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Abstract— Robots deployed in many real-world settings need
to be able to acquire new skills and solve new tasks over time.
Prior works on planning with skills often make assumptions
on the structure of skills and tasks, such as subgoal skills,
shared skill implementations, or task-specific plan skeletons,
which limit adaptation to new skills and tasks. By contrast,
we propose doing task planning by jointly searching in the
space of parameterized skills using high-level skill effect models
learned in simulation. We use an iterative training procedure
to efficiently generate relevant data to train such models.
Our approach allows flexible skill parameterizations and task
specifications to facilitate lifelong learning in general-purpose
domains. Experiments demonstrate the ability of our planner
to integrate new skills in a lifelong manner, finding new task
strategies with lower costs in both train and test tasks. We
additionally show that our method can transfer to the real
world without further fine-tuning.

I. INTRODUCTION

Lifelong-learning robots need to be able to plan with new
skills and for new tasks over time [1]. For example, a home
robot may initially have skills to rinse dishes and place them
individually on a rack. Later, the robot might obtain a new
skill of operating a dishwasher. Now the robot can plan to
either wash the dishes one by one or use the dishwasher
depending on the costs of each skill and the number of dishes
to be cleaned. In other words, robots need to be able to
obtain and use new skills over time to either adapt to new
scenarios, solve new tasks, or to improve performance on
existing tasks. Otherwise, the robot engineer would need to
account for all potential tasks and strategies the robot can
use before deployment. As such, we propose a task planning
system that can efficiently incorporate new skills and plan
for new tasks in a lifelong robot manipulation setting.

To create such a versatile manipulation system, we use
parameterized skills that can be adapted to different scenarios
by selecting suitable parameter values. We identify three
properties of skills that are important to support in this
context: 1) skills can have different implementations, 2)
skills can have different parameters which can take discrete,
continuous, or mixed values, and 3) skill parameters may
or may not correspond to subgoals. Property one means the
skills can be implemented in a variety of manners, e.g., hard-
coded, learned without models, or optimized with models.
This requires relaxing the assumptions placed on the skill
structures made in previous works, such as implementing all
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Fig. 1: Overview of the proposed search-based task planning framework
with learned skill effect models (SEMs) for lifelong robotic manipulation.
New skills and training tasks can be added incrementally. We collect skill
effects data by running the planner using all skills on all training tasks in
simulation. The collected data is used to train GNN SEMs for new skills or
fine-tune models of existing skills. Learned models predict both the terminal
state and cost of skill executions. The planner can use SEMs to plan low-
cost paths on test tasks in the real world. This approach supports planning
1) with a set of differently parameterized skills that can grow over time and
2) for test tasks unseen during training.

skills with the same skill-conditioning embedding space [2]–
[5]. Property two requires the task planner to not assume
any fixed structure for skill parameters. Unlike previous
works [6], [7], each skill can utilize a different number of
parameters, and these parameters can be a mix of discrete
and continuous values. Property three means that instead of
chaining together skill subgoals, the planner needs to reason
about the effects of the skills for different parameter values.
For example, the home robot may need to predict how clean
a plate is for different rinsing durations.

Planning for new tasks requires the planner to be flexible
about the structure of task specifications. One way to do
this is by using either goal condition functions or goal
distributions [8], instead of shared representations like task
embeddings [9] or specific goal states [5], [6], [10], [11].
Using predefined task representations limits the type of
tasks a robot can do, and using learned task embeddings
may require fine-tuning on new tasks. Only having a goal
condition function also makes it more difficult to represent
a task as an input to a general value or policy function
implemented using a function approximator.

To satisfy the skill and task requirements for the lifelong
manipulation planning problem, we propose a task planning
system that performs search-based planning with learned
effects of parameterized skills. Search-based methods di-
rectly plan in the space of skill-parameter tuples. A key
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advantage of search-based planning methods is they can
use skills regardless of parameter choices or implementation
details, and only need a general goal condition check to
evaluate task completion.

To efficiently use search-based planning methods for task
planning, we propose to learn skill effect models (SEMs).
SEMs are learned instead of hardcoded or simulated, since
manually engineering models is not scalable for complex
skills and simulations are too expensive to perform online
during planning. Every skill has its own SEM that predicts
the terminal state and costs of a skill execution given a
start state and skill parameters. We interleave training SEMs
with generating training data by running the planner with the
learned SEMs on a set of training tasks. Our data collection
method efficiently collects skill execution data relevant for
planning, and supports the addition of new skills and tasks
over time. The planner uses the SEMs to plan for existing
tasks with different initial states, as well as new test tasks.

Our contributions are 1) a search-based task planning
framework with learned skill-effect models that 2) relaxes
assumptions of skill and task representations in prior works;
skill effect models are learned with 3) an iterative data
collection scheme that efficiently collects relevant train-
ing data, and together they enable 4) planning with new
skills and tasks in a lifelong manner. Please see sup-
plementary materials, with additional results and experi-
ment videos, at https://sites.google.com/view/
sem-for-lifelong-manipulation.

II. RELATED WORKS

Subgoal skills. Many prior works approached planning
with skills with the subgoal skill assumption. The successful
execution of a subgoal skill always results in the same
state or a state that satisfies the same preconditions of all
skills, regardless of where the skill began in its initiation
set [12]. As such, the skill effects are always known, and
such approaches instead focus on learning preconditions [6]
of goal-conditioned policies, efficiently finding parameters
that satisfy preconditions [7], [13], or learning feasible skill
sequences [11]. While subgoal planning is powerful, it limits
the types of skills the robot can use.

Non-subgoal skills. For works that plan with non-subgoal
skills, many represent the skill policy as a neural network that
takes as input both the state and an embedding that defines
the skill. This can be viewed as planning with one parameter-
ized skill or a class of non-parameterized skills, each defined
by a different embedding. Such skills can be discovered by
experience in the real world [3] and in learned models [2],
[4], or learned from demonstrations [5]. Planning with these
skills is typically done via Model Predictive Control (MPC),
where a short sequence of continuous skill embeddings is
optimized, and replanning occurs after every skill execution.
While these approaches do not assume subgoal skills, they
require skills to share the same implementation and space of
conditioning embeddings, and MPC-style planning cannot
easily support planning with multiple skills with different
parameter representations [3]–[6].

Planning with parameterized skills. To jointly plan
sequences of different skills and parameters, works have pro-
posed a two-stage approach, where the planner first chooses
the skills, then optimizes skill parameters [13]–[15]. Unlike
directly searching with skills and parameters, it is difficult for
two-stage approaches to give guarantees on solution quality.
Some also require hardcoded or learned plan skeletons [13],
[15], which limits the planner’s applicability to new tasks.

Instead of planning, an alternative approach is to learn to
solve Markov Decision Processes (MDPs) with parameter-
ized skills [16]–[18]. However, learning value or policy func-
tions typically requires a fixed representation for function
approximators, so these methods cannot easily adapt to new
skills and skills with parameters with different dimensions
or modalities (e.g. mixed continuous and discrete). Doing so
for search-based planning can be done by directly appending
new skills when expanding a node for successors.

Obtaining skill effects. Many prior works used simulated
skill outcomes during planning [14], [19]–[21]. This can
be prohibitively expensive to perform online, depending on
the complexity of simulation and the duration of each skill.
To avoid simulation rollouts, works have used hardcoded
analytical [22], [23] or symbolic [24]–[26] skill effect mod-
els. Manually engineering such models may not always be
feasible, and they do not easily scale to changes in skills,
dynamics, and tasks. Although symbolic models can be
automatically learned [12], [27]–[30], these approaches also
make the subgoal skill assumption. By contrast, our method,
which learns skill effect models in continuous states without
relying on symbols, can plan with both subgoal skills as well
as skills that do not share this property.

The works most closely related to ours are [15] and [30].
In [15], the authors jointly train latent dynamics, latent
preconditions, and parameter samplers for hardcoded skills
and a model that proposes plan skeletons. Planning is done
MPC-style by optimizing skill parameters with the fixed plan
skeleton. Although this approach does not assume subgoal
skills and supports skills with different parameters, learning
task-specific plan skeletons and skill parameter samplers
makes it difficult to use for new tasks without finetuning.
The method in [30] learns to efficiently sample skill param-
eters that satisfy preconditions. Task planning is done using
PDDLStream [31], which supports adding new skills and
tasks. Though this approach does not use subgoal parameters,
the desired skill outcomes are narrow and predefined, and the
learned parameter sampler aims to achieve these predefined
effects. As such, the method shares the limitations of works
with subgoal skills, where the skill-level transition model is
not learned but predefined as the subgoals.

III. TASK PLANNING WITH LEARNED SKILL EFFECT
MODELS

The proposed method consists of two main components -
learning skill effect models (SEMs) for parameterized skills
and using SEMs in search-based task planning. These two
components are interleaved together - we run the planner on
a set of training tasks using SEMs to generate data, which
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is used iteratively to further train the SEMs. New skills and
training tasks can be added to the pipeline because the plan-
ner and the SEMs do not assume particular implementations
of skills and tasks. The planner can also directly apply the
learned SEMs to solve test tasks. See overview in Figure 1.

A. Skill Planning Problem Formulation

Parameterized skills. Central to our approach is the
options formulation of skills [12], [32]. Denote a param-
eterized skill as o with parameters θ ∈ Θ. Parameters
are skill-specific and may contain subgoal information such
as the target object pose for a pick-and-place skill. We
assume a fully observable state x ∈ X that contains all
information necessary for task planning, cost evaluations, and
skill executions. We define the low-level action u ∈ U as the
command sent to the robot by a low-level controller shared
by all skills (e.g. torque).

In our formulation, a parameterized skill o contains
the following 5 elements: an initiation set (precondition)
Io(x, θ)→ {0, 1}, a parameter generator that samples valid
parameters from a distribution po(θ|I(x, θi) = 1), a policy
πo(x) → u, a termination condition βo(x, θ, t) → {0, 1},
and the skill effects fo(xt, θ) → xt+T , where T is the
time it took for the skill to terminate. To execute skill o
at state x with parameters θ, we first check if (x, θ) satisfies
the preconditions Io. If it does, then we run the skill’s
policy πo until the termination condition is satisfied. We
assume that the preconditions, parameter generator, policy,
and termination conditions are given, and the skill effects
are unknown but can be obtained by simulating the policy.
To enable reasonable planning speeds, the SEMs learn to
predict these skill-level transitions.

To justify the assumption of given skill preconditions, we
note that our preconditions are broader than ones in prior
works and consequently can be easily manually defined.
Preconditions in many prior works, especially ones that
use subgoal skills, are only satisfied when a specific out-
come is reached, so they may require learning sophisticated
functions to classify which (state, parameter) tuple lead
to the intended outcome [15], [30]. By contrast, because
we allow non-subgoal skills, our preconditions are satisfied
if skill execution leads to any non-trivial and potentially
desirable outcome. For example, for a table sweeping skill,
the preconditions are satisfied as long as the robot sweeps
something, instead of requiring sweeping specific objects
into specific target regions. Due to the broad and simple
nature of our more flexible preconditions, we argue it is
reasonable to assume they are given.

Task planning of skills and parameters. Before speci-
fying tasks, we first define a background, task-agnostic cost
c(xt, ut) ≥ 0 that should be minimized for all tasks. This
cost is accumulated at each step of skill o execution, so the
total skill cost is co =

∑T
t=0 c(xt, ut). A task is specified

by a goal condition G(x) → {0, 1} that classifies whether
or not a state achieves the task. We denote a sequence
of skills, parameters, and their incurred states as a path
P = (x0, o0, θ0, x1, . . . xn, on, θn, xn+1, . . . , xN ), where N

is the number of skill executions, and the subscripts indicate
the nth skill in the sequence (not time). We assume the
environment dynamics and skill policies are deterministic.
The task planning problem is to find a path P such that the
goal condition is satisfied at the end of the last skill, but not
sooner, and the sequence of skill executions is feasible and
valid. See equation 1.

min
P

N−1∑
n=0

con (1)

s.t. G(xN ) = 1

∀n ∈ [0, N − 1],G(xn) = 0

Ion(xn, θn) = 1,fon(xn, θn) = xn+1

Note that θ, Io, and fo are all skill-specific, so with M
types of skills, there are M different parameter spaces,
preconditions, and skill effects.

B. Learning Skill Effect Models (SEMs)

Defining SEMs for manipulation skills. We learn a
separate SEM for each skill, which takes as input the current
state xt and a skill parameter θ. The SEM predicts the
terminal state xt+T reached by the skill when it is executed
from xt using θ and the total skill execution cost co. We
assume SEMs are queried only with state and parameter
tuples that satisfy the precondition. Because we focus on
the robot manipulation domain, we assume the state space
X can be decomposed into a list of object-centric features
that describe discrete objects or robots in the scene.

We represent SEMs using Graph Neural Networks
(GNNs), because their inductive bias can efficiently model
interactions among entities through message passing, encode
order-invariance, and support different numbers of nodes and
edges during training and testing [33]–[36]. Each node in
the SEM GNN corresponds to an object in the scene and
contains features relevant to that object from the state x. We
denote these object features as sk ∈ RS , where k denotes the
kth object in the scene. Because a skill may directly affect
multiple objects, each node also contains the skill parameters
θ as additional node features. The full node feature is the
concatenation of [sk, θ]. There are no edge features. The
network makes one node-level prediction, the change in
object features ∆sk, and one graph-level prediction, the total
skill execution cost co. As SEMs make long-term predictions
about the entire skill execution, the graph is fully connected
to allow all objects to interact with each other, not just
objects that are initially nearby. The loss function to train
SEMs for a single step of skill execution prediction is L =
λc‖co − ĉo‖22 + λs

K

∑K
k=1 ‖∆sk − ∆̂sk‖22. The hat notation

denotes predicted quantities, and the λs are positive scalars
that tune the relative weights between the loss terms. The
GNN is implemented with PyTorch Geometric [37].

SEMs enable efficient planning of diverse parameterized
skills, as well as two additional benefits. First, because the
model is on the skill-level, not action-level, it only needs one
evaluation to predict the effects of a skill execution, which
reduces planning time as well as covariate shift by reducing
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the number of sequential predictions [38]–[41]. Second, a
long-horizon skill-level model can leverage a skill’s ability
to act as a funnel in state space during execution, which
simplifies the learning problem.

Collecting diverse and relevant data for training SEMs.
To learn accurate and generalizable SEMs, they must be
trained on a set of skill execution data that is both diverse
and relevant to task planning. While we assume knowledge
of the initial state distribution of all tasks, we do not know
the distribution of all states visited during planning and
execution. As we cannot manually specify this incurred state
distribution, we obtain it and train the SEMs in an iterative
fashion that interleaves SEM training with data generation
by planning and execution, as seen in Figure 1. First, given
an initial set of skills, we generate single skill execution
transitions from the known initial state distribution. This
data is used to train the initial SEMs. Then, given a set of
training tasks, we use the planner to plan for these tasks
using the learned SEMs across a set of initial states. The
planner terminates when it finds a path to the goal or reaches
a fixed planning budget (reaching maximum number of nodes
expanded, maximum search depth, or maximum planning
time). Then we sample paths in the graph and simulate them
to collect skill execution data, which is added to a dataset
of all skill data collected so far. Path sampling is biased
toward longer paths and ones that have the newly added
skills. The transitions added are filtered for duplicates, since
multiple paths in a planning graph may share the same initial
segments which would bias the dataset towards transitions
closer to the initial states. After a fixed amount of path data
is collected, we continue training the SEMs on the updated
dataset before restarting the data collection process. In the
beginning, it is expected that the planner performance will be
highly suboptimal due to the inaccurate initial SEMs. While
we use simulation data due to benefits in speed, this is not a
requirement and SEMs can be trained with real-world data.

Planning with new skills. The above procedure supports
incrementally expanding the list of skills used by the planner.
Given a new skill, we first train an initial SEM by sampling
from the initial state distribution, then during planning data
generation the search-based planner can use the new SEM
to get successors. SEMs for new and existing skills will be
improved and continuously trained on this new planning data.
Fine-tuning previous SEMs is needed, because the new skill
might have incurred states that were previously absent from
the dataset. Although this fine-tuning may not be necessary
in specific cases, we leave detecting such scenarios and
reducing overall training budget to future work. Learning
one SEM for each skill allows for different parameter spaces
(e.g. dimensions, discrete, continuous, mixed) that cannot be
easily represented with a shared, common model.

Planning with new tasks. Because the planner does not
rely on predefined plan skeletons, it can directly use SEMs
to plan for new tasks. Two main factors about data collection
affect the generalization capability of the SEMs when applied
to unseen test tasks. The first is whether the states incurred
while planning for training tasks are sufficiently diverse and

Task A Task B Task C Task D

Fig. 2: Different tasks used in our experiments. The top row shows
examples of initial states, the bottom shows examples of goal states. Left:
blocks to bin tasks (tasks (A,B)). Right: blocks to far bin tasks (tasks (C,D)).

relevant to cover the states incurred by planning for test
tasks. The second is the planner itself — how greedy is
its search and how much it explores the state space. Many
planners have hyperparameters that can directly balance this
exploration-exploitation trade-off.

C. Search-based Task Planning

We pose task planning as a graph search problem over
a directed graph, where each node is a state x, and each
directed edge from x to x′ is a tuple (o, θ) such that
fo(x, θ) = x′. Edges also contain the costs of skill executions
co. During search, this graph is constructed implicitly. Given
a node to expand, we iterate over all skills, generate up
to Bo parameters per skill that satisfy the preconditions,
then evaluate the skill-level dynamics on all state-parameter
tuples to generate successor states. Bo decides the maximum
branching factor on the graph. This number varies per
skill, because some skills have a broader range of potential
parameters than others, requiring more samples.

To search on this graph, we apply Weighted A* (WA*),
which guarantees completeness on the given graph. If the
heuristic is admissible, WA* also guarantees the solution
found is no worse than εc∗, where c∗ is the cost of the
optimal path and ε determines how greedily the search
follows the heuristic. We assume an admissible heuristic is
given. This is in line with previous works that have shaped
rewards or costs that guide the planner [3], [5], [6], [15].

The proposed method enables planning with new skills
and to solve new tasks in continuous states. Planning for new
tasks is done by replacing the heuristic and goal conditions,
which does not affect the graph construction procedure or the
SEMs. Searching in continuous states is more flexible than
searching in symbolic states, and it is not necessarily slower.
Flexibility comes from the ability to integrate new skills and
tasks without needing to create new symbols. Planning speed
depends on the size of the action space (branching factor)
and the state space. Using symbolic instead of continuous
states does not reduce the branching factor, and partitioning
continuous states into symbolic states without subgoal skills
yield little benefits [12].

IV. EXPERIMENTS

Our main experiment analyzes the effect of incrementally
adding new skills to the proposed method on planning
performance of both train and test tasks. We apply our
method to a block manipulation domain (Figure 2) because it
can be reliably simulated, contains a diverse set of skills, and
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the skills have broader applications in desktop manipulation
and tool use. In addition, we show our approach compares
favorably against planning with simulation and the benefits
of using planning data to train SEMs. Lastly, we show the
generalizability of our method by deploying it in a real-world
setup. More experiment details are in Appendix-II.

A. Task Domain

The task domain has a Franka Emika Panda 7 DoF
arm, a set of colored blocks, a table, a tray, and a bin.
On the table, blocks of the same size and different colors
are initialized in random order on a grid with noisy pose
perturbations. The tray on the table can be used as a tool
to carry and sweep the blocks. Beside the table is a bin,
which is divided into two regions, the half which is closer to
the robot, and the half that is farther away. The state space
contains the 3D position of each block, color, and index.
We implement the task domain in Nvidia Isaac Gym [42],
a GPU-accelerated robotics simulator [43] that enables fast
parallel data collection.

Skills. We experiment with four skills: Pick and Place
(Figure 1 skill 1) moves a chosen block to a target location.
It has a mixed discrete and continuous parameter space —
which object to pick and its placement location. Tray Slide
(Figure 1 skill 2) grasps the tray, moves it to the bin, and tilts
it down, emptying any blocks on it into the bin. Its parameter
is a continuous value defining where along the length of the
bin to rotate the tray. Tray Sweep (Figure 1 skill 3) uses
the tray to perform a sweeping motion along the table. Its
parameter specifies where to start the sweeping motion, and
the sweep motion ends at the table’s edge. Bin Tilt (Figure 1
skill 4) grasps the handle at the side of the bin and tilts the bin
by lifting the handle, which moves blocks in the bin from the
close half to the far half. Skills are implemented by following
open-loop trajectories defined by the skill parameters. We did
not learn more complex skills as our work focuses on task
planning and not skill learning.

Tasks. We evaluate on four different tasks (Figure 2) that
are variations of moving specific sets of blocks to different
regions in the bin. Two tasks are used to collect SEM training
data: Move All Blocks to Bin (A) and Move All Blocks to
Far Bin (C), while the remaining two are used to evaluate
learned SEMs: Move Red Blocks to Bin (B) and Move Red
Blocks to Far Bin (D). Each task uses the same background
cost function, which is the distance the robot’s end-effector
travels, plus a small penalty for placing the gripper inside
the bin. The admissible heuristic used is the mean distance
of each block to the closest point in their target regions.

While Pick and Place can make substantial progress on all
tasks, it alone is not sufficient because kinematic constraints
inhibit the robot from directly placing blocks on the far side
of the bin, so Bin Tilt or Tray Slide is needed. Additionally,
using other skills can achieve lower costs; Tray Sweep can
quickly move multiple blocks into the bin, but this may move
blocks that need to stay on the table. The sequence of skills
may change depending on the initial placement of the blocks,
and the path needs to be low-cost.

Tasks A, B Tasks C, D

Tasks A, B Tasks C, D

Fig. 3: Task execution costs plotted over time as new skills are learned and
integrated in a lifelong manner. Blue vertical lines signify the addition of
a new skill. Weighted costs are calculated by weighting the task cost with
the success rate.

Tasks A, B Tasks C, D

Tasks A, B Tasks C, D

Fig. 4: Task execution success rate for each new added skill. Each skill is
being added over time. Orange are train tasks; purple are test tasks. Solid
lines are planning with new skills; dashed are with any skills.

B. Lifelong Task Planning Results

To evaluate our approach for lifelong integration of new
skills, we add the four skills over time using the iterative
training procedure. We evaluate two scenarios, first in which
the train-test task pair are respectively tasks A and B, and
second with C and D. In each case, the robot starts with
only Pick and Place, while Tray Slide, Tray Sweep, and Bin
Tilt are added successively in that order at pre-determined
intervals. We measure planning performance using execution
costs, execution success, and planning time. For each goal,
the robot plans only once from the initial state, which
terminates when it succeeds or times out.

Figure 3 plots the execution costs over time for both
scenarios. The proposed method is able to incorporate new
skills over time, lowering execution costs when applicable
by planning with new skills. For example, adding Tray Slide
allows the planner to find plans with significantly reduced
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Task Sim SEMs (Ours)

A 776.19 (46.9) 1.3 (0.7)
C 1736.8 (187.) 0.98 (0.3)

TABLE I: Comparing plan times in seconds using simulator vs. SEMs.
Parenthesis indicate standard deviations.

Task Pick-Place +Tray-Slide +Tray Sweep +Tilt Bin

A 11.3 (3.4) 20.2 (7.9) 0.6 (0.5) 1.3 (0.7)
B 7.4 (2.3) 14.9 (8.2) 18.0 (14.3) 22.1 (12.4)

TABLE II: Plan times (seconds) using SEMs for objects to bin tasks (A,
B) with an increasing number of skills.

Fig. 5: Success on task B with SEM trained on random vs. planner data.

costs across all tasks, since multiple blocks can now be
moved together. In other cases, adding a new skill does not
affect task performance. One example is adding Bin Tilt to
the blocks to anywhere in bin tasks (A,B), because the main
use of the skill is to move blocks to the far side of the bin.
Another is on adding Tray Sweep — it significantly reduced
costs for moving all blocks to the bin (A,C), but less so for
moving only red blocks to the bin (B,D). This is because
sweeping is only useful for the latter task when multiple red
blocks line up in a column near the bin, which rarely occurs
in the randomly initialized states.

Figure 4 plots the success rate of finding successful
plans (dashed) and optimal plans (solid) with new skills.
Immediately after adding a new skill, there is insufficient
data to learn a robust SEM, so the planner is unlikely to
find optimal plans using the new skill. Or, if it does find
a plan, the plan often leads to execution failures. As more
data is collected, SEM accuracy improves and the probability
of finding optimal plans increases. Figure 4 also shows
how some tasks can only be completed after a new skill
is incorporated. For instance, with just Pick and Place, the
robot can accomplish blocks to bin tasks (A,B), but fails to
plan for the blocks in far bin tasks (C,D). Adding new skills
for (A,B) did not change the success rate of the task, which
remained at 100%, although the composition of the plans
found does change. For (C,D), adding Tray Slide enabled
100% success rate, while adding Tray Sweep did not affect
plan compositions, but adding Bin Tilt did. These results
show that our proposed method can learn skill effects and
plan with SEMs in a lifelong manner, and that SEMs can
plan for new tasks without additional task-specific learning.
Qualitative results can be found in Appendix V.

Planning with a Simulator. To highlight the need for
learning SEMs instead of simulating skill effects for task

Success Cost
Pick and Place 1.0 6.68 (0.3)
+Tray Slide 0.9 3.9 (0.9)
+Tray Sweep 0.8 2.61 (0.7)

TABLE III: Real-world results on Red Blocks to Bin. Costs: mean (std).

planning, we compare their planning times in Table I. We
only benchmarked cases where the tasks are about moving
all blocks and all skills are available. On average, using
the learned model takes less than a second while using the
simulator takes ten minutes to half an hour. Note that these
results leverage the simulator’s ability to simulate many skill
executions concurrently. Thus, using the simulator for more
complex scenarios is prohibitively time consuming due to 1)
the large branching factor and 2) a skill’s extended horizon,
which is much longer than single-step low-level actions or
short-horizon motion primitives. Additionally, Table II shows
the plan times for SEMs with increasing number of skills.
In all cases our planner find plans in less than half a minute.

Training on Planning Data vs. Random Data. To
evaluate the benefits of using planning data for the iterative
training of SEMs, we compare the test-task success rate be-
tween our approach and one that generates data by executing
random skill sequences. See results in Figure 5. Training
on planning data achieves higher success rates using fewer
samples than training on random data does, illustrating the
benefit of guiding data collection using a planner.

Real-world Results. We built our task domain in the real
world (test tasks in Figure 1) and used the learned SEMs to
plan for the test task B. Three sets of planning experiments
were performed, one with only Pick and Place, one
with the addition of Tray Slide, and one with the addition of
Tray Sweep. Each set of experiments in Table III consists of
10 planning trials with different initial block configurations.
These results are similar to the ones shown in the task
A test curves in Figure 3. The differences are due to the
small changes in real-world object locations and controller
implementations. While we did not fine-tune SEMs on real-
world data, doing so may improve real-world performance.

V. CONCLUSION

We propose using search-based task planning with learned
skill effect models (SEMs) for lifelong robotic manipulation.
Our approach relaxes prior works’ assumptions on skill and
task representations, enabling planning with more diverse
skills and solving new tasks over time. Using SEMs improves
planning speed, while the proposed iterative training scheme
efficiently collects relevant data for training.

In future work, we will scale our method to larger number
of skills and parameters by using partial expansions and
learned parameter samplers. We will also explore estimating
model uncertainty, using that to both steer planning away
from uncertain regions and also fine-tune existing SEMs only
on data about which the models are sufficiently uncertain.
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planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011, pp. 1470–1477.

[25] ——, “Integrated task and motion planning in belief space,” The
International Journal of Robotics Research, vol. 32, no. 9-10, pp.
1194–1227, 2013.

[26] M. Eppe, P. D. Nguyen, and S. Wermter, “From semantics to ex-
ecution: Integrating action planning with reinforcement learning for
robotic causal problem-solving,” Frontiers in Robotics and AI, vol. 6,
p. 123, 2019.

[27] E. Ugur and J. Piater, “Bottom-up learning of object categories, action
effects and logical rules: From continuous manipulative exploration
to symbolic planning,” in 2015 IEEE International Conference on
Robotics and Automation. IEEE, 2015, pp. 2627–2633.

[28] B. Ames, A. Thackston, and G. Konidaris, “Learning symbolic
representations for planning with parameterized skills,” 2018 IEEE
International Conference on Intelligent Robots and Systems, 2018.
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“Learning compositional models of robot skills for task and motion
planning,” The International Journal of Robotics Research, vol. 40,
no. 6-7, pp. 866–894, 2021.
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