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Abstract

For robots to be effectively deployed in novel environments and tasks,
they must be able to understand the feedback expressed by humans
during intervention. This can either correct undesirable behavior or
indicate additional preferences. Existing methods either require repeated
episodes of interactions or assume prior known reward features, which
is data-inefficient and can hardly transfer to new tasks. We relax these
assumptions by describing human tasks in terms of object-centric sub-
tasks and interpreting physical interventions in relation to specific objects.
Our method, Object Preference Adaptation (OPA), is composed of two
key stages: 1) pre-training a base policy to produce a wide variety of
behaviors, and 2) online-updating only certain weights in the model
according to human feedback. The key to our fast, yet simple adaptation
is that general interaction dynamics between agents and objects are fixed,
and only object-specific preferences are updated. Our adaptation occurs
online, requires only one human intervention (one-shot), and produces
new behaviors never seen during training. Trained on cheap synthetic
data instead of expensive human demonstrations, our policy correctly
adapts to human perturbations on realistic tasks in both simulation and
on a physical 7DOF robot.
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Chapter 1

Introduction

Robots are useful in many real world tasks, e.g., where there are health risks or where

tedious efforts are required. Ways to achieve desired behavior range from traditional

planning and control to reinforcement or imitation learning. Cost functions, rewards,

and pre-recorded demonstrations that capture the target behavior are often fixed

beforehand. However, during actual deployment, unpredictable factors can always

arise, such as both varying task specifications as well as human preferences on how

those tasks should be carried out. Such changes can be easily and naturally handled

if a human can provide corrective physical feedback in real time. In such physical

human-robot interactions (pHRI), robots need to understand this feedback and adapt

their behavior accordingly for future tasks. In this paper, we study a special yet

prevalent setting where the online human feedback is object-centric, as opposed to

non-object-centric settings such as those encoding temporal preferences. That is,

human interventions can be interpreted as leading the robot to either avoid or visit

certain objects and areas in the environment with possibly preferred orientations.

Hence, by leveraging this assumption, the robot can infer which objects are relevant

and better understand human feedback.

Illustrating Example To better understand this insight, consider a factory setting

where a robot has been trained to carry printed items from a 3D printer to a bin

for cleaning. Now, the manufacturing process suddenly changes: the robot should

additionally place items upright in a scanner before dropping them in the cleaning bin.
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1. Introduction

As a human operator, a natural and quick way to communicate this task modification

would be a physical correction. After the robot picks up an item, the human would

drag and guide the arm towards the scanner and have the end-effector hold the item

upright for scanning before guiding the arm towards the bin. This detour could be

simply described as an additional object-centric sub-task, which requires the item to

be moved with an upright orientation relative to the downward-facing scanner. In

this work, we take advantage of this object-centric interpretation of human intentions

to enable fast, yet simple online adaptation of robot behaviors.

Existing Approaches Several approaches have been proposed to adapt robot

behaviors using human feedback online. [Bajcsy et al., 2017] uses human perturbations

to infer desired trajectories and incrementally updates learned preferences using

maximum posteriori estimation (MAP). [Losey and O’Malley, 2019] assumes that

humans intervene based on a linear combination of position and velocity error, and

derives an update rule for learned preferences. Although these approaches enable

fast, effective adaptation, they assume human preferences are weights for a linear

combination of basis functions, such as distance to either a pre-specified object or

relative orientation with respect to the goal. However, the linear assumption has

limited expressiveness, and the pre-defined basis functions might not cover changing

human preferences. This is especially problematic when robots are deployed with

new tasks, such as scanning labels under a newly-installed scanner. Robots should be

able to extract new and flexible preferences from human feedback and leverage them

to better adapt future actions.

Other approaches avoid predefined features and rather rely on deep neural networks

to learn these from human demonstrations. [Finn et al., 2016, Wulfmeier et al., 2016]

use the raw state space in the form of RGB images as input and evaluate on tasks

like pouring into a target cup, placing a dish into a dish rack, and even autonomous

driving. As a consequence of such a high dimensional state space, these learned

reward functions are constrained to test environments that match those available

during training. Techniques such as transfer learning pretrained feature extractors

[Bengio, 2012] or domain randomization Tobin et al. [2017] could possibly alleviate

this issue. Our approach is robust to environment arrangement and number of objects

through our object-centric, graph-based formulation.

2



1. Introduction

[Bobu et al., 2021] enforce structure into human demonstrations by requiring

that such trajectories move from a region of high reward to a region of low reward.

They train a neural network to correctly compare pairs of states based on relative

reward. [Bobu et al., 2022] relax this requirement of monotonically decreasing

reward by allowing humans to pick the start and end reward values. By learning

entirely new reward functions from scratch, however, these methods require multiple

demonstrations to sufficiently remove ambiguity in the desired motion, thus preventing

them from adapting online. [Mehta and Losey, 2022] takes a similar approach in

learning new reward functions as MLP’s from scratch; adaptation thus requires several

samples of human feedback. They offer more flexibility in allowing demonstrations,

physical corrections, and comparisons in one unified framework. Although training

small, simple MLP’s reduces the time and amount of data necessary to converge, such

MLP’s may not generalize well to different environments with different arrangements

of the same objects. Moreover, MLP’s have a fixed input size associated with a

specific set of object states as input; it is not clear how to use previously trained

MLP features when new objects are encountered and old ones disappear.

Our Approach To address the above challenges, we propose Object Preference

Adaptation (OPA) to 1) explicitly consider pairwise relations between each object

and the robot and 2) interpret human feedback in terms of these relations. We

first pre-train a policy to reproduce randomly-generated trajectories that follow a

specific pattern: reaching a goal while interacting with nearby objects. The policy

parameters are divided into two groups: the core weights encoding the general

interaction dynamics between objects, and the object-specific features. We assume

there are only four possible classes of object interactions during data generation:

either moving closer or farther away in position, and either ignoring or matching

the orientation of an object with a fixed rotational offset. Real-world examples

of this include moving above and horizontally tilting to pour water into a cup, or

staying away from an open flame. As the policy learns to imitate these trajectories,

it also learns two key properties: how objects generally influence a trajectory (the

interaction dynamics), and how specific types of object relations can be represented

in a continuous latent space of finite dimensions.

3



1. Introduction

When adapting to physical perturbations, the core policy weights are frozen

because the general dynamics of object interactions should not change. Rather,

object-specific features need to be adapted to capture various behaviors. In the

illustrating example, the scanner should always be able to attract or repel the robot

(the dynamics), but which specific behavior and to what extent are object-specific.

We argue that such separation can be naturally captured by a graph with the agent

and objects as nodes. The interaction dynamics are shared among all edges, while

how each node pair influences the robot behaviors also depends on the actual objects.

Following this idea, we compose our robot policy based on the Graph Neural Network

(GNN), which further allows end-to-end learning given human feedback. As a result,

during online adaptation, we constrain the search to a compact latent space of

object-specific features, which can be done with only a few gradient steps. Although

our pre-training data contained only four classes of object relations, optimization

over a continuous latent space allows the policy to express new, unseen types of

interactions with objects, such as ignoring objects for position, or learning arbitrary

3D orientations relative to an object’s orientation.

To evaluate our model’s adaptability, we invited users to perturb a simulated

robot manipulator in three separate tasks. Users would observe the robot’s original

behavior, apply perturbations to demonstrate desired behavior, and judge the robot’s

updated behaviors. We compare to a baseline which switches to gravity compensation

during perturbation, but otherwise tracks the goal in a predefined way. Based on

the user study, OPA shows better understanding of human preferences, requires less

feedback, and responds to corrections more predictably. We also evaluate our method

on a sequence of real-life, physical tasks using a 7DOF Kinova Robot and demonstrate

adaptability to real, physical perturbations.

Overall, we summarize our contributions as follows:

1. We interpret human physical feedback as object-specific interactions and model

these with a graph representation, enabling fast adaptation.

2. We show that synthesized data alone can train a policy that handles realistic

tasks and unstructured human perturbations.

3. We experimentally show adaptability to human perturbation on three simulated

tasks as well as one real robot task.

4



Chapter 2

Related Work

Just like how people communicate desired tasks to others, a common approach in

robotics is to directly communicate desired behavior to robots through demonstrations.

The correlation between demonstrated states and actions can then be learned in a

supervised manner, a technique known as imitation learning [Osa et al., 2018]. What

is not learned, however, is why such actions are desirable, which is important for

generalizing to new scenarios with sufficiently different state distribution [Abbeel and

Ng, 2004]. Inverse Reinforcement Learning (IRL) attempts to solve this by instead

learning a reward function that captures the desired human behavior [Osa et al.,

2018]. The human’s actions presumably maximize this reward function parameterized

by θ, and the goal is that inferring correct human preferences θ can help model the

correct robot behavior.

2.1 Inverse Reinforcement Learning

IRL has been applied to more than just demonstrations [Abbeel and Ng, 2004]; other

forms of feedback include physical corrections [Bajcsy et al., 2017, Jain et al., 2016,

Losey and O’Malley, 2019], rankings [Brown et al., 2019b], and pairwise comparisons

[Christiano et al., 2017]. These works also define the interaction between humans

and robots differently. [Jain et al., 2016, Losey and O’Malley, 2018] perform multiple,

iterative rounds of human feedback and robot learning, whereas [Brown et al., 2019a,

Lopes et al., 2009] have the robot actively query the human to maximize information

5



2. Related Work

gain. [Bajcsy et al., 2017, Losey and O’Malley, 2019] handle human physical feedback

by adapting online; our work takes this approach to minimize teaching effort from

the human.

2.2 Hand Crafted Features

An important aspect separating these works is how their reward functions are defined,

and specifically what state space they take as input. Given that the world can be

complex to model, a state space must be chosen that both generalizes well to different

scenarios and enables reasonable computational time. Observations are also often

limited and noisy, which creates much ambiguity: many reward functions could

represent one set of human inputs [Ziebart et al., 2008]. IRL methods commonly

address this by constraining the space of rewards to be composed of pre-specified basis

functions ϕ(x) with unknown weights θ: r(x) = θTϕ(x) [Abbeel and Ng, 2004, Bajcsy

et al., 2017, Jain et al., 2016, Losey and O’Malley, 2019]. Although optimization

of a convex loss with respect to these weights θ is convex, the chosen features ϕ(x)

need to be specified apriori by an expert. In certain applications, these features are

indeed known and fixed, such as holding a coffee cup upright, but in rapidly changing

environments like the household, this assumption may not hold. Optimizing over

the wrong features may not fully capture the human’s desired behavior [Bobu et al.,

2018, Haug et al., 2018], leading to incorrect robot behavior.

2.3 Learning Features Directly from State Space

Recent works have attempted to address this by indirectly learning such features

through deep neural networks [Brown et al., 2020, Finn et al., 2016, Mehta and Losey,

2022, Wulfmeier et al., 2016]. These deep IRL methods take in the raw state space as

input and rely on the networks to learn a good representation that transfers to test

time scenarios. One challenge, however, is that given a limited set of demonstrations

and a high-dimensional state space, deep neural networks may learn features that do

not generalize to new scenarios [Fu et al., 2017]. The higher dimensional the state, the

more diverse the data needs to be reduce ambiguity in the humans’ true preferences.

6
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[Bobu et al., 2021, 2022] tackle this challenge by adding more structure into

the human demonstrations themselves: trajectories should move from a region of

high reward to one with low reward. Reward can be assumed to monotonically

decrease from start to end for each trajectory, allowing for any pair of states along

the trajectory to be compared and thus producing a large amount of data. Using a

Boltzmann model that assumes human corrections are noisy but rational, they can

then incrementally learn new feature functions as separate neural networks when

a new human correction cannot be confidently modelled. To reduce ambiguity in

state space, however, the human needs to provide multiple different trajectories to

teach new behavior. [Mehta and Losey, 2022] follows a similar strategy of learning

new neural network-based reward functions from scratch. Rather than compare

individual pairs of states along a trajectory, they perturb a human demonstration

with randomly sampled noise, and optimize the new network to assign highest reward

to the original human trajectory compared to the other artificial ones. Both these

works do not necessarily rely on but instead allow for hand-crafted feature bases if

available. The key question is whether or not these reward functions trained from

scratch can sufficiently generalize to new scenarios. Training time is another concern,

as [Mehta and Losey, 2022] and [Bobu et al., 2021] require around 2 minutes to learn

a new behavior, not including the human interaction time.

2.4 Object-Centric Manipulation Policies

The idea of representing the world as a graph of object-based nodes has been

applied to modeling particle physics [Battaglia et al., 2016, Sanchez-Gonzalez et al.,

2020], complex robot dynamics [Sanchez-Gonzalez et al., 2018], and even visual

scenes [Agarwal et al., 2020]. Existing methods also apply this to visually imitate

demonstrations [Sieb et al., 2020] and hierarchically compose object-centric controllers

[Sharma et al., 2020]. Graphs can decompose complex dynamics and behaviors into

a collection of simpler, object-object interactions. This has served as important

inductive bias for helping Graph Neural Networks (GNN) generalize beyond training

data [Battaglia et al., 2018]. We extend this idea to IRL and the challenge of

understanding human preferences from unstructured, physical perturbations.

7
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2.5 System Identification and Adaptation

Our method pre-trains a base policy and only adapts object-specific features at

test-time to dramatically change behavior. This is similar to methods that condition

a policy on real physics parameters [Yu et al., 2017] or latent embeddings [Kumar

et al., 2021]. Rather than estimating the parameters of the world [Kumar et al.,

2021], we estimate the object preferences of a human. Since we have some form of

supervision through human perturbations, our latent features can be adapted using

standard gradient descent as opposed to learning an explicit adaptor network [Kumar

et al., 2021]. By separating latent features by object, our latent feature space is much

more compact and easier to optimize over.

8



Chapter 3

Problem Formulation

At time t, let xr,t ∈ Rd represent the current state of the robot r, and xi,t ∈ Rd

represent the states of other objects i ∈ [N ] in a scene. This assumes we can detect,

uniquely identify, and extract the 6D pose of each object in a scene. We leave

unstructured environments for future work.

The robot’s state updates according to dynamics xr,t+1 = xr,t + αut where α is a

constant step size and ut ∈ Rd′ is the action either applied externally by the human

if available, or otherwise generated by the policy. We denote the human intervention

as u∗t and the robot policy as ût = fO(xr,t, {xi,t}i∈[N ], g) where the goal g is assumed

given. The general learning objective is to match the human’s actions over T steps:

min
fO

∑
t∈[T ]∗

∥fO(xr,t, {xi,t}i∈[N ], g)− u∗t∥, (3.1)

where [T ]∗ is the set of time indices where human interventions are available.

Now, what form should fO take? As we discussed in Section 1, existing works

either focus on fast, online adaptation or try to replace predefined feature functions

with learned MLP’s. Training networks from scratch, however, requires enough data

to reduce ambiguity in the state space, and this conflicts with reducing human effort

in teaching robots. To ensure fast training with minimal data, such MLP’s must

be small and simple and thus may not generalize to different object arrangements.

MLP’s also have a fixed input size that becomes problematic when objects appear

or disappear. These issues motivate us to represent the scene as a graph that can

9



3. Problem Formulation

flexibly handle different numbers of objects.

In our graph, nodes are defined by the objects in the scene, and directed edges

point only from each object to the robot. This strict definition of edges means that

we only model interactions between the robot and each object, but not amongst the

objects themselves. This practical assumption makes sense for most tasks that don’t

involve many dynamically interacting entities, and leaves us with several benefits.

First, each object’s influence on robot behavior can now be isolated, which also allows

adaptation of human preferences to be isolated. Second, computation and overall

network learning is simplified greatly with the sparse graph, allowing run-time to scale

only linearly with the number of objects. Third, a graph in general allows objects to

be easily added or removed without changing the fundamental computation.

In our graph, each of the agent-object relations is composed of two elements:

relative state features bi,t and learned “preference” features ci. State features are

computed from robot, object, and goal state bi,t = b(xr,t, xi,t, g) and help the policy

reason about spatial proximity and direction of each object relative to the robot and

its goal. These should be generic and fast to compute while relieving burden on the

network needing to learn these. Preference features ci capture the specific way that

each object should interact with the agent, and should be learned jointly with the rest

of the network. Together, these can be processed by a relation network fr to generate

latent edge features ei,t = fr(bi,t, ci,t), as shown in the top of Fig. 4.1. We can rewrite

the robot’s overall policy as an “aggregator” fO of edge features fO({ei,t}i∈[N ]) and

its objective as

min
{ci,fr}

∑
t∈[T ]∗

∥fO({ei,t}i∈[N ])− u∗t∥. (3.2)

It is important to emphasize that relation network fr is agnostic to the input robot-

object edge, which is why new objects can be easily handled without any major

fine-tuning. The aggregator fO is what allows the graph network to handle an

arbitrary number of edges and nodes. We also emphasize that preference features ci

are learned while the state features bi,t are fixed. This naturally isolates the objective

information of the scene from subjective preferences and helps the model to focus on

object-specific preference features.

10



Chapter 4

Approach

4.1 Object-Centric Representation

We now consider the specific domain of full rigid body motion in 2D or 3D for OPA.

Time index t is omitted for clarity. We assume object-specific tasks can generally be

represented as reach and avoid, and only focus on this setting without considering the

complexity of actual grasping. We leave this for future work. The objects and robot

are represented as spheres with radii of influence si∈[N ] and sr respectively. Tricks to

handle non-spherical objects are discussed in task 1 of the experiments.

Actions u are composed of translation v and rotation w actions. v is a unit

vector describing the direction of translation. w describes the desired orientation

at the next timestep. For 2D, w = [cos(θ), sin(θ)] for angle θ on the x-y plane. For

3D, w = [RT
x , R

T
y ] ∈ R6 where Rx, Ry ∈ R3 are the x and y axes of an orientation

expressed by a rotation matrix R = [Rx, Ry, Rz] ∈ SO(3). This is shown in the top

right of Fig. 4.1, where v̂t points from the end-effector’s current to future position,

whereas ŵt is the future orientation.

States xi are separated by position xP,i and orientation xR,i. State features bi

are separated by position bP,i = bP (xr, xi, g) and orientation bR,i = bR(xr, xi, g).

Preference features ci are composed of position component cP,i and orientation

component cR,i. cP,i is purely latent whereas cR,i = [clatentR,i , c∆R,i] is composed of a

latent part clatentR,i and a learned rotational offset c∆R,i. This learned offset is applied

directly to the input orientation of an object and allows the model to learn relative
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orientations. For example, scanning the barcode underneath a bowl in Fig. 4.1 requires

the barcode to face the scanner, and this relative orientation can be represented by a

rotational offset.

Figure 4.1: Illustration of the adaptation with OPA. OPA consists of a position
relation network fP,r and an orientation relation network fR,r whose outputs are
aggregated by fO. Top: For each object i ∈ [N ] in a scene (including the green
goal), a state-based feature bR(xr,t, xi,t, g) is computed from both object state xi,t and
robot state xr,t. This is passed in along with a learned, preference feature ci into each
relation network to produce edge features eP,i and eR,i. Together, all edge features
are fed into an aggregator function fO that finally computes predicted translation v̂t
shown in purple and orientation ŵt shown as Cartesian axes in the top right. Bottom:
In the bottom left, humans can perturb both position and orientation to produce
v∗k:Tk

and w∗
k:Tk

, which can be treated as ground truth for an imitation loss. Only
object preference features ci are updated, allowing for fast and effective adaptation
of behavior such as scanning the bottom of a bowl as shown in the final image to the
right.

4.2 Graph Representation Overview

To process a graph of arbitrarily many object nodes, we choose to use a GNN due to

its desirable property of invariance to both the number and ordering of nodes. Also,

since GNN’s apply the same network to process every edge in a graph, they enforce a

strong inductive bias that general edge computations remain the same. Only each
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pair of node’s relative features distinguishes specific behavior. This is the key for

GNN’s well-known generalization to unseen scenarios.

To process each robot-object node pair, two different networks compute latent edge

features: eP,i = fP,r(bP,i, cP,i) for position, and eR,i = fR,r(bR,i, cR,i) for orientation.

Finally, the output actions can be computed using the same function fO but with

different sets of edge features: v̂ = fO({eP,i}i∈[N ]) and ŵ = fO({eR,i}i∈[N ]), as shown

in Fig. 4.1. In the following sections, we will explain the computation of these features

for each object and how these are aggregated to produce a single output action.

4.3 Relation Network and Aggregator

In this section, we first discuss our general relation network fr used for both position

and orientation control, which takes as input pairs of state and preference features

(bi, ci).

Typically, neural network inputs are raw states, hand-crafted state features, or

outputs from a separate network. Our approach, however, treats the object-specific

features ci as updatable weights to be learned with the rest of the network through

gradient descent. As our policy trains on the same set of object types, these low-

dimensional preference features gradually discriminate to represent very different

behaviors. In fact, as will be described in later sections, these object feature spaces

can be as small as 1D and still capture diverse behaviors. We note that during

training, the object types are provided as input in the form of indices. This enables

the model to associate the correct feature ci with each object, ensuring that they are

trained consistently.

Pairs of state-based and preference features are fed into a multi-layer perceptron

(MLP) f 1
r to produce intermediate features ẽi. A second MLP f 2

r computes unnormal-

ized attention-like weights α̃i for these features, and overall edge features ei = α̃iẽi

take the form of actual actions. Given this set of weighted actions, the aggregator fO

simply performs a summation followed by a normalization.

For position action v̂, we normalize its magnitude to produce a valid unit vector:

v̂ =

∑
i∈[N ] eP,i

||
∑

i∈[N ] eP,i||
(4.1)
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Figure 4.2: Position “force” contribution eP,i of each object node along with overall
action v̂ for a 2D synthetic scene.

Each object essentially contributes a “force” pushing or pulling on the robot, as

shown in Fig. 4.2. For orientation ŵt, we sum up all edge features and normalize for

each specific axis:

w̃ =
∑
i∈[N ]

eR,i then w̃ =
[

w̃1:3

||w̃1:3||
w̃4:6

||w̃4:6||

]
. (4.2)

For the 2D case, ŵ = w̃ ∈ R2. For the 3D case, however, since our above calculation is

essentially a normalized weighted sum of rotation matrices, the resulting w̃ = [R̃T
x , R̃

T
y ]

is not a valid rotation. R̃x and R̃y must be orthogonal, and to enforce this, we apply

Gram-Schmidt orthogonalization to remove the component of R̃y parallel to R̃x while

keeping Rx = R̃x:

R̃′
y = R̃y −

⟨R̃x, R̃y⟩
⟨R̃x, R̃x⟩

R̃x and Ry =
R̃′

y

||R̃′
y||
. (4.3)

The resulting two axes ŵ = [RT
x , R

T
y ] alone are sufficient to represent a full rotation

in SO(3), where the Rz axis is simply the cross product of the Rx and Ry axes.
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4.4 Position Relation Network

In this section, we describe state-based and preference features for our position

relation network. State-based features bP,i are the following:

1. Size-relative distance: Distance between robot and object divided by the

sum of their radii, which helps the policy reason about when to interact with

an object.

2. Direction: Unit-vector pointing from agent to each object, which helps deter-

mine the direction of “force” applied on agent.

3. Goal-relative direction: Inner-product between each agent-object vector and

the agent-goal vector. A positive value indicates that the object lies in the

same direction as towards the goal and should be considered. A negative value

indicates the object is “behind” the agent and can be ignored.

Position preference features cP,i intuitively capture the magnitude of the output

force, or how attracted or repelled the robot should be from each object. Reducing its

dimensionality as much as possible prevents over-fitting while simplifying adaptation in

the feature space, and in our experiments, simply using 1D was enough for expressive

policy behavior.

The position relation network overall outputs a push-pull force on the agent.

Potential field methods [Latombe, 1991] also use this approach, but constrain this

force vector to be parallel to each agent-object vector. This may seem like an intuitive

way to enforce structure in the network and reduce complexity, but this constraint

fails during “singularities” where no orthogonal component is available to avoid an

obstacle lying in the same direction as the goal.

During training, we measure misalignment between ground-truth v∗t and predicted

v̂t translation directions using the following loss across B batch samples:

LP =
1

B

B∑
b=1

1− ⟨v∗b , v̂b⟩ (4.4)
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Figure 4.3: First and last steps of Elastic Band in 2D. Dark blue agent waypoints
traverse from the light-blue start to yellow goal position while interacting with
nearby “Attract” and “Repel” objects. A Gaussian Process interpolates between the
waypoints.

4.5 Orientation Relation Network

In this section, we describe state-based and learned features for our orientation

relation network. State-based features bR,i are the following:

1. Size-relative distance: identical to that of the position relation network.

2. Modified Orientation: Orientation of each object, but rotated by a learned

rotational offset. This helps the policy output the correct orientation relative

to an object’s.

The learned rotational offset c∆R,i is represented as a scalar ∆θ for 2D and as a

unit-normalized quaternion for 3D. c∆R,i is applied to the x and y axes of the object’s

rotation matrix. We choose to manually apply a learned rotational offset to reduce

burden on the network of needing to learn how to apply valid rotations. An additional

learned feature cR,i intuitively determines whether an object’s orientation should be

ignored or not. This is important for modeling real-world tasks where a robot should

move closer to an object without changing its orientation, such as handing a glass of

water to a person.

Loss can be calculated by measuring the summed misalignment between ground-
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Figure 4.4: Example scenario to train the orientation relation network in 2D. Expert
path in red is annotated with an orientation vector at each waypoint. Each node
(start, grey object, and goal) has both its observed orientation xR,i shown as a black
arrow along with its desired, relative orientation R(c∆∗

R,i) · xR,i shown in green. The
only node with nonzero rotational offset is the grey object: c∆∗

R,0 = −90◦, which is
why the green arrows are not visible for start and goal.

truth and predicted x and y axes:

LR =
1

B

B∑
b=1

2− ⟨R∗
x,b, R̂x,b⟩ − ⟨R∗

y,b, R̂y,b⟩. (4.5)

4.6 Training and Online Adaptation

So far, we have discussed the implementation and intuition behind our policy. We

now discuss how to train and adapt such a policy at test time.

4.7 Training with Synthetic Data

Imitation learning typically requires demonstrations, but collecting human demonstra-

tions can require much effort [Mandlekar et al., 2019]. However, since our intended

real-world tasks can be considered as reaching a goal with midway object interactions,

we can generate synthetic data to capture this behavior. For position and orientation

specifically, notice how their computation is completely independent. This allows us
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optimize their losses LP and LR separately, bypassing the issue where their units are

different and thus require re-weighting [Groenendijk et al., 2020]. This also allows

us to train both networks with different sets of data, which is necessary since the

behavior of the position and orientation networks should not be correlated. For

example, a trajectory may avoid an obstacle and stay far enough that the obstacle

has no influence on the robot’s orientation. By training orientation features on this

data, the orientation network would learn to just ignore this object’s orientation.

For the position network specifically, interactions with nearby objects should take

the form of attractions and repulsions; Elastic Bands [Quinlan and Khatib, 1993]

naturally model this. Fig. 4.3 shows this process in detail, where the final iteration’s

trajectory is used to train our position network.

For the orientation network, trajectories involve interactions with a single object

of two possible relations: ignore and consider. Ignored objects have no influence on

the agent’s orientation. Considered objects force the agent to match their original

orientation xR,0 relative to an offset c∆∗
R,0 shared among all considered objects. Fig.

4.4 shows an example where the expert orientation of a waypoint must match that of

nearby objects. The expert initially matches the start orientation with zero offset,

but switches to the grey object’s orientation in green with non-zero offset, and finally

converges to the goal orientation with zero offset. Our policy would need to predict

this relative orientation given only the original black orientation as input.

Since observed orientations xR,0 are randomized while c∆∗
R,0 is fixed, our orientation

network is forced to properly learn offset c∆R,0 to predict orientations R(c∆∗
R,0) · xR,0.

Fig. 4.5 compares learned and true rotational offsets during training for the 2D case.

The fact that they match shows that carefully chosen model structure can force the

learned network weights to be interpretable. Another example in 3D is that, when

pouring water from cup A into cup B with upright orientation xR,B, we need to tilt

cup A horizontally by R(c∆∗
R,B) to match the goal orientation R(c∆∗

R,B) · xR,B.

Our method relies on objects to influence behavior, but we also may desire the

robot to fix its orientation throughout a trajectory, even with no objects nearby. A cup

of water, for example, should be carried upright. To train this soft constraint, start

and goal are treated as imaginary objects whose orientation must also be considered.

Both share a true rotational offset of the identity, or zero: c∆∗
R,g = R(0). Fig. 4.5

visualizes this in blue.
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Figure 4.5: Comparing the ground truth c∆∗
R,i and learned c∆R,i 2D rotational offsets

for the considered object i = 0 and goal i = g during training. Here, c∆∗
R,0 = 90◦ and

c∆∗
R,g = 0◦.

4.8 Online Adaptation

In this section, we discuss our assumptions on the form of human perturbation as

well as how the policy adapts to this to infer human preferences. People think and

act differently, and this changes how and when they may intervene in the robot’s

trajectory. [Spencer et al., 2020] argues that people may intervene only when recent

behavior has been unacceptable. This implies that the overall trajectory is not an

example of a good trajectory, but rather a transition from bad to good. This thus

provides information for how the robot’s behavior should change rather than the

absolute trajectory that should be naively imitated.

Following that intuition, we focus only on the human perturbation trajectory

(x∗k:Tk
, u∗k:Tk

) and treat this as an expert trajectory to imitate. A key assumption is

that humans only care about the final pose rather than the actual trajectory taken.

Based on this assumption, we only take the start and end pose of the perturbation

trajectory and linearly interpolate between the two. On the policy side, rather

than calculating the output action for each individual expert state x∗k:Tk
, we rollout

the policy in an open-loop fashion, starting from initial intervention state x∗k and

repeatedly taking the policy’s action with deterministic dynamics. This “imagined”
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rollout makes two assumptions: the physical robot can perfectly track its desired

pose, and objects’ poses are fixed or can be predicted. Overall, however, this allows

gradients to propagate throughout the entire rollout, and early mistakes will be

penalized for future errors. Losses LP and LR from (4.4) and (4.5) can be calculated

and used in standard gradient descent.

However, fine-tuning all weights of a neural network is well-known to lead to

inefficient adaptation due to the large number of parameters. We bypass this issue

by taking advantage of our graph-based architecture: updating only learned object

features cP,i and cR,i while keeping the core relation network weights frozen. This

matches our intuition: the general dynamics of interacting with objects should not

change. Rather, only object-specific features need to be adapted to capture object-

specific behaviors. This allows us to drastically change the policy’s behavior with

only a few steps of standard gradient descent.

This works surprisingly well, even for the learned rotational offset features c∆R,i.

Recall that our model only had to learn two rotational offsets: c∆∗
R,0 and c∆∗

R,g. At

test-time, however, our model can quickly adapt to reproduce any arbitrary rotation

in SO(3).
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Chapter 5

Experiments

5.1 User Study

After pre-training, we evaluated our model’s test-time adaptability to human pertur-

bations. We invited 10 CMU students to participate in three simulated tasks where

a robot manipulator’s initial behavior was incorrect. Participants were instructed

to press computer keys to perturb the end-effector’s position or orientation at any

moment. The current task would either continue or reset to show our model’s updated

behavior. The three tasks are shown in Fig. 5.3. Tasks 1 and 2 evaluate the position

and orientation relation networks separately with certain features ci initialized cor-

rectly. Task 3 evaluates both networks together in a more realistic scenario where no

prior information about the object is known.

Task 1: Carrying Fragile Cup A robot bartender hands cups of water to

customers. Since the cups are fragile, they should be carried low to the table.

Participants would push the robot to stay close to and above the table when they

felt necessary. The robot would either continue moving straight to the goal (baseline)

or perform online adaptation and update its behavior (our model). An example of

this updated behavior is shown in Fig. ??. This scene contains three different table

objects, and only their position preference features cP,i can be updated. This task

highlights our model’s fast online adaptation. Note that a flat table’s position xP,i at

time t is the orthogonal projection of the end-effector onto its surface.

Task 2: Inspecting Factory Items A robot presents pans to a quality control
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Figure 5.1: In task 1, the robot was perturbed as it moved towards the green floating
cup representing the goal.

Figure 5.2: In task 2, the user rotated the end-effector to achieve a desired pan
orientation above the inspection zone.

inspector who wants to view them at different orientations. Participants are shown an

image of the pan’s desired orientation and must perturb the robot-held pan to achieve

this. Once satisfied, users then reset the episode and judge how closely the robot’s

updated orientation matches their final perturbed orientation (not the reference). This

challenge involves only updates to the relative rotational offset c∆R,i of the inspection

bin, and evaluates the model’s ability to represent arbitrary orientations in SO(3).

The linked video visualizes this clearly.

Task 3: Scanning Factory Items A robot initially carries manufactured bowls

to a bin. The factory has installed a new barcode scanner, and the robot should

midway scan the bottom of each bowl. Participants must perturb both position
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Figure 5.3: In task 3, the user perturbed the robot’s position and orientation to
demonstrate the additional scanning task before moving to the green goal location.

and orientation, requiring updates to all preference features of the scanner: cP,i for

moving closer to it, clatentR,i for actually caring about its orientation, and c∆R,i for the

upside-down orientation relative to it. This task is also shown in Fig 4.1.

5.2 Hyper-Parameters

For our experiments, we pre-trained our model using Adam with a learning rate of

lr = 3e−4 and a batch size of 16 trajectories with 32 random timesteps sampled from

each. We synthetically generated 3000 trajectories for both position and orientation

datasets, taking 4 minutes each with 9 parallel processes. We trained both position

and orientation networks for 100 epochs, taking 12 minutes each on a standard laptop

GPU core.

We defined the first MLP’s f 1
P,r and f

1
R,r of the position and orientation networks as

ReLU-activated linear layers with output sizes [64, 64, 64]. The attention-generating

MLP’s f 2
P,r and f

2
R,r had output sizes [16, 8, 1] with activations [ReLU, ReLU, Softmax].

Preference features cP,i and c
latent
R,i were only 1-dimensional, whereas rotational offsets

c∆R,i were 4-dimensional quaternions.

During online adaptation, we fine-tuned our object features with Adam and a

learning rate of lr = 0.1, and specifically ran 5 gradient updates for the position

network and 20 for the orientation network, taking less than 0.5 seconds in total.
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Figure 5.4: Resulting change in robot’s behavior as the grey object’s preference
feature shifts between “repel” cP,0 and “attract” cP,1 according to
(1− λ)cP,0 + λcP,1.

5.3 Feature Initialization

Optimizing deep neural networks is notoriously non-convex, so weight initialization is

important to consider. During training, we specifically initialize position preference

features cP,i of repulsion, attractor, and goal object as [1.0, 0.5, 0.0]. This prior tries

to ensure that at the end of training, interpolating from one feature to another leads

to interpolation in behavior space. This interpolation allows us to reasonably guess

the feature value representing “ignore” behavior, which is how any new, unseen object

should be initially treated. We visualize the interpolation in Fig. 5.4. As cP of the

grey object interpolates from learned “repel” cP,0 to “attract” cP,1, the robot clearly

moves closer to the object. The indices 0 and 1 refer to an arbitrary repel object

and an arbitrary attract object respectively. At test-time, any new objects can be

approximately initialized as “ignore” with value (cP,0 + cP,1)/2.

For learned rotation offsets, especially in SO(3), we cannot rely on a fixed initial-

ization due to saddle points and local optima when optimizing over 3D rotations. Fig.

5.55.6 shows an example adaptation trajectory that failed. To mitigate this issue, we

run multiple adaptation attempts with different, random initializations and pick the

one with the lowest final error. In practice, this only takes around 5 attempts and

around 1 to 2 seconds.
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Figure 5.5: Loss surface plotted on rotation preference features versus absolute
difference in rotational offsets as Euler angles X, Y, and Z respectively. An example
convergence to poor local optima is shown by the scatter points with dark blue as
the first and red as the final waypoint.

Figure 5.6: Loss surface defined on rotation preference feature versus angle from
ground truth rotation offsets as quaternions. The same example optimization trajec-
tory as Fig. 5.5 is shown.
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5.4 Results

Now that we have explained the model implementation details used in our experiments,

we discuss the results. After participants finished each task, they would fill out an

anonymous survey to provide feedback with answers either descriptive or on a five-

point scale.

Task 1:

1. Did they think the robot understood their intentions?

2. Did they exert a lot of effort to correct the robot?

3. Did the robot’s reactions to their pushes match their expectation?

4. How satisfied were they about the robot’s behavior?

5. Number of user interventions

6. Average distance of cup to table.

Figure 5.7 shows users felt our model understood their preferences better, required less

effort, and were slightly more predictable after perturbations when compared to the

baseline. Note that users were not told which system (baseline or our model) was being

tested. Users generally felt that our model understood the “underlying objective of

keeping the glass closer to the table”. Two users noted that our model was sometimes

unpredictable, lingering near the table too long and even ignoring the goal completely.

This raises an important issue with over-fitting to short human perturbations and

highlights our model’s sensitivity to the hyper-parameters of adaptation learning rate

and number of steps.

Task 2:

1. Did the robot present items how they wanted?

2. Error between robot and user’s final perturbed orientation.

The 1st quartile, median, and 3rd quartile values for question one were 3.5, 4.0, and

4.0 respectively. For question two, we define orientation error between two quaternions

q1, q2 as arccos(|q1 · q2|) ∈ [0, π
2
] [Huynh, 2009]. Average error was 0.2576, or 16% of

the max possible error π
2
= 1.5708. This indicates that our model matched users’

desired orientations well.
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Figure 5.7: Task 1 user feedback for both baseline and our model, where each box
plot is numbered according to the original list of Task 1 questions.

Task 3:

1. Did they think the robot understood their intentions?

2. How satisfied were they about the robot’s behavior?

The 1st quartile, median, and 3rd quartile values for question one were 4.0, 4.0, and

5.0 respectively, indicating that users were very satisfied with our model’s adaptability.

This sentiment was also generally present in the second question. However, two users

noted that the bowl should have moved closer to the scanner. This indicates that

more gradent steps were needed, and again highlights the difficulty of tuning such

parameters. A practical way to ensure the robot converges to an object is to simply

treat it as a goal itself and define any complex task as a sequence of sub-goals.

5.5 Real Hardware Experiments

To truly evaluate our approach’s effectiveness in interpreting physical human correc-

tions, we also demonstrate OPA on a 7DOF Kinova robot arm in real life. In this

scenario, a factory inspector must inspect and scan two categories of items: boxes

and cans. A robot assists the human by picking up the items, presenting them with

their barcode facing the human, and finally dropping them off in a bin. Boxes and

cans have different barcode locations, however, so the human will need to correct the

robot end effector orientation for each category. A collection of obstacles also lies
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on the robot’s typical path, so the human must teach the preference of avoiding the

obstacles. Starting with Fig. 5.8, the robot behaves incorrectly, presenting a box with

the wrong orientation while also running into an obstacle. In Fig. 5.9, the human first

teaches obstacle avoidance by pushing the robot away from the obstacle when it gets

near. The human also teaches the robot to hold the box correctly in Fig. 5.10, and we

overall see the adapted robot’s behavior in Fig. 5.11. When all the boxes are finished

scanning, the robot begins picking up cans. In our current formulation, the policy has

no awareness of items picked up and only reasons about end effector motion relative

to other objects. As a result, the human must demonstrate a new desired orientation

in Fig. 5.12 for the can to be properly viewed. Fig. 5.13 shows the robot’s adapted

behavior, and Fig. 5.14 shows the adapted behavior but with a different human pose.

The final scenario highlights the power of learning behavior relative to objects and

their poses, which allows for zero-shot generalization to different object arrangements.

5.5.1 Implementation Details

In order to allow for safe human interaction with the robot, we implemented two modes

of control on the robot: impedance control [Hogan, 1985] and gravity compensation.

During human interventions, the robot uses only gravity compensation, and during

robot control, the robot uses a combination of both, which ensures that the robot

can correctly follow the policy’s desired motion while still allowing for safe human

contact. The human switches between these modes by pressing the spacebar on a

keyboard. After human intervention ends, we run optimization for both position and

orientation.

We encountered a scenario where the human may intend to correct only position

or only orientation, but since the policy is not aware of this, both are adapted. For

example, during adjustment of the box orientation, position would barely change,

meaning that almost any position preference features would result in low loss. By

naively trying multiple adaptation rounds and picking the solution with the lowest

loss, the previously learned obstacle avoidance features would often be overwritten.

To avoid this, we added a simple rule that requires loss to significantly decrease in

order to be considered a valid solution.

The human sitting and standing poses were hard-coded for this demo, and we
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leave actual pose detection for future work. The box and can pick-up poses as well

as obstacle position were also hard-coded, and we leave proper object detection for

future work.
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Figure 5.8: The robot presents a box in the wrong orientation, forcing the human to
reach far to scan the box’s label as shown on the left. The robot also almost knocks
over one of the obstacles, a white bottle.

Figure 5.9: On the second box trial, the human first perturbs the robot to avoid
colliding with the obstacle.

Figure 5.10: The human also perturbs the orientation of the box so that its barcode
correctly faces the human.
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Figure 5.11: The robot shows adapted behavior on the third box, avoiding the obstacle
and correctly presenting the box.

Figure 5.12: The robot presents a can in the wrong orientation, so the human perturbs
to easily see its barcode.

Figure 5.13: The robot shows adapted behavior for the next can.
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Figure 5.14: The robot presents a can to the human who is now standing with a
different pose.
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Conclusions

We presented Object Preference Adaptation (OPA), a method for inferring human

intentions for objects from physical corrections. OPA represents the environment as

a graph with nodes as objects and edges between each object and the agent. Our

method was able to fine-tune wrong behavior and learn new complex tasks in our

experiments, all from a few physical perturbations. After pre-training an expressive

base policy, OPA only needs to optimize object-specific features in a compact latent

space, allowing for fast, effective adaptation. Robots and really any deep learning

model must be flexible to ever-changing tasks and environments; we believe the key

is to separate fixed, fundamental dynamics from task, environment, or object-specific

behavior.

OPA relies heavily on object-centric actions and frames tasks as reach and avoid.

Many tasks, however, also require fine-tuned grasping and even application of force

(ie: wiping a surface). It would be exciting to extend this approach to also handle

these complex behaviors. Tasks are not always object-relative but can be task-centric,

such as drawing; the combination of both paradigms would be exciting.
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Appendix A

Ablation Studies

A.1 Comparing Optimizers

In the previous experiments, we used Adam to adapt the learned preference features.

This choice was motivated by Adam’s popularity and strong performance in training

deep neural networks. Other alternatives exist, however, including Recursive Least

Squares (RLS) commonly used for adaptive filtering as well as the learned optimizer,

Learn2Learn [Andrychowicz et al., 2016], which has been shown to outperform Adam

on MNIST and CIFAR classification tasks. In this ablation study, we compare the

performance of these two optimizers with Adam in terms of 1) average final loss and

2) robustness to noisy gradients as a result of the noisy physical corrections from

humans. Our objective was to find any characteristics in the ground truth trajectories

that could indicate which optimizer should be used, which could serve as a guide for

others.

A.1.1 Mathematical Comparison

We first compare the formulation of Adam and RLS that can explain the experimental

results observed later on. Following [Reddi et al., 2018], we see that many optimizers

follow the same general algorithm of calculating some ”averaging” over past gradients.

Let xt ∈ Rd denote the parameters to optimize at step t and gt ∈ Rd as its gradient

with respect to some loss function f(xt). Let function ϕt compute an aggregate mt
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Algorithm 1 Generic Adaptive Optimizer

Input: x1
for t = 1 to T do

gt = ∇f(xt)
mt = ϕt(g1, · · · gt) and Vt = ψt(g1, · · · gt)
xt+1 = xt − αtmt/

√
Vt

end for

over the past gradients g1, . . . gt and function ψt compute a multiplier Vt to scale mt.

With this information, optimizers typically use the update algorithm Alg. 1.

Specifically, Adam uses the following ϕt and ψt:

ϕt(g1, . . . gt) = (1− β1)
t∑

i=1

βt−i
1 gt,i (A.1)

ψt(g1, . . . , gt) = (1− β2)diag(
t∑

i=1

βt−i
2 g2i ) (A.2)

which are both exponential averages that can be expressed recursively as:

mt,i = β1mt−1,i + (1− β1)gt,i (A.3)

Vt,i = β2Vt−1,i + (1− β2)g
2
t,i (A.4)

RLS, however, uses the following updates:

ϕt(g1, . . . gt) = gt (A.5)

ψt(g1, . . . , gt) = diag(
t∑

i=1

λt−ig2i ) (A.6)

which evaluates recursively to

mt,i = gt,i (A.7)

Vt,i = λVt−1,i + g2t,i (A.8)

This shows that besides the minor difference in how the weight β2 and forgetting

factor λ are used to compute Vt, the key difference is that Adam uses an exponential
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Figure A.1: The three plots show different optimization trajectories from Adam, RLS,
and Learn2Learn for a random test scenario, where dark blue points are earliest, and
red is the final optimized loss. A loss surface averaged over all position test samples
is also plotted. The test scenarios used contain two objects that always correspond
to attract and repel. This is why the loss surface is defined over an attract and a
repel feature, and loss is minimized when the estimated feature of the attract object
matches the actual attract feature value of -0.222 and vice versa for the repel object.

weighted average of gradients mt, also known as momentum, whereas RLS only uses

the immediate step’s gradient gt. The effects of momentum are well-studied [Qian,

1999]:

1. Average out oscillations along the directions perpendicular to the direction of

steepest descent

2. Adding up contributions along the direction of steepest descent

3. Overall faster convergence to optimum

A.1.2 Experimental Comparison

We now explain how we experimentally compared all three optimizers and determine

whether the results align with our observations from the mathematical comparison.

To evaluate an optimizer on a given sample, we initialized the object preference

features ci and iteratively updated these features for a fixed number of steps using

gradients with respect to the losses for position Eq. 4.4 and rotation Eq. 4.5. For

parameter initialization, we set the initial position preferences as a fixed, weighted

average between trained attract and repel features. Rotation preferences were similarly

initialized between final care and ignore features. Rotational offsets were initialized as
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Figure A.2: Comparing average loss versus adaptation step over original test data.

zero rotation. Position features were adapted for 20 steps and rotation for 30 steps.

To fairly compare the three optimizers, we manually tuned each optimizer’s hyper-

parameters on the training dataset. We then kept these fixed for final evaluation

on the test set. For RLS, this includes forgetting factor λ = 0.9 and learning rate

α = 0.5. For the LSTM optimizer, this involved training the LSTM to minimize

the adaptation loss for a fixed number of adaptation steps. For Adam, we used the

default parameters as in previous experiments.

To finally evaluate each optimizer’s performance, we measured loss versus adap-

tation step averaged over the entire test dataset, as shown in Fig. ??. From the

figure, we can see that Adam and Learn2Learn have generally more oscillations in

loss than RLS throughout the optimization. However, it is possible that this is only a

consequence of the chosen hyperparameters. Overall, all three optimizers have similar

final performance.

Besides comparing average performance, we also compared the outputs of each

optimizer with a batch gradient at each timestep to visualize the behavior of the

optimizers. Comparing figures A.3, A.4, and A.5, we can clearly see the oscillation in

adapted preference features where the learned values overshoot some local optima

before slowly returning. We can see that RLS shows no large oscillations, but directly

and quickly converges to the local optima. We also observe that Learn2Learn also
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Figure A.3: Plot of Adam’s performance on sample position data with the need
to learn an attraction object. The top and bottom plots have aligned x-axes of
adaptation or time step. The top plot compares actual learned preference in solid
green with an approximate target value as well as original gradient versus predicted
update. The bottom plot shows loss versus adaptation step. The dashed vertical
lines separate different adaptation trials.

learns to apply some form of momentum term. A.1

These samples contain no noise, however, and rather only smooth expert tra-

jectories generated from Gaussian Process interpolation. Since one key benefit of

momentum is the ability to cancel out noise from directions perpendicular to the

steepest descent, we examined each optimizer’s performance when random Gaussian

noise was added to each waypoint in the expert trajectories. This is especially im-

portant since human corrections often are not be perfect due to difficulty handling

the robot or just unclear corrections. For each waypoint x∗k, we added random noise

ϵk ∼ N (0, σI3) to position with an example of σ = 0.1 shown in Fig. A.6.

Looking at Fig. A.7, we see that RLS is not robust to noise with standard

deviation σ = 0.1 and fails to decrease loss, whereas Adam and Learn2Learn still on

average decrease loss. Comparing actual gradients versus optimizer outputs in figures

A.10, A.11, and A.12, we can see that RLS’s outputs oscillate significantly whereas

Adam’s and Learn2Learn’s are more smooth.

Beyond simply adding artificial noise, we wanted to see if any natural properties

of the expert trajectories could cause better or worse performance for each optimizer.

We first wanted a measure of “complexity” in the expert trajectories, where a straight
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Figure A.4: Plot similar to A.3 but with RLS as the optimizer.

Figure A.5: Plot similar to A.3 but with Learn2Learn as the optimizer.

Figure A.6: Example expert trajectory shown in purple with random noise added.
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Figure A.7: Comparing average position
loss versus update iteration with noise of
σ = 0.1 added to ground truth trajecto-
ries.
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Figure A.8: Comparing average rotation
loss versus update iteration with noise of
σ = 15 degrees added to ground truth
trajectories.

Figure A.9: Comparing average loss versus adaptation step over original test data.

Figure A.10: Plot similar to A.3 but with added Gaussian noise.
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Figure A.11: Plot similar to A.3 but with RLS as the optimizer and added Gaussian
noise.

Figure A.12: Plot similar to A.3 but with Learn2Learn as the optimizer and added
Gaussian noise.
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Figure A.13: Comparing average position loss versus standard deviation of artificial
trajectory noise.

Figure A.14: Comparing average loss versus variance of the trajectories.

line would be the simplest. For each trajectory, we computed its major PCA axis

and aligned the trajectory with respect to this axis, as shown in Fig. A.14. Given

all aligned trajectories, we then computed variance along the y axis to represent

complexity.

In Fig. A.15, we compare the final loss of the three optimizers averaged across

trajectories separated by their y-axis variance. These variance bins were found using

Kmeans clustering. Performance was nearly the same for low variance trajectories,

but RLS performed significantly better than Learn2Learn and slightly better than

Adam on high variance samples. It makes sense that Learn2Learn learns to handle

the average trajectory with lower variance and performs worse on the rarer, high

variance samples.
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Figure A.15: Comparing average loss versus variance of the trajectories.

Optimizer Run-time (sec)
Adam 0.005
RLS 0.243 (0.005)

Learn2Learn 0.005

Table A.1: Average run-time of Adam, RLS, and Learn2Learn. RLS has two run-times
listed with the entry in parenthesis excluding Pytorch-specific implementation details.

Apart from adaptation performance, another key aspect in training deep neural

networks as well as online adaptation is run-time. We calculated the run-time of one

adaptation step for the three optimizers. The results, averaged across 10 samples of

adaptation, are shown in table Table A.1.

We can see that RLS runs significantly slower than the Adam and Learn2Learn.

However, this is likely caused by our specific implementation, which relies on Pytorch’s

auto-differentiation to calculate gradients. Pytorch easily calculates gradients of

parameters with respect to a loss ∂L
∂θ
, but not the actual outputs ∂ŷ

∂θ
. As a result,

the run-time in parenthesis only includes gradient computation with respect to one

output ŷj rather than all ŷ. This is because much of the intermediate gradients ∂zN−1

∂θi
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Figure A.16: Comparing behavior of a Potential Field (left) with OPA (right)

are shared:

∂zN−1

∂θi
=
∂zN−1

∂zN−2

∂zN−2

∂zN−3

. . .
∂z2
∂z1

∂z1
∂θi

(A.9)

∂L

∂θi
=

∑
j

∂L

∂ŷj

∂ŷj
∂zN−1

∂zN−1

∂θi
(A.10)

Pytorch typically computes ∂zN−1

∂θi
only once, but for Jacobian calculation with

respect to outputs, we had to manually recalculate these entries for every output ŷj.

As a result, RLS run-time in parenthesis provides a more fair comparison, which is

reasonable given that Adam performs very similar computations.

A.2 “Singularities” of Potential Fields

In Section 3-B of the paper, we mentioned how the position relation network overall

outputs a push-pull force on the agent. We allow this direction to be freely determined

by the network. Potential field methods also use this approach, but constrain the

direction to be parallel to each agent-object vector. Only magnitude and sign of the

vector can change. This may seem like an intuitive way to enforce structure in the

network and reduce complexity, but this constraint fails during “singularities” where

no orthogonal component is available to avoid an obstacle lying in the same direction

as the goal.

Fig. A.16 compares ”forced” and ”free” direction behavior respectively. As the blue

agent moves to the yellow goal in both cases, pay attention to the ”force” contribution
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Figure A.17: The model’s rolled out tra-
jectory, shown in pink, converges to a
“local optima” due to the all object influ-
ences canceling each other out.

Figure A.18: With several close obstacles,
the model prioritizes only the obstacles
and does not converge to the goal.

of the goal and the repel object shown as yellow and red arrows respectively. In

the ”forced” version, the model correctly predicts a force vector pointing away from

the red repel object. However, since there is no orthogonal component, the blue

agent cannot avoid moving straight through the repel object as the goal force vector

dominates. On the right side, however, the force direction contributed by the repulsor

object has an orthogonal component, allowing the agent to avoid the repulsor.

A.3 Scalability with Number of Objects

Graph-based models and neural networks have an advantage of being computationally

invariant to the order and number of objects in a scene. However, we only trained

our model in scenarios with one or two objects, so it is unclear how the model will

perform with more objects. We examined several scenarios with more objects and

found that the model occasionally fails to converge to the goal. In some scenarios

such as Fig. A.17, the force influences of surrounding objects overall cancel each other

out, causing the agent to get stuck in one region. In other scenarios, the model’s

attention mechanism behaves strangely, where far away objects have unreasonably

strong influence on the agent’s motion, such as Fig. A.18.
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We have several ideas on how this could be addressed:

1. Fine-tune the entire network, not just the object features, on new scenarios with

increasing number of objects in a curriculum style. Since the goal is currently

indistinguishable from other objects besides its feature value, this curriculum

learning could change the goal feature to have more dominant influence on the

agent. This does not completely eliminate convergence issues, but can mitigate

them.

2. During training, we use simple Behavioral Cloning (BC). Networks trained

with this approach are known to struggle in regions of the state space not

covered by expert demonstrations since the policy is only evaluated along expert

trajectories Ross et al. [2010]. One way to correct this issue is to use DAGGER

Ross et al. [2010] in addition to BC during our pre-training phase. DAGGER

is only feasible because our expert trajectories are synthetically generated in

reasonable time, so there is no burden in querying for expert actions along the

policy’s rollout states.

3. Our treatment of the goal as a node like any other object is not ideal since

interaction with the goal is distinct: we want to enforce a hard constraint of

eventually converging to the goal. Perhaps an approach would be to remove

the goal as a node, and instead have separate module to ensure convergence

to the goal. We could follow a similar approach to how Dynamic Movement

Primitives use a pseudo time scale x ∈ [0, 1] that forces convergence to the goal.
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