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Abstract

Human performance capture from RGB videos in unconstrained envi-
ronments has become very popular for applications to generate virtual
avatars or digital actors. Modern approaches rely on neural network
algorithms to estimate geometry directly from images, resulting in a
coarse representation of the shape of the person. On the other hand,
optimization-based approaches that use shape-from-silhouette provide a
more accurate reconstruction but they are computationally expensive and
require a good initialization. In this work, we propose a learning-based
approach for optimizing fine geometry information (e.g., clothes, wrinkles)
from monocular RGB cameras. In particular, we sequentially recover
different shape details (e.g., average shape without cloths, clothing, wrin-
kles) using separate neural networks. At each level, our network takes
the sparse gradient of body mesh vertices generated from 2D off-the-shelf
silhouette/normal supervisions and predicts dense gradients to update the
body shape. Our networks are able to converge within a few interactions
and achieve pixel-level accuracy. In addition, our method shares the ben-
efit of classical optimization methods under challenging poses and novel
views. As demonstrated by the experimental validations, our strategy is
both effective and efficient across a wide range of datasets.
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Chapter 1

Introduction

1.1 Introduction

Today’s virtual/augmented reality, telepresence, gaming, or digital actors in movies

all heavily rely on capturing high-fidelity human geometries and dynamics. A major

research area is how to capture persons and clothing from individual RGB images [35,

51] or videos [45, 47] in the hopes of producing 3D virtual humans. Popular 3D

pose estimation techniques use the SMPL body model (or variations) [18, 23] to

successfully provide accurate 3D body shapes; however, capturing cloth motion is

still difficult due to the complex geometry, dynamics, and ambiguities introduced by

monocular RGB photos and movies.

To solve this issue, several techniques estimate 3D clothing based on the contour

of the naked person by progressively reducing disparities between the rendered and

detected silhouette images. Due to the ambiguity caused by single-view silhouette

loss, these methods rely on either highly constrained priors of mesh smoothness [2],

cloth shape [45], highly constrained scenarios of self-rotating video [2, 17, 50], or a

pre-scanned avatar [47]. Furthermore, the aforementioned optimization’s runtime is

typically unacceptable for many applications of interest.

Other researchers, including [8, 15, 16, 35, 36, 52] extend the capability of deep

learning to reconstruct the 3D human body with clothing in a data-driven way. A

deep neural network takes a single/sparse-view RGB image as an input to learn

pixel-aligned features for predicting an implicit function of a 3D person with intricate

1



1. Introduction

Body Pose 
Estimation

Consensus Cloth 
Shape Estimation

Frame-dependent 
Cloth Shape 
Estimation

Wrinkle 
Extraction

Figure 1.1: Pipeline of our proposed sequential cloth capture method. Given a
monocular RGB video in the wild (the upper row), we reconstruct a personalized
template shape, a frame-dependent deformation and extract wrinkle details in a
coarse-to-fine manner.

textile geometry. These techniques offer a fast inference speed, as well as, a surprising

generalization ability to in-the-wild pictures. However, existing efficient algorithms

lack accuracy and robustness in presence of difficult poses, textures, or perspectives,

even when a good 3D pose is given to the algorithm. Furthermore, the one-step

inference cannot ensure the temporal smoothness of the output 3D form as the neural

network directly accepts RGB pictures as an input separately.

To reduce the difficulty of directly predicting a holistic cloth shape, this paper

proposes a sequential shape recovery method, where a set of networks learn different

shape details. Given an input image, we first estimate the underlying body shape using

SMPL model. Later, two independent networks estimate the average cloth shape and

pose-dependent cloth deformations. The final network is able to extract the wrinkles.

Fig.1.1 illustrates how we are able to estimate the shape in a coarse-to-fine manner.

Concretely, our approach follows the learning to optimize paradigm over different

scale resolutions of shapes. Each module independently takes the gradient from 2D

human appearance supervision (i.e. silhouette and surface normal) as an input and

predicts a rectified gradient per-vertex to update. Such techniques allow us to obtain

a personalized human avatar for input video, frame-wise cloth motions and realistic

wrinkles. Our approach fully utilizes neural networks’ benefit of generalizing clothing

knowledge from existing 3D datasets to single/sparse view scenarios in the wild and

allows a significantly efficient inference speed. Contrarily, we follow the classical

optimization process to separate the input picture from the silhouette and surface
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1. Introduction

normal loss, enabling a multi-step inference with extra resilience, which increases

accuracy and robustness. Compared with dense optimization, our predicted gradient

is more accurate and converges within a limited number of iterations, which greatly

accelerates the inference time. Further, we are able to simulate the input gradient

from purely geometries, without the need of high-quality texture data. Extensive

results under different settings demonstrate the superiority of our method in accuracy

and efficiency in 3D human performance capture.

1.2 Contribution

We summarize our three-fold contribution as below.

• We propose a sequential human performance capture approach that reconstruct

total human cloth shape by progressively predicting an average cloth shape, a

frame-dependent deformation and high-frequency wrinkle details.

• Our gradient rectification network iteratively predicts cloth deformation given

the 2D silhouette/normal alignment loss. The network is trained with only 3D

cloth geometry data and achieves robustness in wild inference.

• Our method produces precise human performance capture results with plausible

wrinkle details, while significantly reduces the optimization runtime.

3
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Chapter 2

Background

2.1 Optimization-based Human Cloth Capture

The classic human cloth capture methods formalize the problem as an optimization

process that iteratively estimates a non-rigid deformation from naked body to fit the

input image. Since directly estimating per-vertex offsets from silhouette image is

highly unstable, early method [47] can only start with a pre-scanned template and

support a small range of deformation. For wild videos, researchers impose different

constraints to obtain plausible cloth shape. Particularly, VideoAvatar [2] hand-crafts

multiple regularization terms and decompose the cloth shape as a global consensus

shape and a frame-wise deformation. For self-rotating videos, SelfRecon [17] proposed

to jointly optimize cloth geometries with textures by leveraging a backend neural

renderer. Another popular trend is to parameterize the non-rigid deformation by

PCA [45], deformation graph [14] or garment parameter [40]. These methods ensure

a convergence of 2D image fitting loss and a spatial-temporal coherence, but only

proposed in highly constraint cases, and take significant run time.

2.2 Learning-based Human Cloth Capture

Inspired by the success of deep neural networks, pioneer works [4, 51] start to predict

3D human model with cloth directly from input RGB image. Concretely, Bhatnagar

5



2. Background

et al. [4] regress PCA controlling parameter of multiple types of garments, and Zheng

et al. [51] predict a coarse 3D volume of clothed human then refines the surface

normal in the frontal view. The main drawback of these methods is due to the

incapability of the global feature to describe highly complex geometry details of the

cloth. As implicit function becomes the new fashion of 3D representation, PiFU

[16, 35, 36] generates implicit 3D human shape leveraging pixel-aligned features and

thereby performs more realistic cloth geometry and wrinkle details. However, due to

the lack of large-scale 3D human scans, the generalization ability of these methods are

challenged by novel poses and views. Following works [8, 15, 46, 52] greatly alleviate

this problem by adding SMPL shape prior. Overall, these methods allow fast inference

speed with plausible reconstruction results, but 1) does not guarantee an accurate

alignment with input image; 2) hard to control a spatial-temporal consistency.

2.3 Human Pose and Shape Estimation

Initially, human pose estimation refers to localize the body keypoint in 2D [6, 42]

and 3D [28, 32]. With 3D body models [18, 23, 33] and regressed joint location,

researchers are able to rig the canonical body template to reconstruct the human body

shape. Towards model-based human pose estimation, early practice fits the body

model into input images, which results in a small re-projection error in the frontal

view. With the deep learning fashion, the community is also interested to regress the

pose parameters [19, 22], which leads to faster inference speed and robustness against

pose initialization. As the large-scale pose annotations are expensive, training such

neural networks incorporates a mix of annotated 3D data and unlabeled 2D images

as supervision. Researchers nowadays pay more attention on predicting temporally

consistent body shapes [20, 21, 49]. The sequential inference mitigates the difficulty in

specific frames by considering the body motion. State-of-the-art methods can provide

a plausible naked body shape as the underlying model and remain the clothing part

as an independent problem.

Among all 3D human model fitting approaches, one recent line of works [9, 39]

called “learned gradient descent” iteratively predicts SMPL model parameters, which

inspires us to propose our sequential approach approximate the cloth shape in a

similar paradigm. However, estimating non-rigid cloth motion is more challenging

6
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due to the large degree of freedom brought by per-vertex deformation. Hence, one

iteration loop is insufficient in optimizing total cloth shape.
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Chapter 3

Methodology

This section describes the sequential approach for cloth shape recovery as shown in

Fig.1.1. We leverage an SMPL+D model [23] described in Sec. 3.1 to capture the total

human shape, where the cloth shape is represented as the deformation D over the

naked body shape. In Sec. 3.2 we measure body dynamics by optimizing the SMPL

parameters. The holistic cloth deformation D is decomposed into a personalized cloth

template D̄ in Sec. 3.3.2, a frame-dependent cloth deformation D̂ in Sec. 3.3.3 and a

high-frequency wrinkle details D̃ in Sec. 3.3.4.

Di = D̄ + D̂i + D̃i (3.1)

3.1 SMPL+D Model

With an input video V of length L of a single person, we aim at predicting temporally

coherent 3D meshes of clothed human M at each frame. SMPL+D model measures

body dynamics and therefore offers vertex correspondence over time for tracking. The

SMPL+D model contains two groups of SMPL parameters β ∈ R10 and θ ∈ R24×3

to control the naked shape and pose respectively, as well as per-vertex deformation

D ∈ R6890×3 from the naked shape to generate cloth. With the estimated parameters,

we first reconstruct the canonical human shape consisting of underlying naked body

T (β, θ) and cloth deformation D. The naked body is represented as a combination of

template shape T̄ , shape dependent deformation BS(β), pose dependent deformation

9



3. Methodology

BP (θ), as shown in Eq. 3.2.

T (β, θ,D) = T̄ +BS(β) +BP (θ) +D (3.2)

Then, rigged by the pose parameter θ and body joint J(β), we animate the canonical

shape to the posed space M using Linear Blend Skinning (LBS). Formally,

M(β, θ,D) = W (T (β, θ) +D, J(β), θ,W) (3.3)

where W is the LBS function and W is the skinning weight.

3.2 Body Shape Estimation

As the first stage of our pipeline shown in Fig. 1.1, we first estimate the parameters

β̄, {θ}L1 , {t}L1 and camera parameter K from input video through an optimization

process. We assume a perspective camera with only focal length fx, fy to be measured.

Since the naked body shape controlled by SMPL parameter does not depend on the

clothes, these methods are fixed in the later section. For the 3D pose estimation

problem, deep neural networks [20, 21, 49] provide an initial prediction of parameters.

We then refine the pose predictions in the inference time with extra off-the-shelf

supervisions following MonoClothCap [45].

min
K,β,{θ}L1 ,tLi

Eb
p = Eb

2d + Eb
dp + Eb

sil + Eb
pof + Eb

reg (3.4)

Particularly, Eb
2d [5] minimizes the L2 distance between Openpose [6] detected 2D

keypoints and projected SMPL joints. Eb
dp [12] minimizes the L2 distance between the

location of 2D pixels inside the body and projection of corresponding vertices of SMPL

body predicted by DensePose [13]. Eb
sil [45] maximizes the Intersection-over-Union

between differentiably rendered silhouette of SMPL body and 0-1 mask obtained

from 2D human parser [11]. Eb
pof minimizes the difference between the SMPL joint

orientation and predicted Part Orientation Field [44]. Eb
reg regularizes {θ}t1 with the

Gaussian prior, β with the L2 loss and the temporal consistency of the SMPL vertices

over time.

10



3. Methodology

3.3 Cloth Shape Estimation

Directly capturing the cloth from video under monocular settings is a ill-posed

problem due to the scale ambiguity. Therefore, the previously proposed optimization

are highly non-convex and unstable. Our sequential decomposition of the total cloth

deformation into separate parts under different deformation level greatly alleviate

this problem. Concretely, we first aggregate multi-frame observations to predict a

consensus shape as a personalized human avatar for the input video. Afterwards, a

fine-grained cloth deformation refines the consensus shape to fit each specific frame.

We impose strong smoothness assumptions on the cloth shape estimated in these two

stages. The wrinkle details are extracted in the last section.

However, even with the three-stage progressive pipeline, optimizing cloth de-

formation in each step is still challenging, since 1) not all vertices are necessarily

observed in at least one frame; 2) the input gradient is noisy due to the inaccurate

2D supervisions. To address these issues, classical method [2] designed other energy

terms e.g. Laplacian term, Symmetry term and Regularization term. This yields a

trade-off problem between generating smooth shapes and sharp edges in sleeve and

cuff.

We address the aforementioned two difficulties in optimization by proposing a

gradient rectification network F . This network rectifies the gradient obtained from

2D energy term to have a more accurate direction and step size for gradient descent.

Compared with the raw gradients, our network inpaints the gradients of non-observed

vertices, and adaptively controls the smoothness of the mesh surface after one step of

gradient descent.

Since the cloth is decoupled into three component and progressively predicted, we

use X to denote the T-posed clothed body shape in current stage, where Dtemp is the

assembly of deformations estimated in current and all previous stage. nX denotes the

normal of T-posed shape X. In the posed space, we use M to denote the body shape

and nM to denote the normal of mesh M .

X = T (β, θ,Dtemp) = T̄ +BS(β) +BP (θ) +Dtemp (3.5)

M = W (X, J(β), θ,W) (3.6)

11
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Figure 3.1: General training and inference procedure of our gradient rectification
network in iteratively estimating the consensus shape, frame-dependent deformation
and wrinkle details of the cloth.

Moreover, Ec is used to denote the energy term in each step.

3.3.1 Iterative Training and Inference Scheme

We first introduce the general training and inference scheme of our learning-to-optimize

framework shared across three independent stages in Sec. 3.3. As shown in Fig. 3.1,

in each iteration, the T-posed shape X is animated by estimated SMPL parameters

θ and translation t to the posed space M . With the camera parameters K, we use a

rasterizer to render a silhouette map and a normal map from mesh M . Off-the-shelf

methods provide reliable silhouette and surface normal map prediction given the input

image. At each stage, the 2D energy term Ec aligns either our rendered silhouette

map or surface map to the target. By taking the derivative of Ec w.r.t. the canonical

shape X, we obtain an initial gradient. Like the classical optimization methods, this

12



3. Methodology

gradient from solely 2D energy term is sparse and ambiguous, as only partial vertices

are observed. Given the initial gradient as input, our proposed gradient rectification

network F predicts a dense and smooth gradient to update the canonical shape X.

Eq.3.7 describes the “gradient descent” in τ -th step.

D(τ+1) = D(τ) − αF(X(τ),
∂Ec

∂X(τ)
) (3.7)

With the access of temporal 3D human dataset, we simulate our inference procedure

of obtaining input gradient in the training time and generate ground truth output

gradient supervision. We define the data term Edata in Eq. 3.8 as a L-2 distance

between predicted gradient and ground truth gradient.

Edata = ||XGT −X(τ) −F(X(τ),
∂Ec

∂X(τ)
)||2 (3.8)

Moreover, a consistency term E2d is used in supervising the network. E2d is equivalent

to the 2D energy term that generates input gradient, but with the updated cloth

D(τ+1). This enforces the consistency between the predicted gradient and the input

gradient in observed vertices.

3.3.2 Consensus Shape Estimation

In this stage, we jointly measure one consensus shape in canonical space that matches

silhouette shapes in multiple frames with the estimated SMPL pose parameters. The

energy function of consensus shape merges losses from different frames. Specifically,

for each vertices of the mesh in the posed space, we count the per-frame silhouette

energy. The total energy is the sum of silhouette terms from all sampled frames.

Ec =
1

L

L∑
t=1

Ec
siln (3.9)

To compute Ec
sil, one solution is to extend the silhouette term Eb

sil in Sec.3.2 using

differentiable renderer. However, the differentiable renderer finds correspondences

of silhouette points within the blur radius and update the 3D vertices with a small

step size. Therefore, optimization-based methods converges after multiple iterations.

13



3. Methodology

Figure 3.2: An illustration of the advantage of our correspondence searching algorithm
(left) over Closest Point (right). Blue pixels denotes the target silhouette and the red
pixels denote rendered silhouette.

As we aim at an instant estimation of cloth shape, it’s critical to have a one-step

approximation of the ground truth correspondence of 2D silhouette points and

leverage 2D silhouette term from Eq.3.10, where Π(Mi) is the perspective projection

of boundary vertex Mi and yj is its 2D corresponding silhouette point.

Ec
sil =

∑
i

||yj − Π(Mi)||2 (3.10)

Early literature [2, 47] assigns correspondences via closest boundary points of

silhouette. However, main drawback of ICP occurs when the 2D boundary points of

silhouette image degenerates due to self-occlusion. This happens especially with fat

pant legs. Inspired by traditional curve matching algorithm [10], we exploit level-set

algorithm [7, 37] to mimic the differentiable renderer and find correspondences during

the inference time, which better approximates the 2D location yj that does not

necessarily lies in the boundary of silhouette. The advantage of our algorithms in

finding correspondences over ICP is illustrated in Fig.3.2. When two parts of the

cloth overlaps, the boundary of the target silhouette disappears and ICP therefore

failed to find correspondences to cover the unoccupied region (blue sketchy pixels in

Fig.3.2). To be consistent in training and inference, all 2D locations are normalized

under a calibrated camera. However, we directly use the ground truth correspondence

to compute 2D energy term for training efficiency.

We train this network in temporal 3D human scan sequences. For each 3D

sequence, we fix the camera location and simulate the merged silhouette energy of

14



3. Methodology

mesh Ec in τ -th step. The loss function is formulated as

L = Edata + ωcE2d (3.11)

where ωc is the weight parameter to balance two terms. Eq.3.11 learns the dense

gradient output given sparse gradient on boundary vertices from 2D supervision, and

enforces the predicted gradient in the boundary vertices to be consistent with the

input gradient. It deserves notion that the network input ∂Ec

∂X(τ) is pre-computed and

the gradient is detached to avoid introducing the second-order gradient issue.

3.3.3 Frame-dependent Shape Estimation

With the consensus shape D̄ estimated in Sec.3.3.2, we further go through an iteration

to predict a frame-dependent deformation D̂i for each frame. In this section, the

2D loss Ec is equivalent to the single frame silhouette loss Ec
sil in Eq. 3.10. With

temporal 3D human scans dataset, we simulate the input gradient of the training

data in the same manner as Sec. 3.3.2, but use our predicted consensus shape as

initialized shape. Since single frame refinement introduces more ambiguity, extra

constraints including a L-2 and a Laplacian term on X prevents the non-observed

vertices from overfitting the training data.

L = Edata + ωcE2d + ωregEl2 + ωsmoothElap (3.12)

3.3.4 Wrinkle Extraction

Traditional methods leverage Shape from Shading (SfS) [1, 43] to add wrinkle details.

However, in our scenario of monocular RGB video in the wild, the complex albedo and

lighting condition makes SfS becomes impractical to use. The recent deep learning

method [41, 46] provides high quality surface normal estimation that is used as a

supervision to reconstruct wrinkle details. With the predicted normal map as a prior,

MonoClothCap [45] hereby exploits a differentiable renderer to align the rendered

normal map of human mesh and the estimated normal map from input RGB image.

Though directly minimizing distance of two normal maps result in plausible 3D

wrinkle details, one severe problem is the runtime due to the differentiable renderer.
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3. Methodology

Motivated by [31, 36, 51], we exploit the potential of neural network in generating

realistic wrinkle details from flat cloth surfaces and benefit from speed of neural

inference. However, different from PiFUHD [36] which learns features directly from

target 2D normal map, we follow our paradigm in Sec. 3.3.2 and take gradient of

normal loss as an input. By taking derivative of Ec over T-posed shape X, the input

gradient is invariant to poses and rotations, which allows us to train the network with

a small set of data and generalize to the wild scenario.

Specifically, we first formalize the normal loss Ec in this stage as Eq.3.13.

Ec = Enorm =
∑
i

||ni − Ii||2 (3.13)

ni is the surface normal of vertex i and Ii is its corresponding surface normal sampled

from ground truth normal map. During the inference time, ni is gathered by a bilinear

interpolation on normal map N(·) from inverse rendering networks [41, 46].

Ii = N(Π(Mi)) (3.14)

Then, a neural network F is derived to deform the visible vertices of SMPL+D

mesh to generate wrinkles. In order to pursue realistic wrinkle details, in this section

we use high-resolution SMPL model with 27754 vertices.

To train this network, we simulate the wrinkle extraction process from single

static 3D human scans with rich wrinkle details. The network learns to generate high

frequency part of the human scan from a Laplacian smoothed mesh. The training

loss is composed of a L-2 loss and a normal loss between corresponding vertices from

predicted mesh and ground truth mesh as shown in Eq.3.15. E2d ensures the network

to generate plausible visual results without necessarily predict the exact ground truth

gradient.

L = Edata + E2d (3.15)

3.3.5 Implementation Details

Training data simulation The challenging part of our learning to optimize scheme is

the domain gap between training and wild inference. For consensus shape estimation,
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Section Dataset Initialized Shape X0 Target Shape XGT

3.3.2

CAPE [25],
ReSynth [26, 27],

MGN [4],
Thuman [48, 51]

Naked SMPL body
Smoothed Clothed body

in ref. frame

3.3.3

CAPE [25],
ReSynth [26, 27],

MGN [4],
Thuman [48, 51]

Clothed body in ref. frame
estimated by Sec. 3.3.2

Smoothed Clothed body
in sampled frame

3.3.4 TailorNet [31] Smoothed Garment Mesh Original Garment Mesh

Table 3.1: Data preparation in three stages respectively.

Consensus Cloth 
Shape Estimation

Frame-dependent 
Cloth Shape 
Estimation

Wrinkle 
Extraction

Figure 3.3: Visualization of decomposed training data.

we sample 20 frames per sequence and aggregate individually computed gradient

from 2D loss. The scan under A-pose with minimal pose-dependent deformations is

recognized as the consensus shape of the sequence. For frame-dependent deformation

estimation, the network learns to deform our learned canonical shape to scans in

sampled frame. As the 2D silhouette loss is insufficient to guide the wrinkle generation,

we smoothen the ground truth shape with Laplacian filter as Tailornet [31] to eliminate

wrinkles. As all training data contains SMPL registration, in the training phase, we

detect the boundary vertices of the rasterized 2D silhouette map and compute 2D

alignment loss given the correspondence. For wrinkle extraction, the network learns

to recover high-frequency details from Laplacian smoothed mesh in each frame. Same

as the previous section, the input gradient comes from 2D alignment loss between

normals of corresponding vertices. All target silhouette/normal map in the training

phases are rendered from 3D geometry data without the need of texture information.
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Figure 3.4: Visualization of patch clusters (left) and component clusters (right).

Detailed visualization of training data in each stage is shown in Fig. 3.3.

Network Architecture We leverage a PointNet++ [34] structure to encode

the input gradient and a coordinate-based MLPs to decode the multi-scale feature

to output gradient. Given X, ∂E
c

∂X
, the encoder is consist of two separate MLPs

for geometry feature and gradient feature. Geometry feature simply contains 3D

coordinate of X and normal nX . For Sec. 3.3.2 and Sec. 3.3.3, we also consider

the symmetric assumption of garments motivated by [2]. To achieve this, each

vertex concatenates the gradient of the x-symmetric and z-symmetric vertices to its

gradient as auxiliary feature. Since the input point clouds are from canonical T-posed

SMPL+D body, the clusters for downsampling in Set Abstraction Module and the

interpolation weights for upsampling in Feature Propagation Module in PointNet++ is

pre-defined. Particularly, from UV-map, the vertices are devided into 104 patches and

24 components for two levels of downsampling, as shown in Fig. 3.4. The multiscale

feature learned from PointNet++ is concatenated with the positional-encoding [29]

of 3D vertex coordinates to predict the output gradient. Following the fashion from

[29, 30], the decoder has a skip connection. In order to constraint the output range in

each step, we add a tanh activation function in the last layer. The overall architecture

of our network is visualized in Fig. 3.5.
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a
a

Geometry
feature

Gradient
feature

Multi-layer
Perceptron

Set Abstraction
Module (pooling)

Feature Propagation
Module (unpooling)

Tanh
Activation

Positional
Encoding

Figure 3.5: General architecture of our proposed gradient rectification network F .
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Chapter 4

Experiments

In this section, we validate the effectiveness of our proposed methods qualitatively and

quantitatively in a set of experiments. Specifically, in Sec. 4.1, we study the overall

cloth capture performance of our method on monocular RGB videos in-the-wild.

Despite capturing cloth for each frame, we can leverage the consensus shape produced

in Sec. 3.3.2 as an animatable avatar. Therefore, we demonstrate the capability of

our method in generating accurate human avatars from monocular RGB video in Sec.

4.2. The superiority of our method in runtime is analyzed in Sec. 4.3.

4.1 Results on Human Performance Capture in

the Wild

4.1.1 Dataset

We examine the quantitative performance of our method on Pablo sequence from

MonoPerfCap dataset [47]. This sequence contains a 156-frame multi-view (8 camera)

video and a reconstructed 3D scan sequence as ground truth. Following the previous

works [45, 47], we select a single view of the Pablo sequence as the input for testing.

Additionally, we carried out a set of qualitative experiments on online and smartphone

shot videos.
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Input MonoClothCap Ours Input MonoClothCap Ours

Figure 4.1: Qualitative result on human performance capture from pablo sequence
and video taken by smartphone.

4.1.2 Baselines

We make comparisons with both optimization-based video human performance capture

methods [45, 47] and learning-based single image 3D human reconstruction methods

[3, 35, 36, 51, 52]. Notably, similar to the most recent learning-based methods [52],

we require a few steps of optimization (e.g. in Sec. 3.2) for pose tracking to achieve

the reported accuracy. In the aspect of efficiency, we can replace this procedure with

an pose tracking network [20].

4.1.3 Evaluation Metrics

We report the average point-to-surface distance following the evaluation protocol in

MonoClothCap [44]. Concretely, since different methods have diverse camera settings,

we first centralize and scale the predicted scans according to the height. Then we

manually segment the ground truth scans and use ICP to register the predicted

scans to cloth region of ground truth scans under translation. The point-to-surface is

defined as the minimal distance between the cloth vertices of aligned prediction scans

to the surface of ground truth scans.
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Methods Point-to-Surface Error (mm)

MonoPerfCap [47] 14.7
MonoClothCap [45] 17.9

Tex2Shape [3] 27.7
DeepHuman [51] 24.2

PIFu [35] 30.5
PIFuHD [36] 26.5
PaMIR [52] 28.3

Ours 17.4

Table 4.1: Quantitative comparisons with state-of-the-arts on pablo sequence. The
first two methods are optimization-based methods and the rest are neural network
predictions. Note that MonoPerfCap leverages a pre-scaned template mesh of the
video as prior.

4.1.4 Result Analysis

Table 4.1 illustrates the distinct advantage of our method over all single image human

shape reconstruction techniques [3, 35, 36, 51, 52], including PaMIR [52] that take the

SMPL pose as a prior. While producing reasonable visualizations in the frontal view,

PIFu series generate noisy vertices that results in large quantitative error. We even

outperform template-free optimization methods [45] with significantly less runtime

and approaches the performance of [47] using pre-scanned template shape. One of

our quantitative advantage is that for the non-observed vertices we predicts a more

compact and flat shape. We visualize our cloth capture result on both Pablo sequence

and smartphone shot video in Fig. 4.1. As we can see in the figure, with significantly

less running time, we generate a similar amount of details as MonoClothCap, and

performs a more robust tracking for the flying cloth for the right video.

Besides, we conduct extra experiments on challenging online videos with fast

body motion and loose long sleeve cloth, which is not supported by MonoClothCap

[45]. Fig. 4.2 shows qualitative results of our approach against generic single image

reconstruction method PaMIR [52]. As we can see from the figure, our method

demonstrates remarkable robustness against novel poses and viewpoints and even

inaccurate 2D segmentation result thanks to our sequential human performance

capture pipeline. In contrast, PaMIR is sensitive to the pose and viewpoint which

results in the failure reconstructions such as bodies with missing arms in specific hard
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frames.

4.2 Results on Video-based Human Avatar

Generation

4.2.1 Dataset

We validate the ability of our network in generating accurate human avatars by

leveraging PeopleSnapshot dataset [2]. This dataset contains real-world 360 self-

rotating videos of 6 males and 6 females in different types of cloth. Ground-truth

segmentations, camera parameters and accurate SMPL pose parameters are also

provided. However, no ground truth 3D scan is captured with these videos. Therefore,

we only perform qualitative results for comparison.

4.2.2 Baselines

In the experiment, we mainly compete against the classical optimization-based

method VideoAvatar [2]. VideoAvatar also exploits SMPL+D model and deforms the

template body mesh with the aggregated gradient from 2D silhouette energy. This

comparison clearly demonstrates the benefit of introducing 3D training data and the

learning-to-optimize scheme.

4.2.3 Result Analysis

The qualitative comparison is shown in Fig. 4.3. For each scenario, we outperform

classical optimization-based methods [2] in generating cloth wrinkles. Our wrinkles

are extracted from a frontal and a back image. Moreover, our method better captures

the cloth shape in the side view instead of generating an over-smooth mesh, e.g. the

chest region of the women in the first row.
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Stage MonoClothCap [45] PaMIR [52] Ours

Pose Estimation 6 12.5 6
Consensus Shape Estimation

89
7.5

0.06
Frame Refinement 1
Wrinkle Extraction 327 0.17

Table 4.2: Runtime comparison between our method and optimization-based method
and PIFu method with pose prior. We compare the average running time (second)
per-frame. I/O time is excluded.

4.3 Runtime Analysis

One of our major contributions is the runtime improvement. Therefore, we carry

out a runtime comparison tested from the 253-frame pablo sequence. Since the

consensus shape is one personalized template shape for the given video, we divide

the total runtime into the number of aggregated frames to obtain per-frame runtime.

The detailed runtime in each stage is shown in Table 4.2. By using learning-based

approaches [20, 21, 49] to replace the optimization loop, we can achieve totally 1FPS

inference speed.

Our runtime is boosted for three reasons: 1) in inference time, our gradient

rectification network converges up to 3 iterations. 2) we avoid using the differentiable

renderer, which consumes a huge amount of time and memory to render a high-

resolution image. 3) we directly predict a 3D human mesh instead of implicit function,

which does not require extra marching cube algorithm [24] to extract mesh.
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Input PaMIR Ours

Figure 4.2: Qualitative result on human performance capture from challenging
YouTube video with fast body motion and loose sleeves. Note that side-views from
different methods are not aligned due to different camera settings.26
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Input VideoAvatar Ours

Figure 4.3: Qualitative result on video-based human avatar generation.
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Chapter 5

Conclusions

In this thesis paper, we present a sequential human performance capture method to

reconstruct 3D human body and cloth from monocular RGB videos in the wild. Our

three-stage pipeline independently estimates an average cloth shape, a frame-wise

deformation and the plausible wrinkles in a coarse-to-fine manner. At each stage, we

leverage a deep neural network to predict cloth deformations from sparse vertices

gradient generated from 2D image fitting energy. This learning-to-optimize idea

ensures our method to benefit from both the robustness and accuracy in classical

optimization from classical optimization methods and the efficiency and generalization

ability of deep learning methods. The experiments in cloth capture and human avatar

generation demonstrate the advantage of our approach in both accuracy, robustness

and efficiency.

5.1 Limitations and Future Works

The major drawback of our method is from the underlying SMPL+D model. Since

SMPL+D model approximates the skinning weight of cloth vertex by the skinning

weight of the nearest skin vertex. Therefore, large error exist when we use such

skinning weight to animate loose cloth. Further, the smooth cloth deformation is

unable to represent cloth types with different topology such as hoodies or pockets

of the cloth. Lastly, the strong assumption about the cloth smoothness we hold in

the frame refinement stage limits the ability of our methods in minimizing 2D energy
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terms and generate sharp edges and multi-layer cloth. As a result, we are likely to

lose track of the sleeves and cuffs in fast motion.

These issues could be address by leveraging the implicit function to represent the

shape and some pioneers start to study human body animation under the implicit

representation. However, the cost of volume tracking is large and the robustness of

these new animation algorithms under monocular setting could be easily challenged.

In the future, with more advanced human avatar animation techniques, we expect

to extend our idea of learning-to-optimize to generate body shape for boarder cloth

types.
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Appendix A

2D Correspondence Searching

Algorithm

Algorithm 1 2D Correspondence Searching Algorithm for Silhouette Map Alignment.
Input Source point set S, Target point set T
Output Correspondence Assignment Matrix M

1: D = ∞,M = 0
2: for tj ∈ T do
3: k = ClosestPoint(S, tj)
4: Dk,j = ||sk − tj||2
5: end for
6: for si ∈ S do
7: Mi,argmax(Di) = 1
8: end for
9: return M

In the appendix we describe a correspondence searching algorithm to align our

rendered silhouette map to target silhouette map from segmentation [11]. Instead of

using Closest Point to align boundaries of two silhouette maps, our main motivation

is to cope with the corner cases where the boundary of silhouette degenerates under

self-occlusion, as illustrate in Fig. 3.2. Since the 3D cloth shape generated from naked

body has less boundary degeneration issue, we register the boundary of our rendered

silhouette map to the disparity regions between two silhouette maps. Specifically,

we extract the edge of our rendered silhouette by a laplacian filter [38] as source

31



A. 2D Correspondence Searching Algorithm

point set S and record the 2D coordinate of misaligned pixels as target point set

T . For i ∈ S, Alg. 1 searches the correspondence point j ∈ T . Since the human

parsing approach [11] also provides semantic part labels, we apply our correspondence

search algorithm independently for upper and lower cloth, which better generates the

boundary between two separate clothes.
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