
Features in Extra Dimensions: Spatial

and Temporal Scene Representations

Zhaoyuan Fang

CMU-RI-TR-22-39

July 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Katerina Fragkiadaki, chair

Shubham Tulsiani
Adam Harley

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Zhaoyuan Fang. All rights reserved.

Abstract

Computer vision models have made great progress in featurizing pixels
of images. However, an image is only a projection of the actual 3D
scene: occlusions and perspective distortions exist. To arrive at a better
representation of the scene itself, extra dimensions are needed to learn
spatial or temporal priors.

In this thesis, we propose two methods that introduce extra dimensions for
modelling the scene space and time. The first method lifts features from
the image plane onto the bird’s eye view (BEV) plane for perception in
autonomous driving. Features over the scene space enables our models to
handle occlusion better, producing accurate BEV semantic representation.
The second method introduces extra dimensions for modelling time, for
better geometry-free point tracking. We track points through partial or
full occlusions, using components that drive the current state-of-the-art
in flow and object tracking, such as learned temporal priors, iterative
optimization, and appearance updates. Features allocated over timesteps
enables our models to track over long horizons and through occlusions,
outperforming previous feature-matching and optical flow methods.

iii

iv

Acknowledgments

I would like to thank my advisor, Prof. Katerina Fragkiadaki. Your passion
and energy for research inspired me to work hard on important problems
in computer vision. Throughout the past two years, your guidance has
pushed me to become a better researcher, and more importantly, a better
person in many aspects.

Besides my advisor, I really appreciate the rest of my committee mem-
bers. Thank you to Prof. Shubham Tulsiani. Your ideas were always
constructive and insightful. Thank you to Dr. Adam Harley. It has been
a great pleasure to work with you. I have learned so much from you,
about coming up with ideas, writing good code, adjusting my mindset,
and many many more.

Thank you to Prof. Saurabh Gupta, for being both an awesome mentor
on both research and life choices. I’ve always enjoyed our conversations.
Thank you to Prof. Ranjay Krishna, for showing extra care and support
to Ph.D. admits. You helped me a lot when I was lost about my future.
Thank you to Prof. David Held, for hosting me three summers ago as an
intern. The first peek at CMU was very nice.

I would like to thank my collaborators in Katerina’s Lab. Thank you
to Ayush Jain, Fish Tung, Gabe Sarch, Hao Zhu, Jing Wen, Jingyun
Yang, Mayank Singh, Mihir Prabhudesai, Nikos Gkanatsios, Paul Shydlo,
Shamit Lal, Wen-Hsuan Chu, Xian Zhou, Yiming Zuo, and Yunchu Zhang.
I will miss our chats in the lab and I believe the lab will continue to do
great research. I would also like to thank the collaborators from outside
the lab. Thank you to Dr. Jie Li and Dr. Rares Ambrus for the fruitful
project discussions.

Thank you to all my friends in life. Thank you for bearing with my
ranting when I feel down, joining me on trips to random places and
making precious memories, unwinding together in video games and soccer.
You made life worth living.

Last but definitely not least, I would like to thank my parents. The bitter
moments are less unbearable with you behind my back. The best things
in my life have been your unconditional love, care, and support, and I’m
so proud to be your son.

v

vi

Funding

This material is based upon work supported by Toyota Research In-
stitute (TRI), US Army contract W911NF20D0002, a DARPA Young
Investigator Award, an NSF CAREER award, an AFOSR Young Inves-
tigator Award, and DARPA Machine Common Sense. Any opinions,
findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the
United States Army or the United States Air Force.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Geometry-based Scene Representation for Bird’s Eye View Perception 2
1.3 Geometry-free Scene Representation for Point Tracking 2

2 Geometry-based Scene Representation for Bird’s Eye View Per-
ception 3
2.1 Introduction . 3
2.2 Related Works . 5
2.3 A Simple Baseline for BEV Perception 7

2.3.1 Setup and overview . 7
2.3.2 Architecture . 8
2.3.3 Implementation details . 11

2.4 Experiments . 11
2.4.1 Main results . 12
2.4.2 Ablation studies . 14

2.5 Conclusion . 18

3 Geometry-free Scene Representation for Point Tracking 19
3.1 Introduction . 19
3.2 Related Work . 21

3.2.1 Optical flow . 21
3.2.2 Feature matching . 22

3.3 Persistent Independent Particles (PIPs) 23
3.3.1 Setup and overview . 23
3.3.2 Extracting features . 24
3.3.3 Initializing each target . 24
3.3.4 Measuring local appearance similarity 25
3.3.5 Iterative updates . 25
3.3.6 Supervision . 26
3.3.7 Test-time trajectory linking 27

3.4 Implementation details . 28
3.5 Experiments . 29

3.5.1 Training data: FlyingThings++ 30

ix

3.5.2 Baselines . 30
3.5.3 Trajectory estimation in FlyingThings++ 32
3.5.4 Trajectory estimation in KITTI 33
3.5.5 Trajectory estimation in CroHD 34
3.5.6 Keypoint propagation in BADJA 35
3.5.7 Ablation on visibility-aware linking 37
3.5.8 Experiment details . 38
3.5.9 Limitations . 39

3.6 Conclusion . 39

4 Conclusion and Future Work 41

Bibliography 43

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

x

List of Figures

2.1 A baseline for neural BEV mapping. (A) Our sensor setup consists
of multiple cameras and radar units. (B) We begin by featurizing each
camera image with a ResNet-101. (C) We define a set of 3D coordinates
around the ego-vehicle, project these coordinates into all images, and
bilinearly sample features at the projected locations, yielding a 3D
volume of features. We then concatenate a rasterized radar image, and
reduce the vertical dimension of the volume to yield a BEV feature
map. We process this BEV map with a Resnet-18. Finally, task heads
produce semantic segmentation, a centerness heatmap that indicates
which BEV locations correspond to object centers, and an offset field
that indicates the closest object centroid from each BEV location. . 7

2.2 Comparison of lifting techniques. (a) [47] uses MLPs to first
reduce the vertical dimension of the image and then expand the depth
dimension; the polar BEV features are resampled with a Cartesian
grid; (b) [48] uses transformers to translate a vertical strip in the
image into a BEV ray, and then resamples the BEV features with a
Cartesian grid; (c) [43] estimates a distribution over depth and place
the features with a soft weight; (d) [32] uses deformable attention to
let the 3D queries interact with the image features; (e) we perform a
simple bilinear sampling in the projected location of each voxel in the
feature volume. 10

2.3 Visualization of our best model’s inputs (RGB and radar) and outputs
(BEV vehicle segmentation) overlaid on a road visualization. We
display LiDAR and ground truth for comparison. Please see the
supplementary file for a video visualization. 14

3.1 Persistent Independent Particles. Our method takes an RGB
video as input, and estimates trajectories for any number of target
pixels. Top-left: target pixels are marked with dots; bottom-left:
estimated trajectories. Right: estimated trajectories overlaid on the
first frame of the input video. 21

xi

3.2 Architecture of Persistent Independent Particles (PIPs). Given
an RGB video as input, along with a location in the first frame
indicating what to track, our model initializes a multi-frame trajectory,
then computes features and correlation maps, and iteratively updates
the trajectory and its corresponding sequence of features, with a deep
MLP-Mixer model. 23

3.3 Qualitative results in FlyingThings++ for RAFT (left column),
and PIPs (our model, right column). Trajectories are drawn in a
pink-to-yellow colormap, over ground-truth trajectories which are in
blue-to-green, and in the background is the mean RGB of the sequence.
Note that RAFT trajectories get “stuck” in the middle of the frame,
due to occlusions there. The value displayed in the top left corner is
the average error in the video. 32

3.4 Qualitative results in FlyingThings++ (left), KITTI (middle),
and CroHD (right). We visualize a video with the mean of its
RGB. We trace the estimates with pink-to-yellow trajectories, and
show ground truth in blue-to-green. FlyingThings++ is chaotic, but
training on this data allows our model to generalize. 34

3.5 Comparison with baselines in BADJA, on videos with oc-
clusions. For each method, we trace the estimated trajectory with a
pink-to-yellow colormap. The sparse ground truth is visualized with
cyan x ’s. In the video on the first row, all methods perform fairly well,
though DINO and RAFT drift slightly toward the horse’s body. In the
second video, the target (on the dog’s tail) leaves the image bounds
then returns into view. In the third video, the target (on the horse’s
leg) is momentarily occluded, causing RAFT to lose track entirely. For
a more detailed view of these results, please watch the supplementary
video. 36

xii

List of Tables

2.1 State-of-the-art comparisons against single-frame RGB-only methods
for vehicle segmentation IOU in the nuScenes validation set. 12

2.2 State-of-the-art comparisons against all top methods for vehicle seg-
mentation IOU in the nuScenes validation set. Since our focus is on
LiDAR-free methods, we put LiDAR-enhanced results in parentheses,
including them only for reference. 13

2.3 Effect of input resolution. 15

2.4 Effect of batch size. 15

2.5 Effect of randomizing the reference camera. 16

2.6 Effect of camera dropout. 16

2.7 Using the meta-data associated with each point improves performance. 17

2.8 Turning off nuScenes’ outlier-filtering strategy improves performance. 17

2.9 Aggregating radar data across multiple sweeps improves performance. 17

3.1 Trajectory estimation error in FlyingThings++. “Vis.” evalu-
ates pixels that stay visible and in-bounds; “OOB” evaluates pixels
that fly outside the image bounds; “Occ.” evaluates pixels that cross
behind an occluder. PIP trajectories are more robust to targets moving
out-of-bounds or becoming occluded. 33

3.2 Trajectory estimation error in KITTI. PIP and RAFT trajectories
are similar; DINO lags behind both. 34

3.3 Trajectory estimation error in CroHD. PIPs achieves better accuracy,

for both visible and occluded targets. 35

3.4 PCK-T in BADJA. In this evaluation, keypoints are initialized in
the first frame of the video, and are propagated to the end of the video;
PCK-T measures the accuracy of this propagation. In each column,
we bold the best result, and underline the second-best. Above the
middle bar, we give methods a spatial window (marked “Win.”) to
constrain how they propagate labels, which encodes domain knowledge
about the span of plausible motions in the domain (which is a common
strategy in existing work). Below the bar, we run each method in the
unconstrained setting. Our method wins in most videos, but DINO
performs well also. 37

xiii

3.5 Effect of visibility-aware linking on keypoint propagation in
BADJA. Linking trajectories from locations estimated to be “visible”
yields a small improvement in average PCK-T. 38

xiv

Chapter 1

Introduction

1.1 Motivation

Advances in computer vision brought methods that produce good representations

for pixels of images. However, an image is only a projection of the scene. The

projection is itself an imperfect representation of the actual scene: occlusions, scaling

and perspective distortions exist, and most vision methods that featurize the image

fail to handle these artifacts. To arrive at a better representation of the scene itself,

features in extra dimensions are needed. Works have been exploring in two directions:

learning spatial priors and temporal priors.

In this thesis, we propose two methods, one along each line discussed above. The

first explicitly introduces extra dimensions for modelling the scene space, for better

bird’s eye view (BEV) perception for autonomous vehicles [18]. We use geometry-

based methods to lift image features into the 3D space. This representation enables our

models to handle occlusion better, producing accurate BEV semantic representation

of the space surrounding the vehicle from multiple sensors. The second method

explicitly introduces extra dimensions for modelling time, for better geometry-free

point tracking. We re-build the classic “particle video” approach [51] to track through

partial or full occlusions [17], using components that drive the current state-of-the-art

in flow and object tracking, such as learned temporal priors, iterative optimization,

and appearance updates. This representation enables our models to track over long

time horizons and through occlusions, outperforming previous feature-matching and

1

1. Introduction

optical flow methods.

1.2 Geometry-based Scene Representation for

Bird’s Eye View Perception

In Chapter 2, we use extra dimensions to model the scene space, for BEV Perception.

The task of producing BEV semantic representation of the 3D space surrounding the

vehicle from multi-view camera observations has drawn great interest, as the BEV

representation captures useful information required for autonomous driving. Most

previous works first lift 2D image features onto the BEV plane and then perform

segmentation, and the main focus has been on innovating new “lifting” techniques. In

contrast, using an architecture similar to [16], we propose a simple baseline model with

a parameter-free lifting method [18], exceeding the performance of state-of-the-art

models. With extensive experiments and ablations, we hope to understand what

really matters for performance. We also show that with a simple fusion strategy for

RGB and radar, our model obtains another performance boost of 8 points. We hope

this invites people to reconsider the utility of radar in autonomous driving.

1.3 Geometry-free Scene Representation for Point

Tracking

In Chapter 3, we use extra dimensions to model time, for point tracking. We revisit

the “particle video” [51], where the video is represented with a set of particles that

move across frames with permanence, leveraging long-range temporal priors while

tracking the particles. Inspired by this approach, we build “deep particle video” [17],

using components that drive the current state-of-the-art [62] in flow and object

tracking, such as dense cost maps, iterative optimization, and learned appearance

updates. We show that with the model trained entirely using point trajectories

mined from synthetic optical datasets [38] with augmented occlusions, our method

outperforms state-of-the-art feature-matching and optical flow methods on long-range

correspondence tasks which consist of real videos [2, 12, 61].

2

Chapter 2

Geometry-based Scene

Representation for Bird’s Eye View

Perception

2.1 Introduction

There is great interest in building 3D-aware perception systems for autonomous

vehicles, under various sensor platforms, which typically constitute multiple RGB

cameras, multiple radar units, and optionally a LiDAR unit. Although LiDAR-based

methods have made remarkable progress in highly accurate 3D perception [80, 81],

the high costs of LiDAR sensors make it less appealing for large-scale deployment [30].

Recently, many works have been focusing on producing an accurate “bird’s eye

view” (BEV) semantic representation of the 3D space surrounding the vehicle, from

only multi-view camera observations [32, 40]. The BEV representation captures the

information required for driving-related tasks, such as navigation, obstacle detection,

and moving-obstacle forecasting.

We have seen rapid progress in camera-based BEV perception: BEV vehicle

semantic segmentation IoU improved from 23.9 [40] to 43.2 [32] in just two years.

However, similar to other research areas [1, 71], BEV perception has seen method-

ological innovations and performance improvement, at the cost of system simplicity

3

2. Geometry-based Scene Representation for Bird’s Eye View Perception

and the risk of obscuring “what really matters” for performance. The main focus

in those methods has been on innovating new techniques for “lifting” features from

the 2D image plane(s) onto the BEV plane. For example, prior work has explored

using homographies to warp features directly onto the ground plane [5], using depth

estimates to place features at their approximate 3D locations [43, 52], using MLPs

with various geometric biases[14, 20, 49], and most recently, using geometry-aware

transformers [48]] and deformable attention across space and time [32]. In this work,

we instead propose a simple baseline model where the “lifting” step is parameter-free,

and does not rely on depth estimation: we simply define a 3D volume of coordinates

over the BEV plane, project these coordinates into all images, and average the features

bilinearly sampled from the projected locations. Surprisingly, our simple baseline

exceeds the performance of state-of-the-art models, while also being faster and having

fewer parameters. Our ablations show that batch size, data augmentation, and input

resolution play a large part in performance.

As we establish a new simple baseline, we also take the opportunity to question

the currently-popular paradigm of relying on multi-view camera observations alone,

instead of fusing available metric information from radar. Radar sensors are not only

cheap compared to LiDAR, but have been integrated in real vehicles for several years

already [41]. While using RGB cameras alone may give the task a certain purity

(requiring metric 3D estimates from 2D input alone), it does not reflect the reality of

autonomous driving, where we can freely take advantage of noisy metric data, not

only from radar but from GPS and odometry. The few recent works that discuss radar

in the context of semantic BEV mapping have concluded that the data sometimes is

too sparse to be useful [20, 30]. We identify that these prior works evaluated the use

of radar alone, avoiding the multi-modal fusion problem, and perhaps missing the

opportunity for RGB and radar to complement one another. We introduce a simple

fusion strategy for RGB and radar (rasterizing the radar in BEV and concatenating it

to the RGB features), and exceed the performance of all published BEV segmentation

models, obtaining a score only 5 points behind a LiDAR-enabled system.

While this work does not a contribute new innovative architecture, it (1) provides

a simple baseline for BEV semantic segmentation, with state-of-the-art results and

extensive ablative analysis, and (2) invites the community to reconsider the utility

of radar in autonomous driving perception systems. We also release code and

4

2. Geometry-based Scene Representation for Bird’s Eye View Perception

reproducible models to facilitate future research in the area.

2.2 Related Works

A major differentiator in prior work on dense BEV parsing is the precise operator for

“lifting” 2D perspective-view features to 3D, or directly to the ground plane.

Parameter-free unprojection This strategy, pursued in a variety of object and

scene representation models [7, 54, 65], uses the camera geometry to define a mapping

between voxels and their projected coordinates, and collects features by bilinearly

sampling at the projected coordinates. This places each image feature into multiple

3D coordinates, essentially tiling the feature along the ray’s extent in the volume.

This method of lifting is not typically used in bird’s eye view semantic tasks.

Depth-based unprojection Several works estimate per-pixel depth with a monoc-

ular depth estimator, either pre-trained for depth estimation [34, 45, 52] or trained

simply for the end-task [21, 43, 68], and used the depth to place features at their

estimated 3D locations. This is an effective strategy, but note that if the depth

estimation is perfect, it will only place “truck” features at the front visible surface

of the truck, rather than fill the entire truck volume with features. We believe this

detail is one reason that naive unprojection performs competitively with depth-based

unprojection.

Homography-based unprojection Some works estimate the ground plane instead

of per-pixel depth, and use the homography that relates the image to the ground to

create a warp [5, 33, 35], transferring the features from one plane to another. This

operation tends to produce poor results when the scene itself is non-planar (e.g., tall

objects inevitably get spread out over a wide area after the homography).

MLP-based unprojection A popular approach is to convert a vertical-axis strip

of image features to a forward-axis strip of ground-plane features, with an MLP

[20, 31, 40]. An important detail here is that the initial ground-plane features are

considered aligned with the camera frustum, and they are therefore warped into a

5

2. Geometry-based Scene Representation for Bird’s Eye View Perception

rectilinear space using the camera intrinsics. Some works in this category use multiple

MLPs, dedicated to different scales [47, 49], or to different categories [14]. As this

MLP is parameter-heavy, Yang et al. [79] propose a cycle-consistency loss (mapping

backward to the image-plane features) to help regularize it.

Geometry-aware transformer-like models An exciting new trend is to transfer

features using model components taken from transformer literature. Saha et al. [48]

begin by defining a relationship between each vertical scan-line of an image, and the

ground-plane line that it projects to, and show that transformer self-attentions can

learn an effective “translation” function between the two coordinate systems. Defining

this transformer at the line level helps provide inductive bias to the model, since the

lifting task should be similar across lines. BEVFormer [32], which is concurrent with

our work, proposes to use deformable attention operations to collect image features

for a pre-defined grid of 3D coordinates. This is similar to the bilinear sampling

operation in the parameter-free unprojection, but with approximately 10× more

samples, learnable offsets for the sampling coordinates, and a learnable kernel on

their combination.

Radar In the automotive industry, radar has been in use for several years al-

ready [41]. Since radar measurements provide position, velocity, and angular orien-

tation, the data is typically used to detect obstacles (e.g., for emergency braking),

and to estimate the velocity of moving objects (e.g., for cruise control). Radar is

longer-range and less sensitive to weather effects than LiDAR, and substantially

cheaper. Unfortunately, the sparsity and noise inherent to radar make it a challenge

to use [36, 39, 55, 75]. Some early methods use radar for BEV semantic segmentation

tasks much like in our work [36, 53, 55], but only in small datasets. Recent work

within the nuScenes benchmark [4] has reported the data too sparse to be useful,

recommending instead higher-density radar data from alternate sensor setups [20, 30].

Some recent works explore RGB-radar or RGB-LiDAR fusion strategies [33, 39],

similar to our work, but targeting detection and velocity estimation rather than BEV

semantic labelling.

6

2. Geometry-based Scene Representation for Bird’s Eye View Perception

2.3 A Simple Baseline for BEV Perception

2.3.1 Setup and overview

Radar

(C) Bird’s Eye View (BEV) processing

Reduce to BEV feature map

Resnet-18

Resnet-101

For each 3D coordinate, bilinear sample
from projected locations, and average

(A) Sensor setup

Radar
Camera

(B) Perspective view processing

Segmentation Centerness Offset to center

Concat.

as feature

Task heads

Figure 2.1: A baseline for neural BEV mapping. (A) Our sensor setup consists of
multiple cameras and radar units. (B) We begin by featurizing each camera image with
a ResNet-101. (C) We define a set of 3D coordinates around the ego-vehicle, project
these coordinates into all images, and bilinearly sample features at the projected
locations, yielding a 3D volume of features. We then concatenate a rasterized radar
image, and reduce the vertical dimension of the volume to yield a BEV feature map.
We process this BEV map with a Resnet-18. Finally, task heads produce semantic
segmentation, a centerness heatmap that indicates which BEV locations correspond
to object centers, and an offset field that indicates the closest object centroid from
each BEV location.

The setup and architecture of our model are shown in Figure 2.1. Our model uses

as input a flexible number of cameras, any number of radar units, and optionally

even LiDAR. We assume that the data is synchronized across sensors. We assume

that the intrinsics and extrinsics of each sensor are known.

7

2. Geometry-based Scene Representation for Bird’s Eye View Perception

The model has a 3D metric span, and a 3D resolution. Following the baselines

in this task, we set the left/right and forward/backward span to 100m × 100m,

discretized at a resolution of 200 × 200. We set the up/down span to 10m, and

discretize at a resolution of 8. This volume is centered and oriented according to a

reference camera, which is typically the front camera. We denote the left-right axis

with X, the up-down axis with Y , and the forward-backward axis with Z.

Our model first computes features from each camera image, as shown in Figure 2.1-

B. Then, we populate our 3D volume with features, with bilinear sampling: starting

from the 3D coordinates at the center of each discrete cell, we use the extrinsics

and intrinsics to compute its 2D coordinates in each 2D feature map, and bilinearly

sample the 2D feature map to obtain a feature. If its 3D coordinates land in the

camera frustum of multiple views, we simply take an average of the features from all

those “valid” views. If radar is provided, we rasterize its returns into a bird’s eye

view image, and concatenate this with the 3D feature volume. We then reduce the

vertical dimension, and process the resulting feature map with a 2D convolutional net.

Finally, task heads produce quantities of interest, such as segmentation, centerness

scores, and an offset map, all in a 2D bird’s eye view. The segmentation map contains

a categorical distribution over semantic categories. The centerness map indicates

probabilities of a grid cell being the center of an object. The offset map contains

a vector field, where each vector points to the nearest object center. The 3D/BEV

processing is illustrated in Figure 2.1-C.

2.3.2 Architecture

We featurize each input RGB image, shaped 3 × H × W , with a ResNet-101 [19]

backbone. We upsample the output of the last layer and concatenate it with the

third layer output, and apply two convolution layers with instance normalization

and ReLU activations [9], arriving at feature maps with shape C ×H/8 ×W/8 (one

eighth of the image resolution).

We project our pre-defined volume of 3D coordinates into all feature maps, and

bilinearly sample features there, yielding a 3D feature volume from each camera. We

compute a binary “valid” volume per camera at the same time, indicating if the

3D coordinate landed within the camera frustum. We then take a valid-weighted

8

2. Geometry-based Scene Representation for Bird’s Eye View Perception

average across the set of volumes, reducing our representation down to a single 3D

volume of features, shaped C × Z × Y ×X. We emphasize that our lifting step is

parameter-free. We rearrange the 3D feature volume dimensions, so that the vertical

dimension extends the channel dimension, as in C × Z × Y ×X → (C · Y) × Z ×X,

yielding a high-dimensional BEV feature map.

We next rasterize the radar information, to create another BEV feature map. We

may use an arbitrary number of radar channels R (including R = 0, meaning not

using radar). In nuScenes [4], each radar return consists of a total of 18 fields, with 5

of them being position and velocity, and the remainder being the result of built-in

pre-processes (e.g., indicating confidence that the return is valid). We use all of this

data, by using the position data to choose the nearest XY Z position in the volume

(if in bounds), and using the 15 non-position items as channels, yielding a 3D feature

volume shaped R× Z × Y ×X, with R = 15. Similar to the RGB feature volume,

this radar feature volume is rearranged so that the vertical dimension extends the

channel dimension, (R · Y) ×Z ×X. If LiDAR is provided, we voxelize it to a binary

occupancy grid shaped Y × Z ×X, and use it in place of radar features (only for

comparison).

We then concatenate the RGB features and radar features, and compress the

extended channels down to a dimensionality of C, by applying a 3 × 3 convolution

kernel. This achieves the reduction (C · Y + R · Y) × Z ×X → C × Z ×X. At this

point, we have a single plane of features, representing a bird’s eye view of the scene.

We process this with three blocks of a Resnet-18 [19], producing three feature maps,

then use additive skip connections with bilinear upsampling to gradually bring the

coarser features to the input resolution, and finally apply task-specific heads. Each

head is two convolution layers with instance normalization, and ReLU after the norm

in the first layer.

The model is trained on three tasks and is equipped with three corresponding

task heads: segmentation, centerness, and offset. The segmentation head produces

per-pixel vehicle/background segmentation. The centerness head produces a heatmap

where high values indicate high probability that the grid cell is an object center. The

offset head produces a vector field where, within each object mask, each vector points

to the center of that object. We train the segmentation head with a cross entropy

loss, and supervise the centerness and offset fields with an L1 loss. We compute

9

2. Geometry-based Scene Representation for Bird’s Eye View Perception

Figure 2.2: Comparison of lifting techniques. (a) [47] uses MLPs to first reduce
the vertical dimension of the image and then expand the depth dimension; the polar
BEV features are resampled with a Cartesian grid; (b) [48] uses transformers to
translate a vertical strip in the image into a BEV ray, and then resamples the BEV
features with a Cartesian grid; (c) [43] estimates a distribution over depth and place
the features with a soft weight; (d) [32] uses deformable attention to let the 3D queries
interact with the image features; (e) we perform a simple bilinear sampling in the
projected location of each voxel in the feature volume.

the ground truth from 3D box annotations. We use an uncertainty-based learnable

weighting [27] to balance the three losses.

Compared to related models, the architecture choices for the perspective-view and

bird’s-eye-view encoders are most similar to those in Lift-Splat [43] and FIERY [21].

Our multi-task setup is the same as FIERY [21].

Our model is “simpler” than related work particularly in the 2D-to-3D lifting

10

2. Geometry-based Scene Representation for Bird’s Eye View Perception

step, which is handled by (parameter-free) bilinear sampling. This replaces, for

example, depth estimation [43], MLPs [20, 31, 40], or attention mechanisms [32, 48].

A qualitative comparison of the lifting step is shown in Figure 2.2. Besides the

implementation simplicity, our model is also faster and has fewer parameters than

the next-best existing model, as we will detail in the experiments.

2.3.3 Implementation details

Our model uses an RGB input resolution of 448 × 960. The ResNet-101 has a

total stride of 8. We use a feature dimension (i.e., channel dimension) of 128.

Our 3D resolution is 200 × 8 × 200, and our final output resolution is 200 × 200.

Our 3D metric span is 100m × 10m × 100m. This corresponds to voxel lengths of

0.5m × 1.25m × 0.5m (in Z, Y,X order). The Resnet-101 is pre-trained for image

classification on ImageNet [8]. The BEV Resnet-18 is trained from scratch.

At training time, we randomly select a camera to be the “reference” camera,

which randomizes the orientation of the 3D volume (as well as the orientation of the

rasterized annotations). We apply random cropping on the RGB input, by resizing

the original images to 558 × 992, and taking a random 448 × 960 crop inside (and

updating the intrinsics accordingly). At test time, we use the “front” camera as the

reference camera, and take a center crop.

We train end-to-end for 25,000 iterations, with a batch size of 40, with the Adam-

W optimizer [37] at a constant learning rate of 3e-4. We accumulate gradients across

eight V100 GPUs and five iterations, to obtain an effective batch size of 40 for each

gradient step. The model takes 2-3 days to train.

2.4 Experiments

We train and test our model in the nuScenes [4] urban scenes dataset, which is publicly

available for non-commercial use. The dataset has 6 cameras, pointing front, front-left,

front-right, back-left, back, and back-right, and 5 radar units, pointing front, left,

right, back-left, and back-right, as well as a LiDAR unit. We use LiDAR inputs

only for comparison, and focus on using RGB and RGB+radar. The sensor setup

is illustrated in Figure 2.1-A. We use the official nuScenes training/validation split,

11

2. Geometry-based Scene Representation for Bird’s Eye View Perception

which contains 28,130 samples in the training set, and 6,019 samples in the validation

set. We use annotations from the “vehicle” superclass, which includes bicycle, bus, car,

construction vehicle, emergency vehicle, motorcycle, trailer, and truck. We evaluate

on vehicle/background segmentation, using the intersection-over-union (IOU) metric

in a bird’s eye view. (We follow related work [21] in treating centerness and offset

purely as auxiliary tasks.)

2.4.1 Main results

In this section we present our BEV vehicle segmentation results on the nuScenes

validation set, and compare with the state-of-the-art.

Method IOU

FISHING [20] 30.0
PON [47] 31.4
Lift, Splat [43] 32.1
FIERY [21] 35.8
TIIM [48] 38.9
BEVFormer [32] 44.4
Ours 47.2

Table 2.1: State-of-the-art comparisons against single-frame RGB-only methods for
vehicle segmentation IOU in the nuScenes validation set.

We first compare against single-frame RGB-only models, in Table 2.1. Our RGB-

only method obtains 47.2 IOU, outperforming all other single-frame RGB-only models.

Second-best is BEVFormer [32] (concurrent work) at 44.4. The main difference

between these two methods is that BEVFormer uses a deformable attention-based

strategy to lift features from 2D to BEV, in place of our bilinear sampling.

We next open the comparison to all methods of all modalities, in Table 2.2. The

best model we are aware of is BEVFormer’s temporal variant, which obtains 46.7

IOU—just under the accuracy of our single-frame RGB-only model.

Our RGB+radar model improves over this by 9 points, reaching 55.7 IOU. For

reference, we also compute our model’s performance using RGB+LiDAR, obtaining

a new high of 60.8. High performance from LiDAR is consistent with related work

in 3D object detection [80], but the gap between RGB+LiDAR and RGB+radar is

12

2. Geometry-based Scene Representation for Bird’s Eye View Perception

Method Inputs IOU

FISHING [20]
RGB 30.0

LiDAR (44.3)

FIERY [21]
RGB 35.8

RGB+time 38.2

TIIM [48]
RGB 38.9

RGB+time 41.3

BEVFormer [32]
RGB 44.4

RGB+time 46.7

Ours
RGB 47.2

RGB+radar 55.7
RGB+LiDAR (60.8)

Table 2.2: State-of-the-art comparisons against all top methods for vehicle segmenta-
tion IOU in the nuScenes validation set. Since our focus is on LiDAR-free methods,
we put LiDAR-enhanced results in parentheses, including them only for reference.

smaller than might have been expected, since prior work conveyed negative results

from RGB+radar fusion [20]. Note that integrating over time is orthogonal to the

strengths of our model, so it should be possible to push results even higher using

time.

Speed and complexity: Our model runs at 7.3 FPS on a V100 GPU. This is

more than 3× faster than BEVFormer [32], which runs at 2.3 FPS. Our model also has

fewer parameters: 42.0M, compared to BEVFormer’s 68.7M. Most of our parameters

(37.0M) come from the Resnet-101, and this is also the main speed bottleneck, due

to the high RGB resolution.

Qualitative results: We show qualitative results in Figure 2.3. We also visualize

corresponding LiDAR and radar data, to show the scene structure as captured by

those sensors. Qualitatively, the radar is indeed sparse and noisy as noted in related

work [20, 30], but we believe it gives valuable hints about the metric scene structure,

which, when fused with information acquired from RGB, enables higher-accuracy

semantic segmentation in the bird’s eye view.

13

2. Geometry-based Scene Representation for Bird’s Eye View Perception

Vehicle estimates (output) Vehicle ground truth

Multi-view RGB (input)

LiDAR (vis. only) Radar (input)

Figure 2.3: Visualization of our best model’s inputs (RGB and radar) and outputs
(BEV vehicle segmentation) overlaid on a road visualization. We display LiDAR
and ground truth for comparison. Please see the supplementary file for a video
visualization.

2.4.2 Ablation studies

Considering the simplicity of our method compared to prior work, we next aim to

answer the question: what really matters for performance?

While prior work has focused on the details of the 2D-to-BEV lifting strategy, our

2D-to-BEV step is parameter-free, so we study other factors: input resolution, batch

size, and augmentations. We first perform ablations using our RGB-only model, and

then turn to evaluating the details of our radar processing. Each ablation involves

re-training the model with a single specific difference with respect to the proposed

model. In all ablations we report vehicle segmentation IOU in the nuScenes validation

set (where the proposed model achieves 47.2).

Input resolution The nuScenes dataset provides high-resolution RGB images,

which are 900 × 1600. While earlier work downsampled the RGB substantially before

feeding it through the model (e.g., downsampling to 128 × 352 [43]), we note that

14

2. Geometry-based Scene Representation for Bird’s Eye View Perception

recent works have been downsampling less and less (e.g., most recently using the

full resolution [32]). We believe this is an important factor for performance, and so

we train and test our RGB-only model across different input resolutions. Table 2.3

summarizes the results. We find that our model obtains its best result at 448 × 960,

which is approximately half of the total available resolution. It may be that when

the images are too large or too small, the typical object scale is no longer consistent

with the backbone’s pre-training (on ImageNet [8]), leading to less-effective transfer.

RGB resolution IOU
112 × 240 36.3
224 × 480 42.7
448 × 960 47.2
672 × 1440 44.0

Table 2.3: Effect of input resolution.

Batch size It has been reported in the image classification literature that higher

batch sizes deliver superior results [57], but we have not seen batch size discussed

in BEV literature. In Table 2.4 we explore the impact of batch size on our model’s

performance: each increase in batch size gives an improvement in accuracy, with

diminishing (but sizeable) returns. Increasing the batch size from 2 to 40 gives a

nearly 10-point improvement in IOU. It appears that increasing the batch size further

might improve performance still, but this is beyond our current compute capacity.

Batch size IOU

2 36.8
4 41.8
20 43.7
40 47.2

Table 2.4: Effect of batch size.

Augmentations When training our model, we randomize the camera selected to

be the “reference” camera, which dictates the orientation of the 3D coordinate system.

15

2. Geometry-based Scene Representation for Bird’s Eye View Perception

To the best of our knowledge ours is the first work to do this.

We show the results of this augmentation in Table 2.5. Randomizing the reference

camera provides approximately a 1 point boost in IOU. We believe that randomizing

the reference camera helps reduce overfitting in the bird’s eye view module. We have

observed qualitatively that without this augmentation, the segmented cars have a

slight bias for certain orientations in certain positions; with the augmentation added,

this bias disappears.

Reference camera IOU

“Front” 46.0
Random 47.2

Table 2.5: Effect of randomizing the reference camera.

Prior work has reported a benefit from randomly dropping 1 of the 6 available

cameras in each training sample [43]. Interestingly, we find the opposite from the

results shown in Tbale 2.6: using all cameras performs better. It may be that our

reference-camera randomization provides enough regularization to make camera-

dropout unnecessary.

Number of cameras IOU

5/6 45.9
6/6 47.2

Table 2.6: Effect of camera dropout.

We have also experimented with color, contrast, and blur augmentations, and

found that these worsened results. Such augmentations are known to be beneficial in

image classification, but it may be that the model benefits from sensitivity to these

factors in the current data.

Radar usage details Since ours is the first model to report strong results from

RGB+radar fusion in this domain, we aim to reveal the important hyperparameter

choices in the radar setup.

16

2. Geometry-based Scene Representation for Bird’s Eye View Perception

As shown in Table 2.7, our model benefits from accessing the meta-data associated

with each radar point. This includes information such as velocity, which may help

distinguish moving objects from the background. Removing this aspect lowers IOU

by 2.5 points.

Input IOU

Full return 55.7
Occupancy only 53.2

Table 2.7: Using the meta-data associated with each point improves performance.

As shown in Table 2.8, our model benefits from having all radar returns as

input, achieved by disabling nuScenes’ built-in outlier filtering strategy. The filtering

strategy attempts to discard outlier points (produced by multipath interference and

other issues), but potentially discards some true returns as well. Using the filtered

data instead of the raw data results in a 2.3 point drop in performance.

Filtering IOU

Off 55.7
On 53.4

Table 2.8: Turning off nuScenes’ outlier-filtering strategy improves performance.

As shown in Table 2.9, our model benefits from aggregating multiple sweeps of

radar as input. This means using radar from timesteps (t, t− 1, t− 2) aligned to the

coordinate frame of timestep t, rather than exclusively using the data from timestep

t. Using a single sweep lowers performance by 2.4 points, likely because the model

struggles with the extreme sparsity of the signal.

Sweeps IOU

3 55.7
1 53.3

Table 2.9: Aggregating radar data across multiple sweeps improves performance.

17

2. Geometry-based Scene Representation for Bird’s Eye View Perception

Discussion and limitations In this work, we propose a simple baseline architecture

for BEV semantic parsing, and show its surprising effectiveness. Our work highlights

that radar provides useful sparse metric information for BEV parsing, and this insight

can be applied to other approaches. Similarly, our training techniques may lead to

improvements for other models. Our work does not argue against the use of LiDAR

in particular, but rather for the use of metric information whenever available, even if

sparse and noisy.

We did not discuss any temporal integration strategies. Temporal integration

is very natural to include in this setting, and previous works have shown it gives a

performance boost of 3-4 points. We leave this for future work. Finally we note that

training these models is costly in terms of both GPU time and carbon footprint [58].

We aim to release our models and encourage their re-use.

2.5 Conclusion

LiDAR-free BEV perception is a critical step toward low-cost autonomous vehicles.

This paper proposes a simple baseline model with a parameter-free 2D-to-BEV lifting

step that outperforms the state-of-the-art. We then reconsider the assumption that

radar data is too sparse to be useful, and propose a simple strategy to fuse its noisy

returns with the 3D representation acquired from RGB. The resulting radar-enhanced

model exceeds the performance of all published models, including ones that integrate

information across time, and is only 5 points behind the LiDAR-enhanced model in

BEV vehicle segmentation. We will make our code publicly available. We hope that

this simple model will serve as a useful baseline in the future.

18

Chapter 3

Geometry-free Scene

Representation for Point Tracking

3.1 Introduction

In 2006, Sand and Teller [51] wrote that there are two dominant approaches to motion

estimation in video: feature matching and optical flow. This is still true today. In

their paper, they proposed a new motion representation called a “particle video”,

which they presented as a middle-ground between feature tracking and optical flow.

The main idea is to represent a video with a set of particles that move across multiple

frames, and leverage long-range temporal priors while tracking the particles.

Methods for feature tracking and optical flow estimation have greatly advanced

since that time, but there has been relatively little work on estimating long-range

trajectories at the pixel level. Feature correspondence methods [6, 70] currently work

by matching the features of each new frame to the features of one or more source

frames [29], without taking into account temporal context. Optical flow methods

today produce such exceedingly-accurate estimates within pairs of frames [62] that

the motion vectors can often be chained across time without much accumulation of

error, but as soon as the target is occluded, it is no longer represented in the flow

field, and tracking fails.

Particle videos have the potential to capture two key elements missing from

19

3. Geometry-free Scene Representation for Point Tracking

feature-matching and optical flow: (1) persistence through occlusions, and (2) multi-

frame temporal context. If we attend to a pixel that corresponds to a point on the

world surface, we should expect that point to exist across time, even if appearance

and position and visibility all vary somewhat unpredictably. Temporal context is

of course widely known to be relevant for flow-based methods, but prior efforts to

take multi-frame context into account have yielded only small gains. Flow-based

methods mainly use consecutive pairs of frames, and occasionally leverage time with

a simple constant-velocity prior, which weakly conditions the current flow estimate

on previous frames’ flow [46, 62].

We propose Deep Particle Video (PIPs), a new particle video method, which

takes a T -frame RGB video as input, along with the (x, y) coordinate of a target to

track, and produces a T × 2 matrix as output, representing the positions of the target

across the given frames. The model can be queried for any number of particles, at

any positions within the first frame’s pixel grid. A defining feature of our approach,

which differentiates it from both the original particle video method and modern

flow methods, is that it makes an extreme trade-off between spatial awareness and

temporal awareness. Our model estimates the trajectory of every target independently.

Computation is shared between particles within a video, which makes inference fast,

but each particle produces its own trajectory, without inspecting the trajectories of

its neighbors. This extreme choice allows us to devote the majority of parameters

into a module that simultaneously learns (1) temporal priors, and (2) an inference

mechanism that searches for the target pixel’s location in all input frames. The value

of the temporal prior is that it allows the model to fail its correspondence task at

multiple intermediate frames. As long as the pixel is “found” at some sparse timesteps

within the considered temporal span, the model can use its prior to estimate plausible

positions for the remaining timesteps. This is helpful because appearance-based

correspondence is impossible in some frames, due to occlusions, moving out-of-bounds,

or difficult lighting.

We train our model entirely in synthetic data, which we call FlyingThings++,

based on the FlyingThings [38] optical flow dataset. Our dataset includes multi-frame

amodal trajectories of various lengths, with challenging synthetic occlusions caused

by moving and static objects. In our experiments on both synthetic and real video

data, we demonstrate that our particle trajectories are more robust to occlusions

20

3. Geometry-free Scene Representation for Point Tracking

Figure 3.1: Persistent Independent Particles. Our method takes an RGB video
as input, and estimates trajectories for any number of target pixels. Top-left: target
pixels are marked with dots; bottom-left: estimated trajectories. Right: estimated
trajectories overlaid on the first frame of the input video.

than flow trajectories—they can pick up an entity upon re-appearance—and also

provide smoother and finer-grained correspondences than current feature-matching

methods, thanks to its temporal prior. We also propose a method to link the

model’s moderate-length trajectories into arbitrarily-long trajectories, relying on a

simultaneously-estimated visibility cue. Figure 3.1 displays sample outputs of our

model on RGB videos from the DAVIS benchmark [44]. We plan to publicly release

our code, model weights, and data.

3.2 Related Work

3.2.1 Optical flow

While earlier optical flow methods use optimization techniques to estimate motion

fields between two consecutive frames [3, 60], recent methods learn such displacement

fields supervised from synthetic datasets [10, 22]. Many recent works use iterative

refinements for flow estimation by leveraging coarse-to-fine pyramids [59]. Instead

of coarse-to-fine refinements, RAFT [62] mimics an iterative optimization algorithm,

and estimates flow through iterative updates of a high resolution flow field based

on 4D correlation volumes constructed for all pairs of pixels from per-pixel features.

Inspired by RAFT, we also perform iterative updates of the position estimations

21

3. Geometry-free Scene Representation for Point Tracking

using correlations as an input, but unlike RAFT we additionally update features.

Ren et al. [46] propose a fusion approach for multi-frame optical flow estimation.

The optical flow estimates of previous frames are used to obtain multiple candidate

flow estimations for the current timestep, which are then fused into a final prediction

by a learnable module. In contrast, PIPs explicitly reasons about multiframe context,

and iteratively updates its estimates across all frames considered. Note that without

using multiple frames, it is impossible to recover an entity after occlusion. Janai et

al. [24] is closer to our method, since it uses 3 frames as multiframe context, and

explicitly reasons about occlusions. That work uses a constant velocity prior [50]

to estimate motion during occlusion. In contrast, PIPs devotes a large part of the

model capacity to learning an accurate temporal prior, and iteratively updates its

estimates across all frames considered, in search of the object’s re-emergence from

occlusion. Note that without using multiple frames, it is impossible to recover an

entity after occlusion. Additionally, our model is the only work that aims to recover

amodal trajectories that do not terminate at occlusions but rather can recover and

re-connect with a visual entity upon its re-appearance.

3.2.2 Feature matching

Wang and Jabri et al. [23, 70] leverage cycle consistency of time for feature matching.

This allows unsupervised learning of features by optimizing a cycle consistency

loss on the feature space across multiple time steps in unlabelled videos. Lai et

al. [28, 29] and Yang et al. [76] learn feature correspondence through optimizing

a proxy reconstruction objective, where the goal is to reconstruct a target frame

(color or flow) by linearly combining pixels from one or more reference frames. The

combination weights are obtained by computing affinities between the features from

the target frame and features from the reference frame(s).

Instead of using proxy tasks, supervised approaches [13, 25, 69, 72] directly train

models using ground truth correspondences across images. Features are usually ex-

tracted per-image and a transformer-based processor locates correspondences between

images. In this work, we reason about point correspondences over a long temporal

horizon, incorporating motion context, instead of using pairs of frames like these

works.

22

3. Geometry-free Scene Representation for Point Tracking

3.3 Persistent Independent Particles (PIPs)

corrs
feats

dot
prod.

tile

(T,C,H/8,W/8)

rgbs

x1

CNN

f1

Initialize positions and appearance features

tile

(T,3,H,W)

(1,2)

(1,C) (T,C)

(T,2)

xs0

fs0

3. Apply
update:

1. Measure local similarity:

sample
crops
at xs

(T,1,H/8,W/8)

(T,1,P,P)

2. Compute update:

dxs

dfs

MLP
Mixer

(T,2+C+P*P)

(T,2+C)

xsk

fsk

xs-x1k

fs
k

csk

xs = xs + dxs

fs = fs + dfs

k+1

k+1

k

k

Iterative inference (repeated K times)

local
corrs

flatten

sample
at x1

Figure 3.2: Architecture of Persistent Independent Particles (PIPs). Given
an RGB video as input, along with a location in the first frame indicating what
to track, our model initializes a multi-frame trajectory, then computes features
and correlation maps, and iteratively updates the trajectory and its corresponding
sequence of features, with a deep MLP-Mixer model.

3.3.1 Setup and overview

We name our model Persistent Independent Particles (PIPs), taking conceptual

inspiration from Particle Video [51]. Our model takes as input an RGB video with T

frames, and the (x1, y1) coordinate of a single point on the first frame, indicating the

target to track. As output, the model produces a T × 3 matrix, containing T tracked

coordinates (xt, yt) across time, along with visibility/occlusion estimates vt ∈ [0, 1].

The model can be queried for N target points in parallel, and some computation

will be shared between them, but the model does not share information between the

targets’ trajectories.

At training time, we query the model with points for which we have ground-truth

trajectories and visibility labels. We supervise the model’s (xt, yt) outputs with a

regression objective, and supervise vt with a classification objective. At test time,

the model can be queried for the trajectories of any number of points.

We use the words “point” and “particle” interchangeably to mean the things we

are tracking, and use the word “pixel” more broadly to indicate any discrete cell

23

3. Geometry-free Scene Representation for Point Tracking

on the image grid. Note that although the tracking targets are specified with single

pixel coordinates, tracking successfully requires (at least) taking into account the

local spatial context around the specified pixel, and therefore the model is somewhat

sensitive to scale and resolution.

Our overall approach has four stages, somewhat similar to the RAFT optical flow

method [62]: extracting visual features (Section 3.3.2), initializing a list of positions

and features for each target (Section 3.3.3), locally measuring appearance similarity

(Section 3.3.4), and repeatedly updating the positions and features for each target

(Section 3.3.5). Figure 3.2 shows an overview of the method.

3.3.2 Extracting features

We begin by extracting features from every frame of the input video. In this step,

each frame is processed independently with a 2D convolutional network (i.e., no

temporal convolutions). The network produces features at 1/8 resolution.

3.3.3 Initializing each target

After computing feature maps for the video frames, we compute a feature vector

for the target, by bilinearly sampling inside the first feature map at the first (given)

coordinate, obtaining a feature vector f1.

We use this sampled feature to initialize a trajectory of features, by simply tiling

the feature across time, yielding a matrix F0 sized T × C, where C is the channel

dimension. This initialization implies an appearance constancy prior.

We initialize the target’s trajectory of positions in a similar way. We simply copy

the initial position across time, yielding a matrix X 0, shaped T ×2. This initialization

implies a zero-velocity prior, which essentially assumes nothing about the target’s

motion.

During inference, we will update the trajectory of features, tracking appearance

changes, and update the trajectory of positions, tracking motion.

24

3. Geometry-free Scene Representation for Point Tracking

3.3.4 Measuring local appearance similarity

We would like to measure how well our trajectory of positions, and associated

trajectory of features, matches with the pre-computed feature maps. We compute

visual similarity maps by correlating each feature f t with the feature map of the

corresponding timestep, and then obtain “local” scores by bilinearly sampling a

crop centered at the corresponding position (xt, yt). This step returns patches of

un-normalized similarity scores, where large positive values indicate high similarity

between the target’s feature and the convolutional features at this location. We

denote the initial set of scores as C0, shaped T × P · P , where P is the size of the

patch extracted from each correlation map.

Similar to RAFT [62], we find it is beneficial to create a spatial pyramid of these

score patches, to obtain similarity measurements at multiple scales. This makes our

score matrix T × P · P · L, where L is the number of levels in the pyramid.

3.3.5 Iterative updates

The main inference step for our model involves updating the sequence of positions,

and updating the sequence of features. To perform this update, we take into account

all of the information we have computed thus far: the position matrix X k, the

feature matrix Fk, and the correlation matrix Ck, indicated here with superscript k

to emphasize that these inputs will change across iterative inference steps.

Instead of using absolute positions X k, we subtract the given position (x1, y1)

from each element of this matrix, making it into a matrix of displacements. (On the

first iteration, it will in fact be all zeros, since X 0 is initialized from (x1, y1).) Using

displacements instead of absolute positions makes all input trajectories appear to start

at (0, 0), which makes our model translation-invariant. We additionally concatenate

sinusoidal position encodings of the displacements [67], motivated by the success of

these encodings in vision transformers [11].

To process this broad set of inputs, we concatenate them all on the channel

dimension, yielding a new matrix shaped T ×D, and process this with a 12-block

MLP-Mixer [64], which is a parameter-efficient all-MLP architecture with design

similarities to a transformer. As output, this module produces updates for the

25

3. Geometry-free Scene Representation for Point Tracking

sequence of positions and sequence of features, dX and dF , which we apply with:

Fk+1 = Fk + dF ,

X k+1 = X k + dX .
(3.1)

After each update, we compute new correlation pyramids at the updated coordi-

nates, using the updated features.

The update module is iterated K times. After the last update, the positions XK

are treated as the final trajectory, and the features FK are sent to a linear layer to

estimate per-timestep visibility logits V .

3.3.6 Supervision

We supervise the model using the L1 distance between the ground-truth trajectory

and the estimated trajectory (across iterative updates), with exponentially increasing

weights, similar to RAFT [62]:

Lmain =
K∑
k

γK−k||X k −X ∗||1, (3.2)

where K is the number of iterative updates, and we set γ = 0.8. Note that this

loss is applied even when the target is occluded, or out-of-bounds, which is possible

since we are using synthetically-generated ground truth. This is the main loss of the

model, and the model can technically train using only this, although it will not learn

visibility estimation and convergence will be slow.

On the model’s visibility estimates, we apply a cross entropy loss:

Lce = V∗ logV + (1 − V∗) log(1 − V). (3.3)

We find it accelerates convergence to directly supervise the score maps to peak in

the correct location (i.e., the location of the true correspondence) when the target is

visible:

Lscore = − log(exp(ci)/
∑
j

exp(cj))1{V∗ ̸= 0}, (3.4)

where cj represents the match score at pixel j, and i is pixel index with the true

26

3. Geometry-free Scene Representation for Point Tracking

correspondence.

We average all losses across all targets within a batch. We set the coefficient of

every loss to 1.

3.3.7 Test-time trajectory linking

At test time, it is often desirable to generate correspondences over longer timespans

than the training sequence length T . To generate these longer trajectories, we may

repeat inference starting from any timestep along the estimated trajectory, treating

(xt, yt) as the new (x1, y1), and thereby “continuing” the trajectory up to (xt+T , yt+T).

However, doing this naively (e.g., always continuing from the last timestep), can

quickly cause tracking to drift.

It is first of all crucial to avoid continuing the trajectory from a timestep where

the target is occluded. Otherwise, the model will switch to tracking the occluder.

To avoid these identity switches, we make use of our visibility estimates, and seek

the farthest timestep whose visibility score is above a threshold. Note that seeking

farthest visible timestep allows the model to skip past frames where the target was

momentarily occluded, as long as the temporal span of the occlusion is less than

the temporal span of the model (T). Visibility estimates always begin near 1, since

the model is trained assuming the provided (x1, y1) indicates the true target, so we

exclude the first several timesteps from this selection process, forcing the model to

choose a timestep from the later part of the trajectory. We initialize the threshold

conservatively at 0.99, and decrease it in increments of 0.01 until a valid selection is

found.

Even with visibility-aware trajectory linking, the model can “forget” what it was

originally tracking, since the target initialization strategy involves bilinearly sampling

at the new (x1, y1) location whenever a new link is added to the chain. We therefore

employ a second strategy, which is simply to always initialize F0 using the features

found at the very first timestep. Intuitively, this locks the model into tracking the

“original” target. This does create a slight mismatch between the target features

and the convolutional feature maps on the current frame, but we find that this is

effectively compensated for by the internal update mechanism. We have also tried

a strategy of initializing with the last FK output by the model, but this leads to

27

3. Geometry-free Scene Representation for Point Tracking

unstable behavior.

3.4 Implementation details

CNN: Our CNN uses the “BasicEncoder” architecture from the official RAFT

codebase [63]. This architecture has a 7× 7 convolution with stride 2, then 6 residual

blocks with kernel size 3 × 3, then a final convolution with kernel size 1 × 1. The

CNN has an output dimension of C = 256.

Local correlation pyramids: We use three levels in our correlation pyramids,

with radius 4. This translates to three 9 × 9 correlation patches per timestep.

MLP-Mixer: The input to the MLP-Mixer is a sequence of relative coordinates,

features, and correlation pyramids. The coordinates are made “relative” by subtracting

the first position, meaning the first element of this sequence is (0, 0), and other elements

of the sequence can be interpreted as flow vectors originating from the first timestep’s

absolute position. The per-timestep inputs are flattened, then treated as a sequence

of vectors (i.e., “tokens”) for the MLP-Mixer. We use the MLP-Mixer architecture

exactly as described in the original paper; at the end of the model there is a mean

over the sequence dimension, followed by a linear layer that maps to a channel size of

T · (C + 2).

Updates: We reshape the MLP-Mixer’s outputs into a sequence of feature

updates and a sequence of coordinate updates. We apply the coordinate updates

directly (with addition). We use separate linear layers to apply the updates for the

instance-level and pixel-level features (i.e., ϕ in Equation 1 from the main paper).

We train and test with 8 updates, but we find that performance is similar if we train

with 4 (and still test with 8).

Visibility: We use a linear layer to map the last update iteration’s pixel-level

feature sequence into visibility logits.

Optimization: We train with a batch size of 4, distributed across four GPUs.

At training time, we use a resolution of 368 × 496. For each element of the batch,

we randomly sample 32 trajectories whose initial timestep is marked “visible” in

the ground truth (so that the tracking targets always begin within-bounds and un-

occluded). We train for 500,000 steps, with a learning rate of 1e-4 with a 1-cycle

schedule [56], using the AdamW optimizer and clipping gradients to [−1, 1]. Training

28

3. Geometry-free Scene Representation for Point Tracking

takes approximately 5 days on four GeForce RTX 2080s.

Hyperparameters: We use T = 8 (timesteps considered by the MLP-Mixer),

and K = 8 (update iterations). The model can in general be trained for any T , but

we found that the model was more difficult to train at T = 16 and T = 32, likely

because the complexity of trajectories grows rapidly with their length under our

model, as there is no weight sharing across time. On the other hand, the temporal

sensitivity allows our model to learn more complex temporal priors. We found that

K > 8 performs similar to K = 8, and so use K = 8 because it is faster.

Complexity: Speed: When the number of targets is small enough to fit on a GPU

(e.g., 128 targets for a 12G GPU), our model is faster than RAFT (340ms vs. 2000ms

at 480 × 1024). RAFT is comparatively slow because (1) it is too memory-heavy to

compute all frames’ flows in parallel, so we must run it T − 1 times, and (2) much

computation is spent on non-target pixels. Memory: Our model’s memory scales

with T · N , where N is the number of particles being tracked, due to the iterated

MLP-Mixer which consumes a T -length sequence of features per particle.

Code: PIPs is implemented in Pytorch [42]. We will publicly release the code for

the model and training procedure.

3.5 Experiments

We train our model in a modified version of FlyingThings [38], which we name

FlyingThings++ (discussed more below).

We evaluate our model on tracking objects in FlyingThings++, tracking vehicles

and pedestrians in KITTI [12], tracking heads in a crowd in CroHD [61], and finally,

propagating keypoints in animal videos in BADJA [2]. We visualize trajectory

estimates in DAVIS videos in Figure 3.1, to illustrate the method’s generality, and

visualize the estimates against ground truth in Figures 3.4 and 3.5.

Please refer to the project page1 for video visualizations of our results on these

datasets.

1https://particle-video-revisited.github.io/

29

https://particle-video-revisited.github.io/

3. Geometry-free Scene Representation for Point Tracking

3.5.1 Training data: FlyingThings++

We created a synthetic dataset based on FlyingThings [38], which is a dataset typically

used to train optical flow models (usually in combination with other datasets). We

chose FlyingThings because (1) its visuals and motions are extremely complex, which

gives hope of generalizing to other data, and (2) it provides 10-frame videos with

ground-truth forward and backward optical flow (as opposed to 2-frame videos), from

which we can mine multi-step trajectory ground truth.

To create ground truth multi-frame trajectories, we chain the ground-truth flows

forwards, and discard chains that fail a forward-backward consistency check (e.g., by

landing on occluders). Through this process we create a sparse set of 4-frame and

8-frame trajectories. To this set we also add 2-frame trajectories from the raw flow

fields.

The forward-backward consistency check ensures that the trajectories are accurate,

but it leaves us with a library of trajectories where the target is visible on every

timestep. Therefore, it is necessary to add new occlusions on top of the video. We

do this on-the-fly during batching: for each FlyingThings video in the batch, we

randomly sample an object from an alternate FlyingThings video, paste it directly

on top of the current video, overwriting the pixels within its mask on each frame.

We then update the ground-truth to reflect the new visibility in the occluded area

on each frame, as well as update the trajectory list to include the trajectories of the

added object.

Combining all videos with at least 32 valid 8-frame trajectories, we obtain a total

of 4311 training videos, and 734 test videos. To expand the breadth of the training

set, we augment the data on-the-fly with color and brightness changes, random scale

changes, random crops which randomly shift across time, random Gaussian blur, and

random horizontal and vertical flips.

3.5.2 Baselines

In our experiments we consider the following baselines.

Recurrent All-Pairs Field Transforms (RAFT) [62] represents the state-

of-the-art in optical flow estimation, where a high resolution flow field is refined

through iterative updates, based on lookups from a 4D cost volume constructed

30

3. Geometry-free Scene Representation for Point Tracking

between all pairs of pixels. Note that similar to our method, RAFT has been trained

on FlyingThings (including occlusions and out-of-bounds motions), but only has a

2-frame temporal span. To generate multi-frame trajectories with RAFT at test time,

we compute flow with all consecutive pairs of frames, and then compute flow chains

at the pixels queried on the first frame. To continue chains that travel out of bounds,

we clamp the coordinates to the image bounds and sample at the edge of the flow

map.

DINO [6] is a vision transformer (ViT-S [11] with patch size 8) trained on

ImageNet with a self-supervision objective based on a knowledge distillation setup

that builds invariance to image augmentations. To use this model for multi-frame

correspondence, we use the original work’s code for instance tracking, which uses

nearest neighbor between the initial frame and the current frame, as well as nearest-

neighbor between consecutive frames, and a strategy to restrict matches to a local

neighborhood around previous matches. We report results with and without this

“windowing” strategy.

TimeCycle [70] learns correspondences between pixels from different frames

by optimizing an objective that encourages correspondences to be cycle-consistent

across time (i.e., forward-backward consistency), including across frame skips. This

method tracks the same way as DINO, by computing feature affinity across frames

and reporting nearest neighbors.

Contrastive Random Walk (CRW) [23] treats the video as a space-time

graph, with edges containing transition probabilities of a random walk, and computes

long-range correspondences by walking across the graph. Similar to TimeCycle [70],

the model is trained with cycle-consistency.

Memory-Augmented Self-supervised Tracker (MAST) [29] learns corre-

spondences between features by reconstructing the target frame with linear combina-

tions of reference frames. At test time the correspondences are predicted autoregres-

sively. The model is trained on OxUvA [66] and YouTube-VOS [74]

Video Frame-level Similarity (VFS) [73] learns an encoder that produces

frame-level embeddings which are similar within a video, and dissimilar across videos.

This model is trained on Kinetics-400 [26].

ImageNet ResNet [19] is a ResNet50 supervised for classification with ImageNet

labels, and evaluated the same way as DINO.

31

3. Geometry-free Scene Representation for Point Tracking

Figure 3.3: Qualitative results in FlyingThings++ for RAFT (left column), and
PIPs (our model, right column). Trajectories are drawn in a pink-to-yellow colormap,
over ground-truth trajectories which are in blue-to-green, and in the background is
the mean RGB of the sequence. Note that RAFT trajectories get “stuck” in the
middle of the frame, due to occlusions there. The value displayed in the top left
corner is the average error in the video.

3.5.3 Trajectory estimation in FlyingThings++

Using 8-frame videos from the FlyingThings++ test set as input, we estimate trajecto-

ries for all pixels for which we have ground-truth, and evaluate the Euclidean distance

between each estimated trajectory and its corresponding ground truth, averaging

32

3. Geometry-free Scene Representation for Point Tracking

over all 8 timesteps. We are especially interested in measuring how our model’s

performance compares with the baselines when the target gets occluded or flies out of

frame. To create controlled out-of-bounds and occlusion tests, we first take a central

crop of each video, sized 368 × 496, providing us with some trajectories that fly out

of the crop. Second, we implement a simple controllable occlusion strategy, where we

replace a 200 × 200 square in frames 2-5 with gray pixels.

We compare our model against DINO [6], representing the state-of-the-art for

feature matching, and RAFT [62], representing the state-of-the-art for flow. Table 3.1

shows the results across the different evaluations on the test set. DINO struggles

across all splits and performs worse on occluded pixels than on visible ones. RAFT

obtains high accuracy for visible pixels, but its errors increase as the occlusions

become more difficult. Our model performs similarly to RAFT on visible pixels, but

it is somewhat robust to occlusions. Figure 3.3 shows visualizations of our results on

the FlyingThings++ test data, compared to RAFT and ground truth. Inspecting the

results manually, we see that RAFT’s trajectories become “stuck” in the region of the

added occluder, which makes sense because flows there do not reflect the motion of

the targets. Our model, in contrast, is able to locate the targets after they re-emerge

from the occluder, and inpaint the missing portions of the trajectories.

Method Vis. Occ.
DINO [6] 40.68 77.76
RAFT [62] 24.32 46.73
PIPs(ours) 15.54 36.67

Table 3.1: Trajectory estimation error in FlyingThings++. “Vis.” evaluates
pixels that stay visible and in-bounds; “OOB” evaluates pixels that fly outside the
image bounds; “Occ.” evaluates pixels that cross behind an occluder. PIP trajectories
are more robust to targets moving out-of-bounds or becoming occluded.

3.5.4 Trajectory estimation in KITTI

We additionally evaluate on an 8-frame point trajectory dataset that we created from

the “tracking” subset of the KITTI [12] urban scenes benchmark. To create 8-frame

trajectories, we sample a 3D box annotation that has at least 8 valid timesteps,

select a LiDAR point within the box on the first timestep, transform it in 3D to

33

3. Geometry-free Scene Representation for Point Tracking

Figure 3.4: Qualitative results in FlyingThings++ (left), KITTI (middle),
and CroHD (right). We visualize a video with the mean of its RGB. We trace the
estimates with pink-to-yellow trajectories, and show ground truth in blue-to-green.
FlyingThings++ is chaotic, but training on this data allows our model to generalize.

its corresponding location on every other step, and project this location into pixel

coordinates.

Method Vis. Occ.
DINO [6] 13.33 13.45
RAFT [62] 4.03 6.79
PIPs(ours) 4.40 5.56

Table 3.2: Trajectory estimation error in KITTI. PIP and RAFT trajectories
are similar; DINO lags behind both.

In Table 3.2 we see that RAFT and our method perform approximately on par

with one another (RAFT is slightly better on visible, while our method is slightly

better on occluded), but DINO’s error is nearly twice this. We evaluate on vehicles

and pedestrians. Qualitative results for our model are shown in Figure 3.4-middle.

3.5.5 Trajectory estimation in CroHD

We additionally evaluate on the Crowd of Heads Dataset (CroHD) [61], which consists

of high-resolution (1920 x 1080) videos of crowds, with annotations tracking the

heads of people in the crowd. We evaluate on 8-frame sequences extracted from

34

3. Geometry-free Scene Representation for Point Tracking

the dataset, using an FPS of 12.5. We filter out targets whose motion is below a

threshold distance, and split the evaluation between targets that are visible and those

that undergo occlusions. The results are shown in Table 3.3. In this data, PIPs

outperforms RAFT and DINO by a wide margin, both visibility settings. DINO

struggles overall, likely because the motions in this dataset are small, and DINO is

only able to track at a coarse resolution. Qualitative results for our model are shown

in Figure 3.4-right.

Method Vis. Occ.
DINO [6] 22.50 26.06
RAFT [62] 7.91 13.04
PIPs(ours) 5.16 7.56

Table 3.3: Trajectory estimation error in CroHD. PIPs achieves better accuracy, for
both visible and occluded targets.

3.5.6 Keypoint propagation in BADJA

BADJA [2] is a dataset of animal videos with keypoint annotations. These videos

overlap with the DAVIS dataset [44], but include keypoint annotations. Keypoint

annotations exist on approximately 1/5 frames, and the standard evaluation is

Percentage of Correct Keypoint-Transfer (PCK-T), where keypoints are provided on

a reference image, and the goal is to propagate these annotations to other frames. A

keypoint transfer is considered correct if it is within a distance of 0.2
√
A from the

true pixel coordinate, where A is the area of the ground-truth segmentation mask on

the frame.

We note that some existing methods test on a simplified version of this keypoint

propagation task, where the ground-truth segmentation is available on every frame of

the video (e.g., [77, 78]). Here, we focus on the harder setting, where the ground-truth

mask is unknown. Similarly, we have found that feature-matching methods (e.g.,

[6]) constrain their correspondences to a local spatial window around the previous

frame’s match. We report results for these methods with the qualifier “Windowed”,

but focus again on the un-constrained version of the problem, where keypoints need

to be propagated from frame 1 to every other frame, with no other knowledge about

35

3. Geometry-free Scene Representation for Point Tracking

motion or position.

First frame + target DINO trajectory RAFT trajectory DPV trajectory (ours)

Figure 3.5: Comparison with baselines in BADJA, on videos with occlusions.
For each method, we trace the estimated trajectory with a pink-to-yellow colormap.
The sparse ground truth is visualized with cyan x ’s. In the video on the first row,
all methods perform fairly well, though DINO and RAFT drift slightly toward the
horse’s body. In the second video, the target (on the dog’s tail) leaves the image
bounds then returns into view. In the third video, the target (on the horse’s leg) is
momentarily occluded, causing RAFT to lose track entirely. For a more detailed view
of these results, please watch the supplementary video.

Table 3.4 shows the results of the BADJA evaluation. On four of the seven videos,

our model produces the best keypoint tracking accuracy, as well as the best on average,

by a margin of 9 points. DINO [6] obtains the best accuracy in the remaining videos,

though its widest margin over our model is just 5 points. Interestingly, windowing

helps DINO (and other baselines) in some videos but not in others, perhaps because

of the types of motions in DAVIS. We note that DAVIS has an object-centric bias

(i.e., the target usually stays near the center of the frame), which translation-sensitive

methods like DINO can exploit, since their features encode image position embeddings;

RAFT and PIPs track more generally. In Figure 3.5 we visualize DINO, RAFT,

and PIP trajectories on targets that undergo momentary occlusions, illustrating how

DINO tracks only coarsely, and how RAFT loses track after the occlusion.

36

3. Geometry-free Scene Representation for Point Tracking

Method bear camel cows dog-a dog horse-h horse-l Avg.

Win. DINO [6] 77.9 69.8 83.7 17.2 46.0 29.1 50.8 53.5
Win. ImageNet ResNet [19] 70.7 65.3 71.7 6.9 27.6 20.5 49.7 44.6
Win. TimeCycle [70] 13.6 10.0 8.0 3.4 9.8 7.9 13.1 9.4
Win. CRW [23] 63.2 75.9 77.0 6.9 32.8 20.5 22.0 42.6
Win. VFS [73] 63.9 74.6 76.2 6.9 35.1 27.2 40.3 46.3
Win. MAST [29] 35.7 39.5 42.0 10.3 8.6 12.6 14.7 23.3
Win. RAFT [62] 64.6 65.6 69.5 3.4 38.5 33.8 28.8 43.5

DINO [6] 75.0 59.2 70.6 10.3 47.1 35.1 56.0 50.5
ImageNet ResNet [19] 65.4 53.4 52.4 0.0 23.0 19.2 27.2 34.4
TimeCycle [70] 13.6 8.4 14.4 3.4 5.7 13.2 13.6 10.3
CRW [23] 66.1 67.2 64.7 6.9 33.9 25.8 27.2 41.7
VFS [73] 64.3 62.7 71.9 10.3 35.6 33.8 33.5 44.6
MAST [29] 51.8 52.0 57.5 3.4 5.7 7.3 34.0 30.2
RAFT [62] 64.6 65.6 69.5 13.8 39.1 37.1 29.3 45.6
PIPs (ours) 76.3 81.6 83.2 34.2 44.0 57.4 59.5 62.3

Table 3.4: PCK-T in BADJA. In this evaluation, keypoints are initialized in the
first frame of the video, and are propagated to the end of the video; PCK-T measures
the accuracy of this propagation. In each column, we bold the best result, and
underline the second-best. Above the middle bar, we give methods a spatial window
(marked “Win.”) to constrain how they propagate labels, which encodes domain
knowledge about the span of plausible motions in the domain (which is a common
strategy in existing work). Below the bar, we run each method in the unconstrained
setting. Our method wins in most videos, but DINO performs well also.

3.5.7 Ablation on visibility-aware linking

In this section we evaluate the effect of visibility-aware trajectory linking instead of

naive linking. Our trajectory linking strategy relies on visibility estimates produced

by the model. Without using these estimates, we may still link trajectories naively

(i.e., greedily), by chaining the 8-frame trajectories end-to-end. We evaluate this

choice in BADJA keypoint propagation, and show the result in Table 3.5. Naive

linking indeed gives worse PCK-T, but the margin is only 0.2 points. This may

suggest that the visibility estimator is not generalizing well to the new video domain.

Alternatively, this may be showing a small effect because the metric is dominated by

trajectories that stay visible for the full duration of the video, as evidenced by DINO

37

3. Geometry-free Scene Representation for Point Tracking

obtaining 50.5 PCK-T with no strategy for managing occlusions at all (see Table 3.4).

Method Average PCK-T
Without visibility-aware linking 59.1
With visibility-aware linking 59.3

Table 3.5: Effect of visibility-aware linking on keypoint propagation in
BADJA. Linking trajectories from locations estimated to be “visible” yields a small
improvement in average PCK-T.

3.5.8 Experiment details

KITTI: We preprocess the KITTI [12] data by resizing the original images (of slightly

varying resolution) to 512 × 320. The data is at 10 FPS, and we use this framerate

as-is. We use videos from sequences 0000-0009, which include mostly vehicles, as

well as 0017 and 0019, which include mostly pedestrians. We filter the data to only

include targets that undergo an occlusion by another object. We do this by checking

if (1) the target’s box has an IOU greater than 0.5 with another annotated box, and

(2) the target’s box is behind (i.e., has a larger depth-axis value than) the intersecting

box. Note that since the annotations are only at the box level, this data does not

evaluate fine-grained motions within the objects, such as the movement of the legs or

arms of a pedestrian.

CroHD: We preprocess the CroHD [61] data by cropping the original images of

size 1920× 1080 into crops of size 512× 320. To make the data harder, we subsample

the frames in the original dataset so that the FPS is reduced by a factor of 3. Since

the dataset provides the ground truth for the head bounding boxes throughout the

video and their visibility information, we define the ground truth point trajectory for

a head as the trajectory of the center of its bounding box. In addition, we only test

on heads that move (excluding ones that move less than 150px over the 8 frames).

We test on sequences of 8 frames.

Runtime: On an 8-frame video with resolution 480 × 1024, the CNNs take

approximately 6 ms, and the iterative inference for a batch of trajectories takes

approximately 330 ms. If we require more trajectories than fit on the GPU simultane-

ously (e.g., if the GPU has 12G memory and we require more than 128 trajectories),

38

3. Geometry-free Scene Representation for Point Tracking

we simply split the set into multiple batches, and compute one batch at a time. Note

it is possible to share the CNN features across these batches. Also note that when

a small number of trajectories is required, our model runs much faster than RAFT,

since RAFT always computes results densely (at approximately 2000 ms per 8-frame

video). That is, as long as the number of trajectories is small enough to fit on the

GPU in parallel, then our total time is less than 340 ms; but time will extend linearly

as we exceed GPU capacity and demand more computation in serial.

3.5.9 Limitations

Our model has two main limitations. First is our unique extreme tradeoff, of spatial

awareness for temporal awareness. Although this maximizes the power of the temporal

prior in the model, it sacrifices potentially valuable information that could be shared

between trajectories. We are indeed surprised that single-particle tracking performs

as well as it does, considering that spatial smoothness is known to be essential for

accurate optical flow estimation. Extending our architecture to concurrent estimation

of multiple point trajectories is a direct avenue for future work.

Our second main limitation stems from the MLP-Mixer. Due to this architecture

choice, our model is not recurrent across time. Although longer trajectories can be

produced by re-initializing our inference at the tail of an initial trajectory, our model

will lose the target if it stays occluded beyond the model’s temporal window. We

have tried models that are convolutional across time, and that use self-attention

across the sequence length, but these did not not perform as well as the MLP-Mixer

on our FlyingThings++ tests. Taking advantage of longer and potentially varying

temporal context would help the model track through longer periods of ambiguity,

and potentially leverage longer-range temporal priors.

3.6 Conclusion

We propose Pesistent Independent Particles (PIPs), a method for multi-frame point

trajectory estimation through occlusions. Our method combines cost volumes and

iterative inference with a multi-frame temporal deep network, which jointly reasons

about location and appearance of visual entities across multiple timesteps. We

39

3. Geometry-free Scene Representation for Point Tracking

argue that optical flow, particle videos, and feature matches cover different areas

in the spectrum of pixel-level correspondence tasks. Particle videos benefit from

temporal context, which matching-based methods lack, and can also survive multi-

frame occlusions, which is missing in flow-based methods. Given how tremendously

useful optical flow and feature matching have been for driving progress in video

understanding, we hope the proposed multi-frame trajectories will spark interest in

architectures and datasets designed for longer-range fine-grained correspondences.

40

Chapter 4

Conclusion and Future Work

This thesis proposes two methods that introduce features in extra dimensions for

modelling space and time. The first method uses features in the scene space for better

BEV perception for autonomous vehicles. The second method attaches features over

time to a point of interest for better tracking through occlusions. We show that

introducing spatial and temporal priors results in better representation of the scene,

and consequently better performance on the end tasks (e.g. segmentation, tracking).

For future work for our BEV segmentation baseline in Chapter 2, we are considering

several directions: (1) our model currently only handles the task of BEV segmentation

and we would like to see if the same architecture works well for 3D detection,

forecasting, etc; (2) our model is currently implemented for a single time step only,

and it is natural to extend it to also model time; (3) we showed that some factors

(e.g. resolution, batch size) are more important than feature-lifting techniques, so

it’s worth trying new architectures (e.g. transformers); (4) to be more useful for

autonomous driving applications, it would be interesting to optimize a behavioral

end-task [15], where plans generated from model predictions are compared against

plans generated by ground-truth information.

For future work for our point tracking method in Chapter 3, there are some

potential directions too: (1) our model currently only tracks points, while tracking

at multiple granularity levels together (e.g. points, parts, objects) might improve

over tracking any single granularity level alone; (2) our model tracks every point

independently, and it would be nice to allow entities of interest to communicate

41

4. Conclusion and Future Work

and “support” each other to track everything better; (3) currently the “appearance”

updates in our model is based on the correlation maps and attend directly to the

features of the rest of the pixels, while it makes more sense to update the features in

the neighborhood as well; (4) our model is trained for a fixed number of time steps,

and we currently use visibility estimates to re-initialize point tracks in order to track

over long time horizon; it would be nice to make the model able to handle videos of

arbitrary lengths.

Another natural future direction is to explore more methods combining both the

spatial and temporal priors, to get closer to a wholistic scene representation, where

the foreground objects and the background are disentangled and propagated through

time.

42

Bibliography

[1] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple
online and realtime tracking. In 2016 IEEE international conference on image
processing (ICIP), pages 3464–3468. IEEE, 2016. 3

[2] Benjamin Biggs, Thomas Roddick, Andrew Fitzgibbon, and Roberto Cipolla.
Creatures great and SMAL: Recovering the shape and motion of animals from
video. In Asian Conference on Computer Vision, pages 3–19. Springer, 2018. 2,
29, 35

[3] Thomas Brox and Jitendra Malik. Large displacement optical flow: Descriptor
matching in variational motion estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33:500–513, 2011. 21

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuScenes: A multimodal dataset for autonomous driving. arXiv:1903.11027,
2019. 6, 9, 11

[5] Yigit Baran Can, Alexander Liniger, Ozan Unal, Danda Paudel, and Luc
Van Gool. Understanding bird’s-eye view of road semantics using an onboard
camera. IEEE Robotics and Automation Letters, 7(2):3302–3309, 2022. 4, 5

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision
transformers. In ICCV, 2021. 19, 31, 33, 34, 35, 36, 37

[7] Ricson Cheng, Ziyan Wang, and Katerina Fragkiadaki. Geometry-aware recurrent
neural networks for active visual recognition. In NIPS, 2018. 5

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR, 2009. 11, 15

[9] Victor Lempitsky Dmitry Ulyanov, Andrea Vedaldi. Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and texture synthesis.
In CVPR, 2017. 8

[10] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,

43

Bibliography

Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks. In ICCV, pages
2758–2766, 2015. 21

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers
for image recognition at scale. In ICLR, 2021. 25, 31

[12] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision
meets robotics: The kitti dataset. International Journal of Robotics Research
(IJRR), 2013. 2, 29, 33, 38

[13] Hugo Germain, Vincent Lepetit, and Guillaume Bourmaud. Visual correspon-
dence hallucination: Towards geometric reasoning. In arXiv Preprint, 2021.
22

[14] Nikhil Gosala and Abhinav Valada. Bird’s-eye-view panoptic segmentation using
monocular frontal view images. IEEE Robotics and Automation Letters, 2022. 4,
6

[15] Yiluan Guo, Holger Caesar, Oscar Beijbom, Jonah Philion, and Sanja Fidler.
The efficacy of neural planning metrics: A meta-analysis of PKL on nuscenes.
CoRR, abs/2010.09350, 2020. URL https://arxiv.org/abs/2010.09350. 41

[16] Adam Harley, Shrinidhi Kowshika Lakshmikanth, Paul Schydlo, and Katerina
Fragkiadaki. Tracking emerges by looking around static scenes, with neural 3d
mapping. In ICLR, 2020. 2

[17] Adam W. Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle videos
revisited: Tracking through occlusions using point trajectories, 2022. URL
https://arxiv.org/abs/2204.04153. 1, 2

[18] Adam W. Harley, Zhaoyuan Fang, Jie Li, Rares Ambrus, and Katerina Fragki-
adaki. A simple baseline for bev perception without lidar, 2022. URL
https://arxiv.org/abs/2206.07959. 1, 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016. 8, 9, 31, 37

[20] Noureldin Hendy, Cooper Sloan, Feng Tian, Pengfei Duan, Nick Charchut,
Yuesong Xie, Chuang Wang, and James Philbin. Fishing net: Future inference
of semantic heatmaps in grids. arXiv preprint arXiv:2006.09917, 2020. 4, 5, 6,
11, 12, 13

[21] Anthony Hu, Zak Murez, Nikhil Mohan, Sof́ıa Dudas, Jeffrey Hawke, Vijay
Badrinarayanan, Roberto Cipolla, and Alex Kendall. Fiery: Future instance

44

https://arxiv.org/abs/2010.09350
https://arxiv.org/abs/2204.04153
https://arxiv.org/abs/2206.07959

Bibliography

prediction in bird’s-eye view from surround monocular cameras. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 15273–
15282, 2021. 5, 10, 12, 13

[22] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep
networks. arXiv preprint arXiv:1612.01925, 2016. 21

[23] Allan Jabri, Andrew Owens, and Alexei A Efros. Space-time correspondence as
a contrastive random walk. Advances in Neural Information Processing Systems,
2020. 22, 31, 37

[24] Joel Janai, Fatma G”uney, Anurag Ranjan, Michael J. Black, and Andreas
Geiger. Unsupervised learning of multi-frame optical flow with occlusions. In
European Conference on Computer Vision (ECCV), volume Lecture Notes in
Computer Science, vol 11220, pages 713–731. Springer, Cham, September 2018.
22

[25] Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi, and Kwang Moo
Yi. COTR: Correspondence Transformer for Matching Across Images. In ICCV,
2021. 22

[26] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheen-
dra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al.
The kinetics human action video dataset. arXiv:1705.06950, 2017. 31

[27] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7482–7491,
2018. 10

[28] Z. Lai and W. Xie. Self-supervised learning for video correspondence flow. In
BMVC, 2019. 22

[29] Zihang Lai, Erika Lu, and Weidi Xie. MAST: A memory-augmented self-
supervised tracker. In CVPR, 2020. 19, 22, 31, 37

[30] Peizhao Li, Pu Wang, Karl Berntorp, and Hongfu Liu. Exploiting temporal
relations on radar perception for autonomous driving. arXiv:2204.01184, 2022.
3, 4, 6, 13

[31] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: A local semantic
map learning and evaluation framework. arXiv preprint arXiv:2107.06307, 2021.
5, 11

[32] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu,
Qiao Yu, and Jifeng Dai. Bevformer: Learning bird’s-eye-view representation
from multi-camera images via spatiotemporal transformers. arXiv preprint

45

Bibliography

arXiv:2203.17270, 2022. xi, 3, 4, 6, 10, 11, 12, 13, 15

[33] Teck-Yian Lim, Amin Ansari, Bence Major, Daniel Fontijne, Michael Hamilton,
Radhika Gowaikar, and Sundar Subramanian. Radar and camera early fusion for
vehicle detection in advanced driver assistance systems. In Machine Learning for
Autonomous Driving Workshop at the 33rd Conference on Neural Information
Processing Systems, volume 2, page 7, 2019. 5, 6

[34] Buyu Liu, Bingbing Zhuang, Samuel Schulter, Pan Ji, and Manmohan Chan-
draker. Understanding road layout from videos as a whole. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4414–4423, 2020. 5

[35] Buyu Liu, Bingbing Zhuang, and Manmohan Chandraker. Weakly but deeply su-
pervised occlusion-reasoned parametric layouts. arXiv preprint arXiv:2104.06730,
2021. 5

[36] Jakob Lombacher, Kilian Laudt, Markus Hahn, Jürgen Dickmann, and Christian
Wöhler. Semantic radar grids. In 2017 IEEE intelligent vehicles symposium
(IV), pages 1170–1175. IEEE, 2017. 6

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017. 11

[38] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox.
A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In CVPR, 2016. 2, 20, 29, 30

[39] Michael Meyer and Georg Kuschk. Deep learning based 3d object detection
for automotive radar and camera. In 2019 16th European Radar Conference
(EuRAD), pages 133–136. IEEE, 2019. 6

[40] Bowen Pan, Jiankai Sun, Ho Yin Tiga Leung, Alex Andonian, and Bolei Zhou.
Cross-view semantic segmentation for sensing surroundings. IEEE Robotics and
Automation Letters, 5(3):4867–4873, 2020. 3, 5, 11

[41] Michael Parker. Chapter 20 – automotive radar. In Michael Parker, editor,
Digital Signal Processing 101 (Second Edition), pages 253–276. Newnes, sec-
ond edition edition, 2017. ISBN 978-0-12-811453-7. doi: https://doi.org/10.
1016/B978-0-12-811453-7.00020-2. URL https://www.sciencedirect.com/

science/article/pii/B9780128114537000202. 4, 6

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

46

https://www.sciencedirect.com/science/article/pii/B9780128114537000202
https://www.sciencedirect.com/science/article/pii/B9780128114537000202

Bibliography

and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 29

[43] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3d. In European Conference
on Computer Vision, pages 194–210. Springer, 2020. xi, 4, 5, 10, 11, 12, 14, 16

[44] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alexander
Sorkine-Hornung, and Luc Van Gool. The 2017 DAVIS challenge on video object
segmentation. arXiv:1704.00675, 2017. 21, 35

[45] Cody Reading, Ali Harakeh, Julia Chae, and Steven L. Waslander. Categorical
depth distribution network for monocular 3d object detection. In CVPR, 2021. 5

[46] Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang, Erik B Sudderth,
and Jan Kautz. A fusion approach for multi-frame optical flow estimation. In
Proceedings of the IEEE Winter Conference on Applications of Computer Vision
(WACV), 2019. 20, 22

[47] Thomas Roddick and Roberto Cipolla. Predicting semantic map representations
from images using pyramid occupancy networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11138–11147,
2020. xi, 6, 10, 12

[48] Avishkar Saha, Oscar Mendez Maldonado, Chris Russell, and Richard Bowden.
Translating images into maps. arXiv preprint arXiv:2110.00966, 2021. xi, 4, 6,
10, 11, 12, 13

[49] Avishkar Saha, Oscar Mendez, Chris Russell, and Richard Bowden. Enabling
spatio-temporal aggregation in birds-eye-view vehicle estimation. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 5133–5139.
IEEE, 2021. 4, 6

[50] Agust́ın Salgado and Javier Sánchez. Temporal constraints in large optical flow
estimation. In International Conference on Computer Aided Systems Theory,
pages 709–716. Springer, 2007. 22

[51] P. Sand and S. Teller. Particle video: Long-range motion estimation using point
trajectories. In CVPR, volume 2, pages 2195–2202, 2006. 1, 2, 19, 23

[52] Samuel Schulter, Menghua Zhai, Nathan Jacobs, and Manmohan Chandraker.
Learning to look around objects for top-view representations of outdoor scenes.
In Proceedings of the European Conference on Computer Vision (ECCV), pages
787–802, 2018. 4, 5

[53] Ole Schumann, Markus Hahn, Jürgen Dickmann, and Christian Wöhler. Semantic
segmentation on radar point clouds. In 2018 21st International Conference on
Information Fusion (FUSION), pages 2179–2186. IEEE, 2018. 6

47

Bibliography

[54] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wet-
zstein, and Michael Zollhofer. Deepvoxels: Learning persistent 3d feature embed-
dings. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2437–2446, 2019. 5

[55] Liat Sless, Bat El Shlomo, Gilad Cohen, and Shaul Oron. Road scene under-
standing by occupancy grid learning from sparse radar clusters using semantic
segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 0–0, 2019. 6

[56] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of
neural networks using large learning rates. In Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications, volume 11006, page 1100612.
International Society for Optics and Photonics, 2019. 28

[57] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t
decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489,
2017. 15

[58] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy
considerations for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.
18

[59] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs
for optical flow using pyramid, warping, and cost volume. In CVPR, 2018. 21

[60] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense point trajectories
by GPU-accelerated large displacement optical flow. In ECCV, 2010. 21

[61] Ramana Sundararaman, Cedric De Almeida Braga, Eric Marchand, and Julien
Pettre. Tracking pedestrian heads in dense crowd. In CVPR, pages 3865–3875,
2021. 2, 29, 34, 38

[62] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for
optical flow. In European Conference on Computer Vision, pages 402–419.
Springer, 2020. 2, 19, 20, 21, 24, 25, 26, 30, 33, 34, 35, 37

[63] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for
optical flow. https://github.com/princeton-vl/RAFT, 2020. 28

[64] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua
Zhai, Thomas Unterthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario
Lucic, and Alexey Dosovitskiy. MLP-mixer: An all-mlp architecture for vision.
ArXiv, abs/2105.01601, 2021. 25

[65] Hsiao-Yu Fish Tung, Ricson Cheng, and Katerina Fragkiadaki. Learning spatial
common sense with geometry-aware recurrent networks. CVPR, 2019. 5

[66] Jack Valmadre, Luca Bertinetto, Joao F Henriques, Ran Tao, Andrea Vedaldi,

48

https://github.com/princeton-vl/RAFT

Bibliography

Arnold WM Smeulders, Philip HS Torr, and Efstratios Gavves. Long-term
tracking in the wild: A benchmark. In ECCV, pages 670–685, 2018. 31

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.
25

[68] Hengli Wang, Peide Cai, Yuxiang Sun, Lujia Wang, and Ming Liu. Learning
interpretable end-to-end vision-based motion planning for autonomous driving
with optical flow distillation. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 13731–13737. IEEE, 2021. 5

[69] Qianqian Wang, Xiaowei Zhou, Bharath Hariharan, and Noah Snavely. Learning
feature descriptors using camera pose supervision. In Proc. European Conference
on Computer Vision (ECCV), 2020. 22

[70] Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learning correspondence from
the cycle-consistency of time. In CVPR, 2019. 19, 22, 31, 37

[71] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani. 3d multi-object
tracking: A baseline and new evaluation metrics. In 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 10359–10366.
IEEE, 2020. 3

[72] Olivia Wiles, Sebastien Ehrhardt, and Andrew Zisserman. Co-attention for
conditioned image matching. In CVPR, 2021. 22

[73] Jiarui Xu and Xiaolong Wang. Rethinking self-supervised correspondence learn-
ing: A video frame-level similarity perspective. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 10075–10085, Oc-
tober 2021. 31, 37

[74] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang, Dingcheng Yue, Yuchen
Liang, Brian Price, Scott Cohen, and Thomas Huang. Youtube-vos: Sequence-
to-sequence video object segmentation. In ECCV, pages 585–601, 2018. 31

[75] Bin Yang, Runsheng Guo, Ming Liang, Sergio Casas, and Raquel Urtasun.
Radarnet: Exploiting radar for robust perception of dynamic objects. In European
Conference on Computer Vision, pages 496–512. Springer, 2020. 6

[76] Charig Yang, Hala Lamdouar, Erika Lu, Andrew Zisserman, and Weidi Xie.
Self-supervised video object segmentation by motion grouping. In ICCV, 2021.
22

[77] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole,
Huiwen Chang, Deva Ramanan, William T Freeman, and Ce Liu. LASR: Learning
articulated shape reconstruction from a monocular video. In Proceedings of the

49

Bibliography

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15980–15989, 2021. 35

[78] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole,
Ce Liu, and Deva Ramanan. Viser: Video-specific surface embeddings for
articulated 3d shape reconstruction. In NeurIPS, 2021. 35

[79] Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng He,
and Jia Pan. Projecting your view attentively: Monocular road scene layout
estimation via cross-view transformation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15536–15545,
2021. 6

[80] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object
detection and tracking. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11784–11793, 2021. 3, 12

[81] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Multimodal virtual point
3d detection. Advances in Neural Information Processing Systems, 34, 2021. 3

50

	Introduction
	Motivation
	Geometry-based Scene Representation for Bird's Eye View Perception
	Geometry-free Scene Representation for Point Tracking

	Geometry-based Scene Representation for Bird's Eye View Perception
	Introduction
	Related Works
	A Simple Baseline for BEV Perception
	Setup and overview
	Architecture
	Implementation details

	Experiments
	Main results
	Ablation studies

	Conclusion

	Geometry-free Scene Representation for Point Tracking
	Introduction
	Related Work
	Optical flow
	Feature matching

	Persistent Independent Particles (PIPs)
	Setup and overview
	Extracting features
	Initializing each target
	Measuring local appearance similarity
	Iterative updates
	Supervision
	Test-time trajectory linking

	Implementation details
	Experiments
	Training data: FlyingThings++
	Baselines
	Trajectory estimation in FlyingThings++
	Trajectory estimation in KITTI
	Trajectory estimation in CroHD
	Keypoint propagation in BADJA
	Ablation on visibility-aware linking
	Experiment details
	Limitations

	Conclusion

	Conclusion and Future Work
	Bibliography

