
Coordinating Heterogeneous Teams for

Urban Search and Rescue

Zongyue Zhao

CMU-RI-TR-22-44

August 11, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Dr. Katia Sycara, chair

Dr. Changliu Liu
Tejus Gupta

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Zongyue Zhao. All rights reserved.

To my family.

iv

Abstract

The mission of Urban Search and Rescue (USAR) is a fight against time.
Victim survival depends on whether they can be found and attended to
in a critical time frame. However, rescuers face severe visibility issues in
the complex environment shortly after structural collapse catastrophes.
This brings the need to study effective schemes of team coordination. In
this thesis, we present methods to coordinate a rescue team of members
with different domain knowledge and capabilities. We first formalize a
framework for modeling agents-environment interaction that allows for
arbitrary origins of heterogeneity, from which we identify two configuration
instances generalizable to common real-world tasks. We use them to
develop a series of USAR environment simulators with regard to the
trade-off between fidelity and sample efficiency. Under these preparations,
we propose a multi-agent reinforcement learning algorithm to tackle
USAR. We adopt graph attention, in a novel manner, to fuse information
perceived across agents and exploit structural priors of the environment.
We apply action-dominant agent indexing to benefit from the power of
parameter sharing, while still allowing agents to have different behavioral
traits. We show that our proposed approach outperforms previous state-
of-the-art literature by 40% to 120% in terms of victim evacuation. In
addition, we develop hierarchical planning-based agents that mimic human
behavior. We conduct imitation learning over faux human trajectories and
demonstrate the improvement over purely online reinforcement learning.
Ultimately, we show that the feature distributions of artificial and real
data are sufficiently close, so that the former can be used to forecast
human performance. We observe that the inference error can be reduced
by half when transformer-based predictors are augmented with a synthetic
dataset.

v

vi

Acknowledgments

I would like to express gratitude to my research advisor, Professor Katia
Sycara, for her precious insights, guidance, and support. I had an amazing
time over the last two years in the lab, in which she created a caring
and collaborative atmosphere. I am also thankful to my thesis committee
members, Professor Changliu Liu and Tejus Gupta, who have patiently
devoted their time to providing valuable feedback and comments.

I also want to say thank you to my collaborators: Professor Michael Lewis,
Dr. Dana Hughes, Dr. Joseph Campbell, Dr. Simon Stepputtis, Sophie
Yue Guo, Max Chris, Ini Oguntola, Huao Li, Keyang Zheng, Noel Chen,
Akshay Dharmavaram, Ying Chen, Ruiyu Li, and Renos Zabounidis, for
all the sparkling ideas and comments they kindly shared in our meetings.
Special thanks to Joe and Simon for how they put an extensive amount
of effort into helping me refine my thesis.

It has been a fantastic journey at CMU. I appreciate the friends I made
along the way.

vii

viii

Funding

This work was supported by DARPA Award HR001120C0036. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency (DARPA).

ix

x

Contents

1 Introduction 1

2 Background 7
2.1 Markov Decision Process . 7
2.2 Markov Games . 8

2.2.1 Heterogeneity in Multi-Agent Systems 8
2.2.2 Information Structure . 9

2.3 Reinforcement Learning Algorithms 10
2.3.1 Value-based . 11
2.3.2 Policy Gradient and Actor-Critic 12

2.4 RL over Graph Environments . 13

3 Task Formulation 15
3.1 Heterogeneous Teamwork . 15
3.2 USAR Mission Design . 17

4 Marcomanagement 21
4.1 Graph-based Environment Simulator 21

4.1.1 State Space . 21
4.1.2 Observation Space . 22
4.1.3 Action Space and Dynamics 22

4.2 Algorithms . 23
4.3 Experiments . 27

4.3.1 Baselines . 27
4.3.2 Results and Discussions . 28

5 Micromanagement 33
5.1 Grid-based Environment Simulator 33

5.1.1 State and Observation Space 33
5.1.2 Action Space and Dynamics 33
5.1.3 Optional Features . 35

5.2 Algorithms . 36
5.3 Experiments . 38

5.3.1 Decision-Making . 38

xi

5.3.2 Forecasting Human Performance 41

6 Conclusion 45

A Acquiring Human Data 47

B Implementation and Future Work 51
B.1 Marcomanagement . 51
B.2 Micromanagement . 52
B.3 Predicting Human Performance . 53
B.4 Future Work . 53

Bibliography 55

xii

List of Figures

1.1 Study Outline . 4

3.1 Saturn map for the USAR mission. 18

4.1 Model architecture. 23
4.2 Graph-based environments. 28
4.3 Performance in the marcomanagement task. 29
4.4 Impact of partial observability on MAVEN. 29
4.5 Performance in preconditions - Middle Map. 30
4.6 Ablation studies - Communication . 30
4.7 Ablation studies: Agent-indexing schemes. 30
4.8 Attention to feature dimensions. Weights are extracted from the model

trained for 100 million steps in the Saturn-right map. 32

5.1 Visibility masks that overlay the global map. Light Grey indicate that
the block is within an agent’s field of view. 34

5.2 Hierarchical planning agents. 37
5.3 Four randomization levels in the top-left region of Saturn. The initial

agent locations are always randomized. Environment dimension: 17×
28× 6. Maximum M1: 120. 39

5.4 Details regarding online RL. 40
5.5 Comparison between online RL and IL over end-of-episode performance,

in the environment shown in Figure 5.3. 40
5.6 Long-term prediction model: Dh|Df → Dvh. 42
5.7 Short-term prediction model: Dh|Df → Dvh. 42
5.8 Long-term prediction model: Dvh|Df ∪Dvh → Dvi. 43
5.9 Short-term prediction model: Dvh|Df ∪Dvh → Dvi. 43
5.10 Comparison between MLP and Transformer for long-term prediction. 44

A.1 Minecraft Environment . 47
A.2 The layout of a participant’s interface. 48
A.3 Marker Blocks . 49

xiii

List of Tables

3.1 Reward signals. 19

5.1 Traveling speed [m/s] of each role. The environment operates at 4Hz. 34

B.1 Hyperparameters for marcomanagement. 51
B.2 Hyperparameters for micromanagement. 52

xiv

Chapter 1

Introduction

Earthquakes claimed more than 700,000 lives in the first two decades of this cen-

tury [28]. Urban areas, in particular, are severely impacted due to extended building

structures [97]. Victims under the collapsed ruins must be attended to in a critical

time frame for successful evacuation [91]. However, the rescue team, often limited in

human resources, faces an unknown, complex environment with hazards associated

with secondary disasters [54, 59]. Thus, it is crucial to search for effective schemes of

team coordination in urban search and rescue (USAR) scenarios.

We first consider the goal of finding the optimal team policy, i.e., what the

rescuers should do. For this purpose, we adopt the paradigm of cooperative multi-

agent reinforcement learning (MARL), which aims to maximize cumulative reward

signals from the interaction between a group of agents and the environment. However,

two challenges arise when applying MARL to USAR. Firstly, a typical USAR mission

involves intrinsically different operations, such as search, locate, on-site medical

support, and extrication [97]. Entities specialized in one domain may not have the

knowledge or ability to execute other operations. Thus, the team is heterogeneous.

Meanwhile, USAR rescuers often encounter severe visibility limitations [87, 121, 126],

highlighting the importance of information sharing among teammates [16, 22, 44, 64,

93]. This raises the question of role-adaptive communication: agents need to identify

and communicate transferable knowledge while preserving their own behavioral traits.

Recent advances in cooperative MARL realize information sharing by averaging

recurrent communication channels [93, 98] or applying the attention mechanism over

1

1. Introduction

the agent relationship graph [10, 55, 58, 70, 90]. However, we observed that the

former approach had trouble distinguishing transferable knowledge from domain

knowledge only applicable to the sender. The latter approach, on the other hand, is

only applicable for tasks involving a great number of agents. Identifying which agent

pairs carry more weight in communication becomes of less significance for a small

rescue team with only a few agents.

In addition to the methodology of explicit communication, recent literature also

adopted the parameter sharing (PS) paradigm that reuses policy or value networks for

multiple agents. While PS have been increasingly popular, they are often proposed

for homogeneous teams [9, 34, 114]. Work that aims to address this limitation

generally relies on agent indexing [26, 63, 83]. However, plain agent indexing fails to

utilize the prior knowledge of an agent’s capabilities, which are available in various

high-level decision-making tasks. Another approach to address issues associated

with partial observability is to assume that global states are available for the agents

during training [63, 83, 94, 123]. This is known as a variant of centralized training

decentralized execution (CTDE). While such global information can be exploited

to stabilize learning, acquiring true states is often only feasible in simulated games

like StarCraft II [86]. For USAR missions, even if we make simulators where global

states are available, agents trained with the state-based CTDE paradigm cannot

be further fine-tuned in real-world testbeds, eventually harming the performance in

execution [21, 125].

In this thesis, we propose a novel MARL architecture to address the aforementioned

drawbacks. Unlike previous literature that operates on the agent relationship graph,

we apply attention over the environment graph structure. From a USAR perspective,

this corresponds to the case where participants are equipped with a map describing the

building structure before the catastrophe, and hope to use outdated priors to expedite

the search process. We use a graph attention network [106] to fuse observations

shared across agents, without the need to depend on global states. We also improve

agent indexing with action availability indicators, so that actor inputs have a higher

similarity when the optimal joint action is more homogeneous. Furthermore, we

develop a graph-based USAR environment simulator optimized for sample and learning

efficiency. We use it to evaluate the performance of the proposed algorithm against

state-of-the-art literature in MARL, and show that we outperform methods that use

2

1. Introduction

agent-relationship graphs or demand global information.

While it is beneficial to exploit heterogeneity explicitly presented to the policy

network, there exist another series of decision-making tasks in which such extra

information is unavailable. For low-level control tasks, it is typical for the action

space to appear identical for all agents despite their intrinsic differences. These

implicit diversities can be modeled with role-specific environment dynamics. To study

the practices applicable to this setup, we develop a grid-based environment also for

USAR scenarios. This environment comes with a resolution that maps to 1m× 1m

squares in the real world, effectively allowing for in-room navigation.

As the nature of the grid-based environment demands agents to conquer ambiguity

in the action space, we observed that online MARL failed to properly comprehend true

short-term objectives that differ for each role. For such a complex and unstructured

task, imitation learning (IL) and offline RL serve as two natural replacements for

online RL [73, 78, 115]. Compared to IL, offline RL demands a diverse, uniformly

distributed dataset that covers the entire state-action space, and poses a higher

requirement for the amount of samples [25, 31]. This makes offline RL a less preferable

solution in our grid-based environment with high fidelity but low sample efficiency.

Meanwhile, (purely offline) IL requires high-performing expert demonstrations to

learn from [41, 85]. Because acquiring human data for USAR tasks is costly and time-

intensive [19, 29, 32, 77], we develop planning-based faux human agents, a practice

adopted by modern literature in complex tasks like autonomous driving [56, 111, 122].

We demonstrate the empirical advantages of imitating experts over online RL.

In addition to the study on optimal coordination, we also hope to comprehend

human behavior in USAR, i.e., what the rescuers currently do. Understanding so

allows assistive robots to cope with human behavior or issue adequate intervention

at an early stage, eventually improving the mission outcome. In the field of human-

robot collaboration, it is common to build cognitive models that predict human

intent [12, 81, 120] or performance [13, 18, 36]. Deep neural networks are progressively

assuming a crucial role for these purposes [89]. For example, recent literature has

adopted sequential models like RNNs [61, 112] and transformers [43, 52, 69]. These

architectures are known to demand a vast amount of training data [80, 110], sometimes

more than 1010 annotated data points [46]. As it is almost impossible to collect such

an amount of human data for USAR missions, we consider the application of using

3

1. Introduction

Figure 1.1: Study Outline

artificial trajectories for inference tasks in USAR. We tune our planning-based agents

to show behavioral traits similar to real humans, and use faux-human trajectories

to help train a transformer-based prediction model. We demonstrate advantages,

in terms of inference accuracy over unseen human data, against training without

synthetic data. We also show how such a data-intensive architecture is proper for the

task by showing improvements against simpler models.

To conclude, the outline of our study is summarized in Figure 1.1. The rest of

this thesis is organized correspondingly as follows:

• In Chapter 2, we review the key concepts in multi-agent reinforcement learning

and provide preliminaries for our work.

• In Chapter 3, we formalize a universal framework to model heterogeneity in

cooperative MARL and identify two representative configurations. We also

provide an overview of the USAR mission we aim to address.

• In Chapter 4, we present a graph-based environment to simulate USAR at a

high level. We propose an online MARL architecture and show improvement

against previous state-of-the-art algorithms designed for generic setups.

• In Chapter 5, we present a grid-based environment to simulate USAR at a low

level. We show the limitation of online MARL towards action ambiguity. We

demonstrate how imitating vivid faux humans may improve decision-making

4

1. Introduction

given the same network architecture. We also show that synthetic trajectories

can be used to augment cognitive models that aim to infer human performance.

• In Chapter 6, we conclude the findings in this thesis.

• In Appendix A, we describe our collaborators’ methodology when acquiring

human data.

• In Appendix B, we present implementation details and acknowledge aspects for

future work.

5

1. Introduction

6

Chapter 2

Background

2.1 Markov Decision Process

In fully-observable, single-agent reinforcement learning, the interaction between the

agent and the environment is formalized as a Markov decision process (MDP) [101],

which is represented by the Markov tuple (S,A, T, R, γ):

• The state space S is the set of possible states of the environment.

• The action space A consists of the possible actions the agent may take.

• The transition function T : S × A × S → [0, 1] determines the probability

T (s, a, s′) of the environment arriving in the state s′ after the agent executed

the action a given state s. The one-step Markov property is attained, as the

entire dynamics of the environment are described with the triplet (s, a, s′) but

not history.

• The reward function R : S × A × S → R maps the state s, action a, and

the resulting state s′ to an reward signal R(s, a, s′) known by the agent after

reaching s′.

• The discount factor γ ∈ [0, 1] weighs the importance of future rewards over

immediate rewards.

Under MDP, a policy π(a|s) is considered optimal if it maximizes the expected

discounted cumulative rewards G = Eπ[
∑T

t=0 γ
trt] [79]. If the transition dynamics T

7

2. Background

and reward function R are fully known, the optimal policy can be solved via dynamic

programming [6]. Otherwise, RL algorithms need to learn from agent-environment

interaction experiences in an error-and-trial manner. Furthermore, MDP assumes

complete access to the environment states. If the inception capabilities of the agent

are limited, decision-making can be modeled as a partially observable Markov decision

process (POMDP) by introducing the observation space Ω = {o} and the observation

function O : S ×A× Ω→ [0, 1] [96]. As the probability p(o′|o, a) does not represent
the environment dynamics, algorithms designed for POMDP commonly hold a belief

regarding the unseen environment states [68, 96] or use dynamic models [39, 95].

2.2 Markov Games

In this section, we discuss how to model the interaction between multiple agents and

the environment. Among the various formulations proposed to extend (PO)MDPs to a

multi-agent setting, the two key differences are a) which elements in the Markov tuple

are agent-sensitive, and b) the paradigms that regularize and reflect the information

structure among agents.

2.2.1 Heterogeneity in Multi-Agent Systems

Consider the partially observable Markov tuple. A generalizable adaptation for the

multi-agent setting is to replace selected elements (X ,Y , ...) ⊆ (S,A,Ω, T, R,O, γ)
with sets of those elements ({X (i)}, {Y(i)}, ...) to address heterogeneity between agents.

For example, the Markov Games model [57, 92] allows for a set of action spaces

{A(i)} and reward functions {R(i)}. Under this formulation, it is possible to define

whether a task is cooperative based on the reward structure: either a) the same

reward function applies to all agents (∀i, j, R(i) = R(j), also known as the MMDP

model [8]), or b) the overall optimization target is the average of agent-specific returns

(max
∑

i G
(i)) [47, 118]. Furthermore, there exists work that considered heterogeneity

in Markov elements other than A and R. The POSG model [35] supports disjoint

observation spaces {Ω(i)}, {O(i)} in addition to action space and rewards variations.

As discussed by the authors of [35], when the reward function is uniform across agents,

POSG regresses to DEC-POMDP [7], which is a widely adopted framework in recent

8

2. Background

work on deep cooperative MARL [11, 23, 27, 83]. Moreover, the MAH-POMDP [90]

model extended DEC-POMDP with state spaces {S(i)} that are unique to the agent’s

corresponding class.

2.2.2 Information Structure

The second thing to consider when formalizing cooperative MARL tasks is how

agents are allowed, in both explicit regulations and feasibility constraints, to share

information among themselves [119]. Certain real-world scenarios, e.g ., when agents

are geometrically sparse [76] or facing adversarial attacks [99], constrain or even

prohibit timely information exchange. Under the most strict limitation, MARL can

be realized in a fully decentralized setting [7, 118], where each agent corresponds to an

independent policy that only considers its own observation. Algorithms in this setup

scale linearly with the number of agents. However, for any arbitrary agent i, because

the environment evolves due to not only its own action but also other agents’ actions

unknown to i, the transition dynamics perceived by i is non-stationary [71]. This

violation to the Markov property means agent i’s value estimate may not approximate

the status quo of the environment as other agents’ learning progresses.

Meanwhile, suppose the task scenario can be separated into distinct training and

execution stages, where information exchange is only prohibited during execution. In

that case, it is possible to mitigate the aforementioned deficiencies via the paradigm

of centralized training with decentralized execution (CTDE). This paradigm has been

popular in recent advances [14, 53, 60, 63, 83, 84, 94] in cooperative MARL. The

problem setup is similar to DEC-POMDP, where agents make decisions under their

own observation/action space rather than joint spaces. However, during the training

stages, participants are allowed to freely share information with each other [34, 60]

or access global states [83, 86]. Such extra information is often only used to train the

critic in the actor-critic setting (Section 2.3.2), so that the actor heads face the same

input distribution in both stages. Nonetheless, the environment under this paradigm

would appear more stationary to the agents, leading to performance improvements

against non-CTDE baselines in certain tasks [15] that allow for a training playground.

Parameter sharing (PS) [103] is the technique where multiple agents reuse a policy

and/or value network. This mechanism abides by the same constraints regarding

9

2. Background

information flow as CTDE. So long as there exists a centralized playground at the

training stage, trajectories from all agents can be gathered to update the agent

models, whether they share weights (PS) or not (Non-PS CTDE). The trained models

can be deployed separately to each agent prior to the execution stage, thus fulfilling

the requirement of decentralized execution. For cooperative settings, it has been

observed that this mechanism facilitates training speed by reducing the total amount

of trainable parameters and improves converged returns by utilizing instantaneous

peer information and learned knowledge [15, 48]. Unfortunately, a fully shared model

encounters issues adapting to multiple coherently distinct tasks when used naively.

Thus, it is common to condition the network with a one-hot vector indicating the

agent’s identity [26, 34, 63, 83, 104]. This method is known as agent indexing or agent

identification. An alternative solution is to share partially, e.g ., sharing the critic

but keeping actor heads separated in an actor-critic framework [17, 117]. For tasks

that involve a large number of agents, it is also possible to use more than one shared

network. Agents who most closely resemble each other can be grouped together and

assigned with the same model [15, 107].

In scenarios that pose no constraints on the information flow, MARL can be

realized by adopting a single policy that maps the joint observation o ∈
∏n

i O(i) of all

agents to a joint action a ∈
∏n

i A(i) [2]. This method allows for reusing existing single-

agent RL algorithms, and is immune to non-stationarity resulted from independent

learners with partial observability. However, it suffers from scalability issues, as the

observation and action space of the joint controller scale exponentially with respect to

the number of agents [34]. This calls for a representation of semi-independent learners

that corresponds to agent-specific spaces. In addition to the CTDE/PS paradigms

that are still applicable, agents here may adopt explicit communication mechanisms

via recurrent channels [58, 74], attention [42, 45, 90], or shared memories [75]. There is

also a series of works that aim to factorize value networks of the centralized controller,

which is discussed in detail in Section 2.3.1.

2.3 Reinforcement Learning Algorithms

In this section, we briefly review key reinforcement learning algorithms and the special

considerations when multiple agents are involved.

10

2. Background

2.3.1 Value-based

Action-value methods maintain value estimates for state-action pairs and use them

to select actions. For example, Q-Learning [108] estimate the optimal state-action

value function Q from rollouts (s, a ∼ π(·|s), r, s′) by any policy π, commonly a ε-soft

variant of the greedy policy represented by Q:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.1)

For tasks with high-dimensional or continuous state/action spaces, neural networks

can be used as function approximators for the Q-value. With the trainable parameters

in the network denoted as θ, the loss function to be minimized can be expressed as:

L(θ) = Eπ

[(
r + γmax

a′
Q(s′, a′|θ)−Q(s, a|θ)

)2
]

(2.2)

To address instability issues from a long and correlated decision sequence, a pop-

ular architecture, DQN [66] introduced the replay buffer Dt = {e1, ..., et}, where
et = (st, at, rt, st+1) is the Markov tuple of the past experience at t. During training,

gradient descent is conducted on minibatches sampled from the uniform distribution

of the replay buffer: {(s, a, r, s′)} ∼ U(Dt), instead of the current Markov tuple

(st, at, rt, st+1) only. It was observed that replay buffers, together with periodical up-

dates of the target Q function, helped DQN to achieve human-equivalent performance

in Atari [5].

DQN and other off-policy algorithms with a replay buffer encounter issues when

extended to the multi-agent setup. As discussed in Section 2.2.2, the joint state and

action space would scale exponentially when trained with a centralized controller,

challenging the expression power of the Q-network. Meanwhile, Q-networks in the fully

decentralized approach (independent Q-learning [103]) would face a non-stationary

environment, so optimal convergence cannot be guaranteed. The non-stationarity

introduced by independent agents also invalidates the use of a replay buffer [60]. As

discussed in Section 2.2.2, the transition dynamics T (s′|s, a) for an agent i depends

on the policy of all other agents ∀j ̸= i. As the policies πj progress independently

over time, even for a replay buffer Di that only contains experience from the current

11

2. Background

agent, the dynamics reflected by the sampled batch {(s, a, r, s′)} no longer match the

current environment.

For cooperative tasks that issue a uniform reward signal for the entire team,

even when the number of agents is small and centralized learning can be adopted

to mitigate the non-stationarity issue, value-based algorithms still encounter the

”lazy-learner” problem. After the centralized value network is learned such that it

performs well for one agent, the exploration of other agents will be suppressed because

doing so would worsen the team reward [100]. Thus, VDN [100] has been proposed

to decompose the centralized Q-value estimation Qtot into a sum of individual value

functions {Qa} :
∑

a Qa = Qtot, each corresponding to an individual agent. QMix [83]

improved the art of factorization by introducing a mixing network instead of simple

summation. As long as monotonicity is preserved between Qtot and {Qa}, greedy
actions based on each individual value network would still be equivalent to the greedy

joint action based on Qtot. Meanwhile, the mixing network allows for learnable

non-linear factorization, resulting in a significant performance boost in the StarCraft

II Environment [86].

2.3.2 Policy Gradient and Actor-Critic

Policy gradient algorithms directly optimize the parametrized policy π(a|s, θ) to

maximize the discounted return J(θ) = Eπ(θ)

[∑T
t=0 γ

trt

]
, by stepping θ into the

direction of the gradient ∇θJ(θ), which can be approximated [102] as:

∇θJ(θ) = Es∼ρπ ,a∼π(θ) [(∇θ log π(a|s, θ))Qπ(s, a)] (2.3)

where ρπ(s) = limt→∞ Pr(st = s|s0, π) (provided that it exists) is the stationary

distribution of states given policy π. Under a differentiable representation of the

policy network π(a|s, θ), the problem becomes estimating the action-value Qπ(s, a).

For example, REINFORCE [109] uses the Monte-Carlo estimate Gt =
∑T

t=t0
γt−t0rt,

which is a unbiased estimation of the true action value. Unfortunately, the Monte-

Carlo estimation suffers from high variance [51]. The authors of [109] suggested

reducing the variance by subtracting Gt with a learned function b(st|ω) known as the

12

2. Background

baseline. The estimate of the policy gradient at time s now becomes:

∇θ log π(at|st, θt) (Gt − b(st|ωt)) (2.4)

A natural placement for the baseline function is the state-value estimate V π(s). In

this case, the scaling factor Gt−V (st|ωt) can be seen as an estimate of the advantage of

action at at state st, because Gt estimates the action-value Q(st, at) [101]. In general,

mechanisms that involve approximations to both the policy and value functions belong

to the family of actor-critic, where the actor refers to the policy model and the critic

refers to the value estimation. In a stricter definition, actor-critic frameworks use TD-

learning to estimate a state-action value model Q(s, a|ω) in place of the Monte-Carlo

estimate Gt, thereby enabling step-wise updates and facilities training [117]. The use

of a baseline function V π(s) still applies, leading to the advantage actor-critic (A2C)

method [67]. Furthermore, bootstrapping can be applied to the estimation of V π(s),

leading to a generalized advantage estimator (GAE) [88].

Actor-critic algorithms have been widely applied in multi-agent tasks. They have a

particularly strong presence in tasks that limit information flow during execution and

benefit from implicit coordination paradigms (Section 2.2.2). Since the critic is only

used during training, they can be designed to take extra information from peer agents

as input (MADDPG [60], COMA [27]), or be shared across multiple agents [62, 117].

Meanwhile, tasks that allow explicit communication during the execution stage also

commonly adopt policy gradient algorithms. In this aspect, IC3Net [93] uses LSTM

units as communication channels that persist across timestamps. G2ANet [58],

HetNet [90], MAGAT [55], GAMA [10], and MAGIC [70] form relationship graphs

over agents to apply attention-based communication.

2.4 RL over Graph Environments

Our main contributions in Chapter 4 involve applying MARL over a graph-based

environment simulator. Thus, we hope to review literature in this domain and discuss

the similarities and differences.

The work that most closely resembled ours is [127], which applied a graph attention

network (GAT) to solve graph navigation. While we also adopted GAT to examine

13

2. Background

neighborhood features, the main differences are as follows:

• The scope of [127] is single-agent RL that aim to one-shot navigate unseen

graph structures. The agent’s sole purpose is to cover more graph nodes within

the given time budget. On the contrary, we focus on coordinating a team of

multiple agents. Rapid graph navigation would not necessarily lead to desirable

teamwork.

• In [127], a graph node contains no feature other than its identity. Meanwhile,

nodes in our graph differ from each other by their content (victims, rubbles,

etc.). Our graph is thus heterogeneous [116], such that it can be used to study

USAR missions that involve not only graph navigation but also how agents

interact with the node they reside in.

• We adopted different network architectures and gradient estimation methods.

Recent advances applied RL in other graph-related problems, such as minimum

vertex cover, traveling salesman, and maximum cut [4, 40, 49]. These tasks reduce to

combinatorial optimization [65], and like the problem investigated in [127], they focus

on how identical nodes are connected to each other. On the contrary, our problem

statement primarily focus on how graph nodes host information about different types

of entities. We argue that this distinction separates our work in Chapter 4, i.e.,

coordinating heterogeneous agents in a heterogeneous graph, from previous literature.

14

Chapter 3

Task Formulation

3.1 Heterogeneous Teamwork

The problem of coordinating a heterogeneous team including N agents with C ≤ N

distinct roles can be formalized by the tuple:

(C,S, {A(c)}, {M(c)}, {Ω(c)}, {O(c)}, {T (c)}, {R(c)}, γ) (3.1)

• C = {1, ..., N} → {1, ..., C}, where C(i) indicates the role of agent i. Given the

current state, agents with the same role are interchangeable with respect to all

other Markov elements.

• S, which is the space of global states. The entire environment is uniquely

determined given C and S, i.e., we do not consider information describing an

agent (other than its role) to be separated from S. For example, s ∈ S contain

information on the location of any arbitrary agent i.

• A = ∪A(c) = {a} is the union of all agent-wise actions, where AC(i) is the

action space for the i-th agent. This is different from the joint action space

U =
∏
AC(i) = {A}.

• M(c) : S ×A → {0, 1}, where the action mask M (c)(s, a) = 1 indicates that the

action a is available for an agent with role c given the global state s. Note how

the separation of C from S makesM conditional to c as well.

15

3. Task Formulation

• Ω = ∪Ω(c) = {o}, which is the union of all role-specific observation spaces.

Ω ⊂ S ∪ C is a proper subset of the union of the state space and the set of role

mappings.

• O(c) : S ×Ω→ [0, 1] is the observation function, where O(c)(s, o) is the probabil-

ity of an agent with role c observes o given the global state c. Compared to the

DEC-POMDP setting that requires a state-action pair(s, a), this marginalized

formalization indicates that agents may observe the environment without the

need to execute an action. This is common for modern environments [86] with

a high observation rate asynchronous to action selection.

• T (c) : S ×A× S → [0, 1] is the transition dynamics, where T (c)(s, a, s′) is the

probability of the environment arriving at s′ after an agent with type c executed

action a given the previous global state s. Note that this allows for role-specific

dynamics on top of the possible constraints on the action space. We find this

useful for real-world scenarios where the action space can be decomposed to task-

irrelevant atomic actions. Moreover, this assumes sequential action execution,

i.e., the environment immediately transits after a single agent calls for action.

This allows for a simplified representation of role-specific environment dynamics

because it no longer depends on the agents’ joint action.

• R(c) : S ×A×S → R, where R(c)(s, a, s′) is the reward received by an agent of

type c executed the action a from state s resulting in state s′.

• γ ∈ [0, 1] is the discount factor uniform to all agents. We do not consider

role-specific discount factors to simplify advantage estimation under parameter

sharing.

In this thesis, we consider cooperative tasks only, where the end goal is to maximize

the average expected discounted return from all agents:

maxEπ1,...,πN

[
N∑
i=1

T∑
t=0

γtRt

]
(3.2)

Within this framework, we focus on two configurations that have a significant

presence in real-world tasks. The first one, which we will refer to as micromanagement,

has a uniform action space A(c) = A, ∀c. In this case, agents differ by the structure of

their corresponding transition dynamics T (c). We call this micromanagement because

16

3. Task Formulation

this setting is often found in low-level control problems. Consider a set of 6-DOF

open-chain manipulators with different dimensions and end-effectors. The action

space for each manipulator is the same Cartesian product of six individual joint spaces

ranging from zero to two pi. However, the outcome from the interaction between

the manipulators and the environment will differ subject to their intrinsic properties

(dimensions, tools, etc.). This form of heterogeneity can be modeled with either

role-specific transition dynamics or states. Here, we adopt the former method to

better indicate that the aforementioned intrinsic is stationary over time and episodes.

The second configuration that we consider often corresponds to high-level decision-

making tasks, which we will refer to as macromanagement. In this case, heterogeneity

primarily comes from well-defined disjoint sub-action spaces. For each role, we can

decompose its corresponding action space as follows:

A(c) = A(c)
e ∪ Ao (3.3)

where A(c)
e ∩ Ao = ∅ and A(m)

e ∩ A(n)
e = ∅,∀m ̸= n. Ao represents role-invariant

actions, e.g ., navigation, and depends on the state s only. On the other hand, the

role-specific disjoint subspaces A(c)
e often correspond to explainable agent capabilities

declared by the task and environment. Consider a USAR setting, for example. In a

rescue team consisting of people from different backgrounds, it is common that only

licensed medical practitioners have sufficient knowledge to diagnose and stabilize a

victim’s condition properly. This stabilization action belongs to Ae for the medical

role. As demonstrated in Section 4.3, information regarding an agent’s action space

can be used as a strong indicator of the essence of that agent; and should be taken

into account of designing heterogeneous autonomous systems. Furthermore, although

this configuration does not rule out heterogeneous reward structures R(c), for the

sake of simplicity, we assume all roles perform an action equivalently well, provided

that the action is in its current action space.

3.2 USAR Mission Design

We consider a USAR mission involving a team of three participants. The end goal of

this mission is to evacuate injured victims out of a partially collapsed building. As

17

3. Task Formulation

Figure 3.1: Saturn map for the USAR mission.

the locations of victims are unknown to the rescue team in advance, the team must

learn to efficiently explore the building in a limited amount of time. However, certain

hallways and rooms are blocked by rubbles that have collapsed from the building

structure. This issue can be mitigated by the engineer in the team. After victims

are found, their condition needs to be treated on-site before they can be carried

out of the building. This requires the presence of the medic, the only member with

sufficient medical expertise. It is also worth noting that victims require different

treatment according to their injury types, either abrasions (A), bone damage (B), or

critical condition (C). Victims that suffered the former two types of injury are also

referred to as regular victims, as their condition can be treated by the medic alone.

On the contrary, stabilizing a critical victim requires both the medic and another

team member to be present. After the pre-condition of stabilization is met, it is the

transporter ’s job to move fast and carry the victim to the correct evacuation zones.

Figure 3.1 shows a grid-world representation of the map, which we will refer to as

the Saturn map, used for this mission.

From the perspective of a USAR mission, the performance of the team should

be evaluated by the weighted sum of the number of victims evacuated to the correct

zone. The team is rewarded with 10 points for each regular victim it evacuated.

Meanwhile, as evacuating a critical victim demands more close collaboration between

18

3. Task Formulation

the teammates, they are worth 50 points each. For the reinforcement learning agents,

these scores are only reflected in the reward function of the participant who is directly

responsible for transportation. Thus, we also issue intermediate rewards to help other

participants identify desirable behavior, as shown Table 3.1. To distinguish between

the RL-reward function and the actual task performance, we will refer to the team

score as the M1 metric.

Event Reward
The engineer cleaned a rubble block. 1.0
The medic stabilized a regular victim 1.0
A participant picked up a stabilized regular victim 1.0
The medic stabilized a critical victim 1.0
A participant picked up a stabilized critical victim 5.0
A participant evacuated a regular victim. 10.0
A participant evacuated a critical victim. 50.0

Table 3.1: Reward signals.

Furthermore, we investigate several variants of the general mission context dis-

cussed above. For example, in Chapter 4 only the transporter is allowed to carry

an victim. In Chapter 5, all roles may carry an victim, but the maximum moving

speed of a participant varies based on their roles: the transporter moves significantly

faster than the other participants, whereas the engineer moves the slowest. These

variations will be discussed in more detail in the following chapters.

At the end, we make the assumption that communication infrastructure remains

functional following the disaster, such that MARL agents may freely share knowledge

as they please. Thus, we compare our proposed architecture with previous literature

equipped with both implicit and explicit communication mechanisms (in Section 4.3).

Moreover, partial observability heavily applies in our task setting. As discussed in the

introduction, we provide global states (during training) only for our benchmarking

literature, in the manner they see fit.

19

3. Task Formulation

20

Chapter 4

Marcomanagement

4.1 Graph-based Environment Simulator

The graph-based environment1 aims to simulate the USAR task at the room level.

Each room or corridor segment is represented with a node in the graph, whereas

(non-directional) graph edges show connectivity.

4.1.1 State Space

The global state s ∈ S and agent-role mapping C are represented with a dictionary

with entry sizes:

• graph: sg ∈ RG×(fn+N)

• agent: sa ∈ RN×(fa)

where G is the number of nodes, N is the number of agents, and fn is the dimension

encoding a node. fa = fi + C where C is the number of roles and fi is the number

of injury types. The graph entry encodes the content of each node, including the

number of stabilized and unstabilized victims, evacuation zones of each injury type,

the number of rubbles, and the whether a certain player is on this node. The agent

entry encodes information that suffices to describe each agent, including its role and

(if applicable) the victim’s injury type it is carrying. One-hot encoding is used in

these features when appropriate.

1https://gitlab.com/cmu_asist/gym_graph

21

https://gitlab.com/cmu_asist/gym_graph

4. Marcomanagement

4.1.2 Observation Space

Upon calling the step function of the environment, a dictionary with the following

optional keys is returned for each agent, e.g ., agent i:

• obs: o(i) ∈ Ω is a dictionary in the same fashion as s:

graph: o
(i)
g ∈ RG×fg

agent: o
(i)
a ∈ Rfa

where fg =̇fn + 1 is notion of the encoding dimension of each node. The

additional dimension indicates whether agent i is in this room. In addition, the

agent entry only contains information regarding the corresponding agent and

thus is one-dimensional. Furthermore, the visibility mask O(s, ·) is constructed
in a way to mimic the challenging limitations encountered in real-world USAR

tasks. All information in the graph entry will be masked to zeros except for

the agent’s current room, effectively making it one-hot along the rows.

• agent id, which is a one-hot vector i(i) encoding the agent’s identity i. This

is not used by our model but provided for benchmarking literature that adopt

plain agent indexing.

• action mask, which is the multi-hot vector MC(i)(s, ·) indicating the agent’s

current action space. We will use m(i) ∈ {0, 1}|A| to denote this vector.

Both the states and observations are normalized to [0, 1] channel-wise.

4.1.3 Action Space and Dynamics

The size of the action space is |A| = |Ao|+ |Ae|, where |Ao| = G+ 1 is the number

of actions available to all roles and |Ae| =̇| ∪cA(c)
e | is the total number of role-specific

actions. Among the G navigational actions, only the nodes adjacent to the current

room are available. As a node is not considered as its neighbor, an agent must explicitly

call the still action to keep waiting in the current location. The role-specific actions,

which describe interactions between the agent and room contents, include clean,

stabilize, pick and evacuate. clean is unique to the engineer, stabilize is

unique to the medic, and the last two actions are unique to the transporter. Note

that if rubbles exist in a room, they must be cleaned by the engineer before any other

22

4. Marcomanagement

Figure 4.1: Model architecture.

interactions with the room content.

We study the USAR problem where the building structure prior to the disaster is

known and fixed, but agents will encounter path-blocking rubbles that have collapsed

to random locations. The locations of victims and evacuation zones are also unknown

to the agents in advance. These variables, along with the initial locations of agents,

will be randomized for each episode to avoid memorization.

4.2 Algorithms

Figure 4.1 shows the proposed actor-critic algorithm. The network is shared among

all agents. Superscripts that indicate timestamp or agent identity are omitted where

obvious.

At each timestamp t, the environment returns the dictionary:

{i : (o(t,i)
g ,o(t,i)

a ,m(t,i)) ∀i} (4.1)

An arbitrary agent i first receives communication {o(t,j)
g ∀j ̸= i} from all other

agents, then merge them with its own observation with max pooling:

ō(t,i)
g = max

1≤j≤N

{
o(t,j)
g

}
(4.2)

23

4. Marcomanagement

The observation scheme described in Section 4.1 ensures that agents will not suffer

from outdated knowledge from a peer that failed to comprehend this non-stationary

environment, as opposed to memory-based communication like [75]. However, the

merged observation is still highly sparse: only N out of G entries in ō
(t,i)
g are non-

trivial. This is an undesirable behavior, as the contents ō
(t,i)
g (p) ∈ Rfg of an arbitrary

node p should correlate with the value of not only itself but also its neighborhood

N (p). Therefore, we apply a graph attention network [106] to integrate features over

the environment graph.

For node p, the corresponding output feature from the attention layer is:

o
′(t,i)
g (p) =

∑
q∈N (p)∪{p}

αp,qW ō(t,i)
g (q) (4.3)

where W ∈ Rfg×fg is a weight matrix shared across this graph attention layer, and

the normalized attention coefficient αp,q ∈ R between node p and q is computed as:

αp,q =
exp(epq)∑

r∈N (p)∪{p}) exp(epr)
(4.4)

where the raw attention coefficient ep,q ∈ R is computed with linear weights a ∈ R2fg×1:

ep,q = LeakyReLU
(
a ·

[
W ō(t,i)

g (p)∥W ō(t,i)
g (q)

])
(4.5)

which indicate the importance of node q’s contents to node p. As adopted by [106],

attention is conducted over the first-order neighborhood of p including the node itself,

which corresponds to graph-navigation action space Ao(s
(t)). Compared to literature

that compute agent-wise importance scores [42, 58], such a room-wise importance

fits better to our task involving merely three agents but a large graph structure.

We also improve plain agent-indexing to attentively identify transferable knowledge.

Under the scheme of agent indexing, the policy model is guaranteed to perceive unequal

input {o, i} for different agents, even though the raw observation [o(i), ...] from the

environment could be similar. The benefit of doing so is that it causes agent-specific

hidden states to be deduced within a fully shared policy network, thus allowing for

heterogeneous behavioral traits. However, sub-optimality exists in this approach.

Suppose an optimal joint policy Π∗(A|
∏

i o
(i)) exists for our setup. The goal of

24

4. Marcomanagement

training a shared and indexed policy model πθ(a|o, i) is to satisfy:∏
i

πθ

(
·|o(i), i(i)

)
= Π∗(·|

∏
i

o(i)) (4.6)

Consider the case where agents share similar optimal behavior:

∃s ∈ S,o ∈
⋂
i

ΩC(i)(s), a ∈
⋂
i

AC(i)(s) :

{
∀i,o(i) ∈ ΩC(i) = o

Π∗ (·|
∏

i o) =
∏

i a
(4.7)

In this case, despite the joint optimal controller’s input consisting of identical

components o, the input to the parameterized shared model πθ still differs for each

agent.

∀1 ≤ i, j ≤ N : i ̸= j,
{
o(i), i(i)

}
̸=

{
o(j), i(j)

}
(4.8)

Furthermore, the component that causes such a difference are agent-wise orthogonal:

i(i) ⊥ i(j), which requires the shared model to find adequate weights θ that deactivates

∀i for all observations-action pairs (o, a) that satisfy Equation 4.7. While it is possible

to approximately do so with a sufficiently large neural network, we argue that this

learning paradigm can be improved by conditioning the model with action mask

m(i) that denotes AC(i)(s). This is because the optimal joint policy may only appear

homogeneous at the intersection of role-specific action spaces ∩iAC(i)(s). For all cases

that satisfy Equation 4.7, inputs to the new model have a greater similarity:[
o(i)(s),m(i)(s)

]
·
[
o(j)(s),m(j)(s)

]
= o · o+m(i)(s) ·m(j)(s)

≥ ∥o∥2 + |
⋂

cA(c)(s)|
|A|

> ∥o∥2 =
[
o(i)(s), i(i)(s)

]
·
[
o(j)(s), i(j)(s)

] (4.9)

Without loss of generality, this argument of similarity improvement can be ex-

tended to cases where o(i) ≠ o(j), but the desired action are still the same for all

agents. This fits into our environment that contains agent-specific states o
(i)
a .

As such, outputs of the GAT layer will be concatenated with the transformed

agent-wise observation and the current action space availability indicator:

x(t,i) = MLPg

(
o

′(t,i)
g

)
∥MLPm

(
m(t,i)

)
∥MLPa1

(
o(t,i)
a

)
(4.10)

25

4. Marcomanagement

We use the traditional [3] and effective practice of using Long Short Term Memory

(LSTM) to capture history dependency. For the current timestamp, the output feature

is the hidden state h(t,i) where:

h(t,i), c(t,i) = LSTM
(
x(t,i),h(t−1,i), c(t−1,i)

)
(4.11)

All layers up to now are reused between the actor and the critic. It has been

empirically observed that parameter sharing in this way helps deep models learn at

early stages [1]. We apply two final linear layers to obtain the scalar value estimate

and the current action distribution, from which we sample an action to execute:{
V (t,i) = MLPq

(
h(t,i)

)
a(t,i) ∼ π

(t,i)
θ = MLPa2

(
h(t,i)

) (4.12)

The method we use to obtain the policy gradient falls in the framework of

advantage actor-critic [67], in which we adopt the generalized advantage estimator

(GAE) [88]. At each timestamp t, the TD residual of V is defined as:

δ(t,i) = r(t,i) + γV (t+1,i) − V (t,i) (4.13)

and the generalized advantage is:

A(t,i) =
T−t∑
l=0

(γλ)lδ(t+l,i) (4.14)

where T is the length of the episode and λ = 1 for unbiased estimation. The policy

gradient can be thus calculated as:

∇θJ(θ)
(i) =

T∑
t=0

∇θ log π
(t,i)
θ A(t,i) (4.15)

where θ denotes trainable parameters in Figure 4.1.

26

4. Marcomanagement

4.3 Experiments

4.3.1 Baselines

We compare the performance of our algorithm against four baselines:

• CommNet [98], where communication to agent i is the mean of hidden states

from all other agents ∀j ̸= i. The averaged message will be used as additional

input channels to the agent’s policy network.

• G2ANet [58], where the interaction relationship between an arbitrary agent

pair i and j is modeled with a bi-directional recurrent layer following Gumbel

softmax. The output will then be used as scaling factors in dot-product attention

between the hidden states of i and j. Thus, their approach can be seen as

applying attention over the graph of agents, where edges are weighted by the

bi-directional GRU/LSTM that inputs features from corresponding agent nodes.

• QMix [83]. As discussed in Section 2.3.1, this method learns a monotonic mixer

network to link agent-specific Q-value estimates with the centralized estimation.

It also adopts the state-based CTDE paradigm that assumes access to true

global states during training.

• Maven [63] improves QMix by introducing a latent variable z that conditions

individual action-value estimators, where different z values map to different

exploration traits. Global states are also required for the z-generator and the

discriminator that models the variational distribution qv(z|σ(τ)).

As discussed above, the first two baselines rely on explicit communication. We

choose them to demonstrate the benefits of utilizing attention-based communication

over the environmental structure. Meanwhile, we selected the other two baselines

to show that our algorithm may outperform methods that exploit training-stage

global states. Moreover, all four baselines adopt the parameter sharing paradigm

with plain agent-indexing; as opposed to our proposed action-dominant identification

mechanism. We will benchmark our proposed approach against the baselines and

conduct ablation studies to show the effect of each sub-module.

27

4. Marcomanagement

(a) Left. (b) Middle. (c) Right.

Figure 4.2: Graph-based environments.

4.3.2 Results and Discussions

In this section, we quantify team performance using the final M1 score discussed

in Section 3.2. We split the Saturn map in Figure 3.1 into three subdivisions with

different graph structures, as shown in Figure 4.2:

• The left region with 28 nodes (12 of which are blocked by a total of 19 rubbles)

and 33 edges. This environment has 12 victims, resulting a total M1 of 320.

• The middle region with 29 nodes (13 of which are blocked by a total of 22

rubbles) and 29 edges. This environment is the most sparse in terms of victim

distribution, containing 9 victims and a total M1 of 210.

• The right region with 23 nodes (13 of which are blocked by a total of 15 rubbles)

and 24 edges. 14 victims are trapped in this environment, including a room

with three critical victims worth 150 M1 scores. The total M1 available in this

environment is 420.

The same discount factor γ = 0.7 is used in all environments. Each episode contains

400 steps, and room contents are randomly permuted across episodes. In addition,

shades in the following result plots indicate the 95% confidence interval.

Figure 4.3 demonstrates that our method outperformed baselines in all three map

settings. Our model performed particularly well in the right-most region that bias

28

4. Marcomanagement

(a) Left. (b) Middle. (c) Right.

Figure 4.3: Performance in the marcomanagement task.

toward role-specific interactive actions, achieving a 2.2× boost.

Figure 4.4: Impact of partial
observability on MAVEN.

We observed that MAVEN, which has a theoreti-

cal advantage over QMix, outperformed the latter ap-

proach in all scenarios. However, they still performed

significantly worse than communication-based archi-

tectures. The main reason behind this phenomenon

is not insufficient replay buffer size or poor choices of

other hyperparameters, but the fact that observations

are highly sparse. We demonstrate so by providing

global states to MAVEN as additional inputs during

both training and evacuation. The model architectures

remain the same except for the number of input channels. As shown in Figure 4.4,

the (mostly) identical architecture and hyperparameter choices could effectively learn

a good mapping from (s,o) to a, but were unable to address the strong partial

observability in USAR tasks. Thus, we argue that explicit communication schemes

should be applied when the task setup allows execution-stage information exchange.

We also notice that G2ANet outperformed CommNet in all environments, and the

difference is most significant in the middle one. As successful victim evacuation relies

on multiple preconditions, we plot the performance of individual tasks in Figure 4.5.

All three algorithms were able to clean almost all rubbles, as shown in Figure 4.5a.

However, CommNet failed to effectively accomplish secondary tasks that require more

team collaboration. Figure 4.5c shows how the ability to stabilize critical victims is

strongly correlated with the eventual task performance.

29

4. Marcomanagement

(a) Rubble Cleaning. (b) Regular Victim Stabilization. (c) Critical Victim Stabilization.

Figure 4.5: Performance in preconditions - Middle Map.

(a) Left. (b) Middle. (c) Right.

Figure 4.6: Ablation studies - Communication

Figure 4.7: Ablation studies:
Agent-indexing schemes.

Moreover, we conduct ablation studies regarding

the communication mechanism to see how it con-

tributes to the overall excellence of the proposed ar-

chitecture. As shown in Figure 4.6, communication

between agents reduced variance because the learner

now perceives a more stationary environment. This

effect is more significant in the left and middle maps,

leading to not only variance reduction but also more

optimal convergence. This is because their underlying

graph structures are more complex and victims are

more sparsely distributed. Meanwhile, Figure 4.7 shows how information regarding

an agent’s action space can be used as a strong indicator of the essence of that agent,

which greatly stabilized training.

30

4. Marcomanagement

We also show how the attention mechanism helps coordination. Let us revisit the

notation in Section 4.2 where p denotes an arbitrary node and q ∈ Qp =̇N (p) ∪ {p}
belongs to its neighborhood; W ∈ Rfg×fg denotes the linear weights that encodes

graph features, and a = [aP ; aQ] ∈ R2fg×1 is the attention layer’s weights shared for

all pairs (p, q). From Equation 4.5, we can construct the vectors:

wP = W⊤aP ∈ Rfg×1

wQ = W⊤aQ ∈ Rfg×1
(4.16)

such that the raw attention coefficients ep,q indicating the importance of node q’s

contents to the current node p can be computed as:

ep,q = LeakyReLU
(
w⊤

P ōg(p) +w⊤
Qōg(q)

)
, ∀q ∈ Qp (4.17)

Here, wQ explains how any node values its neighbors by feature dimensions.

Meanwhile, note that w⊤
P ōg(p) only encodes contents of the current node p, thus

serves as a bias term uniform to all neighbors of p. Because of the structure of the

LeakyReLU activation, wP declares what node p should contain so that the attention

mechanism will examine the neighborhood of p more precisely. Given wQōg(q), if

the feature distribution of node p has a (sufficiently) higher similarity with wP , the

resulting greater dot-product w⊤
P ōg(p) will cause more zq =̇w⊤

P ōg(p) +w⊤
Qōg(q) to

be greater than 0. Because more zq values will be activated (by a unit tangential

1 > α), the pairwise distances between ep,q will be greater, leading to greater pairwise

distances between αp,q and closer discrimination upon the neighborhood. Also, note

that higher overall ep,q caused by an increase w⊤
P ōg(p) would not cause the network

to put uniformly more attention to all neighbors, as the actual attention coefficients

αp,q are subject to the SoftMax normalization with translation invariance.

We plot wP ,wQ, each independently normalized, with feature labels in Figure 4.8.

It is immediately observed that the network cares to closely examine the neighborhood

only when unstabilized critical victims are present in the current room p. This

phenomenon matches our intuition, as stabilizing a critical victim is the only atomic

action that demands collaboration (Section 3.2). The network, upon seeing an

unstabilized critical victim, will try to search for agents in adjacent rooms and

instruct them to come and help. This is also reflected in wQ, as the model cares

31

4. Marcomanagement

Figure 4.8: Attention to feature dimensions. Weights are extracted from the model
trained for 100 million steps in the Saturn-right map.

whether an arbitrary agent resides in the neighboring rooms. In addition, we observed

that rubbles in the neighboring rooms are also closely attended to. We hypothesize

that this is because rubble cleaning is a task valuable in both the short-term (easy

rewards that can be achieved at the cost of only one agent-step) and the long run

(cleaning is essential to allow for future task execution).

32

Chapter 5

Micromanagement

5.1 Grid-based Environment Simulator

For the task of micromanagement, we developed a testbed1 that provides observation

spaces with a 1m× 1m resolution and action spaces transferable across participants.

5.1.1 State and Observation Space

The global state s ∈ S and agent-role mapping C are represented together with an

array in shape (ROW, COL, 6). The observation o(t,i) ∈ Ω is filtered from S ∪ C by a

Boolean visibility mask with a 51◦ field of view. Walls and rubbles that are at least

two meters tall would cause occlusion, as shown in Figure 5.1. For RL-based agents,

they are normalized to [0, 1] channel-wise, whereas planning-based agents perceive

the raw uint8 encoding.

5.1.2 Action Space and Dynamics

The action space A, which contains still, forward 1, forward 2, forward 3,

turn left, turn right, toggle, pick up, is uniform to all agents. The purposes

of the first six navigational actions are self-explanatory. In addition, all agents in

the grid-based environment may pick up a stabilized victim and carry it to the

1https://gitlab.com/cmu_asist/multigrid-with-3-roles

33

https://gitlab.com/cmu_asist/multigrid-with-3-roles

5. Micromanagement

Figure 5.1: Visibility masks that overlay the global map. Light Grey indicate that
the block is within an agent’s field of view.

evacuation zone; or relocate a regular victim for the convenience of other agents.

Heterogeneity regarding evacuation is modeled with role-specific speeds described

in Table 5.1. Furthermore, in order to decouple heterogeneous behavior from the

action space, every role has the permission to call for any of the forward actions.

The environment will ensure that the expected value of an agent’s speed is consistent

with its corresponding fractional speed limit.

Role Carrying a victim Not carrying a victim
Medic 2.374 4.317
Engineer 2.374 3.669
Transporter 5.180 5.180

Table 5.1: Traveling speed [m/s] of each role. The environment operates at 4Hz.

The toggle action is used as the main interaction method with the facing block,

and should be called for a medic to stabilize an injured victim, for an engineer to

clean a rubble block, or for a transporter to evacuate a stabilized victim being carried.

If an agent with a role incompatible with the current facing block calls toggle, the

environment will ignore its behavior or optionally return a small negative reward.

This deliberately ambiguous toggle action lead to role-specific dynamics:

∀1 ≤ c1, c2 ≤ C : c1 ̸= c2,∃ s, s′ ∈ S : T (c1)(s, toggle, s′) ̸= T (c2)(s, toggle, s′) (5.1)

Meanwhile, such ambiguity can be handled by the environment without collision.

34

5. Micromanagement

A separate action, pick up, is introduced in case a medic hopes to move a regular

victim that has yet been stabilized. In addition, note that the reward structure stays

homogeneous over roles, given any tuple (s, a, s′).

5.1.3 Optional Features

The grid-based simulator has the capability to mimic the 3D Minecraft testbed for

human trials (Appendix A) to the fullest extent possible. These optional features are

only used for planning-based agents. Below is a non-comprehensive list:

• Enlarged Action Space: A swap action is introduced to address the issue with a

discretized 2D testbed, which can be called when a participant, who is already

carrying a victim, finds its path blocked by a movable victim. The action would

swap the location of this participant with the movable victim, which can be

done in a few steps in the 3D testbed. Also, a forced drop action can be called

when a participant chooses to drop a victim at the evacuation location, with

no regard for the injury types. On the contrary, calling toggle when facing a

wrong-typed evacuation block would prevent the participant from dropping the

victim, as if the participant noticed the no-change in the scoreboard in the 3D

testbed.

• Collapse during the mission: as the building structure is unstable following the

earthquake, agents may accidentally trigger secondary collapse while attempting

the rescue. When enabled, new rubbles would fall and block the agent’s path out,

trapping it until the engineer came to help. This calls for closer collaboration

between team members.

• Task-based visibility mask: non-medic participants cannot differentiate between

abrasion and bone damage victims, and they will have no access to any injury

types after a victim has been stabilized. Moreover, collapse traps (not common

rubbles) cannot be seen by any participants once the task has started, although

the engineer has room-level prior knowledge regarding these traps.

• Marker blocks: to address the constraint discussed above, a medic may place

marker blocks indicating injury types. These markers are globally visible

(independent of the visibility masks), in order to mimic the dynamic map in

35

5. Micromanagement

the 3D testbed.

• Beep signals: the transporter may request for extra information when stepping

on a trigger block. The environment would then return whether non-stabilized

regular or critical victims are in the corresponding room.

5.2 Algorithms

For decision-making in the micromanagement scenario, we first adopt the paradigm of

online reinforcement learning, like what we did in Chapter 4. We use a CNN shared

between the actor and the critic to extract features from image-like observations. We

then feed the features to two MLP branches separated for the value function and the

actor head. The entire network is shared among all agents with no additional regard

to their identity. Furthermore, we use the same mechanism discussed in Section 4.2

to estimate advantages and calculate the policy gradient.

In order to use imitation learning for our USAR mission, we develop a hierarchical

controller equipped with structured communication protocols [72]. A priority queue

is maintained to host communication instances. Agents may request each other to

gather, clean rubbles, move victims, query for information, or respond to previous

requests. An agent, upon receiving an action-related request, will compare it with

the current task in-execution and decide accordingly. Meanwhile, an agent at ease

would search in its internal belief system for the most valuable room-level action with

exponential exploration. The room-level action would be translated to a Boolean mask

of target grid-level locations, from which A* planning [38] is applied for navigation.

In addition, in order to address the non-stationarity encountered with independent

execution with insufficient knowledge sharing, agents will have an increasing tendency

to revisit states that deemed invaluable according to its memory. Figure 5.2 shows

the structure of the proposed planning-based agents.

The non-Markov experts that rely on a shared communication queue can be

modeled with a joint policy b(A|O,h), where O ∈
∏

i Ω
C(i), A ∈

∏
iAC(i) are joint ob-

servations and actions. We use the expert policy to roll out episodes with observation-

action pairs
{
(O(t), A(t))

}
, and decompose them back to the individual representation

of
{
(o(t,i), a(t,i))

}
. Using the expert trajectories as ground truth, we apply supervised

36

5. Micromanagement

Figure 5.2: Hierarchical planning agents.

learning to optimize for the IL-agent’s policy network:

min
θ
−
∑
i,t

log πθ

(
a(t,i)|o(t,i)

)
(5.2)

where πθ has an identical network architecture as the actor used in online RL, for the

sake of a fair comparison.

We also consider the goal of forecasting human performance, in terms of the M1

metric introduced in Section 3.2, in two time scales. Let m(t) denote the cumulative

M1 score at timestamp t. Given the sequence {m(0), ...,m(t)}, we are to infer either

the short-term progression m(t+∆t) or the eventual outcome m(T). We address this

sequence modeling problem with a transformer encoder [105] exploiting multi-head

self-attention. The transformer is fed with aggregated features of the trajectory to

reduce the demand for computational resources. Moreover, we consider a baseline

step-wise MLP model that does not consider time dependency. We use this baseline

to evaluate the necessity of using the data-intensive transformer architecture.

37

5. Micromanagement

5.3 Experiments

5.3.1 Decision-Making

Experiment Design

The grid-based environment simulator supports multiple randomization levels. More

stochasticity, e.g ., to permute the location of all elements except for the building

structure, leads to a higher requirement for the expressivity of the network. Meanwhile,

a less randomized environment may require the engineer to clean rubbles prior to

victim stabilization, posing a stricter requirement for team collaboration. In this

section, we select four representative configurations, as shown in Figure 5.3, and see

how randomization levels affect the performance of RL and IL models. We generated

2000 expert trajectories for each of these environment configurations.

Results and Discussions

Figure 5.4a shows how the online RL paradigm learns to improve episodic rewards.

However, such improvements were mainly contributed by the engineer’s increasing

ability to clean rubbles, as shown in Figure 5.4b. As rubble-cleaning is a task that

can be accomplished by the engineer alone without any pre-conditions, limited team

collaboration was achieved in the online RL setup. This is reflected in Figure 5.4c

and 5.4d. The shared policy never learned to stabilize victims exceeding the extent

of random walking, let alone to evacuate them afterward. One explanation for this

phenomenon is action space ambiguity. The toggle action presented to the policy

network corresponds to two unbalanced underlying tasks: rubble cleaning and victim

stabilization. As the number of rubbles greatly exceeds the number of victims, the

shared policy network perceived the sparse occasions of victim stabilization as noise,

thus failing to optimize in that direction meaningfully. A potential solution within

online RL is carefully handcrafting the reward structure and reducing the rewards

associated with rubble cleaning.

Figure 5.5 demonstrates the benefits of imitating faux-human trajectories over

purely online RL. It is shown that IL managed to accomplish the entire decision

sequence of cleaning-stabilizing-evacuation, despite the same network architecture

38

5. Micromanagement

(a) Fixed environment with a hard
collaboration requirement.

(b) Fixed environment with a soft
collaboration requirement.

(c) Victim locations are randomized. (d) All element locations are randomized.

Figure 5.3: Four randomization levels in the top-left region of Saturn. The initial agent
locations are always randomized. Environment dimension: 17× 28× 6. Maximum
M1: 120.

being used by both learning schemes. Meanwhile, the agents’ performance was subject

to environment configurations. As shown in Figure 5.5b, posing a hard constraint

on team collaboration would decrease the cumulative M1 metric by a minor margin.

Regarding the topic of randomization, it is shown that agents were able to mitigate

challenges associated with randomized victim locations. However, when the locations

of rubbles and evacuation zones were permuted across episodes as well, a significant

performance reduction was observed. This could be explained by two hypotheses.

Either a) the representation power of the policy network or b) the size and variance

of the expert dataset were insufficient for the more sparsely distributed observation

space. As issues caused by insufficient expert demonstrations and distribution shifts

39

5. Micromanagement

(a) Rewards
received.

(b) Rubbles
cleaned.

(c) Regular victims
stabilized.

(d) Critical victims
stabilized.

Figure 5.4: Details regarding online RL.

(a) Online RL. (b) IL.

Figure 5.5: Comparison between online RL and IL over end-of-episode performance,
in the environment shown in Figure 5.3.

40

5. Micromanagement

were commonly observed in behavior cloning applications, the latter hypothesis is

more likely to have played a more significant role.

5.3.2 Forecasting Human Performance

Experiment Design

In this section, we use the full-sized Saturn Map as shown in Figure 3.1 with optional

features in Section 5.1.3 enabled. The duration of the mission is 15 minutes, which

translates to 3600 steps in the environment. Our collaborators [19] first conducted

12 human trials in an equivalent environment, which will be referred to as Dh. We

use the observations and statistics from Dh to configure our faux-human agents, and

roll out 3000 episodes denoted as Df . After the faux-human dataset was collected,

our collaborators collected 32 human trials, denoted as Dvh, with the same condition

as Dh. They collected more 184 human trials, denoted as Dvi, where participants

receive external guidance. Thus, Dh and Dvh should follow a similar distribution,

where Dh and Dvi are likely to follow different distributions. The rationale of such a

data split is discussed in Appendix A.

Under these preparations, we consider two experimental designs. Firstly, we

study the effect of adopting synthetic data at an early stage of design iterations. For

this purpose, we train the prediction models with either Dh or Df , and evaluate

the models with Dvh that is made available after the training sets. Secondly, we

investigate whether synthetic data effectively span the policy space, such that they

can be used to bridge the gap in human data caused by assistive robots or human

advisors. In this case, we train the predictors with either Dvh or Dvh ∪ Df , and

evaluate the models with Dvi. Furthermore, each of these two settings involves both

the short-term (∆t = 60s) and long-term prediction tasks.

To measure the performance of prediction models, we report the root mean square

error (RMSE) between prediction and ground truth as the y-axis in the following

figures. Because the synthetic dataset is significantly larger in size than human

datasets, plotting errors against trained epochs would exaggerate the advantages of

using synthetic data. Thus, we trained the models concurrently on the same devices

and use training time as the x-axis.

41

5. Micromanagement

Figure 5.6: Long-term prediction model: Dh|Df → Dvh.

Figure 5.7: Short-term prediction model: Dh|Df → Dvh.

Results and Discussions

Figure 5.6 and 5.7 compare training with synthetic data vs. training with limited

human data collected for early design choices. Figure 5.8 and 5.9 demonstrate the

impact of augmenting the non-advisor human datasets with synthetic data. While

introducing the faux-human dataset reduced validation error in all four configurations,

we observed that performance improvement is more significant in long-term prediction

tasks. This is because long-term prediction is modeled as a (simpler) sequence-to-one

problem, leading to a higher chance of overfitting. As shown in Figure 5.6, when

trained on the limited human dataset Dh, the model would quickly overfit after 30

42

5. Micromanagement

Figure 5.8: Long-term prediction model: Dvh|Df ∪Dvh → Dvi.

Figure 5.9: Short-term prediction model: Dvh|Df ∪Dvh → Dvi.

minutes of training. Meanwhile, as the tendency of overfitting is insignificant in the

sequence-to-sequence problem of short-term prediction, the main benefit of adopting

the synthetic dataset is that it helps stabilizes the transformer. Figure 5.7 and 5.9

show how training with human data only leads to a higher variance in training RMSE.

Figure 5.10 presents the comparison between the transformer and the baseline

MLP model, where the latter one holds 65% less trainable parameters. Whether

synthetic data is used or not, it is shown that the ability to consider time dependency

is vital for the long-term task, resulting in lower training and validation RMSE. This

invalidates the counterargument that relatively worse performance from training on

43

5. Micromanagement

Figure 5.10: Comparison between MLP and Transformer for long-term prediction.

human data alone can be addressed by plainly switching to a simpler model. Thus,

we argue that applying data-intensive sequential models together with synthetic data

is an adequate approach for human performance forecasting.

44

Chapter 6

Conclusion

In this thesis, we studied the task of coordinating a heterogeneous team in urban search

and rescue (USAR) missions. For this purpose, we developed two USAR environment

simulators that support role-specific action spaces or transition dynamics. We applied

the graph attention mechanism to exploit environment structures and achieve effective

communication among a small group of rescue workers. We showed that the proposed

approach outperformed previous state-of-the-art literature that also rely on graph

attention by a significant margin. In addition, we designed a series of faux-human

agents that vividly mimic human behavior in USAR. We demonstrated how they

could be used as experts in imitation learning to address action-space ambiguity. In

the end, we showed that our artificial datasets addressed human data scarcity. We

reduced the inference error of human cognitive models by half via this method of

data augmentation.

45

6. Conclusion

46

Appendix A

Acquiring Human Data

Our collaborators [19, 29] developed a 3D synthetic environment for USAR using

Minecraft. Figure A.1 shows the bird’s eye view of the environment, whose map

structure and transition dynamics are equivalent to those of our 2D grid-based

simulator in Figure 3.1.

Figure A.1: Minecraft Environment

Participants are recruited from Arizona State University and social platforms,

e.g ., Reddit. They are physically located in the US, have reliable internet connections,

47

A. Acquiring Human Data

Figure A.2: The layout of a participant’s interface.

have experience playing Minecraft with a standalone mouse and keyboard, speak

English, and have normal color vision. The recruitment excludes minors and prisoners.

Furthermore, participants are asked to team with people who they do not know in

advance, so as to control the variance in collaboration level.

Prior to a human trial, participants are subject to a 10-minute screening session

to check their capability to play Minecraft. Following the screening session, teams

of three qualified participants will receive training videos that introduce the rules

of the task and provide hands-on experience with the environment. Each team will

then participate in two seventeen-minute trials in the Minecraft simulator, where

participants use the first two minutes to discuss strategy and the following fifteen

minutes to execute the mission. Each participant perceives the partially observable

interface as shown in Figure A.2. The right 60% of the screen shows the corresponding

agent’s field of view, whereas the left 40% of the screen reflects the map structure of

the environment.

A participant sees their own location on the dynamic map, but not the location of

their teammates. To mitigate this visibility constraint and share other information,

a participant may place marker blocks on the ground, which are also rendered in

48

A. Acquiring Human Data

Figure A.3: Marker Blocks

all teammates’ dynamic maps. These marker blocks can be used to indicate the

injury type of a victim nearby, that the room is blocked by rubbles, that the room

contains collapse threats, or if the room is empty. As shown in Figure A.3, they also

reflect the identity of the marker-placer, where blue corresponds to Engineer, green

corresponds to Transporter, and red corresponds to Medic. In addition to the marker

blocks, participants may verbally communicate over zoom audio and use Minecraft

chat channels.

One purpose of acquiring human trajectories is to support the development of

assistive robots that issue reasonable interventions to improve human teamwork. Thus,

as discussed in Section 5.3.2, human data are collected under different conditions:

• Dh, which includes 12 trials collected at a pilot stage. This dataset is used to

guide the early development of assistive robots (intervention modules).

• Dvi, which includes 184 trials collected after the development of assistive robots.

The robotic advisors are deployed into the environment during these trials,

where they issue interventions to human participants as they see fit.

• Dvh, which includes 32 trials also collected after the development of assistive

robots. However, the robots are deactivated during these trials, thus Dvh serves

as the comparison group.

49

A. Acquiring Human Data

50

Appendix B

Implementation and Future Work

The Adam optimizer [50] is used to train all our models. In addition, the random seeds

for the environment and MARL/MAIL/Inference algorithms are selected randomly

from OS-provided system entropy, so as to avoid cherry-picked results.

B.1 Marcomanagement

The network architecture1 and hyperparameters used to obtain the main results are

shown in Table B.1.

Optimization & Env. Value Network Architecture Value
Discount Factor γ 0.7 Attention Layers 2
Learning Rate 10−4 Attention Heads 1
Batch Size 200 LeakyReLU α 0.2

Graph Channels Fg 14 Attention Output F ′
g 14

Agent Channels Fa 6 LSTM Channels Fh = Fc 256

Table B.1: Hyperparameters for marcomanagement.

Moreover, the feature-embedding MLPs in Figure 4.1 following o′
g,oa,m contain

two consecutive linear layers with 256 output channels each. The value branch to

estimate V is a linear layer (which has one output channel), and the policy branch to

calculate the distribution of π(·| ∼) is also a single linear layer.

1Implemented at https://gitlab.com/cmu_asist/MARL-Heterogeneous

51

https://gitlab.com/cmu_asist/MARL-Heterogeneous

B. Implementation and Future Work

We conducted hyperparameter searches for γ ∈ [0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99], the

learning rate in [10−3, 10−4, 10−5], the training batch size in [20, 200, 2000], the number

of attention layers in [1, 2, 3], and the number of attention heads in [1, 2, 4, 8, 16]. We

observed that changing the order of the learning rate and batch size would cause the

model to diverge or converge to local maxima. Among the rest hyperparameters, we

observed that the discount factor γ was the most important. Thus, we use the same

discount factor γ = 0.7 for our baseline methods2 for a fair comparison.

Results in Chapter 4 are reported based on 10 evaluation episodes at each plotted

point. The dense curves indicate the mean of evaluation episodes, whereas the shades

represent the 95-th confidence interval bootstrapped from 20 up-samples.

B.2 Micromanagement

The hyperparameters used to obtain the main results are shown in Table B.2.

Optimization & Env. Value
Discount Factor γ 0.7
Learning Rate 10−4

Batch Size 200
Grid Width ROW 28
Grid Height COL 17
Input Channels 6

Table B.2: Hyperparameters for micromanagement.

The network3 contains four consecutive convolutional layers (with ReLU activations

in between). The first one has a 3 × 3 filter and 16 output channels; the second

one also has a 3 × 3 filter and 32 output channels; and the third one uses a filter,

which has the same size as the input 2D grid, to map the image-like features to a

1× 1× 32 output. The output is then fed into the final convolutional layer with a

1× 1 filter to obtain the action probability distribution. As mentioned in Chapter 5,

this architecture is used across both online RL and imitation learning.

2The baseline methods were originally implemented by https://github.com/starry-sky6688/

MARL-Algorithms. We applied necessary adaptions and bug fixes at our forked repository https:

//github.com/andromeda-0/StarCraft/releases/tag/v1.0.
3Implemented at https://gitlab.com/cmu_asist/MAIL-Heterogeneous

52

https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/andromeda-0/StarCraft/releases/tag/v1.0
https://github.com/andromeda-0/StarCraft/releases/tag/v1.0
https://gitlab.com/cmu_asist/MAIL-Heterogeneous

B. Implementation and Future Work

We put careful consideration into the faux-human trajectories’ reproducibility.

For each trial, a parent seed sequence is generated from OS-provided system entropy,

then spawned into two child seed sequences to initialize the independent random

number generators used by the grid-world environment and agents, respectively. This

practice is known to avoid seed collision [37]. These seed sequences are saved together

with environment and agent configurations, which fully suffice to reproduce any trial.

B.3 Predicting Human Performance

Both human data and synthetic data are parsed to time sequences with a frequency

of 4Hz. We consider the following input features at every timestamp:

• positions is a 3× 2 array indicating the x− y location of each agent.

• ratio unvisited is the ratio of rooms that are yet visited by any agent.

• time in seconds is self-explanatory.

• <A∪ B|C> <discovered|moved|stabilized|signaled|evacuated>

contains ten integers that indicate the task progress. Note that victim discovery

is defined as the union of victim stabilization and signaling.

The network architecture4 is as follows: the input features are flattened, concate-

nated, and fed into a linear layer with 64 output channels. The output, activated by

a ReLU layer, is fed into a transformer encoder with dual-head attention and 256

output channels. In the end, the 256-dim vector is mapped to a scalar prediction

with a linear layer. Meanwhile, the baseline MLP model replaced the transformer

encoder with a linear layer (that has the same output channels) and a ReLU activation

function.

B.4 Future Work

We acknowledge two aspects of future work:

• To outperform planning-based experts in the micromanagement task. A poten-

tial solution is to consider IL or offline RL as pre-training, where the models

4Implemented at https://gitlab.com/cmu_asist/Inference_Artificial_Trajectories

53

https://gitlab.com/cmu_asist/Inference_Artificial_Trajectories

B. Implementation and Future Work

trained from offline demonstrations are further fine-tuned with online interac-

tions with the environment [30, 33, 82].

• To investigate the generalization capability in the macromanagement task.

The graphs on which we experimented in Chapter 4 are sparse (E ≈ G) and

contain at most thirty nodes. Can our proposed architecture demonstrate

a similarly significant improvement over the baselines, in a larger or denser

graph? In order to do so, we may need to increase the model capacity, e.g .,

to use more attention heads to attend to different features in neighboring

nodes. However, preliminary results suggested that the benefit of using plain

dot-product multi-head attention is limited in our setup, despite its success in

various domains [24, 105]. A potential solution is to regularize the model for

higher diversity and sparsity among the attention heads [20, 113, 124].

54

Bibliography

[1] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan
Girgin, Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin,
Marcin Michalski, and others. What matters in on-policy reinforcement learning?
a large-scale empirical study. arXiv preprint arXiv:2006.05990, 2020. 4.2

[2] Itamar Arel, Cong Liu, Tom Urbanik, and Airton G. Kohls. Reinforcement
learning-based multi-agent system for network traffic signal control. IET
Intelligent Transport Systems, 4(2):128–135, 2010. Publisher: IET. 2.2.2

[3] Bram Bakker. Reinforcement Learning with Long Short-Term Memory.
In Advances in Neural Information Processing Systems, volume 14. MIT
Press, 2001. URL https://proceedings.neurips.cc/paper/2001/hash/

a38b16173474ba8b1a95bcbc30d3b8a5-Abstract.html. 4.2

[4] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Ex-
ploratory Combinatorial Optimization with Reinforcement Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34(04):3243–3250,
April 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i04.5723. URL https:

//ojs.aaai.org/index.php/AAAI/article/view/5723. Number: 04. 2.4

[5] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The
arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research, 47:253–279, 2013. 2.3.1

[6] Richard Bellman. On the Theory of Dynamic Programming. Proceedings of the
National Academy of Sciences of the United States of America, 38(8):716–719,
August 1952. ISSN 0027-8424. URL https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC1063639/. 2.1

[7] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The
complexity of decentralized control of Markov decision processes. Mathematics
of operations research, 27(4):819–840, 2002. Publisher: INFORMS. 2.2.1, 2.2.2

[8] Craig Boutilier. Planning, learning and coordination in multiagent decision
processes. In TARK, volume 96, pages 195–210. Citeseer, 1996. 2.2.1

[9] Dong Chen, Zhaojian Li, Yongqiang Wang, Longsheng Jiang, and Yue Wang.

55

https://proceedings.neurips.cc/paper/2001/hash/a38b16173474ba8b1a95bcbc30d3b8a5-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/a38b16173474ba8b1a95bcbc30d3b8a5-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/5723
https://ojs.aaai.org/index.php/AAAI/article/view/5723
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639/

Bibliography

Deep multi-agent reinforcement learning for highway on-ramp merging in mixed
traffic. arXiv preprint arXiv:2105.05701, 2021. 1

[10] Haoqiang Chen, Yadong Liu, Zongtan Zhou, Dewen Hu, and Ming Zhang.
GAMA: Graph Attention Multi-agent reinforcement learning algorithm for
cooperation. Applied Intelligence, 50(12):4195–4205, December 2020. ISSN
1573-7497. doi: 10.1007/s10489-020-01755-8. URL https://doi.org/10.

1007/s10489-020-01755-8. 1, 2.3.2

[11] Tianyi Chen, Kaiqing Zhang, Georgios B. Giannakis, and Tamer Başar.
Communication-Efficient Policy Gradient Methods for Distributed Reinforce-
ment Learning. IEEE Transactions on Control of Network Systems, 9(2):
917–929, 2022. doi: 10.1109/TCNS.2021.3078100. 2.2.1

[12] Xiongjun Chen, Yiming Jiang, and Chenguang Yang. Stiffness Estimation
and Intention Detection for Human-Robot Collaboration. In 2020 15th IEEE
Conference on Industrial Electronics and Applications (ICIEA), pages 1802–
1807, November 2020. doi: 10.1109/ICIEA48937.2020.9248186. ISSN: 2158-2297.
1

[13] Pravin Chopade, Saad M Khan, David Edwards, and Alina von Davier. Machine
Learning for Efficient Assessment and Prediction of Human Performance in
Collaborative Learning Environments. In 2018 IEEE International Symposium
on Technologies for Homeland Security (HST), pages 1–6, October 2018. doi:
10.1109/THS.2018.8574203. 1

[14] Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. Shared Experi-
ence Actor-Critic for Multi-Agent Reinforcement Learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 10707–10717. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/

file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf. 2.2.2

[15] Filippos Christianos, Georgios Papoudakis, Muhammad A. Rahman, and
Stefano V. Albrecht. Scaling Multi-Agent Reinforcement Learning with Se-
lective Parameter Sharing. In Proceedings of the 38th International Con-
ference on Machine Learning, pages 1989–1998. PMLR, July 2021. URL
https://proceedings.mlr.press/v139/christianos21a.html. ISSN: 2640-
3498. 2.2.2

[16] Tianshu Chu, Sandeep Chinchali, and Sachin Katti. Multi-agent Reinforce-
ment Learning for Networked System Control. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=

Syx7A3NFvH. 1

[17] Xiangxiang Chu and Hangjun Ye. Parameter sharing deep deterministic policy

56

https://doi.org/10.1007/s10489-020-01755-8
https://doi.org/10.1007/s10489-020-01755-8
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.mlr.press/v139/christianos21a.html
https://openreview.net/forum?id=Syx7A3NFvH
https://openreview.net/forum?id=Syx7A3NFvH

Bibliography

gradient for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:1710.00336, 2017. 2.2.2

[18] Caitlyn Clabaugh, Konstantinos Tsiakas, and Maja Mataric. Predicting
preschool mathematics performance of children with a socially assistive robot
tutor. In Proceedings of the Synergies between Learning and Interaction Work-
shop@ IROS, Vancouver, BC, Canada, pages 24–28, 2017. 1

[19] Christopher C. Corral, Keerthi Shrikar Tatapudi, Verica Buchanan, Lixiao
Huang, and Nancy J. Cooke. Building a Synthetic Task Environment to
Support Artificial Social Intelligence Research. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 65(1):660–664, September
2021. ISSN 2169-5067. doi: 10.1177/1071181321651354a. URL https://

doi.org/10.1177/1071181321651354a. Publisher: SAGE Publications Inc. 1,
5.3.2, A

[20] Gonçalo M. Correia, Vlad Niculae, and André F. T. Martins. Adaptively Sparse
Transformers. CoRR, abs/1909.00015, 2019. URL http://arxiv.org/abs/

1909.00015. B.4

[21] Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer
learning for multiagent reinforcement learning systems. Journal of Artificial
Intelligence Research, 64:645–703, 2019. 1

[22] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh,
Mike Rabbat, and Joelle Pineau. Tarmac: Targeted multi-agent communication.
In International Conference on Machine Learning, pages 1538–1546. PMLR,
2019. 1

[23] Jilles Dibangoye and Olivier Buffet. Learning to act in decentralized partially
observable MDPs. In International Conference on Machine Learning, pages
1233–1242. PMLR, 2018. 2.2.1

[24] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. In
International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=YicbFdNTTy. B.4

[25] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good repre-
sentation sufficient for sample efficient reinforcement learning? In International
Conference on Learning Representations, 2020. 1

[26] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and ShimonWhite-
son. Learning to Communicate with Deep Multi-Agent Reinforcement Learning.
In Advances in Neural Information Processing Systems, volume 29. Curran

57

https://doi.org/10.1177/1071181321651354a
https://doi.org/10.1177/1071181321651354a
http://arxiv.org/abs/1909.00015
http://arxiv.org/abs/1909.00015
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Bibliography

Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/

hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html. 1, 2.2.2

[27] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI conference on artificial intelligence, volume 32, 2018. Issue: 1.
2.2.1, 2.3.2

[28] Alison Freebairn, Kirsten Hagon, Vincent Turmine, Guido Pizzini, Roop Singh,
Tessa Kelly, Catalina Jaime, Nikolas Scherer, Kara Siahaan, Julia Hartelius,
et al. World Disasters Report 2020: Come Heat Or High Water. International
Federation of Red Cross and Red Crescent Societies, 2020. 1

[29] Jared T. Freeman, Lixiao Huang, Matt Woods, and Stephen J. Cauffman.
Evaluating artificial social intelligence in an urban search and rescue task envi-
ronment, November 2021. URL https://keep.lib.asu.edu/items/162284.
1, A

[30] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline
reinforcement learning. Advances in neural information processing systems, 34:
20132–20145, 2021. B.4

[31] Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep Reinforce-
ment Learning without Exploration. In Proceedings of the 36th International
Conference on Machine Learning, pages 2052–2062. PMLR, May 2019. URL
https://proceedings.mlr.press/v97/fujimoto19a.html. ISSN: 2640-3498.
1

[32] Angus Fung, Long Yu Wang, Kaicheng Zhang, Goldie Nejat, and Beno Benhabib.
Using Deep Learning to Find Victims in Unknown Cluttered Urban Search and
Rescue Environments. Current Robotics Reports, 1(3):105–115, September 2020.
ISSN 2662-4087. doi: 10.1007/s43154-020-00011-8. URL https://doi.org/

10.1007/s43154-020-00011-8. 1

[33] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol
Hausman. Relay Policy Learning: Solving Long-Horizon Tasks via Imitation and
Reinforcement Learning. In Proceedings of the Conference on Robot Learning,
pages 1025–1037. PMLR, May 2020. URL https://proceedings.mlr.press/

v100/gupta20a.html. ISSN: 2640-3498. B.4

[34] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative
Multi-agent Control Using Deep Reinforcement Learning. In Gita Suk-
thankar and Juan A. Rodriguez-Aguilar, editors, Autonomous Agents and
Multiagent Systems, Lecture Notes in Computer Science, pages 66–83, Cham,
2017. Springer International Publishing. ISBN 978-3-319-71682-4. doi:
10.1007/978-3-319-71682-4 5. 1, 2.2.2

58

https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c7635bfd99248a2cdef8249ef7bfbef4-Abstract.html
https://keep.lib.asu.edu/items/162284
https://proceedings.mlr.press/v97/fujimoto19a.html
https://doi.org/10.1007/s43154-020-00011-8
https://doi.org/10.1007/s43154-020-00011-8
https://proceedings.mlr.press/v100/gupta20a.html
https://proceedings.mlr.press/v100/gupta20a.html

Bibliography

[35] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic pro-
gramming for partially observable stochastic games. In AAAI, volume 4, pages
709–715, 2004. 2.2.1

[36] Caroline E. Harriott and Julie A. Adams. Modeling Human Performance for
Human–Robot Systems. Reviews of Human Factors and Ergonomics, 9(1):
94–130, November 2013. ISSN 1557-234X. doi: 10.1177/1557234X13501471.
URL https://doi.org/10.1177/1557234X13501471. Publisher: SAGE Pub-
lications. 1

[37] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020. ISSN
1476-4687. doi: 10.1038/s41586-020-2649-2. URL https://www.nature.com/

articles/s41586-020-2649-2. Number: 7825 Publisher: Nature Publishing
Group. B.2

[38] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, July 1968. ISSN 2168-2887. doi:
10.1109/TSSC.1968.300136. Conference Name: IEEE Transactions on Systems
Science and Cybernetics. 5.2

[39] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially
Observable MDPs. In 2015 AAAI Fall Symposium Series, September 2015. URL
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673. 2.1

[40] Yujiao Hu, Yuan Yao, and Wee Sun Lee. A reinforcement learning ap-
proach for optimizing multiple traveling salesman problems over graphs.
Knowledge-Based Systems, 204:106244, September 2020. ISSN 0950-7051.
doi: 10.1016/j.knosys.2020.106244. URL https://www.sciencedirect.com/

science/article/pii/S0950705120304445. 2.4

[41] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne.
Imitation Learning: A Survey of Learning Methods. ACM Computing Surveys,
50(2):21:1–21:35, April 2017. ISSN 0360-0300. doi: 10.1145/3054912. URL
http://doi.org/10.1145/3054912. 1

[42] Shariq Iqbal and Fei Sha. Actor-Attention-Critic for Multi-Agent Reinforcement
Learning. In Proceedings of the 36th International Conference on Machine
Learning, pages 2961–2970. PMLR, May 2019. URL https://proceedings.

mlr.press/v97/iqbal19a.html. ISSN: 2640-3498. 2.2.2, 4.2

59

https://doi.org/10.1177/1557234X13501471
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://www.sciencedirect.com/science/article/pii/S0950705120304445
https://www.sciencedirect.com/science/article/pii/S0950705120304445
http://doi.org/10.1145/3054912
https://proceedings.mlr.press/v97/iqbal19a.html
https://proceedings.mlr.press/v97/iqbal19a.html

Bibliography

[43] Vidhi Jain, Rohit Jena, Huao Li, Tejus Gupta, Dana Hughes, Michael Lewis,
and Katia P. Sycara. Predicting Human Strategies in Simulated Search and
Rescue Task. CoRR, abs/2011.07656, 2020. URL https://arxiv.org/abs/

2011.07656. 1

[44] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro
Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. Social influence as
intrinsic motivation for multi-agent deep reinforcement learning. In International
conference on machine learning, pages 3040–3049. PMLR, 2019. 1

[45] Jiechuan Jiang and Zongqing Lu. Learning Attentional Communication for
Multi-Agent Cooperation. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 31, pages 7254–7264. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/

file/6a8018b3a00b69c008601b8becae392b-Paper.pdf. 2.2.2

[46] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
1

[47] Soummya Kar, José M. F. Moura, and H. Vincent Poor. $\cal Q \cal D$-
Learning: A Collaborative Distributed Strategy for Multi-Agent Reinforcement
Learning Through $\rm Consensus + \rm Innovations$. IEEE Transactions
on Signal Processing, 61(7):1848–1862, April 2013. ISSN 1941-0476. doi:
10.1109/TSP.2013.2241057. Conference Name: IEEE Transactions on Signal
Processing. 2.2.1

[48] Meha Kaushik, Nirvan Singhania, Phaniteja S., and K. Madhava Krishna. Pa-
rameter Sharing Reinforcement Learning Architecture for Multi Agent Driving.
In Proceedings of the Advances in Robotics 2019, AIR 2019, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 978-1-4503-6650-2. doi: 10.
1145/3352593.3352625. URL https://doi.org/10.1145/3352593.3352625.
event-place: Chennai, India. 2.2.2

[49] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song.
Learning Combinatorial Optimization Algorithms over Graphs. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/

hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html. 2.4

[50] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. In ICLR (Poster), 2015. URL http://arxiv.org/abs/1412.6980.
B

60

https://arxiv.org/abs/2011.07656
https://arxiv.org/abs/2011.07656
https://proceedings.neurips.cc/paper/2018/file/6a8018b3a00b69c008601b8becae392b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6a8018b3a00b69c008601b8becae392b-Paper.pdf
https://doi.org/10.1145/3352593.3352625
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
http://arxiv.org/abs/1412.6980

Bibliography

[51] Vijay Konda and John Tsitsiklis. Actor-Critic Algorithms. In Ad-
vances in Neural Information Processing Systems, volume 12. MIT
Press, 1999. URL https://proceedings.neurips.cc/paper/1999/hash/

6449f44a102fde848669bdd9eb6b76fa-Abstract.html. 2.3.2

[52] Antonio Laverghetta Jr, Animesh Nighojkar, Jamshidbek Mirzakhalov, and
John Licato. Can Transformer Language Models Predict Psychometric Proper-
ties? In Proceedings of* SEM 2021: The Tenth Joint Conference on Lexical
and Computational Semantics, pages 12–25, 2021. 1

[53] Hoang M. Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated Multi-
Agent Imitation Learning. In Proceedings of the 34th International Conference
on Machine Learning, pages 1995–2003. PMLR, July 2017. URL https://

proceedings.mlr.press/v70/le17a.html. ISSN: 2640-3498. 2.2.2

[54] Fuhao Li, Shike Hou, Chunguang Bu, and Bo Qu. Rescue Robots for
the Urban Earthquake Environment. Disaster Medicine and Public
Health Preparedness, pages 1–5, June 2022. ISSN 1935-7893, 1938-
744X. doi: 10.1017/dmp.2022.98. URL http://www.cambridge.org/

core/journals/disaster-medicine-and-public-health-preparedness/

article/rescue-robots-for-the-urban-earthquake-environment/

AE4E401B0D089C78EDB0DB635768D93A. Publisher: Cambridge University
Press. 1

[55] Qingbiao Li, Weizhe Lin, Zhe Liu, and Amanda Prorok. Message-Aware Graph
Attention Networks for Large-Scale Multi-Robot Path Planning. IEEE Robotics
and Automation Letters, 6(3):5533–5540, July 2021. ISSN 2377-3766. doi:
10.1109/LRA.2021.3077863. Conference Name: IEEE Robotics and Automation
Letters. 1, 2.3.2

[56] Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol,
Marcello Restelli, and Danilo Romano. Combining reinforcement learning
with rule-based controllers for transparent and general decision-making in
autonomous driving. Robotics and Autonomous Systems, 131:103568, September
2020. ISSN 0921-8890. doi: 10.1016/j.robot.2020.103568. URL https://www.

sciencedirect.com/science/article/pii/S0921889020304085. 1

[57] Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.
2.2.1

[58] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang
Gao. Multi-agent game abstraction via graph attention neural network. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
7211–7218, 2020. Issue: 05. 1, 2.2.2, 2.3.2, 4.2, 4.3.1

61

https://proceedings.neurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.mlr.press/v70/le17a.html
https://proceedings.mlr.press/v70/le17a.html
http://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/rescue-robots-for-the-urban-earthquake-environment/AE4E401B0D089C78EDB0DB635768D93A
http://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/rescue-robots-for-the-urban-earthquake-environment/AE4E401B0D089C78EDB0DB635768D93A
http://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/rescue-robots-for-the-urban-earthquake-environment/AE4E401B0D089C78EDB0DB635768D93A
http://www.cambridge.org/core/journals/disaster-medicine-and-public-health-preparedness/article/rescue-robots-for-the-urban-earthquake-environment/AE4E401B0D089C78EDB0DB635768D93A
https://www.sciencedirect.com/science/article/pii/S0921889020304085
https://www.sciencedirect.com/science/article/pii/S0921889020304085

Bibliography

[59] Yugang Liu and Goldie Nejat. Robotic Urban Search and Rescue: A Survey from
the Control Perspective. Journal of Intelligent & Robotic Systems, 72(2):147–165,
November 2013. ISSN 0921-0296, 1573-0409. doi: 10.1007/s10846-013-9822-x.
URL http://link.springer.com/10.1007/s10846-013-9822-x. 1

[60] Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Envi-
ronments. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/

paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html.
2.2.2, 2.3.1, 2.3.2

[61] Weifeng Lu, Zhe Hu, and Jia Pan. Human-Robot Collaboration using Variable
Admittance Control and Human Intention Prediction. In 2020 IEEE 16th
International Conference on Automation Science and Engineering (CASE),
pages 1116–1121, August 2020. doi: 10.1109/CASE48305.2020.9217040. ISSN:
2161-8089. 1

[62] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrasting
Centralized and Decentralized Critics in Multi-Agent Reinforcement Learning,
December 2021. URL http://arxiv.org/abs/2102.04402. arXiv:2102.04402
[cs]. 2.3.2

[63] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon White-
son. MAVEN: Multi-Agent Variational Exploration. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/

f816dc0acface7498e10496222e9db10-Abstract.html. 1, 2.2.2, 4.3.1

[64] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni. Learning
Agent Communication under Limited Bandwidth by Message Pruning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34(04):5142–5149,
April 2020. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v34i04.5957. URL
https://aaai.org/ojs/index.php/AAAI/article/view/5957. 1

[65] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Re-
inforcement learning for combinatorial optimization: A survey. Computers
& Operations Research, 134:105400, October 2021. ISSN 0305-0548. doi:
10.1016/j.cor.2021.105400. URL https://www.sciencedirect.com/science/

article/pii/S0305054821001660. 2.4

[66] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidje-
land, and Georg Ostrovski. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015. Publisher: Nature Publishing Group.
2.3.1

62

http://link.springer.com/10.1007/s10846-013-9822-x
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
http://arxiv.org/abs/2102.04402
https://proceedings.neurips.cc/paper/2019/hash/f816dc0acface7498e10496222e9db10-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f816dc0acface7498e10496222e9db10-Abstract.html
https://aaai.org/ojs/index.php/AAAI/article/view/5957
https://www.sciencedirect.com/science/article/pii/S0305054821001660
https://www.sciencedirect.com/science/article/pii/S0305054821001660

Bibliography

[67] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings of The 33rd Inter-
national Conference on Machine Learning, pages 1928–1937. PMLR, June 2016.
URL https://proceedings.mlr.press/v48/mniha16.html. ISSN: 1938-7228.
2.3.2, 4.2

[68] Kevin P Murphy. A survey of pomdp solution techniques. environment, 2:X3,
2000. 2.1

[69] Venkatraman Narayanan, Bala Murali Manoghar, Rama Prashanth RV, and
Aniket Bera. EWareNet: Emotion Aware Human Intent Prediction and Adaptive
Spatial Profile Fusion for Social Robot Navigation, December 2020. URL
http://arxiv.org/abs/2011.09438. arXiv:2011.09438 [cs]. 1

[70] Yaru Niu, Rohan Paleja, and Matthew Gombolay. Multi-Agent Graph-Attention
Communication and Teaming. In Proceedings of the 20th International Confer-
ence on Autonomous Agents and MultiAgent Systems, pages 964–973, 2021. 1,
2.3.2

[71] Ann Nowé, Peter Vrancx, and Yann-Michaël De Hauwere. Game Theory
and Multi-agent Reinforcement Learning. In Marco Wiering and Martijn
van Otterlo, editors, Reinforcement Learning: State-of-the-Art, Adaptation,
Learning, and Optimization, pages 441–470. Springer, Berlin, Heidelberg, 2012.
ISBN 978-3-642-27645-3. doi: 10.1007/978-3-642-27645-3 14. URL https:

//doi.org/10.1007/978-3-642-27645-3_14. 2.2.2

[72] Paul D O’Brien and Richard C Nicol. FIPA—towards a standard for software
agents. BT Technology Journal, 16(3):51–59, 1998. Publisher: Springer. 5.2

[73] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter
Abbeel, and Jan Peters. An Algorithmic Perspective on Imitation Learning.
Foundations and Trends® in Robotics, 7(1-2):1–179, March 2018. ISSN 1935-
8253, 1935-8261. doi: 10.1561/2300000053. URL http://www.nowpublishers.

com/article/Details/ROB-053. Publisher: Now Publishers, Inc. 1

[74] Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao
Long, and Jun Wang. Multiagent Bidirectionally-Coordinated Nets: Emergence
of Human-level Coordination in Learning to Play StarCraft Combat Games,
September 2017. URL http://arxiv.org/abs/1703.10069. arXiv:1703.10069
[cs]. 2.2.2

[75] Emanuele Pesce and Giovanni Montana. Improving coordination in small-scale
multi-agent deep reinforcement learning through memory-driven communi-
cation. Machine Learning, 109(9):1727–1747, September 2020. ISSN 1573-
0565. doi: 10.1007/s10994-019-05864-5. URL https://doi.org/10.1007/

63

https://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/2011.09438
https://doi.org/10.1007/978-3-642-27645-3_14
https://doi.org/10.1007/978-3-642-27645-3_14
http://www.nowpublishers.com/article/Details/ROB-053
http://www.nowpublishers.com/article/Details/ROB-053
http://arxiv.org/abs/1703.10069
https://doi.org/10.1007/s10994-019-05864-5
https://doi.org/10.1007/s10994-019-05864-5

Bibliography

s10994-019-05864-5. 2.2.2, 4.2

[76] Huy Xuan Pham, Hung Manh La, David Feil-Seifer, and Aria Nefian. Cooper-
ative and Distributed Reinforcement Learning of Drones for Field Coverage,
September 2018. URL http://arxiv.org/abs/1803.07250. arXiv:1803.07250
[cs]. 2.2.2

[77] François Pomerleau, Benoit Lescot, Francis Colas, Ming Liu, and Roland
Siegwart. Dataset Acquisitions for USAR Environments. In 2011 AAAI Fall
Symposium Series, November 2011. URL http://www.aaai.org/ocs/index.

php/FSS/FSS11/paper/view/4185. 1

[78] Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colom-
bini. A survey on offline reinforcement learning: Taxonomy, review, and open
problems. arXiv preprint arXiv:2203.01387, 2022. 1

[79] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014. 2.1

[80] Peng Qian, Tahira Naseem, Roger Levy, and Ramón Fernandez Astudillo.
Structural Guidance for Transformer Language Models. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3735–3745, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.289. URL
https://aclanthology.org/2021.acl-long.289. 1

[81] Calvin Z Qiao, Maram Sakr, Katharina Muelling, and Henny Admoni. Learning
from demonstration for real-time user goal prediction and shared assistive
control. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 3270–3275. IEEE, 2021. 1

[82] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John
Schulman, Emanuel Todorov, and Sergey Levine. Learning complex dexterous
manipulation with deep reinforcement learning and demonstrations. arXiv
preprint arXiv:1709.10087, 2017. B.4

[83] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar,
Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value function
factorisation for deep multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 4295–4304. PMLR, 2018. 1, 2.2.1, 2.2.2,
2.3.1, 4.3.1

[84] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson.
Weighted QMIX: Expanding Monotonic Value Function Factorisation for
Deep Multi-Agent Reinforcement Learning. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 10199–10210. Curran Asso-

64

https://doi.org/10.1007/s10994-019-05864-5
https://doi.org/10.1007/s10994-019-05864-5
https://doi.org/10.1007/s10994-019-05864-5
http://arxiv.org/abs/1803.07250
http://www.aaai.org/ocs/index.php/FSS/FSS11/paper/view/4185
http://www.aaai.org/ocs/index.php/FSS/FSS11/paper/view/4185
https://aclanthology.org/2021.acl-long.289

Bibliography

ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/

hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html. 2.2.2

[85] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stu-
art Russell. Bridging Offline Reinforcement Learning and Imitation
Learning: A Tale of Pessimism. In Advances in Neural Information
Processing Systems, volume 34, pages 11702–11716. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/

60ce36723c17bbac504f2ef4c8a46995-Abstract.html. 1

[86] Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr,
Jakob N. Foerster, and Shimon Whiteson. The StarCraft Multi-Agent Challenge.
In AAMAS, pages 2186–2188, 2019. URL http://dl.acm.org/citation.cfm?

id=3332052. 1, 2.2.2, 2.3.1, 3.1

[87] Stefano Scheggi and Gionata Salvietti. Haptic guidance in urban search and
rescue scenarios with reduced visibility. In Proc. 20th IMEKO TC4 Int. Symp.
and 18th Int. Workshop on ADC Modelling and Testing Research on Electric
and Electronic Measurement for the Economic Upturn, Benevento, Italy, 2014.
1

[88] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter
Abbeel. High-Dimensional Continuous Control Using Generalized Advantage
Estimation. In Yoshua Bengio and Yann LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/

abs/1506.02438. 2.3.2, 4.2

[89] Francesco Semeraro, Alexander Griffiths, and Angelo Cangelosi. Human-robot
collaboration and machine learning: a systematic review of recent research,
May 2022. URL http://arxiv.org/abs/2110.07448. arXiv:2110.07448 [cs].
1

[90] Esmaeil Seraj, Zheyuan Wang, Rohan Paleja, Matthew Sklar, Anirudh Patel,
and Matthew Gombolay. Heterogeneous Graph Attention Networks for Learning
Diverse Communication. Technical Report arXiv:2108.09568, arXiv, October
2021. URL http://arxiv.org/abs/2108.09568. arXiv:2108.09568 [cs] type:
article. 1, 2.2.1, 2.2.2, 2.3.2

[91] Binoy Shah and Howie Choset. Survey on Urban Search and Rescue Robots.
Journal of the Robotics Society of Japan, 22(5):582–586, July 2004. ISSN 0289-
1824, 1884-7145. doi: 10.7210/jrsj.22.582. URL https://www.jstage.jst.

go.jp/article/jrsj1983/22/5/22_5_582/_article/-char/ja/. Publisher:
The Robotics Society of Japan. 1

65

https://proceedings.neurips.cc/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/60ce36723c17bbac504f2ef4c8a46995-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/60ce36723c17bbac504f2ef4c8a46995-Abstract.html
http://dl.acm.org/citation.cfm?id=3332052
http://dl.acm.org/citation.cfm?id=3332052
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/2110.07448
http://arxiv.org/abs/2108.09568
https://www.jstage.jst.go.jp/article/jrsj1983/22/5/22_5_582/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jrsj1983/22/5/22_5_582/_article/-char/ja/

Bibliography

[92] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of
sciences, 39(10):1095–1100, 1953. 2.2.1

[93] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Individualized
Controlled Continuous Communication Model for Multiagent Cooperative and
Competitive Tasks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rye7knCqK7. 1, 2.3.2

[94] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and
Yung Yi. QTRAN: Learning to Factorize with Transformation for Cooperative
Multi-Agent Reinforcement Learning. In Proceedings of the 36th International
Conference on Machine Learning, pages 5887–5896. PMLR, May 2019. URL
https://proceedings.mlr.press/v97/son19a.html. ISSN: 2640-3498. 1,
2.2.2

[95] Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, and Anas-
tasiia Ignateva. Deep Attention Recurrent Q-Network. Technical Report
arXiv:1512.01693, arXiv, December 2015. URL http://arxiv.org/abs/1512.

01693. arXiv:1512.01693 [cs] type: article. 2.1

[96] Matthijs T. J. Spaan. Partially Observable Markov Decision Processes. In Marco
Wiering and Martijn van Otterlo, editors, Reinforcement Learning: State-of-the-
Art, Adaptation, Learning, and Optimization, pages 387–414. Springer, Berlin,
Heidelberg, 2012. ISBN 978-3-642-27645-3. doi: 10.1007/978-3-642-27645-3 12.
URL https://doi.org/10.1007/978-3-642-27645-3_12. 2.1

[97] M. Statheropoulos, A. Agapiou, G. C. Pallis, K. Mikedi, S. Karma, J. Vamvakari,
M. Dandoulaki, F. Andritsos, and C. L. Paul Thomas. Factors that affect rescue
time in urban search and rescue (USAR) operations. Natural Hazards, 75(1):
57–69, January 2015. ISSN 1573-0840. doi: 10.1007/s11069-014-1304-3. URL
https://doi.org/10.1007/s11069-014-1304-3. 1

[98] Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. Learning Mul-
tiagent Communication with Backpropagation. In Advances in Neu-
ral Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/

55b1927fdafef39c48e5b73b5d61ea60-Abstract.html. 1, 4.3.1

[99] Yanchao Sun, Ruijie Zheng, Parisa Hassanzadeh, Yongyuan Liang, Soheil
Feizi, Sumitra Ganesh, and Furong Huang. Certifiably Robust Policy Learning
against Adversarial Communication in Multi-agent Systems, July 2022. URL
http://arxiv.org/abs/2206.10158. arXiv:2206.10158 [cs]. 2.2.2

[100] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki,
Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. Value-Decomposition Networks For

66

https://openreview.net/forum?id=rye7knCqK7
https://proceedings.mlr.press/v97/son19a.html
http://arxiv.org/abs/1512.01693
http://arxiv.org/abs/1512.01693
https://doi.org/10.1007/978-3-642-27645-3_12
https://doi.org/10.1007/s11069-014-1304-3
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
http://arxiv.org/abs/2206.10158

Bibliography

Cooperative Multi-Agent Learning Based On Team Reward. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’18, pages 2085–2087, Richland, SC, 2018. International
Foundation for Autonomous Agents and Multiagent Systems. event-place:
Stockholm, Sweden. 2.3.1

[101] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an intro-
duction. Adaptive computation and machine learning. MIT Press, Cambridge,
Mass, 1998. ISBN 978-0-262-19398-6. 2.1, 2.3.2

[102] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour.
Policy Gradient Methods for Reinforcement Learning with Function Approxima-
tion. In Advances in Neural Information Processing Systems, volume 12. MIT
Press, 1999. URL https://proceedings.neurips.cc/paper/1999/hash/

464d828b85b0bed98e80ade0a5c43b0f-Abstract.html. 2.3.2

[103] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning,
pages 330–337, 1993. 2.2.2, 2.3.1

[104] J. K. Terry, Nathaniel Grammel, Sanghyun Son, and Benjamin Black. Parameter
Sharing For Heterogeneous Agents in Multi-Agent Reinforcement Learning.
Technical Report arXiv:2005.13625, arXiv, January 2022. URL http://arxiv.

org/abs/2005.13625. arXiv:2005.13625 [cs, stat] type: article. 2.2.2

[105] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, \Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017. 5.2, B.4

[106] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph Attention Networks. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?

id=rJXMpikCZ. 1, 4.2, 4.2

[107] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. ROMA:
Multi-Agent Reinforcement Learning with Emergent Roles. In Hal Daumé III
and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 9876–9886. PMLR, July 2020. URL https://proceedings.mlr.press/

v119/wang20f.html. 2.2.2

[108] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
PhD thesis, King’s College, Cambridge United Kingdom, 1989. 2.3.1

[109] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3):229–256, May 1992.
ISSN 1573-0565. doi: 10.1007/BF00992696. URL https://doi.org/10.1007/

67

https://proceedings.neurips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
http://arxiv.org/abs/2005.13625
http://arxiv.org/abs/2005.13625
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.mlr.press/v119/wang20f.html
https://proceedings.mlr.press/v119/wang20f.html
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

Bibliography

BF00992696. 2.3.2

[110] Jianqiong Xiao and Zhiyong Zhou. Research Progress of RNN Language
Model. In 2020 IEEE International Conference on Artificial Intelligence and
Computer Applications (ICAICA), pages 1285–1288, June 2020. doi: 10.1109/
ICAICA50127.2020.9182390. 1

[111] Can Xu, Wanzhong Zhao, Jinqiang Liu, Chunyan Wang, and Chen Lv. An
Integrated Decision-Making Framework for Highway Autonomous Driving Us-
ing Combined Learning and Rule-Based Algorithm. IEEE Transactions on
Vehicular Technology, 71(4):3621–3632, April 2022. ISSN 1939-9359. doi:
10.1109/TVT.2022.3150343. Conference Name: IEEE Transactions on Vehicu-
lar Technology. 1

[112] Liang Yan, Xiaoshan Gao, Xiongjie Zhang, and Suokui Chang. Human-Robot
Collaboration by Intention Recognition using Deep LSTM Neural Network. In
2019 IEEE 8th International Conference on Fluid Power and Mechatronics
(FPM), pages 1390–1396, April 2019. doi: 10.1109/FPM45753.2019.9035907. 1

[113] Yang Ye and Shihao Ji. Sparse Graph Attention Networks. IEEE Transactions
on Knowledge and Data Engineering, pages 1–1, 2021. ISSN 1558-2191. doi: 10.
1109/TKDE.2021.3072345. Conference Name: IEEE Transactions on Knowledge
and Data Engineering. B.4

[114] Javier Yu, Joseph A Vincent, and Mac Schwager. Dinno: Distributed neural
network optimization for multi-robot collaborative learning. IEEE Robotics
and Automation Letters, 7(2):1896–1903, 2022. 1

[115] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE access, 8:58443–58469, 2020. 1

[116] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.
Chawla. Heterogeneous Graph Neural Network. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’19, pages 793–803, New York, NY, USA, July 2019. Association for
Computing Machinery. ISBN 978-1-4503-6201-6. doi: 10.1145/3292500.3330961.
URL https://doi.org/10.1145/3292500.3330961. 2.4

[117] Gengzhi Zhang, Liang Feng, and Yaqing Hou. Multi-task Actor-Critic with
Knowledge Transfer via a Shared Critic. In Asian Conference on Machine
Learning, pages 580–593. PMLR, November 2021. URL https://proceedings.

mlr.press/v157/zhang21b.html. ISSN: 2640-3498. 2.2.2, 2.3.2

[118] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully
Decentralized Multi-Agent Reinforcement Learning with Networked Agents. In
Proceedings of the 35th International Conference on Machine Learning, pages

68

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1145/3292500.3330961
https://proceedings.mlr.press/v157/zhang21b.html
https://proceedings.mlr.press/v157/zhang21b.html

Bibliography

5872–5881. PMLR, July 2018. URL https://proceedings.mlr.press/v80/

zhang18n.html. ISSN: 2640-3498. 2.2.1, 2.2.2

[119] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-Agent Reinforcement
Learning: A Selective Overview of Theories and Algorithms. In Kyriakos G.
Vamvoudakis, Yan Wan, Frank L. Lewis, and Derya Cansever, editors, Handbook
of Reinforcement Learning and Control, Studies in Systems, Decision and
Control, pages 321–384. Springer International Publishing, Cham, 2021. ISBN
978-3-030-60990-0. doi: 10.1007/978-3-030-60990-0 12. URL https://doi.

org/10.1007/978-3-030-60990-0_12. 2.2.2

[120] Kuangen Zhang, Haiyuan Liu, Zixuan Fan, Xinxing Chen, Yuquan Leng,
Clarence W. de Silva, and Chenglong Fu. Foot placement prediction for
assistive walking by fusing sequential 3D gaze and environmental context. IEEE
Robotics and Automation Letters, 6(2):2509–2516, 2021. Publisher: IEEE. 1

[121] Yu Zhang, Vignesh Narayanan, Tathagata Chakraborti, and Subbarao Kamb-
hampati. A human factors analysis of proactive support in human-robot teaming.
In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3586–3593. IEEE, 2015. 1

[122] Liang Zheng, Chuang Zhu, Zhengbing He, and Tian He. Safety rule-
based cellular automaton modeling and simulation under V2V environment.
Transportmetrica A: Transport Science, 17(1):81–106, January 2021. ISSN
2324-9935. doi: 10.1080/23249935.2018.1517135. URL https://doi.org/

10.1080/23249935.2018.1517135. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/23249935.2018.1517135. 1

[123] Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng
Chen, Changjie Fan, Yang Gao, and Chongjie Zhang. Episodic Multi-agent
Reinforcement Learning with Curiosity-driven Exploration. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?

id=YDGJ5YExiw6. 1

[124] Hao Zhou, Yazhou Yang, Tingjin Luo, Jun Zhang, and Shuohao Li. A
unified deep sparse graph attention network for scene graph generation.
Pattern Recognition, 123:108367, March 2022. ISSN 0031-3203. doi: 10.
1016/j.patcog.2021.108367. URL https://www.sciencedirect.com/science/

article/pii/S0031320321005471. B.4

[125] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep
reinforcement learning: A survey. arXiv preprint arXiv:2009.07888, 2020. 1

[126] Vittorio Amos Ziparo, Alexander Kleiner, Alessandro Farinelli, Luca Marchetti,
and Daniele Nardi. Cooperative exploration for USAR robots with indirect

69

https://proceedings.mlr.press/v80/zhang18n.html
https://proceedings.mlr.press/v80/zhang18n.html
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1080/23249935.2018.1517135
https://doi.org/10.1080/23249935.2018.1517135
https://openreview.net/forum?id=YDGJ5YExiw6
https://openreview.net/forum?id=YDGJ5YExiw6
https://www.sciencedirect.com/science/article/pii/S0031320321005471
https://www.sciencedirect.com/science/article/pii/S0031320321005471

Bibliography

communication. IFAC Proceedings Volumes, 40(15):554–559, 2007. Publisher:
Elsevier. 1

[127] Aaron Zweig, Nesreen Ahmed, Theodore L. Willke, and Guixiang Ma. Neural Al-
gorithms for Graph Navigation. In Learning Meets Combinatorial Algorithms at
NeurIPS2020, 2020. URL https://openreview.net/forum?id=sew79Me0W0c.
2.4

70

https://openreview.net/forum?id=sew79Me0W0c

	1 Introduction
	2 Background
	2.1 Markov Decision Process
	2.2 Markov Games
	2.2.1 Heterogeneity in Multi-Agent Systems
	2.2.2 Information Structure

	2.3 Reinforcement Learning Algorithms
	2.3.1 Value-based
	2.3.2 Policy Gradient and Actor-Critic

	2.4 RL over Graph Environments

	3 Task Formulation
	3.1 Heterogeneous Teamwork
	3.2 USAR Mission Design

	4 Marcomanagement
	4.1 Graph-based Environment Simulator
	4.1.1 State Space
	4.1.2 Observation Space
	4.1.3 Action Space and Dynamics

	4.2 Algorithms
	4.3 Experiments
	4.3.1 Baselines
	4.3.2 Results and Discussions

	5 Micromanagement
	5.1 Grid-based Environment Simulator
	5.1.1 State and Observation Space
	5.1.2 Action Space and Dynamics
	5.1.3 Optional Features

	5.2 Algorithms
	5.3 Experiments
	5.3.1 Decision-Making
	5.3.2 Forecasting Human Performance

	6 Conclusion
	A Acquiring Human Data
	B Implementation and Future Work
	B.1 Marcomanagement
	B.2 Micromanagement
	B.3 Predicting Human Performance
	B.4 Future Work

	Bibliography

