
Enhancing Quadruped Locomotion

Stability with Reaction Wheel Systems

and Model Predictive Control

Chi-Yen Lee

CMU-RI-TR-22-57

July 28, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Prof. Zachary Manchester, chair

Prof. Aaron Johnson
Shuo Yang

Brian Jackson

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Chi-Yen Lee. All rights reserved.

Abstract

The development of quadruped robots offers a mobility solution that allows
robot agents to navigate complicated terrains, making them extremely
versatile robots in a variety of environments. Today, there are a number of
research challenges facing quadruped development. First, the current state-
of-the-art quadruped suffers from under-actuation during the majority of
its use cases such as trotting and running. Second, the non-linear contact
dynamics of legged systems make them complicated control systems to
model.

In the first part of this thesis, we address the issue of under-actuation
by introducing a prototype reaction wheel system that gives quadruped
robots enhanced attitude stabilization ability. The dynamics of reaction
wheel actuation systems allow for a straightforward linearization of the
robot dynamics in comparison to other inertial stabilization appendages
such as tails. We model the system as a single gyrostat and simplify
the dynamics to pose the problem as a linear discrete-time trajectory
optimization problem that can be solved as a quadratic program. The
linear MPC is implemented on hardware at 1000hz while reasoning about
the speed and torque limits of the reaction wheel systems.

The second part of the thesis explores implementing a novel Contact
Implicit Model Predictive Control (CI-MPC) system on hardware. We
introduce a control stack that does not rely on explicit contact mode
specification, and we demonstrated that the CI-MPC is capable of solving
Linear Complementary Problem (LCP) contact dynamics on hardware in
real-time.

The final part of the thesis proposes a method that can reliably identify
inertial parameters for quadruped systems that be used for model-based
control algorithms such as the two mentioned above. We introduce a
two-step calibration routine to identify the planar center of mass (CoM) po-
sition and the effective centroidal dynamics parameters of any quadruped
using only joint sensors and an inertial measurement unit (IMU). Our
proposed calibration routine consists of two steps: A bisection search
method is used to locate the position of the planar CoM, and a sinu-
soidal excitation method is used to extract moments of inertia about
each body axis. We verify the inertial parameter identification method
in simulation, and we implemented the center of mass finding algorithm
in both simulation and hardware. The results of hardware CoM finding

iii

experiments verified in a balancing controller that requires 5mm CoM
position accuracy.

iv

Acknowledgments

I would like to start by thanking my research advisor Professor Zac
Manchester for giving me the opportunity to work on these projects. His
guidance and insights help me grow tremendously as a researcher and
an engineer, and his unwavering support and belief in me make these
projects possible.

Furthermore, I would like to thank members of the Robotic Exploration
Lab. The environment for research and idea discussion is invaluable to my
research progress. I would like to particularly thank Shuo Yang for being
my second mentor and closest collaborator, and for inviting me to work
on the quadruped control platform that he developed. These projects
would not have been possible without his help and support.

Finally, I would like to thank all my friends and family for supporting
my dream to work in the field of robotics. Being able to come to the US
and work in RI is a dream come true for me, and I cannot be where I am
today without the help I received from everyone along the way.

v

vi

Funding

This work was partially supported by Google.

vii

viii

Contents

1 Introduction 1
1.1 Thesis Contribution . 2
1.2 Thesis Structure . 3

2 Reaction Wheel Assisted Locomotion for Legged Robots 5
2.1 Motivation . 5
2.2 Background . 7

2.2.1 Unit Quaternions . 7
2.2.2 Simplified Quadruped Dynamics 7
2.2.3 Gyrostat dynamics . 8
2.2.4 MIT Quadruped Control Architecture 9

2.3 Hardware Design . 9
2.4 Model And Stability Analysis . 10

2.4.1 Gyrostat Quadruped Dynamics 10
2.4.2 Controllability Under Trotting 12

2.5 Convex MPC Formulation . 13
2.5.1 Linearized Dynamics . 13
2.5.2 Linear Discrete Trajectory Optimization 14

2.6 Swing Leg Control . 15
2.7 Simulation Results . 16

2.7.1 Locomotion Disturbance . 16
2.7.2 Aerial Re-orientation . 17
2.7.3 Beam Walking . 17
2.7.4 Hardware Demo . 18

2.8 Conclusion . 19

3 Applying Fast Linear Contact-Implicit Model-Predictive Control
for Quadruped 23
3.1 Motivation . 23
3.2 Background . 24

3.2.1 LCP Contact Dynamics . 25
3.2.2 Path Following Method . 27
3.2.3 Implicit Function Theorem . 28
3.2.4 Linearized Contact-Implicit Dynamics 28

ix

3.2.5 Trajectory Optimization and Linear Dynamics Solver 29
3.3 Quadruped Control Architecture for CI-MPC 30
3.4 Simplified Quadruped Model . 30
3.5 Force Tracking Controller . 31
3.6 Hardware Implementations and Experiments 33

3.6.1 Reference Trajectory Generation 33
3.6.2 Julia Interface for Embedded System 33
3.6.3 Hardware Implementation Considerations 34
3.6.4 Experiment 1: Trotting Policy 35
3.6.5 Experiment 2: Box Climbing Policy 35
3.6.6 Experiment 3: Wall Leaning Policy 37

3.7 Conclusions . 38

4 A Quadruped Inertial Parameter Estimation Method with Bisec-
tion Search and Sinusoidal Excitations 41
4.1 Motivation . 41
4.2 End-effector Bisection Search . 42
4.3 Trunk Inertial Parameter Estimation With Sinusoidal Excitations . . 44
4.4 Results . 45

4.4.1 Simulation Results . 46
4.4.2 Experimental Results . 47

4.5 Conclusion . 47

Bibliography 49

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

x

List of Figures

2.1 Control diagram that illustrates the quadruped control stack. 10

2.2 The Unitree A1 Quadruped is mounted with our custom-made reaction
wheel module. 11

2.3 Robot roll error responses to a 350N impulse on the body frame y-axis
at t = 3.6 seconds. The top graph illustrated the roll error trajectory
with respect to time for the base MPC controller and the reaction
wheel-assisted controller. The bottom graph plots the torque exerted
by the x-axis reaction wheel during the experiment. 16

2.4 A drop test sequence where the robot reorients itself with the torques
from the x axis reaction wheel. 17

2.5 The quadruped reaction wheel system traversing a straight line along
the x-axis with a narrow gait. 18

2.6 Front view of the quadruped reaction wheel system traversing a straight
line along the x-axis with a narrow gait. 19

2.7 Hardware impulse test where we provide an impulse force on the robot
during locomotion with a kick. Figure 2.7a shows the robot in stable
trotting phase when the impulse is applied. Figure 2.7b shows the robot
losing balance on the footholds while maintaining a stable attitude as
it eventually recovers from the impulse in Figure 2.7c. 20

2.8 The robot is programmed to track a point that is located on the marked
blue tape on the ground. 21

2.9 Hardware implementation of the beam walking demonstration. The
robot is able to traverse a 3 feet segments of a 6 cm wide wooden beam
with the assistance of the reaction wheel system. 22

3.1 Control diagram that illustrates the quadruped control stack. 31

3.2 Visualization of the simplified quadruped model that is used online in
CI-MPC. The four virtual point masses are represented by four yellow
spheres, and the torso of the robot body is represented by a black
rectangle. 32

3.3 Foot height of the generated trajectory. 35

3.4 Reference normal force for the trotting policy. 36

3.5 Visualization of the trotting policy on the simplified quadruped model. 36

xi

3.6 Hardware demonstration of the trotting policy. 37
3.7 Visualization of the box climbing reference trajectory for the simplified

quadruped model. 37
3.8 Hardware demonstration of the quadruped tracking of the box climbing

trajectory. 38
3.9 Visualization of the wall-leaning reference trajectory for the simplified

quadruped model. 38
3.10 Hardware demonstration of the wall-leaning reference trajectory. . . . 39

4.1 An image of an Unitree A1 quadruped balancing with its CoM directly
above the support vector line formed by its front left and rear right feet. 43

4.2 Depending on the center of mass (red) location relative to the support
vector line (blue), the robot will either tilt forward like in 4.2b or
backward like in 4.2a . 44

4.3 Norm of the position error on the CoM estimates over six iterations
for a calibration test in simulation. 46

xii

List of Tables

4.1 Simulated Result of the Calibration Routine 47

xiii

xiv

Chapter 1

Introduction

The development of legged robots offers a mobility solution for autonomous agents

to navigate in difficult terrains that is typically impossible for traditional wheeled

robots to traverse. The mobility of the legged robots will allow them to traverse

both natural and artificial landscapes, making these robots extremely versatile in a

variety of environments. The primary focus of this research is on quadruped robots,

specifically quadruped control and improving quadruped stability during locomotion.

There are currently a number of control challenges in quadruped control research.

First, the current state-of-the-art quadruped robots suffer from under-actuation

during a majority of the use cases such as walking and running [20]. For the past

decades, the design for high-performance quadruped systems has in large converged.

The current design of a rigid torso with four 3 degrees of freedom (DOF) legs with a

point end-effector causes the quadrupeds to become underactuated whenever it has

only two or fewer feet in contact with the environment. Research in biomechanics

has shown that animals rely on the conservation of angular momentum to perform

inertial stabilization [15, 16]. Several past research has demonstrated the importance

of inertial stabilization in high mobility maneuvers [4, 7]. In addition to animals,

spacecraft systems can also perform attitude control using momentum control devices

[8]. It is clear that we can draw inspiration from these areas to innovate on the

current quadruped design.

In addition to under-actuation, the contact-rich nature of quadruped systems also

makes them complicated systems to model. Quadruped robots rely on constantly

1

1. Introduction

making and breaking contact with the environment in order to navigate themselves.

Over the years, there has been a number of strategies for controlling system with

contacts, including hybrid-zero dynamics [1, 22], neural network policies [9, 10], and

model-predictive control [24]. However, there is little work on general-purpose control

techniques that can reason about contact events without requiring gait-generation

heuristics, a platform-specific model, or extensive parameter tuning.

1.1 Thesis Contribution

In this thesis, we aim to use model predictive control (MPC) to enhance quadruped

mobility during locomotion [19]. Specifically, we approach this problem from three

perspectives: using novel hardware innovation to improve on the current quadruped

design, experimentation with new algorithms that improve contact reasoning, and

using state estimation techniques to improve model accuracy for MPC. First, we

address the problem of under-actuation by introducing a reaction wheel systems

module onto quadruped. The reaction wheel system grants quadruped inertial

stabilization ability without ground contacts. The dynamics of the reaction wheel

systems also allow straightforward linearization, and we leveraged the linearized

dynamics to formulate a linear convex MPC problem. In the second part of the thesis,

we switch direction from the hardware innovation and explore applying a method

that improves contact reasoning on quadruped through a Contact Implicit Model

Predictive Control (CI-MPC) algorithm [5]. We experimented with a new quadruped

control architecture and demonstrated its feasibility with hardware experiments.

Finally, MPC implementation such as the two we mentioned above often relies on

having a good model of the system. For the final project, we present a method that

can reliably estimate quadrupeds’ inertial properties. Specifically, we introduce a

simple calibration routine that relies only on an inertial measurement unit (IMU) and

joint sensors to estimate the planar center of mass location and moment of inertia for

a quadruped.

2

1. Introduction

1.2 Thesis Structure

The rest of the thesis will be organized by projects. Each chapter will introduce the

technical details of the projects mentioned in Section 1.1 and present our findings

and conclusion. Specifically, Chapter 2 will cover the work on stabilizing quadruped

locomotion with reaction wheel systems. Chapter 3 will talk about the work on

applying CI-MPC on quadruped. Chapter 4 will cover the work on quadruped center

of mass position and moment of inertia estimation.

3

1. Introduction

4

Chapter 2

Reaction Wheel Assisted

Locomotion for Legged Robots

In this chapter, we cover the work on enhancing quadruped locmotion stability through

the addition of reaction wheel systems on the current state-of-the-art quadruped

design. The rest of the chapter will be organized as followed: Section 2.2 will cover the

necessary background material including quaternion algebra, simplified quadruped

dynamics, the gyrostat model, and the current control architecture; Section 2.3 will

cover the details on the hardware design for the reaction wheel add-on module; Section

2.4 will cover our proposed model for optimal control; Section 2.5 will cover the way

we pose the control problem as a discrete trajectory optimization problem; Section

2.6 covers the swing leg control; and finally Section 2.7 will cover the result of this

reaction wheel system.

2.1 Motivation

The core design of quadrupedal robots has in large converged over the past decades.

Most high-performance contemporary quadrupedal robots share many fundamental

design similarities that include a rigid torso, four 3 degrees-of-freedom (DOF) legs, and

a round end-effector (point foot) at the end of each leg. While simple and practical,

this configuration is a highly underactuated control system during locomotion [11].

During the two-foot standing phase, the robots lose rotation control authority around

5

2. Reaction Wheel Assisted Locomotion for Legged Robots

the line of support with only two points of contact. Large body orientation errors can

only be eliminated by foot mode switching [3, 11], and a quadruped robot becomes

especially vulnerable to impact and disturbance during the two feet standing phase.

On the other hand, terrestrial animals with legs use many strategies to perform in-

ertial stabilization during maneuvers such as walking, running, and jumping. Humans

heavily regulate their whole body’s angular momentum during locomotion through

limb movements [16]. Cheetahs have been observed using their tails during high-speed

chases and turning maneuvers [15, 23]. Falling cats are able to adjust their attitude

during falls due to their highly flexible spines [14]. To improve quadruped robot

stabilization ability, it is clear that we need to augment the current state-of-the-art

quadruped design.

We take inspiration from the aerospace industry to enhance quadruped inertial

stabilization ability. Reaction wheel systems are widely used in satellites to perform

pointing and attitude control [8]. Our goal is to fundamentally enhance the stability

of quadrupeds through novel hardware design that includes reaction wheels to make

the robot fully actuated during locomotion. Without significantly modifying the

standard 12 DOF quadruped robot design, we add a proof-of-concept payload module

on the back of the robot that provides additional torque control using two reaction

wheels. The 5-kg module as shown in Figure 2.2 is compact, reusable, and designed

with high control bandwidth. We use Model Predictive Control (MPC) [6] to control

both the robot orientation and wheel speed so the robot orientation stays controllable

during a two-leg stance phase. The method, which we call reaction-wheel MPC, is

validated in both simulation and hardware. The major contributions of this work are:

• Design and construction of a two-axis reaction wheel prototype for quadrupeds.

• A convex MPC algorithm that leverages the reaction wheels to improve distur-

bance rejection.

• Demonstration of enhanced stability after incorporating reaction wheels into

current quadruped design.

6

2. Reaction Wheel Assisted Locomotion for Legged Robots

2.2 Background

2.2.1 Unit Quaternions

In this document, we follow the Hamilton convention for quaternion — a quaternion

q is described by a scalar and vector part stacked on top of each other, q = [qs, q
T
v]
T .

Quaternion multiplication is defined as:

q1 ⊗ q2 = [q1]L q2 = [q2]R q1. (2.1)

where [q1]L and [q1]L are orhtonormal matrices defined as

[q]L =

[
qs −qTv
qv qs I3 + [qv]

×

]
, (2.2)

[q]R =

[
qs −qTv
qv qs I3 − [qv]

×

]
. (2.3)

[∗]× is the skew symmetric operator for a vector. To describe quaternion kinematics,

it is helpful to promote a local 3-parameter rotation representation into a quaternion

with zero scalar component. This can be done with the linear transform H, described

as follows: [
0

ω

]
= H ω =

[
0

I3

]
ω. (2.4)

The time derivative of a unit quaternion that describes the attitude of a body is

related to the body’s angular velocity through the quaternion kinematic equation:

q̇ =
1

2
[q]L H ω. (2.5)

2.2.2 Simplified Quadruped Dynamics

In many implementations of MPC for legged locomotion, the dynamics of the robot

are often simplified to a single rigid body with four reaction forces from the ground

[3, 6]. This model ignores the leg masses with the assumption that they are light

enough to be negligible relative to the mass of the torso. Given a mass m, body frame

7

2. Reaction Wheel Assisted Locomotion for Legged Robots

moment of inertia BI, the governing equation of a single rigid body model quadruped

is

ẋ =

ṙ

q̇
N r̈
Bω̇

 =

Nv

1
2
[q]LH

Bω
1
m

N
F − g

(BI)−1(Bτf −B ω ×B Iω)

 , (2.6)

where the state of the system includes the center of mass position r, quaternion

representation of the body attitude q, inertial frame translational velocity Nv, and

body frame angular velocity Bω. The input of the system contains an inertial frame

force input NF and a body frame torque input due to ground reaction force Bτf . For

a single rigid body model quadruped, the input forces and torques can be mapped

from the ground reaction fi force from foot position pi for each foot with index i

through the following relationship:

u =

[
NF
Bτf

]
=

[
I3 . . . I3

RT [p1]
× . . . RT [pn]

×

]
f1
...

fn

 . (2.7)

The ground reaction forces are further subjected to friction cone constraints to prevent

slippage. Often the friction cone constraint is approximate as a pyramid and enables

the constraints to be expressed as a set of linear inequality constraints

−µfz ≤fx ≤ µfz

−µfz ≤fy ≤ µfz
(2.8)

2.2.3 Gyrostat dynamics

The dynamics of a rigid body with a reaction wheel can be modeled as a gyrostat. A

gyrostat is a system of coupled rigid bodies whose relative motions do not change

the total inertia tensor of the system, and the fundamental governing equation that

describes this model can be written as,

BIω̇ +B ω × (BIBω + ρ) = τp, (2.9)

8

2. Reaction Wheel Assisted Locomotion for Legged Robots

where ρ is the total angular momentum stored in the reaction wheels, and τρ is the

torque input into the wheels.

2.2.4 MIT Quadruped Control Architecture

The base control architecture for the reaction wheel quadruped is based on the work

done by Di Carlo et al [6]. We built upon an open source implementation 1 that

interfaces directly with the Unitree A1 quadruped. Fig. 2.1 provides a detailed

illustration of the different components of the control block. Overall, this control

architecture separately solves the swing and stance foot control problem. A stance

foot i is defined by a foot that’s currently in contact with the ground and returns

a ground reaction force fi. A swing foot i is defined as a foot that is currently in a

swing motion and tacking a new desired location in order to drive the robot forward.

Each pair of diagonal feet on the robot periodically switch between stance and swing

mode as defined by a phase ϕi that is calculated by a gait counter. For swing foot,

the controller is an end-effector PID feedback tracker that is described in 2.6. The

stance foot ground reaction force and reaction wheel torques are calculated by the

MPC. The MPC takes in the reference state xd and ẋd, the phase of each feet, ϕi,

position pi, and velocity ṗi for each foot i and output ground reaction force fi for the

foot that are in stance phase. The main contribution of this paper focuses on the

MPC formulation and the modeling of the quadruped reaction wheel systems.

2.3 Hardware Design

The two-axis reaction wheel add-on module is a prototype stabilization system

designed by Benjamin Bokser 2 and built in Robotic Exploration Lab (RExLab)

specifically for the Unitree A1 Quadruped. It contains two reaction wheels for the

roll and pitch axis, each with a 7.6cm and 8.5cm radius. The reaction wheels are

driven by two brushless motors, each with a continuous max current draw of 60A,

a maximum spin speed of 3800 RPM, and maximum torque output of 5 Nm. The

system is held together by a chassis made out of polycarbonate plates and 3D-printed

1https://github.com/ShuoYangRobotics/A1-QP-MPC-Controller
2https://www.benbokser.com/reaction-wheel-assisted-quadruped-locomotion.html

9

https://github.com/ShuoYangRobotics/A1-QP-MPC-Controller
https://www.benbokser.com/reaction-wheel-assisted-quadruped-locomotion.html

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.1: Control diagram that illustrates the quadruped control stack.

parts. The overall system has a dimension of 100 × 210 × 300 mm with a total

weight of 4.6 kg that includes a 2200 mAh battery Lithium Polymer battery pack.

This module is built as a prototype for demonstrating the effect of increasing

extra degrees of actuation on quadruped through reaction wheels. Variables such as

efficiency, weight, and dimension are not optimized. While the system adds significant

weight in addition to the weight of the robot itself, we will demonstrate that the

addition of reaction wheels is significant enough to improve the overall stability of

the system despite changes in the inertial parameters.

2.4 Model And Stability Analysis

We now present a simple yet effective representation of a quadruped equipped with

reaction wheels by combining the single rigid body quadruped model with the gyrostat

model.

2.4.1 Gyrostat Quadruped Dynamics

Our reaction wheel module adds two reaction wheels that provide body-frame torque

controls about the roll and pitch axes. To incorporate the reaction wheels into the

10

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.2: The Unitree A1 Quadruped is mounted with our custom-made reaction
wheel module.

control system, we combined the single rigid body quadruped model with the gyrostat

model by integrating Eq. 2.6 and Eq. 2.11:

ẋ =

ṙ

q̇
N r̈
Bω̇

ρ̇

 =

Nv
1
2
[q]LH

Bω
1
m

N
F − g

(BI)−1(Bτf + τρ −B ω × (BIω + ρ))

τρ

 , (2.10)

where in addition to the original centroidal model state, we introduce an addition

state vector ρ and control vector τρ that represents the angular momentum and torque

inputs for the reaction wheels on each axis. The control input vector u can now be

written as:

u =

NF
Bτf

τρ

 =

 I3 . . . I3 032

RT [p1]× . . . RT [pn]
× 032

023 . . . 023 I2

f1
...

fn

τρ

 . (2.11)

11

2. Reaction Wheel Assisted Locomotion for Legged Robots

2.4.2 Controllability Under Trotting

During the trotting phase, the robot repositions itself by moving two of its legs to a

new location while keeping the other two on the ground to stabilize its attitude and

position. The stability of the robot under this condition can be analyzed with the

controllability matrix about its linearized dynamics around an equilibrium point

Ak =
∂f

∂x

∣∣∣∣
x0,u0

Bk =
∂f

∂u

∣∣∣∣
x0,u0

δxk+1
= Akδxk +Bkδuk

, (2.12)

where Ak and Bk are the linearized discrete transition and control matrix for the

dynamics function f about an equilibrium point x0 and u0. The controllability matrix

for discrete time system is given as:

C = [Bk AkB . . . An−1
k B] (2.13)

where n is the dimension of the state. If C has full row rank, that means each of the

n states is reachable by the control input u. For the single rigid body model with

two ground reaction force input vectors, we found that its controllability matrix C
has full row rank. However, the system is underactuated with the control matrix

Bk losing rank for the attitude along the support vector. For the same model with

a reaction wheel added on, we found that the control matrix Bk has a full rank for

attitude actuation. The control matrix is still not full rank as the attitude control is

now also coupled directly with the momentum of the reaction wheels. However, we

assume the robot operates around a stable attitude during locomotion. This means

the reaction wheel momentum can be kept low during the nominal trotting condition

and activate when the robot encounters disturbances. We formulate this idea as a

discrete-time trajectory optimization problem.

12

2. Reaction Wheel Assisted Locomotion for Legged Robots

2.5 Convex MPC Formulation

We now formulate the reaction wheel quadruped control problem as a discrete-time

trajectory optimization problem.

2.5.1 Linearized Dynamics

We extend the work done by Di Carlo et al, in which they made several key assumptions

to enable the formulation of a linear convex MPC [6]. We leverage the same small-

angle approximation around stable walking conditions to linearize pitch and roll

dynamics. In addition, we assume that the angular velocity of the body is small

enough to leave out the Coriolis term in the rotational dynamics. Using the same idea

and the assumption that the reaction wheel velocities are also kept low during stable

trotting, we eliminate the same Coriolis term in the gyrostat dynamics, reducing the

attitude dynamics from Eq. 2.10 to

Bω̇ = (BI)−1(Bτf + τρ) (2.14)

For online implementation, we use Euler angles Θ instead of a quaternion as attitude

parameterization, and we express angular velocity and translational velocity in world

coordinates. Giving us the following linearized dynamics:

d

dt

r

Θ
W ṙ
Wω

ρ

 =

03 03 03 13 03

03 03 RT
z (ψ) 03 03

03 03 03 03 03

03 03 03 03 03

03 03 03 03 03

r

Θ
W ṙ
Wω

ρ

+

03 . . . 03

03 . . . 03
13
m

. . . 13
m

03
W I−1[p1]

× . . . W I−1[pn]
× W I−1RT

z (ψ)

03 . . . 13

f1
...

fn

τρ

+

0
...

0

g

 ,
(2.15)

13

2. Reaction Wheel Assisted Locomotion for Legged Robots

where Θ is the robot orientation parameterized by euler angles and Rz(ψ) represents

the rotation matrix that is linearized around the yaw angle ψ. The equation can then

be written down in a convenient linear-time-varying form,

ẋ(t) = A(ψ)x(t) +B(r1, . . . , rn, ψ)u(t), (2.16)

2.5.2 Linear Discrete Trajectory Optimization

The problem is now linearized with the continuous time transition and control matrices

A and B. We convert those matrices into discrete time Ad and Bd matrices. This

control problem is then posed as a classic discrete-time linear trajectory optimization

problem as follows:

min
x,u

k−1∑
0

∥xdi+1 − xi+1∥Qi
+ ∥ui∥Ri

(2.17a)

subject to xi+1 = Adixi +Bdiui, i = 0 . . . k − 1 (2.17b)

¯
ci ≤ Ciui ≤ c̄i, i = . . . k − 1 (2.17c)

Dui = 0, i = 0 . . . k − 1, (2.17d)

where xi, ui, Qi, and Ri are the state of the robot, control inputs to the robot, and

cost matrices for state and control inputs at time step i, respectively. The matrices

Ci in Equation 2.17c are used to enforce linearized friction cone constraints for each

ground reaction force vector. The equality constraints Di in Equation 2.17d are used

to constrain foot forces to be zero when a foot is in the swing phase. Finally, since

we are working with linearized dynamics, the optimization in Equation (2.17) can

be written down as a quadratic program (QP). We also regularize the speed of the

reaction wheels inside the dynamics penalty term and constrain the reaction wheel

torques with the affine constraints in the QP. The solution of the above MPC problem

returns the ground reaction forces for each of the feet in contact with the ground.

We convert the ground reaction forces into joint torques as follows,

τi = JTi R
Tfi, (2.18)

14

2. Reaction Wheel Assisted Locomotion for Legged Robots

where τi, Ji, fi, R are the joint torques, forward kinematic jacobian, solved ground

reaction forces for leg i, and world frame to body frame rotation matrix, respectively.

During actual implementation, we also include a feedback term on the angular

momentum of the roll reaction wheel to compensate for the error on center of mass

position

ϕd = ϕ̄d +Kϕρx, (2.19)

where ϕ̄d is the nominal roll angle that is usually set to 0, Kϕ is the feedback gain

for the roll reaction wheel momentum, ρx is the roll reaction wheel momentum, and

ϕd is the final desired roll angle for the robot. We found that this feedback term is

essential to avoiding reaction wheel saturation due to wrong center of mass location.

2.6 Swing Leg Control

The foot placement on the xy plane is calculated using the following equation from Di

Carlo et al’s formulation [6], which took inspiration from the work done by Raibert

[18].

pdi = phipi +W v
∆t

2
(2.20)

where ∆t is the time the foot will spend on the ground, phipi is the hip location

projected on the ground, and Wv is the velocity of the CoM in the world frame.

The z direction reference location is calculated via interpolation Bezier curve and a

predetermined reference gait height. With the reference trajectory, the torque for

each joint to perform tracking is computed via

τi = JTi (Kp(
Bpdi −B pi) +Kd(

Bvdi −B vi)) (2.21)

where Ji is the foot Jacobian, Kp and Kd are diagonal positive proportional and

derivative gain matrices, Bpi and
Bvi are the position and velocity of the i-th foot in

body frame, and Bpdi ,
B vdi are the reference position and velocity of the corresponding

swing leg trajectories.

15

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.3: Robot roll error responses to a 350N impulse on the body frame y-axis at
t = 3.6 seconds. The top graph illustrated the roll error trajectory with respect to time
for the base MPC controller and the reaction wheel-assisted controller. The bottom
graph plots the torque exerted by the x-axis reaction wheel during the experiment.

2.7 Simulation Results

We tested the reaction wheel MPC in a controlled Gazebo environment on a modified

Unitree A1 model mounted with our reaction wheel module. We performed two kinds

of experiments on the robot: a disturbance test on the robot body during the trotting

phase of locomotion, and an aerial reorientation test where we drop the robot from a

specified height at a known attitude offset.

2.7.1 Locomotion Disturbance

In the disturbance rejection tests, we supplied a 300N, 350N, and 400N impulse on

the y-axis of the robot body. Figure 2.6 shows the roll error response of the robot

during one of the impact experiments in Gazebo. The experiments demonstrated an

enhanced ability to recover from sudden impact. Orientation errors are reduced up to

40 percent in these tests. During the 450N impulse experiments, the reaction wheel

enhanced controller consistently recovers from the impact while the base MPC fails.

16

2. Reaction Wheel Assisted Locomotion for Legged Robots

2.7.2 Aerial Re-orientation

In addition to the locomotion test, we also tested the aerial reorientation capability

of our reaction wheel add-on module. By locking the joints of the robot and solely

relying on the torques from the reaction wheels, we dropped the robot from 0.5m

and provide it with angular offsets of 0.6 radians in the pitch axis for the experiment

shown in Figure 2.4a, 2.4b, and 2.4c. The reaction wheels were able to steer the robot

and correct its orientation in midair before touchdown. The experiment verifies the

reaction wheels are able to quickly correct large orientation errors.

Figure 2.4: A drop test sequence where the robot reorients itself with the torques
from the x axis reaction wheel.

2.7.3 Beam Walking

Finally, we tested the robot’s ability to walk under a small support polygon. Similar

to the two-leg stance scenario, the robot’s control matrix drops rank and becomes

underactuated when all of its feet are aligned in a straight line. In that instance, the

robot does not have direct control over the rotation around the support vector. In

this test, we put the system to test by making the robot tracks a straight line with an

extremely narrow foot gait. This is the exact same stance required for stable beam

walking, and the robot is able to successfully stabilize itself make make the traverse

with the assistance of the reaction wheel.

17

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.5: The quadruped reaction wheel system traversing a straight line along the
x-axis with a narrow gait.

2.7.4 Hardware Demo

We implemented the proposed controller on a Unitree A1 robot with our custom-made

payload module, as shown in Figure 2.2. The baseline controller 3 is as described in

[6]. The MPC employed a look-ahead horizon of 0.5 seconds divided into 20 time

steps, and the average solve time is 0.001 seconds for an AMD Ryzen Threadripper

CPU. The reaction wheels provided body torque control in the roll and pitch rotation

axes, each with a maximum output torque of 5Nm and a maximum spin speed of 1900

RPM. We qualitatively verified that the controller runs as expected and the robot

was able to recover from arbitrary impulse disturbances. Figure 2.8 shows a sequence

of the robot maintaining attitude while recovering from an impulse disturbance. In

addition to the disturbance test, we tested the robot’s ability to perform beam walking

on hardware. The robot is able to traverse a 3 feet segments on a 6 cm beam with the

assistance of the reaction wheel system prototype. Figure 2.9 shows the experiment

setup for the beam walking experiment. Data from the motion capture system is

used to obtain accurate location estimate of the robot’s pose, and we use the leg

kinematics and robot’s onboard IMU to smooth out the position estimate.

3https://github.com/ShuoYangRobotics/A1-QP-MPC-Controller

18

https://github.com/ShuoYangRobotics/A1-QP-MPC-Controller

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.6: Front view of the quadruped reaction wheel system traversing a straight
line along the x-axis with a narrow gait.

2.8 Conclusion

In this project, we demonstrated the feasibility of using reaction wheels to assist

the attitude control of a quadruped during locomotion. We showed that by using a

linearized formulation of the gyrostat dynamics, the control problem can be simplified

into a clean linear convex trajectory optimization problem. Tests in simulation

demonstrate the ability for the robot to reorient itself in mid-air without ground

support, and it also demonstrates improved stabilization ability for quadruped under

disturbances. On hardware, we demonstrate that the narrow gait walking, a motion

that is extremely difficult to achieve without reaction wheel assistance, can be

achieved with the reaction wheel systems and our convex MPC formulation. This

work demonstrates the potential of integrating reaction wheels into modern quadruped

design. For future design iterations, we recommend adding the reaction wheel systems

19

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.7: Hardware impulse test where we provide an impulse force on the robot
during locomotion with a kick. Figure 2.7a shows the robot in stable trotting phase
when the impulse is applied. Figure 2.7b shows the robot losing balance on the
footholds while maintaining a stable attitude as it eventually recovers from the
impulse in Figure 2.7c.

.

closer to the center of mass for the quadrupeds. This would allow the the robot to

keep its center of mass lower to the ground for stability while lowering the overall

moment of inertia for the whole system.

20

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.8: The robot is programmed to track a point that is located on the marked
blue tape on the ground.

.

21

2. Reaction Wheel Assisted Locomotion for Legged Robots

Figure 2.9: Hardware implementation of the beam walking demonstration. The robot
is able to traverse a 3 feet segments of a 6 cm wide wooden beam with the assistance
of the reaction wheel system.

.

22

Chapter 3

Applying Fast Linear

Contact-Implicit Model-Predictive

Control for Quadruped

In this chapter, we will cover the work done on implementing Fast Linear Contact-

Implicit Model Predictive Control (CI-MPC) for quadrupeds. Section 3.2 will cover

the fundamentals of CI-MPC and differentiable dynamics. Section 3.4 covers the

simplified quadruped model we use to enable online tracking. Section 3.3 covers the

control architecture for running CI-MPC on the quadruped. Section 3.5 covers the

online foot tracking controller. Section 3.6.1 covers some of the sample trajectory

and experiments we perform on actual hardware. Please note that the symbols used

in this chapter are independent of the previous chapter.

3.1 Motivation

Controlling a system that needs to make and break contact with the environment is

a difficult challenge in robotics. There have been many approaches to this problem,

including neural network policies, hybrid zero dynamics, and hybrid model predictive

control. Up until recently, there have been very few solutions that can reason

about general contact dynamics. Le Cleac’h and Howell proposed a differentiable

contact physics simulator that produces smooth gradients from contact events. They

23

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

formulate the contact problem as a complementarity problem that simultaneously

satisfies contact and friction cone constraints. Then they use the path following

method to gradually converge from a ”soft” to ”hard” contact solution by decreasing

the central path parameter. Once at the solution point, the implicit function theorem

is used to obtain dynamics gradients.

Using the gradient and strategic linearization of the knot points of a trajectory,

Le Cleac’h and Howell utilize a combination of numerical optimization techniques

and exploitation of the problem structure to come up with a general Model Predictive

Control algorithm that can reason about contact changes. In this document, we

apply the model predictive algorithm, called Linear Contact Implicit Model Predictive

Control (LCI-MPC), for the first time on hardware on a quadruped robot. The major

contributions of this work are:

• A modified single rigid body model specifically for real-time LCI-MPC imple-

mentation.

• Demonstration of complex contact-rich behaviors on hardware for a quadruped

using LCI-MPC.

3.2 Background

At a high level, CI-MPC uses a contact-dynamics formulation that is efficiently

evaluated and differentiated with a custom path following solver. First, the dynamics

are formulated as a parameterized complementarity problem that jointly solves the

impact and friction problem. Using a path-following method, the dynamics are

solved by successively reducing the complementary slackness to avoid numerical

issues inherent to non-smooth and discontinuous impact and friction dynamics. Then

a Linear Complementarity Problem (LCP) is formed by selectively linearizing the

formulation about a reference trajectory. Next, with the linearized dynamics, the CI-

MPC employs a bilevel-optimization scheme that evaluates the contact dynamics and

their gradient for an upper-level trajectory optimization problem by solving lower-level

optimization problems. The implicit-function theorem is used to differentiate through

the LCP to obtain gradients to the CI-MPC policy. Finally, a custom linear solver

for the LCP that leverages offline pre-computation and partial factorization enables

24

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

real-time implementation of the CI-MPC algorithm. For brevity, this document covers

background on the differentiable dynamics while leaving the details of the linearized

contact-implicit dynamics solver for further reading in [5].

3.2.1 LCP Contact Dynamics

CI-MPC uses a velocity-based time-stepping scheme that optimizes a Linear Comple-

mentarity Problem (LCP) in order to find the system’s next configuration qt+1, and

velocity vt+1. The LCP includes a subproblem for impact and friction. The impact

subproblem has the following structure:

M(qt + hvt)(vt+1 − vt) = (3.1)

J(qt + hvt)
Tλt +B(qt + hvt)ut − hC(qt, vt),

qt+1 = qt + hvt+1, (3.2)

γTt ϕ(qt+1) = 0, (3.3)

γt, ϕ(qt+1) ≥ 0, (3.4)

where M is the mass matrix, C is the dynamic bias that includes Coriolis and gravi-

tational terms, J is the contact Jacobian that maps contact forces from local surface

to the generalized coordinates, B is the input jacobian that maps control inputs into

generalized coordinates, h is the discretization time step, λt = (γ
(1)
t , β

(1)
t , . . . , γ

(c)
t , β

(c)
t)

represents the contact forces in the local frame, with normal force γ
(i)
t ∈ R and friction

forces β
(i)
t ∈ R2(d−1); and signed-distance function, ϕ : Rn → Rc that returns distance

between contact points on the mechanism with the environment; ◦ is an element-wise

(Hadamard) vector product. The manipulator equation 3.1 uses a semi-implicit Euler

scheme for discretization, and the complementarity constraints ensure that contacts

are only applied when the contact points are in contact with the ground.

The Coulomb friction is modeled for each contact point using the maximum

25

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

dissipation principle along with a linearized friction cone

η −

[
v

−v

]
− ψ1 = 0 (3.5)

ψ · (µγ − 1Tβ) = 0 (3.6)

βTη = 0 (3.7)

β, η ≥ 0, (3.8)

where v ∈ Rd−1 is the tangential velocity at a contact point, µ ∈ R+ is the coefficient

of friction, ψ ∈ R is the dual variable (Lagrange multiplier) associated with a

linearized friction-cone constraint, and η ∈ R2(d−1) is the dual variable associated

with the nonnegative friction-force constraint. To evaluate the contact dynamics,

CI-MPC solves the coupled impact and friction problems together as a joint feasibility

problem that simultaneously satisfies (3.2-3.4) and (3.5-3.8),

find qt+1, λt, ψt, η
(1)
t , . . . , η

(c)
t , sϕ, sψ (3.9)

s.t.
(
M(qt−1)(qt − qt−1) (3.10)

−M(qt)(qt+1 − qt)
)
/h

− hC(qt, (qt+1 − qt)/h)

+ J(qt+1)
Tλt +B(qt+1)ut = 0,

sϕ − ϕ(qt+1) = 0, (3.11)

s
(i)
ψ − (µ(i)γ

(i)
t − 1Tβ

(i)
t) = 0,∀i, (3.12)

η
(i)
t − P (i)(qt+1)(qt+1 − qt)/h (3.13)

− ψ(i)
t 1 = 0, ∀i,

γt ◦ sϕ = ρ1, (3.14)

ψt ◦ sψ = ρ1, (3.15)

β
(i)
t ◦ η

(i)
t = ρ1,∀i, (3.16)

γt, sϕ, ψt, sψ ≥ 0, (3.17)

β
(i)
t , η

(i)
t ≥ 0,∀i. (3.18)

26

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

Additional slack variables sϕ, sψ ∈ Rc are used as a standard technique with path-

following methods to simplify the log-barrier term.

3.2.2 Path Following Method

Path-following methods can efficiently and reliably solve optimization problems with

inequality constraints [12]. A problem,

minimize
x

f(x; θ)

subject to g(x; θ) = 0,

x ≥ 0,

(3.19)

with decision variables x ∈ Rn, problem data θ ∈ Rp, objective f : Rn ×Rp → R,

and equality constraints g : Rn ×Rp → Rm, can be rewritten with a logarithmic

barrier in order to handle the inequality constraints as follows:

minimize
x

f(x; θ)− ρ
n∑
i=1

log(x(i))

subject to g(x; θ) = 0,
(3.20)

and then solved by finding solutions to a sequence of barrier subproblems as the

central-path parameter ρ→ 0. The optimality conditions for (3.20) are:

∇xf(x; θ) +∇xg(x; θ)
Ty − z = 0, (3.21)

g(x; θ) = 0, (3.22)

x ◦ z = ρ1, (3.23)

x, z ≥ 0, (3.24)

where y ∈ Rm, z ∈ Rn are dual variables associated with the equality and inequality

constraints, respectively, ◦ is an element-wise (Hadamard) vector product, and 1 is a

vector of ones.

The equality constraints (3.21-3.23) form a residual vector or solution map,

r : Rn+m+n × Rp × R+ → Rn+m+n, that takes w = (x, y, z) ∈ Rn+m+n and the

problem data as inputs. These problem data are fixed parameters during optimization,

e.g., bounds on decision variables or weights in the objective. Newton or quasi-Newton

27

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

methods are used to find search directions that reduce the norm of the residual and a

backtracking line search is employed to ensure that the inequality constraints (3.24)

are strictly satisfied for candidate points at each iteration. Once the optimality

conditions (3.21-3.24) are solved to a desired tolerance, the central-path parameter is

decreased and the new subproblem is warm-started with the current solution and then

solved. This procedure is repeated until the central-path parameter, also referred to

as complementary slackness, is below the desired tolerance.

3.2.3 Implicit Function Theorem

An implicit function, r : RK ×Rp → Rk, is defined by

r(w∗; θ) = 0, (3.25)

for solutions w∗ ∈ Rk and problem data θ ∈ Rp. At a stationary point, w ∗ (θ), the
sensitivity of the solution with respect to the problem data can be computed with

the implicit-function theorm:

∂r

∂w
δw +

∂r

∂θ
δθ = 0, (3.26)

and then solve for δw:
∂w∗

∂θ
= −(∂r

∂w
)−1∂r

∂θ
, (3.27)

This approach is used to differentiate the solution from the path-following method to

compute the gradients of the contact dynamics for CI-MPC.

3.2.4 Linearized Contact-Implicit Dynamics

The LCI-MPC policy aims to track a reference trajectory comprising configurations

Q̄ = (q̄0, . . . , q̄T), control inputs Ū = (ū1, . . . , ūT−1), and the contact forces Λ̄ =

(λ̄1, . . . , λ̄T−1).

Similar to linear MPC, we reduce the online computational burden by utilizing

simplified dynamics. Specifically, we formulate linearized time-varying contact-implicit

dynamics which comprise the manipulator dynamics, signed-distance function, and

maximum dissipation principle terms linearized about the reference trajectory, while

28

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

the key contact dynamics modeled with nonlinear complementarity and inequality

constraints are retained. At each time step along the trajectory, the dynamics are

solved as the following feasibility problem

find w

subject to C(w − w̄) +D(θ − θ̄) = 0

γ ◦ sϕ = ρ1,

ψ ◦ sψ = ρ1

β(i) ◦ η(i) = ρ1, ∀i
γ, sϕ, ψ, sψ ≥ 0

β(i), η(i) ≥ 0,∀i.

(3.28)

Here, w̄ and θ̄ are reference decision variables and problem data, respectively, for

the path-following method. C and D are matrices that define an underdetermined

linear system of equations and are pre-computed offline. The linear contact-implicit

dynamics,

qt+1 = st(qt−1, qt, ut), (3.29)

st : R
n ×Rn ×Rm → Rn, solve (3.28) and return the configuration at the next time

step. The contact forces at the current time step can also be returned.

3.2.5 Trajectory Optimization and Linear Dynamics Solver

CI-MPC aims to solve the following trajectory optimization problem,

minimize
x1:T ,u1:T−1

gT (xT) +
T−1∑
t=1

gt(xt, ut)

subject to xt+1 = ft(xt, ut), t = 1, . . . , T − 1,

(x1 given).

(3.30)

As mentioned in the previous section, the dynamics function ft(xt, ut) is replaced with

simplified linearized dynamics. The dynamics are comprised of linearized dynamics

at the trajectory knot point while keeping the non-linear complementary constraints.

The dynamics integration is hence formulated as an LCP while the top-level cost

function optimization is solved with an outer Gauss-Newton optimization method,

29

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

using the gradient obtained from the implicit function theorem during the LCP solver

iteration. When this problem is solved online, CI-MPC utilizes various techniques to

speed up the solve time through exploitations of the problem sparsity. The details of

the implementation are in the publication written by Le Clea’ch and Howell [5].

3.3 Quadruped Control Architecture for CI-MPC

Due to the differentiable contact dynamics, CI-MPC comes with the ability to adapt

contact sequences online. It is even capable of reason about and generating new

contact sequences for systems under disturbances. For this reason, the quadruped

control architecture for CI-MPC is considerably simpler in comparison to the control

systems illustrated in Fig. 2.1. Recall that in the classic MIT hybrid MPC formulation,

the dynamics are broken down into pre-specified sequences of contacts, and the contact

points are generated through Raibert heuristics and tracked with an end-effector

PID feedback controller. As shown in Fig. 3.2, the CI-MPC control stack get rids

of the entire pipeline related to generating contact sequences and replaced it with a

single controller capable of calculating contact forces and feet placement in real-time.

Furthermore, the control diagram referenced in Fig. 2.1 is only built around trotting

locomotion. Whereas the new CI-MPC control architecture is set up to track any

kind of dynamically feasible reference template trajectory.

3.4 Simplified Quadruped Model

We will now introduce the simplified quadruped model for the online implementation of

CI-MPC. Most successful implementation of online MPC relies on a simplified version

of the system model. These models offered reduced state and control dimensions while

capturing the important dynamic characteristics of the actual system. In order to

solve the trajectory optimization online for a quadruped robot, we utilize a modified

version of the single rigid body dynamics model from Eq. 2.6. In order to model

the feet’ interaction with the ground and allow CI-MPC to optimize for swing leg

trajectories, we introduced four virtual point masses mf that represents the feet of

the robot. This modified the single rigid body dynamics equation Eq. 2.6 to

30

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

Figure 3.1: Control diagram that illustrates the quadruped control stack.

ẋ =

ṙ

q̇
N r̈
Bω̇

ṗ1

p̈1
...

ṗn

p̈n

=

Nv
1
2
[q]LH

Bω
1
m

N
JTl λ− g

(BI)−1(JTa λ−B ω ×B Iω)
Nvi
1
mf
Fi
...

Nvn
1
mf
Fn

, (3.31)

where Fi is the force applied at each of the feet, and JTl and JTa are the attitude

and translation component of the contact Jacobian matrices that map the ground

reaction forces λ to the body. Finally, the sign distance functions are defined by the

distance of each of the virtual point masses with the contact surfaces.

3.5 Force Tracking Controller

The output from the CI-MPC is a vector of forces applied to each of the virtual

point masses. In the model, these virtual forces move the point masses around in

31

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

Figure 3.2: Visualization of the simplified quadruped model that is used online in
CI-MPC. The four virtual point masses are represented by four yellow spheres, and
the torso of the robot body is represented by a black rectangle.

the environment. When a contact event occurs between any of the spheres and the

environment, a wrench is applied at the center of mass of the model from the normal

and frictional forces. On hardware implementation, however, it does not make sense

to directly track the force outputs with the joint torque controller when the point

mass is not in contact with the environment. This is because the virtual point mass

has no physical meaning for the actual robot. We could potentially tune the mass

of the feet such that it captures the dynamics of the robot legs on hardware, but it

would require a long tuning process. In practice, we utilize a combination of force

and position tracking for a full-body quadruped. We obtain the desired feet position

and velocity pd and ṗd from the first two steps of the newton solved trajectory from

32

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

the CI-MPC in Eq. 3.30. Then along with the solution Fi from Eq. 3.31, the torque

to force controller for foot i becomes

τi = JTi (Kp(p
d
i − pi) +Kd(ṗ

d
i − ṗi)) + JTi R

TFi (3.32)

where J is the foot jacobian for foot i, Kp and Kd are the proportional and velocity

gain for the position tracker, and Fi is the force to be exerted on the point mass.

This formulation works with the assumption that the virtual point mass mf is small,

and therefore the force Fi is small when the point masses are moving freely away

from the contact surface. At contact, the Fi is the equivalent of the ground reaction

forces required to balance the robot. This tracking algorithm removes the necessity

to distinguish between stance and swing foot logic.

3.6 Hardware Implementations and Experiments

3.6.1 Reference Trajectory Generation

The CI-MPC works by linearizing a set of knot points about a dynamically feasible

trajectory. In order to generate a dynamically feasible trajectory, we used the

formulation developed by Manchester et al to solve the trajectory as a nonlinear

trajectory optimization problem with dynamics constraints similar to Eq. 3.9 [13]. A

non-feasible trajectory is first generated by hand. The solver is initialized with the

reference trajectory. The initial normal forces, friction forces, and complementary

slackness variables are initialized to zero while the cost function heavily penalizes any

deviation from the reference trajectory. Particularly important knot point parameters,

for example, the foot clearance height of the trotting trajectory, are set as explicit

constraints. The final trajectory is solved offline with IPOPT and the norm of the

complementary slackness is checked to ensure hard contact constraints are met. The

solution is then given to CI-MPC for linearization.

3.6.2 Julia Interface for Embedded System

One particular engineering challenge for hardware implementation comes from the

integration between Julia and the embedded C++ control system. The dynamics

33

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

equation generation 1 and CI-MPC solver 2 are all implemented and heavily optimized

in Julia. A total rewrite of the core LCP solver in C++ would add weeks into

development time. We opt for integrating Julia directly with the existing control

stack using the official Julia guide. Due to the fact that Julia uses a Just-In-Time (JIT)

compilation scheme and the large code base of the LCP solver, each initialization takes

minutes to compile at every restart of the program. We used PackageCompilter.jl 3

to precompile the entire sysimage that includes LCP solver. At runtime, the C++

program calls an instance of the Julia read–eval–print-loop (REPL) that is running a

precompiled sysimage. This allows us to implement rapid change and iteration to the

CI-MPC algorithm. We wrote a C++/Julia package 4 that handles Julia to C++

and type conversion and interface between our embedded control stack and the core

Julia CI-MPC solver.

3.6.3 Hardware Implementation Considerations

We experimented with three different policies for hardware testing, and we closed the

control loop on an Unitree A1 robot. We implemented the controller on a computer

running AMD Ryzen Threadripper and achieved an average solve time of 2 ms.

However, we noticed that the solution time could increase to 10 - 20 ms depending

on the deviation from the reference trajectory. This severely limits the available look-

ahead horizon during implementation, and the system becomes unstable whenever

the robot deviates too much from the reference trajectories. We were able to keep

the solve time low and track the aforementioned reference trajectories by limiting the

look-ahead horizon to two steps. Due to the issue with solve time, we we have to use

reference trajectories with at least 0.05s discretization time step to ensure that the

solution is good enough for hardware implementation.

1https://github.com/thowell/RoboDojo.jl
2https://github.com/dojo-sim/ContactImplicitMPC.jl
3https://github.com/JuliaLang/PackageCompiler.jl
4https://github.com/RoboticExplorationLab/EmbeddedLciMpc.jl

34

https://github.com/thowell/RoboDojo.jl
https://github.com/dojo-sim/ContactImplicitMPC.jl
https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/RoboticExplorationLab/EmbeddedLciMpc.jl

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

3.6.4 Experiment 1: Trotting Policy

The first policy we tested is a standard trotting policy. The reference trajectory has

a time step of 0.05 seconds and a gait cycle of 0.8 seconds. Each pair of diagonal

feet (front right and rear left, front left and rear right) alternate going into the swing

phase. Fig. 3.3 shows the z profile of the swing foot and Fig. 3.4 shows the solved

reference normal forces for each of the feet during the 0.8-second gait. During online

implementation, we use a circular buffer to update the reference points to keep the

robot in a continuous trotting motion. No cost is placed on the position tracking cost,

and the robot changes its desired location through changes in the reference velocity

target. The robot demonstrates reliable trotting behavior using the above reference

trajectories, and a video demonstration of the trotting policy is available.

Figure 3.3: Foot height of the generated trajectory.

3.6.5 Experiment 2: Box Climbing Policy

The second policy we tested on hardware is a more complicated policy that interacts

with non-flat terrain. The reference trajectory is designed to guide the robot to place

its front feet on the box and lean its center of mass onto the box. The box, or more

precisely a general elevated platform, is modeled as a tanh function for its contact

35

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

Figure 3.4: Reference normal force for the trotting policy.

Figure 3.5: Visualization of the trotting policy on the simplified quadruped model.

surface, and the signed distance function for each virtual point is modified accordingly.

Fig. 3.7 shows a visualization of the centroidal model and the reference trajectory,

and Fig. 3.8 shows the hardware demonstration of the same trajectory. The next

iteration of this trajectory is to guide the robot to completely maneuver itself over a

larger obstacle.

36

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

Figure 3.6: Hardware demonstration of the trotting policy.

Figure 3.7: Visualization of the box climbing reference trajectory for the simplified
quadruped model.

3.6.6 Experiment 3: Wall Leaning Policy

The final policy we tested on hardware is a policy that involves the robot shifting its

support from a horizontal surface to a vertical surface. The end goal is to guide the

robot such that it can stand up and lean against the wall. We were not able to finish

implementing this policy, as our state estimator at the time of this writing do not

have the capability to accurately estimate the wall position and consistently pinpoint

its location. We were able to finish implementing the first half of the policy that can

guide the robot’s foot against the wall and shift its center of mass. Fig. 3.9 shows a

37

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

Figure 3.8: Hardware demonstration of the quadruped tracking of the box climbing
trajectory.

visualization of the trajectory terminal state in visualization for the simplified model,

and Fig. 3.10 shows the result achieved on hardware.

Figure 3.9: Visualization of the wall-leaning reference trajectory for the simplified
quadruped model.

3.7 Conclusions

In this project, we introduced a robust pipeline for implementing CI-MPC on hardware.

This is also the first instance of CI-MPC running on a hardware platform, and it

38

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

Figure 3.10: Hardware demonstration of the wall-leaning reference trajectory.

showed that LCP contact dynamics can be solved reliably in real-time on hardware

for closed-loop optimal control. We demonstrated three example trajectories on

hardware. From a challenging trotting policy to policy to more complicated policies

that include interaction with non-flat terrains. There are several improvements that

can improve the current implementation of CI-MPC. First, we could further speed

up the implementation by writing the solver in C++. This would allow us to run the

CI-MPC with a longer horizon and a finer discretization timestep. Second, we need

to fix some solver issues plaguing the current solver. The solver struggles to converge

on MPC with a longer horizon, and a small discretization time step also increases

solver sensitivity to disturbances. Finally, we need to figure out a way to introduce

perception and update contact surfaces in CI-MPC.

39

3. Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped

40

Chapter 4

A Quadruped Inertial Parameter

Estimation Method with Bisection

Search and Sinusoidal Excitations

4.1 Motivation

For model-based control algorithms like the two introduced in this document, the

accuracy of the system’s model directly impacts the performance of the controller.

Past and recent works on robot system identification focused primarily on identifying

the full inertial properties of each individual link [2, 21]. However, many of the

best-performing state-of-the-art controllers require only a simplified centroidal model

of the robot [6]. The primary contribution of our work is to introduce a drastically

simplified method for extracting any quadruped’s centroidal inertial parameters. We

introduce a simple two-step calibration routine to identify the planar center of mass

(CoM) and the effective centroidal dynamics parameters using only joint sensors and

an inertial measurement unit (IMU). Our proposed calibration routine consists of

two steps:

• A bisection search method to locate planar CoM.

• A sinusoidal excitation method to extract moments of inertia for each body

axis.

41

4. A Quadruped Inertial Parameter Estimation Method with Bisection Search and
Sinusoidal Excitations

The ideas behind these routines are simple enough to be applied to nearly any

quadrupedal system with a set of joint sensors and an IMU. Our algorithms require

no specific controller or complicated physical setup. We demonstrate the methods

in both hardware and simulation. A video demonstrating the experiments is also

available online1.

4.2 End-effector Bisection Search

The main idea behind the bisection search method is to leverage the tilting direction

of the robot when standing on two feet as an indicator of the center of mass error

relative to a support line. When a quadruped lifts two of its feet off the ground

during a stance, the support polygon formed by the four feet becomes a support

line between the remaining diagonal feet, as shown in Figure 4.1. The robot should

remain balanced for a brief moment in an unstable equilibrium point if the CoM is

directly on the support vector [17]. Otherwise, the robot will tilt in the direction of

the CoM offset as illustrated in Figure 4.2a and 4.2b. Using this knowledge, we shift

the diagonal support line using a bisection search in the robot’s body frame until it

moves below the CoM location. The details of the search method are summarized in

Algorithm 1, where we take in diagonal pairs of nominal foot position vectors r1, r2

and r3, r4, an upper and lower search bound xu and xl, and a tthres that represents

the time it takes for the robot to tilt into a static pose. Line 2-5 offset the support

vector by xm, the midpoint of xl and xu, and use inverse kinematics to calculate a

desired joint configuration qd. Line 6-8 then move the robot into the desired static

stance with a joint position controller, and Line 9-12 then lift two of the diagonal

leg and let the robot lean toward the direction of the CoM offsets. Depending on

the direction of tilt, as determined by the pitch error, we update xu or xl to narrow

the search direction until the two numbers come within a certain threshold (which

was set to 0.005 m in Algorithm 1). We perform the same process for both pairs of

diagonal feet (front right feet and rear left feet v.s. front left feet and rear right feet),

and we identify two lines that we know the planar CoM must be located on. The

center of mass location can be obtained by finding the intersection of the two lines.

1https://youtu.be/oWS1gqfT1m0

42

https://youtu.be/oWS1gqfT1m0

4. A Quadruped Inertial Parameter Estimation Method with Bisection Search and
Sinusoidal Excitations

Figure 4.1: An image of an Unitree A1 quadruped balancing with its CoM directly
above the support vector line formed by its front left and rear right feet.

Algorithm 1 FindSupportVector(r1, r2, r3, r4 xu, xl, tthres)

Require: xu > xl
1: while xu − xl > 0.005 do
2: xm ← (xu + xl)/2
3: r̂1.x← r1.x+ xm
4: r̂2.x← r2.x+ xm
5: qd = invKin(r̂1, r̂2)
6: repeat
7: jointPositionControl(q, qd)
8: until qd ≈ q
9: qn = liftDiagonalFeet(q)
10: repeat
11: jointPositionControl(q, qn)
12: until t > tthres
13: if pitcherror > 0 then
14: xl = xm
15: else
16: xu = xm
17: end if
18: end while
19: return r̂1, r̂2

43

4. A Quadruped Inertial Parameter Estimation Method with Bisection Search and
Sinusoidal Excitations

Algorithm 2 FindCOM(r1, r2, r3, r4 xh, xl, tthres)

1: Initialize xl, xh
2: Initialize r1, r2, r3, r4
3: r̂1, r̂2 = FindSupportVector(r1, r2, r3, r4, xh, xl, tthres)
4: r̂3, r̂4 = FindSupportVector(r3, r4, r1, r1, xh, xl, tthres)
5: xc, yc = FindIntersection([r̂1, r̂2], [r̂3, r̂4])

Figure 4.2: Depending on the center of mass (red) location relative to the support
vector line (blue), the robot will either tilt forward like in 4.2b or backward like in
4.2a

.

4.3 Trunk Inertial Parameter Estimation With

Sinusoidal Excitations

Instead of trying to estimate the inertial parameters for the full-body model, we focus

on fitting the inertial parameters for a simplified centroidal model. The governing

equation of a centroidal model quadruped can be written as,[
p̈

d
dt
(Iω)

]
=

n∑
i=0

[
fi
m

r̂i × fi

]
−

[
g

0

]
, (4.1)

where fi is the ground reaction force for foot i, p is the CoM position, I is the moment

of inertia, ω is the angular velocity, ri is the foot position relative to the CoM, and g

is gravity. Assuming that the angular velocity is small and the off-diagonal terms on

the inertia tensor are negligible, we simplify the rotational dynamics in each axis as

44

4. A Quadruped Inertial Parameter Estimation Method with Bisection Search and
Sinusoidal Excitations

Ijω̇i + Cjωi = τj, (4.2)

where Ij, ωj, Cj, and τj are the robot’s moment, angular velocity, damping constant,

and total torque for a rotation axis j. Ij and Cj can be identified by forming a

regressor matrix with a dataset of ωj, ω̇j and τj. To obtain the angular acceleration

ω̇j, we avoid doing numerical differentiation by providing a sinusoidal input to the

system. We extract the dominant frequency Fj, amplitude aj, and phase shift ϕj via

Fast Fourier Transform, and we take the derivative of the wave function analytically

to get ω̇j, giving us the expression

ωj(t) = aj sin(2πFjt+ ϕj) (4.3)

ω̇j(t) = aj2πFj cos(2πFjt+ ϕj). (4.4)

With an analytical expression of the angular velocity and angular acceleration, we

form the regressor matrix by sampling ωj and ω̇j at a number of discrete time steps:

0 . . . tf . With the regressor matrix, we arrive at the following linear least-squares

problem
ω̇j(0) ωj(0)

ω̇j(t1) ωj(t1)
...

...

ω̇j(tn) ωj(tn)

[
Ij

Cj

]
=

τj(0)

τj(t1)
...

τj(tf)

 . (4.5)

We apply this sinusoidal excitation process for each of the three rotation axes, and we

perform separate the least squared optimization for each axis to extract the moment

of inertia and damping constant.

4.4 Results

We implemented the center of mass search on both hardware and simulation. As of

the time of writing, we have only performed the moment of inertia identification in

simulation.

45

4. A Quadruped Inertial Parameter Estimation Method with Bisection Search and
Sinusoidal Excitations

4.4.1 Simulation Results

We ran both calibration routines in Gazebo with the full Unitree A1 quadruped

model. Table 4.1 shows the simulated and estimated moment of inertia and CoM.

To obtain the effective moment of inertia values, we use the parallel axis theorem

and calculate the total moment of inertia of the robot’s trunk, hips, and thigh links.

Similarly, we calculate the CoM position by calculating the weighted sum of the CoM

of each link in the robot’s body frame. Monte Carlo simulation of the calibration

routine is able to consistently identify the CoM position within 5mm of the ground

truth position. The error is also directly proportional to the joint and end-effector

error. Figure 4.3 shows the norm of the CoM position error during a bisection search,

with the search error converging to under 5mm in roughly six iterations.

Figure 4.3: Norm of the position error on the CoM estimates over six iterations for a
calibration test in simulation.

46

4. A Quadruped Inertial Parameter Estimation Method with Bisection Search and
Sinusoidal Excitations

Table 4.1: Simulated Result of the Calibration Routine

Ix Iy Iz px py

Simulated 0.116 0.349 0.399 -0.0093 0.00085
Estimated 0.0856 0.306 0.363 -0.0073 0.00089

4.4.2 Experimental Results

We implemented the CoM bisection search algorithm on hardware for an Unitree A1

quadruped. While it is hard to experimentally determine the ground truth location of

the CoM on hardware, we implemented a balancing controller that balances the robot

on two diagonal feet. This under-actuated balancing scenario requires an accurate

center of mass position estimate. From our simulation and hardware experiments, we

determine that the CoM needs to be within 5mm for the robot to balance properly

with our controller. We were able to successfully balance the robot on two legs using

the center of mass position estimate we obtained from our calibration routine. A

video demonstration of the calibration process is available in Section I.

4.5 Conclusion

In this project, we introduce a method that can reliably identify several important

inertial parameters for quadruped model-based controllers. This method is highly

applicable to any MPC, including the two methods introduced in Chapter 2 and 3,

that uses a simplified centroidal model for a quadruped. We demonstrated that our

center of mass search algorithm works on both hardware and simulation. Our current

calibration routine only identifies the CoM position on the x and y plane of the robot

body frame. However, a similar technique can be used to back out the z-axis CoM

position by tilting the robot at an angle and accounting for geometry constraints

given a known x− y CoM location. The sinusoidal excitation method, although it

can identify the moment of inertia in simulation up to two decimal digit accuracy,

have yet to be tested on hardware. Our future work will test this technique for the

Unitree A1 robot and adapt it according to the challenges we encounter.

47

4. A Quadruped Inertial Parameter Estimation Method with Bisection Search and
Sinusoidal Excitations

48

Bibliography

[1] Aaron D. Ames, Kevin Galloway, Koushil Sreenath, and Jessy W. Grizzle.
Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero
dynamics. IEEE Transactions on Automatic Control, 59(4):876–891, 2014. 1

[2] Christopher G. Atkeson, Chae H. An, and John M. Hollerbach. Estimation of
inertial parameters of manipulator loads and links. 5(3):101–119. ISSN 0278-3649,
1741-3176. 4.1

[3] Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo, Patrick M
Wensing, and Sangbae Kim. Mit cheetah 3: Design and control of a robust,
dynamic quadruped robot. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2245–2252. IEEE, 2018. 2.1, 2.2.2

[4] Carlos Casarez, Ivan Penskiy, and Sarah Bergbreiter. Using an inertial tail for
rapid turns on a miniature legged robot. In 2013 IEEE International Conference
on Robotics and Automation, pages 5469–5474, 2013. doi: 10.1109/ICRA.2013.
6631361. 1

[5] Simon Le Cleac’h, Taylor Howell, Mac Schwager, and Zachary Manchester. Fast
contact-implicit model-predictive control, 2021. URL https://arxiv.org/abs/

2107.05616. 1.1, 3.2, 3.2.5

[6] Jared Di Carlo, Patrick M. Wensing, Benjamin Katz, Gerardo Bledt, and
Sangbae Kim. Dynamic Locomotion in the MIT Cheetah 3 Through Convex
Model-Predictive Control. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1–9, Madrid, October 2018. IEEE.
ISBN 978-1-5386-8094-0. doi: 10.1109/IROS.2018.8594448. URL https://

ieeexplore.ieee.org/document/8594448/. 2.1, 2.2.2, 2.2.4, 2.5.1, 2.6, 2.7.4,
4.1

[7] C. Fisher and A. Patel. Preparation of papers for ifac conferences sym-
posia: Flipbot: A lizard inspired stunt robot. IFAC Proceedings Vol-
umes, 47(3):4837–4842, 2014. ISSN 1474-6670. doi: https://doi.org/10.3182/
20140824-6-ZA-1003.01479. URL https://www.sciencedirect.com/science/

article/pii/S1474667016423633. 19th IFAC World Congress. 1

49

https://arxiv.org/abs/2107.05616
https://arxiv.org/abs/2107.05616
https://ieeexplore.ieee.org/document/8594448/
https://ieeexplore.ieee.org/document/8594448/
https://www.sciencedirect.com/science/article/pii/S1474667016423633
https://www.sciencedirect.com/science/article/pii/S1474667016423633

Bibliography

[8] Mason A. Peck Frederick A. Leve, Brian J. Hamilton. Spacecraft Momentum
Control Systems. Springer, 2015. 1, 2.1

[9] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of
locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286,
2017. 1

[10] Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S.
Sukhatme. Neuralsim: Augmenting differentiable simulators with neural networks.
arXiv preprint arXiv:2011.04217, 2020. 1

[11] Marco Hutter, Hannes Sommer, Christian Gehring, Mark Hoepflinger, Michael
Bloesch, and Roland Siegwart. Quadrupedal locomotion using hierarchical
operational space control. The International Journal of Robotics Research, 33
(8):1047–1062, 2014. 2.1

[12] Stephen J. Wright Jorge Nocedal. Numerical Optimization. Springer, 2006. 3.2.2

[13] Zachary Manchester, Neel Doshi, Robert J Wood, and Scott Kuindersma.
Contact-implicit trajectory optimization using variational integrators. The
International Journal of Robotics Research, 38(12-13):1463–1476, 2019. doi: 10.
1177/0278364919849235. URL https://doi.org/10.1177/0278364919849235.
3.6.1

[14] Richard Montgomery. Gauge theory of the falling cat. Fields Inst. Commun., 1,
07 1993. doi: 10.1090/fic/001/09. 2.1

[15] Amir Patel and M. Braae. Rapid turning at high-speed: Inspirations from the
cheetah’s tail. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5506–5511, November 2013. doi: 10.1109/IROS.2013.6697154.
ISSN: 2153-0866. 1, 2.1

[16] Marko Popovic, Andreas Hofmann, and Hugh Herr. Angular Momentum Reg-
ulation during Human Walking: Biomechanics and Control. volume 3, pages
2405–2411, January 2004. doi: 10.1109/ROBOT.2004.1307421. 1, 2.1

[17] Marc H Raibert. Research on legged machines can lead to the construction of
useful legged vehicles and help us to understand legged locomotion in animals.
29(6):16. 4.2

[18] Marc H. Raibert and Ernest R. Tello. Legged robots that balance. IEEE Expert,
1(4):89–89, 1986. doi: 10.1109/MEX.1986.4307016. 2.6

[19] Robert F. Stengel. Optimal Control and Estimation. 2012. 1.1

[20] Russ Tedrake. Underactuated Robotics. 2022. URL http://underactuated.

mit.edu. 1

[21] Guido Tournois, Michele Focchi, Andrea Del Prete, Romeo Orsolino, Darwin G.

50

https://doi.org/10.1177/0278364919849235
http://underactuated.mit.edu
http://underactuated.mit.edu

Bibliography

Caldwell, and Claudio Semini. Online payload identification for quadruped
robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4889–4896. IEEE. ISBN 978-1-5386-2682-5. 4.1

[22] Eric R. Westervelt, Jessy W. Grizzle, and Daniel E. Koditschek. Hybrid zero
dynamics of planar biped walkers. IEEE Transactions on Automatic Control, 48
(1):42–56, 2003. 1

[23] A. M. Wilson, J. C. Lowe, K. Roskilly, P. E. Hudson, K. A. Golabek, and J. W.
McNutt. Locomotion dynamics of hunting in wild cheetahs. Nature, 498(7453):
185–189, June 2013. ISSN 1476-4687. doi: 10.1038/nature12295. 2.1

[24] Alexander W. Winkler, C. Dario Bellicoso, Marco Hutter, and Jonas Buchli.
Gait and Trajectory Optimization for Legged Systems Through Phase-Based
End-Effector Parameterization. IEEE Robotics and Automation Letters, 3(3):
1560–1567, July 2018. 1

51

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Structure

	2 Reaction Wheel Assisted Locomotion for Legged Robots
	2.1 Motivation
	2.2 Background
	2.2.1 Unit Quaternions
	2.2.2 Simplified Quadruped Dynamics
	2.2.3 Gyrostat dynamics
	2.2.4 MIT Quadruped Control Architecture

	2.3 Hardware Design
	2.4 Model And Stability Analysis
	2.4.1 Gyrostat Quadruped Dynamics
	2.4.2 Controllability Under Trotting

	2.5 Convex MPC Formulation
	2.5.1 Linearized Dynamics
	2.5.2 Linear Discrete Trajectory Optimization

	2.6 Swing Leg Control
	2.7 Simulation Results
	2.7.1 Locomotion Disturbance
	2.7.2 Aerial Re-orientation
	2.7.3 Beam Walking
	2.7.4 Hardware Demo

	2.8 Conclusion

	3 Applying Fast Linear Contact-Implicit Model-Predictive Control for Quadruped
	3.1 Motivation
	3.2 Background
	3.2.1 LCP Contact Dynamics
	3.2.2 Path Following Method
	3.2.3 Implicit Function Theorem
	3.2.4 Linearized Contact-Implicit Dynamics
	3.2.5 Trajectory Optimization and Linear Dynamics Solver

	3.3 Quadruped Control Architecture for CI-MPC
	3.4 Simplified Quadruped Model
	3.5 Force Tracking Controller
	3.6 Hardware Implementations and Experiments
	3.6.1 Reference Trajectory Generation
	3.6.2 Julia Interface for Embedded System
	3.6.3 Hardware Implementation Considerations
	3.6.4 Experiment 1: Trotting Policy
	3.6.5 Experiment 2: Box Climbing Policy
	3.6.6 Experiment 3: Wall Leaning Policy

	3.7 Conclusions

	4 A Quadruped Inertial Parameter Estimation Method with Bisection Search and Sinusoidal Excitations
	4.1 Motivation
	4.2 End-effector Bisection Search
	4.3 Trunk Inertial Parameter Estimation With Sinusoidal Excitations
	4.4 Results
	4.4.1 Simulation Results
	4.4.2 Experimental Results

	4.5 Conclusion

	Bibliography

