
A Low-Cost Attitude Determination and

Control System and

Hardware-in-the-Loop Testbed for

CubeSats

Benjamin Jensen
CMU-RI-TR-22-43

August 04, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Zachary Manchester, chair

Michael Kaess
Brian Jackson
Kevin Tracy

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Benjamin Jensen. All rights reserved.

Abstract

Since their initial development in the late 1990s, CubeSats have quickly
grown popular due to their relatively low cost and short development
period. However, CubeSat launches are prone to failure, with less than
half of CubeSats completely fulfilling their mission objectives. To improve
mission success, we present a low-cost attitude determination and control
system (ADCS) that scales to 1U CubeSats and other small satellites. The
ADCS is necessary to point satellite antennae and solar panels effectively
and to orient on-board payloads to the target locations, all of which are
crucial to a mission’s success.

Modern methods for attitude determination and control rely on sophis-
ticated actuators and sensors, such as reaction wheels and star trackers,
that are often unable to be used on CubeSats due to weight, volume, and
cost restrictions. Our proposed system relies on simple consumer-grade
magnetometers, gyroscopes, and sun sensors to estimate the attitude of
the satellite, along with a set of magnetic torque coils for actuation. Ad-
ditionally, we provide a new method for calibrating on-board sensors that
requires less storage space and allows for all parameters to be time-varying.
By combining these low-cost sensors and actuators with sophisticated
calibration, estimation, motion planning, and control software, we achieve
full three-axis attitude determination and control. The system is also
completely solid-state, with no moving parts or consumable propellant,
greatly reducing the chance of hardware failure.

To further improve the development cycle, we have developed an open-
source hardware-in-the-loop simulator to enable rapid testing of ADCS
algorithms and other flight software. The result is a robust, open-source
development suite for CubeSats that is low cost, easy to program, and
reliable.

iii

iv

Acknowledgments

I owe many thanks to Professor Zachary Manchester, who provided keen
insight, wise guidance, and regular support throughout my work on this
thesis. His deep understanding and genuine enjoyment of research have
inspired me to challenge myself to work both harder and smarter. I also
would like to thank my colleagues in RExLab for their wonderful help,
especially Kevin Tracy, who answered all my constant questions with
aplomb.

I am grateful to my undergraduate advisors, Professors Willie Harrison and
Michael Rice, for getting me started in research and letting me participate
in numerous projects, and for putting up with me in the beginning when
I required a lot of attention and produced few results.

Finally, I would like to thank my cousin, Brady Moon, who has provided
enourmous guidance throughout my many years in school, and always
inspires me with his enthusiasm for learning.

v

vi

Funding

The work presented in this thesis was supported by NASA and the
Breakthrough Foundation.

vii

viii

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Related Works . 3

2 Background 5
2.1 Unit Quaternions . 5
2.2 Earth’s Albedo . 6
2.3 Sensor Calibration . 7

2.3.1 Magnetometer Calibration . 8
2.3.2 Sun Sensor Calibration . 9

3 Simulator 11
3.1 Dynamics . 11

3.1.1 Orbital Dynamics . 11
3.1.2 Attitude Dynamics . 13
3.1.3 Environment State . 14

3.2 Measurements . 14
3.2.1 Magnetometer . 14
3.2.2 Gyroscope . 15
3.2.3 Sun Sensors . 15
3.2.4 Position . 15

4 Hardware 17
4.1 Satellite . 17

4.1.1 PyCubed . 17
4.1.2 Sensors . 19
4.1.3 Actuators . 19

4.2 Hardware-in-the-Loop Testbed . 19
4.2.1 Helmholtz Coils . 20

5 Flight Software 25
5.1 Experiments and Results . 35
5.2 Simultaneous Magnetometer and Sun Sensor Calibration 39

ix

6 Conclusion 45

Bibliography 47

x

List of Figures

2.1 Averaged surface reflectivity for Earth as measured in the NASA
TOMS mission [6]. 7

2.2 Visualization of the non-orthogonality angles for a sensor, as illustrated
in [22] . 9

4.1 1U CubeSat used for all testing and experiments in this document. . 18

4.2 Labeled image of the PyCubed board, courtesy of the PyCubed website
[12]. 18

4.3 Assembled hardware-in-the-loop test box with 1U CubeSat inside. . . 21

4.4 Plot of the magnetic field along the axis of a Helmholtz coil, as created
by [11]. 22

4.5 Helmholtz coil with the hardware-in-the-loop testbed placed in the
center of the generated magnetic field. 23

5.1 State machine illustrating sequence of phases for the ADCS. Transitions
are determined using a series of flags, as well as the measured angular
velocity ω̃, the detumbling thresholds τ1 and τ2, the state covariance
Σ, and the covariance threshold τΣ. 26

5.2 Example of simulated detumbling process. 37

5.3 Histogram of the error in the magnetic field vector estimate in simula-
tion before and after magnetometer calibration, in degrees. 37

5.4 Calibration of a single sun sensor for a simulated orbit, including the
initial guess, the true value, and the best estimate at each time step.
Note that the time is measured since the start of the diode calibration
phase. 38

5.5 Error in estimated satellite attitude and gyroscope bias over time
during a simulated orbit using our MEKF, where the attitude error
is represented as the norm of the Cayley map. Note that the time is
measured since the start of the diode calibration, which is attitude-
dependent and includes attitude and gyroscope bias estimation. . . . 38

5.6 Error in sun vector estimation before and after calibration using the
hardware-in-the-loop testbed. The mean error for the uncalibrated
system was 8.3◦, while the calibrated system had an error of only 4.7◦. 39

xi

5.7 Example estimates of magnetometer scale factors s = [a, b, c]T versus
time using an multiplicative extended Kalman filter (MEKF), as well
as the true value and the initial guess. 42

5.8 Example estimates of magnetometer scale factors ζ = [ρ, λ, ϕ] versus
time using an MEKF, as well as the true value and the initial guess. . 42

5.9 Example estimates of magnetometer scale factors βB = [βB,x, βB,yβB,z]
T

versus time using an MEKF, as well as the true value and the initial
guess. 43

xii

List of Tables

4.1 Minimum requirements for the Helmholtz coil. 22

5.1 Initial error in estimates for sun sensor calibration parameters. 35
5.2 Initial error in estimates for magnetometer calibration parameters. . . 35
5.3 Noise values used for the simulations, based off of the data from sensor

specification sheets. 36
5.4 Performance of the sensor calibration and attitude determination

system, evaluated as the mean error over 30 simulated runs, each
lasting for 3 orbits. The standard deviation is also provided. Note
that the attitude error metric is the norm of the Cayley map. 36

xiii

xiv

Chapter 1

Introduction

Development of new technologies and more accurate models requires the ability to

gather data, test assumptions, and validate current methodologies. Because this

often requires multiple iterations, this development works best when the process is

consistent, quick, and low-cost. Unfortunately, when it comes to space research, the

development process is rarely consistent, quick, or low-cost. Gathering new data

and evaluating new models often requires large satellites that are complicated and

expensive and can take years to get launched into space for use, dramatically slowing

down the development and testing processes.

CubeSats (“Cube Satellites”) have been proposed to help address the problem of

slow, expensive satellite design and deployment by providing a standardized platform

from which to develop skills and test new space technologies. These satellites, a

particular class of small satellites comprising 10× 10× 10cm3 units, were initially

designed to provide universities with affordable access to space and have done so

quite successfully. Since their creation in 1999, there have been over 1,000 CubeSats

launched from around the world [24]. Due to their small size, relatively inexpensive

components, and standardized platform, CubeSats have enabled universities, compa-

nies, and individuals to develop space programs. Additionally, because of their light

weight, CubeSats are often able to be deployed by the International Space Station,

or as auxiliary payloads on other space missions, reducing the time it takes to get

one into space.

Thanks to their low cost and fast launch procedure, CubeSats have quickly

1

1. Introduction

become popular and demonstrated their merit. These satellites are used for many

purposes, including weather investigation, space-based astronomy, ionospheric and

meteorological measurements, and earth imaging. One of their biggest benefits is

their unique offer of rapid iterations. This allows them to be deployed relatively

quickly and affordably, allowing them to be used as a proof-of-concept or testbed for

new technologies before use on much larger, more expensive systems. Additionally,

they provide a platform for gathering data from a wide variety of sensors, enabling

the validation and enhancement of relevant solar, ionospheric, and thermospheric

models, while also enabling people from all realms to more effectively access space to

gather data and test their own respective theories.

However, there are still some significant challenges with CubeSats. According to a

study as part of the CubeSat Developers’ Workshop in 2019, CubeSat missions have a

significant fail rate, with only around 30− 40% completing a full mission and a large

portion dead on arrival [24]. There are several contributing factors to this failure rate,

including environmental wear, low safety margins, software and hardware errors, and

poor communication systems. Perhaps the two greatest benefits of CubeSats—their

accessibility and rapid development cycle—are also their Achilles heel, with many

satellites being developed and launched by first-time builders in time frames that do

not allow for sufficient testing.

1.1 Contributions

Previous work has been done into addressing some of these problems by developing

a radiation-resistant hardware platform known as PyCubed [13]. In this thesis,

we build on PyCubed to address some of the other common problems that lead

to CubeSat mission failure through development of an attitude determination and

control system (ADCS) that is scalable to CubeSats and other small satellites. The

ADCS is responsible for many roles crucial to a successful mission, including orienting

the antenna and solar panels for effective communication and power generation, and

pointing on-board payloads to the desired locations.

Our ADCS relies on inexpensive, off-the-shelf sun sensors and an IMU for attitude

determination, and includes functionality for calibrating these sensors in-orbit after

launch. Attitude control is performed exclusively with magnetic torque coils; while this

2

1. Introduction

adds some complication due to inherent underactuation, it also provides a lightweight

and low-cost control system that has low power requirements. We rely on an existing

method proposed by Gatherer [10] that provides full three-axis control using only

magnetic torque coils, and the result is an entirely solid-state system that reduces the

chance of hardware failure. Additionally, we provide a sophisticated simulator with

a hardware-in-the-loop (HITL) testbed that can be used for developing new flight

algorithms and on-hardware validation before launch. The result is an open-source,

inexpensive development suite for CubeSats.

1.2 Related Works

Due to the high importance of a satellite’s ADCS, many different systems have

been designed that are incredibly effective and robust, and these systems have been

consistently effective on a variety of missions. Unfortunately, these methods rely on

highly optimized equipment, such as star trackers and reaction wheels, which are often

too large and too costly for use on nano and pico-class satellites. Commercial systems

developed specifically for CubeSats exist, but at a cost that precludes their use in

projects developed by groups with tight cost constraints, such as university research

groups or clubs. This has required universities interested in CubeSat development

to either invest a large amount of money in each launched satellite, or develop their

own systems, making it difficult to test and develop new satellites. Several such

projects exist, but are often larger than 1U, use equipment that is expensive, or rely

on systems with moving parts that are prone to breaking [5, 7, 9, 20].

A common setup used in HITL testbeds for small satellites involves building a

special air-bearing table designed to create a low-torque environment [19], sometimes

with the addition of a fixed light source to simulate the sun [9]. Our testbed consists

of a box that a CubeSat can be placed into for testing, with an LED embedded in

each panel that has an adjustable light level. Rather than relying on an air-bearing

table to allow the satellite to rotate, we generate the body-frame sun vector and

use the LEDs to illuminate the appropriate sides of the satellite in the appropriate

proportions. Additionally, each panel has a mounted magnetometer to measure the

magnetic field generated by pulsing the magnetic torquer coils. This box is placed

inside of a Helmholtz coil to cancel out the geomagnetic field or replace it with a

3

1. Introduction

desired magnetic field.

Although our HITL setup does not allow for testing of the satellite gyroscope,

which can be done in other HITL systems, the system as a whole is smaller and simpler,

relying on common materials and off-the-shelf hardware, and can be controlled with

an Arduino.

4

Chapter 2

Background

2.1 Unit Quaternions

While there are many different parameterizations for representing the attitude of a rigid

body, one of the most popular methods is a unit quaternion. This parameterization

uses a scalar term and a three-element vector term to represent the orientation of an

object, and is subject to a unit-norm constraint, so that

q =
[
qs qv

]
, ||q|| = 1. (2.1)

This parameterization was chosen to avoid issues caused by singularities inherent

to three-parameter representations (e.g., Euler angles, axis-angle, etc.) and more

complicated constraints required by rotation matrices.

Traditionally, composition of unit quaternions is handled using the Hamilton

product; however, we choose to use the quaternion notation suggested by Jackson et

al. [14], which converts quaternions to matrices for mathematical convenience. With

this method, the composition of two unit quaternions q1 and q2 can be calculated as

q = L(q1)q2 = q1R(q2) (2.2)

where

L(q) =

[
qs −qTv

qv qsI + [qv]
×

]
, (2.3)

5

2. Background

R(q) =

[
qs −qTv

qv qsI − [qv]
×

]
, (2.4)

and the [·]× notation represents the skew-symmetric cross-product matrix for a

three-element vector. Using this notation, a vector v can be rotated as

v′ = HTL(q)R(q)THv, (2.5)

where

H =

[
0

I3

]
(2.6)

converts a three-element vector into a quaternion with zero scalar. This notation can

be simplified by defining

Q(q) = HTL(q)R(q)TH, (2.7)

so that

v′ = Q(q)v. (2.8)

Finally, when working with Jacobians, a “conversion factor” is needed to convert

between the four-parameter unit quaternion and a three-parameter vector space. This

can be achieved using the attitude Jacobian

G(q) ∈ R4×3 =

[
−qTv

qsI3 + [qv]
×

]
. (2.9)

2.2 Earth’s Albedo

Many attitude determination systems rely on various types of sun sensors to estimate

the sun vector, which generate current proportional to their illumination, and these

are particularly common in low-cost designs. However, while the majority of the

illumination does come from the sun, there is also a non-negligible amount that is

reflected off the Earth’s atmosphere onto the satellite. This reflected illumination

affects the measurement step in Kalman filters and can lead to suboptimal performance.

Different methods exist to solve this, including using specialized sun sensors with

diode arrays or just treating it as noise; however, we include it in our system using

6

2. Background

Figure 2.1: Averaged surface reflectivity for Earth as measured in the NASA TOMS
mission [6].

the model suggested by Bhanderi [4]. This involves dividing the surface of the Earth

into a series of cells, where the reflectivity of each cell is determined by averaging data

gathered by the NASA TOMS mission [17] over several years. An example image of

average reflectivity is shown in Fig. 2.1.

This reflectivity data is used for all cells on the Earth’s surface that are in the

field-of-view of both the sun and the satellite to estimate the amount of light that

would be reflected by the Earth’s atmosphere onto the satellite. This was added into

the simulator using a Julia port [15] of a MATLAB toolbox created by the original

author [3].

2.3 Sensor Calibration

Due to manufacturing and installation errors, sensors often need to be calibrated in

order to maximize their use; this is particularly true for more affordable versions of

off-the-shelf sensors. For our system, the onboard sensors include a magnetometer,

the sun sensors, and the gyroscope. Although the onboard gyroscope experiences a

7

2. Background

bias βω that must be accounted for, it is time-varying and is estimated as part of the

state using the MEKF discussed later in Chapter 5. The calibration processes for the

remaining sensors are described in their respective sections below.

2.3.1 Magnetometer Calibration

Magnetometers are popular sensors in attitude determination because they are

lightweight, have low power requirements, and involve no moving parts. However,

these sensors can be very noisy, particularly for lower-cost models, and this noise

can result in poor-quality attitude estimation for the satellite. There are several

factors that contribute to this error, including installation error and corruption from

soft-iron and hard-iron metals. The effects of these factors are often grouped into

three error categories: scale factors, non-orthogonality angles, and biases. If we

assume these errors to be time-invariant, we can estimate them on-board the satellite

and their effects can be corrected out of a magnetometer’s measurement, increasing

their accuracy.

The measured magnetic field in the body frame B̃B = [B̃B
x , B̃

B
y , B̃

B
z]

T is commonly

modeled as

B̃B
x = aBx + x0 + ηx (2.10)

B̃B
y = b(Bx sin ρ+By cos ρ) + y0 + ηy (2.11)

B̃B
z = c(Bx sinλ+By cosλ sinϕ+Bz cosλ cosϕ) + z0 + ηz, (2.12)

where a, b, and c are the scale factors along the x, y, and z axes; x0, y0, and z0 are

the bias terms along each axis; ρ is the non-orthogonality angle between a y-axis

orthogonal to x and the measured ỹ; λ is the non-orthogonality angle between a

z-axis orthogonal to x and the measured z̃; and ϕ is the non-orthogonality angle

between a z-axis orthogonal to y and the measured z̃, as shown in Fig. 2.2 [8, 22].

Additional measurement noise along each axis is included as ηx, ηy, and ηz.

Because the magnetometers are used in attitude determination, it is helpful

to have an attitude-independent calibration method. This is possible because the

magnetometer errors affect the magnitude of a measurement, but a rotation between

two frames does not; as such, techniques that rely only on the magnitude of a

magnetometer measurement are effective without any need for information about

8

2. Background

Figure 2.2: Visualization of the non-orthogonality angles for a sensor, as illustrated
in [22]

attitude, as shown by Foster [8] and Springmann [22]. This method relies on batch

estimation and nonlinear least squares minimization is performed using the Gauss-

Newton algorithm. A cost function

J =
1

2

[
B2
E − f(B̃

B
, x)

]T [
B2
E − f(B̃

B
, x)

]
, (2.13)

is minimized, where BE is a vector of the magnitudes of the expected magnetic field

vectors at each time step, B̃
B
is a vector of the measured magnetic field vectors

in body frame, x is the current guess for the calibration parameters, and f(B̃
B
, x)

provides the magnitude of the measured vectors after correction by the calibration

parameters in x. Note that, while independent of attitude, this method does require

a time-varying magnetic field.

2.3.2 Sun Sensor Calibration

Sun sensors generate a current when illuminated that is proportional to the angle

between the photodiode surface normal and the vector in the direction of the sun.

This angle can be used to provide a component of the sun vector in the body frame

of the satellite. When multiple sun sensors are used, the full sun vector can be

estimated. However, effective estimation requires accurate surface normals for each

9

2. Background

photodiode, as well as the scale factor for each photodiode so as to normalize the

measured currents. There are many methods for calibrating sun sensors, including

attitude-independent methods [8, 21]; however using a recursive, attitude-dependent

method, such as that proposed by Springmann [23], allows for arbitrary numbers

and configurations of photodiodes. Additionally, the attitude-dependent method

allows for the inclusion of Earth’s albedo, which can have a significant effect on the

illumination of the diodes. This calibration is done on-orbit to account for changes

that may occur during launch, and allows for periodic reestimation, as scale factors

may degrade over time due to radiation.

Calibration is done by augmenting the state of a traditional MEKF with additional

states to track each diode calibration value and surface normal. Because each surface

normal is constrained to the surface of a unit sphere, they can be parameterized in

terms of an elevation angle ϵ and azimuth angle α, so that the state to be estimated

at each time step in the augmented MEKF is

x =

q

βω

C

α

ϵ

 , (2.14)

where q represents the attitude (as a unit quaternion, in our case), β is the gyroscope

bias, C is the vector of the scale factors for each diode, and α, ϵ are the vectors of

each diode’s surface normal, represented as azimuth and elevation angles. At each

step of the MEKF, the expected currents (predicted using Eq. 3.13) are compared

to the measured currents (generated using Eq. 3.14). This information is used to

iteratively update the estimate for each calibration parameter.

10

Chapter 3

Simulator

In order to aid in the development and testing of an ADCS, a high-fidelity simulator

has been developed in Julia. This simulator is open-source and modular, allowing for

different controllers and estimators to be swapped in and out as desired, while also

accounting for many high-order factors that affect the dynamics of a spacecraft. The

simulator is divided into a dynamics module, which is used to update the state of

both the satellite and the environment, and a measurement module, which uses the

current state to generate measurements for the satellite sensors.

3.1 Dynamics

3.1.1 Orbital Dynamics

For a given satellite, the orbit dynamics can be modelled using the position of a

satellite r, its velocity v, and acceleration a.

There are a wide variety of factors that go into calculating the acceleration a,

including affects due to the gravity of Earth ag, the moon aM , and the sun aS, as well

as drag ad and solar radiation pressure asrp. Each of the modeled factors is described

below in its respective section, with the total acceleration being the resulting sum of

each contributing term, so that

a = ag + ad + asrp + aM + aS. (3.1)

11

3. Simulator

Note that in the simulation, asrp and ad both are attitude independent and assume a

constant cross-sectional area A for simplicity.

Earth’s Gravitational Field

Although Earth’s gravitational field is often approximated as uniform for simplicity,

in reality the non-uniformities in the Earth combine to form a much more complicated

gravitational field. The largest factor for satellites in low-Earth orbits (LEO) are

perturbations caused by the Earth’s oblateness, known as J2, but there are many more

such perturbations that produce effects on a satellite’s orbit. This results in orbital

trajectories that cannot be captured using a simplified model using uniform gravity,

such as sun-synchronous orbits. In order to account for this behavior in simulation, the

gravitational field is approximated using spherical harmonics, where each successive

term accounts for higher-order factors contributing to ag, the acceleration due to

gravity [18].

Drag

Because CubeSats and other nanosatellites are often flown in LEO, atmospheric drag

can lead to significant trajectory differences, especially as the effect accumulates over

multiple orbits. This drag can be estimated as

ad = −1

2
CD

A

m
||vr||vr, (3.2)

where CD is the coefficient of drag, m is the satellite mass, A is the cross-sectional

area of the satellite, vr is the satellite velocity relative to the atmosphere, and ρ is

the local atmospheric density, which is estimated using the Harris-Priester density

model [18].

Solar Radiation Pressure

Direct solar radiation pressure (SRP) also contributes to the acceleration of a space-

craft, and can be approximated as

asrp = −P0CR
A

m

d

||d||3
AU2, (3.3)

12

3. Simulator

where d is the vector from the satellite to the sun, CR is the radiation pressure

coefficient, A is the cross-sectional area of the satellite facing the sun, AU is the

astronomical unit, and P0 ≈ 4.56 × 10−6Nm−2 is the solar radiation pressure at 1

AU from the sun [18]. Note that we assume that a surface normal of the satellite

points in the direction of the sun for simplicity.

Third-body Gravitational Fields

Finally, the effect of the gravitational fields of both the moon and the sun are modeled

as

aM = −GMmrm
||rm||3

, (3.4)

aS = −GMsrs
||rs||3

, (3.5)

where GMm and GMs are the standard gravitational parameters for the moon and

sun, respectively, and rm and rs are the distances between the satellite and the moon

and sun.

3.1.2 Attitude Dynamics

The attitude dynamics of the satellite can be modeled using Euler’s equation

ω̇ = J−1(τ − ω × Jω), (3.6)

where τ is the sum of the applied torques, J is the inertia matrix of the satellite, and

ω is the angular velocity. The three-parameter angular velocity ω can be mapped to

the four-parameter unit quaternion q as [14]

q̇ =
1

2
L(q)Hω. (3.7)

Finally, the bias β of the gyroscope is updated as a random walk for later use in

updating sensor measurements, with its dynamics expressed as

β̇ω ∼ N(0, σ). (3.8)

13

3. Simulator

3.1.3 Environment State

The resulting state vector for the simulator environment, including both the orbital

and attitude dynamics, is then

x =

r ∈ R3

v ∈ R3

q ∈ H

ω ∈ R3

βω ∈ R3

 . (3.9)

3.2 Measurements

In addition to simulating the orbit of a satellite, the simulator also generates data for

each of the three sensor types onboard the CubeSat, as well as for position.

3.2.1 Magnetometer

The position of the satellite is fed into the 13th generation International Geomagnetic

Reference Field (IGRF13) [1] model to generate the magnetic field vector in the

inertial frame BI . The attitude of the satellite is then used to convert the magnetic

field into the body frame, BB. Because sensors are imperfect, the measured magnetic

field vector is not the same as the true vector. This must be accounted for when

generating measurements, so that the measured magnetic field vector in the body

frame B̃B is

B̃B = ηBTB
B + βB, (3.10)

where

T =

 a 0 0

b sin ρ b cos ρ 0

c sinλ c sinϕ cosλ c cosϕ cosλ

 (3.11)

converts a perfect magnetometer reading into an imperfect one in need of calibration

and is formed using Eq. 2.10, 2.11, 2.12; βB is the magnetometer bias; and ηB

represents multiplicative Gaussian noise.

14

3. Simulator

3.2.2 Gyroscope

The measured gyroscope vector ω̃ is generated from the true gyroscope reading ω as

ω̃ = ω + βω + ηω, (3.12)

with ηω as white Gaussian noise.

3.2.3 Sun Sensors

The current generated from each photodiode is a function of the incoming light,

the surface normal of the photodiode, and the scale factor for the photodiode. In

addition to the light coming directly from the sun, there is also light coming from

Earth’s albedo; this additional light source depends on the location of the sun and

the satellite, and its effect can represent up to 30% − 40% [23] of the experienced

solar irradiance. To account for this, we model the effect of Earth’s albedo after the

method proposed by Bhanderi [4] using the method described in 2.2.

The total amount of current I produced by the jth diode can then be computed

as

Ij = n̂Tj ŝ
B +

Ea,j
EAM0

, (3.13)

where n̂j is the unit surface normal of the jth diode, ŝB is the unit vector in the

direction of the sun expressed in the body frame, EAM0 is the irradiance of sunlight

at 1AU and with no loss due to atmosphere, and the Earth’s albedo Ea,j is a function

of both satellite position and attitude [23]. To generate the measured current Ĩj, the

true value is scaled by a scale factor Cj and noise is added, so that

Ĩj = CjIj + ηI (3.14)

3.2.4 Position

The position of the satellite can either be determined using an on-board GPS or

uploaded from a ground station. These are both treated as a type of measurement,

15

3. Simulator

and as such are subject to noise, which we model as

r̃ = r + ηr. (3.15)

16

Chapter 4

Hardware

4.1 Satellite

For all testing and experiments, a 1U (10× 10× 10cm3) CubeSat was used, and is

shown in Fig. 4.1. Each of the primary components is explained below.

4.1.1 PyCubed

The satellite hardware is built on PyCubed, an open-source complete avionics stack

that has flight heritage on multiple CubeSat missions [13]. This avionics stack

was designed for reliability and ease of use, providing functionality for all standard

operating needs, including command and control (C&DH), energy harvesting and

power management (EPS), telecommunication (TT&C), data collection and storage,

and payload interfacing, as well as fail-safe deployment mechanisms [12]. Relevant

hardware includes a power system (including solar panels, a power monitor, and a

regulator), a BMX160 IMU, a 120MHz ARM M4F microcontroller, and a LoRa 1W

433MHz radio, as well as a mount for a GPS. A labeled image is shown in Fig. 4.2,

and more information can be found in the related publication [13] or on the PyCubed

website [12].

17

4. Hardware

Figure 4.1: 1U CubeSat used for all testing and experiments in this document.

Figure 4.2: Labeled image of the PyCubed board, courtesy of the PyCubed website
[12].

18

4. Hardware

4.1.2 Sensors

The primary CubeSat sensors used in the attitude determination system are the

gyroscope, magnetometer, and sun sensors. The gyroscope and magnetometer are

both included in the on-board BMX160 IMU, which is only 2.5x3x0.95mm in size and

only draws around 1.5mA of current when in high performance mode. This sensor

also provides functionality for I2C communication at up to 1MHz. There are six

TSL2560 sun sensors on the satellite, with one on each panel. These sun sensors

generate a current when illuminated that is proportional to the amount of light, with

a maximum range of −1mA to 20mA of current; this current is passed to an ADC,

resulting in a digital output that experiences very low noise.

4.1.3 Actuators

The CubeSat relies on magnetic torque coils for actuation, with one coil embedded

on each of the outer panels of the spacecraft. When powered, the current running

through these coils generates a magnetic field that attempts to align with an external

field (in our case, the Earth’s), providing torque to rotate the satellite into a desired

attitude. Note that while many CubeSats utilize magnetic torque rods and/or coils

in their attitude control system, they are often used in conjunction with another

actuator, such as a reaction wheel. Exclusive reliance on magnetic torque coils limits

the maximum amount of torque that can be produced at a given moment and results

in an underactuated system, complicating the control problem. However, the resulting

control system is extremely light weight and only requires low amounts of electricity to

function, eliminating all moving parts and consumable fuel, resulting in a completely

solid-state satellite that is less prone to breaking.

4.2 Hardware-in-the-Loop Testbed

Simulators help with conceptual and algorithmic development, but to truly validate

the satellite hardware and detect errors before launch, a HITL testbed is necessary.

We propose a unique testbed box that the 1U CubeSat can be placed into during

testing. Each panel of the box contains a FLR-50T04-HW7 LED and a triple-axis

19

4. Hardware

LIS3MDL magnetometer, which allows full control over the illumination of the satellite

and enables us to measure the magnetic field generated by pulsing the magnetic

torque coils. The magnetometers are connected to an Arduino Uno—which acts

as the interface between the HITL testbed and the laptop—via a TCA9548A I2C

Multiplexer, which allows for easy communication. This box is placed inside of a

Helmholtz coil to cancel out the geomagnetic field or replace it with a desired magnetic

field.

This system allows for the testing of various sensors in isolation (e.g., running the

LEDs to validate that the sun-vector estimation system works), or for the integration

of the satellite hardware into a simulator (e.g., feeding the measured magnetic fields

created by the magnetic torquer coils back into the simulator dynamics), allowing for

the detection of faulty hardware or algorithms before launch.

Although our HITL setup does not allow for testing of the satellite gyroscope,

which can be done in other HITL systems, the system as a whole is smaller and

simpler. The box itself is made out of laser-cut wood (which can easily be replaced

with acrylic or other on-hand materials) and the mounts are all made inside of a 3D

printer. Additionally, the system is controlled with an Arduino and uses only off-the-

shelf LEDs and magnetometers. The result is a cheap-to-make and easy-to-assemble

test station that can be built in-house and requires only common materials that are

easy to acquire.

4.2.1 Helmholtz Coils

In order to have control over the magnetic field that the testbed is experiencing, a

Helmholtz coil was constructed. This device consists of two electromagnets that are

aligned along the same axis, separated by a distance equal to their radii, and is used

to generate a fairly consistent magnetic field in the region between the two rings. For

our scenario, this provides the ability to generate a magnetic field opposite to that of

the Earth’s, effectively creating a magnetically neutral zone for testing.

The force of the magnetic field generated by a single loop on a particle x meters

away is

B(x) =
µ0IR

2

2(R2 + x2)3/2
, (4.1)

20

4. Hardware

Figure 4.3: Assembled hardware-in-the-loop test box with 1U CubeSat inside.

where I is the current running through the wire, µ0 = 4π × 10−7Tm/A is the

permeability of free space, and R is the radius of the loop. By using two rings

spaced Rm apart, two magnetic fields are created that combine to create a consistent

magnetic field in the intersecting region, as shown in Fig. 4.4.

By placing a particle at the midpoint between the two rings so that x = R/2, the

magnetic field becomes

B =

(
4

5

)3/2
µ0nI

R
, (4.2)

where n is the number of loops per coil.

System Requirements

Our Helmholtz coil was designed with three primary considerations in mind. First,

in order to be able to create a magnetic field vector in any desired direction, the

Helmholtz coil needs to be able to generate a field at least double that of the Earth’s

(in order to make an equally strong field in the opposite direction). Second, to prevent

overheating and risk of damage, the total current must be kept relatively low. Finally,

the testbed must be able to actually fit between the rings, limiting how small the

setup can be. The target values for the device are shown in Table 4.1.

21

4. Hardware

Figure 4.4: Plot of the magnetic field along the axis of a Helmholtz coil, as created
by [11].

Mag Field Str. Spacing Current

125µT 16cm 1mA

Table 4.1: Minimum requirements for the Helmholtz coil.

Design and Construction

In order to maintain a low cost and easy assembly, the entirety of the Helmholtz

coil structure was designed to be cut out of wood using a laser cutter. A radius of

R = 20cm was chosen to provide enough room for the testbed to fit between, and

n = 300 loops were wrapped using copper magnetic wiring. The system is shown in

Fig. 4.5.

22

4. Hardware

Figure 4.5: Helmholtz coil with the hardware-in-the-loop testbed placed in the center
of the generated magnetic field.

23

4. Hardware

24

Chapter 5

Flight Software

The ADCS software that will be flown on the CubeSat consists of a series of different

steps. The satellite is first detumbled until the magnitude of the angular velocity is

beneath some specified threshold. Next, the magnetometer is calibrated, and then

the sun sensors. Once calibration has been done (which involves some estimation

of the gyroscope bias), the satellite proceeds through another detumbling routine,

this time with a lower threshold for magnitude of the angular velocity. Once this

has been done, the satellite is ready to be pointed, and uses a standard MEKF for

attitude estimation, using the calibration parameters determined previously.

The state machine illustrating state transitions and conditions is shown in Fig.

5.1, with additional information included below.

Detumbling

When a satellite is deployed, it often has a high angular velocity. This can cause

problems communicating with a ground station, which prevents crucial mission

updates from being received, and mission data from being transmitted. Additionally,

the state estimation in the MEKF has some reliance on small angle approximations

that do not hold for high spin rates.

However, the on-board gyroscope experiences a bias that makes it difficult to

completely slow down the tumbling of the satellite, at least until the bias can be

estimated. The proposed ADCS relies on two separate detumbling steps. The first

25

5. Flight Software

Figure 5.1: State machine illustrating sequence of phases for the ADCS. Transitions
are determined using a series of flags, as well as the measured angular velocity ω̃, the
detumbling thresholds τ1 and τ2, the state covariance Σ, and the covariance threshold
τΣ.

is a rough detumble that merely slows the angular velocity to a manageable rate,

allowing for sensor calibration and radio communication. Once an estimate of the

gyroscope bias is generated, it is subtracted out of the gyroscope measurement and

the system is detumbled again.

Many methods exist for detumbling a satellite, include passive methods that slowly

reduce spin rates over multiple orbits. We use the so-called “B-Cross” controller

proposed by Avanzini [2], which uses the unit magnetic field vector expressed in the

body frame B̂B and the angular velocity ω of the CubeSat. These values are used to

calculate a torque perpendicular to B̂B, so that

τ = −κ
(
I3 − B̂B(B̂B)T

)
ω, (5.1)

where κ is the control gain and τ is the generated torque. This control law is linear and

Lyapunov stable, and allows for detumbling from arbitrary initial angular velocities,

provide the estimates of B̂B and ω are close enough to the true values.

Magnetometer Calibration

Next, the satellite sensors are calibrated, as described in Chapter 2. First, the magne-

tometer is calibrated using batch estimation. The initial guess for the magnetometer

parameters is provided using linear least squares, using magnetometer measured (B̃B)

26

5. Flight Software

and predicted (B̄B) values gathered over two orbits, downsampled to one sample

per minute to reduce space consumption. The equations are set up in typical linear

fashion Av = b, where

v =

a

b

c

ρ

λ

ϕ

x0

y0

z0

(5.2)

is the set of magnetometer calibration parameters to be determined. The vector v is

formed by stacking the measured magnetometer readings, i.e.,

b =

B̃B
x,1

B̃B
y,1

B̃B
z,1
...

B̃B
x,n

B̃B
y,n

B̃B
z,n

∈ R3n, (5.3)

and the matrix A is formed using the predicted magnetometer readings:

A =

B̄B
x,1 0 0 0 0 0 1 0 0

0 B̄B
x,1 0 B̄B

y,1 0 0 0 1 0

0 0 B̄B
x,1 0 B̄B

y,1 B̄B
z,1 0 0 1

. .

B̄B
x,n 0 0 0 0 0 1 0 0

0 B̄B
x,n 0 B̄B

y,n 0 0 0 1 0

0 0 B̄B
x,n 0 B̄B

y,n B̄B
z,n 0 0 1

∈ R3n×9, (5.4)

27

5. Flight Software

in accordance with magnetometer measurement Eqs. 2.10, 2.11, and 2.12 in Chapter

2. This initial guess for the parameters is then used in a Gauss-Newton root-finding

algorithm to account for non-linearity in the system and refine the guess by minimizing

the cost function in Eq. 2.13.

Sun Sensor Calibration

The sun sensors are calibrated using the method explained in Chapter 2, which

involves augmenting the state of the MEKF with additional parameters. It is worth

noting that parameterizing the surface normal of the sun sensors using azimuth α and

elevation ϵ angles can be problematic, as the azimuth angle is undefined for ϵ = ±π
2
,

which correspond to the ±Z axes for our satellite. To avoid this problem, we simply

rotate the reference frame about the Y axis by 45◦ so that no diodes have surface

normals along that axis.

Multiplicative Extended Kalman Filter

Kalman filters are a type of recursive estimator that allow for state estimation

in uncertain environments, combining state dynamics and measurement functions

to calculate the best estimate for the current state. Although Kalman filters are

designed for linear systems, they can be extended to work for our non-linear attitude

determination problem with a few adjustments: the first involves linearizing the

dynamics and measurement functions about the state estimate at each step, and the

second is accounting for the multiplicative nature of attitude updates (as opposed to

the additive updates used in a normal Kalman filter). The resulting filter is known as

a multiplicative extended Kalman filter, and relies on two primary assumptions: one,

that the dynamics and measurement functions are differentiable at every time step,

and two, that the uncertainty is centered on the state estimate [16]. Note that these

assumptions do not have to strictly hold for the MEKF to work well; this is fortunate,

as the diode measurements for our system are not smooth when transitioning from

illumination to darkness.

The satellite state consists of the satellite attitude and gyroscope bias, as well as

28

5. Flight Software

the calibration values for the sun sensors when they are being calibrated, so that

x =

q ∈ H

βω ∈ R3

C ∈ RN

α ∈ RN

ϵ ∈ RN

 (5.5)

for N sun sensors. One additional consideration to be made involves the choice

of parameterization for the attitude. As previously stated, our system uses unit

quaternions to represent satellite attitude due to their lack of singularities, low storage

space, and easy-to-enforce constraints; however, this four-parameter representation

for a three degree-of-freedom system creates problems when working with Jacobian

matrices, resulting in rank-deficient matrices. To account for this, we rely on axis-

angle representations of attitude ψ during each step, which represents attitude as a

rotation of θ degrees around axis r and only requires three parameters. Axis-angle

representations have singularities at 180◦, but we do not expect to rotate that much

between successive time steps, so that is not a concern. They are also ill-defined at 0◦

rotations, but that can easily be accounted for in code. The attitude Jacobian matrix

(see Eq. 2.9) is used to convert between from a Jacobian using axis-angle vectors to

one with quaternions.

Dynamics Function

The dynamics function updates the satellite attitude using the previous attitude

estimate and the angular velocity. The gyroscope bias is assumed to be constant, and

adjustments to the bias estimate are made later during the correction steps. First,

the current estimate for the gyroscope bias is subtracted out of the measured angular

velocity to estimate the true angular velocity

ωk = ω̃k − βω,k, (5.6)

29

5. Flight Software

which is then converted into an axis-angle representation and then into a quaternion

to update the state, so that

r =
ωk

||ωk||
(5.7)

θ = ||ωk||∆t (5.8)

q−k = q+k−1 ⊙

[
cos θ

2

r sin θ
2

]
, (5.9)

where q+k−1 is the estimated attitude at the previous time step, the ⊙ symbol represents

quaternion multiplication, and q−k is the predicted attitude for the next time step

before measurements have been accounted for. When calibrating the sun sensors,

the calibration values are also assumed to be constant and remain the same. The

dynamics function is then

x−k = f(x+k−1, ω̃k) =

q+k−1 ⊙

[
cos θ

2

r sin θ
2

]
βω,k−1

Ck−1

αk−1

ϵk−1

. (5.10)

The Jacobian of the dynamics function is

F =
∂f

∂x
=

[
∂ψ
∂ψ

∂ψ
∂βω

∂βω
∂ψ

∂βω
∂βω

]
, (5.11)

remembering that we are using a three-parameter attitude representation ψ when

taking a Jacobian to avoid a rank-deficient matrix. For small angles, this Jacobian is

approximately equal to

Fk =

[
e−([ω̃k−βω,k]

×∆t) −∆t

03 I3

]
, (5.12)

When calibrating sun sensors, ∂C
∂C
, ∂α
∂α
, and ∂ϵ

∂ϵ
are all identity matrices, and the

remaining terms are zero. Note the dependence on the small angle approximation,

30

5. Flight Software

which breaks down at high angular velocities or small time steps.

Measurement Functions

Our system has two measurement functions: one for the magnetometer and one for

the sun sensors, denoted as hm and hs, respectively. The magnetometer measurement

function uses the satellite’s position r and the current time t to predict what the

magnetic field vector in inertial frame BI should be, utilizing the International

Geomagnetic Reference Field 13 (IGRF13) model, and then uses the estimate of the

predicted satellite attitude q−k to predict the magnetic field vector in body frame,

which is later used to correct the predicted attitude:

B̄B = hm(q
−
k , t, r) = Q(q−k)B

I(t, r). (5.13)

Becuase the gyroscope bias does not affect this measurement function (nor do the

sun sensor calibration parameters, when those are being estimated), the Jacobian of

this measurement function is simply

Hm =
[
[BB]× 0

]
. (5.14)

The sun sensor measurement is a bit more complicated: the sun vector in inertial

frame is generated using the current time, and the position of the satellite is used

to determine if the satellite is being eclipsed by the Earth (which would result in

no expected current). In the event that the satellite is illuminated, the predicted

attitude is used to calculate the sun vector in body frame, which is used with the

estimated surface normals of each sun sensor to predict the sun sensor readings. The

satellite and sun positions are also used to determine which portions of the Earth’s

surface are in their shared field-of-view, which is used to approximate the affect of

Earth’s albedo. The resulting function is

Īj = hs,j(q
−
k , t, r) = C−

k n̂
T
j Q(q

−
k)ŝ

N + C−
k

Ea,j(q
−
k , t, r)

EAM0

(5.15)

31

5. Flight Software

where

n̂j =

cos ϵ
−
k,j cosα

−
k,j

cos ϵ−k,j sinα
−
k,j

sin ϵ−k,j

 (5.16)

is the unit surface normal of the jth diode, ŝB = Q(q−k)ŝ
N is the unit sun vector

in body frame, EAM0 = 1366.9 is the irradiance of sunlight at 1AU, and Ea,j is the

affect of the Earth’s albedo on the jth diode [23].

The JacobianHs is as follows. Note that the terms corresponding to the calibration

parameters are derived by Springmann [23], but are included here for completeness.

∂Īj
∂ψ

= Cjn̂
T
j [ŝ

B]×, (5.17)

∂Īj
∂β

= 01×3, (5.18)

∂Īj
∂Cj

= n̂Tj ŝ
B, (5.19)

∂Īj
∂αj

= Cj

[
− cos ϵj sinαj cos ϵj cosαj 0

]
ŝB, (5.20)

∂Īj
∂ϵj

= Cj

[
− sin ϵj cosαj − sin ϵj sinαj cos ϵj

]
ŝB. (5.21)

When not calibrating the sun sensors, Eqs. 5.19, 5.20, and 5.21 are not used.

The matrix overall measurement Jacobian is then

H =

[
Hm

Hs.

]
(5.22)

Numerical Stability

To further improve the performance of our filter, we rely on a few techniques for

improving numerical stability. A common problem for the covariance matrices used in

an MEKF is that that magnitude of some values are many orders larger than others,

so that some numbers get really large as others get relatively small. This can lead

to dangerous round-off errors at each step when the covariance is corrected using

32

5. Flight Software

the measurement Jacobian and Kalman gain. However, this effect can be reduced by

using an alternative form for the covariance correction step, known as Joseph form:

P+
k = (I −KH)P−

k (I −KH)T +KRKT , (5.23)

where P is the coviariance matrix, I is the identity matrix, K is the Kalman gain, H

is the Jacobian of the measurement function evaluated at the current state estimate,

and R is the measurement noise. This takes a bit more computation, but results in

the addition of two positive semi-definite matrices, precluding an indefinite matrix

result.

The second technique we rely on is using square-root filtering. This method

reduces the effects of round-off error by storing the square root of a covariance matrix,

rather than the actual covariance matrix. This requires a smaller range, allowing for

shorter word lengths, and helps reduce the conditioning of a matrix; because of the

symmetric nature of covariance matrices, only one side is needed. There are multiple

ways to take the square root of a matrix, but for our filter we rely on the upper

Cholesky factor C, so that

P = CTC. (5.24)

We can then utilize QR decomposition to further improve the filter, using the fact

that √
A+B = qrr(

√
A,

√
B), (5.25)

where A and B are matrices and qrr(·, ·) returns the R matrix from QR decomposition.

This allows us to use the matrix square root C in all steps of the standard MEKF

algorithm, without needing to convert back to the full covariance matrix P [25].

This also allows us to work with the square roots of our process noise Q and

measurement noise R matrices, once again using Cholesky factorization, so that

ΓQ =
√
Q (5.26)

and

ΓR =
√
R. (5.27)

33

5. Flight Software

Algorithm 1 Procedure for a square-root multiplicative extended Kalman filter
(MEKF), using Cholesky factorization, Joseph form, and QR decomposition to update
the covariance matrix with higher numerical precision. Note the special update method
in line 15 that results in the multiplicative nature of the filter.

1: procedure Square-root MEKF
2: C+

1 , x
+
1

3: for t = 2 to N do
4: (1) Prediction
5: x−k = f(x+k−1, ω̃k−1)
6: C−

k = qrr(C
+
k−1F (x

+
k−1)

T ,ΓQ)
7: (2) Innovation
8: zk = [hm(q

−
k , t, r);hs(q

−
k , t, r)]

9: Gk = qrr(C
−
k H

T
k ,ΓR)

10: Kk =
[
G−1(G−THk)(A

−
k)

TA−
k

]T
11: (3) Update
12: ∆x = Kkzk
13: θ = ||∆xψ||
14: r =

∆xψ
θ

15: x+k =

q−k ⊙

[
cos(θ/2) r sin(θ/2)

]T
β−
k +∆xβ

C−
k +∆xC
α−
k +∆xα
ϵ−k +∆xϵ

16: C+

k = qrr(A
−
k (I −KkHk)

T ,ΓRK
T
k)

17: end for
18: return x+N , C

+
N

19: end procedure

Using our square-root notation, the covariance update in Eq. 5.23 becomes [25]

P+
k = qrr

(
P−
k (I −KH)′,ΓRL

T
)
. (5.28)

Algorithm

The complete algorithm for the square-root multiplicative extended Kalman filter is

shown in Algorithm 1.

34

5. Flight Software

Scale Factor Azimuth Angle Elevation Angle
σC σα σϵ

0.15 4◦ 4◦

Table 5.1: Initial error in estimates for sun sensor calibration parameters.

Scale Factor Non-Orthogonality Angle Bias
σs σζ σβB

0.2 4◦ 1µT

Table 5.2: Initial error in estimates for magnetometer calibration parameters.

5.1 Experiments and Results

Simulations

The performance of the attitude determination system—as well as detumbling using

the magnetic torque coils—was evaluated in simulation using Monte Carlo testing.

Initial states for the satellite were randomly generated using the noise values shown

in Table 5.3. The values for W and V used in the simulations were

W =

(5× 10−4)I3 0 0 0 0

0 (5× 10−5)I3 0 0 0

0 0 (1× 10−5)IN 0 0

0 0 0 (0.01◦)IN 0

0 0 0 0 (0.01◦)IN

2

(5.29)

and

V =

[
(8◦)I3 03

03 (0.01)I3

]2

. (5.30)

The initial error in sun sensor calibration parameters is shown in Table 5.1 and the

error in magnetometer parameters in Table 5.2, where s = [a, b, c]T is the vector of

scale factors along each axis, ζ = [ρ, λ, ϕ]T is the vector of non-orthogonality angles,

and βB = [x0, y0, z0]
T is the vector of biases along each axis of the magnetometer.

Twenty samples were averaged to evaluate the performance after 3 orbits, with

35

5. Flight Software

Magnetometer Gyroscope Gyroscope Bias Position Sun Sensor

0.3µT 2.73× 10−4 rad
s

1.45× 10−5 rad
s

20km 0.01

Table 5.3: Noise values used for the simulations, based off of the data from sensor
specification sheets.

Initial Error Final Error Improvement
µ (σ) µ (σ) µ

Magnetic Field Vector 8.04◦ (3.24◦) 0.26◦ (0.09◦) 7.78◦

Sun Vector 7.33◦ (1.8◦) 2.85◦ (0.77◦) 4.48◦

Attitude 8.97◦ (4.23) 1.07◦ (0.52◦) 7.9◦

Table 5.4: Performance of the sensor calibration and attitude determination system,
evaluated as the mean error over 30 simulated runs, each lasting for 3 orbits. The
standard deviation is also provided. Note that the attitude error metric is the norm
of the Cayley map.

the results shown in Table 5.4.

Example plots are shown for one simulated run, including a plot of the angular

velocity during the detumbling phase (Fig. 5.2), a histogram of error in the magnetic

field vector estimation before and after calibration (Fig. 5.3), the iterative guess

on the calibration values for one sun sensor (Fig. 5.4), and the attitude error and

gyroscope bias estimation (Fig. 5.5).

Hardware-in-the-Loop

In addition to testing performed in simulation, a hardware-in-the-loop test was also

run to estimate the sun sensor calibration values on the CubeSat hardware. Our 1U

CubeSat was placed inside our HITL testbed and hooked up to the simulator, which

was used to generate unit sun vectors in the body frame. Diode measurements were

gathered and stored, along with the true sun vector values for comparison. This data

was used to estimate the sun sensors’ scale factors, azimuth, and elevation angles, and

then this updated information was used to estimate the sun vector for each of the

saved time steps, along with the results for the uncalibrated system for comparison.

The result is shown in Fig. 5.6.

36

5. Flight Software

Figure 5.2: Example of simulated detumbling process.

Figure 5.3: Histogram of the error in the magnetic field vector estimate in simulation
before and after magnetometer calibration, in degrees.

37

5. Flight Software

Figure 5.4: Calibration of a single sun sensor for a simulated orbit, including the
initial guess, the true value, and the best estimate at each time step. Note that the
time is measured since the start of the diode calibration phase.

Figure 5.5: Error in estimated satellite attitude and gyroscope bias over time during
a simulated orbit using our MEKF, where the attitude error is represented as the
norm of the Cayley map. Note that the time is measured since the start of the diode
calibration, which is attitude-dependent and includes attitude and gyroscope bias
estimation.

38

5. Flight Software

Figure 5.6: Error in sun vector estimation before and after calibration using the
hardware-in-the-loop testbed. The mean error for the uncalibrated system was 8.3◦,
while the calibrated system had an error of only 4.7◦.

5.2 Simultaneous Magnetometer and Sun Sensor

Calibration

Thus far, we have used two separate methods for calibrating the magnetometer

and the sun sensors: for magnetometers, we used an attitude-independent method

relying on batch estimation, and for the sun sensors we augmented the state of

our MEKF to use an attitude-dependent method for calibrating. As shown, this

works well and provides good estimates for calibration parameters in simulation.

However, batch estimation requires a large amount of data to be accumulated, which

takes time and may not be possible due to limited computation and storage on

satellites. This is particularly true for picosatellites or satellites relying on well-

tested (old) computational equipment. Additionally, it relies on the assumption

that the calibration parameters are not time-varying, which may not always be true,

particularly for the magnetometer bias. We propose an alternative method that can

be used to simultaneously calibrate the magnetometer and sun sensors by further

augmenting the state in our MEKF to include the calibration parameters for both

the sun sensors and the magnetometers. This allows for recursive calibration using

39

5. Flight Software

filtering and allows for time-varying parameters, at the cost of potentially lower

accuracy in more extreme conditions.

Formulation

The augmented state of the MEKF becomes

x =

q ∈ H

βω ∈ R3

C ∈ RN

α ∈ RN

ϵ ∈ RN

s ∈ R3

ζ ∈ R3

βB ∈ R3

, (5.31)

where the magnetometer scale factors, non-orthogonality angles, and magnetometer

biases have been appended to the end of the state used previously.

Dynamics

The dynamics function in Eq. 5.10 is almost the same and leaves the magnetometer

calibration values untouched at each time step, so that

x−k = f(x+k−1, ω̃) =

q+k−1 ⊙
[
cos θ

2
r sin θ

2

]T
βω,k−1

Ck−1

αk−1

ϵk−1

sk−1

ζk−1

βB,k−1

. (5.32)

40

5. Flight Software

This results in the same dynamics Jacobian as before in Eq. 5.11, with all the new

diagonal terms as identity and all the cross terms as zero:

Fk =

e
−([ω̃k−βk]×∆t) −∆t 0

0 I3 0

0 0 I3N+9

 , (5.33)

Measurements

The augmented state does not affect the sun sensor measurement function hs, nor does

it affect its Jacobian Hs other than to add additional zeros for each new parameter.

However, the measurement Jacobian Hm becomes different; using Eq. 2.10, 2.11, and

2.12, the equations for the new parameters are

∂BB

∂s
=

B
B
x 0 0

0 BB
x sin ρ+BB

y cos ρ 0

0 0 BB
x sinλ+BB

y cosλ sinϕ+BB
z cosλ cosϕ

 ,
(5.34)

∂BB

∂ζ
=

0 b(BB
x cos ρ−BB

y sin ρ) 0

0 0 c(BB
x cosλ−BB

y sinλ sinϕ−BB
z sinλ cosϕ)

0 0 c(BB
y cosλ cosϕ−BB

z cosλ sinϕ)

T

(5.35)
∂BB

∂βB
= I3. (5.36)

Note that Eq. 5.35 has been transposed in order to fit on the page.

Experiments

The simultaneous magnetometer and sun sensor algorithm was tested in simulation

using the method explained above. Plots showing the estimated magnetometer scale

factors s, non-orthogonality angles ζ, and biases βB are shown in Figs. 5.7, 5.8, and

5.9, respectively.

41

5. Flight Software

Figure 5.7: Example estimates of magnetometer scale factors s = [a, b, c]T versus time
using an MEKF, as well as the true value and the initial guess.

Figure 5.8: Example estimates of magnetometer scale factors ζ = [ρ, λ, ϕ] versus time
using an MEKF, as well as the true value and the initial guess.

42

5. Flight Software

Figure 5.9: Example estimates of magnetometer scale factors βB = [βB,x, βB,yβB,z]
T

versus time using an MEKF, as well as the true value and the initial guess.

43

5. Flight Software

44

Chapter 6

Conclusion

In this work we develop a low-cost attitude determination and control system that

is scalable to small satellites and uses sensors and actuators with low weight, cost,

and volume requirements. This system calibrates on-board sensors, utilizes on a

square-root multiplicative extended Kalman filter for attitude determination, and

requires only magnetic torque coils for control, resulting in a completely solid-state

satellite, with no moving parts or consumable fuel.

In order to further aid in the development of new algorithms for CubeSats, we

also provide an open-source simulator that accounts for numerous factors that affect

a satellite’s orbit, as well as a hardware-in-the-loop testbed that allows for parts of

the satellite hardware to be tested throughout the development cycle.

Future Work

The current hardware-in-the-loop testbed is inexpensive, easy to make, and quick

to assemble; however, it has several limitations. Small satellites come in a variety

of sizes (e.g., PocketCubes, 3U CubeSats, etc...); while the current design for the

testbed could easily be modified to fit any of these types, a new version would have

to be made for every new size of satellite, which is not ideal. The testbed design

could be modified to allow for one structure that works for a variety of different sizes

of satellites.

Additionally, while the current version of the Helmholtz coil is capable of generating

45

6. Conclusion

a magnetic field opposite to the Earths, creating a zone that is approximately

magnetically neutral, it is only able to generate a magnetic vector in one direction.

The hardware-in-the-loop testbed would be more effective if, like the sun vector, the

magnetic field vector could be adjusted to any arbitrary direction at an instant. This

would allow for simulation of the magnetic field over time as the satellite “orbits”

the Earth. This is possible through construction of a three-axis Helmholtz coil with

controllable currents.

Perhaps most importantly, the performance of the attitude determination and

control system needs to be evaluated on an actual CubeSat in orbit. We intend to

launch a 1U CubeSat in the near future that will run our system. The data will then

be evaluated and compared to the results of our simulator and tests.

46

Bibliography

[1] P. Alken, E. Thébault, C.D. Beggan, and et al. International geomagnetic
reference field: the thirteenth generation. Earth Planets Space, 74, 2021. doi:
10.1186/s40623-020-01288-x. 3.2.1

[2] Giulio Avanzini and Fabrizio Giulietti. Magnetic detumbling of a rigid spacecraft.
Journal of Guidance, Control, and Dynamics, 35(4):1326–1334, 2012. doi: 10.
2514/1.53074. URL https://doi.org/10.2514/1.53074. 5

[3] Dan Bhanderi. Earth albedo toolbox. https://www.mathworks.com/

matlabcentral/fileexchange/11226-earth-albedo-toolbox, 2008. 2.2

[4] Dan D. V. Bhanderi. Spacecraft Attitude Determination with Earth Albedo
Corrected SunSensor Measurements. PhD thesis, Aalborg University, Fredrik
Bajers Vej 7, DK-9220 Aalborg Ø, Denmark, 2005. URL https://www.bhanderi.

dk/research/publications/bhanderi_phd_thesis.pdf. 2.2, 3.2.3

[5] James W. Cutler, Aaron Ridley, and Andrew Nicholas. Cubesat investigating
atmospheric density response to extreme driving (cadre). In Proceedings of the
25th Annual AIAA/USU Conference on Small Satellites, 2011. 1.2

[6] TOMS Science Team Goddard Earth Sciences Data and Information Services
Center. Toms earth probe uv reflectivity, 1996. URL https://disc.gsfc.nasa.

gov/datacollection/TOMSEPL3mref_008.html. (document), 2.1

[7] Nathanael England, James Cutler, and Srinagesh Sharma. Tandem beacon
experiment - tbex. In CubeSat Workshop, Michigan Exploration Lab, 2018. 1.2

[8] C. C. Foster and G. H. Elkaim. Extension of a two-step calibration methodology
to include nonorthogonal sensor axes. IEEE Transactions on Aerospace and
Electronic Systems, 44(3):1070–1078, 2008. doi: 10.1109/TAES.2008.4655364.
2.3.1, 2.3.1, 2.3.2

[9] F.Reichel, P.Bangert, S.Busch, K.Ravandoor, and K.Schilling. The atti-
tude determination and control system of the picosatellite uwe-3. IFAC
Symposium on Automatic Control in Aerospace, 46(19):271–276, 2013. doi:
10.3182/20130902-5-DE-2040.00088. 1.2

47

https://doi.org/10.2514/1.53074
https://www.mathworks.com/matlabcentral/fileexchange/11226-earth-albedo-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/11226-earth-albedo-toolbox
https://www.bhanderi.dk/research/publications/bhanderi_phd_thesis.pdf
https://www.bhanderi.dk/research/publications/bhanderi_phd_thesis.pdf
https://disc.gsfc.nasa.gov/datacollection/TOMSEPL3mref_008.html
https://disc.gsfc.nasa.gov/datacollection/TOMSEPL3mref_008.html

Bibliography

[10] Andrew Gatherer and Zac Manchester. Magnetorquer-only attitude control of
small satellites using trajectory optimization. In Proceedings of AAS/AIAA
Astrodynamics Specialist Conference, August 2019. 1.1

[11] Geek3. https://commons.wikimedia.org/wiki/File:Mplwp Helmholtz coil field.svg,
December 2019. (document), 4.4

[12] Max Holliday. Pycubed, 2022. URL https://pycubed.org/. (document), 4.1.1,
4.2

[13] Max Holliday, Andrea Ramirez, Connor Settle, Tane Tatum, Debbie Senesky, and
Zac Manchester. Pycubed: An open-source, radiation-tested cubesat platform
programmable entirely in python. In AIAA/USU Conference on Small Satellites
(SmallSat), 2019. 1.1, 4.1.1

[14] Brian E. Jackson, Kevin Tracy, and Zachary Manchester. Planning with attitude.
IEEE Robotics and Automation Letters, 6(3):5658–5664, 2021. doi: 10.1109/
LRA.2021.3052431. 2.1, 3.1.2

[15] Benjamin Jensen. Earth albedo. https://github.com/

RoboticExplorationLab/EarthAlbedo.jl, 2021. 2.2

[16] Tucker McClure. How kalman filters work, 2022. URL https://anuncommonlab.

com/articles/how-kalman-filters-work/. 5

[17] R. McPeters, P. K. Bhartia, A. J. Krueger, , and J. R. Herman. Earth probe
total ozone mapping spectrometer (toms) data products user’s guide. Technical
Report No. 19987-206895, National Aeronautics and Space Administration, 1998.
2.2

[18] O. Montenbruck and E. Gill. Satellite Orbits: Models, Methods and Applications.
Springer, 2012. 3.1.1, 3.1.1, 3.1.1

[19] J. Prado, G. Bisiacchi, L. Reyes, E. Vicente, F. Contreras, M. Mesinas, , and
A. Juárez. Three-axis air-bearing based platform for small satellite attitude de-
termination and control simulation. Journal of Applied Research and Technology,
3(3):222–237, 2005. 1.2

[20] Darren Rowen and Rick Dolphus. 3-axis attitude determination and control
of the aerocube-4 cubesats. In Proceedings of the Small Satellite Conference,
CubeSat Developers’ Workshop, 2013. 1.2

[21] M.D. Shuster and D.S. Pitone. Batch estimation of spacecraft sensor alignments
ii. absolute alignment estimation. Journal of Astronautical Sciences, 39(4):
547–571, 1991. 2.3.2

[22] John C. Springmann and James W. Cutler. Attitude-independent magnetometer
calibration with time-varying bias. Journal of Guidance Control and Dynamics,
2012. URL https://arc.aiaa.org/doi/pdf/10.2514/1.56726. (document),

48

https://pycubed.org/
https://github.com/RoboticExplorationLab/EarthAlbedo.jl
https://github.com/RoboticExplorationLab/EarthAlbedo.jl
https://anuncommonlab.com/articles/how-kalman-filters-work/
https://anuncommonlab.com/articles/how-kalman-filters-work/
https://arc.aiaa.org/doi/pdf/10.2514/1.56726

Bibliography

2.3.1, 2.2, 2.3.1

[23] John C. Springmann and James W. Cutler. On-orbit calibration of photodi-
odes for attitude determination. Journal of Guidance Control and Dynam-
ics, 37:1808–1823, 2014. URL https://deepblue.lib.umich.edu/bitstream/

handle/2027.42/140645/1.g000175.pdf?sequence=1. 2.3.2, 3.2.3, 3.2.3, 5

[24] Michael Swartwout. Cubesat mission success: Are we getting better? In CubeSat
Developers’ Workshop, 2019. 1

[25] Kevin S. Tracy. A square-root kalman filter using only qr decompositions. ArXiv,
2022. URL arxiv.org/abs/2208.06452. 5, 5

49

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/140645/1.g000175.pdf?sequence=1
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/140645/1.g000175.pdf?sequence=1
arxiv.org/abs/2208.06452

	1 Introduction
	1.1 Contributions
	1.2 Related Works

	2 Background
	2.1 Unit Quaternions
	2.2 Earth's Albedo
	2.3 Sensor Calibration
	2.3.1 Magnetometer Calibration
	2.3.2 Sun Sensor Calibration

	3 Simulator
	3.1 Dynamics
	3.1.1 Orbital Dynamics
	3.1.2 Attitude Dynamics
	3.1.3 Environment State

	3.2 Measurements
	3.2.1 Magnetometer
	3.2.2 Gyroscope
	3.2.3 Sun Sensors
	3.2.4 Position

	4 Hardware
	4.1 Satellite
	4.1.1 PyCubed
	4.1.2 Sensors
	4.1.3 Actuators

	4.2 Hardware-in-the-Loop Testbed
	4.2.1 Helmholtz Coils

	5 Flight Software
	5.1 Experiments and Results
	5.2 Simultaneous Magnetometer and Sun Sensor Calibration

	6 Conclusion
	Bibliography

