
Efficient Methods for Model Performance

Inference

Zhihao Zhang

CMU-RI-TR-22-54

July 15, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Prof. Zhihao Jia, co-advisor

Prof. Changliu Liu, co-advisor
Prof. Tianqi Chen

Ruixuan Liu

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Zhihao Zhang. All rights reserved.

To my precious two years at CMU

iv

Abstract

A key challenge in neural architecture search (NAS) is quickly inferring
the predictive performance of a broad spectrum of neural networks to
discover statistically accurate and computationally efficient ones. We
refer to this task as model performance inference (MPI). The current
practice for efficient MPI is gradient-based methods that leverage the
gradients of a network at initialization to infer its performance. However,
existing gradient-based methods rely only on heuristic metrics and lack
the necessary theoretical foundations to consolidate their designs. We
propose GradSign, an accurate, simple, and flexible metric for model
performance inference with theoretical insights. A key idea behind Grad-
Sign is a quantity Ψ to analyze the sample-wise optimization landscape of
different networks. Theoretically, we show that Ψ is an upper bound for
both the training and true population losses of a neural network under
reasonable assumptions. However, it is computationally prohibitive to
directly calculate Ψ for modern neural networks. To address this chal-
lenge, we design GradSign, an accurate and simple approximation of
Ψ using the gradients of a network evaluated at a random initialization
state. Evaluation on seven NAS benchmarks across three training datasets
shows that GradSign generalizes well to real-world neural networks and
consistently outperforms state-of-the-art gradient-based methods for MPI
evaluated by Spearman’s ρ and Kendall’s Tau. Additionally, we have
integrated GradSign into four existing NAS algorithms and show that
the GradSign-assisted NAS algorithms outperform their vanilla counter-
parts by improving the accuracies of best-discovered networks by up to
0.3%, 1.1%, and 1.0% on three real-world tasks. Code is available at
https://github.com/cmu-catalyst/GradSign

v

https://github.com/cmu-catalyst/GradSign

vi

Acknowledgments

To start with, I am really grateful to have had two brilliant advisors,
Prof Zhihao Jia and Prof Changliu Liu, for the past two years. Without
them, I couldn’t have got the achievements I now have. Their advice
and wisdom have profoundly influenced my mindset as a researcher and
learner. I am also really honored to have Prof Tianqi Chen and Ruixuan
Liu to be in my committee group.

Secondly, I am really thankful to have a lovely group of friends - Ruohai
Ge, Zhongyu Chen, and Renbo Tu who work and play together with me.

Last but not least, I cannot express how grateful I am for my mother
Cuilan Yang, my father Wenfeng Zhang, and my beloved one Lanting Li,
who steadily give support to me no matter what happens.

”My heart is in the work.”

vii

viii

Funding

This work has no funding.

ix

x

Contents

1 Introduction 1

2 Related Work 5
2.1 Model Performance Inference . 5
2.2 Neural Architecture Search . 6
2.3 Optimization Landscape Analysis . 7

3 Theoretical Foundations 9
3.1 Insights . 9
3.2 Preliminaries . 10
3.3 Main Results . 12

4 Method 13

5 Experiments 15
5.1 NAS-Bench-101 . 16
5.2 NAS-Bench-201 . 16
5.3 NAS Design Space (NDS) . 17
5.4 Architecture Selection . 18
5.5 GradSign-Assisted Neural Architecture Search 19

6 Conclusions 21

A Appendix 23
A.0.1 Figure . 23
A.0.2 Proof . 23
A.0.3 Experiments Setup . 27
A.0.4 Additional results . 28
A.0.5 GradSign assisted NAS algorithms 32

Bibliography 37

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xi

List of Figures

3.1 Illustration of our theoretical insight that denser sample-wise local
optima indicate lower training losses. As the distances (|θ∗1−θ∗2|, shown
in red) between the local optima across samples reduce, there is a
higher probability that the gradients of different samples have the same
sign at a random initialization point, shown as the green areas. 10

A.1 Visualization of model testing accuracy versus GradSign metric score
on CIFAR10, CIFAR100, ImageNet16-120. 23

A.2 Comparison with sample-based methods (EconNAS) on NAS-Bench-
201 across CIFAR-10. EconNAS requires more than 500 minibatches
to have a better performance than GradSign while gradient-based
methods only require 1 minibatch. 29

A.3 Comparison with ZenNAS in their search space on ImageNet-1k. Due to
the limitation of computational resources, we only run 10000 evolution
iterations and 20 epochs to train the selected architecture. We plot the
top-1 prediction accuracy along training for two methods (ZenNAS,
GradSign). 32

xii

List of Tables

2.1 A summary of existing methods for model performance inference. The
right four columns show (1) whether a method is based on theoretical
results, (2) whether a method avoids expensive training process, (3)
whether a method is applicable to different model architectures, and
(4) whether a method is applicable across different tasks. 7

5.1 Performance of existed MPI methods (gradient-based + NASWOT)
on NAS-Bench-101 evaluated by Spearman’s ρ. 16

5.2 Performance of existed MPI methods (gradient-based + NASWOT +
ZenNAS) on NAS-Bench-201 evaluated by Spearman’s ρ. 17

5.3 Performance of existed MPI methods on five design spaces in NDS
trained over CIFAR-10 evaluated by Kendall’s Tau. 18

5.4 Mean ± std accuracy evaluated on NAS-Bench-201. All results are
averaged over 500 runs. All searches are conducted on CIFAR-10 while
the selected architectures are evaluated on CIFAR-10, CIFAR-100, and
ImageNet16-120. N in parenthesis is the number of networks sampled
in each run. 19

5.5 Mean ± std accuracy evaluated over NAS-Bench-201. All results are
averaged over 500 runs. To make a fair comparison across all the
methods, the search is performed on CIFAR-10 dataset while the
architectures’ performance are evaluated over CIFAR-10, CIFAR-100
and ImageNet16-120. All the methods have a search time budget
of 12000s. Note that the benchmark results might not match with
the original paper as we have run all the experiments from start in a
environment different from [15]. 20

A.1 Comparison with learning-based methods (MLP, LSTM and GATES)
on NAS-Bench-201. GATES-1 represents GATES predictor with only
one layer and GATES-2 denotes GATES predictors with more than
one layers. 30

A.2 Spearman’s ρ evaluated on the latest version of NAS-Bench-201 (NATS-
Bench) . 30

xiii

A.3 Mean ± std accuracy evaluated over NATS-Bench. All results are
averaged over 500 runs. To make a fair comparison across all the
methods, the search is performed on CIFAR-100 dataset while the
architectures’ performance are evaluated over CIFAR-10, CIFAR-100
and ImageNet16-120. All the methods have a search time budget
of 12000s. Note that the benchmark results might not match with
the original paper as we have run all the experiments from start in a
environment different from [15]. 31

xiv

Chapter 1

Introduction

As deep learning methods evolve, neural architectures have gotten progressively larger

and more sophisticated [14, 21, 24, 26, 28, 44, 49], making it increasingly challenging

to manually design model architectures that can achieve state-of-the-art predictive

performance. To alleviate this challenge, recent work has proposed several approaches

to automatically discovering statistically accurate and computationally efficient neural

architectures. The most common approach is neural architecture search (NAS),

which explores a comprehensive search space of potential network architectures that

use a set of predefined network modules as basic building blocks. Recent work

shows that NAS is able to discover architectures that outperform human-designed

counterparts [33, 41, 63].

A key challenge in NAS is quickly assessing the predictive performance of a diverse

set of candidate architectures to discover performant ones. We refer to this task as

model performance inference (MPI). A straightforward approach to MPI is directly

training each candidate architecture on a dataset until convergence and recording

the achieved training loss and validation accuracy [10, 18, 33, 63]. Though accurate,

this approach is computationally prohibitive and cannot scale to large networks or

datasets.

The current practice to efficient MPI is gradient-based methods that leverage

the gradient information of a network at initialization to infer its predictive per-

1

1. Introduction

formance [29, 51, 55]. Compared to directly measuring the accuracy of candidate

networks on a training dataset, gradient-based methods are computationally more

efficient since they only require evaluating a mini-batch of gradients at initialization.

However, existing gradient-based methods rely only on heuristic metrics and lack the

necessary theoretical insights to consolidate their designs.

In this paper, we propose GradSign, a simple yet accurate metric for MPI with

theoretical foundations. GradSign is inspired by analyzing the sample-wise optimiza-

tion landscape of a network. GradSign takes as inputs a mini-batch of sample-wise

gradients evaluated at a random initialization point and outputs a statistical evidence

of a network that highly correlates to its well-trained predictive performance measured

by accuracy on the entire dataset.

Prior theoretical results [5] show that the optimization landscape of a randomly ini-

tialized network is nearly convex and semi-smooth for a sufficiently large neighborhood.

To realize its potential for MPI, we generalize these results to sample-wise optimiza-

tion landscapes and propose a quantity Ψ to measure the density of sample-wise

local optima in the convex areas around a random initialization point. Addition-

ally, we prove that both the training loss and generalization error of a network are

proportionally upper bounded by Ψ2 under reasonable assumptions.

Based on our theoretical results, we design GradSign, an accurate and simple

approximation of Ψ. Empirically, we show that GradSign can also generalize to

realistic setups that may violate our assumptions. In addition, GradSign is efficient to

compute and easy to implement as it uses only the sample-wise gradient information

of a network at a random initialization point.

Extensive evaluation of GradSign on seven NAS benchmarks (i.e., NAS-Bench-101,

NAS-Bench-201, and five design spaces of NDS) across three datasets (i.e., CIFAR-10,

CIFAR-100, and ImageNet16-120) shows that GradSign consistently outperforms

existing gradient-based methods in all circumstances. Furthermore, we have integrated

GradSign into existing NAS algorithms and show that the GradSign-assisted variants

of these NAS algorithms lead to more accurate architectures.

Contributions. This paper makes the following contributions:

2

1. Introduction

• We provide a new perspective to view the overall optimization landscape of a

network as a combination of sample-wise optimization landscapes. Based on

this insight, we introduce a new quantity Ψ that provides an upper bound on

both the training loss and generalization error of a network under reasonable

assumptions.

• To infer Ψ, we propose GradSign, an accurate and simple estimation of Ψ.

GradSign enables fast and efficient MPI using only the sample-wise gradients

of a network at initialization.

• We empirically show that GradSign generalizes to modern network architectures

and consistently outperforms existing gradient-based MPI methods. Addition-

ally, GradSign can be directly integrated into a variety of NAS algorithms to

discover more accurate architectures.

3

1. Introduction

4

Chapter 2

Related Work

2.1 Model Performance Inference

Table 2.1 summarizes existing approaches to inferring the statistical performance of

neural architectures.

Sample-based methods assess the performance of a neural architecture by training

it on a dataset. Though accurate, sample-based methods require a surrogate training

procedure to evaluate each architecture. EconNAS [62] mitigates the cost of training

candidate architectures by reducing the number of training epochs, input dataset

sizes, resolution of input images, and model sizes.

Theory-based methods leverage recent advances in deep learning theory, such as

Neural Tangent Kernel [25] and Linear Region Analysis [46], to assess the predictive

performance of a network [10, 37, 39]. In particular, NNGP [39] infers a network’s

performance by fitting its kernel regression parameters on a training dataset and

evaluating its accuracy on a validation set, which alleviates the burden of training.

As another example, Chen et al. [10] utilizes the kernel condition number proposed in

Xiao et al. [59], which can be theoretically proved to correlate to training convergence

rate and generalization performance. However, this theoretical evidence is only

guaranteed for extremely wide networks with a specialized initialization mode. While

the linear region analysis used in Mellor et al. [37], Lin et al. [32] and Chen et al.

5

2. Related Work

[10] is easy to implement, such technique is only applicable to networks with ReLU

activations [4].

Learning-based methods train a separate network (e.g., graph neural networks)

to predict a network’s accuracy [11, 12, 33, 35, 47, 57]. Though these learned models

can achieve high accuracies on a specific task, this approach requires constructing a

training dataset with sampled architectures for each downstream task. As a result,

existing learning-based methods are generally task-specific and computationally

prohibitive.

Gradient-based methods infer the statistical performance of a network by leverag-

ing its gradient information at initialization, which can be easily obtained using an

automated differentiation tool of today’s ML frameworks, such as PyTorch [40] and

TensorFlow [1]. The weight-wise salience score computed by several pruning at initial-

ization [29, 51, 55] methods can easily be adapted to MPI settings by summing scores

up. Though lack of theoretical foundations, such migrations have been empirically

proven to be effective as baselines in recent works [2, 32, 37]. An alternative stream of

work [52, 53, 54] uses approximated second-order gradients, known as empirical Fisher

Information Matrix (FIM), at a random initialization point to infer the performance

of a network. Empirical FIM [36] is a valid approximation of a model’s predictive

performance only if the model’s parameters are a Maximum Likelihood Estimation

(MLE). However, this assumption is invalid at a random initialization point, making

FIM-based algorithms inapplicable. A key difference between GradSign and existing

gradient-based methods is that GradSign is based on a fine-grained analysis of sample-

wise optimization landscapes rather than heuristic insights. In addition, GradSign

also provides the first attempt for MPI by leveraging the optimization landscape

properties contained in sample-wise gradient information, while prior gradient-based

methods only focus on gradients evaluated in a full batch fashion.

2.2 Neural Architecture Search

Recent work [8, 9, 22, 23, 50] has proposed several algorithms to explore a NAS

search space and discover highly accurate networks. RS [6] is one of the baseline

6

2. Related Work

Table 2.1: A summary of existing methods for model performance inference. The right
four columns show (1) whether a method is based on theoretical results, (2) whether
a method avoids expensive training process, (3) whether a method is applicable to
different model architectures, and (4) whether a method is applicable across different
tasks.

Methods
Theoretical Training Model Task

Insight Free Independent Independent

Sample-Based EconNAS ✗ ✗ ✓ ✓

Theory-Based
NNGP, TE-NAS, ✓ ✓ ✗ ✓

NASWOT, ZenNAS

Learning-Based
Neural Predictor, ✗ ✗ ✓ ✗

One-Shot-NAS-GCN

Gradient-Based
Snip, Grasp, Synflow ✗ ✓ ✓ ✓

Fisher
GradSign (this paper) ✓ ✓ ✓ ✓

algorithms that generates and evaluates architectures randomly in the search space.

REINFORCE [58] moves a step forward by reframing NAS as a reinforcement learning

task where accuracy is the reward and architecture generation is the policy action.

Given limited computational resources, BOHB [17] uses Bayesian Optimization

(BO) to propose candidates while uses HyperBand(HB) [30] for searching resource

allocation. REA [43] uses a simple yet effective evolutionary searching strategy

that achieves state-of-the-art performance. GradSign is complementary to and can

be combined with existing NAS algorithms. We integrate GradSign into the NAS

algorithms mentioned above and show that GradSign can consistently assist these

NAS algorithms to discover more accurate architectures on various real-world tasks.

2.3 Optimization Landscape Analysis

Inspired by the fact that over-parameterized networks always find a remarkable fit for a

training dataset [61], optimization landscape analysis has been one of the main focuses

in deep learning theory [5, 7, 16, 19, 31, 48]. Even though existing theoretical results

for optimization landscape analysis rely on strict assumptions on the landscape’s

smoothness, convexity, and initialization point, we can leverage theoretical insights

7

2. Related Work

to guide the design of GradSign. In addition, SGD-based optimizers trained from

randomly initialized points hardly encounter non-smoothness or non-convexity in

practice for a variety of architectures [20]. Furthermore, Allen-Zhu et al. [5] provides

theoretical evidence that for a sufficiently large neighborhood of a randomly initialized

point, the optimization landscape is nearly convex and semi-smooth. Different from

existing optimization landscape analyses depending on objectives evaluated across

a mini-batch of training samples, we propose a new perspective that decomposes a

mini-batch objective into the aggregation of sample-wise optimization landscapes.

To the best of our knowledge, our work is the first attempt to MPI by leveraging

sample-wise optimization landscapes.

8

Chapter 3

Theoretical Foundations

3.1 Insights

Conventional optimization landscape analyses focus on objectives across a mini-batch

of training samples and miss potential evidence hidden in the optimization landscapes

of individual samples. By decomposing a mini-batch objective into the summation of

sample-wise objectives across individual samples in a mini-batch, we can distinguish

better local optima as illustrated in Figure 3.1. Both Section 3.1 and Section 3.1 reach

a local optimum at θ∗ for the mini-batch objective J = 1
2
(l(fθ∗(x1), y1)+l(fθ∗(x2), y2)).

However, the optimization landscape in Section 3.1 contains a better local optimum

θ∗ (i.e., a lower J). This can be distinguished by analyzing the relative distance

between local optima across training samples (i.e., |θ∗1 − θ∗2| in Figure 3.1).

For a mini-batch with more than two samples, we use a sample-wise local optima

density measurement Ψ defined in Section 3.2 to represent the overall closeness of

sample-wise local optima. Intuitively, as the distances between the local optima across

samples reduce (shown as the red areas in Figure 3.1), there is a higher probability

that the gradients of different samples evaluated at a random initialization point have

the same sign (shown as the green areas in Figure 3.1). Driven by this insight, we

propose GradSign to infer the sample-wise local optima density Ψ statistically. The

design of GradSign is based on our theoretical results that a network with denser

9

3. Theoretical Foundations

θ*

θ*1

l(fθ(x1), y1)

θ*2

l(fθ(x2), y2)

|θ*1 − θ*2 |

θ

l

(a) Optimization landscape with
sparser sample-wise local optima
corresponding to worse J(θ∗).

θ

l

θ*
θ*1

l(fθ(x1), y1)

θ*2

l(fθ(x2), y2)

|θ*1 − θ*2 |

(b) Optimization landscape with denser
sample-wise local optima corre-
sponding to better J(θ∗).

Figure 3.1: Illustration of our theoretical insight that denser sample-wise local optima
indicate lower training losses. As the distances (|θ∗1 − θ∗2|, shown in red) between the
local optima across samples reduce, there is a higher probability that the gradients of
different samples have the same sign at a random initialization point, shown as the
green areas.

sample-wise local optima has lower training and generalization losses under reasonable

assumptions. We introduce the notations and assumptions in Section 3.2, provide a

formal derivation of our theoretical results in Section 3.3, and present GradSign in

Chapter 4.

3.2 Preliminaries

We use S = {(xi, yi)}i∈[n] to denote training samples, where each xi ∈ Rd is a feature

vector, and yi is the corresponding label. We use l(ŷi, yi) to represent a loss function

where ŷi is the prediction of our model. We use fθ(·) : Rd → Ro to denote the model

parameterized by θ and use θ0 ∈ Rm to denote random initialized parameters where

m is the number of model parameters. Bold font constant denotes a constant vector

such as 0 = [0, 0, · · · , 0] whose dimension depends on the corresponding situation. D
denotes the underline data distribution, which is the same for training and testing.

Our theoretical results rely on an assumption that there exists a neighborhood

10

3. Theoretical Foundations

Γθ0 for a random initialization point θ0 in which sample-wise optimization landscapes

are almost convex and semi-smooth. Note that our assumption is weaker than that

of [5] since their analysis is focusing on the overall optimization landscape while

we only consider the sample-wise optimization landscape which is a simpler case.

We use {θ∗i }i∈[n] ∈ Γθ0 to denote a local optima in the convex areas attached to

the i-th sample near the initialization point θ0. Under this assumption, the overall

optimization landscape is also convex and semi-smooth within the neighborhood Γθ0

as additive operations preserve both. We use θ∗ to denote a local optimum within

Γθ0 for the mini-batch optimization landscape. Note that θ∗ always lie in the convex

hull of {θ∗i }i∈[n]. Second, we assume that only gradient-based optimizers 1 are used

during training. Thus the optimizer eventually converges to θ∗. Third, our theoretical

analysis assumes that every Hessian in the set {∇2l(fθ(xi), yi)|∀i ∈ [n], θ ∈ Γθ0} is

almost diagonal as in the Neural Tangent Kernel (NTK) regime [25]. Chapter 5

shows that our method generalizes well to real-world networks that may violate this

assumption.

Sample-wise local optima density. We use sample-wise local optima density to

represent the relative closeness of {θ∗i }i∈[n]. Given a dataset S = {(xi, yi)}i∈[n], an

objective function l(ŷi, yi), and a model class fθ(·), we use ΨS,l(fθ0(·)) to measure the

average distance between the local optima across samples {θ∗i }i∈[n] near a random

initialization point θ0:

ΨS,l(fθ0(·)) =

√
H
n2

∑
i,j

∥θ∗i − θ∗j∥1 (3.1)

H ∈ R is a smoothness upper bound: ∀k ∈ [m], i ∈ [n], [∇2l(fθ(xi), yi)]k,k ≤ H. This

upper bound always exists due to the smoothness assumption. Intuitively, ΨS,l(fθ0(·))
can be interpreted as the mean Manhattan distance with respect to each pair of

{θ∗i }i∈[n] normalized by the inverse of the square root of the smoothness upper bound.

The denser {θ∗i }i∈[n] are, the smaller ΨS,l(fθ0(·)) is. In an ideal case, ΨS,l(fθ0(·)) = 0

when all local optima are located at the same point.

1Gradient descent with infinitesimal step size

11

3. Theoretical Foundations

3.3 Main Results

We show the local optimum property of sample-wise optimization landscapes in the

following lemma.

Lemma 1 There exists no saddle point in a sample-wise optimization landscape and

every local optimum is a global optimum.

Using Lemma 1, we can draw a relation between the training error J = 1
n

∑
i l(fθ(xi), yi)

and ΨS,l(fθ0(·)) using the following theorem.

Theorem 2 The training error of a network on a dataset J = 1
n

∑
i l(fθ(xi), yi) is

upper bounded by n3

2
Ψ2

S,l(fθ0(·)), and the bound is tight when ΨS,l(fθ0(·)) = 0.

Finally, we show that ΨS,l(fθ0(·)) also provides an upper bound for the generaliza-

tion performance of a network measured by population loss.

Theorem 3 Given that Var(xu,yu)∼D[∥θ∗ − θ∗u∥21] is bounded by σ2 where θ∗u is a local

optimum attached to the convex area near θ0 for l(fθ(xu), yu). With probability 1 − δ,

the true population loss is upper bounded by n3

2
Ψ2

S,l(fθ0(·)) + σ√
nδ
.

A formal proof of all theoretical results is available in Appendix A.0.2.

Main takeaways: A key takeaway of our theoretical results is that ΨS,l(fθ0(·))
closely relates to an upper bound of the training and generalization performance

of a network. Albeit theoretically sound, ΨSl(fθ0(·)) is intractable to be directly

measured. Instead, we derive a simple yet accurate metric to reflect ΨS,l(fθ0(·)),
which we present in the next section.

12

Chapter 4

Method

Inspired by the theoretical results derived above, we introduce GradSign, a simple

yet accurate metric for model performance inference. The key idea behind GradSign

is a quantity to statistically reflect the relative value of ΨS,l(fθ0(·)). Specifically,

ΨS,l(fθ0(·)) ∝ C −
∑
k

∑
i,j

P (sign([∇θl(fθ(xi), yi)|θ0]k) = sign([∇θl(fθ(xj), yj)|θ0]k))

(4.1)

where C is a constant and k is the vector index. Detailed derivation is given

in Appendix A.0.2. Using the above relation, we can infer ΨS,l(fθ0(·)) by directly

measuring the signs of the gradients for a mini-batch of training samples at a randomly

initialized point instead of going through an end-to-end training process.

To enable more efficient calculation of ΨS,l(fθ0(·)), we make a further simplification

and use the following sample observation:∑
k

|
∑
i

sign([∇θl(fθ(xi), yi)|θ0]k)| (4.2)

to infer the true probability
∑

k

∑
i,j P (sign([∇θl(fθ(xi), yi)|θ0]k) = sign([∇θl(fθ(xj), yj)|θ0]k))

13

4. Method

whose relation is given by:

1

n2

∑
i,j

1sign([∇θl(fθ(xi),yi)|θ0]k)=sign([∇θl(fθ(xj),yj)|θ0]k) (4.3)

∝ |
∑
i

sign([∇θl(fθ(xi), yi)|θ0]k)|2 (4.4)

The proof of this simplification is included in Appendix A.0.2. Given the above

relationship, we formally state our algorithm pipeline in ?? 1. Note that a higher

GradSign score indicates better model performance as we have an inverse correlation

in Equation (4.1).

Algorithm 1: GradSign

Result: GradSign score τf for a function class fθ

Given S = {(xi, yi)}i∈[n], randomly select initialization point θ0;

Initialize g[n,m];

for i = 1, 2, · · · , n do

for k = 1, 2, · · · ,m do
g[i, k] = sign([∇θl(fθ(xi), yi)|θ0]k)

end

end

τf =
∑

k |
∑

i g[i, k]|;
return τf

14

Chapter 5

Experiments

In this section, we empirically verify the effectiveness of our metric against existing

gradient-based methods on three neural architecture search (NAS) benchmarks,

including NAS-Bench-101 [60], NAS-Bench-201 [15] and NDS [42]1. Theory-based,

sample-based, and learning-based methods are excluded in our evaluation, as they

either require further training processes or have strong assumptions not suitable for

generic architectures.

Baselines. We compare GradSign against existing gradient-based methods, including

snip [29], grasp [55], fisher [53], and Synflow. In addition, we also include grad norm

as a heuristic method and a one-shot MPI metric NASWOT[37]. Since all gradient-

based methods share a similar calculation pipeline (i.e., evaluating the gradients of a

mini-batch at a random initialization point), we set the initialization mode and batch

size to be the same across all methods to guarantee fairness. Experimental setup

details are included in Appendix A.0.3. To align with the experimental setup of prior

work [3, 37], we use two criteria to evaluate the correlations between different metrics

and test accuracies across approximately 20k networks:

Spearman’s ρ [13] characterizes the monotonic relationships between two variables.

The correlation score is restricted in range [-1, 1], where ρ = 1 denotes a perfect

1All datasets have consented for research purposes and no identifiable personal information is
included.

15

5. Experiments

positive monotonic relationship and ρ = −1 denotes a perfect negative monotonic

relationship. Following prior work, we use Spearman’s ρ to evaluate gradient-based

methods on NAS-Bench-101 and NAS-Bench-201.

Kendall’s Tau. Similar to Spearman’s ρ as a correlation measurement, Kendall’s

Tau is also restricted between [-1, 1]. While Spearman’s ρ is more sensitive to error

and discrepancies, Kendall’s Tau is more robust with a smaller gross error sensitivity.

We use Kendall’s Tau to quantify the correlation between one-shot metric scores and

model testing accuracies over the NDS search space.

5.1 NAS-Bench-101

NAS-Bench-101 is the first dataset targeting large-scale neural architecture space,

containing 423k unique convolutional architectures trained on the CIFAR-10 dataset.

The benchmark provides the test accuracy of each architecture in the search space,

which we use to calculate the corresponding Spearman’s ρ. We use a randomly

sampled subset with approximately 4500 architectures of the original search space

and a batch size of 64 in this experiment. Table 5.1 summarizes the results. GradSign

significantly outperforms existing gradient-based methods and heuristic approaches

and improves the Spearman’s ρ score by 25% compared to the best existing method

(0.363 → 0.449).

Table 5.1: Performance of existed MPI methods (gradient-based + NASWOT) on
NAS-Bench-101 evaluated by Spearman’s ρ.

Dataset grad norm snip grasp fisher Synflow NASWOT GradSign

CIFAR10 0.263 0.189 0.315 0.3 0.363 0.324 0.449

5.2 NAS-Bench-201

NAS-Bench-201 is an extended version of NAS-Bench-101 with a different search

space, containing 15,625 cell-based candidate architectures evaluated across three

16

5. Experiments

datasets: CIFAR-10, CIFAR-100 [27] and ImageNet 16-120 [45]. The benchmark

provides the test accuracies on the three datasets for all candidate architectures

in the search space. We evaluate Spearman’s ρ scores for GradSign and existing

gradient-based methods. The experiments were conducted overall 15,265 architectures

in NAS-Bench-201. The batch size is set to 64. The results on the three datasets

are summarized in Table 5.2. GradSign consistently achieves the best performance

across all three datasets and improves the Spearman’s ρ scores by ≈ 4% over the

best existing approaches. This improvement is significant as the more Spearman’s ρ

approaches 1, the more difficult it can be further improved.

Table 5.2: Performance of existed MPI methods (gradient-based + NASWOT +
ZenNAS) on NAS-Bench-201 evaluated by Spearman’s ρ.

Dataset ZenNAS grad norm snip grasp fisher Synflow NASWOT GradSign

CIFAR10 -0.016 0.594 0.595 0.51 0.36 0.737 0.728 0.765

CIFAR100 -0.041 0.637 0.637 0.549 0.386 0.763 0.703 0.793

ImageNet16-120 0.032 0.579 0.579 0.552 0.328 0.751 0.696 0.783

We further select 1000 architecture candidates randomly in the NAS-Bench-

201 search space and visualize their testing accuracies against GradSign scores in

Figure A.1. Figure A.1 shows a highly positive correlation between the GradSign

score and actual test accuracy of 1000 architectures. A higher GradSign score

indicates higher confidence for the statistical performance of architecture. Note that

the GradSign scores show a clustering pattern, which may correspond to different

architecture classes in the NAS-Bench-201 search space.

5.3 NAS Design Space (NDS)

NDS is a unified searching framework that includes five different design spaces: NAS-

Net [64], AmoebaNet [43], PNAS [33], ENAS [41], DARTS [34]. Each space contains

approximately one thousand networks fully trained on the CIFAR-10 dataset. We

include the performance of our method along with grad norm, Synflow, and NASWOT

17

5. Experiments

on all five design spaces evaluated by Kendall’s Tau and show the results in Table 5.3.

GradSign significantly and consistently outperforms all other MPI methods in all five

design spaces.

Table 5.3: Performance of existed MPI methods on five design spaces in NDS trained
over CIFAR-10 evaluated by Kendall’s Tau.

DARTS ENAS PNAS NASNet Amoeba

grad norm 0.28 -0.02 -0.01 -0.08 -0.10

Synflow 0.37 0.02 0.03 -0.03 -0.06

NASWOT 0.48 0.34 0.31 0.31 0.20

GradSign 0.54 0.43 0.40 0.31 0.24

5.4 Architecture Selection

We evaluate whether GradSign can be directly used to select highly accurate archi-

tectures in a NAS search space. To pick a top architecture, we randomly sample

N candidates in a NAS search space, choose the one with the highest GradSign

score, and measure its validation/test accuracies (mean±std). We compare GradSign

with Synflow, NASWOT, Random, and Optimal, where Random uniformly samples

architectures in the search space, while Optimal always chooses the best architecture

across N candidates. The results2 are summarized in Table 5.4. N in parenthesis

indicates the number of architectures sampled in each run. All methods can generally

find more accurate architectures with a high N . In addition to outperforming Synflow

and NASWOT, GradSign (N = 100) can also find better networks even compared to

NASWOT(N = 1000). The results show that GradSign can directly identify accurate

architectures besides highly correlating to networks’ test accuracies.

2the results for NASWOT are referenced from their paper [37]

18

5. Experiments

Table 5.4: Mean ± std accuracy evaluated on NAS-Bench-201. All results are
averaged over 500 runs. All searches are conducted on CIFAR-10 while the selected
architectures are evaluated on CIFAR-10, CIFAR-100, and ImageNet16-120. N in
parenthesis is the number of networks sampled in each run.

Methods
CIFAR-10 CIFAR-100 ImageNet16-120

Validation Test Validation Test Validation Test

Synflow(N=100) 89.83±0.75 93.12±0.52 69.89±1.87 69.94±1.88 41.94±4.13 42.26±4.26

NASWOT(N=100) 89.55±0.89 92.81±0.99 69.35±1.70 69.48±1.70 42.81±3.05 43.10±3.16

NASWOT(N=1000) 89.69±0.73 92.96±0.81 69.98±1.22 69.86±1.21 44.44±2.10 43.95±2.05

GradSign(N=100) 89.84±0.61 93.31±0.47 70.22±1.32 70.33±1.28 42.07±2.78 42.42±2.81

Random 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66

Optimal(N=100) 91.05±0.28 93.84±0.23 71.45±0.79 71.56±0.78 45.37±0.61 45.67±0.64

5.5 GradSign-Assisted Neural Architecture

Search

Besides evaluating GradSign on the Spearman’s ρ and Kendall’s Tau scores as prior

work, we also integrate GradSign into various neural architecture search algorithms

and evaluate how GradSign can assist neural architecture search on real-world tasks.

Specifically, we integrate GradSign into four NAS algorithms: REA, REINFORCE,

BOHB and RS. We design a corresponding method for each NAS algorithm that uses

the GradSign scores of candidate architectures to guide the search. Specifically, we

integrate GradSign into each NAS algorithm by replacing the random selection of

architectures with GradSign-assisted selection. We name these GradSign-assisted

variants G-REA, G-REINFROCE, G-HB, and G-RS, and describe their algorithm

details in Appendix A.

To evaluate how GradSign can improve the search procedure of NAS algorithms,

we run each algorithm with and without GradSign’s assistance for 500 runs on

NAS-Bench-201 and report the validation and test accuracies of the best-discovered

architecture in each run. Following prior work [15, 37], all searches are conducted

on the CIFAR-10 dataset with a time budget of 12000s while the performance is

19

5. Experiments

evaluated on CIFAR-10, CIFAR-100 and ImageNet16-120. The baselines also include

A-REA [37], a variant of REA that uses the NASWOT scores at the initial population

selection phase.

Table 5.5 shows the results. The GradSign-assisted NAS algorithms outperform

their counterparts by improving test accuracy by up to 0.3%, 1.1%, and 1.0% on the

three datasets.

Table 5.5: Mean ± std accuracy evaluated over NAS-Bench-201. All results are
averaged over 500 runs. To make a fair comparison across all the methods, the search
is performed on CIFAR-10 dataset while the architectures’ performance are evaluated
over CIFAR-10, CIFAR-100 and ImageNet16-120. All the methods have a search time
budget of 12000s. Note that the benchmark results might not match with the original
paper as we have run all the experiments from start in a environment different from
[15].

Methods
CIFAR-10 CIFAR-100 ImageNet16-120

Validation Test Validation Test Validation Test

REA 91.08±0.45 93.85±0.44 71.59±1.33 71.64±1.25 44.90±1.20 45.25±1.41

A-REA 91.20±0.27 - 71.95±0.99 - 45.70±1.05 -

G-REA 91.27±0.58 94.10±0.52 72.64±1.57 72.70±1.50 45.69±1.33 45.7±1.32

RS 90.93±0.37 93.72±0.38 70.96±1.12 71.07±1.07 44.47±1.08 44.61±1.22

G-RS 91.24±0.21 94.02±0.21 72.15±0.77 72.20±0.76 45.38±0.79 45.77±0.79

REINFORCE 90.32±0.89 93.21±0.82 70.03±1.75 70.14±1.73 43.57±2.09 43.64±2.24

G-REINFORCE 90.47±0.55 93.37±0.47 70.00±1.20 70.20±1.29 44.33±1.25 44.05±1.48

BOHB 90.84±0.49 93.64±0.49 70.82±1.29 70.92±1.26 44.36±1.37 44.50±1.50

G-HB 91.18±0.26 93.96±0.25 71.92±0.92 71.99±0.85 45.29±0.84 45.53±0.92

20

Chapter 6

Conclusions

In this paper, we propose a model performance inference metric GradSign and provide

theoretical foundations to support our metric. Instead of focusing on full batch

optimization landscape analysis, we move a step further to sample-wise optimization

landscape properties, which give us additional information to uncover the quality of

the local optima encountered on the optimization trajectory. We propose ΨS,l(fθ0(·))
to quantitatively characterize the potential of a model fθ(·) at a random initialization

point θ0 based on our theory results. Finally, we design the GradSign metric to statis-

tically infer the value of ΨS,l(fθ0(·)) to give out our final score for model performance

inference. Empirically, we have demonstrated that our method consistently achieves

the best correlation with true model performance among all other gradient-based

metrics. In addition, we also verified the practical value of our method in assisting

existed NAS algorithms to achieve better results. Given that our metric is generic

and promising, we believe that our work not only assists in accelerating MPI-related

applications but sheds some light on optimization landscape analysis as well. Mean-

while, the effectiveness of our method may further reduce the energy cost introduced

by modern NAS algorithms. In addition, one of the future work of GradSign can

be adding normalization across different architecture classes to tackle the clustering

problem in Figure A.1.

21

6. Conclusions

22

Appendix A

Appendix

A.0.1 Figure

0.0 0.2 0.4 0.6 0.8 1.0 1.2
GradSign metric score 1e7

10
20
30
40
50
60
70
80
90

M
od

el
 a

cc
ur

ac
y

CIFAR-10

(a) CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
GradSign metric score 1e7

0
10
20
30
40
50
60
70

M
od

el
 a

cc
ur

ac
y

CIFAR-100

(b) CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0 1.2
GradSign metric score 1e7

0

10

20

30

40
M

od
el

 a
cc

ur
ac

y

ImageNet16-120

(c) ImageNet16-120

Figure A.1: Visualization of model testing accuracy versus GradSign metric score on
CIFAR10, CIFAR100, ImageNet16-120.

A.0.2 Proof

Lemma 1 Proof: For a single training sample (xi, yi), we minimize its objective

function l(fθ(xi), yi) with gradient descent:

∇θl(fθ(xi), yi) =
∂l(fθ(xi), yi)

∂fθ(xi)
· f ′

θ(xi) (A.1)

23

A. Appendix

At any local optimal point θ∗i , we have ∇θl(fθ(xi), yi)|θ∗i = 0, but f ′
θ(xi) ̸= 0 for

conventional neural architectures with at least one dense layer 1. Therefore, we show
∂l(fθ(xi),yi)

∂fθ(xi)
|θ∗i must be equal to 0. For the commonly used objective functions, such

as Mean Squared Error Loss and Cross Entropy Loss, this derivative is equal to

C(fθ(xi) − yi), where C is a non-zero constant. Hence we have fθ∗i (xi) = yi and

l(fθ∗i (xi), yi) = 0 at local optima θ∗i , which makes θ∗i also a global optima as it is

impossible to obtain a lower loss value for this single sample. In addition, at local

optima θ∗i , we have:

∇2
θl(fθ(xi), yi) = ∇θ(

∂l(fθ(xi), yi)

∂fθ(xi)
· f ′

θ(xi)) (A.2)

=
∂2l(fθ(xi), yi)

∂fθ(xi)2
· f ′

θ(xi)f
′
θ(xi)

⊤ +
∂l(fθ(xi), yi)

∂fθ(xi)
· f ′′

θ (xi) (A.3)

= C · f ′
θ(xi)f

′
θ(xi)

⊤ (A.4)

The above equation implies that ∇2
θl(fθ(xi), yi) is a positive semi-definite matrix, since

C > 0. This concludes the proof of non existence of saddle points in a sample-wise op-

timization landscape. This result aligns with our convexity assumptions in Section 3.2.

Theorem 2 Proof: Recall that θ∗ denotes a local optima of J which could be

reached by a gradient-flow based optimizer start from θ0. Since θ0 is randomly

1The gradient values corresponding to the bias term of the last dense layer are always non-zero.

24

A. Appendix

sampled and [∇2l(fθ(xi), yi)]k,k ≤ H, we have:

J =
1

n

∑
i

l(fθ∗(xi), yi) (A.5)

≤ 1

n

∑
i

H · ∥θ∗ − θ∗i ∥22 (A.6)

≤ H
n

∑
i

∥θ∗ − θ∗i ∥21 (A.7)

≤ H
n

∑
i,j

∥θ∗i − θ∗j∥21 (A.8)

≤ n3Ψ2
S,l(fθ0(·)) (A.9)

where Eq A.5 → Eq A.6 uses the basic property of the smoothness upper bound H
and the fact that each local optimum θ∗i satisfies l(fθ∗i (xi), yi) = 0. Eq A.6 → Eq A.7

uses Jensen Inequality for square root operators. Eq A.7 → Eq A.8 is derived from

the fact that for each dimension in (θ∗ − θ∗i) we have:

|[θ∗ − θ∗i]k| ≤
∑
j

|[θ∗j − θ∗i]k| (A.10)

Otherwise, θ∗ dose not lie in the convex hull of {θ∗i }i∈[n] which contradicts with our

assumption stated in Section 3.2. The bound is tight when θ∗i = θ∗j ,∀i, j ∈ [n].

Eq A.5→Eq A.6: As we have ∇2l(fθ(xi), yi) ⪯ HI and l(fθ∗i (xi), yi) = 0,∇θl(fθ(xi), yi)|θ∗i =

0, we could derive the following inequality:

l(fθ∗(xi), yi) ≤ l(fθ∗i (xi), yi) + ∇θl(fθ∗i (xi), yi)
⊤(θ∗ − θ∗i) +

H
2
∥θ∗ − θ∗i ∥22(A.11)

=
H
2
∥θ∗ − θ∗i ∥22 (A.12)

we thus have 1
n

∑
i l(fθ∗(xi), yi) ≤ 1

2n

∑
i H · ∥θ∗ − θ∗i ∥22.

Theorem 3 Proof: Let E(xu,yu)∼D[l(f ∗
θ (xu), yu)] denotes the true population error.

25

A. Appendix

With probability 1 − δ, we have:

E(xu,yu)∼D[l(f ∗
θ (xu), yu)] ≤ HE(xu,yu)∼D[∥θ∗ − θ∗u∥21] (A.13)

≤ H
n

n∑
i=1

∥θ∗ − θ∗i ∥21 +
σ√
nδ

(A.14)

≤ n3Ψ2
S,l(fθ0(·)) +

σ√
nδ

(A.15)

where n and σ are constants, S is a training dataset, and D denotes its underlying

data distribution. This implies that ΨS,l(fθ0(·)) is an accurate indicator for the true

population loss. Eq A.13 → Eq A.14 uses Chebyshev’s inequality, while Eq A.14 →
Eq A.15 uses the same inequality derived in Claim 2.

Algorithm Proof: Given that sample-wise local optima {[θ∗i], i ∈ [n]} are contained

in the convex area around θ0. We derive the following property:

sign([θ∗i − θ0]k) = sign([∇θl(fθ(xi), yi)|θ0]k) (A.16)

Since θ0 is a randomly chosen initialization point, without loss of generality, we

assume θ0 is sampled from a hypercube [−a, a]. Thus we have:

P (sign([∇θl(fθ(xi), yi)|θ0]k) ̸= sign([∇θl(fθ(xj), yj)|θ0]k)) =
|[θ∗i]k − [θ∗j]k|

2a
(A.17)

Where P (sign([∇θl(fθ(xi), yi)|θ0]k) ̸= sign([∇θl(fθ(xj), yj)|θ0]k)) denotes the prob-

ability for [∇θl(fθ(xi), yi)|θ0]k and [∇θl(fθ(xj), yj)|θ0]k having different signs. Notice

that we have completely dropped the dependency for θ∗i at this point and can simply

infer from sign([∇θl(fθ(xi), yi)|θ0]k). To complete our proof:

26

A. Appendix

ΨS,l(fθ0(·)) =

√
H
n

∑
i,j

∥θ∗i − θ∗j∥1 (A.18)

=
2a

√
H

n

∑
k

∑
i,j

P (sign([∇θl(fθ(xi), yi)|θ0]k) ̸= sign([∇θl(fθ(xj), yj)|θ0]k))(A.19)

∝ n2 −
∑
k

∑
i,j

P (sign([∇θl(fθ(xi), yi)|θ0]k) = sign([∇θl(fθ(xj), yj)|θ0]k))(A.20)

Simplification Proof:: for each i, j and a given k, we could estimate P (sign([∇θl(fθ(xi), yi)|θ0]k) =

sign([∇θl(fθ(xj), yj)|θ0]k)) using:

|sign([∇θl(fθ(xi), yi)|θ0]k) + sign([∇θl(fθ(xj), yj)|θ0]k)|
2

(A.21)

which is valid (not equal to zero) only when sign([∇θl(fθ(xi), yi)|θ0]k) == sign([∇θl(fθ(xj), yj)|θ0]k).

Suppose we have p positive and n-p negative sign([∇θl(fθ(xi), yi)|θ0]k) for n samples,

since we only care about samples share the same sign, the original probability estima-

tion is (n−p)2+p2

n2 = 1
2

+ (n−2p)2

2n2 . Thus we only need to measure the quantity |n− 2p|
which simply equals to |

∑
i sign([∇θl(fθ(xi), yi)|θ0]k)|.

A.0.3 Experiments Setup

The code we used during experimentation was mainly based on existed code base

[3, 37][3] which is under Apache-2.0 License.

The hardwares we used were Amazon EC2 C5 instances with no GPU involved

and p3 instance with one V100 Tensor Core GPU.

As our methods is gradient-based which is training free, we don’t need to split

our dataset. For Spearman’s correlation measurement on NAS-Bench-201, we set

batch size to 64, which is used by most baselines. For the Kendall’s Tau experiment,

other accuracy comparison experience and the GradSign assisted algorithms, we used

a batch size of 128, also to match the batch size in other baselines (NASWOT). We

use Pytorch default parameter initialization for all architectures. Random seed in

27

A. Appendix

correlation experiments is set to 42 which is also randomly chosen. For accuracy

experiments, our results are summarized over 500 runs whose random seed are chosen

randomly for each run. For the correlation evaluation of each individual architecture,

we only use one θ0 for minimizing computational cost. Our approach can be easily

generalized to an average of multiple θ0s and can trade-off between efficiency and

accuracy.

A.0.4 Additional results

Sample-based: Fig A.2 compares EconNAS, a sample-based method, with existing

gradient-based methods on MPI. Results of EconNAS are referenced from Abdelfattah

et al. [3]. To achieve a similar MPI performance as GradSign, EconNAS needs 500

minibatches of samples for each candidate’s proxy training, while all gradient-based

methods (including GradSign) require only one minibatch. By increasing the number

of minibatches, EconNAS can achieve higher Spearman’s ρ scores, which eventually

converge to 0.85. At that point overfitting takes place and the score cannot be further

improved.

28

A. Appendix

0 500 1000 1500 2000
Evaluation Cost (number of minibatches)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Sp
ea

rm
an

grad_norm
snip

grasp

synflow
naswot

gradsigneconas

econas

0 1 2 3 4 5 6 7 8 9 10 11
Epochs

Figure A.2: Comparison with sample-based methods (EconNAS) on NAS-Bench-201
across CIFAR-10. EconNAS requires more than 500 minibatches to have a better
performance than GradSign while gradient-based methods only require 1 minibatch.

Learning-based: Table A.1 compares GradSign and existing learning-based methods

(MLP, LSTM, and GATES) on the Kendall’s Tau correlation score. The MLP, LSTM,

and GATES results are referenced from Ning et al. [38]. For MLP and LSTM [56],

the predictor uses Multi Layer Perceptron (MLP) and Long Short Term Memory

(LSTM) as the base predictor, while GATES [38] uses Graph Neural Network (GNN)

as the base predictor. All results are obtained on NAS-Bench-201 and the GradSign’s

score is averaged over all three datasets (CIFAR-10, CIFAR-100 and ImageNet16-120)

as [38] does not provide which dataset is used for calculating Kendall’s Tau.

To achieve a similar score as GradSign, MLP, LSTM and GATES-1 require an

average of 1959, 978 and 1959 minibatches per sample respectively to prepare the

dataset for training the predictors. Although GATES-2 achieves a better correlation

score than GradSign, it still needs 195 minibatches per sample to prepare the dataset

29

A. Appendix

for training the GATES-2 predictor. In addition to the cost of preparing a training

dataset, each predictor also has to be trained on the dataset as well, which involves

200 more epochs while the cost of evaluating GradSign is one mini-batch. With less

mini-batches evaluated for learning-based methods, their training set sizes shrink

significantly (e.g., 195 mini-batches equal to 78 training samples and 7813 testing

samples). This may result in overfitting to the training set.

Table A.1: Comparison with learning-based methods (MLP, LSTM and GATES)
on NAS-Bench-201. GATES-1 represents GATES predictor with only one layer and
GATES-2 denotes GATES predictors with more than one layers.

Kendall’s Tau Average minibatches per sample

MLP 0.5388 1959

LSTM 0.6407 978

GATES-1 0.45 1959

GATES-2 0.7401 195

GradSign 0.6016 1

We also includes the evaluation of GradSign for both MPI correlation performance

and GradSign-assisted NAS algorithms on the latest version of NAS-Bench-201

(NATS-Bench) across three datasets (CIFAR-10, CIFAR-100 and ImageNet16-120)

in Table A.2, Table A.3. Results show GradSign is robust against hyper-parameter

tuning as long as the trained networks can converge to near optimal. Also notice

that GradSign-assisted NAS algorithms could not only achieve a better accuracy but

lower variance as well compared to their non-assisted counterparts.

Table A.2: Spearman’s ρ evaluated on the latest version of NAS-Bench-201 (NATS-
Bench)

CIFAR-10 CIFAR-100 ImageNet16-120

NAS-Bench-201 0.765 0.793 0.783

NATS-Bench 0.760 0.792 0.784

30

A. Appendix

Table A.3: Mean ± std accuracy evaluated over NATS-Bench. All results are
averaged over 500 runs. To make a fair comparison across all the methods, the
search is performed on CIFAR-100 dataset while the architectures’ performance are
evaluated over CIFAR-10, CIFAR-100 and ImageNet16-120. All the methods have a
search time budget of 12000s. Note that the benchmark results might not match with
the original paper as we have run all the experiments from start in a environment
different from [15].

Methods
CIFAR-10 CIFAR-100 ImageNet16-120

Validation Test Validation Test Validation Test

REA 91.06±0.49 93.84±0.45 71.53±1.31 71.60±1.27 44.82±1.23 45.18±1.37

G-REA 91.35±0.35 94.15±0.32 72.67±1.05 72.65±0.97 45.55±0.96 45.99±0.93

RS 90.95±0.28 93.77±0.26 71.01±0.97 71.15±0.95 44.58±0.95 44.73±1.10

G-RS 91.23±0.22 94.02±0.22 72.12±0.82 72.15±0.78 45.43±0.74 45.83±0.80

REINFORCE 90.92±0.38 93.71±0.37 71.04±1.02 71.17±1.12 44.56±0.97 44.80±1.18

G-REINFORCE 91.20±0.23 93.98±0.23 71.93±0.91 72.05±0.89 45.28±0.77 45.64±0.86

To demonstrate the potential for GradSign in a more complicated computer vision

task, we compare the performance of GradSign with ZenNAS following their setups

and search space. Due to the limitation of computational resources2, we only run

10000 evolution iterations using solely Zen score or GradSign score to select the

architecture candidate and 20 epochs to train the selected architecture. Following

ZenNAS’s setup, EfficientNet-B3 is used as teacher network when training selected

architectures. Though the top-1 validation accuracy of GradSign in the first 20 epochs

is slightly better than Zen, we should note that this process can highly depend on the

random seed for evolution search phase. As we mentioned before, ZenNAS uses linear

region analysis which makes it less flexible for arbitrary activation functions. On the

other hand, since ZenNAS calculates an architecture complexity related score which

is both dataset independent and initialization independent, it can be too general and

results in low Spearman’s ρ as shown in Table 5.2.

2the original setup in ZenNAS could take up to 8 months for training 480 epochs on ImageNet-1k

31

A. Appendix

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

0

10

20

30

40

50

60

To
p-

1
Ac

c

ImageNet-1k
GradSign
Zen

Figure A.3: Comparison with ZenNAS in their search space on ImageNet-1k. Due to
the limitation of computational resources, we only run 10000 evolution iterations and
20 epochs to train the selected architecture. We plot the top-1 prediction accuracy
along training for two methods (ZenNAS, GradSign).

A.0.5 GradSign assisted NAS algorithms

32

A. Appendix

Algorithm 2: G-REA

Result: Find the best performing architecture given the time constraint for
12000s

Population = [];
History = [];
population size;
sample size;
pool size;
for 1, 2, · · · ,population size do

model = random.arch();
model.acc, model.time cost = eval(model);
Population.append(model);
History.append(model);

end
while not exceeding time budget do

Sample = [];
for 1, 2, · · · ,sample size do

Sample.append(random.choice(Population))
end
parent = max acc(Sample);
GradSign pool = [];
for 1, 2, · · · ,pool size do /* GradSign assisted part */

model = mutate arch(parent);
model.score = GradSign(model);
GradSign pool.append(model);

end
child = max score(GradSign pool);
Population.append(child);
History.append(child);
Population.popleft();

end
return max acc(History)

33

A. Appendix

Algorithm 3: G-RS

Result: Find the best performing architecture given the time constraint for
12000s

History = [];
pool size;
while not exceeding time budget do

GradSign pool = [];
for 1, 2, · · · ,pool size do /* GradSign assisted part */

model = random arch();
model.score = GradSign(model);
GradSign pool.append(model);

end
arch = max score(GradSign pool) arch.acc = eval(arch)
History.append(arch);

end
return max acc(History);

34

A. Appendix

Algorithm 4: G-REINFORCE

Result: Find the best performing architecture given the time constraint for
12000s

History = [];
pool size;
policy πθ0 ;
Reward = [];
baseline;
while not exceeding time budget do

arch = generate arch(πθi);
GradSign pool = [];
for 1, 2, · · · ,pool size do /* GradSign assisted part */

child = mutate arch(arch);
child.score = GradSign(child);
GradSign pool.append(child);

end
arch = max score(GradSign pool);
arch.acc = eval(arch);
r= arch.acc;
History.append(arch);
Reward.append(r);
baseline.update(r);
θi+1 = θi + ∇θEπθi

[r − baseline]

end
return max acc(History);
return

35

A. Appendix

Algorithm 5: G-HB

Result: Find the best performing architecture given the time constraint for
12000s

Input: budgets bmin and bmax, η;

smax = ⌊logη
bmax

bmin
⌋;

score list = [];
pool size;
for s ∈ {smax, smax−1, · · · , 0} do

config space = [];
set n = ⌈ smax+1

s+1
· ηs⌉;

while sizeof(config space) ¡ n do
GradSign pool = [];
for 1, 2, · · · ,pool size do /* GradSign assisted part */

model = random arch();
if model in score list then

model.score = score list[model];
else

model.score = GradSign(model);
score list[model] = model.score;

end
GradSign pool.append(model);

end
arch = max score(GradSign pool);
config space.append(arch);

end
run SH on them with initial budget as ηs · bmax;

end
return best evaluated architecture;

36

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16), pages
265–283, 2016. 2.1

[2] Mohamed S Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas D
Lane. Zero-cost proxies for lightweight nas. arXiv preprint arXiv:2101.08134,
2021. 2.1

[3] Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas D.
Lane. Zero-Cost Proxies for Lightweight NAS. In International Conference on
Learning Representations (ICLR), 2021. 5, A.0.3, A.0.4

[4] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375, 2018. 2.1

[5] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep
learning via over-parameterization. In International Conference on Machine
Learning, pages 242–252. PMLR, 2019. 1, 2.3, 3.2

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of machine learning research, 13(2), 2012. 2.2

[7] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a
convnet with gaussian inputs. In International conference on machine learning,
pages 605–614. PMLR, 2017. 2.3

[8] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture
search on target task and hardware. arXiv preprint arXiv:1812.00332, 2018. 2.2

[9] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-
all: Train one network and specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791, 2019. 2.2

37

Bibliography

[10] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang,
Zhangyang Wang, and Michael Carbin. The lottery ticket hypothesis for pre-
trained bert networks. arXiv preprint arXiv:2007.12223, 2020. 1, 2.1

[11] Xin Chen, Lingxi Xie, Jun Wu, Longhui Wei, Yuhui Xu, and Qi Tian. Fitting
the search space of weight-sharing nas with graph convolutional networks. arXiv
preprint arXiv:2004.08423, 2020. 2.1

[12] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan
Wang, Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, et al. Chamnet:
Towards efficient network design through platform-aware model adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11398–11407, 2019. 2.1

[13] Wayne W Daniel et al. Applied nonparametric statistics. 1990. 5

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding, 2019.
1

[15] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible
neural architecture search. arXiv preprint arXiv:2001.00326, 2020. (document),
5, 5.5, 5.5, A.3

[16] Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos.
Gradient descent learns one-hidden-layer cnn: Don’t be afraid of spurious local
minima. In International Conference on Machine Learning, pages 1339–1348.
PMLR, 2018. 2.3

[17] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient
hyperparameter optimization at scale. In International Conference on Machine
Learning, pages 1437–1446. PMLR, 2018. 2.2

[18] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635, 2018. 1

[19] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural
networks with landscape design. arXiv preprint arXiv:1711.00501, 2017. 2.3

[20] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing
neural network optimization problems. arXiv preprint arXiv:1412.6544, 2014.
2.3

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015. 1

[22] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-

38

Bibliography

art. Knowledge-Based Systems, 212:106622, 2021. 2.2

[23] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le,
and Hartwig Adam. Searching for mobilenetv3. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2019. 2.2

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift, 2015. 1

[25] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. arXiv preprint arXiv:1806.07572,
2018. 2.1, 3.2

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017. 1

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009. 5.2

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):
84–90, 5 2017. ISSN 1557-7317. doi: 10.1145/3065386. URL http://dx.doi.

org/10.1145/3065386. 1

[29] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-
shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340, 2018. 1, 2.1, 5

[30] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research, 18(1):6765–6816, 2017.
2.2

[31] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks
with relu activation. arXiv preprint arXiv:1705.09886, 2017. 2.3

[32] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li,
and Rong Jin. Zen-nas: A zero-shot nas for high-performance image recognition.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 347–356, 2021. 2.1

[33] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural
architecture search. In Proceedings of the European conference on computer
vision (ECCV), pages 19–34, 2018. 1, 2.1, 5.3

39

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386

Bibliography

[34] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architec-
ture search. arXiv preprint arXiv:1806.09055, 2018. 5.3

[35] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu.
Semi-supervised neural architecture search. arXiv preprint arXiv:2002.10389,
2020. 2.1

[36] James Martens. New insights and perspectives on the natural gradient method.
arXiv preprint arXiv:1412.1193, 2014. 2.1

[37] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural
architecture search without training, 2021. 2.1, 5, 2, 5.5, A.0.3

[38] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A
generic graph-based neural architecture encoding scheme for predictor-based nas.
In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XIII 16, pages 189–204. Springer, 2020.
A.0.4

[39] Daniel S Park, Jaehoon Lee, Daiyi Peng, Yuan Cao, and Jascha Sohl-
Dickstein. Towards nngp-guided neural architecture search. arXiv preprint
arXiv:2011.06006, 2020. 2.1

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017. 2.1

[41] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient
neural architecture search via parameters sharing. In International Conference
on Machine Learning, pages 4095–4104. PMLR, 2018. 1, 5.3

[42] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár.
On network design spaces for visual recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1882–1890, 2019. 5

[43] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, volume 33, pages 4780–4789, 2019. 2.2, 5.3

[44] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986. 1

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
et al. Imagenet large scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 5.2

40

Bibliography

[46] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding
and counting linear regions of deep neural networks. In International Conference
on Machine Learning, pages 4558–4566. PMLR, 2018. 2.1

[47] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. Nas-bench-301 and the case for surrogate benchmarks for neural
architecture search. arXiv preprint arXiv:2008.09777, 2020. 2.1

[48] Mahdi Soltanolkotabi. Learning relus via gradient descent. arXiv preprint
arXiv:1705.04591, 2017. 2.3

[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html. 1

[50] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convo-
lutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 6105–6114. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/tan19a.html.
2.2

[51] Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning
neural networks without any data by iteratively conserving synaptic flow. arXiv
preprint arXiv:2006.05467, 2020. 1, 2.1

[52] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster
gaze prediction with dense networks and fisher pruning. arXiv preprint
arXiv:1801.05787, 2018. 2.1

[53] Jack Turner, Elliot J Crowley, Michael O’Boyle, Amos Storkey, and Gavin
Gray. Blockswap: Fisher-guided block substitution for network compression on
a budget. arXiv preprint arXiv:1906.04113, 2019. 2.1, 5

[54] Jack Turner, Elliot J Crowley, and Michael FP O’Boyle. Neural architecture
search as program transformation exploration. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 915–927, 2021. 2.1

[55] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before
training by preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020. 1,
2.1, 5

[56] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca.
Alphax: exploring neural architectures with deep neural networks and monte

41

http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v97/tan19a.html

Bibliography

carlo tree search. arXiv preprint arXiv:1903.11059, 2019. A.0.4

[57] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan
Kindermans. Neural predictor for neural architecture search. In European
Conference on Computer Vision, pages 660–676. Springer, 2020. 2.1

[58] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3):229–256, 1992. 2.2

[59] Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling train-
ability and generalization in deep neural networks. In International Conference
on Machine Learning, pages 10462–10472. PMLR, 2020. 2.1

[60] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. Nas-bench-101: Towards reproducible neural architecture search.
In International Conference on Machine Learning, pages 7105–7114. PMLR,
2019. 5

[61] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016. 2.3

[62] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi,
Xuesen Zhang, and Wanli Ouyang. Econas: Finding proxies for economical
neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11396–11404, 2020. 2.1

[63] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016. 1

[64] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8697–8710,
2018. 5.3

42

	1 Introduction
	2 Related Work
	2.1 Model Performance Inference
	2.2 Neural Architecture Search
	2.3 Optimization Landscape Analysis

	3 Theoretical Foundations
	3.1 Insights
	3.2 Preliminaries
	3.3 Main Results

	4 Method
	5 Experiments
	5.1 NAS-Bench-101
	5.2 NAS-Bench-201
	5.3 NAS Design Space (NDS)
	5.4 Architecture Selection
	5.5 GradSign-Assisted Neural Architecture Search

	6 Conclusions
	A Appendix
	A.0.1 Figure
	A.0.2 Proof
	A.0.3 Experiments Setup
	A.0.4 Additional results
	A.0.5 GradSign assisted NAS algorithms

	Bibliography

