
Library of behaviors and tools for robot

manipulation

Yunchu Zhang

CMU-RI-TR-22-41

July 26, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Christopher G. Atkeson, chair
Katerina Fragkiadaki, co-chair

Oliver Kroemer
Thomas Weng

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Yunchu Zhang. All rights reserved.





To all my family members, friends and people who inspired me.



iv



Abstract

Learned policies often fail to generalize across environment variations,
such as, different objects, object arrangements, or camera viewpoints.
Moreover, most policies are trained and tested in simulation environments,
and the simtoreal gap remains large under weak visual representations
that do not disentangle the scene from the objects in it.

We first propose a visually-grounded library of behaviors approach for
learning to manipulate diverse objects across varying initial and goal con-
figurations and camera placements. Our key innovation is to disentangle
the standard image-to-action mapping into two separate modules that
use different types of perceptual input: (1) a behavior selector which
conditions on intrinsic and semantically-rich object appearance features
to select the behaviors that can successfully perform the desired tasks on
the object in hand, and (2) a library of behaviors each of which conditions
on extrinsic and abstract object properties, such as object location and
pose, to predict actions to execute over time. We test our framework on
pushing and grasping diverse objects in simulation as well as transporting
rigid, granular, and liquid food ingredients in a real robot setup. Our
model outperforms image-to-action mappings that do not factorize static
and dynamic object properties.

We then propose an end-to-end learning framework that jointly learns to
choose different tools and deploy tool-conditioned policies with a limited
amount of human demonstrations directly on a real robot platform. It
is important to correctly switch between and deploy suitable tools in
object rearrangement and cleaning tasks in complex scenes. We evaluate
our method on parallel gripper and suction cup picking and placing,
sweeping with a brush, and household rearrangement tasks, generalizing
to different configurations, novel objects, and cluttered scenes in the
real world. Finally, we show a long-horizon planning framework that
could utilize our multiple tool setup to manipulate elastoplastic objects
successfully, such as a dough.
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Chapter 1

Introduction

While robotics research has made great progress in solving novel and complicated

tasks with data-driven methods, there are still many problems that remain, such as

non-robust transfer from simulation to real world, sample inefficiency when training

with deep networks, and weak generalization across multiple distinct tasks. Embracing

prior knowledge (e.g library of behaviors) and exploring the object/scene affordance

representation may be a possible way to address those problems. We assume that

humans use libraries of task-specific behaviors with correspondence tools that they

have been taught or shown to finish the most of daily tasks. Although those primitives’

generalization ability are weak, robots can make analogies and generalize behaviors

with shared affordance among different scenes.

1.1 Thesis Organization

The thesis is organized as follows:

• Visually-Grounded Library of Behaviors for Manipulating Diverse Objects across

Diverse Configurations and Views [chapter 2] : a visually-grounded library of

behaviors approach for learning to manipulate diverse objects across varying

initial and goal configurations and camera placements.

• MultiTool Transporter Networks for Object Rearrangement from Demonstra-

tions [chapter 3] : a neural model that given a visual image of the scene, predicts

1



1. Introduction

a tool identity, as well as image-conditioned action parameters for close-loop

policy.

• PASTA: Planning with Spatial-Temporal Abstraction from Point Clouds for

Deformable Object Manipulation [chapter 4]: a framework that incorporates

both spatial abstraction (reasoning about objects and their relations to each

other) and temporal abstraction (reasoning over skills instead of low-level

actions).

2
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This material is based upon work supported by Sony AI, NSF CAREER award and

Amazon faculty award. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do not reflect the views of

Sony, Amazon.
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Chapter 2

Visually-Grounded Library of

Behaviors for Manipulating Diverse

Objects across Diverse

Configurations and Views

2.1 Introduction

Object manipulation in unstructured environments is challenging since methods to

manipulate objects largely depend on the object’s visual appearance. One approach

to capture the dependence between actions and visual features is to learn a direct

mapping from image to actions with deep neural networks [14, 43, 82]. Despite their

flexibility, such end-to-end image-to-action mappings have been shown to be data

aggressive [29], and cannot easily generalize across objects, camera viewpoints, or

scene configurations [7].

Approaches that abstract away object details and encode only a subset of their

properties, e.g., their 3D locations and velocities [3] or 3D keypoints [37, 48] make

5



2. Visually-Grounded Library of Behaviors for Manipulating Diverse Objects across
Diverse Configurations and Views
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Figure 2.1: We propose a novel policy representation that generalizes to unseen
objects, object placements and camera views.

the state-to-action mapping easier to learn with less data. However, this abstraction

may substantially limit the range of objects that a policy can handle, since useful

information (object shapes, softness, weight, and material, for example) for the

downstream task may be ignored. The challenging question is: how can we design a

framework for object manipulation that uses abstract representations for sample

efficient behavior learning, but at the same time is capable of utilizing semantically-

rich representations for handling diverse objects and views.

We propose Visually-grounded library of BEhaviors (V-BEs), a hierarchical framework

for vision-based object manipulation. Our main contribution is that the two levels

of our policy hierarchy use different visual representations. At the lower level of the

hierarchy, a behavior library contains a set of distinct behaviors each of which operates

on an abstract object state representation that captures dynamic properties of objects

in the environment, such as object and gripper positions over time. Behaviors can be

redundant, use different state abstractions, be closed loop or open loop, and be learned

or manually engineered with different algorithms [2, 10, 33]. At the higher level of the

hierarchy, a selector is trained using environment interactions to associate objects to

behaviors that can successfully manipulate them. This selector takes as input RGB-D

images of the scene, maps them to semantically-rich and view-invariant 3D object

feature representations [68], and outputs the behavior that best suits the presented

object and task. The decomposition of visual information into a perceptually rich

selector network and behaviors with state abstraction makes the behaviors easier to

learn with reinforcement learning or be designed by an engineer, and the selector

easier to learn by trial-and-error learning as it does not bear the burden of producing

low-level actions. At test time, we use 3D object detectors to localize the object, and

present its location and size to the low-level controllers when necessary.

6



2. Visually-Grounded Library of Behaviors for Manipulating Diverse Objects across
Diverse Configurations and Views

Our second contribution is proposing a visual representation for our behavior selector

that is robust to changing camera viewpoint (with respect to a non-changing robot

torso), as well as object placements. We use the differentiable 2D-to-3D neural

networks of Tung et al. [68] to map an input RGB-D image alongside camera

intrinsics and extrinsics to transform 3D visual scene feature maps from the current

camera viewpoint to the world frame, ensuring that visual features are bound to a

static world frame—that coincides with the frame of the agent’s body—and do not

change dramatically while the camera moves. The 3D visual feature representations

learn based on environment interactions to embed objects close to the behaviors

that can manipulate them. They are further trained from the auxiliary task of view

prediction using a multi-view camera setup, which encourages the model to complete

missing information from the current view so the 3D visual feature maps are consistent

across views and through occlusions.

We test the proposed model in both simulated and real robot setups. In simulation,

we consider two manipulation tasks: pushing and grasping. We show that our model

can manipulate diverse objects and generalize the learned skills to unseen objects with

varying object starting positions, initial poses, goal locations, and camera viewpoints.

We show that our model outperforms existing end-to-end image-to-action mappings

[29] and state abstracted object-to-action mappings that use only 3D object locations

[3]. We ablate the contribution of our higher-level 3D feature representation used

in our selector and then compare against 2D pretrained baselines. Lastly, we test

our model in a real robot setup where the robot transports rigid, granular, and

liquid objects onto a plate. We provide supplementary materials including additional

qualitative results at https://yunchuzhang.github.io/vbes.github.io/.

2.2 Related Work

Libraries of Behaviors: Libraries of behaviors have been considered in many

previous works, and library elements have been called action, motion, behavioral,

or motor primitives, parameterized policies, options, chunks, macros, subroutines,

behavioral units, and skills, as well as many other terms. However, most previous

7
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2. Visually-Grounded Library of Behaviors for Manipulating Diverse Objects across
Diverse Configurations and Views

work either assumes that the environment state is known and does not use perception,

or has a different approach to perception than ours. Work of Neumann et al. on

modular policies [41] defines a motor primitive as a mapping from a robot’s joint

angles and velocities and not the locations of objects. Rather, object locations are

used as context for selecting a motor primitive. This means i) motor primitives are

“blind” to the object 3D location throughout the episode, and ii) object appearance

is discarded which means the library of primitives cannot handle object variability.

Work of de Silva [59] on parameterized policies similarly considers as the contextual

vector the desired goal location of a dart, and learns a mapping from this location

to policy parameters, where each policy operates only over the robots’ joints and is

represented as a Dynamic Motion Primitive (DMP) [55, 57, 63]. To extend DMPs to

tasks involving physical interactions, Kroemer et al. [26] parameterize DMPs based

on the distance of an object part from the gripper, but only consider known object

3D shapes. Strudel et al. [62] use a depth frame as input to a meta-policy that selects

skills to execute. However, the use of modularity over skills is for temporal sequencing:

there is no mixture of behaviors per manipulation task, rather an image to action

mapping is learned with behavior cloning from demonstrations.

Deep Reinforcement and Imitation Learning for Object Manipulation:

Current work in (deep) reinforcement learning typically considers only one monolithic

policy learned via reinforcement learning [2, 25, 71], imitation learning [51, 58, 82], or

a combination of the two [8, 50]. Most approaches take as input 3D object and gripper

centroids, orientations, and velocities, and ignore contextual visual information [42].

Existing methods are commonly trained in a fixed environment and evaluated in

terms of their ability to discover a policy rather than their ability to generalize to

previously unseen circumstances, e.g., novel objects and views, which is the goal of

this work.

Methods that do aim to generalize across objects learn a mapping from images-to-

actions [29], depth-to-actions [35] or pointcloud-to-actions [40, 47]. They have been

successful in various tasks including object grasping [35, 44] and object pushing from

a fixed camera view [1, 29]. Seminal works of [29, 65] train an image-to-action deep

neural network by imitating trajectories obtained from planners that operate in a low-

8
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Policy Action
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Keys

Action
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(Visual Features)

V-BE (Ours): visually-grounded library of behaviorsc

Figure 2.2: Comparison of our model with previous approaches. In contrast to
state-to-action or image-to-action mapping, the proposed framework decomposes a
policy into a behavior selection module and a library of behaviors to select from.
The decomposition enables these modules to work on different representation: the
selection module operates in a semantically-rich visual feature space, while the
behaviors operates in an abstract object state space that facilitate efficient policy
learning.

dimensional state space. Nevertheless, such monolithic image-to-action deep mappings

don’t generalize well across different camera viewpoints [7, 46, 52] and objects. Works

that attempt to transfer visuomotor policies learned in simulation to the real-world

often require identical placement of the camera in the real world [3, 22]. Florence

et al. [13] train manipulation policies parameterized by the 2D or 3D locations of a

designated set of visual descriptors obtained from RGB-D images, and show their

policies generalize across objects of the same object category, e.g., shoes of different

shapes. The proposed work further allows generalization across object categories,

and no explicit descriptor selection or optimization is necessary. Furthermore, our

framework permits each behavior to use a different state representation.

Hierarchical Reinforcement Learning (HRL): Most existing HRL methods

[27, 61] focus on discovering behaviors and temporally sequencing them for long-

horizon tasks. This paper instead uses a hierarchical vision-based policy architecture

to improve model generalization across objects, configurations, and viewpoints.

2.3 Methods

Problem Setup We consider the problem of manipulating (e.g. grasping, pushing,

etc.) diverse sets of objects from various initial configurations and camera viewpoints.
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Input Image
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GRNN
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0
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The robot interacts with training 
objects using behaviors in the library 
to collect binary success or failure 
outcomes as interaction labels.

The collected interaction labels are 
then used to train the behavior 
selector.

Behavior Selector

Figure 2.3: Overview of the proposed framework.

At training time, the agent has access to training objects Otrain, RGB-D images

from J viewpoints v1, . . . , vJ ∈ V, and it can interact with the training object from

randomly selected viewpoints. At test time, the agent has to perform the same

manipulation task as at training time on test objects Otest from selected viewpoints.

Performance is measured by the success rate of manipulating all test objects with

random initial configurations and camera viewpoints.

Our framework is comprised of two major components — (1) a library of behaviors

Π = {πi | i = 1, 2, . . . , K} and (2) a selector function G. Given an RGB-D image I

of the scene captured from camera view v, denoted by Iv = {I, v}, and an object 3D

bounding box o, the selector G obtains the probability of successfully manipulating the

object when applying behavior πi on the object by computing a query object feature

representation F(Iv, o) and compares it with learned key embeddings κi = κ(πi),

i = 1, ..., K associated with each behavior πi,

G(Iv, o, πi;ϕ, κ) = σ(⟨F(Iv, o;ϕ), κi⟩) ∈ [0, 1], (2.1)

where ϕ is the learnable neural network parameters for function F, ⟨·, ·⟩ is the inner

product operation and σ is the sigmoid function. We will detail the feature dimension

of F(Iv, o;ϕ) and κ in the next section. At test time, we select the behavior πi that

has the highest probability of leading to successful manipulation.

Each behavior πi uses its own abstract state representation for the objects to manip-

ulate, for example, 3D object locations and 3D poses, and does not necessarily take
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into account other aspects of the input image. Each behavior is designed or learns to

handle only a subset of object shapes and orientations. To handle a diverse set of

objects and orientations, our selector learns to pick different behaviors for different

objects or orientations. One advantage of the modularity of our policy architecture is

that each behavior can use its own state abstraction, such as object 6D-poses, 3D

bounding boxes, part-based 3D boxes, or 2D or 3D object keypoint locations [48].

Our framework supports integrating a wide range of existing models, representations,

and controllers as selectable behaviors.

In the rest of this section, we detail the architecture and training details of the behavior

selector in Section 2.3.1, and describe how we acquire a library of behaviors for grasping

and pushing—the two robot manipulation tasks we evaluate our framework on—in

Section 2.3.2.

2.3.1 Visually-Grounded Behavior Selector (G)

The behavior selector G is a classifier that learns object-centric visual feature rep-

resentation F(Iv, o;ϕ) for the object box o in image view Iv, and behavioral key

embeddings κi (i = 1, . . . , K) for the behaviors in the library to retrieve behaviors

compatible with a particular object.

Training the selector with interaction labels. We learn the object feature

representation and behavioral keys through trial-and-error. In each trial, our agent

applies a randomly sampled behavior πi on an object o in the workspace which results

in binary success or failure outcome ℓ ∈ {0, 1}, which we call interaction labels. Agent

interactions are organized as tuples of the form (Iv, o, πi, ℓ). With the interaction

experience as training data T , we train the feature encoder f and behavioral keys

κi = κ(πi) (i = 1, . . . , K) with the loss:

Lafford(κ, ϕ) =
∑

(Iv ,o,πi,ℓ)∈T

BCE(ℓ,G(Iv, o, πi;ϕ, κ)) =
∑

(Iv ,o,πi,ℓ)∈T

BCE(ℓ, σ(⟨F(Iv, o;ϕ), κi⟩))

(2.2)
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where BCE(y, p) = −y · log(p)− (1− y) log(1− p) is the binary cross entropy loss.

3D object feature representation. Our object feature representation F(Iv, o;ϕ)

is computed using Geometry-aware Recurrent Neural Networks (GRNNs) of Tung et

al. [68], which are end-to-end differentiable architectures that map a single RGB-D

image or a set of multi-view images to 3D feature representation of the scene the

image(s) depict. Given a posed image Iv, GRNNs obtain scene-centric 3D feature

representation M = GRNNϕ(Iv) ∈ RH×W×D×C through differentiable 2D-to-3D

operations, 3D convolution-based refinement, and 3D rotation operations that align

the 3D feature representations with the robot’s coordinate frame (as opposed to

camera frame), with W,H,D denoting the width, height and depth of the scene map

and C denotes the feature dimension of the 3D scene feature map.

From the scene map M, we obtain object-centric feature representation F(Iv, o;ϕ) =

crop(M, o) ∈ R64×64×64×32 by cropping the scene map using a fixed-size axis-aligned

box o, centered around the object we wish to manipulate. The feature cropping

operation is similar to the one used in Mask-RCNN [20]. The retrieval policies keys

are also learned in the same representation space. Thus, both F(Iv, o;ϕ) and κi,

(i = 1, . . . , K) have length 64× 64× 64× 32 in the experiments.

3D object detector. We learn a detector with 3D Mask-RCNN built on top of the

GRNNs feature encoder [68]. We use groundtruth 3D object boxes at training time,

and predicted 3D object boxes at test time, where we train our representation to

detect objects in 3D.

View prediction and occupancy prediction as an auxiliary task. We use view

prediction and occupancy prediction as an auxiliary task to help our image encoder

generalize better in its ability to select behaviors. These two self-supervised prediction

tasks have been shown to provide a useful pretraining or co-training objective for 3D

object detection in [18]. Given an input posed image Inv and a query view qn, the
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overall self-supervised prediction loss reads:

Lself-pred(ϕ, θ, η) =
N∑

n=1

∥Pθ(GRNNϕ(I
n
v ), q

n)− Īnq ∥22︸ ︷︷ ︸
view prediction loss

+ ∥Occη(GRNNϕ(I
n
v ))− occn∥1︸ ︷︷ ︸

occupancy prediction loss

,

(2.3)

where Pθ(M, q) is a projection function that projects a 3D feature map M from the

query viewpoint q to a 2D feature map and decodes it to a target image Īnq using

an image decoder with neural network weights θ, Occη(M) ∈ R64×64×64 is a voxel

occupancy prediction function that predicts a 3D occupancy map from an input 3D

feature map M using a single 3D convolution layer with weights η, and occn is the

estimated occupancy map computed from all available input views in the nth data

point by voxelizing the unprojected point clouds from all available depth images. We

train the model from unlabelled multi-view images captured around the table by

simply moving the cameras, capturing the images, and recording the corresponding

camera locations.

The final objective for training the affordance-based visual features is

minimize
κ,ϕ,θ,η

L(κ, ϕ, θ, η) = Lself-pred(ϕ, θ, η) + λa · Lafford(κ, ϕ), (2.4)

where λa is a hyperparameter for balancing the two losses.

2.3.2 Building a Library of State Abstracted Behaviors

Any existing behaviors, whether engineered or learned using reinforcement or imitation

learning, can be included in our library. This flexibility is a contribution of our modular

architecture. In this paper, we consider three common manipulation tasks: pushing,

grasping, and transporting. We build appropriate behavior libraries for each.

In pushing, the behaviors are deterministic goal conditioned policies at = π(st, g)

that map a state of the environment and the robot st = [set , s
r
t ] and a goal state g

to an action at at time step t. The environment state set is the 3D object centroid

and the robot state srt is the gripper 3D location, pose, and whether it is opened or
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closed. Actions include 3D translation, opening (position control), and closing (force

control) of the gripper. A goal state g is a target centroid location for the object.

We use a total of 25 goal conditioned policies – one is trained from the whole set

of objects, while the others are trained on disjoint subsets of object configurations

organized based on object category and initial poses. We train all policies using

deterministic policy gradients (DDPG) [50] with goal relabelling (HER) [2] while

randomizing initial and goal object 3D locations.

In grasping, we design controllers π(at|g; pgrasp, qgrasp) which given a 3D grasping point

pgrasp ∈ R3 relative to the center of the object and a grasping 3D angle qgrasp ∈ R2,

move the gripper (open loop) to the grasping 3D point location, close it, and move it to

the desired goal location. The grasping angle qgrasp consists of two numbers describing

the yaw of the gripper and the elevation angles between the gripper and the table

surface. When the elevation angle is smaller than 90 degrees (not top-down grasps),

we constrain the gripper to point toward the center of the object on the x-y plane. We

manually select 30 different controllers including top-down grasps with different yaw

orientations (top-grasps) and grasps from the side with different elevation angles of

the gripper (side-grasps). We empirically found that these parameterized controllers

are quite stable and can be shared across multiple objects. More details are provided

in the supplementary materials.

2.4 Experiments

Our experiments aim to answer the following questions: (1) Does the proposed library-

based approach outperform existing methods that use a single combined perception

and policy module, either using 2D images, 3D object locations, or 3D scene feature

maps as input? (2) Is the proposed view-invariant and affordance-aware 3D feature

representation a necessary choice for the selector? (3) Does the method work on a

real robot? We test our model on grasping and pushing a wide variety of objects

in the MuJoCo simulator [64] and further test a transporting task on a real-world

Franka Panda robot arm.
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2.4.1 Simulation Experiments

Our simulated environment consists of a Fetch Robot equipped with a parallel-jaw

gripper. The robot is positioned in front of a table of height 0.4m. To obtain the

visual observations, on each episode we choose 3 random cameras from cameras placed

at 30 nominal different views including 10 different azimuths ranging from 0◦ to 360◦

combined with 3 different elevation angles from 20◦, 40◦, 60◦. All cameras are looking

at the center of the table top, and are 0.5 meter away from that point. All images

have size 128× 128.

Task Descriptions: In the grasping task, the agent has to grasp an object and move

it to a specified target location above the table. We use 274 distinct object meshes

from 6 categories in ShapeNet [5] including toy buses, toy cars, cans, bowls, plates,

and bottles. The materials and densities of all objects are identical. We randomly

split the dataset into 207 training objects, and 67 testing objects. After augmenting

the meshes with random scaling from 0.8 to 1.5 and random rotations around the

vertical z-axis, we get a total of 800 distinct object configurations (object instance

and pose), 600 for training and 200 for testing. At the start of each episode, an object

is placed in an area of 30cm × 16cm around the center of the table, and a goal is

sampled uniformly 10 ∼ 30cm away from the gripper’s initial position. An episode is

successful if the object centroid is within 5cm of the target at the final timestep.

In the pushing task, the agent has to push an object placed on the table to a specified

target location. We use 100 objects from 12 categories in ShapeNet [5]: baskets,

bowls, bottles, toy buses, cameras, cans, caps, toy cars, earphones, keyboards, knives,

and mugs. After augmentation and splitting to train and test sets, we obtain 615

training object configurations and 200 for testing. The initial and the goal position of

the object are both uniformly sampled to be within 15cm of the center of the table

along both x-axis and y-axis, although we resample if that location is already in the

goal area. An episode is successful if the object centroid is within 5cm of the goal

within 50 timesteps.

Baselines: We compare our method with various learning and non-learning based

methods for object manipulation:

15



2. Visually-Grounded Library of Behaviors for Manipulating Diverse Objects across
Diverse Configurations and Views

We compare our method with various learning and non-learning based methods for

object manipulation:

1. Single Behavior w/Abstract 3D State (Abstract 3D) [2, 50]: a policy takes as

input ground truth 3D bounding box of the object and gripper and outputs

actions.

2. Single Behavior w/Abstract 3D State and 2D Images (Abstract 3D + Image): a

policy takes both RGB-D images and the ground truth 3D bounding box as

inputs and outputs actions. Our architecture resembles that of [81],

but we further include ground truth object position as extra inputs to the

model. For fair comparisons to other methods, the model only takes as input

the current state as opposed to the states in 5 past steps, as in [81].

3. Single Behavior w/3D Feature Tensor (Contextual 3D): a policy takes as input

RGB-D images and the ground truth 3D bounding box and outputs actions.

Different from (b), the model first transforms the image into a view-invariant

3D feature tensor using GRNNs [68], then converts the 3D feature tensor into a

feature vector though three 3D-convolutional layers and a fully connected layer,

and concatenates it with the rest of the inputs to predict actions.

4. Ours, Library of Behaviors w/ Visual Selector (V-BEs): Our model takes the

same input as (b) and (c). The 3D bounding boxes are used as input to all the

behaviors. The RGB-D images are transformed into 3D affordance-aware visual

features and treated as input to the selector.

We train the baselines with different learning methods including behavior cloning

[29], DDPG-HER [2, 33] and DAGGER [54]. We report the best performance we got

by training the model with these different methods. We also attempt to make all

the models have similar number of parameters so the comparison is fair. However,

larger networks are empirically harder to train and do not converge well, so we

instead increase the number of parameters in smaller networks until their performance

saturates. For pushing, we found that using DDPG-HER is enough to lean a good

Abstract 3D policy from scratch. For abstract 3D + Image, we found it is critical

to use behavior cloning from expert demonstrations to obtain good policies. The
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Single Behavior Library of Ablation study on the selector’s
Behaviors visual feature representation

Abstract 3D Abstract 3D Contextual V-BEs V-BEs w/ V-BEs w/o Fine-tuning
[2, 50] + Image 3D (Ours) 2D features on Interaction Labels [17, 68]

grasping 0.30 0.35 0.20 0.78 0.46 0.31
pushing 0.83 0.70 0.10 0.88 0.81 0.46

Table 2.1: Success rates on grasping and pushing unseen objects. We also ablate the
proposed method with selectors operating on varying representations.

expert demonstrations are obtained from trained expert policies on single objects. For

Contextual 3D, we include DAGGER to enforce behavior cloning during execution.

To train the grasping policies, we further include human demonstrations in the replay

buffer when training it with DDPG-HER. Both abstract 3D + Image and Contextual

3D are trained with DAGGER since offline behavior cloning is insufficient.

2.4.2 Single Behavior versus a Library of Behaviors

We compare the proposed model with models that do not use a library-based approach,

i.e., single behavior approaches. As shown in Table 2.1, our method outperforms all

the single behavior baselines. Abstract 3D performs well, but since it does not use

any visual information, its performance saturates at around 0.8 for pushing and 0.3

for grasping. Abstract 3D performs poorly for grasping. The learned behaviors do

not transfer well to new objects. Adding a 2D image helps, but not dramatically (see

Abstract 3D + Image in Table 2.1). Although 3D feature maps obtained from GRNNs

are semantically rich and can handle varying viewpoints, the mapping to actions is

harder to learn due to the higher dimensionality of the 3D scene map, resulting in

under-fitting models. Our model takes advantage of both abstract and semantically

rich representation and thus can handle better object variability and transferability.

The combinatorial nature of the proposed method allows the model to capture the

multi-modality in trajectory generation.
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2.4.3 The Necessity of Building the Selector with the

Proposed 3D Representations

Next, we show the importance of using view-invariant 3D visual feature representations

and fine-tuning the selector with interaction labels. We compare our method with

two baselines: (a) a model with a selector that learns the visual affordance features

using 2D visual features extracted from 2D CNNs, and (a) a model with a selector

that operates over 3D visual feature representation learned only with the view and

occupancy prediction loss, as suggested in [17, 68], without fine tuning with interaction

labels. See Table 2.1 for the results. Our method significantly outperforms these

two baselines, which shows the importance of both proposed components. To fully

test the power of existing 2D CNNs, we also tested 2D feature selector with existing

VGG network [60] pretrained on ImageNet and fine-tuned on our interaction labels.

However, the performance ( a success rate of 0.78 on pushing) does not differ too

much with shallower 2D CNNs trained from scratch.

2.4.4 Transporting Task on a Real Robot

We test our model on a 7-DOF Franka robot arm equipped with a parallel-jaw gripper

(using [80]’s software stack) for a transporting task, where the robot needs to transport

various rigid, granular, or liquid food ingredients from random initial positions and

poses onto a plate (see Figure 2.4). We set up 4 Intel RealSense RGB-D cameras that

have full view of the workspace around the the center of the table. In each trial, an

object is placed in a 50cm× 30cm region on the table, and the goal is transport all

objects to a plate 25cm to the left of the starting region. Granular objects and liquids

are placed inside containers in the beginning of the trial. An episode is considered

successful if the object is successfully transported into the plate. For granular objects

and liquid, an episode is considered successful if at least half of the total quantity

ends up in the plate.

We construct our library of behaviors with 26 controllers, in which 13 of them are pick-

and-place controllers from various grasping angles and the other 13 are pick-and-pour
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controllers using the same grasping angles as the pick-and-place ones. At evaluation,

we randomly select 3 views from 4 possible camera views to obtain RGB-D images

as inputs to the learned selector. We use 20 rigid objects, 20 granular objects, and

12 bottles of liquids for our experiment, and we split them into 38 training object

and 14 testing objects. To train our model, we collect a total of 3510 interaction

labels by running the 26 behaviors on the training objects with random initial poses

and using the labels to finetune the visual selector with the objective specified in

Equation (2.4).

Training Objects Testing Objects Workspace Setup

RGB-D Cameras

Object to Manipulate

Plate

Gripper

Figure 2.4: Real robot experimental setup. We set 4 cameras around the table that
cover different viewpoints of the workspace. 3 out of 4 cameras are shown in the right
most image. An extra topdown camera is used, but it is clipped from the image.

Our model achieves a success rate of 88.6% on the test set. We compare our model

with two baselines: 1) an image-to-action model trained with behavior cloning (Image),

and 2) a hierarchical model that uses a library of behaviors and a selector with 2D

representations (V-BEs with 2D features). We use the data collected during the

interaction label collecting process as the data used to train both baselines. For the

Image baseline, we are not able to get it to work at all, while we did make it work

in simulation where there is more data. It may need more data to learn a general

and robust policy in the real world [30]. For the V-BEs with 2D features baseline,

we get a success rate of 38.0% which is worse than the proposed model. This again

shows the importance of operating the selector in the proposed view-invariant and

object-centric 3D feature space. Sample executions and transporting objects in

clutter are visualized in Figure 2.5 and included in this video.
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Figure 2.5: Sample real robot executions. Each row shows an execution trial during
test time. Our robot can successfully transport rigid, granular, and liquid food
ingredients to a target plate.

2.5 Conclusion

We have presented V-BEs, a hierarchical policy architecture where 3D object visual

feature representations are used to select from a library of behaviors. The proposed

modular architecture supports both low-level behaviors and the selector to be learnt

in a data efficient manner. We have shown results on pushing and grasping diverse

objects in simulation and in the real world, across diverse viewpoints. Our method

outperforms image-to-action monolithic policies of previous works, as well as policies

that operate on 3D locations and velocities alone. Since our framework is sample-

efficient and simple to run, we can easily deploy complex transporting skills on a real

robot arm.

2.6 Limitations

There are still some limitations for our work. First, the set of behaviors in the

current library is fixed, and we look forward to exploring how to add new behaviors in

future work. One direction is detecting missing behavior and automatically learning

appropriate new behavior. Another direction is to scale up the library of behaviours so
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you have diverse enough behavior to solve most tasks. Recent advances in large-scale

imitation learning from human demonstration [74] will be a promising direction to

investigate. Another limitation of our current framework is that it only supports

manipulating single objects. For behaviours that involve multiple objects and parts,

we would need a scene graph representation that considers the spatial interactions

across different objects.
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Chapter 3

MultiTool Transporter Networks

for Object Rearrangement from

Demonstrations

3.1 Introduction

Humans use tools in their daily lives to accomplish different tasks, e.g., open a wine

bottle with a wine-opener, cut wood with a saw, open dough with a rolling pin,

etc.. the use of tools revolutionized the human productivity and it is believed to

dramatically accelerated human’s progress. In contrast to humans, robots either

only use their grippers to accomplish various tasks or use tailored tool-like grippers,

without the ability to switch tools on- the-fly during a task. In this paper, we explore

how to enable robots to take full advantage of multiple tools. We propose a framework

that jointly learns how to select the most suitable tool and how to best utilize the

selected tool, from limited human demonstrations.

We propose MultiTool Transporter Networks, a neural model that given a visual image

of the scene, predicts a tool identity, as well as image-conditioned action parameters
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for close-loop policy. Our model is trained directly in the real world from few human

demonstrations. The high sample efficiency of our network is thanks to the inductive

bias of Transporter Networks [78] which use convolutional networks to predict image-

anchored action parameters, i.e., image-anchored waypoints, regarding where the tool

should make contact, be pushed to or rotate at, as opposed to workspace-anchored

gripper poses at every timestamp. Such dense alignment between localized image

features and actions permits to learn from very few examples. Our robot is equipped

with multi-tool mounts and a tool cabinet that permit it to automatically, without

any human intervention, exchange tools during task execution, as shown in Figure

3.1.

We test our framework on parallel gripper and suction cup picking and placing,

sweeping with a brush, and household rearrangement tasks. Our results outperform

directly image-to-action mapping baseline and Transporter network method that does

not have a visually conditioned tool-changing mechanisms.

In summary, our contributions are:

1. A general end-to-end neural framework for reasoning about tools and tool-

conditioned polices from a small number of human demonstrations.

2. A real world robot implementation of a tool-switching robot equipped with

low-cost self-assemble suction gripper, and parallel gripper’s tool adaptor for

different tools including suction gripper, brush, which allows the robot to easily

and steadily switch between different tools.

3. An framework for collecting real world human demonstrations for tool usage.

To the best of our knowledge, this is the first work that carries our visually conditioned

tool prediction and usage for scene rearrangement on a real robot platform. Our

neural model and tool CAD files for 3D printing will be publicly available to allow

researchers to easily reproduce our work.
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Figure 3.1: Given an image, MultiTool Transporter Networks predict tools
to use and actions for tool-conditioned re-arrangement of the visual scene.
Our robot automatically switches tools during task execution using a tool
cabinet and appropriate tool mounts.

3.2 Related work

3.2.1 Tool Manipulation

To enable robots to understand and manipulate tools, seminal works focus on predict-

ing affordance and functional regions [9] for task specific grasping with self-supervision

from physical interactions in a simulator [69]. [6] shows that manipulation of tools

can be performed through learning and planning. However, these works only focus on

how to utilize a single tool’s different parts, in other words, how the tool should be

grasped. In contrast, our work takes advantage of multiple tools and demonstrates

generalization capabilities, through jointly learning a task-aware tool selection model

and a manipulation policy from limited amount of human demonstrations.

Moreover, previous works [9, 49] try to learn the synergy between different tool
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grasping points and tasks with self-supervised learning method. The learned latent

representations could be used to provide structured and condense understanding of

tool objects. However, our method does not rely on specific representations and

motion primitives, instead, it only uses a general heatmap to predict the actions, and

generalizes better to novel objects during test time.

3.2.2 Tool design for robot tool usage

There has been works that aim to advance the design of tools to extend the range of

tasks a single robot can achieve. This mainly refers to changing a robot’s tools so it

adapts to different tasks and scenarios more easily. [16] uses an electro-mechanical

actuator to help switch between different tools, providing robust and precise tool-

switching performance. However, this is not a visually conditioned framework, rather,

the tool selection and switching process has been manually engineered and the tool-

switching system comes at a high cost. Some other works [39],[21] try to develop

some low cost interfaces module that act as adaptors between different tools and

the original robot end-effector. Unfortunately, the tool switching process requires

a second hand either by human or another robot arm. And the tools here [21] can

not connect with the end-effector tightly, which may cause the robot to fail at many

manipulation tasks that require high torque to support the loads. In our work, we

share the same idea as [39] and design a series of low cost exchangeable mechanical

tool modules for robots. Those tools could be connected to end-effector tightly by

grasping two opposite sides of the tool mounts. We also build up a tool cabinet for

hanging diverse tools, which allows the robot to switch tools with a single arm.

3.3 Method

Given a set of tools T1, ..., Tn and the current scene observation It, our goal is to

select the most suitable tool for scene rearrangement, and sequentially predict the

action parameters for using the tool to complete the task. After each interaction, a
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new image is observed and a new action is predicted, till the goal is achieved.

We first describe Tansporter Networks [78], a neural model for visually conditioned

scene-rearrangement in Section 3.3.1. Then, we present Multitool Transporter net-

works in Section 3.3.2, our demonstration collection framework in Section 3.3.3 and

our hardware multi-tool switching platform in Section 3.3.4.

3.3.1 Background: Transporter Networks

Transporter networks decompose a scene rearrangement task as a sequence of pick and

place sub-tasks. The model takes as input one or more RGBD images re-projected

from a bird’s eye view, and predicts a pick location as a spatial heatmap. Then it

crops a small image feature region around the argmax location, and rotates it with

360/k angle to form k queries. Next, it independently featurizes the k queries and

the overhead image through a ResNet, and take the argmax of the cross-correlations

between the overhead image and the k queries to arrive at the final place location.

Transporter networks can model any behaviour that can be effectively represented as

two consecutive poses for the robot gripper, such as pushing, sweeping, rearranging

ropes, folding, and so on. Inverse kinematics are used to move the gripper to

the predicted poses. For more details and visualizations of the basic transporter

framework, please see [78].

3.3.2 Multitool Transporter networks

The architecture of our model is illustrated in Figure 3.2. We follow [78] and assume

most scene rearrangement tasks can be treated as a sequence of two-stage gripper

pose sub-tasks, such as, pick an object up (pick pose) and place it at another location

(place pose), or push a group of small particles from the initial position (pick pose)

to the goal position (place pose). Each sub-task’s action a consists of a tool type Ti,

a picking Pinitial and placing pose Pfinal of the tool. Overall, we have a policy that
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Figure 3.2: Multitool Transporter network architecture. Our method is
composed of two modules: the affordance-aware picking prediction module and
selection-conditioned placing prediction module. The picking prediction module infers
which tool should be used and the picking location. The placing prediction module
does cross-correlation between the rotated picking prediction module’s output’s
features and placing feature to get the placing locations.
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maps from task states to an action:

f(It) → a = (Ti, Pinitial, Pfinal) ∈ A (3.1)

A is the set of possible actions. Time steps can be indicated by a subscript t.

We extend Transporter Networks by adding tool-specific information. Specifically,

we first use a ResNet-style [19] backbone to extract general visual features v from

the visual image, which are tool-agnostic and contain entangled visual information

relevant for all tasks. Then, for each tool Ti, a learnable tool-specific filter ΦTi

implemented as a 1x1 convolution operation is applied to each spatial location to

extract tool-conditioned affordance features aTi
— information relevant only to that

specific tool:

aTi
= ΦTi

⊛ v (3.2)

From aTi
, an upconvolutional network estimates the heatmap QTi

∈ R1×H×W , where

QTi
(x, y) indicates whether the spatial location (x, y) suits the specific tool or not.

Finally, we obtain the selected tool and the pick location simply by taking an argmax

over the collection of heatmaps:

Ti, Pinitial = argmax
(x,y,Ti)

QTi
(x, y) (3.3)

Note that inside affordance-aware picking prediction module, all the weights are

shared except the tool-specific filters ΦTi
’s. This formulation forces all the tool-

specific information to be stored in ΦTi
’s, while the rest of the network remains

tool-agnostic and shared across all tools. In contrast to learning separate networks

from tool-specific data, this inductive bias on the architecture allows the network to

maximize information sharing and learn generalizable representations.

We keep the architecture of our selection-conditioned placing module similar as in

[78], to learn the placing locations and rotations, we partially crop the It around

initial picking prediction to get finitial, then rotate it with 360/k angle to form k

queries. Those queries and It are then feed into two different ResNet to get two

embeddings. After doing cross correlation between those embeddings, the placing
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predictions (location and angle) could be obtained by:

Pfinal = argmax
(x,y)

Qgoal((x, y)|It, Tt, ffinal) (3.4)

We train our framework end to end using supervision from demonstations for the

gripper pose parameters as follow:

Linitial = CE(Labelinit, Qinit((x, y)|ot, Tt, Pinitial)). (3.5)

Lfinal = CE(Labelfinal, Qfinal((x, y)|ot, Tt, Pfinal)). (3.6)

where CE denotes softmax cross entropy loss.

Specifically, we do not use the predicted placing angle θ in the sweeping task, since

given the initial and final positions, the angle between positive axis and a vector

pointing from start to end will indicate the optimal value, which can be defined as a

primitive.

3.3.3 Demonstration Collection

The field of reinforcement learning has come to recognize that “seeding” a policy

with human demonstrations can speed up learning, or sometimes just make learning

possible at all. There are several challenges, however. It is tedious and sometimes

costly to collect large numbers of human demonstrations, clean up the typically noisy

data, and then map human behavior on to robot capabilities. Robots don’t typically

have hands as capable as humans, aren’t as compliant, and don’t have the limb and

body degrees of freedom and range of motion of a human, in addition to more limited

perceptual capabilities. Our approach is to force humans to act using a robot-like

hand whose behavior can be more easily captured. This reduces the “human2robot”

capability gap, focuses attention on the relevant human actions (they only involve

the robot-like hand), and help us avoid the inclusion of sub-optimal actions using

simple filters. We constrain human demonstrators’ actions by asking them to use two
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Figure 3.3: Dataset Collection. Our demonstration data is collected by recording
a grabber hand’s actions manipulated by human experts. The attached ARTag is
used to get the orientation of the grabber, and a pre-trained detector is used to get
the accurate pick and place points in the workspace. Also, a ipad made signal lights
is used to label the pick/place key frames we need. We use the pre-trained detector’s
output keypoints to get orientation and translation for pick and place points
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fixed tools as shown in Figure 3.3. The first fixed tool – grabber is used to collect

the parallel grasping and suction grasping demos. And the second fixed tool – brush

with self designed adaptor is used to collect the sweeping demos.

We put in frame a screen that alternates between two colors (red and green) to

indicate the occurrences of keyframes and the keyframe indicator is generated by

human demonstrator during the demonstration. More specifically, when the tools

reach the pick/place positions, the human demonstrator uses a remote to prompt

the keyframe indicator screen to change color. The timesteps at which the indicator

screen changes color are extracted as the keyframes. To obtain robust training signals

from the extracted keyframes, we train detectors with heavy augmentations for the

two tools by labelling a tiny portion of the keyframes (1,000 pictures). We then use

the detectors to generate pseudo-labels for all the demonstrations.

For parsing pick and place demos, we use the detector’s detection results for gripper

as the pseudo-labels of the pick/place locations, and the pose of the Aruco tag

(attached on the grabber) as pick/place rotation angles. For sweeping demos, we use

the detector’s 3 keypoints outputs to get both location and rotation. To get the tool

affordance supervision, we design the collection process with pre-defined orders (e.g

collect parallel grasping first then suction grasping and last for sweepings).

3.3.4 Hardware Setup

The hardware setup is shown in Fig 3.4. We use a 7-DoF Franka Emika robot

arm equipped with a parallel-jaw gripper. To enable the robot to automatically

switch between tools, we built a tool cabinet mounted at the back of the workspace,

which includes a vacuum-suction end-effector and a brush end-effector. A control

PC is connected to the robot to control the primitive behaviors (robot position and

trajectory control during pick and place, and pushing) by generating high-frequency

control commands [79]. A Raspberry Pi 4B+ controls the suction gripper. Finally,

a Linux system PC is connected to both the control PC and the Raspberry Pi for

overall control and synchronization. We obtain RGB-D images (resolution 1280x720)
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using one low cost Azure Kinect depth camera mounted above the robot, providing a

bird’s eye view.

Figure 3.4: Hardware Setup. We set up one Azure Kinect camera on top of the
robot workspace to get RGB-D streams. And we put a tool shelf at the back of
Franka arm for placing different tools. For each tools, we attached one 3D printed
tool adaptor to help robot pick up tools easily and steadily.

3.4 Experiments

Our experiments aim to answer the following questions: (1) Does the proposed

affordance based picking part correctly select which tools to use? (2) Does the

tool-conditioned policy achieve almost the same performance as task-specific learning

policy given limited demonstrations? (3) Whether our method could work well in

complex environment with generalization ability to random positions, novel objects,
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Figure 3.5: The objects used in our experiments.

cluttered and unseen scenes? Qualitative results are included in our supplementary

video.

3.4.1 Parallel gripper and suction cup P&P (pick-and-place)

On these two tasks, the robot is required to pick up the objects and place them on

the plate. 3.3 shows the objects we use in training and testing. For parallel gripper

and suction cup P&P, we test our method and all baselines in three settings with

increasing difficulties. First, we test single-object P&P with objects in the training

set but with randomized object and container locations. We then replace the training

objects with test objects, testing single-object P&P while still randomizing object

34



3. MultiTool Transporter Networks for Object Rearrangement from Demonstrations

50 Gripper Demos Mixed Demos
Random +Novel +Cluttered Random +Novel +Cluttered
Positions Objects Scenes Positions Objects Scenes

Transporter[78] 0.88 0.84 0.85 - - -
Ours 0.93 0.91 0.90 0.95 (0.95) 0.90 (0.86) 0.85(0.75)

Table 3.1: SUCCESSFUL RATES OF TASK ON PARALLEL GRIPPER. Mixed
demos denote demos contains objects on the left phrase of 3.5. Numbers outside
parentheses denote success rate by using all possible tools for this task. Numbers
in parentheses denote task success rate when it is restricted to use parallel gripper.

20 Suction Demos Mixed Demos
Random +Novel +Cluttered Random +Novel +Cluttered
Positions Objects Scenes Positions Objects Scenes

Transporter[78] 0.95 0.70 0.65 - - -
Ours 0.92 0.89 0.83 0.93 (0.93) 0.79 (0.68) 0.77 (0.63)

Table 3.2: SUCCESSFUL RATES OF TASK ON SUCTION CUP. Mixed demos
denote demos contains objects on the left phrase of 3.5. Numbers outside
parentheses denote success rate by using all possible tools for this task. Numbers
in parentheses denote task success rate when it is restricted to use suction gripper.

Random Layouts Novel Objects Novel Goal
95% 100% 95% 100% 95% 100%

completed completed completed completed completed completed
Human
Demonstra-
tions

8.5 ± 0.9 10.2 ± 0.9 8.4 ± 0.8 10.3 ± 0.9 8.2 ± 0.9 10.3 ± 0.9

Circular 17.4 ± 0.7 18.5 ± 0.5 17.5 ± 0.7 18.5 ± 0.6 17.2 ± 0.7 18.4 ± 0.7
Horizontal +
Vertical

19.2 ± 0.6 19.6 ± 0.5 19.1 ± 0.6 19.4 ± 0.6 19.2 ± 0.5 19.5 ± 0.6

Ours 11.8 ± 1.3 13.7 ± 1.2 11.9 ± 1.3 13.5 ± 1.3 11.7 ± 1.3 13.7 ± 1.2

Table 3.3: TIMES OF PUSHES OF TASK ON BRUSH
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Pick and Place Sweep
Tool Selection Execution Tool Selection 95% completed 100% completed

Ours 0.94 0.91 0.98 11.8 ± 1.2 13.7 ± 1.2

Table 3.4: Performance on Rearrangement Task

and container locations. Finally, we select random subsets of test objects and form

cluttered scenes with them. testing multi-object P&P. We use the success rate (the

ratio of successful P&P attempts to the total number of attempts) as the metric. For

each combination of method and setting, we collect results from 100 test trials.

For these tasks, we compare our method with Transporter [78], since it shows strong

performance by learning from limited number of demonstrations. However, it requires

to train a new model for each single task. As shown in Table 3.1, our method

outperform Transporter on parallel gripper for both 20 demos and 50 demos. This

suggests that our architecture retains a strong performance, when a single policy is

trained. In Table 3.2, our method is even better than baseline since with the tool/task

head added, the model could focus on learning to recognize flatten surface instead of

learning to map certain shape/color/contour pattern of the object to actions, which

will have better generalization ability to novel objects at novel scenes.

3.4.2 Brush Sweeping

In this task, the robot needs to use the brush to push all the beans to the target area.

There are 40 beans on the table. The color can be black, grey or blue. The shape of

the target area is square or round, and the area is 225 square centimeters. For this

task, we compare the policy learned from our method against 3 baselines:

• Circular sweeping: a heuristic method that sweeps towards the target area, with

starting positions initialized along a 3/4 circle large enough to cover all objects;

• Horizontal + vertical sweeping: a heuristic method that first sweeps all objects

horizontally toward the middle (from both sides) and sweeps vertically to bring

all objects into the target area;
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• Human demonstrations: human testers were asked to sweep greedily only

in straight lines, which serves as an upper bound of the performance. The

demonstrations we collected are also used for training.

All models are trained with 750 human-demonstrated pushes. We use a simple

OpenCV HSV filter to detect the status of the current trial and measure success.

This allows us to measure success at different success thresholds. We report the

number of pushes performed (the lower the better) before 95% and 100% of the beans

are pushed into the target area. The maximum number of attempts is set to 30.

Therefore if the robot can’t sweep all the beans to the target area within 30 attempts,

the number of pushes is 30.

We test our method and all baselines in 3 settings. First, we test the model with the

same beans during training, but in randomized layouts. Second, we test the model

on new beans (grey and blue), also in random layouts. Finally, we change the shape

of target area from square to round, which is also unseen from the demonstrations.

For each method under each setting, we test the model with 20 random scenes. The

performance of all methods are shown in Table 3.3.

Figure 3.6: Visualizations of heatmaps on different tools
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3.4.3 Scene Rearrangement

Scene rearrangement task requires the robot to move different objects with a suitable

tool. In our settings, the robot needs to use one of the three tools: parallel gripper,

suction cup and brush to rearrange the objects on the table. During training, we

use 41 demos from suction, 56 demos from parallel grasping, 87 demos for mixing

parallel grasping and suction grasping, and 246 sweeping demos. To be more clear,

each demo means single step action at as we defined 3.3.2.

We test our model by asking robot to transfer all the objects to the tray, and push all

the beans to the blue square area. As we could see from table 3.4, our method could

not only select correct tool with a successful rate greater than 90%, but could jointly

learn a good representation and policy as shown in Figure 3.6. The visualizations

for initial and final heatmaps show our model could discrete tool clearly and could

generalize to novel object and random unseen scenes.

3.5 Conclusion

We explored neural models and hardware platforms for robots to learn to select and

use tools for visual scene rearrangement. We empirically showed the proposed model

and robot platform learn from a limited number of human demonstrations, and can

generalize to novel object arrangements, novel objects, novel camera views, and even

cluttered scenes. We extend transporter networks with the ability of tool selection

and switching during task completion. We believe our work will inspire researchers

towards automated visually-conditioned tool development, selection and policies,

which would support generalizable robot platforms that can tackle diverse tasks in

low cost setups.
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Chapter 4

PASTA:Planning with

Spatial-Temporal Abstraction from

Point Clouds for Deformable

Object Manipulation

4.1 Introduction

Consider a typical cooking task of making dumplings from dough. People plan over

which piece of dough to manipulate and which tool to use in sequence, incorporating

both spatial and temporal abstractions. A spatial abstraction reasons about objects,

parts, and their relations to each other, such as reasoning about pieces of dough

instead of reasoning about individual dough atoms; such a spatial abstraction enables

efficient planning and compositional generalization. On the other hand, a temporal

abstraction incorporates abstract actions represented as a set of skills such as deciding

which tool to use at different task stages, instead of making plans at low-level actions

such as joint torques. Temporal abstractions allow planning at the skill level, enabling

more efficient optimization for solving long-horizon tasks. An autonomous robot
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that operates in unstructured environments should be able to reason about world

dynamics using high-level spatial and temporal abstractions instead of reasoning only

over the atoms, infinitesimally small timesteps, and low-level robot actions.

...
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latent vector
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latent subgoals

Push ...
More
Steps

Figure 4.1: Long-horizon dough manipulation with diverse tools. Our frame-
work is able to solve long-horizon, multi-tool, deformable object manipulation tasks
that the agent has not seen during training. The illustrated task here is to cut a
piece of dough into two with a cutter, transport the pieces to the spreading area on
the left (with a high-friction surface) using a pusher, and then flatten both pieces
with a roller.

4.2 Method

Given a point cloud of the dough P obs and a goal point cloud P goal, our objective is

to execute a sequence of actions a1, ..., aT that minimizes the distance between the

final observed point cloud and the goal D(P obs
T , P goal) where P obs

i is the segmented

observation point cloud at time i. We aim to solve long-horizon tasks that require

chaining multiple skills in novel scenes with more objects than training. To do so, we

present a general framework that incorporates spatial and temporal abstractions for

learning and planning with skills from high-dimensional observations, as summarized

in Figure 4.2. We use point clouds as input to all our modules to enable easier transfer

from simulation to the real world and to enable robustness to changes in viewpoint.

We assume access to an offline dataset of demonstration trajectories Ddemo, where
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(a) Generate demonstration dataset

set reward
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predictor

set policy
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(b) Learn set skill abstraction from demonstration
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(c) Planning and execution with set skill abstraction
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Figure 4.2: Overview of our proposed framework PASTA. (a) We first generate
demonstration trajectories for each skill in a differentiable simulator using different
tools. (b) We then sample point clouds (pc) from the demonstration trajectories
to train our set skill abstraction modules. (c) We map point clouds into a latent
set representation and plan over tool-use skills to perform long-horizon deformable
object manipulation tasks. P obs, P goal are the observation and target pc; ui,j denotes
component j at step i. The example shows our method performs the CutRearrange
task, which requires cutting the dough into two pieces with a knife and transporting
each piece to its target location.
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each trajectory demonstrates one of the K skills using one tool. We can learn skill

policies by imitation learning from these demonstration. To chain these skills to solve

long-horizon tasks, we train a set of skill abstraction modules, which can be used for

efficient planning in a latent space. Below, we first describe how we generate this

latent space and use an object-centric representation to generalize our planner to

scenes with more objects.

4.2.1 Planning with Set Representation

Given an observation and a goal point cloud P obs, P goal, we can plan subgoals and

the sequence of skills using our trained abstraction modules, such that we can use

our skills to follow each subgoal sequentially to reach a given target. To do so, we

need to optimize for the sequence of skills to apply, the attention for each skill (i.e.

find Û o ⊆ U o), as well as the latent subgoals for each skill (i.e. the exact value for

each latent vector in Û o). For our most simple approach, we run a three-level nested

optimization: In the top-level, we exhaustively search over the combinations of skills

to apply at each step, i.e. k1 . . . , kH , where kh is the index of the skill to apply at the

high-level step h. We only keep the sequences that end with the same set cardinality

as the goal by ensuring that
∑H

h=1 Mkh − Nkh = Ng − No, where Mkh and Nkh are

the number of observation and goal components for the skill applied at step h and

No and Ng are the number of components in the observed and target point clouds.

In the second-level optimization, we search over different attention structures. We

formally define the attention structure at step h to be Ih, which consists of a list

of indices, each of length Nkh , such that Ih selects a subset from Uh−1 to be the

input to the feasibility predictor, i.e. Ûh−1 = Uh−1
Ih

⊆ Uh−1. Assume that we have

Nh components before applying skill kh, i.e. |Uh−1| = Nh and skill kh takes Kh

components as its observation. We can search over all CKh
Nh

combinations of attention

structures. For components not considered by the skill, its latent vector will remain the

same at step h. The combination of each skill attention yields an attention structure

I for the whole plan, as illustrated in Fig. 4.2(c). For this level of optimization,

we use a sampling-based procedure to avoid an exhaustive search over topologically
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equivalent attention structures. See appendix for how we do this efficiently.

In the low-level optimization, for each attention structure I, we follow the optimization

in DiffSkill [34]. We first sample multiple initializations for the set of latent subgoals

U, where each latent vector in the set is initialized from our generative model. We

can then perform gradient descent to further optimize the latent subgoals on the

following objective:

argmin
k,I,U

C(k, I,U) =
H∏

h=1

fkh(Û
h−1, Ûh) exp(−R(UH , U g)), (4.1)

where k is the skill sequence, I is the attention structure of the plan, U is the set of all

latent subgoals, Ûh = {uh
i }i=1...Mkh

are the latent subgoals at step h, Û0 = Û o ⊆ U o

is the attended observed set, and U g is the goal set. Finally, we can use our policy

to execute our plan by following each subgoal. More details could be checked in our

CORL-2022 Submission website.

4.3 Experiments

Figure 4.3 shows our real world setup. We use a Franka robot with a top-down

Azure Kinect camera capturing the RGB-D observation of the workspace. The robot

is equipped with a tool station that allows an automatic change of tools. For real

world “dough”, we use Kinect Sand as a proxy because of its stable physical property.

We transfer the feasibility predictor and reward predictor of PASTA directly from

simulation and define heuristic controllers for the skills. For evaluation, we first

generate a desired target point cloud and then reset the dough to its initial shape

and record its point cloud. Next, given the current and the target point cloud, we

use the planner to generate a sequence of skills and subgoals and then execute the

plan with our controller. Finally, we record the achieved point cloud and report the

normalized improvement EMD. We compare with the Flat3D method and also report

performance of human on these tasks.

We evaluate on three of the simulation tasks: CutRearrange, CRS, and CRS-Twice.
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Figure 4.3: Real world setup and execution with planned subgoals. Our
workspace consists of a Franka robot, a top-down camera, and a novel tool changer
behind the robot that allows the robot to automatically switch tools. For each task,
we show frames after executing a skill overlaid with the decoded point cloud subgoal;
we report the final performance in red and overlay the ground truth target in green
in the final frame. Additionally, we include a 3D view of the last generated subgoal
to show the shape variations.

For each task we evaluate on the same four initial and target shapes for each method

and report the performance in Table 4.1. Figure 4.3 shows the key frames from

the execution of PASTA. We overlay the planned subgoals as well as the final

goal for qualitative comparison. PASTA performs on-par with human in the real

world, highlighting the robustness of our planner and the advantage of using 3D

representation for sim2real transfer.

MethodTask (Horizon) CutRearrange (3) CRS (3) CRS-Twice (6)

Flat 3D 0.351 ± 0.478 0.007 ± 0.429 -
PASTA (Ours) 0.836 ± 0.029 0.854 ± 0.016 0.795 ± 0.035

Human 0.910 ± 0.014 0.863 ± 0.018 0.895 ± 0.013

Table 4.1: Normalized improvement on real world tasks. Each entry shows the mean and
std of the performance over 4 runs. Flat 3D does not produce any meaningful plan for CRS,
so we do not evaluate it on CRS-Twice.
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4.4 Conclusions and Limitations

In this work, we propose a planning framework named PASTA that incoporates both

spatial and temporal abstraction by planning with a 3D latent set representation with

attention structure. We demonstrate a manipulation system in the real world that

uses PASTA to plan with multiple tool-use skills to solve the challenging deformable

object manipulation tasks, and we show that it significantly outperforms a flat 3D

representation, especially when generalizing to more complex tasks.

Limitations: First, we rely on an unsupervised clustering method for entity de-

composition and a point cloud VAE for mapping an observation to our latent set

representation. This design is specific to the tasks we show and may not generalize to

other tasks without retraining or parameter tuning. We hope that our framework can

be incorporated in the future with self-supervised methods for learning the spatial

abstraction. Second, manipulating deformable objects like dough is very challenging

with a significant sim2real gap. This paper provides a starting point for planning

with multiple tools towards this challenge; we hope our work can inspire more works

in this exciting area.
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Chapter 5

Conclusions

In this thesis, we first propose a visually-grounded library of behaviors approach for

learning to manipulate diverse objects across varying initial and goal configurations

and camera placements. We test our framework on pushing and grasping diverse

objects in simulation as well as transporting rigid, granular, and liquid food ingredients

in a real robot setup. Our model outperforms image-to-action mappings that do not

separate static and dynamic object properties.

We then propose an end-to-end learning framework that jointly learns to choose

different tools and deploy tool-conditioned policies with a limited amount of human

demonstrations directly on a real robot platform. We empirically showed the proposed

model and robot platform learn from a limited number of human demonstrations,

and can generalize to novel object arrangements, novel objects, novel camera views,

and even cluttered scenes. Finally, we show a long-horizon planning framework that

could utilize our multiple tool setup to manipulate elastoplastic objects in the real

world successfully, such as a dough.
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Appendix A

V-BEs supplementary materials

A.1 Additional Results

A.1.1 More Baselines on Grasping

We add evaluation and discussion on state-of-the-art grasping methods, 6D-GraspNet

[40] and DexNet [35]. We also include one ablated model to show the influence of

excluding non-top grasps on task performance. We include the following three extra

baselines:

DexNet [35]: a state-of-the-art top-grasp method which, given a top-down depth

map, generates grasps as the planar position, angle, and depth of a gripper relative

to an RGB-D sensor. We use the publicly released code and model provided by [35],

fine-tune the model with the same amount of interactive labels as our model, and

evaluate it in our test environments.

6DoF Grasp-Net [40]: a state-of-the-art grasping method that describes the grasp

as a full 6-degrees-of-freedom (DoF) pose. The system learns a grasp generator that

proposes potential grasp points given a point-cloud from the depth image, and an
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evaluation module which evaluates the quality of the proposed grasp. The system is

trained with 10M grasps generated from randomly generated boxes and cylinders,

and ShapeNet models of bowls, bottles and mugs. We used the publicly released code

and model provided by [40], fine-tune the model with the same amount of interactive

labels as our model, and evaluate it in our test environments.

Our Model with Only Top-grasps: an ablated baseline using the proposed

methods and including only the top-grasps. The baseline is similar to Pinto et al. [45],

which predicts which of the 18 top-grasps the robot should execute based on a top-

down RGB image patch around the target object. To handle cameras with arbitrary

views and not just top-down views, which might be unavailable in many real world

scenarios, we use the proposed 2D-to-3D feature encoder to compute view-invariant

features as opposed to using the 2D-to-1D feature encoder used in Pinto et al. [45].

We compare the final task performances of our method and the aforementioned

baselines in Table A.1. All the three baselines perform worse than the proposed

model. We found 6D-GraspNet performs much worse than what is reported in the

original paper with our setup, and we attribute this to the fact that our setup is more

difficult than the one proposed in the original 6D-GraspNet paper, since we randomize

objects’ initial and goal locations, and camera poses. We found 6D-GraspNet sensitive

to camera pose change. Besides, many proposed grasps turn out to be unstable when

an object is placed too close or far away from the robot. Dexnet performs reasonably

well on objects that can be grasped with a top-down grasp, but fails completely on

objects that require a side-grasp, e.g., plates. Aside from the flat objects that cannot

be solved with top-grasps, DexNet fails very often on objects that are thin and long,

and can only be robustly grasped by touching the two short edges. In these scenarios,

DexNet tends to grasp along the long edges of objects, which results in grasps that

are not robust. On the ablated model, the grasping performance drops by 10% when

side-grasps are excluded from the set of behaviors used by our method. In particular,

the model without side-grasps fails to grasp flat objects such as plates and flat bowls.
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Proposed Method Proposed Method DexNet 6Dof-GraspNet
w/ Only Top-grasps [35] [40]

Grasping 0.78 0.67 0.72 0.36

Table A.1: Success rates on grasping unseen objects.

A.1.2 Are the single policies overfitting or underfitting?

The single policies have similar performances on the training and test data. For

example, in the pushing task, the Abstract 3D + Image baseline achieves a success

rate of 0.69 in training set and 0.70 in test set; the Abstract 3D baseline achieves

a success rate of 0.81 in training set and 0.83 in test set. This means that these

models are underfitting. The Abstract 3D baselines do not perform well because

they do not have visual input and lack information about the object’s shape; the

Abstract 3D + Image baseline does not perform well because it operates in 2D image

space where the representation (of objects, their poses, and appearance) can change

dramatically due to camera pose change, making the learning problem difficult; the

Contextual 3D baselines need much more compute due to the 4D bottleneck and do

not learn even with strong supervision from imitation learning. For all the baselines,

we have grid-searched on the number of parameters used in the model and picked the

best. Models with more parameters are in general more difficult to train and do not

necessarily give better results.

A.1.3 Failure cases of the proposed method

Our method fails typically when (1) the selector makes the incorrect prediction,

e.g., grasping a cucumber with the wrong grasping angle (please see 2:13 of the

supplementary video for the example) and (2) when all the behaviors in the library

do not work, e.g., when trying to pour grapes from a container, although the trained

selector chooses the correct pouring behaviors, the grapes did not successfully get

out of the container due to strong friction (please see 3:31 of the supplementary

video for the example). The first issue can be solved by improving the 3D feature
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representations. One way is to improve the 3D resolution with memory-efficient

structures such as point clouds. Another approach is to improve the features using

recent advances in self-supervised feature learning. The second issue can be improved

by scaling up the behaviors in the library or automatically adapting existing behaviors

in the library. Both are interesting future avenues to explore.

A.1.4 Visualizing Behavior Clusters

To understand the learned affordance-aware visual feature representations, we run

T-SNE on the feature representations of test-time objects and initial configurations

in the pushing task and show their behavior assignments as well as their relative

positions in the embedding space in Figure A.1. In the figure, each image shows one

sample in the test set where a test-time object with its initial position and pose is

displayed. The border color of each image denotes the behavior assignment of the

test-time sample. As seen in the visualization, the learned feature representation in

the affordance-aware behavior selector represents objects that are close in affordance

in neighboring regions of the feature space. It is also robust to variations of object

colors, sizes, and semantic categories. For example, the behavior trained on knives

(last row in the figure) is predicted to be able to handle both very thin keyboards

and knives; the behavior trained on bottles (fourth row in the figure) is predicted to

be able to handle both bottles and small cans.

A.2 Limitations and Future Work

The set of behaviors in the current library is fixed, and we look forward to exploring

how to add new behaviors in future work. One direction is detecting missing behavior

and automatically learning appropriate new behavior. Another direction is to scale

up the library of behaviours so you have diverse enough behavior to solve most tasks.

Recent advances in large-scale imitation learning from human demonstration [74] will

be a promising direction to investigate. Another limitation of our current framework
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Figure A.1: T-SNE visualization of feature representations of test-time objects and
their initial configurations. Each image shows one sample in the test set where a
test-time object with its initial position and pose is displayed. The border color of
each image denotes the behavior assignment of the test-time sample.

is that it only supports manipulating single objects. For behaviours that involve

multiple objects and parts, we would need a scene graph representation that considers

the spatial interactions across different objects.

A.3 Additional related work

A.3.1 Building libraries versus collecting more data for the

single-policy approach

To improve the performance and capacity of the single-policy approach, the cost

is not only about collecting more data, it is also about scaling up the size of your

models, computation, training schema, and parameter search if you aim to get a

general image-to-action model. Unfortunately, this often needs an unreasonable

amount of data and computation to train [31, 56], and we haven’t seen much success

in achieving general robot manipulation. Another solution is to put engineering-effort

into designing specialized architectures or representations for your application, e.g.,
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the DexNet architecture is specialized for top-down grasp. We see this type of

approach can achieve better results compared to the end-to-end approach with deep

neural networks. However, it is often restricted to the specific domain it is designed

for.

For the library of behaviors approach, the main effort is in creating the behaviors.

Fortunately, when designing new behaviors for the library approach, there is no

restriction on the input-output the model should use and the algorithm to process

them, which makes the engineering work relatively simple. Aside from engineered

solutions, recent advances in deep RL and large-scale imitation learning from human

demonstration will be a promising approach to scale up the behaviors. Since any

behavior, no matter whether it is learned or engineered, can be put in the library, we

can potentially combine the efforts from both traditional robot controls and modern

deep learning approaches.

Another key issue is how one can update the model to include a new set of skills. For

the single-policy approach, one will need to retrain the whole system with new data,

and it is not guaranteed that tasks that have been tackled before can be successfully

tackled after the retraining. On the contrary, explicitly maintaining a library of

behavior makes it simple to incrementally add new skills without breaking existing

ones. The only thing that needs to retrain is the selector, which is relatively simple

to train.

A.3.2 Learning to grasp from 2D images

By scaling up real-robot interactions for supervised image-to-action policies, existing

work [24, 56] have shown expressive results for grasping diverse objects [24] and can

operate under diverse camera viewpoints [56]. However, [24] only works on images in

a top-down view from a fixed over-the-shoulder camera. [56] focused on a reaching

task where the goal is to touch a target object. They added a fixed script after the

touching event that commands the robot to close the gripper and pick the object up,

but they have not shown the grasping behavior alone is achieving SOTA results. Both

works require significantly more data and computation compared to the proposed
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model.

A.3.3 Multi-task and skill learning

Existing works in multi-tasks or skill learning from image inputs [28, 77? ] have shown

impressive results in learning behaviors from demonstrations or interactions, but

they often assume image inputs from a fixed camera view. [56] shows their reaching

behavior can generalize to varying views by learning from multi-view data. Our work

aims to advance the solution for learning general manipulation skills that can handle

various object types, shapes, visuals, initial configurations, and camera viewpoints.

Our proposal is to combine readily available behaviors, instead of learning policies

from scratch, and to advance the visual representation so the resulting models can be

invariant to viewpoint change. We have put genuine effort into the neural architecture

and algorithms that can get the right visual representation. In the current paper, we

assume the behaviors are given, and we focus on the design choice for the selector.

We defer the question of how to automatically develop new behaviors to include in

the library in our future work.

A.3.4 Behavior selection with a classifier

Many strong robotics works can be viewed as classifiers over a set of skills for flying

drones [14], grasping [36, 44, 76], transporting [77] and even marble mazes for rolling

balls [4]. To generate motion in a continuous space, some works extend the classifier

to operate in a continuous space by using a spatial argmax operator over a continuous

2D heatmap [73], and some works use a learned generator to generate candidate

behaviors [35, 40] for the selector to choose from. In particular, Transporter [77]

generates a score over picking and placing for a discrete set of candidate translations

and rotations location in a heatmap. Picking or placing objects at a certain translation

and rotation location can be viewed as a behavior, and the generated score could

be used by a classifier. Also, to achieve better performance and generalization, a

key factor is to choose the right representation space for the classifier to operate on.
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Our selector works in a representation space that is object-centric and view-invariant,

and that is how it can generalize across object appearances, shapes, initial/goal

configurations and camera viewpoints. We have empirically shown that naively using

2D representation from 2D CNN layers, which are widely applied in existing work,

often cannot achieve good performance.

A.3.5 Task and Motion Planning (TAMP) for robot

manipulation

Task and Motion Planning (TAMP), as described here [23], formulate the manipulation

problem as the combination of high level symbolic, discrete reasoning and lower level

continues motion trajectory planning. These systems typically assume known object

states and known effects for the action operators [11, 15, 38, 66, 67]. However, it is

difficult to estimate states or dynamics for unknown objects, novel camera viewpoints,

or from partial observations. While recent works have made progress in learning

certain components of the system, such as the logical states [75] from high image

observations or learning action models [32, 70, 72] from interactions, those methods

still have weak generalization ability to diverse objects across varying initial and goal

configurations and camera placements. In contrast, our work learns a object-centric

affordance aware 3D representation and can easily generalize to more complex scenes.

A.4 Experimental Setup for Pushing

The training objects we use for pushing consists of 60 distinct object meshes from

ShapeNet. The detailed makeup of the set of objects is as follows: 6 cameras, 3 caps,

6 baskets, 3 keyboards, 3 earphones, 6 bottles, 6 bowls, 6 cups, 3 cans, 6 buses, 6

cars, and 6 knives.

To increase the diversity on the objects, we perform the following augmentation on the

set of object meshes. We generate 4 additional copies of each mesh with randomized

scale and color. For scaling, we first scale the whole objects to become larger or
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smaller, then we scale on one of the dimension to make the object taller or longer. we

first uniformly sample a scalar x1 ∈ [0.707, 1.414] to apply on the whole object; then,

we randomly select a dimension d ∈ {0, 1, 2} and sample a scalar x2 ∈ [0.707, 1.414]

to apply on this dimension; after sampling these two numbers, we scale the dimension

d to clip(x1x2, 0.707, 1.414) and other dimensions to x1. After the augmentation step,

we will have a total of 300 different objects.

At training time, we place objects in their canonical pose at environment reset

for most objects. To help our behaviors cover scenarios in which long objects are

rotated, we give access to scenarios in which keyboards, buses, cars, and knives are

rotated 45◦, 90◦ and 135◦ around the z-axis at environment reset in addition to the

default canonical pose. As a result, if we define initial object configuration as a

tuple of (what object is used,what pose of the object is used), then we have a total

of 60× 5 + (3 + 6 + 6 + 6)× 5× 3 = 615 initial object configurations.

Test Time Setup The test objects we use for pushing consists of 40 distinct object

meshes from ShapeNet. The detailed makeup of the set of objects is as follows: 3

cameras, 2 caps, 3 baskets, 2 keyboards, 2 earphones, 3 bottles , 3 bowls, 3 cups, 2

cans, 3 buses, 3 cars, and 2 knives.

To augment the test objects, we generate 4 additional copies of each mesh, randomizing

the scale and the color of each generated object. The scaling procedure of the test

objects is the same as that of training objects. In addition to random scaling and color

assignment, we also randomly rotate each of the test objects during augmentation.

To randomly rotate an object, we first flip the object to place a random side of it

on top. To ensure that the flipping is meaningful, we require that cars, cups, and

bowls can only be flipped 0◦ (i.e. canonical pose) or 180◦ (i.e. upside down); we also

require that buses cannot be flipped to the side such that the side with the smallest

surface area is facing the floor. After flipping, we randomly rotate the object along

z-axis. Please note that this rotation process is very different from training time – at

training time, we only rotate selected objects 45◦, 90◦ and 135◦ around the z-axis; at

test time, we rotate all objects and the rotation process has a lot more randomness

than during training. After the augmentation, there are a total of 200 initial object
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configurations that an agent can encounter at test time.

A.5 Implementation Details

A.5.1 Constructing Behaviors for Grasping

We manually select 30 different controllers including grasps with the gripper-hand

pointed downwards and moving along a vertical axis with different yaw orientations

(top-grasps) and grasps from the side with different elevation angles of the gripper,

and the hand moving towards the centroid of the object (side-grasps). We list all the

controllers in Table A.2.

A.5.2 Learning Behaviors for Pushing

We use 25 pushing behaviors trained with subsets of the training objects. Among these

25 behaviors, 24 of them are trained on all cameras, all caps, all baskets, keyboards

rotated 0◦, keyboards rotated 45◦, keyboards rotated 90◦, keyboards rotated 135◦, all

earphones, all bottles, all bowls, all cups, all cans, buses rotated 0◦, buses rotated 45◦,

buses rotated 90◦, buses rotated 135◦, cars rotated 0◦, cars rotated 45◦, cars rotated

90◦, cars rotated 135◦, knives rotated 0◦, knives rotated 45◦, knives rotated 90◦, and

knives rotated 135◦, respectively. The last behavior is the same as the policy used in

the Abstract 3D baseline.

A.5.3 Abstract 3D Baseline

For the Abstract 3D baseline, the policy takes a concatenation of object absolute

position, object relative position, object pose, gripper position, gripper finger pose,

and object size as input and outputs a deterministic action. For the actor network of

the model, we apply a tanh activation to normalize the action between [−1, 1]. Both
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actor and critic networks consist of 3 fully connected layers of 256 hidden units with

ReLU activations.

The baseline is trained on 60 randomly sampled training objects in the set of training

objects. During training, rollout experience is collected by running a vectorized

environment consisting of 60 individual environments, each using one of the 60

selected objects. In the training of this RL policy, as well as all the following model-

free RL policies, we terminate the training when the model reaches a 95% success

rate for 15 consecutive epochs or has not improved for 15 consecutive epochs after

the 100th epoch.

A.5.4 Abstract 3D + Image Baseline

The Abstract 3D + Image baseline in the pushing task takes 128× 128 images of the

environment’s front-view as input. When the policy receives the 3D states and images

as inputs, it first feeds the image into an encoding network composed of 4 CNN

layers similar to those of [81]. The outputs of the CNN encoding layers are passed

through a spatial softmax layer [12], flattened into a vector, and then concatenated

to the abstract 3D state (note that compared to [81], we use the abstract 3D state

instead of robot end-effector positions). In addition to the abstract 3D state, we also

take the output of the spatial softmax layer, send it through a fully connected layer

to perform an auxiliary object position prediction task, and then concatenate the

prediction to the concatenated vector. The rest of the policy architecture consists of

3 fully connected layers identical to those of the Abstract 3D baseline.

In contrast to the Abstract 3D baseline, we find out that the Abstract 3D + Image

baseline achieves the best performance when trained using behavior cloning. Con-

cretely, we collect 15 successful expert demonstrations from each of the 615 objects,

resulting in a total of 9225 demonstrations. During training, we optimize a composite

loss defined by L(θ) = λl1Ll1+λl2Ll2+λauxLaux, where θ denotes all parameters in the

network architecture, Ll1 = ∥πθ(ot)−ut∥1 is the L1 action loss, Ll2 = ∥πθ(ot)−ut∥22 is
the L2 action loss, Laux is the auxiliary task loss, λl2 = 1.0, λl1 = 0.1, and λaux = 0.1.
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In the paper, we present the final performance of training the framework on each

training object using 5 different views facing −90 deg, −45 deg, 0 deg, 45 deg, and

90 deg relative to the front of the table, and then testing the trained model on test

objects using randomly selected views among these 5 views. In addition to this

result, we also trained the same framework using single view training data and tested

it on both single view test data and multi-view test data. The comparison of the

performance of these variations on the pushing task are shown in Table A.3.

As seen in the results, the baseline performs slightly worse when trained using multiple

views than when trained with a single view. This shows that the generalization

challenge posed by changing viewpoints impairs the overall performance of the

framework. Another insight obtained by testing the framework trained on single-view

observations on both the single-view test setup and the multi-view test setup is that,

while the framework takes both images and abstract states as inputs, the framework

does not only rely on the abstract states but also utilizes information from the images,

which is why there is a huge performance drop when the model is tested on images

taken from perspectives it has never seen before.

A.5.5 Contextual 3D Baseline

In the Contextual 3D baseline, we leverage the DAGGER [53] algorithm to obtain

the policy through behavior cloning, as we find out that a policy using 3D features

as internal representations is very hard to learn directly via RL. To obtain expert

labels for policy rollouts, we use distinct controllers (for grasping) and learned policies

(for pushing) for each object in the training set. During behavior cloning training,

we sample rollouts simultaneously from 15 randomly selected object configurations

within the set of all possible training time object configurations and imitate the

actions labeled by the experts.

As for the architecture of the Contextual 3D baseline, the policy reads multi-view RGB-

D images of size 4×64×64×(3+1) and obtain the 3D feature map Mt ∈ R64×64×64×32

using GRNNs [68]. We then encode the feature map to an embedding vector of length

256 with four 3D convolution layers and concatenate the vector with a vector of
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environment and robot states with length 10. We then send this concatenated

vector of length 266 through a MLP with layer output sizes 64, 32, and action space

dimensionality to predict actions. Due to the speed of the training, we select the

image size of 64 and a DAGGER training batch size of 16.

A.5.6 V-BEs (Our Method)

As for the architecture of the affordance-aware behavior selector, the 2D-to-3D image

encoding using GRNNs [68] follows the exact neural architecture as in [68], which

takes as input RGB-D images and outputs 3D feature map Mt of size 64×64×64×32.

After obtaining the feature maps from the input RGB-D image, we compute the cosine-

similarity between the object’s feature representation and each behavior retrieval key

κi for every feature dimension of the feature map. This will give us a vector of 32

similarity values for each (object, behavior) pair. We then feed this vector into a

fully-connected layer with input size 32 and output size 1 to predict the logits used

to compute the loss for training. While computing the loss during training, we also

multiply a constant weight of 0.5 on all negative samples to offset the bias caused by

the smaller number of positive samples. At test time, we directly use the logits that

correspond to whether the (object, behavior) pair leads to execution success to select

the best behavior for a given object. In other word, we compute the logit for every

(object, behavior) pair and select the behavior with the highest predicted value on an

object as selector output.

A.6 Real Robot Experiment Setup

A.6.1 Task Description

In the real robot experiment, the task is to transport diverse food ingredients from

one side of the table to a plate at the other side of the table. To ensure the diversity of

the objects our model will be tested with, we use a total of 20 rigid food ingredients,
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20 granular food ingredients, and 12 bottles of sauces from a local supermarket. We

then split these objects to a training set and a test set, where 75% of objects in each

category are placed in the training set and rest in the test set.

To collect the training set, we place each rigid and granular food ingredient in 3

different initial poses and each liquid ingredient in 5 different initial poses and record

the success rate of running each of our 26 behaviors on every object and initial pose

combination. This results in a total of 135 data points for training the behavior

selector model.

At test time, we place each food ingredient in different initial poses in the same way

as the training set and test the performance of our model by running one episode for

each of the 45 object and initial pose combinations.

A.6.2 Building the Behavior Library

To build a behavior library for the real robot setup, we use a total of 26 controllers,

13 of which instances of pick-and-place behaviors and 13 of which pick-and-pour

behaviors. The motivation of including both types of behaviors is that the pick-and-

place ones are created for manipulating rigid objects, while granular objects and

liquids need to be placed inside containers and poured onto the plate. Below we

describe the 26 controllers we use in more detail:

• Pick-and-place from Top: we include 5 pick-and-place controllers that grasp

the object from the top, pick it up, and place it at a specified position. The

5 controllers each uses a grasping pose rotated by 0◦, 45◦, 90◦, 135◦, and 180◦

around the z-axis.

• Pick-and-place from Rim: we include 5 pick-and-place controllers that grasp

the object from its rim, pick it up, and place it at a specified position. The 5

controllers each grasp the left, front-left, front, front-right, and right side of the

object from the top.

• Pick-and-place from Side: we include 3 pick-and-place controllers that grasp

62



A. V-BEs supplementary materials

the object horizontally from the side of it, pick it up, and place it at a specified

position. The 3 controllers each grasp from the left, front-left, and front of the

object from the side. We do not include other orientations because the gripper

cannot reliably reach these orientations in most cases.

• Pick-and-pour from Top: we include 5 pick-and-pour controllers that grasp the

container that includes the object of interest from the top, pick it up, and pour

the object of interest from the container to a desired position. The grasping

poses used by the 5 controllers are the same as those of the Pick-and-place from

Top controllers.

• Pick-and-pour from Rim: we include 5 pick-and-pour controllers that grasp the

container in the same way as the Pick-and-place from Rim controllers but pour

the content of the container in the same way as the Pick-and-pour from Top

controller.

• Pick-and-pour from Side: we include 3 pick-and-pour controllers that grasp the

container in the same way as the Pick-and-place from Side controllers but pour

the content of the container in the same way as the Pick-and-pour from Top

controller.

To obtain object positions, we match the center and bounding box of the object

detected from RGB images in 5 different views to get the object’s 3D centroid and

bounding box coordinates. Although this grasping process is open-loop, it works

well due to the high accuracy of the low level Franka robot controller. Using visual

feedback within an episode for closed loop control is an important topic for future

work.

A.6.3 Training Details

We train our behavior selector from scratch for the real robot experiment. With a

dataset of success labels collected by running the 26 behaviors on the training objects,

we train the model for 5,000 update steps and use the trained model to assess the

success rate of grasping test-time objects. To speed up data collection, we include
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some heuristics: when asked to pour something, we label failure for all grasping

controllers; when grasping long objects, we label obviously infeasible grasping angles

as failures.
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Type (α, β, γ, η) Description
top-grasps ([0, 0, 1], [0, 0, -0.010], 90, -90) Top-grasps with varying yaw

([0, 0, 1], [0, 0, -0.010], 90, -60) orientations and depths.
([0, 0, 1], [0, 0, -0.010], 90, -30)
([0, 0, 1], [0, 0, -0.010], 90, 0)
([0, 0, 1], [0, 0, -0.010], 90, 30)
([0, 0, 1], [0, 0, -0.010], 90, 60)
([0, 0, 1], [0, 0, -0.010], 90, -90)
([0, 0, 1], [0, 0, -0.023], 90, -60)
([0, 0, 1], [0, 0, -0.023], 90, -30)
([0, 0, 1], [0, 0, -0.023], 90, 0)
([0, 0, 1], [0, 0, -0.023], 90, 30)
([0, 0, 1], [0, 0, -0.023], 90, 60)

top-grasps ([0, -1, 1], [0, 0, -0.010], 90, 90) Top-grasps from the top
edges

([0, 1, 1], [0, 0, -0.010], 90, 0) of the bounding boxes.
([1, 0, 1], [0, 0, -0.010], 90, 90)
([0, -1, 1], [0, 0, -0.023], 90, 90)
([0, 1, 1], [0, 0, -0.023], 90, 0)
([1, 0, 1], [0, 0, -0.023], 90, 90)

side-grasps ([0, -1, 1], [0, 0, -0.023], 81, 90) Top-grasps with slightly
([0, 1, 1], [0, 0, -0.023], 81, 0) lower elevations.
([1, 0, 1], [0, 0, -0.023], 81, 90)

side-grasps ([0, 1, 1], [0, 0, -0.023], 72, 0) right-handed side-grasps
with

([0, 1, 1], [0, 0, -0.023], 63, 0) varying elevations. Note
that

([0, 1, 1], [0, 0, -0.023], 54, 0) the last controller is de-
signed for

([0, 1, 1], [0, 0, -0.023], 45, 0) grasping flat objects. The
gripper

([0, 1, 1], [0, 0, -0.010], 81, 0) starts from a low elevation
and

([0, 1, 1], [0, 0, -0.010], 63, 0) pushes a bit towards the cen-
ter

([0, 1, 1], [0, 0, -0.010], 54, 0) of the object while grasping.
([0, 1, 1], [0, 0, -0.010], 45, 0)
([0, 1, 1], [0, -0.02, -0.004], 45, 0)

Table A.2: Controllers used in the proposed model.
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A. V-BEs supplementary materials

Training Views Single-view Single-view Multi-view
Testing Views Single-view Multi-view Mutli-view
Success Rate 0.75 0.13 0.70

Table A.3: Success rates on training and testing the Abstract 3D + Image baseline in
different viewpoint setups in the pushing task.
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stream: Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, pages 440–448, 2020. A.3.5

[16] David Gyimothy and Andras Toth. Experimental evaluation of a novel automatic
service robot tool changer. In 2011 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), pages 1046–1051, 2011. doi: 10.1109/
AIM.2011.6027122. 3.2.2

[17] Adam W Harley, Fangyu Li, Shrinidhi K Lakshmikanth, Xian Zhou, Hsiao-
Yu Fish Tung, and Katerina Fragkiadaki. Embodied view-contrastive 3d feature
learning. arXiv preprint arXiv:1906.03764, 2019. ??, 2.4.3

[18] Adam W Harley, Shrinidhi K Lakshmikanth, Fangyu Li, Xian Zhou, Hsiao-
Yu Fish Tung, and Katerina Fragkiadaki. Learning from unlabelled videos using
contrastive predictive neural 3D mapping. ICLR, 2020. 2.3.1

68



Bibliography

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016. 3.3.2

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN.
CoRR, abs/1703.06870, 2017. URL http://arxiv.org/abs/1703.06870. 2.3.1

[21] Zhengtao Hu, Weiwei Wan, and Kensuke Harada. Designing a mechanical tool
for robots with two-finger parallel grippers. IEEE Robotics and Automation
Letters, 4(3):2981–2988, 2019. 3.2.2

[22] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex
Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis.
Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-
canonical adaptation networks. In CVPR, pages 12627–12637, 2019. 2.2

[23] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical planning in the now.
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