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Abstract

Conventional robot perception and navigation pipelines are built using
traditional sensors such as RGB cameras, stereo depth sensors and LiDARs.
These sensors scan the entire scene in a fixed and uniform way. In contrast,
programmable light curtains are a recently-invented, resource-efficient
sensor that measure the depth of any vertically-ruled surface (“curtain”)
specified by the user. Compared to LiDARs, light curtains are relatively
inexpensive, significantly faster (45-60 Hz) and capture depth at a much
higher resolution (640 scan lines). However, they require user control.

The main contributions of this thesis are to (1) integrate programmable
light curtains with an existing, state-of-the-art navigation and autonomy
stack, (2) develop algorithms for enabling light curtains to detect and avoid
obstacles for safe navigation, and (3) perform high resolution mapping
and accurate robot localization using intelligent curtain placements. Our
overall system consists of parallelized components that interact naturally
and continuously while running at their own independent speeds. This
work is a step towards full-stack autonomous robot navigation using fast,
high-resolution, controllable sensing. We demonstrate our integration on
a wheelchair robot.
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Chapter 1

Introduction

LiDARs and depth cameras are the most commonly used 3D sensors. But they suffer

from various drawbacks. LiDARs have low resolution. Further, 3D LiDARs are

typically very expensive and they only operate at low frequencies of about 5-20Hz.

Depth cameras have their own set of problems: they only operate accurately at low

ranges, typically only work reliably in indoor settings, are sensitive to ambient lighting,

fast motions and struggle in low texture environments [23]. In contrast, Programmable

light curtains are a recently invented controllable 3D sensor that combines the

advantages of a LiDAR and depth camera [5]. Unlike LiDARs, Programmable light

curtains have high resolution and operate at a frequency of about 45 to 60 Hz. They

are also much cheaper. In comparison to depth cameras, Programmble light curtains

work reliably indoors and more importantly outdoors owing to the ambient light

subtraction module and the use of line laser.

Another key difference between Programmable light curtains and conventional 3D

sensors is the sensing paradigm. Conventional 3D sensors sense the scene globally

and passively. The entire scene is sensed equally in a fixed pattern and at all times.

On the other hand, light curtains are active and local sensors. The sensor outputs

dense depth at user specified locations. While we can obtain high resolution depth

measurements from light curtains, it requires algorithmic work from the user to

intelligently place these curtains based on the task.

The primary contribution of this thesis are to track the motion of moving obstacles

using light curtains and to integrate Programmable light curtains in the autonomy

1



1. Introduction

stack. To that end, in the first chapter, we address the problem of tracking motion

of dynamic obstacles. We tackle this using light curtains and estimate the “Safety

Envelopes” of the scene. Safety Envelopes are defined as imaginary, vertically

ruled surfaces that demarcate the boundary between safe and unsafe regions for

robot navigation. We compute these safety envelopes using current estimates of

objects location obtained by placing random curtains in the scene and forecasting the

estimates of the previous timesteps. We perform extensive qualitative and quantitative

experiments to demonstrate the effectiveness of our method. In the second chapter,

we describe the methodology to integrate light curtains with ORB-SLAM [6] and

AEDE [7]. ORB-SLAM is one of the state of the art SLAM system which supports

monocular, stereo, RGB-D and visual inertial SLAM. We integrate with RGB-D

module where the depth is obtained using Programmabale light curtains. We then use

state estimation from this integration and detections from light curtains to perform

path-planning and low level control using AEDE [7]. This pipeline allows us to

navigate safely in static environments.

2



Chapter 2

Active Safety Envelopes using

Light Curtains with Probabilistic

Guarantees

2.1 Introduction

Consider a robot navigating in an unknown environment. The environment may

contain objects that are arbitrarily distributed, whose motion is haphazard, and that

may enter and leave the environment in an undetermined manner. This situation

is commonly encountered in a variety of robotics tasks such as autonomous driving,

indoor and outdoor robot navigation, mobile robotics, and robot delivery. How do

we ensure that the robot moves safely in this environment and avoids collision with

obstacles whose locations are unknown a priori? What guarantees can we provide

about its perception system being able to discover these obstacles?

Given a LiDAR sensor, the locations of obstacles can be computed from the

captured point cloud; however, LiDARs are typically expensive and low-resolution.

Cameras are cheaper and high-resolution and 2D depth maps of the environment

can be predicted from the images. However, depth estimation from camera images is

prone to errors and does not guarantee safety.

An alternative approach is to use active perception [3, 4], where only the important

3



2. Active Safety Envelopes using Light Curtains with Probabilistic Guarantees

and required parts of the scene are accurately sensed, by actively guiding a controllable

sensor in an intelligent manner. Specifically, a programmable light curtain [1, 5, 43] is

a light-weight controllable sensor that detects objects intersecting any user-specified

2D vertically ruled surface (or a ‘curtain’). Because they use an ordinary rolling

shutter camera, light curtains combine the best of both worlds of passive cameras

(high spatial-temporal resolution and lower cost) and LiDARs (accurate detection

along the 2D curtain and robustness to scattered media like smoke/fog).

In this work, we propose to use light curtains to estimate the “safety envelope” of

a scene. We define the safety envelope as an imaginary, vertically ruled surface that

separates the robot from all obstacles in the scene. The region between the envelope

and the robot is free space and is safe for the robot to occupy without colliding with

any objects. Furthermore, the safety envelope “hugs” the closest object surfaces

to maximize the amount of free space between the robot and the envelope. More

formally, we define a safety envelope as a 1D depth map that is computed from a

full 2D depth map by selecting the closest depth value along each column of the 2D

depth map (ignoring points on the ground or above a maximal height). As long as

the robot never intersects the safety envelope, it is guaranteed to not collide with any

obstacle.

Realizing this concept requires addressing two novel and challenging questions:

First, where do we place the curtains without a priori knowledge of objects in the

scene? The light curtain will only sense the parts of the scene where the curtain

is placed. Second, how do we evolve these curtains over time to capture dynamic

objects? One approach is to place light curtains at random locations in the unknown

scene. Previous work [5] has empirically shown that random light curtains can quickly

discover unknown objects. In this work, we develop a systematic framework to

generate random curtains that respect the physical constraints of the light curtain

device. Importantly, we develop a method that produces theoretical guarantees on

the probability of random curtains (from a given distribution) to detect unknown

objects in the environment and discover the safety envelope. Such safety guarantees

could be used to certify the efficacy of a robot perception system to detect and avoid

obstacles.

Once a part of the safety envelope (such as an object’s surface) is discovered, it

may be inefficient to keep exploring the scene randomly. Instead, a better strategy

4



2. Active Safety Envelopes using Light Curtains with Probabilistic Guarantees

is to forecast how the identified safety envelope will move in the next timestep and

track it by sensing at the predicted location. We achieve this by training a neural

network to forecast the position of the envelope in the next timestep using previous

light curtain measurements. However, it is difficult to provide theoretical guarantees

for such learning-based systems. We overcome this challenge by combining the deep

neural network with random light curtain placements. Using this combination, we

are able to estimate the safety envelope efficiently, while furnishing probabilistic

guarantees for discovering unknown obstacles. Our contributions are:

1. We develop a systematic framework to generate random curtains that respect

the physical constraints of the light curtain device, by extending the “light

curtain constraint graph” introduced in prior work [1] (Sec. 2.4, 2.5.1).

2. We develop a dynamic-programming based approach to produce theoretical

safety guarantees on the probability of random curtains discovering unknown

objects in the environment (Sec. 2.5.2, 2.7.1).

3. We combine random light curtains with a machine learning based forecasting

model to efficiently estimate safety envelopes (Sec. 2.6).

4. We evaluate our approach on (1) a simulated autonomous driving environment,

and (2) a real-world environment with moving pedestrians. We empirically

demonstrate that our approach consistently outperforms multiple baselines and

ablation conditions (Sec. 2.7.2).

2.2 Related Work

2.2.1 Active perception and light curtains

Active perception involves actively controlling a sensor for improved perception [3,

4], such as controlling camera parameters [3], moving a camera to look around

occlusions [9], and next-best view planning [10]. The latter refers to approaches that

select the best sensing action for specific tasks such as object instance classification [14,

15, 40, 45] and 3D reconstruction [13, 22, 24, 42]. Light curtains were introduced

in prior work [5, 43] as an adaptive depth sensor. Prior work has also explored the

use of light curtains. Ancha et al. [1] introduced the light curtain constraint graph

5



2. Active Safety Envelopes using Light Curtains with Probabilistic Guarantees

to compute feasible light curtains. Bartels et al. [5] were the first to empirically

use random curtains to quickly discover objects in a scene. However, there are

several key differences from our work. First, we solve a very different problem: while

Ancha et al. [1] use light curtains to perform active bounding-box object detection in

static scenes, whereas we track the safety envelope of scenes with dynamic objects.

Although we build upon their constraint graph framework, we make several significant

and novel contributions. Our main contribution is the safety analysis of random light

curtains, which uses dynamic programming (DP) to produce theoretical guarantees on

the probability of discovering objects. Providing theoretical guarantees is essential to

guarantee safety, and is typically a hard task for perception systems. These works [1, 5]

do not provide any such guarantees. Additionally, we extend its constraint graph

(that previously encoded only velocity constraints) to also incorporate acceleration

constraints. Finally, we combine the discovery of safety envelopes using random

curtains, with an ML approach that efficiently forecasts and tracks the envelope; this

combination is novel, and we show that our method outperforms other approaches on

this task.

2.2.2 Multi-frame depth estimation

There is a large body of prior work on depth estimation across multiple frames [12,

26, 27, 29, 44, 46, 47]. Liu et al. [26] aggregate per-frame depth estimates across

frames using Bayesian filtering. Matthies et al. [27] use a similar Bayesian approach,

but their method is only applied to controlled scenes and restricted camera motion.

Other works [12, 29, 44, 47] use RNNs for predicting depth maps at each frame. All

of aforementioned works try to predict the full 2D depth map of the environment

from monocular images. To the best of our knowledge, we are the first to use a

controllable sensor to directly estimate the safety envelope of the scene.

2.2.3 Safe navigation

Many approaches for safety guaranteed navigation use 3D sensors like LiDARs [33, 34,

39] and/or cameras [2, 32]. The sensor data is converted to occupancy grids/maps [2,

33, 34]; safety and collision avoidance guarantees are provided for planning under

these representations. Other works use machine learning models to recognize unsafe,

6



2. Active Safety Envelopes using Light Curtains with Probabilistic Guarantees

(a) Working principle (b) Optical schematic (top view) (c) Extended constraint Graph

Figure 2.1: (a, b) Illustration of programmable light curtains adapted from [1]. (a)
An illumination plane (from the projector) and an imaging plane (of the camera)
intersect to produce a light curtain. (b) A controllable galvanometer mirror rotates
synchronously with a rolling shutter camera and images the points of intersection. (c)
Light curtain constraint graph with our proposed extension. Black dots are control
points that can be imaged, and blue ovals are extended nodes that contain two control
points. Any path in this graph (shown in green) is a valid light curtain that satisfies
velocity and acceleration constraints.

out-of-distribution inputs [32] or learning to predict collision probabilites [33, 34].

Our work of estimating the safety envelope using a light curtain is orthogonal to these

works and can leverage those methods for path planning and obstacle avoidance.

2.3 Background on light curtains

Programmable light curtains [1, 5, 43] are a recently developed sensor for controllable

depth sensing. “Light curtains” can be thought of as virtual surfaces placed in the

environment that detect points on objects intersecting this surface. The working

principle is illustrated in Fig. 2.1(a, b). The device sweeps a vertically ruled surface

by rotating a light sheet laser using a galvo-mirror synchronously with the vertically

aligned camera’s rolling shutter. Object points intersecting a vertical line of the ruled

surface are imaged brightly in the corresponding camera column. We denote the

top-down projection of the imaging plane corresponding to the t-th pixel column as a

7



2. Active Safety Envelopes using Light Curtains with Probabilistic Guarantees

“camera ray” Rt. The rolling shutter camera successively activates each image plane

(column), corresponding to rays R1, . . . , RT from left to right, with a time difference

of ∆t between successive activations. The top-down projection of the vertical line

intersecting the t-th imaging plane lies on Rt and will be referred to as a “control

point” Xt.

Input: A light curtain is uniquely defined by where it intersects each camera ray

Rt in the top-down view, i.e. the set of control points (X1, · · · ,XT ), one for each

camera ray. This is the input to the light curtain device. Then, to image Xt on

camera ray Rt, the galvo-mirror is programmed to rotate by an angle of θ(Xt) that is

required for the laser sheet to intersect Rt at Xt. By specifying a control point Xt for

each camera ray, the light curtain device can be made to image any vertically ruled

surface [5, 43].

Output: The light curtain outputs an intensity value for each camera pixel. Since

a light curtain profile is specified by a control point Xt for every camera ray Rt in the

top-down view, we compute the maximum pixel intensity value It of the t-th pixel

column and treat this as the output of the light curtain for the corresponding ray Rt.

2.4 Generating Feasible Light Curtains

The set of realizable curtains depend on the physical constraints imposed by the

real device. The rotating galvo-mirror can operate at a maximum angular velocity

ωmax and a maximum angular acceleration αmax. Let Xt−1,Xt,Xt+1 be the control

points imaged by the light curtain on three consecutive camera rays. These induce

laser angles θ(Xt−1), θ(Xt), θ(Xt+1) respectively. Let Ωt = (θ(Xt) − θ(Xt−1))/∆t

be the angular velocity of the galvo-mirror at Rt. Its angular acceleration at Rt is

(Ωt+1 − Ωt)/∆t = (θ(Xt+1) + θ(Xt−1) − 2 · θ(Xt))/(∆t)2. Then, the light curtain

velocity and acceleration constraints, in terms of the control points Xt, are:

|θ(Xt)− θ(Xt−1)| ≤ ωmax ·∆t 2 ≤ t ≤ T (2.1)

|θ(Xt+1) + θ(Xt−1)− 2θ(Xt)| ≤ αmax · (∆t)2 2 ≤ t < T (2.2)

In order to compute feasible light curtains that satisfy physical constraints, Ancha et al.

[1] introduced a “light curtain constraint graph,” denoted by G. G has two components:

8
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a set of nodes Nt associated with each camera ray and edges between nodes Nt and

Nt+1 on consecutive camera rays. Nodes are designed to store information that fully

captures the state of the galvo-mirror when imaging the ray Rt. An edge exists from

Nt to Nt+1 iff the galvo-mirror is able to transition from the state defined by Nt to

the state defined by Nt+1 without violating any of velocity constraints (Eqn. (2.1)).

Ancha et al. [1] defined the state to be Nt = Xt (i.e. contain only one control

point). But this representation does not ensure that acceleration constraints of

Eqn. 2.2, that depend on three consecutive control points, are satisfied. This can

produce light curtain profiles which require the galvo-mirror to change its angular

velocity more abruptly than its physical torque limits can allow, resulting in hardware

errors. Thus, we extend the definition of a node Nt at t to store control points on the

current ray and the previous ray, as Nt = (Xt−1,Xt) (see Fig. 2.1 (c)). Intuitively, N

contains information about the angular position and velocity of the galvo-mirror. This

allows us to incorporate acceleration constraints by creating an edge between nodes

(Xt−1,Xt) and (Xt,Xt+1), iff Xt−1,Xt,Xt+1 satisfy the velocity and acceleration

constraints defined in Equations (2.1, 2.2). Thus, any path in the extended graph G
represents a feasible light curtain that satisfies both constraints. The acceleration

constraints also serve to limit the increase in the number of nodes with feasible edges,

keeping the graph size manageable.

2.5 Random curtains & theoretical guarantees

Recall that the light curtain will only sense the parts of the scene where the curtain

is placed. Thus we must decide where to place the curtain in order to sense the

scene and estimate the safety envelope. Our proposed method uses a combination of

random curtains as well as learned forecasting to estimate the safety envelope of an

unknown scene. In this section, we show how a random curtain can be sampled from

the extended constraint graph G and how to analytically compute the probability of

a random curtain detecting an obstacle, which helps to probabilistically guarantee

obstacle detection of our overall method.

9
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2.5.1 Sampling random curtains from the constraint graph

First, we need to define a probability distribution over the set of valid curtains in

order to sample from it. We do so by defining, for each node Nt = (Xt−1,Xt), a

transition probability distribution P (Xt+1 | Xt−1,Xt). This denotes the probability of

transitioning from imaging the control points Xt−1,Xt on the previous and current

camera rays to the control pointXt+1 on the next ray. We constrain P (Xt+1 | Xt−1,Xt)

to equal 0 if there is no edge from node (Xt−1,Xt) to node (Xt,Xt+1); an edge will

exist iff the transition Xt−1 → Xt → Xt+1 satisfies the light curtain constraints.

Thus, P (Xt+1 | Xt−1,Xt) defines a probability distribution over the neighbors of Nt

in the constraint graph.

The transition probability distribution enables an algorithm to sequentially gen-

erate a random curtain. We begin by sampling the control points N2 = (X1,X2)

according to an initial probability distribution P (N2). At the t-th iteration, we sample

Xt+1 according to the transition probability distribution Xt+1 ∼ P (Xt+1 | Xt−1,Xt)

and add Xt+1 to the current set of sampled control points. After (T − 1) itera-

tions, this process generates a full random curtain. Pseudo-code for this process

is found in Algorithm 1 in Appendix A.0.1. Our random curtain sampling process

provides the flexibility to design any initial and transition probability distribution.

See Appendix A.0.1 for a discussion on various choices of the transition probability

distribution, where we also provide a theoretical and empirical justification to use

one distribution in particular.

2.5.2 Theoretical guarantees for random curtains

In this section, we first describe a procedure to detect objects in a scene using the

output of a random light curtain placement. Then, we develop a method that runs

dynamic programming on G to analytically compute a random curtain’s probability

of detecting a specific object. This provides probabilistic safety guarantees on how

well a random curtain can discover the safety envelope of an object.

Detection using light curtains: Consider an object in the scene whose visible

surface intersects each camera ray at the positions O1:T . This representation captures

the position, shape and size of the object from the top-down view. Let {Xt}Tt=1 be

the set of control points for a light curtain placed in the scene. The light curtain

10
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will produce an intensity It(Xt, Ot) at each control point Xt that is sampled by the

light curtain device. Note that It is a function of the position of the object as well as

the position of the light curtain; the intensity increases as the distance between Xt

and Ot reduces and is the highest when Xt and Ot coincide. We say that an object

has been detected at control point Xt if the intensity It is above a threshold τ ; the

intensity threshold is used to account for noise in the image. We define a binary

detection variable to indicate whether a detection of an object occurred at position

Ot at control point Xt as Dt(Xt, Ot) = [It(Xt, Ot) > τ ], where [·] is the indicator

function. We declare that an object has been detected by a light curtain if it is

detected on any of its control points. Formally, we define a binary detection variable

to indicate whether a detection of object O1:T occurred at any of its control point

X1:T as D(X1:T , O1:T ) =
∨T

t=1Dt(Xt, Ot), (where
∨

is ‘logical or’ operator). Our

objective is then to compute the detection probability, denoted as P (D(X1:T , O1:T )),

which is the probability that a curtain sampled from G (using the sampling procedure

described in Sec. 2.5.1) will detect the object O1:T ; below we will use the simpler

notation P (D) to denote the detection probability.

Theoretical guarantees using dynamic programming: The simplest method

to compute the detection probability for a given object is to sample a large number

of random curtains and output the average number of curtains that detect the object.

However, a large number of samples would be needed to provide accurate estimates

of the detection probability; further, this procedure is stochastic and the probability

estimate will only be approximate. Instead, we propose utilizing the known structure

of the constraint graph and the transition probabilities; we will apply dynamic

programming to compute the detection probability both efficiently and analytically.

Our analytic method for computing the detection probability proceeds as follows:

we first compute the value of the detection event Dt(Xt, Ot) at every possible control

point Xt that is part of a node in the constraint graph G i.e. we compute whether or

not a curtain placed at Xt is able to detect the object. Given the positions O1:T of an

object, as well as the physical properties of the light curtain device (intrinsics of the

camera and the power, thickness and divergence of the laser beam), we use a light

curtain simulator to compute It(Xt, Ot) using standard raytracing and rendering, for

any arbitrary control point Xt.

To compute the detection probability P (D), we first define the notion of a “sub-
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curtain,” which is a subset of the control points Xt:T which start at ray Rt and ends

on ray RT . We can decompose the overall problem of computing P (D) into simpler

sub-problems by defining the sub-curtain detection probability Pdet(Xt−1,Xt). This

is the probability that any random sub-curtain starting at (Xt−1,Xt) and ending

on the last camera ray RT detects the object O at some point between rays Rt and

RT . Using this definition, we can write the sub-curtain detection probability as

Pdet(Xt−1,Xt) = P (
∨T

t′=t Dt′(Xt′ , Ot′) | Xt−1,Xt).

Note that the overall curtain detection probability can be written in terms of the

sub-curtain detection probabilities of the second ray (the first set of nodes in the

graph) as

P (D) =
∑

X1,X2

Pdet(X1,X2) P (X1,X2). (2.3)

This is the sum of the detection probabilities of a random curtain starting from the

initial nodes Pdet(X1,X2), weighted by the probability of the nodes being sampled

from the initial distribution P (X1,X2). Conveniently, the sub-curtain detection

probabilities satisfy a simple recursive equation:

Pdet(Xt−1,Xt) =
1 if Dt(Xt, Ot) = 1

∑
Xt+1

Pdet(Xt,Xt+1) P (Xt+1 | Xt−1,Xt) otherwise

(2.4)

Intuitively, if the control point Xt is able to detect the object, then the sub-curtain

detection probability is 1 regardless of how the sub-curtain is placed on the later

rays. If not, then the detection probability should be equal to the sum of the sub-

curtain detection probabilities of the nodes the curtain transitions to, weighted by

the transition probabilities.

This recursive relationship can be exploited by successively computing the sub-

curtain detection probabilities from the last ray to the first. The sub-curtain detection

probabilities on the last ray will simply be either 1 or 0, based on whether the object

is detected there or not. After having computed sub-curtain detection probabilities

12
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for all rays between t+ 1 and T , the probabilities for nodes at ray t can be computed

using the above recursive formula (Eqn. 2.4). Finally, after obtaining the probabilities

for nodes on the second ray, the overall curtain detection probability can be computed

as described using Eqn. 2.3. Pseudocode for this method can be found in Algorithm

2 in Appendix A.0.2. A discussion on the computational complexity of the extended

constraint graph G (which contains more nodes and edges than G) can be found in

Appendix A.0.3.

We have created a web-based demo (available on the project website) that computes

the probability of a random curtain detecting an object with a user-specified shape

in the top-down view. It also performs analysis of the detection probability as a

function of the number of light curtains placed. In Section 2.7.1, we use this method

to analyze the detection probability of random curtains as a function of the object

size and number of curtain placements. We compare it against a sampling-based

approach and show that our method gives the same results but with an efficient

analytical computation.

2.6 Learning to forecast safety envelopes

Random curtains can help discover the safety envelope of unknown objects in a scene.

However, once a part of the envelope is discovered, an efficient way to estimate the

safety envelope in future timesteps is to forecast how the envelope will move with

time and track the envelope by placing a new light curtain at the forecasted locations.

In this section, we describe how to train a deep neural network to forecast safety

envelopes and combine them with random curtains.

Problem setup: We call any algorithm that attempts to forecast the safety

envelope as a “forecasting policy”. We assume that a forecasting policy is provided

with the ground truth safety envelope of the scene in the first timestep. In the real

world, this can be done by running one of the less efficient baseline methods once

when the light curtain is first started, until the light curtain is initialized. After

the initialization, the learning-based method is used for more efficient light curtain

tracking. The policy always has access to all previous light curtain measurements. At

every timestep, the policy is required to forecast the location of the safety envelope

for the next timestep. Then, the next light curtain will be placed at the forecasted

13
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location. To leverage the benefits of random curtains that can discover unknown

objects, we place random light curtains while the forecasting method predicts the

safety envelope of the next timestep. We allow random curtains to override the

forecasted curtain: if the random curtain obtains an intensity It on camera ray Rt

that is above a threshold τ , the control point of the forecasted curtain for ray Rt is

immediately updated to that of the random curtain, i.e. the random curtain overrides

the forecasted curtain if the random curtain detects an object. See Appendix A.0.5

for details of our efficient, parallelized implementation of random curtain placement

and forecasting, as well as an analysis of the pipeline’s runtime.

Handcrafted policy: First, we define a simple, hand-specified light curtain

placement policy; this policy will serve both as a baseline and as an input to our

neural network, described below. The policy conservatively forecasts a fixed decrease

in the depth of the safety envelope for ray Rt if the ray’s intensity It is above a

threshold (indicative of the presence of an object), and forecasts a fixed increase in

depth otherwise. By alternating between increasing and decreasing the depth of the

forecasted curtain, this policy can roughly track the safety envelope. However, since

the forecasted changes in depth are hand-defined, it is not designed to handle large

object motions, nor will it accurately converge to the correct depth for stationary

objects.

Neural network forecasting policy: We use a 2D convolutional neural network

to forecast safety envelopes in the next timestep. It takes as input (1) the intensities

It returned by previous k light curtain placements, (2) the positions of the previous

k light curtain placements, and (3) the outputs of the handcrafted policy described

above (this helps avoid local minima during training and provides useful information

to the network). For more details about the architecture of our network, please see

Appendix A.0.4.

We assume access to ground truth safety envelopes at training time. This can

be directly obtained in simulated environments or from auxiliary sensors such as

LiDAR in the real world. Because a light curtain is an active sensor, the data that

it collects depends on the forecasting policy. Thus to train our network, we use

DAgger [36], a widely-used imitation learning algorithm to train a policy with expert

or ground-truth supervision across multiple timesteps. We use the Huber loss [21]

between the predicted and ground truth safety envelopes as our training loss. The
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Huber loss is designed to produce stable gradients while being robust to outliers.

2.7 Experiments

2.7.1 Random curtain analysis

In this section, we use the dynamic programming approach introduced in Section 2.5.2

to analyze the detection probability of random curtains. First, we compare our

dynamic programming method to an alternate approach to compute detection proba-

bilities: Monte Carlo sampling. This method involves sampling a large number of

random curtains and returning the average number of curtains that were able to

detect the object. This produces an unbiased estimate of the single-curtain detection

probability, with a variance based on the number of samples. However, our dynamic

programming approach has multiple advantages over such a sampling-based approach:

1. Dynamic programming produces an analytic estimate of the detection probabil-

ity, whereas sampling produces a stochastic, noisy estimate of the probability.

Analytic estimates are useful for reliably evaluating the safety and robustness

of perception systems.

2. Dynamic programming is significantly more efficient than sampling based

approaches. The former only involves one pass through the constraint graph.

In contrast, a large number of samples may be required to provide a reasonable

estimate of the detection probability.

The two methods are compared in Figure 2.2, which shows the estimated single-

curtain detection probabilities of both methods as a function of the runtime of each

method (the runtimes include pre-processing steps such as raycasting, and hence

are directly comparable between the two methods). Dynamic programming (shown

in red) produces an analytic estimate very efficiently (around 0.8 seconds). For

Monte Carlo sampling, we show the probability estimate for a varying number of

Monte Carlo samples. Each run shows the mean estimate of the detection probability

(blue dots), as well as its corresponding 95%-confidence intervals (blue bars). Using

more samples produces more accurate estimates with smaller confidence intervals,

at the cost of increased runtime. The sampling approach will eventually converge
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to the point estimate output by dynamic programming in the limit of an infinite

number of samples. This experiment shows that dynamic programming produces

precise estimates (i.e. there is zero uncertainty in its estimate) while being orders of

magnitude faster than Monte Carlo sampling.

Next, we investigate how the size of an object affects the detection probability.

We generate objects of varying sizes and run our dynamic programming algorithm to

compute their detection probabilities. Figure 2.3 (a) shows a plot of the detection

probability of a single curtain as a function of the area of the object (averaged over

multiple object orientations). As one would expect, the figure shows that larger

objects are detected with higher probability.

Last, we analyze the detection probability as a function of the number of light

curtains placed. The motivation for using multiple curtains to detect objects is the

following. A single curtain might have a low detection probability p, especially for a

small object. However, we could place multiple (say n) light curtains and report a

successful detection if at least one of the n curtains detects the object. Then, the

probability of detection increases exponentially by 1 − (1 − p)n. We call this the

“multi-curtain” detection probability. Figure 2.3 (b) shows the multi-curtain detection

probabilities for objects from the KITTI [19] dataset, as a function of the time taken

to place those curtains (at 60 Hz). For each object class, we construct a “canonical

object” by averaging the dimensions of all labeled instances of that class in the KITTI

dataset. We can see that larger object classes are detected with a higher probability,

as expected. The figure also shows that the probability increases rapidly with the

number of random curtains for all object classes. Four random curtains (which take

about 67ms to image) are sufficient to detect objects from all classes with at least

90% probability. Note that there is a tradeoff between detection probability and

runtime of multiple curtains; guaranteeing a high probability requires more time for

curtains to be placed.

2.7.2 Estimating safety envelopes

Environments: In this section, we evaluate our approach to estimate safety envelopes

using light curtains, in two environments. First, we use SYNTHIA [53], a large,

simulated dataset containing photorealistic scenes of urban driving scenarios. It
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Figure 2.2: Comparison of our dynamic programming approach with a Monte Carlo
sampling based approach to estimate the probability of a random curtain detecting
an object of size 2m× 2m. The x-axis shows the runtime of the methods (in seconds),
and the y-axis shows estimated detection probability. Our method (in red) is both
exact and fast; it quickly produces a single and precise point estimate. Monte Carlo
sampling (in blue) samples a large number of random curtain and returns the average
number of curtains that intersect the object. The estimate is stochastic and the 95%-
confidence intervals are shown in blue. While the Monte Carlo estimate eventually
converges to the true probability, it is inherently noisy and orders of magnitude slower
than our method.

(a) (b)

Figure 2.3: (a) The probability of random curtains detecting objects of various areas.
For an object of a fixed area, we average the probability across various orientations
of the object. Larger objects are detected with higher probability. (b) We show the
detection probability of canonical objects from classes in the KITTI [19] dataset. For
each object class, we construct a “canonical object” by averaging the dimensions of all
labeled instances of that class in the KITTI dataset. Larger object classes are detected
with a higher probability, as expected. We also show the detection probability as a
function of the number of light curtains placed. The detection probability increases
exponentially with the number of light curtain placements.

17



2. Active Safety Envelopes using Light Curtains with Probabilistic Guarantees

Figure 2.4: Qualitative results in a real-world environment with two walking pedes-
trians, comparing a hand-crafted baseline policy (top-row) with our method (bottom-
row). Left column: contains RGB scene images. Middle column: contains the light
curtain images, where higher intensity means a closer intersection between the light
curtain and the object surfaces (i.e. a better estimation of the safety envelope).
Since our method learns to forecast the safety envelope, it estimates the envelope
more accurately and produces higher light curtain intensity. Right column (top-down
view): the black surfaces are the estimated safety envelopes, and red points show
a LiDAR point cloud (only used to aid visualization). Our forecasting method’s
estimate of the safety envelope hugs the pedestrians more tightly and looks smoother.
The hand-crafted baseline works by continuously moving the curtain back and forth,
creating a jagged profile and preventing it from enveloping objects tightly.

Figure 2.5: We illustrate the benefits of placing random curtains (that come with
probabilistic guarantees of obstacle detection) while estimating safety envelopes,
shown in SYNTHIA [53], a simulated urban driving environment. The blue surfaces
are the estimated safety envelopes, and the green points show regions of high light
curtain intensity (higher intensity corresponds to better estimation). There are three
pedestrians in the scene. (a) Our forecasting model fails to locate two pedestrians
(red circles). (b) The first random curtain leads to the discovery of one pedestrian
(yellow). (c) The second random curtain helps discover the other pedestrian (second
yellow circle). The safety envelope of all pedestrians has now been detected.
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Figure 2.6: Comparison of the safety envelope estimation between a hand-crafted
baseline policy (top row) and a trained neural network (bottom row), in three
simulated urban driving scenes from the SYNTHIA [53] dataset. For each scene
and method, the left column shows the intensity image of the light curtain; higher
intensities correspond to closer intersection of the light curtain and object surfaces,
implying better estimation of the safety envelope. The right column shows the light
curtain profile in the scene. The trained network estimates the safety envelopes more
accurately than the handcrafted baseline policy.

Huber loss
RMSE
Linear

RMSE
Log

RMSE
Log Scale-Inv.

Absolute
Relative Diff.

Squared
Relative Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
Handcrafted baseline 0.1145 1.9279 0.1522 0.0721 0.1345 1.0731 0.6847 0.7765 0.8022
Random curtain only 0.1484 2.2708 0.1953 0.0852 0.1698 1.2280 0.6066 0.7392 0.7860

1D-CNN 0.0896 1.7124 0.1372 0.0731 0.1101 0.7076 0.7159 0.7900 0.8138
1D-GNN 0.1074 1.6763 0.1377 0.0669 0.1256 0.8916 0.7081 0.7827 0.8037

Ours w/o Random curtains 0.1220 2.0332 0.1724 0.0888 0.1411 0.9070 0.6752 0.7450 0.7852
Ours w/o Forecasting 0.0960 1.7495 0.1428 0.0741 0.1163 0.6815 0.7010 0.7742 0.8024

Ours w/o Baseline input 0.0949 1.8569 0.1600 0.0910 0.1148 0.7315 0.7082 0.7740 0.7967
Ours 0.0567 1.4574 0.1146 0.0655 0.0760 0.3662 0.7419 0.8035 0.8211

Table 2.1: Performance of safety envelope estimation on the SYNTHIA [53] urban
driving dataset under various metrics.

Huber loss
RMSE
Linear

RMSE
Log

RMSE
Log Scale-Inv.

Absolute
Relative Diff.

Squared
Relative Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
Slow

Walking
Handcrafted baseline 0.0997 0.9908 0.1881 0.1015 0.1371 0.2267 0.8336 0.9369 0.9760

Ours 0.0630 0.9115 0.1751 0.1083 0.0909 0.1658 0.8660 0.9228 0.9694

Fast
Walking

Handcrafted baseline 0.1473 1.2425 0.2475 0.1508 0.1824 0.3229 0.6839 0.8774 0.9702
Ours 0.0832 0.9185 0.1870 0.1201 0.1132 0.2093 0.8575 0.9165 0.9610

Table 2.2: Performance of safety envelope estimation in a real-world dataset with
moving pedestrians. The environment consisted of two people walking in both
back-and-forth and sideways motions.
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consists of 191 training scenes (∼ 96K frames) and 97 test scenes (∼ 45K) frames

and provides ground truth depth maps. Second, we perform safety envelope estimation

in a real-world environment with moving pedestrians. These scenes consist of two

people walking in front of the device in complicated, overlapping trajectories. We

perform evaluations in two settings: a “Slow Walking” setting, and a harder “Fast

Walking” setting where forecasting the motion of the safety envelope is naturally more

challenging. We use an Ouster OS2 128-beam LiDAR (and ground-truth depth maps

for the SYNTHIA dataset) to compute ground truth safety envelopes for training and

evaluation. We evaluate policies over a horizon of 50 timesteps in both environments.

Evaluation metrics: Safety envelopes can be thought of as 1D depth maps

computed from a full 2D depth map, since the safety envelope is constrained to be

a vertically ruled surface that always “hugs” the closest obstacle. Thus, the safety

curtain can be computed by selecting the closest depth value along each column of a

2D depth map (ignoring points on the ground or above a maximal height). Because

of the relationship between the safety envelope and the depth map, we evaluate our

method using a variety of standard metrics from the single-frame depth estimation

literature [16, 52]. The metrics are averaged over multiple timesteps to evaluate the

policy’s performance across time.

Baselines: In Table 2.1, we compare our method to the hand-crafted policy

described in Sec. 2.6. A ‘random curtain only’ baseline tests the performance of

random curtains for safety envelope estimation in the absence of any forecasting

policy. We also compare our method against two other neural network architectures

that forecast safety envelopes: a CNN that performs 1D convolutions, and a graph

neural network with nodes corresponding to camera rays. Please see Appendix A.0.4

for more details about their network architectures. See Table 2.1 for a comparison

of our method with the baselines in the SYNTHIA environment, and Table 2.2

for the real-world environment. The arrows below each metric in the second row

denote whether a higher value (↑) or lower value (↓) is better. In both environments

(simulated and real), our method outperforms the baselines on most metrics, often by

a significant margin.

Ablations: We also perform multiple ablation experiments. First, we train

and evaluate our without using random curtains (Tab. 2.1, “Ours w/o Random

Curtains”). This reduces the performance by a significant margins, suggesting that it
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is crucial to combine forecasting with random curtains for increased robustness. See

Appendix A.0.6 for more experiments performed without using random curtains for all

the other baselines and ablation conditions. Second, we perform an ablation in which

we train our model without forecasting to the next timestep i.e. the network is only

trained to predict the safety envelope of the current timestep (Tab. 2.1, “Ours w/o

Forecasting”). This leads to a drop in performance, suggesting that it is important to

place light curtains at the locations where the safety envelope is expected to move to,

not where it currently is. Finally, we modify our method to not take the output of

the hand-crafted policy as input (Tab. 2.1, “Ours w/o Baseline input”). The drop in

performance shows that providing the neural network access to another policy that

performs reasonably well helps with training and improves performance.

Qualitative anaysis: We perform qualitative analysis of our method in the

real-world environment with moving pedestrians in Fig. 2.4, and in the SYNTHIA [53]

simulated environment in Figs. 2.5, 2.6. We compare our method against the hand-

crafted baseline, as well as show how placing random curtains can discover objects

and improve the estimation of safety envelopes. Please see captions for more details.

2.8 Conclusion

In this work, we develop a method to estimate the safety envelope of a scene,

which is a hypothetical vertical surface that separates a robot from all obstacles in

the environment. We use light curtains, an actively controllable, resource-efficient

sensor to directly estimate the safety envelope. We describe a method to generate

random curtains that respect the physical constraints of the device, in order to

quickly discover the safety envelope of an unknown object. Importantly, we develop a

dynamic-programming based approach to produce theoretical safety guarantees on the

probability of random curtains detecting objects in the scene. We combine this method

with a machine-learning based model that forecasts the motion of already-discovered

safety envelopes to efficiently track them. This enables our robot perception system

to accurately estimate safety envelopes, while our probabilistic guarantees help certify

its accuracy and safety towards obstacle detection and avoidance.
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Chapter 3

Programmable light curtains for

Simultaneous Localization,

Mapping, and Navigation

3.1 Motivation

We aim to develop an autonomous navigation robot using the relatively low cost

sensors ”Programmable Light Curtains” 3.1. We first look at what are the components

required for autonomy. To that end, one of the most fundamental component would

be a ”Simultaneous Localization and Mapping” system. A robot should know where

it is (localization) in its environment (mapping) to estimate velocity of other objects,

avoid obstacles, safely plan its path and reach a goal destination. To equip our robot

with a SLAM system we integrated light curtains [5] with ORB-SLAM [6].

3.2 Background on Visual SLAM

Visual SLAM uses a camera to estimate the pose of the robot and the environment

map by tracking the changes in structure of the environment induced by the motion

of the robot. Visual SLAM methods are gaining popularity due to relatively cheap

cost of the cameras as opposed to a LIDAR. There have been works which alleviate
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Figure 3.1: (a) Programmable Light curtains [5], (b) A remote controlled wheelchair
outfitted with Programmable light curtains.

the problem of using expensive LIDARs by making a custom 3D LIDAR using a

2-axis one [48] but this requires significant engineering effort. Further, by fusing the

data from other sensors such as IMUs and depth cameras with the on-board RGB

camera, the accuracy of Visual SLAM is approaching to that of the LIDARs.

There are two main approaches to Visual SLAM that exists in literature: Direct

visual SLAM [28], [17], [11] and Indirect visual SLAM [6], [31], [30]. The major

difference between these two methods stems from the way they handle the input

images. Indirect methods abstract out the input images by first detecting features

such as corners and then completely discarding the images. The motion of the

robot and sparse map of the environment is generated using re-projection errors.

Whereas, direct methods operate on the entire images without using any abstraction.

They directly minimize the photometric errors (intensity difference) and generate

a semi-dense map of the environment by using filtering of stereo pairs. The speed

of operation of indirect methods is usually faster than that of the direct methods

because of using feature abstraction and since we wanted our system to operate in

real time we choose to use a state of the art Indirect method: ORB-SLAM [6].

One of the major problem of Visual SLAM systems estimating the motion of the

robot and environment map just using on-board monocular camera is that of scale
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ambiguity. In the literature, this problem is resolved by using depth sensors such as

LIDARs, RGBD cameras [51], [49] and Inertial Measurement Unit (IMU) [18] [38].

RGB-D cameras though can resolve scale ambiguity are limited in their range of

operation, have low precision and struggle in low texture and over-saturated environ-

ments. Whereas, IMU readings are not reliable when the robot is moving at constant

velocity. Further, IMU sensors have high bias which needs to be estimated periodi-

cally adding extra computation cost albeit small [18]. To solve the problem of scale

ambiguity in our system, we use a novel sensor: Programmable Light Curtains [5], 2.3.

Programmable Light curtains [5] are a controllable depth sensor that work reliably

indoors and outdoors but comes with additional challenge of providing the area of

interest to sense and compute depth. We discuss various techniques to specify this

area of interest in the Methods section 3.4.

3.3 Background on ORB-SLAM

ORB-SLAM [6] is one of the state of the art visual SLAM system. It supports visual

and visual-inertial localization and mapping with Monocular, RGB-D, and stereo

cameras. Further, it also supports relocalization and multi-map reuse. The system

is based on the framework of Pose-Graph optimization [20], [25] and uses ORB-

features [37] throughout its pipeline for tasks such as correspondence establishment,

place-recognition, loop detection etc.

In this section, we give overview of the ORB-SLAM system (for full details please

refer to [6]). The basic pipeline of the system consists of three threads running in

parallel: Motion Estimation, Local Mapping and Loop Closure. Motion Estimation

thread is responsible for predicting and refining the pose of the camera. Local Mapping

thread is responsible for generating the outlier-free sparse map of the environment.

Loop closure thread continuously works on detecting loops in the environment and

performs a full bundle adjustment to refine poses and the map if necessary. One of the

highlights of the system is, all the three threads use different length sliding window

bundle adjustment [41] method for estimating the desired quantities. Further, to

efficiently get the keyframes used in pose-graph optimization and bundle adjustment it

maintains an efficient minimum-spanning tree data-structure called ”essential graph”.

This provides efficient lookup and real time operation.
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3.4 Method

In this section, we first describe the challenge involved in initialization of the ORB-

SLAM system using a local depth sensor (Programmable Light Curtains [5]) and

how do we resolve it. Next, we outline various techniques we used to place the light

curtains for successive frames leveraging the insights gained from understanding of

how ORB-SLAM uses depth information.

3.4.1 Initialization using Planar Sweeps

ORB-SLAM [6] assumes a global sensing paradigm. The initial map of the environment

is directly initialized with the first frame received from a RGB-D camera. Then for

each successive frames, the camera pose is computed by minimizing the reprojection

error, between the detected ORB features and the corresponding map points, in a

bundle adjustment framework. To provide a robust estimate of the pose, there should

be sufficient number of correspondences. This implicitly requires the initial map to

be dense. To this end, to successfully integrate a local depth sensor – Programmable

Light curtains – into the pipeline we perform volumetric planar sweeps. Specifically,

we design a planar curtain and place it at small increments of depths between a

minimum and a maximum depth range. Let the set of all the accumulated curtains

after this procedure be {(Pi, Qi)}Ni=1 and, where each Pi is a 3-channel and each Qi is

a 1-channel H ×W image. Each pixel Pi contains the 3D location of the detected

point and each pixel in Qi is the corresponding intensity. From this, we generate the

dense map by 3.1. The resulting dense map is visualized in Figure 3.2

d(u, v) = Pf(Q(u,v))(u, v) u ∈ {1, · · ·,W}, v ∈ {1, · · ·, H} (3.1)

f(Q(u, v)) = argmaxi∈(1,N)Qi(u, v) (3.2)
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Figure 3.2: Result of dense map reconstruction using volumetric planar sweep. The
colored pointcloud is the reconstructed dense map using planar sweep. It is overlayed
on the ground truth pointcloud of a matterport house from [7]

3.4.2 Different Curtain Policies explored for providing

depth in each frame.

Fixed depth planar curtains policy: This is one of the simplest placement

strategies. Here, we just use a planar curtain which senses an area at a fixed distance

from the current position of the robot. More formally, for each of the control point

2.3 we just specify a constant range to sense.

Random Curtains: The fixed depth planar curtains senses quite a small part of the

scene at any given time. So to improve the coverage of the scene, another strategy

that can be used is placing random curtains. Since, light curtains have velocity and

acceleration constraints, we can only specify ranges along adjacent control points

which satisfy these constraints. The procedure to generate such feasible random

curtains is described in 2.5.1. Further, to avoid traversing the constraint graph each

time we wish to generate a random curtain we pre-compute a lot of feasible random

curtains offline.

Planar Sweeps poilcy: Even though random curtains provide good coverage of

the scene and it is very hard for the object to avoid getting detected by it, they

miss a lot of fine grained details of the objects shape. So to provide good coverage
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Figure 3.3: Results of ORB-SLAM with all the curtain placement policies are
visualized in matterport house from [7]. Ground truth trajectory (Pink) and estimated
trajectory (Blue) are overlayed on the reconstructed map. From figure we observe
that the map reconstructed map from hugging policy is more dense and detailed
as compared to others. We also observe that since the commanded ground truth
trajectory does not contain a lot of large rotations, the performance of all the policies
in estimating the pose of the robot is similar.

and also preserve find grained details for reconstruction of the environment map we

adopt planar sweeps policy. As opposed to fixed depth planar curtains policy, here

we continuously sweep a planar curtain within a volume specified with respect to the

current position of the robot.

Hugging policy: In this policy, our goal is to place a curtain which intersects with

all the objects in the scene. With the correct placement of such a curtain we would

get a dense depth map. For this, we utilize particle filter based probabilistic dynamic

occupancy grids. Essentially, we take the current state of the dynamic occupancy

grids and perform ray casting to compute the estimated range for each of the control

point.

3.5 Experiments and Results

Simulation Environment: We adapt AEDE [7] for qualitatively and quantitatively

assessing our Programmable Light Curtains based Simultaneous localization and

mapping system. We add the capability to simulate the output of the light curtains

to AEDE using a simulated depth camera.
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Figure 3.4: The results of all the curtain placement policies on a different trajectory
are visualized. The commanded trajectory contains more number of large rotations
as compared to trajectory in 3.3. As we see from the figure, only hugging policy
successfully estimates the pose of the robot.

We evaluate all the curtain placement strategies described in 3.4 on a matterport

house environment on two trajectories (Matterport 1 and Matterport 2) and an out-

door forest environment. For quantitative evaluation, we report Absolute Trajectory

Error (ATE) over the entire trajectory as is standard in the SLAM literature [6] for

Matterport 1 and Forest environment. For Matterport 2, since most of the policies fail

to finish we report the number of successes of each policy over 5 runs. The qualitative

results are shown in Figure 3.3 and Figure 3.4. As we can see from the figures, the

hugging policy generates the most dense map of the environment. Further, we also

observe that it is the only policy which succeeds in faithfully estimating the pose of

the robot when the required path undergoes large in plane rotations 3.4, 3.2. This

indicates that providing more depth is useful in environments where the robot has to

undergo large rotations to reach the goal point. We also note that, for paths that do

not require the robot to undergo large in plane rotations the performance of all the

polices for estimating the pose of the robot is statistically similar 3.1.

Real World Integration: For testing out the performance of light curtains with

ORB-SLAM in the real world, we outfitted a remote controlled wheelchair with light

curtains 3.1. Here we show a qualitative result of the reconstruction of a corridoor

environment 3.5. From the figure we see, we are able to faithfully reconstruct the

scene.
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Figure 3.5: Reconstruction result of a corridoor environment.(a) Reconstructed
using planar sweeps, (b) Reconstructed using hugging policy. The pointclouds are
reconstructed by registering detections from light curtains to a common frame using
odometry estimates from ORB-SLAM with light curtains.

Matterport 1 Forest

Fixed Depth Planar 0.132 ± 0.045 0.222 ± 0.127
Random curtains 0.206 ± 0.188 0.273 ± 0.261
Planar sweeps 0.181 ± 0.07 0.222 ± 0.167
Hugging Policy 0.167 ± 0.067 0.241 ± 0.171

Table 3.1: Performance of ORB-SLAM [6] with Light curtains. The absolute trajectory
error (ATE) in meters is average over three runs in each of the environments

Matterport 2

Fixed Depth Planar 0/5
Random curtains 1/5
Planar sweeps 0/5
Hugging Policy 3/5

Table 3.2: Performance of ORB-SLAM [6] with Light curtains on a trajectory that
contains many large rotation. Here we report success (estimating pose over the entire
trajectory) over 5 runs.
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3.6 Obstacle Avoidance and Path-Planning with

light curtains

The other important component to enable autonomous navigation is equipping the

robot with obstacle avoidance and path planning module. In this section we describe

the process of integrating the estimated odometry and map from light curtains with

the autonomy stack of [7].

3.6.1 Integration with Autonomous Exploration

Development environment [7]

Terrain Analysis: The main function of the terrain analysis module is to generate a

terrain traversability map. It takes as input the current pose of the robot (odometry)

and a 3D pointcloud and maintains a volumetric traversability grid around the current

position of the robot. This grid is used by successive modules to plan a collision free

path to the goal.

In our case, odometry is given by the integration of light curtains with ORB-SLAM

as described in the previous sections 3.4. The input 3D pointcloud is computed from

the detected points obtained by placing curtains using hugging policy 3.4.2. We use

hugging policy since we found to be most robust in our experiments 3.2, 3.4.

Local Planner: The local planner is based on [50]. The input to this module is

terrain traversability map and motion primitives. Essentially, motion primitives are

the collection of pre-computed paths. Next, we give overview of the working of the

local planner. First, terrain traversability map is filtered and cropped to generate the

obstacle map for the local planner. Based on this obstacle map, motion primitives

are filtered to only contain paths that do not collide with any obstacle. From among

the remaining collision free paths, the most likely path to reach the goal is chosen.

The chosen path is then used by a Path Follower module to generate the command

velocities for the motors. The block diagram for the entire process is visualized in 3.6.

Experiments: We tested our integration in an indoor scene on two trajectories. The

results are visualized in Figures 3.7.
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Figure 3.6: Block diagram for integration with [7] is visualized. The input point
cloud and odometry to the system is computed from light curtains

Figure 3.7: Results of integrating light curtains detections and state-estimation with
AEDE [7]. (a), (b), (c) visualizes the robot motion at the beginning, middle and the
end. Colored pointcloud represents the accumulated terrain map over time. Pink
pointcloud shows the free paths. The free paths safely avoid the obstacles.
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3.7 Limitations and Future Work

Even though, the hugging policy outperforms other policies when the robot undergoes

sharp turns, its success rate is about 60%. Performance under these hard conditions

could potentially be boosted by the use of Inertial Measurement Unit. We submit

this as one of the future works. Further, we also propose to quantitatively evaluate

the accuracy of the reconstructed map by all policies. The system is currently

quantitatively evaluated on an indoor environment and an outdoor environment. To

further test the robustness of the system we propose to test it on multiple houses

from Matterport [8] dataset.

3.8 Conclusion

In this work, we describe the procedure to integrate Programmable Light curtains to

enable autonomous navigation on a mobile robot. We first integrate light curtains

with state of the art SLAM system ORB-SLAM. We outline the issues related to

initialization of odometry with a sparse pointcloud obtained from light curtains.

Importantly, we describe the method of using volumetric planar sweeps to resolve

this issue. We then outline different policies that we used to get depth for each

frame. We test out these policies in different environments and show qualitatively and

quantitatively that reconstructed map and odometry obtained from using hugging

policies are more robust. Lastly, we combine the odometry and environment pointcloud

computed using light curtains with the local planning module of [7] to perform

autonomous navigation.
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Conclusions

In conclusions, we first address the problem of tracking the motion of dynamic

objects. To reliably track complicated motions of dynamic actors we introduce

“Safety Envelopes” and compute them using light curtains. Safety Envelopes are

imaginary surfaces that mark the boundary between occupied and unoccupied regions.

A robot is guaranteed to not collide with any object in the scene as long as it

does intersect with the Safety Envelopes. We use feasible random curtains and

previously placed Safety Envelopes in a deep learning based framework to efficiently

forecast the Safety Envelope of the scene. Further, we rigorously show the efficacy of

random curtains to detect objects in the scene. This framework enables robust robot

perception which generalizes to arbitrary number of dynamic objects.

In the second part of the thesis, we work towards enabling full stack autonomous

navigation using light curtains. We expound on the process of integrating light curtains

with a state of art SLAM method: ORB-SLAM [6]. ORB-SLAM is sensitive to

initialization and fails to estimate the ego-motion if initialized with sparse pointcloud.

To provide dense pointcloud for initialization we use planar sweeps. We then introduce

different polices that are used to provide depth for successive frames. Here we observe

that for mostly linear robot motion the performance of all the policies is statistically

similar. But for motions involving large number of sharp turns, the so called “hugging

policy” outperforms others. Finally, to enable autonomous navigation, we integrate

light curtains assisted SLAM and depth detections with the path planning and low

level control pipeline of AEDE [7].
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Appendix

A.0.1 Transition distributions for sampling random curtains

We first describe, in Algorithm ?? the procedure to sample a random curtain from

the extended constraint graph G by successively generating it using a transition

probability function P (Xt+1 | Xt−1,Xt). The only constraint on P (Xt+1 | Xt−1,Xt)

is that it must equal to 0 if Xt−1,Xt,Xt+1 do not satisfy both the velocity and

acceleration constraints of Equations (2.1, 2.2).

We initialize by sampling a location N2 = (X1,X2) according to an initial

sampling distribution. At the (t − 1)-th iteration, we will have sampled the t − 1

nodes (N2, . . . ,Nt) corresponding to the first t control points (X1, . . . ,Xt) of the

random curtain. At the t-th iteration, we sample Xt+1 according to the transition

probability distribution Xt+1 ∼ P (Xt+1 | Xt−1,Xt) and add Xt+1 to the current set

of control points. After all iterations are over, this algorithm generates a complete

random curtain.

The above procedure to sample random curtain provides the flexibility to design

any initial and transition probability distribution functions. Then, what are good

candidate distributions? We use random curtains to detect the presence of objects in

the scene whose location is unknown. Hence, the objective is to find the light curtian

sampling distribution that maximizes the probability of detection of an object that

might be placed at any arbitrary location in a scene. This objective will be achieved

by random curtains that cover a large area. We now discuss a few sampling methods
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Algorithm 1: Sampling a random curtain from G
/* Inputs */

G ← extended constraint graph
P (Xt+1 | Xt−1,Xt)← transition prob. distribution
P ((X1,X2))← initial probability distribution

/* Progressively generate curtain */

Curtain ← {}

/* Initialization */

Sample (X1,X2) ∼ P ((X1,X2))
Curtain ← {X1,X2}

/* Iteration */

for t = 2 to T − 1 do
Xt+1 ∼ P (Xt+1 | Xt−1,Xt)
Curtain ← Curtain ∪ {Xt+1}

return Curtain

and qualitatively evaluate them in terms of the area covered by random curtains

generated from them.

1. Uniform neighbor sampling: Perhaps the simplest transition probability

distribution P (Xt+1 | Xt−1,Xt) for a given extended node (Xt−1,Xt) is to select a

neighboring control point Xt+1 (that is connected by a valid edge originating from

the node) with uniform probability. However, since the distribution does not take

into account the physical locations of the current control point, it does not explicitly

try to maximize coverage. To illustrate this, consider a random curtain that starts

close to light curtain device. If it were to maximize coverage, the galvanometer

would need to rotate so that the light curtain is placed farther from the device on

subsequent camera rays. However, since its neighboring nodes are selected at random,

the sampled locations on the next ray are equally likely to be nearer to the device

than farther away from it. This can produce random curtains as shown in Fig. A.1 (a).

2. Uniform linear setpoint sampling: a more principled way to sample
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(a) Uniform sampling of neighbors(b) Uniform linear sampling of set-
points

(c) Uniform area sampling of set-
points

Figure A.1: Qualitative comparision of the coverage of random light curtains under
different transition probability distributions. Sampled random curtains are shown
in red. (a) Uniform neighbor sampling : for a given node, its neighbors on the next
camera ray are sampled uniformly at random. This can produce random curtains
that are at a constant distance away from the device. (b) Uniform linear setpoint
sampling : for every camera ray, a setpoint distance r ∈ [0, rmax] is sampled uniformly
at random. Then the neighbor closest to the setpoint is chosen. This has significantly
higher coverage, but is biased towards sampling locations close to the device. (c)
Uniform area setpoint sampling : for every camera ray, a setpoint distance r ∈ [0, rmax]
is sampled with a probability proportional to r. This assigns a higher probability to
a larger r, and corresponds to uniform area sampling. Then the neighbor closest to
the setpoint is chosen. This method qualitatively exhibits the best coverage.

neighbors is inspired by rapidly-exploring random trees (RRTs), which are designed

to quickly explore and cover a given space. During tree expansion, an RRT first

randomly samples a setpoint location, and selects the vertex that is closest to that

location. We adopt a similar procedure. For any current node (Xt−1,Xt), we first

sample a setpoint distance r ∈ [0, rmax] uniformly at random on a line along the

camera ray. The probability density of r is a constant and equal to P (r) = 1/rmax.

Then, we select a valid neighbor Xt+1 that is closest to this setpoint location among

all valid neighbors. Let us again consider the situation described in the previous

approach, where the current node is located close to the light curtain device. When a

setpoint is sampled uniformly along the next camera ray, there is high probability that

it will correspond to a location that is farther away from the current node. Hence, the

neighboring location Xt+1 that is chosen on the next ray will likely lie away from the

device as well. A random curtain sample generated from this distribution is shown in
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Fig. A.1 (b). It tends to alternate between traversing near regions and far regions of

the space in front of the curtain, covering a larger area than the previous sampling

approach.

3. Uniform area setpoint sampling: We use the setpoint sampling approach

described above, but revisit how the setpoint itself is sampled. Previously, the

setpoint r ∈ [0, rmax] was sampled uniformly at random on the line along the ray, with

P (r) = 1/rmax. Now, we propose an alternate sampling distribution and provide some

theoretical justification. Since we want to uniformly cover the area in front of the

light curtain device, consider the following experiment. Let us sample a point (x, y)

uniformly from the area within a circle of radius rmax (or equivalently, within any

sector of that circle). Then the cumulative distribution function of r =
√

x2 + y2 is

P (r < r′) = πr′2/πr2max (area of the smaller circle divided by the area of entire circle),

which implies that the probability density function of r is equal to P (r) = 2r/r2max.

This suggests that we must assign a higher probability to a larger r (proportional

to r), since a larger area exists away from the center of the circle than near the

center. Hence, we sample the setpoint r from P (r) = 2r/r2max, by first sampling

s ∼ Uniform(0, r2max) and then setting r =
√
s. Finally, we select the valid neighbor

Xt+1 on the next ray that is closest to this setpoint. Since this method is motivated

by sampling areas rather than sampling along a line, we call this approach “area

setpoint sampling”. An example curtain sampled using this approach is visualized in

Fig. A.1 (c), which generally exhibits the best coverage among all methods. We use

this method to sample random light curtains for all experiments in this paper.

A.0.2 Dynamic programming for computing detection

probability

To compute the quantity P (D), we first decompose the overall problem into smaller

subproblems by defining the sub-curtain detection probability Pdet(Xt−1,Xt) =

P (
∨T

t′=tDt | Xt−1,Xt). This is the probability that a random curtain starting

on the extended node (Xt−1,Xt) and ending on the last camera ray, detects the

object O between rays Rt and RT . Note that the overall detection probability can

be written in terms of the sub-curtain detection probabilities of the second ray as
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P (D) =
∑

S2
P (X1,X2) · Pdet(X1,X2). Then we iterate over camera rays from RT

to R2. The node detection probabilities on the last ray will simply be either 1 or 0,

based on whether the object is detected at the node or not. After having computed

node detection probabilities for all rays between t + 1 and T , the probabilities for

nodes at ray t can be computed using a recursive formula. Finally, after obtaining

the probabilities for nodes on the initial rays, the overall detection probabilities can

be computed as described previously.

A.0.3 Computational complexity of the extended constraint

graph

In this section, we discuss the computational complexity associated with the extended

constraint graph. Let K be the number of discretized control points per camera ray

in the constraint graph, and let T be the number of camera rays.

Constraint graph size: in the original constraint graph G of Ancha et al. [1],

since a node Nt = Xt contains only one control point, there can be O(K) nodes per

camera ray and O(K2) edges between consecutive camera rays. This means that

there are O(TK) nodes and O(TK2) edges in the graph.

However, in the extended constraint graph G, each node Nt = (Xt−1,Xt) contains

a pair of control points. Hence, there can be up to O(K2) nodes per camera ray and

O(K4) edges between consecutive camera rays! This implies that the total nodes and

edges in the graph can be up to O(TK2) and O(TK4) respectively.

Dynamic programming: dynamic programming involves visiting each node

and each edge in the graph once. Therefore, the worst-case computation time of

dynamic programming in the extended constraint graph, namely O(TK4), might

seem prohibitively large at first. However, the additional acceleration constraints in

G can significantly limit the increase in the number of nodes and edges. Additionally,

we perform graph pruning as a post-processing step, to remove all nodes in the

graph that do not have any edges. Since the topology of the constraint graph is

fixed, the graph creation and pruning steps can be done offline and only once. These

optimizations enable our dynamic programming procedure to be very efficient, as

shown in Sec. 2.7.1. That being said, any slow down in dynamic programming is

generally acceptable because it is only used for offline probabilistic analysis.
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Random curtain generation: random curtains are placed by our online method.

Fortunately, generating random curtains from the constraint graph is very fast. It

involves a single forward pass (random walk) through the graph, visiting exactly

one node per ray. It also involves parsing each visited node’s transition probability

distribution vector, whose length is equal to the number of edges of that node. Since

both G and G can have at most K edges per node, the runtime of generating a random

curtain is O(TK) (for both G and G). In practice, a large number of random curtains

can be precomputed offline.

A.0.4 Network architectures and training details

In this section, we describe in detail the network architectures used by our main

method, as well as various baseline models.

2D-CNN

The 2D-CNN architecture we use to forecast safety envelopes is shown in Fig. A.2. It

takes as input the previous k light curtain outputs. These consists of the intensities

of the light curtain per camera ray I1:T , as well as the control points of the curtain

that was placed i.e. X1:T . Each light curtain output (X1:T , I1:T ) is converted into

a polar occupancy map. A polar occupancy map is a T × L image, where the t-th

column of the image corresponds to the camera ray Rt. Each ray is binned into L

uniformly spaced locations; although L could be set to the number of control points

per camera ray in the light curtain constraint graph, it is not required. Each column

of the occupancy map has at-most one non-zero cell value. Given Xt, It, the cell

on the t-th column that lies closest to Xt is assigned the value It. We generate k

such top-down polar occupancy maps encoding intensities. We generate k more such

polar occupancy maps, but just assigning binary values to encode the control points

of the light curtain. Finally, another polar occupancy map is generated using the

forecast of the safety envelope from the handcrafted baseline policy. The 2k + 1

maps are fed as input to the 2D-CNN. We use k = 5 in all our experiments. The

input is transformed through a sequence of 2D convolutions; the convolutional layers

are arranged in a manner similar to the the U-Net [35] architecture. This involves

skip connections between downsampled and upsampled layers with the same spatial
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Figure A.2: The network architecture of the 2D CNN model used for safety envelope
forecasting. It takes as input the previous k light curtain outputs, and converts them
into top-down polar occupancy maps. Each column of the image is assigned to a
camera ray, and each row is treated as a binned location. It also takes the prediction
of the hand-crafted baseline as additional input. The input is transformed through
a series of 2D convolution layers, arranged in a manner similar to the U-Net [35]
architecture. This involves skip connections between downsampled and upsampled
layers with the same spatial size. The output of the U-Net is a 2D image. This is a
fully-convolutional architecture, and the spatial dimensions of the input and output
are equal. Column-wise soft-max is then applied to the output to transform it to a
probability distribution per column. A value Xt is sampled per column to produce
the profile of the forecasted safety envelope.

size. The output of the U-Net is a 2D image. The U-Net is a fully convolutional

architecture, and the spatial size of the output is equal to the spatial size of the input.

Column-wise soft-max is then applied to transform the output into T categorical

probability distributions, one per column. We sample a cell from the t-th distribution,

and the location of that cell in the top-down view is interpreted as the t-th control

point. This produces a forecasted safety envelope.

1D-CNN

We use a 1D-CNN as a baseline network architecture. The 1D-CNN takes as input

the previous k light curtain placements X1:T , and treats it as a 3-channel 1-D image

(the three channels being the x-coordinate, the z-coordinate, and the range
√
x2 + z2).
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It also takes the previous k intensity outputs I1:T , and treats them as 1-dimensional

vectors. It also takes as input the forecasted safety envelope from the hand-crafted

baseline. The overall input to the 1D-CNN is a 4k + 1 channel 1D-image. It applies

a series of 1D fully-convolutional operations, with ReLU activations. The output is a

1-D vector of length T . These are treated as ranges on each light curtain camera ray,

and are converted to the control points X1:T of the forecasted safety envelope.

1D-GNN

We use a graph neural network as a baseline to perform safety envelope forecasting.

The GNN takes as input the output of the previous two light curtain placements. The

GNN contains 2T nodes, T nodes corresponding to each curtain. The graph contains

two types of edges: vertical edges between corresponding nodes of the two curtains

(T in number), and horizontal edges between nodes corresponding to adjacent rays

of the same curtain (2T − 1 in number). Each node gets exactly one feature: the

intensity value of its corresponding curtain and camera ray. Each horizontal and

vertical edge gets 3 input features: the differences in the x, z,
√
x2 + z2 coordinates

of the control points of the rays corresponding to the nodes the edge is connected to.

Then, a series of graph convolutions are applied. The features after the final graph

convolution, on the nodes corresponding to the most recent light curtain placement

are treated as range values on each camera ray Rt. The t-th range value is converted

to a control point Xt for camera ray Rt, and the GNN generates a forecast X1:T of

the safety envelope.

We find that providing the output of the hand-crafted baseline policy as input to

the neural networks improves performance (compare the last two rows of Table 2.1).

We attribute this improvement to two reasons:

1. It helps avoid local minima during training : when training the neural networks

without the handcrafted input, we observe that the networks quickly settle into

local minima where the loss is unable to decrease significantly. This suggests

that the input helps with training.

2. It provides useful information to the network : To determine if it is also useful

after training is complete, we replace the handcrafted input with a constant

value and find that this significantly deteriorates performances. This indicates
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that the 2D CNN continues to rely on the handcrafted inputs at test time.

A.0.5 Parallelized pipelining and runtime analysis

In this section, we describe the runtime of our approach. Our overall pipeline has

three components: (1) forecasting the safety envelope, (2) imaging the forecasted

and random light curtains, and (3) processing the light curtain images. Since these

processes can be run independently, we implement them as parallel threads that run

simultaneously. This is shown in Figure A.3.

The imaging and processing threads run continuously at all times. If a forecasted

curtain is available to be imaged, it is given priority and is scheduled for the next

round of imaging. But if there are no forecasted curtain waiting to be imaged, random

curtains are placed and processed. This scheduling leads to an overall latency of 75ms

(13.33 Hz). Due to the parallelized implementation, we are able to place two random

curtains during each cycle of our pipeline.

Figure A.3 (right) shows a breakdown of the timing of the forecasting method

method. It consists of the feed-forward pass of the 2D CNN, as well as other high-level

processing tasks.

A.0.6 Results for the simulated environment without using

random curtains

In this section, we include additional results corresponding to the “Ours w/o Random

curtains” row of Table 2.1. Table A.1 contains results of other policies (handcrafted

baseline, 1D-CNN baseline, 1D-GNN baseline) and ablation conditions (Ours w/o

Forecasting, Ours w/o Baseline input) when random curtains are not used. The top

half of Table A.1 contains results without using random curtains. The bottom half

contains results for the same policies using random curtains (this is essentially a copy

of Table 2.1, to aid with comparisions). We find that the conclusions of Table 2.1 still

hold when random curtains are not used: our method still outperforms the baselines

and removing any component of our method (not forecasting to the next timestep or

removing the output of the hand-crafted policy as input) reduces performance.
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Figure A.3: Pipeline showing the runtime of the efficient, parallelized implementation
of our method. The pipeline contains three processes running in parallel: (1) the
method that forecasts the safety envelope, (2) imaging of the light curtains performed
by the physical light curtain device, and (3) low-level processing of images. Here,
“R” or “RC” stands for “random curtain” and “F” or “FC” stands for “forecasting
curtain”. Bottom right: the forecasting method further consists of running the feed-
forward pass of the 2D CNN and high-level processing of the random and forecasting
curtains. The overall latency of our pipeline is 75ms (13.33 Hz). We are able to place
two light curtains in each cycle of the pipeline.
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Random
curtain

Huber loss
RMSE
Linear

RMSE
Log

RMSE
Log Scale-Inv.

Absolute
Relative Diff.

Squared
Relative Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
Handcrafted
baseline

✗ 0.1989 2.5811 0.2040 0.0904 0.2162 2.0308 0.6321 0.7321 0.7657

1D-CNN ✗ 0.1522 2.3856 0.2176 0.1076 0.1750 0.9482 0.5842 0.7197 0.7868
1D-GNN ✗ 0.1584 2.2114 0.1835 0.0839 0.1772 1.1999 0.6546 0.7381 0.7710
Ours
w/o

Forecasting
✗ 0.1691 2.6047 0.2288 0.1158 0.1927 1.2555 0.6109 0.7114 0.7654

Ours
w/o

Baseline input
✗ 0.1556 2.5987 0.2273 0.1135 0.1797 1.1063 0.6021 0.7094 0.7683

Ours ✗ 0.1220 2.0332 0.1724 0.0888 0.1411 0.9070 0.6752 0.7450 0.7852

Handcrafted
baseline

✓ 0.1145 1.9279 0.1522 0.0721 0.1345 1.0731 0.6847 0.7765 0.8022

Random
curtain only

✓ 0.1484 2.2708 0.1953 0.0852 0.1698 1.2280 0.6066 0.7392 0.7860

1D-CNN ✓ 0.0896 1.7124 0.1372 0.0731 0.1101 0.7076 0.7159 0.7900 0.8138
1D-GNN ✓ 0.1074 1.6763 0.1377 0.0669 0.1256 0.8916 0.7081 0.7827 0.8037
Ours

w/o Forecasting
✓ 0.0960 1.7495 0.1428 0.0741 0.1163 0.6815 0.7010 0.7742 0.8024

Ours
w/o Baseline input

✓ 0.0949 1.8569 0.1600 0.0910 0.1148 0.7315 0.7082 0.7740 0.7967

Ours ✓ 0.0567 1.4574 0.1146 0.0655 0.0760 0.3662 0.7419 0.8035 0.8211

Table A.1: Performance of safety envelope estimation on the SYNTHIA [53] urban
driving dataset under various metrics, with and without using random curtains.
Policies in the top half of the table were trained and evaluated without random
curtains, while policies in the bottom half were trained and evaluated with random
curtain placement.
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Light curtain Velodyne HDL-64E LiDAR

Horizontal resolution 0.08◦ 0.08◦ -– 0.35◦

Vertical resolution 0.07◦ 0.4◦

Rotation speed 60 Hz 5 Hz – 30 Hz
Cost Less than $1000 Approx. $80, 000

Table A.2: Performance of safety envelope estimation in a real-world dataset with
moving pedestrians. The environment consisted of two people walking in both back-
and-forth and sideways motions.

A.0.7 Hardware specification of light curtains

In this section, we provide some details about the hardware specification of light

curtains, as well as comparing it with the specifications of a Velodyne HDL-64E

LiDAR.

The distance between the camera and the laser (the baseline of the device) is 20

cm. The maximum angular velocity of the galvanometer is 2.5 × 104 rad/sec and

the maximum angular acceleration of the galvanometer is 1.5× 107 rad/sec2. The

operating range of the light curtain device is up to 20 meters (daytime outdoors) and

50 or more meters (indoor or night time).

The following table compares the light curtain device with a Velodyne HDL-64E:

The LiDAR is limited to fixed scan patterns. Light curtains are designed to be

programmable as long as the curtain profiles satisfy the velocity and acceleration

limits. Note that the resolution of the light curtain is the same as the 2D camera

used which can be significantly higher than any LIDAR. Our current prototype uses

a camera with a resolution of 640× 512.

A.0.8 Results for the real-world environment under high

latency

The results for the real-world enviroment with walking pedestrians (see Table 2.2 of

Section 2.7) were generated using the parallelized and efficient pipeline described in

Appendix A.0.5. We now present some older results for the same environment that did

not use the efficient implementation. Random curtains were not imaged and processed

in parallel with the forecasting method. Instead, these operations were performed

45



A. Appendix

sequentially: we alternated between the forecasting step and placing a single random

curtain. This increases the latency of the pipeline. A comparison between our method

and the handcrafted baseline when both use this slower implementation is shown in

Table A.3. Our method is able to outperform the handcrafted baseline under various

implementations with varying latencies.

Huber loss
RMSE
Linear

RMSE
Log

RMSE
Log Scale-Inv.

Absolute
Relative Diff.

Squared
Relative Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑
Handcrafted baseline 0.07045 0.7501 0.1282 0.0886 0.1070 0.1072 0.8907 0.9975 1.0000

Ours 0.0189 0.3556 0.0667 0.0443 0.0449 0.0271 0.9890 0.9953 0.9976

Table A.3: Performance of safety envelope estimation in the real-world pedestrian
environment under a high latency i.e. slower implementation.
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