example, if a policy strays too far

from the trajectories presented in the dataset, improper model generalization can

cause the policy to learn behaviors that could be catastrophic when deployed at test

3

1. Introduction

time.

With offline RL, we have the potential to re-imagine the motion planning iteration

cycle in an AV stack. However, there are many issues that need to be addressed

before it can be used as truly valuable tool in the AV industry. In this work, we

present a series of algorithms that apply offline MBRL for learning motion planning

policies for autonomous vehicles. We explore the limitations of current offline MBRL

algorithms and improvements that significantly improve their performance in AV

motion planning. We propose an offline MBRL algorithm that makes use of these

improvements and an extension of this algorithm to a multi-agent training setup. We

study the advantages and limitations of these algorithms, and propose a vision for

how this could be integrated into a real AV stack.

4

Chapter 2

Background

2.1 Reinforcement Learning

2.1.1 Preliminaries

We consider the task of motion planning for AVs as a Partially-Observable Markov

Decision process (POMDP), defined as the tuple (S,O,A, r, P, ρ0, γ), where S is the

state space, O is the observation space, r : S×A is the reward function, P : S×A×S

is the state transition probability, ρ0 is the initial state distribution, and γ is the

discount factor. Our objective is to find a policy π∗(at|ot) that maximizes the expected

discounted returns.

π∗ = argmax
π

E

[
∞∑
t=0

γtR(st, at)

]
(2.1)

2.1.2 Imitation Learning

Imitation learning (IL) attempts to find an optimal policy for a given Markov Decision

Process (MDP) simply by replicating the behavior of an expert. One of the simplest

forms of imitation learning is behavior cloning, in which the policy is trained by

empirical risk minimization on a dataset of actions generated by the demonstrator. A

key limitation of IL algorithms is that their performance is bounded by the performance

5

2. Background

Figure 2.1: A comparison of the training procedure between online and offline
reinforcement learning. In the online setting, the most recent policy is used to collect
experience from the environment. The experience is used to update the policy, which
is then re-deployed to collect more data. In the offline setting, a behavioral policy
collects data from the environment once and that data is directly used to optimize a
policy without collecting new data.

of the expert demonstrations. This is particularly limiting in driving because we do

not have access to an oracle policy. While humans can provide strong demonstrations,

the goal in the autonomous vehicle industry is to ultimately outperform human

drivers. Even if we assume access to demonstrations from an oracle policy, [15] shows

that the error bound for behavior cloning between the oracle and the learned policy

grows quadratically with the MDP horizon due to the issue of distribution shift from

the static training dataset. These upper bounds on performance ultimately limit the

effectiveness of imitation learning for the AV problem.

2.1.3 Online and Offline Reinforcement Learning

A comparison of the online and offline reinforcement learning settings can be found

in Figure 2.1. In the online reinforcement learning setting, the policy being optimized

can interact with the environment for which is it being trained. Most online RL

algorithms employ a training loop that involves collecting experience by deploying

the policy in the environment, performing weight updates on the policy given the

experience, and repeating the cycle to collect new experience. In the Offline RL

setting, on the other hand, the policy cannot be deployed in the environment to

collect data during training time. Instead, Offline RL assumes access to a dataset

D = {si, oi, ai, ri, si+1}Ni=1, generated by a set of data generation policies πD that we

6

2. Background

do not have access to.

2.1.4 Model-Free and Model-Based Reinforcement Learning

Another distinguishing feature in RL algorithms is whether they are model-free or

model-based. In model-based RL, we assume access to, or learn, a world transition

model that can be used directly for online planning or for policy optimization.

In model-free RL, the algorithm does not have access to a transition model and

instead directly optimizes policies to maximize the reward function. Model-based

RL algorithms tend to be quite sample efficient, while model-free algorithms tend to

demonstrate strong asymptotic performance.

2.2 Related Works

2.2.1 Learning for Self-Driving Cars

The majority of the literature in motion planning for autonomous vehicles focuses

on imitating expert demonstrations [3, 4, 5]. In [3] and [5], the demonstrations

are generated by hand-crafted autopilot policies. These works focus heavily on the

representation learning problem of mapping raw sensor data to control actions. While

these methods have shown success, these methods are difficult to scale as they require

expert demonstrations in a large set of challenging scenarios. We instead choose

to focus on learning policies without the need for expert demonstrations instead of

addressing the representation learning problem.

Recently with the successes of deep reinforcement learning (DRL) for a wide vari-

ety of planning and control tasks, DRL, reinforcement learning methods have begun

to surpass the performance of imitation agents in standard self-driving benchmarks.

Particularly, [1, 9] demonstrate strong performance on the standard driving bench-

marks, using policies trained online with Proximal Policy Optimization (PPO) [19]

and Soft Actor Critic (SAC). These works consider a hand-crafted low-dimensional

state space that contains the necessary features for learning effective driving behav-

iors, and also demonstrate success learning directly from semantically segmented

images. Formulating the problem as a sequential decision making process is better

7

2. Background

suited to self-driving compared to treating each time-step as independent as imitation

learning does. We adopt a slightly modified version of the low-dimensional state-space

presented in this work and apply it to learning in the offline setting.

We make use of the CARLA simulator [7] to construct our RL environment. The

simulator is a photo-realistic simulator with many tools designed for autonomous

vehicle research, including pre-defined sensors, heuristic autopilot policies, and various

urban driving maps. Additionally, we make use of the pre-defined benchmarks defined

for the CARLA simulator to evaluate our policies.

2.2.2 Offline Reinforcement Learning

There has been growing interest in developing and improving reinforcement learning

algorithms for the offline setting. One group of methods for Offline RL focus on

improving the stability of off-policy Q-learning by reducing the overestimation of

the Q-function in regions outside the support of the dataset [13, 14]. While these

methods have proven to be successful, we focus on model-based offline RL because of

its potential to “dream” of rare scenarios not present in the original dataset, such as

near collisions with other vehicles and unpredictable pedestrians.

Another class of methods focus on performing offline RL in a model-based setting

with a learning procedure similar to the one presented in [11]. At a high level, these

methods first optimize a model f(st, at) to predict the transition dynamics of the

environment. They then train a policy by performing autoregressive rollouts of the

dynamics model with actions sampled from the policy being optimized. However,

similar to the Q-learning algorithms, the model often poorly extrapolates in regions

of the state space outside of the data distribution. Therefore, recent works such

as [12, 22] present uncertainty-aware dynamics models and introduce a penalty in

the reward function or termination function conditioned on the state estimation

uncertainty during the policy optimization. We focus on applying an algorithm

similar to those presented in [12, 22], in which the policy is penalized proportionally

to the magnitude of the model’s uncertainty in the given state. However, we improve

upon their dynamics model structure, by building a model that encodes inductive

biases about the structure of the AV motion planning problem.

8

2. Background

2.2.3 Multi-Agent Reinforcement Learning

The area of multi-agent RL has seen many big successes, such as AlphaStar [21] and

OpenAI Five [18]. Both of these works train agents in a self-play fashion, in which

they play against themselves as adversaries. AlphaStar achieved grandmaster level

performance in Starcraft and OpenAI Five achieved world champion level performance

in Dota 2, both learning strategies for these games that were novel to their human

opponents. These works demonstrate the potential of multi-agent RL to scale to large

problems with massive datasets. However, these environments differ drastically from

the driving problem as they are fully competitive zero-sum games. Other works focus

on fully cooperative environments, such as in the game Hanabi as proposed in [2].

Motion Planning for AV is neither fully competitive, nor fully cooperative, making it

a challenging problem for which to build a multi-agent training algorithm.

9

2. Background

10

Chapter 3

Problem Formulation

3.1 CARLA Simulator

3.1.1 Introduction

We make extensive use of the CARLA Simulator [7] to train and evaluate our

algorithms. CARLA is a photo-realistic, open-source urban, driving simulator built

with Unreal Engine for the purpose of AV research. The simulator defines many

features such as standard AV sensors, multiples “towns” with diverse urban features

and road layouts, and heuristic autopilot policies for non-playable vehicles and

pedestrians. Due to the ability to access ground-truth state of the simulator, CARLA

facilitates research on individual components, such as motion planning, without

requiring the development of the entire stack to process raw sensor data. We build

all of our work on CARLA 9.10 and run the simulator at 10 Hz.

3.1.2 Benchmarks

The CARLA community has also defined a set of benchmarks built on top of CARLA

to evaluate the performance of motion planning algorithms.

11

3. Problem Formulation

NoCrash

The NoCrash Benchmark [6] defines a set of 25 training routes in Town01 and 25

testing routes in Town02. The three levels of the benchmark, Empty, Regular, and

Dense, vary in the number of other vehicles spawned in the town. An episode is

considered a success if the agent successfully completes the route without colliding

with any vehicle or static obstacle. The benchmark does not explicitly penalize the

agent for not obeying traffic lights or exiting the lane, though not obeying these

makes a high score on the Regular and Dense levels challenging to achieve.

Leaderboard

The Leaderboard benchmark1 represents a significant increase in difficulty over the

NoCrash benchmark. Similar to NoCrash, Leaderboard also defines a set of routes

to follow, but includes routes on Towns 02-06 as well. The routes are significantly

longer than those in NoCrash and spawn a higher density of vehicles and pedestrians.

More importantly, Leaderboard introduces ten common pre-crash scenarios defined

by NHSTA2 that spawned as the vehicle reaches checkpoints along the route. Some

illustrative classes of scenarios are listed below and the complete list of scenarios can

be found on the Leaderboard challenge website3.

• Control loss due to slippery conditions

• Lane changes around vehicles or static objects

• Merging onto highways

• Negotiating intersections with actors not obeying traffic rules

In addition to defining more challenging scenarios, the benchmark also restricts

the type of data the policy has access to for planning. They define a limited set of

sensors and pseudo-sensors that can be mounted on the AV. Futhermore, they only

provide sparse guidance about the route to follow in the form of high-level navigation

commands such as Lane Change Left, Lane Follow, or Merge Left. As we detail

fully in Section 3.2.1, we relax these requirements to allow us to focus more directly

1https://leaderboard.carla.org/
2https://nhtsa.gov
3https://leaderboard.carla.org/scenarios/

12

https://leaderboard.carla.org/
https://nhtsa.gov
https://leaderboard.carla.org/scenarios/

3. Problem Formulation

on the motion planning problem, without having to jointly build approaches for

perception and global planning.

To better characterize the performance of the ego-vehicle, the Leaderboard bench-

mark scores performance with a driving score, which is computed as a linear com-

bination of key performance metrics such as route completion, number of collisions,

and number of other driving infractions. The full driving score formulation can

be found on the Leaderboard website 4. The benchmark defines 4 sets of routes:

devtest, training, evaluation, and testing, whose details can be found at [9].

The devtest, training, and evaluation routes are made publicly available, while

the testing routes are held out for evaluation in the Leaderboard challenge. As we

relax the requirements of the benchmark, we do not evaluate on the testing routes.

3.2 MDP Formulation

Below, we present our formulation of the MDP for AV motion planning. Our choices

for observation space, action space, and reward function are heavily inspired by [1].

3.2.1 Observation Space

We consider two observation spaces for this problem, both of which consist of four main

classes of features: ego-vehicle state, other dynamic actor state, global planner state,

and traffic control state. As mentioned previously, we choose to focus independently on

the motion planning problem and therefore, assume ground-truth access to simulator

state. However, we do only assume access to state information that would realistically

be computed in a typical AV stack in the perception, motion forecasting, state

estimation, and mapping modules. Thus, we believe that, despite using a simplified

state representation, a policy with a similar state representation could be realistically

be trained and deployed in an AV stack.

Ego-Vehicle State

The observation about the ego-vehicle state contains the following information:

4https://leaderboard.carla.org/#evaluation-and-metrics

13

https://leaderboard.carla.org/##evaluation-and-metrics

3. Problem Formulation

Figure 3.1: Visualization of η, the mean angular heading error between the AV to
the next 5 waypoints

• vt ∈ [0, 1] : Current speed of the ego-vehicle, scaled by the maximum allowed

velocity of the ego-vehicle.

• φ ∈ [−1, 1]: Current steer angle of the vehicle, scaled by the maximum steer

angle of the ego-vehicle. It is important to note that this is not simply equivalent

to the commanded steer angle as CARLA simulates the dynamics of actuating

the wheels, resulting in a delay in achieving the commanded steer angle.

Global Planner State

The global planner provides high-level route guidance about the path the ego-vehicle

should follow. Specifically, the global planner computes a sequence of dense waypoints,

spaced approximately 2 meters apart, that trace a route between the source and

destination positions. The waypoints provide basic lane-changing information for

entering intersections, but do not contain local planning information about handling

the behavior of other actors. To incorporate the global planner information into our

state space, we include the following features:

• η ∈ [−π, π] : Average heading error between the ego-vehicle heading and the

next 5 waypoints, as shown in Figure 3.1.

• dlat ∈ [−1, 1] : Lateral error from the global planner trajectory.

14

3. Problem Formulation

Other Dynamic Actor State

The state of the other nearby dynamic actors is high-dimensional, but critical to

planning effective actions. We consider two simplified representations of these states.

The first simple representation includes the distance and velocity of the nearest vehicle

within 20 meters and in the same lane as the ego-vehicle.

• dleading ∈ [0, 1] : Distance to nearest leading vehicle within 20 m in the same

lane as the ego vehicle.

• vleading ∈ [0, 1] : Speed of the leading vehicle.

We concatenate the obstacle observations for brevity as follows:
−→
Osimple = [dleading, vleading]

While very simplistic, this representation is sufficient for simple scenarios involving

single lane roads and other vehicles behaving predictably. Most scenarios in the

NoCrash benchmarks can be solved with this representation. In order to scale to

more challenging scenarios and other dynamic actors such as pedestrians, we need

to consider a representation that contains information about actors beyond those

directly in front of the ego-vehicle.

The second, expanded representation splits the area of around the ego-vehicle into

5 sections: front, front-left, front-right, back-left, and back-right. The representation

includes the relative position and velocity vectors for the nearest actors, including

bicyclists and pedestrians, for each region. Additionally, we increase the detection

range in this representation to 45 meters. Concretely, the representation is defined as

follows.

•
−→
d β

actor ∈ [−1, 1.5]2 : Cartesian coordinates in ego-vehicle frame of the nearest

vehicle in obstacle range in region defined by β, scaled by max detection range.

• −→v β
actor ∈ [−1, 1.5]2 : Velocity in ego-vehicle frame of the nearest vehicle in

obstacle range in region defined by β, scaled by max detection range.

The representation for each detection range is then defined as:

• −→
O front =

[−→
d

[−5.73,5.73]
actor ,−→v [−5.73,5.73]

actor

]
• −→

O front,right =
[−→
d

[5.73,90]
actor ,−→v [5.73,90]

actor

]
• −→

O front,left =
[−→
d

[−90,−5.73]
actor ,−→v [−90,−5.73]

actor

]
15

3. Problem Formulation

• −→
Oback,right =

[−→
d

[90,180]
actor ,−→v [90,180]

actor

]
• −→

Oback,left =
[−→
d

[−180,−90]
actor ,−→v [−180,−90]

actor

]
By providing position and velocity information for actors in all directions, this

observation space enables the motion planner to handle more challenging traffic

scenarios such as merging and pedestrians crossing the road.

Traffic Control State

Finally, motion planning in urban settings requires the ego-vehicle to obey traffic

lights and stop signs. Currently, we only consider traffic lights. To simplify the offline

learning setup, we simply encode a red traffic light as an obstacle with zero velocity

in front of the ego-vehicle.

Full observations

Combining these features, we consider two observation spaces, each with a different

representation for dynamic actors. The first observation space, which we name Front

Obstacle observation, is defined as:

[vt, φ, η, dlat,
−→
Osimple]

T

The second observation space, named 360 Obstacle observation, is defined as:

[vt, φ, η, dlat,
−→
Ofront,

−→
O front,right,

−→
O front,left,

−→
Oback,right,

−→
Oback,left]

T

3.2.2 Action Space

We choose an action space similar to the one used in [1]. We assume access to a

PID controller capable of providing brake and throttle commands to track a target

velocity. The learned motion planning policy provides a target velocity vtarget as input

to the PID controller. The action space is biased slightly, such that a command of 0

maps to a positive velocity. To control the steering, the policy directly provides a

steer angle ϕtarget that is tracked by the vehicle.

• vtarget ∈ [−1, 1]

• ϕtarget ∈ [−1, 1]

16

3. Problem Formulation

3.2.3 Reward and Termination Function

We consider the following reward function for the MDP.

R = αvRv + αlatRlat + αcollisionRcollision (3.1)

Rv is a positive reward proportional to the current speed of the vehicle, Rlat is a

negative reward proportional to the lateral trajectory error, and Rcollision is a constant

negative penalty for collisions. For all of the experiments presented in this work, all

weights in the reward function are 1. In the future, we plan to explore adding terms

that explicitly encourage smooth driving as well.

The episodes in the MDP terminate if any of the three following conditions are

met.

• The ego-vehicle successfully reaches the end of the trajectory

• The ego-vehicle collides with another actor

• The ego-vehcile drifts too far from the center of the lane

17

3. Problem Formulation

18

Chapter 4

Offline Model-Based Reinforcement

Learning

The objective of model-learning in MBRL is to learn a generative model of the state-

transition distribution pϕ(s′|s, a). This model can then be used for online planning

or policy optimization. As detailed in Section 2.1.3, the offline setting restricts this

formulation by only providing access to a pre-collected dataset of experience, rather

than providing access to the environment.

At a high level, our algorithm, drawing from ideas presented in Model-Based Policy

Optimization (MBPO) [11], learns a dynamics model from the dataset. We can think

of this learned dynamics model as a surrogate simulator and use it in that capacity to

optimize a policy. Figure 4.1 presents a high level diagram of this procedure. In the

next section, we explore the challenges in this algorithmic framework, and proceed to

explore our solutions to them.

4.1 Why is this hard

Model-based policy optimization, presented in [11], demonstrates strong results by

using a learned dynamics model in conjunction with a model-free RL algorithm to

optimize a policy. At a high level, MBPO collects experience in the environment,

fits a dynamics model to the data, optimizes the policy using the dynamics model

as a simulator, and repeats this loop. Though this algorithm is designed to train a

19

4. Offline Model-Based Reinforcement Learning

Figure 4.1: High-level overview of training procedure in Offline MBRL. We first learn
a dynamics model of the environment and then use that as a simulator to optimize a
policy.

policy online, it appears to be well-suited to run offline by using the pre-collected

dataset to train the dynamics model and optimizing the policy without collecting

additional data. However, MBPO tends to fail catastrophically when naively ported

to the offline setting [22].

To understand the challenge with dynamics modeling in the offline setting, we

present a toy MDP as shown in Figure 4.2. Figure 4.2(a), we see a dataset of

trajectories collected by the data generation policy that is used to train the dynamics

model. In Figure 4.2(b), we now see a new trajectory predicted by the dynamics

model given a sequence of actions generated by the policy unseen in the dataset.

Given our intuition about the environment, this would appear to be a reasonable

trajectory to predict. However, the actual MDP has a large negative reward region

in the region of the state space in which the dynamics model predicted the trajectory

as shown in Figure 4.2(c).

In this case, the dynamics model incorrectly generalized to predict a trajectory

that was not feasible. However, in the case that the environment did not contain this

large negative region, the dynamics model actually correctly generalized and allowed

the policy to plan a higher reward path than the demonstrated one. Given only the

demonstrations in the dataset, it is impossible for the model to distinguish between

these two cases.

When trained online, MBPO has two advantages over the offline setting. First,

since data is collected with the current policy, the dynamics model only needs to

20

4. Offline Model-Based Reinforcement Learning

Figure 4.2: Illustrative Toy MDP to demonstrate challenges with Offline RL. (a)
depicts the dataset use to train the policy in the toy MDP. (b) represents a trajectory
planned by the policy in the dynamics model. In (c), we see that trajectory actually
leads to a large negative reward, which dy namics model was unaware of due to the
lack of data

locally model the transition dynamics in the state-action distribution induced by

the policy. Assuming a limited modeling capacity, the dynamics model can be more

accurate in the local region than an equivalent model that has a requirement to be

globally accurate. The second advantage of the online setting is that the policy can

collect counterfactual examples to correct dynamic modeling errors that do exist.

Returning to the toy MDP, consider the case in which a policy learned to execute the

trajectory predicted in Figure 4.2(c) given a model trained on the dataset in Figure

4.2(a). When the policy is re-deployed to collect new data in the environment, it

will collect many trajectories interacting with the negative reward region, which will

correct the belief of the dynamics model about that that region in the state-action

space. This counterfactual data makes the algorithm robust to modeling errors.

In the offline setting, we never have access to these counterfactual demonstrations

during training, meaning that modeling errors can lead to catastrophic failures during

test-time execution.

This problem we outline is often referred to as distributional shift [15]. To handle

distributional shift, we have two options. The first option is to constrain the policy

to stay near the data distribution demonstrated in the dataset. Naturally, this poses

imitation learning algorithms as good options as they optimize the policy to be similar

to the data generation policy. Both MOPO [22] and MOReL[12] attempt to improve

performance over imitation learning by performing RL using the dynamics model while

21

4. Offline Model-Based Reinforcement Learning

penalizing the agent for regions of the state-action space in which the dynamics model

is uncertain. Effectively, the weight of the penalization serves as a balance between

pure imitation learning and pure RL. The choice of the penalization hyperparameter

is problem dependent and often not obvious, even given prior knowledge about the

environment.

The other option to handle distributional shift is to incorporate prior knowledge

about the environment into the dynamics model to allow for safe generalization

beyond the provided data distribution. This prior knowledge could be incorporated

in the form of a known reward or termination function, or a closed-form model of

the state-transition dynamics. For the toy MDP, a known reward function would

allow the model to safely generalize in the safe regions of the MDP, while ensuring

that the policy never learns to enter the low-reward region. The best method for

incorporating prior knowledge is heavily problem dependent. In the case of driving,

we have strong knowledge about the structure of the problem that we can exploit to

construct a model that generalizes safely.

4.2 Dynamics Learning

Given the problem formulation of motion planning for AVs, we know that the

environment is stochastic and partially-observable. Both of these characteristics make

it challenging to build an accurate and stable dynamics model that directly predicts

in the policy observation space. However, similar to the observation made by [4], we

note that the environment can be decomposed into two parts: the dynamics of the

ego-vehicle and the dynamics of the other actors on the road. Given the policy action

and current state of the ego-vehicle, the ego-vehicle dynamics are deterministic. The

dynamics of the other vehicles and pedestrians are stochastic as we cannot observe

their intention or driving styles. To handle the different natures of these two portions

of the environment dynamics, we choose to separately model the ego-vehicle dynamics

and the dynamics of the other vehicles. In the following sections, we describe the

ego-vehicle model and other vehicle model.

22

4. Offline Model-Based Reinforcement Learning

Figure 4.3: Block Diagram for Ego-Vehicle Closed Loop Control. The policy π sends
controls to the PID controller, which actuates the vehicle. The observation encodes
the new the state of the vehicle, which is estimated by the state estimator.

Figure 4.4: Block Diagram with a learned dynamics model. We see that the MLP
models the dynamics of the PID controller, vehicle, and state estimator.

23

4. Offline Model-Based Reinforcement Learning

4.2.1 Ego-Vehicle Dynamics

A block diagram of the ego-vehicle planner and controller are presented in Figure 4.3.

As apparent from the diagram, modeling the dynamics of the vehicle for the motion

planner does not only involve modeling the dynamics of the vehicle itself, but also the

dynamics of the motion controller and state estimator. While building a closed form

model for these dynamics is possible, we opt to model the dynamics of the vehicle with

a multi-layer perceptron (MLP). An MLP is able to fit non-linearities in the vehicle

dynamics better than commonly used closed-form models such as bicycle models.

Furthermore, MLPs will likely scale better to handle more challenging dynamics

such as slippery road conditions without requiring extensive modeling work. A block

diagram of our model is shown in Figure 4.4. The MLP input space contains the

following features.

• Vehicle velocity at times t and t− 1 (vt−1, vt)

• Vehicle steer angle at times t and t− 1 (φt−1, φt)

• Actions at t and t− 1 (at−1, at)

The dynamics model predicts the change in the SE2 pose of the vehicle as well as

the change in speed and steer angle. With this data, we can auto-regressively roll out

the dynamics model to predict the motion of the vehicle given a sequence of actions.

4.2.2 Other Actor Dynamics

Modeling the dynamics of the other actor is a more challenging task because we cannot

observe their intention. A potential option could be to apply the latest techniques in

the literature of motion forecasting to model these behaviors [8, 10, 17]. However,

most motion forecasting models tend to diverge to unreasonable predictions over

longer horizons (more than 10 seconds).

Instead, we opt for a more simplistic model in which we assume that the other

actors are non-reactive. With this assumption, the trajectories of the other agents

can simply be replayed from the dataset. This completely eliminates the need for

any learned forecasting models while maintaining realism in the trajectories. While

this assumption does limit the types of scenarios that the policy can learn to handle,

we find that it is a great starting point for learning effective driving policies. This

24

4. Offline Model-Based Reinforcement Learning

Figure 4.5: A diagram of the architecture of the full dynamics model. The learned
vehicle dynamics autoregressively predicts the motion of the ego-vehicle while the
motion of the other vehicles is replayed from the dataset. These features combined
are used to compute the policy observation.

modeling decision is similar to the one made by World on Rails [4], so we refer to this

assumption as the “World on Rails Assumption”. A full diagram of the dynamics

model is presented in Figure 4.5

4.2.3 Training Procedure

We collect two datasets in CARLA to train the ego-vehicle dynamics model. The first

dataset contains 200,000 state transitions generated by uniformly sampling actions

from the action space. The second dataset contains 200,000 state transitions generated

by a heuristic autopilot policy with Gaussian noise injected into the actions. In total,

this is equivalent to around 11 hours of driving demonstrations.

As presented in [12, 22], we opt to train an ensemble of deterministic dynamics

models to predict the future state. The ensemble enables us to compute an estimate of

modeling uncertainty and can provide robustness for policy optimization by allowing

the policy to train against slightly different “guesses” for the environmental dynamics.

Each of the dynamics models are trained on the entire dataset, but are randomly

initialized and trained on different samplings of training batches. Each model is

trained to minimize one-step prediction error using the Huber loss. We choose Huber

loss to minimize the effects of outliers on model training.

25

4. Offline Model-Based Reinforcement Learning

Figure 4.6: Policy optimization loop for offline MBRL training. The dynamics model
is used as a simulator that a model-free policy optimizer can use to train the policy

L =

0.5 ∗ (ŝt+1 − ŝt+1) if |ŝt+1 − ŝt+1| < δ

δ (|ŝt+1 − ŝt+1| − 0.5 ∗ δ) otherwise
(4.1)

4.3 Policy Learning

We now present a procedure for policy optimization making use of the learned

dynamics model and discuss the performance on benchmarks.

4.3.1 Algorithm

Figure 4.6 contains a diagram of the training loop for the policy, which closely

resembles the optimization procedure followed for model-free algorithms. Since we

are treating the dynamics model as a simulator, any model-free RL algorithm can be

used to optimize the policy.

This optimization procedure is similar to those presented in MOPO and MOReL

[12, 22] with some simplifications. Both algorithms use prediction discrepancy between

the members of the dynamics ensemble as a measure of uncertainty of the dynamics

model. MOPO [22] adds a penalty in the reward function proportional to the

26

4. Offline Model-Based Reinforcement Learning

magnitude of the uncertainty term, while MOReL [12] prematurely terminates episodes

if the uncertainty exceeds a threshold. However, due to the strong performance of our

dynamics model, we find that we can completely remove these penalties on model

uncertainty with no adverse effect on performance. Furthermore, we find that the

value function bootstrapping procedure with truncated rollouts presented in MOPO

[22] to be detrimental to policy performance.

4.3.2 Training Details

We train the policy on a separate dataset from the ones used to train the dynamics

model. For the NoCrash benchmarks, we collect a dataset of 200,000 interactions

generated by a heuristic autopilot with no gaussian noise. For Leaderboard, we collect

the dataset of 200,000 interactions using the autopilot presented in Transfuser [5].

We choose these specific autopilots due to their strong performance which generates

long rollouts of training experience.

To fully understand why this is important, consider a poor policy that always

collides with the leading vehicle. Since the MDP formulation includes terminations on

collisions, the dataset does not contain trajectories that extend beyond these collisions.

Since we cannot infer the behavior of the other agents beyond the collision, we assume

that the episode terminates at the timestep at which the demonstration policy collided.

Training a policy with this dataset would likely result in a policy that simply delays

the collision slightly because this would result in a successful termination. With a

strong performing autopilot, the dataset would contain trajectories beyond these

interaction because the episodes would not prematurely terminate. This more closely

resembles the datasets available for AV companies, as the trajectories include safety

driver take-overs in cases where the autonomy stack fails in challenging sitations.

We use PPO [19] as our model-free policy optimization algorithm. The full list of

hyperparameters can be found in the appendix.

4.3.3 Results

We present results on the NoCrash and Leaderboard benchmarks. We compare our

algorithm to Transfuser [5], World on Rails (WOR) [4], and MP-PPO [9], which

are some of the top performing algorithms on the Leaderboard benchmarks. For

27

4. Offline Model-Based Reinforcement Learning

all benchmarks, we report results for policies trained for 2 million steps. While we

could periodically evaluate our policy on the benchmarks to select the best one, this

would not be possible in the real driving setting without a strong off-policy evaluation

method. Therefore, we select a policy at a fixed timestep.

NoCrash

We used the Front Obstacle observation space for the NoCrash benchmarks. Table

4.1 presents the quantitative results for the NoCrash benchmark. Our method nearly

achieves a perfect score on the benchmark and is comparable in performance to the

best baselines.

We see a significant performance improvement over WOR, which makes a similar

assumption about replaying the behavior of other vehicles from the dataset. There

are many possible variables that could explain the performance gap. A key difference

could be the stronger performance of our dynamics model over the parametrized

bicycle model that WOR uses, as discussed in section 4.2.1. A large difference in the

dynamics predictions of the model and the real environment can cause the policy

to take suboptimal actions in the real environment, similar to the issue of sim2real

transfer that shows up when training in a simulator. Another important difference

is that WOR explicitly runs a planner with a 10 second horizon at each state in

the dataset to produce an action label for that state. This can lead to poor policy

performance at test time as the state visitation distribution of the learned policy

shifts from that of the demonstration policy. If the policy learns to select significantly

different actions than the demonstration actions, it can visit states that were not

present in the dataset, leading to unstable action predictions. Finally, WOR learns

a policy that takes raw sensor data as observation instead of our low dimensional

state representation, which can make it challenging for their policy to generalize. We

plan to perform ablations on WOR in future works to identify the root cause of this

performance difference.

Our policy performance is comparable to the performance of MP-PPO, which is

the most similar benchmark. MP-PPO trains policies with the same MDP defintion

as ours, but in a fully online setting. We can see here that the switch to the offline

setting has not reduced the policy performance on the benchmark compared to the

28

4. Offline Model-Based Reinforcement Learning

Table 4.1: Quantative Performance Results on the NoCrash benchmarks for Self-Play.
Each value represents the percentage of successful episodes out of 25 routes, averaged
over 3 seeds and 3 repeats of each route. Autopilot refers to the data generation
heuristic policy without noise injected into the actions. Our algorithm achieves a near
perfect score on the benchmark, matching the performance of the state-of-the-art
online RL algorithm MP-PPO.

Autopilot WOR MP-PPO Ours
Train Test Train Test Train Test Train Test

Empty 100 100 98 94 100 99 100 99
Regular 100 100 100 89 99 99 100 99

Dense 100 88 96 74 100 96 100 96

online setting.

Leaderboard

Next, we evluate the performance of our algorithm on the leaderboard benchmark.

we train our policy with the 360 Obstacle observation to enable the policy to reason

about more challenging scenarios such as lane changing. The results are presented in

Table 4.2. We compare the performance of our policy against Transfuser [5] which

achieves state-of-the-art performance on the official held-out testing routes, and

MP-PPO which achieves similar performance to Transfuser on the validation routes.

As discussed in Section 3.1.2, we only report performance on the validation routes

as we make use of privileged simulator information.

We see that our performance on leaderboard is significantly worse than that of

Transfuser and MP-PPO. Our policies achieve a relatively high route completion,

but incur large penalties due to collisions and red light infractions. This large gap

in performance may be a limitation caused by the World on Rails assumption. We

can view this assumption as a regularizer that promotes the policy to stay near the

state-visitation distribution of the demonstration policy. When the policy drifts too

far from the demonstration distribution during training, it encounters cases in which

the other agents collide with the ego-vehicle from the side or rear, even though the

driving policy is effective. Since leaderboard involves longer horizon episodes with

more agents, this effect is exacerbated on this benchmark over NoCrash. Next, we

discuss extensions to this algorithm to move beyond this assumption.

29

4. Offline Model-Based Reinforcement Learning

Table 4.2: Leaderboard Evaluation scores on the validation routes. “DS” stands for
Driving Score, the aggregate score computed by the Leaderboard benchmark. “RC”
stands for perecentage of route completion. “Collis.” stands for collisions (Unit: # /
kilometer). “Viol.” combines red light, stop sign, and off-road violations (Unit: # /
kilometer). “Dev.” stands for route deviations, which are significant deviations from
the global plan (Unit: # / kilometer). “Timeouts” combines the number of times
the episode terminates due to the agent being static (Unit: # / kilometer).

DS RC Collis. Viol. Dev. Timeouts
Transfuser 83.95 99.63 0.04 0.08 0 0.01

MPPPO 80.64 99.27 0.06 0.05 0 0.03
Ours 28.62 86.09 31.45 18.24 0 12.04

Figure 4.7: Example of a scenario requiring the vehicle to negotiate right-of-way with
another vehicle. The ego-vehicle (red car) needs to merge into the lane with moving
traffic (green cars). With the World on Rails assumption, the green cars do not slow
down as the ego-vehicle enters the lane, resulting in a collision.

4.4 Self-Play

While training with the World on Rails assumption demonstrated strong performance

on the simple benchmarks, the algorithm fails to produce strong results on the more

challenging Leaderboard benchmark. This failure highlights a key limitation of the

World on Rails assumption: the behavior of the other agents does not change as the

behavior of the ego-vehicle changes. This limitation causes instability in training for

leaderboard, but also has implications for the types of policies that can be learned.

Consider the scenario presented in Figure 4.7, in which the ego-vehicle is attempting

to merge into a lane with moving traffic. Deciding whether to yield for the vehicle

30

4. Offline Model-Based Reinforcement Learning

entering the intersection is a challenging interaction, that is dependent on the intent

of both the AV and the other actor. Aggressive behavior from the ego-vehicle could

signal to the other actor to yield and vice versa. Regardless of the outcome, in the

real world, both agents must predict the behavior of the other agent to plan actions.

With the World on Rails assumption, the AV only interacts with non-reactive agents

during training, which would not slow down when the AV enters the lane. Therefore,

the policy would never be able to make forward progress on the route.

To handle these more challenging scenarios, we must move beyond the World

on Rails assumption. As discussed previously, building motion forecasting models

that are stable over long horizons and that model the true distribution of behavior

is quite challenging. However, instead of modeling the end-to-end behavior of the

other vehicles, we can further decompose the other vehicle dynamics to build a stable

dynamics model. While the intent and driving style of the other vehicles is not

observable and is hard to model, the dynamics of their vehicle are deterministic and

similar to the dynamics of the ego-vehicle. Therefore, given we know the action that

the other agents take, the behavior of the other actor is deterministic. If we assume

that all of the vehicles have the same dynamics as ours, we can use the ego-vehicle

dynamics model to predict the motion of all cars.

To generate actions for the other vehicles, we can deploy any policy on the other

vehicles such as the heuristic autopilot, the current ego-vehicle policy, or past policy

checkpoints. This allows us to seed reactive policies on all of the vehicles, thereby

removing the World on Rails Assumption. This setup also creates a self-play, multi-

agent training environment, in which we can collect data from all of the agents

to train a single policy or set of policies. Finally, by using suboptimal policies

such as intermediate checkpoints, we can generate challenging long-tail scenarios for

training. In the following sections, we outline our self-play algorithm, demonstrate

its performance on the toy merging example presented in Figure 4.7, and present its

results on NoCrash.

4.4.1 Algorithm

A diagram of the self-play training loop can be seen in Figure 4.8. This loop closely

resembles the training loop for offline MBRL with the World on Rails assumption,

31

4. Offline Model-Based Reinforcement Learning

Figure 4.8: A digram of the training loop we use to perform self-play. Instead of
predicting the behavior of just the ego-agent, we predict the behavior for all actors in
the environment using the dynamics. The policy optimizer can make use of all of the
data from these models to train the policy.

except that we collect data from a set of policies instead of a single policy.

Since we do not have access to the full observations from the other vehicles, we

have to make assumptions about their intention to generate valid observations. The

key element of the observation space we are missing for other vehicles is the global plan

they are following. To generate an estimate for this plan, we make the assumption

that the other vehicles are effectively tracking their global plan throughout their

trajectory. With this assumption, we can simply sparsify their trajectory to generate

a global plan. Along with the initial speed and pose of the other vehicles, we have

enough information to compute the observations.

To perform policy optimization, we make use of parallel RL algorithms proposed

in [9]. Particularly, we use MP-SAC, which enables us to use the data we collect

from all of the vehicles in the environment to train the policy as well as run multiple

training environments in parallel. With this algorithm, we take advantage of the

data generated from all of the agents in the environment, leading to a training speed

increase.

32

4. Offline Model-Based Reinforcement Learning

4.4.2 Toy Problem

To demonstrate how the self-play setup allows the policy to learn driving behaviors

beyond those that can be learned with the World on Rails assumption, we train the

policy for the toy problem in Figure 4.7, in which the ego-vehicle is merging into a

lane with flowing traffic. In the dataset, the vehicles are travelling at 20 km/hr along

the lane spaced 20 meters apart. When training with the World on Rails assumption,

the trajectories of these vehicles are simply replayed from the dataset. To train in

the self-play setting, we deploy the heuristic autopilot policy on each of these vehicles

and the optimize the neural network policy on the ego-vehicle. At test time, both

agents are deployed in an environment in which the other agents are reactive.

The policy trained with the World on Rails assumptions completely fails to enter

the flowing traffic and instead departs the lane before reaching the other agents. This

is likely because, during training, any attempt to enter the flowing traffic would cause

a collision as the rear car does not slow down for the ego-vehicle. On the other hand,

the policy trained in the self-play setup learns to enter the traffic successfully for every

evaluation run. In contrast to the World on Rails setting, the policy was able to learn

to negotiate the intersection with the other agents since they were reactive in the

training environment. While this is a very simplified example of the self-play setting,

this demonstrates the importance of self-play in scenarios requiring negotiation with

other agents, which constitute a large portion of challenging long-tail scenarios.

4.4.3 NoCrash

Next, we evaluate the performance of the self-play algorithm in NoCrash. The policy

training dataset is the same as the dataset used for the World on Rails setting,

presented in Section 4.3.2. Each episode in the dataset contains trajectories for 100

agents and the ego-vehicle. At each episode, we randomly deploy the current neural

network policy on 40 agents, which are all used to collect data. The remaining 61

agents use the heuristic autopilot policy to take actions, which are not added to the

experience buffer. The heuristic autopilots ground the behavior of the learned policy

by providing demonstrations of normal driving behaviors. If all of the agents use the

learned policy instead, the policy could learn driving behaviors that diverge from

strategies that would work at test time, an effect discussed in [21]. Finally, utilizing

33

4. Offline Model-Based Reinforcement Learning

Table 4.3: Quantative Performance Results on the NoCrash benchmarks for Self-Play.
Each value represents the percentage of successful episodes out of 25 routes, averaged
over 3 seeds and 3 repeats of each route. Autopilot refers to the data generation
heuristic policy without noise injected into the actions. Self-Play achieves a perfect
score on Empty and Regular, but performs worse than state-of-the-art on Dense.

Autopilot WOR MP-PPO Ours Self-Play (Ours)
Train Test Train Test Train Test Train Test Train Test

Empty 100 100 98 94 100 99 100 99 100 100
Regular 100 100 100 89 99 99 100 99 100 100

Dense 100 88 96 74 100 96 100 91 92 72

the parallelism of MP-SAC, we also run 5 environments in parallel, for a total of 200

agents collecting data in parallel.

Table 4.3 presents the results of our self-play algorithm on the NoCrash benchmark.

We see that self-play achieves a perfect score in NoCrash Empty and Regular, but has

a higher failure rate than state-of-the-art on NoCrash Dense. This reduced score is

due to increased instability in training caused by the multi-agent training environment.

Particularly, this raises the issue of adverserial agents in the environment. During

training, agents can receive negative rewards for collisions caused by bad actions

taken by other actors. This increases the variance of the gradients, resulting in a

more unstable optimization procedure. Handling this issue is particularly challenging

in the driving problem as the problem not fully cooperative nor fully competitive. In

most cases, all actors on the road behave cooperatively, but there are many instances

of competitive behavior as well. If we train the policy assuming all drivers are

cooperative, the policy will never learn to handle the challenging edge cases in which

another agent is acting agressively. However, a fully competitive environment will

likely result in a policy that never learns to drive as other agents are constantly

crashing into the ego-vehicle. It is important to reach a realistic balance between

these two extremes to train a successful policy.

34

Chapter 5

Conclusions

In this thesis, we study the challenges of offline reinforcement learning for autonomous

vehicle motion planning. We propose two model-based reinforcement learning algo-

rithms that make use of dynamics models that exploit the structure of the driving

problem to generalize successfully. We demonstrate that these methods can match

state-of-the-art performance on the simpler CARLA benchmarks and explore the

limitations on their performance on the more challenging benchmarks.

While these methods have not yet reached state-of-the-art performance, they have

potential to be valuable algorithms for learning motion planners in real autonomous

vehicle stacks. Firstly, their ability to make use of pre-existing driving logs allows

them to take advantage of the datasets of driving experience AV companies main-

tain. Additionally, the self-play training environment has the potential to massively

parellelize training to take full advantage of the large scale of the available data.

There are many avenues for future works that are important to improve the

performance of these algorithms and make them viable to be deployed at AV companies.

First of all, improving self-play likely requires investigation into better algorithms

to handle the multi-agent training setup. In this work, the policy optimization

ignores the multi-agent nature of the problem, leading to issues such as incorrect

credit assignment in collisions. Applying advances in the work of multi-agent RL

could help significantly stabilize the performance of this training setup. Furthermore,

while we choose SAC to allow for off-policy training, SAC tends to perform poorly

when trained with off-policy data, limiting our ability to make use of experience

35

5. Conclusions

from heteregeneous agents. Work such as AWAC [16] address this issue to allow the

policy to learn effectively from off-policy data. It would be valuable to integrate such

off-policy algorithms to improve the sample-efficiency of the self-play algorithm.

For self-play to scale to generate challenging long-tail scenarios requires investiga-

tion into the balance between cooperative and adverserial driving policies. Currently,

we only consider optimizing a single policy during training. However, the multi-agent

setup could enable training a heterogeneous set of driving policies with varying

objectives or using behavior cloning to generate policies with different driving styles.

AV companies can also deploy and collect data from various iterations of their existing

motion planners to produce further diverse training data. To better control the diffi-

culty of the driving scenarios, exploring curriculum learning for scenario generation

could be valuable. A curriculum learning setup could enable the training setup to

generate increasingly difficult long-tail scenarios, while not making them impossibly

challenging.

A key limitation we have not explored in detail in this work is the challenge

of occlusions in the driving datasets. Our dataset assumes ground-truth access to

the state of all vehicles, regardless of whether or not they are occluded. In a real

driving dataset, we do not have access to the full trajectories of all vehicles as many

will be occluded through the course of the episode. Recently, a new benchmark

called Nocturne [20] has been released to explore exactly this challenge. Designing

a multi-agent training environment that reasons about the state of actors through

occlusions will be critical to deploying such a training setup in a real AV stack.

Another key issue that this work does not address is that of off-policy evaluation,

which is evaluating the performance of the policy before deploying it in the test

environment. While training rewards are correlated with test time performance, we

often find policies with similar rewards that perform very differently at test time.

Without an effective method to evaluate the policies before deploying them at test

time, it is challenging to tune hyperparameters and to select the best policy from

training.

We can also reduce the importance of off-policy evaluation, however, if we relax

the requirement of training policies strictly offline. It is unrealistic to assume that AV

companies would deploy policies trained completely offline directly into production.

The more likely situation is that after a policy is trained offline, the policy will be

36

5. Conclusions

deployed for evaluation to collect additional data which can be used for fine-tuning.

While this data can simply be used by adding it to the training dataset and continuing

training, a more intelligent strategy for utilizing that data could make the limited

online experience more valuable. Intelligent exploration algorithms or methods to

evaluate a set of policies could be valuable to maximize the utility of the on-policy

data.

Finally, many of the concepts we have explored in this work try to sidestep the

problem of motion forecasting through assumptions about the dynamics of the other

vehicles. In the self-play training, we have loosely cast the motion forecasting problem

into a planning problem. Indeed, motion planning and forecasting are very similar

problems with slightly different objectives and different observations. It would be

valuable to explore this connection between these two separate areas of research more

deeply and to share successful algorithmic decisions between them to further improve

performance.

37

5. Conclusions

38

Appendix A

Hyperparmeters

Table A.1: Hyperparameters for Dynamics Ensemble Training

Notation Description Value
n_models Number of Ensemble Members 5
lr Learning rate 0.001
n_layers Number of layers 4
n_neurons Number of neurons per layer 1024
drop_prob Dropout probability 0.3

39

A. Hyperparmeters

Table A.2: Hyperparameters for PPO with World on Rails Assumption

Notation Description Value
lr Learning rate 0.0003
ϵ Clipping Range 0.2
δclip Maximum Gradient Norm 0.5
γ Discount Factor 0.99
n_steps Steps between policy updates 2048
n_epochs Training epochs per update 10
batch_size Training batch size 64

Table A.3: Hyperparameters for MP-SAC

Notation Description Value
lr Learning rate 0.0003
buffer_size Replay Buffer Size 1000000
train_freq Steps between training updates 1
gradient_steps Gradient steps per update 1
γ Discount Factor 0.99

40

Appendix B

Ablation Studies

With many algorithmic changes from similar algorithms such as MOPO [22] and

MOReL [12], we present ablation studies to understand how these algorithmic choices

affect the performance of the learned policy.

Uncertainty Estimation with Ensembles

MOPO and MOReL both make use of prediction disagreement between members of

the dynamics ensemble as an estimate of model uncertainty. While we use a model

ensemble in our work, we do not use the uncertainty estimate to modify the reward as

in MOPO [22] or the termination function as in MOReL [12]. For the first ablation,

we add this uncertainty estimate back into the model as a term in the reward function

according to the procedure defined by MOPO. We consider 3 weights of this penalty

and evaluate the performance of the learned policies on NoCrash. The results are

presented in Figure B.1. We see that for α = 1, the policy performance is slightly

better than the performance without the penalty. However, increasing α further leads

to a degradation of performance. While a well-tuned value for this parameter may

improve policy performance, it is challenging to tune this parameter in practice as

it requires the ability to evaluate the policy in the environment. Therefore, in the

interest of reducing hyperparameters, we choose to omit the uncertainty estimate

from the reward function in our algorithm.

Additionally, we consider removing the ensemble completely and instead optimize

41

B. Ablation Studies

Table B.1: Performance comparison on the NoCrash benchmark for various ablation
studies. Numbers are percentages of successful episodes for 3 seeds for 3 runs on
the benchmark. α is the weight of the uncertainty term in the reward function.
Single Model indicates a policy trained using a single dynamics model, instead of an
ensemble.

Ours + Uncertainty Penalization
Single Model

α = 1 α = 5 α = 25
Train Test Train Test Train Test Train Test

Empty 100 100 100 98 27 16 100 100
Regular 100 100 100 99 24 6 100 100

Dense 100 96 100 93 10 4 100 96

a policy using only a single dynamics model. The results are presented in Table

B.1. Unintuitively, we see no reduction in performance training with only one model,

suggesting that the model predictions are quite accurate. However, without the

regularizing effect of training with multiple models, it is possible that the policy

would overfit if trained for longer. We plan to study this effect in future works.

42

Bibliography

[1] Tanmay Agarwal, Hitesh Arora, and Jeff Schneider. Affordance-based reinforce-
ment learning for urban driving. January 2021. 2.2.1, 3.2, 3.2.2

[2] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot,
H Francis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward
Hughes, Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G Bellemare, and
Michael Bowling. The hanabi challenge: A new frontier for AI research. February
2019. 2.2.3

[3] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by
cheating. December 2019. 2.2.1

[4] Dian Chen, Vladlen Koltun, and Philipp Krähenbühl. Learning to drive from a
world on rails. May 2021. 2.2.1, 4.2, 4.2.2, 4.3.3

[5] Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and
Andreas Geiger. TransFuser: Imitation with Transformer-Based sensor fusion
for autonomous driving. May 2022. 2.2.1, 4.3.2, 4.3.3, 4.3.3

[6] Felipe Codevilla, Eder Santana, Antonio Lopez, and Adrien Gaidon. Exploring
the limitations of behavior cloning for autonomous driving. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 9328–9337, 2019.
doi: 10.1109/ICCV.2019.00942. 3.1.2

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Sergey Levine, Vincent
Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual Conference
on Robot Learning, volume 78 of Proceedings of Machine Learning Research,
pages 1–16. PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.press/

v78/dosovitskiy17a.html. 2.2.1, 3.1.1

[8] Junru Gu, Chen Sun, and Hang Zhao. DenseTNT: End-to-end trajectory
prediction from dense goal sets. August 2021. 4.2.2

[9] Zhe Huang. Distributed reinforcement learning for autonomous driving. Master’s
thesis, Carnegie Mellon University Pittsburgh, PA, 2022. 2.2.1, 3.1.2, 4.3.3, 4.4.1

43

https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html

Bibliography

[10] Zhiyu Huang, Xiaoyu Mo, and Chen Lv. ReCoAt: A deep learning-based
framework for Multi-Modal motion prediction in autonomous driving application.
July 2022. 4.2.2

[11] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust
your model: Model-Based policy optimization. June 2019. 2.2.2, 4, 4.1

[12] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten
Joachims. MOReL : Model-Based offline reinforcement learning. May 2020.
2.2.2, 4.1, 4.2.3, 4.3.1, B, B

[13] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning
with implicit Q-Learning. October 2021. 2.2.2

[14] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative
Q-Learning for offline reinforcement learning. June 2020. 2.2.2

[15] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. May 2020. 2.1.2,
4.1

[16] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. AWAC:
Accelerating online reinforcement learning with offline datasets. June 2020. 5

[17] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zhengdong Zhang, Hao-
Tien Lewis Chiang, Jeffrey Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu,
Ashish Venugopal, David Weiss, Ben Sapp, Zhifeng Chen, and Jonathon Shlens.
Scene transformer: A unified architecture for predicting multiple agent trajecto-
ries. June 2021. 4.2.2

[18] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,
Przemys law Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq
Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub
Pachocki, Michael Petrov, Henrique P d Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip
Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
December 2019. 2.2.3

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. July 2017. 2.2.1, 4.3.2

[20] Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, and Jakob
Foerster. Nocturne: a scalable driving benchmark for bringing multi-agent
learning one step closer to the real world. June 2022. 5

[21] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja

44

Bibliography

Huang, Laurent Sifre, Trevor Cai, John P Agapiou, Max Jaderberg, Alexander S
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,
Yury Sulsky, James Molloy, Tom L Paine, Caglar Gulcehre, Ziyu Wang, Tobias
Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782):350–354, November 2019.
2.2.3, 4.4.3

[22] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey
Levine, Chelsea Finn, and Tengyu Ma. MOPO: Model-based offline policy
optimization. May 2020. 2.2.2, 4.1, 4.1, 4.2.3, 4.3.1, B, B

45

	1 Introduction
	1.1 Current Paradigm in Autonomous Vehicle Industry
	1.1.1 Machine Learning for Motion Planning

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Preliminaries
	2.1.2 Imitation Learning
	2.1.3 Online and Offline Reinforcement Learning
	2.1.4 Model-Free and Model-Based Reinforcement Learning

	2.2 Related Works
	2.2.1 Learning for Self-Driving Cars
	2.2.2 Offline Reinforcement Learning
	2.2.3 Multi-Agent Reinforcement Learning

	3 Problem Formulation
	3.1 CARLA Simulator
	3.1.1 Introduction
	3.1.2 Benchmarks

	3.2 MDP Formulation
	3.2.1 Observation Space
	3.2.2 Action Space
	3.2.3 Reward and Termination Function

	4 Offline Model-Based Reinforcement Learning
	4.1 Why is this hard
	4.2 Dynamics Learning
	4.2.1 Ego-Vehicle Dynamics
	4.2.2 Other Actor Dynamics
	4.2.3 Training Procedure

	4.3 Policy Learning
	4.3.1 Algorithm
	4.3.2 Training Details
	4.3.3 Results

	4.4 Self-Play
	4.4.1 Algorithm
	4.4.2 Toy Problem
	4.4.3 NoCrash

	5 Conclusions
	A Hyperparmeters
	B Ablation Studies
	Bibliography

