
Composition Learning in “Modular” Robot Systems

Thesis by
Jiaheng Hu

In Partial Fulfillment of the Requirements for the
Degree of

Masters of Science in Robotics

CARNEGIE MELLON UNIVERSITY
Pittsburgh, Pennsylvania

2022
Defended 2nd August 2022



ii

© 2022

Jiaheng Hu
CMU-RI-TR-22-28

All rights reserved



iii

ACKNOWLEDGEMENTS

First of all, I want to thank my committee members, Dr. Howie Choset, Dr. Matthew
Travers, Dr. Deepak Pathak and Julian Whitman. In particular, my advisor Howie
Choset and my collaborator and mentor Julian Whitman helped me tremendously
along the way, without whom this thesis would not have existed. I also want to give
my huge appreciation to my family members, Su Zhang, Houzhi Hu and Tianzeng
Chen, for their support which means everything to me. Lastly, I’d like to thank my
lab-mates Howard Coffin, Richard Ren, Dr. Ian Abraham and Benjamin Freed for
the fruitful discussions that consistently inspire me.



iv

ABSTRACT

Modular robot and multi-robot systems share a concept in common: composition,
i.e. the study of how parts can be combined so they can be used to achieve certain
objectives. Our vision is to enable robotic systems to configure and reconfigure
themselves during field deployment, either autonomously or with the help of users,
to adapt to emerging tasks and conditions. This goal requires us to generate compo-
sitions in real-time, while maintaining the ability to handle emergent constraints and
conflicting objectives. To address these challenges, we present evolution-guided
generative adversarial networks (EG-GAN) that learns to map task to composi-
tions. Our method trains a generative model to map a task to a distribution of
compositions, with training signals guided by the output of evolutionary algorithm
operations. Once trained, the EG-GAN can be used to produce compositions in a
near real-time fashion. We demonstrate the effectiveness of our algorithm on two
distinct composition problems: 1. designing modular robots and 2. forming teams
for multi-robot systems, and show that our algorithm outperforms the previous state-
of-the-art algorithms in solution quality, solution diversity, and the ability to handle
multiple objectives.

A separate challenge in robot composition involves the complexity introduced by
inter-component connectivity, which makes the composition space high-dimensional
and topologically diverse, and therefore hard to search within. We introduce
Grammar-guided Latent Space Optimization (GLSO), a framework that transforms
the original composition space into a low-dimensional, continuous latent space via
unsupervised learning. The transformation converts the composition problem into
a continuous optimization problem, where we apply sample-efficient Bayesian Op-
timization to search in the latent space for high-performing compositions. Our
method allows us to search in the high-dimensional robot composition space more
efficiently than previous state-of-the-art.
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C h a p t e r 1

INTRODUCTION & MOTIVATION

The study of composition, i.e. how parts can be put together to function as a system
in the most efficient and effective manner, is an important problem that appears
in various different disciplines, including chemistry (de-novo drug design [20]),
machine learning (neural architecture search [19]), and robotics (robot composition
automation [30]). This thesis focuses on composition in robotics - where a multi-part
robotic system (e.g. modular robots, heterogeneous multi-robot teams) is configured
and re-configured to address emerging tasks.

The field of robotics poses several unique challenges to the problem of composition
[30, 15, 69, 64]. Firstly, the number of possible compositions in robotic systems
typically grows exponentially with the number of components, which even for a
small set of components can make search computationally intractable. In fact, since
robot systems often involve field deployment, we want a solution that’s not only
tractable, but attainable in real time. Finally, such a system must be robust to
emergent situations and unmodeled conditions, and may have to handle multiple
conflicting objectives.

We claim that in order to tackle the challenges above, a composition generator must
generate a distribution of solutions as oppose to a single one. This may be useful
when our task is not properly modeled or there may be some slight mistakes with
our generator in the first place. So, if we have a distribution of compositions and
one cannot complete a task, we may be able to re-sample from that distribution
to obtain more capable compositions. Our research group has already developed
learning-based approaches [76, 75] that generate solutions in real-time. However, all
previous learning-based approaches seek to learn a one-to-one mapping from task
to design, which often result in ignoring a variety of the optimal or near-optimal
compositions. We therefore present evolution-guided generative adversarial network
that learns a one-to-many mapping from task to compositions based on supervision
of evolutionary algorithms.

Unlike past works using GANs, where a dataset is present prior to training [23, 27,
56, 16, 24], we have no data a priori from which a mapping from task to robot
compositions can be distilled. Worse yet, collecting such a dataset from scratch is
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Figure 1.1: We are interested in composition problem in robotic systems. Here
we shown two examples of robotic systems where composition is crucial. On the
left column we show a modular robot system, where modules need to be connected
together to form designs. On the right column we show a multi-robot system, where
heterogeneous robots need to be grouped into teams to maximize the overall system
performance. Our goal is to determine the ideal composition for these systems based
on given tasks during field deployment.

enormously computationally burdensome, as obtaining each task-composition pair
requires solving a (potentially multi-objective) combinatorial search problem. In-
stead, our approach actively collects data on-line during training through a novel
evolution-guided data creation process inspired by EAs. This data creation process
looks for new promising compositions around the current generated compositions,
promoting the generator to improve the quality and diversity of its output. We apply
Evolution-guided GAN to two distinct robot composition problems, as shown in
Fig. 1.1. In the first case, we seeks to create mobile modular robots designs special-
ized for traversing varying terrains. In the second case, we compose heterogeneous
robots into teams for coverage tasks. Results show that our algorithm outperforms
the previous state-of-the-art algorithms for fast composition generation.

We then focus on tackling high-dimensional and unstructured composition space,
such as modular robot with arbitrary connectivity and arbitrary number of mod-
ules. Previous works relied upon metaheuristic optimization algorithm such as Ge-
netic Algorithms (GA)[29], Genetic Programming (GP) [48], and Particle Swarm
Optimization (PSO)[80], where a diverse population of candidate compositions is
maintained and updated in search of high-performing compositions. However, these
methods requires repeated evaluation of the performance of the compositions, and
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is therefore sample inefficient during the optimization. We introduce Grammar-
guided Latent Space Optimization (GLSO), a framework that transform the original
composition space into a low-dimensional, continuous latent space via unsupervised
learning. The transformation converts composition optimization into a continuous
optimization problem, where we apply sample-efficient Bayesian Optimization (BO)
[59] to search in the latent space for high-performing compositions.

This thesis is organized into four parts. In part one, we introduce the motivation of
this thesis, and give an overview of the background and preliminaries. In part two, we
focus on tackling real-time robot composition, and discuss in detail about evolution-
guided generative adversarial network. In part three, we focus on robot composition
problems where the composition space is high-dimensional and combinatorial, and
discuss in detail Grammar-guided Latent Space Optimization. Finally in part four,
we conclude the thesis and discuss about the future extension of this work.
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C h a p t e r 2

BACKGROUND AND PRELIMINARIES

In this section, we discuss two kinds of approaches that are popular for tackling
composition optimization in robotics: Evolutionary Algorithm and Learning-Based
Composition Automation. We then introduce three techniques that our approaches
are based upon: generative adversarial network, graph grammar, and latent space
optimization.

2.1 Evolutionary Algorithms
Population-based stochastic optimization algorithms, such as Evolutionary algo-
rithms (EAs), have been the de facto choice for robot composition problems due
to their ability to efficiently look for solutions in the composition search space [72,
28, 7, 8, 57, 51, 49, 66, 63, 73]. This class includes genetic algorithms [37],
differential evolution [61], ant colony optimization [18], and particle swarm opti-
mization [38]. EAs maintain and update a population of candidate solutions through
a set of operations, and are capable of finding optimal or near-optimal solutions to
NP-hard problems within tractable time [12]. They are also able to find multiple
solutions due to their population-based nature, and are thus suitable for multi-modal
and multi-objective optimizations [6, 71]. Specifically, [7] used a Genetic Algo-
rithm with generative design encoding to evolve locomoting robots, and [72] used
a Genetic Algorithm to discover locomoting and swimming robots. Similarly, [57]
used a multi-objective particle swarm optimization (MOPSO) to composite multi-
robot teams for coverage tasks. However, since EAs require repeated evaluation
of the performance of different compositions, they can quickly become computa-
tionally expensive in the domain of composition automation, where evaluation of
each composition requires running a simulation with a control policy. As a result,
EAs are often too time-expensive to be deployed directly in the field, limiting their
applicability to scenarios where time or computation is limited.

2.2 Learning-Based Composition Automation
An alternative to explicitly searching a composition space during deployment is
to utilize machine learning techniques to map task to compositions. These meth-
ods utilize a long training phase to learn a mapping from task to composition,
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where the learned mapping can be directly queried during deployment to generate
task-specific compositions. Specifically, [75, 76] cast modular robot design as a
reinforcement learning (RL) problem, and use Q-learning to learn a policy that
sequentially adds nodes and edges to the partial graph of designs conditioning on
the task. Fit2form [25] learns an end-to-end mapping from task to 3D gripper. Im-
portantly, these methods have the benefit of real-time execution. However, existing
learning-based methods typically pose their objective as predicting a single com-
position that maximizes performance for the queried task. By doing so, the above
mentioned approaches ignore the multimodal nature of the composition automation
problem, and also cannot handle multiple objectives.

2.3 Generative Adversarial Network
Generative Adversarial Networks [23] have been widely adopted to learn generative
models. A GAN is an implicit generative model that attempts to capture the patterns
in a dataset, such that the model can be used to generate new samples as if they were
drawn from the same underlying distribution as the data. A GAN consists of two
components: a generator that learns a mapping from a noise vector to generated data
sample, and a discriminator that learns to distinguish generated samples from real
samples. These two components are typically implemented as deep neural networks
and are optimized simultaneously through gradient descent. Since the two networks
have competing objectives, training a GAN can be viewed as two players playing a
minimax game [23]. The conditional GAN [56] was later introduced as a variant
that output labeled samples by conditioning both the generator and the discriminator
on a given label.

Typically, GANs work with continuous domain, such as images, due to the need
for backpropagation through the generated data during training. In order to apply
GANs to discrete data, Boundary Seeking GAN (BGAN) [27] trains the generator
via policy gradient of the likelihood ratio estimated by the discriminator. Since a
policy gradient loss doesn’t need the data samples to be differentiable with respect to
the generator parameters, this method makes it possible to train a GAN for discrete
data such as graphs.

2.4 Graph Grammar
One popular composition space in robotics is the graph space, where components
are represented as nodes and their inter-connectivity represented as edges. Graph
grammar rules provide an effective means to confine a graph composition space,
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Figure 2.1: An example of graph grammar used for robot design

which can improve optimization efficiency, especially when the composition space
is high-dimensional [83, 29]. In robotics, graph grammars have been applied to
model both physical structure as well as control laws [44, 67, 42]. More recently,
RoboGrammar [83] introduced a set of recursive graph grammar rules for robot
design automation. RoboGrammar operates on graphs composed of terminal and
non-terminal symbols by recursively expanding non-terminal symbols using a set
of predefined rules A final composition graph consist only of terminal symbols,
and corresponds to a robot design where the hardware components are represented
as nodes and the physical links are represented as edges. Fig. 2.1 demonstrates
the set of rules proposed by RoboGrammar. To optimize the robot designs based
on the grammar rules, RoboGrammar proposed Graph Heuristic Search (GHS),
which operates on a search tree defined by the graph grammar rules. The search is
conducted in a A* like manner, where a heuristic function in the form of a graph
neural network [79] is trained during the search process. For more details about the
RoboGrammar method, see [83].

2.5 Latent Space Optimization
Latent space optimization (LSO) is a framework designed to extend continuous op-
timization techniques to discrete combinatorial search space [70]. LSO first learns
a generative model (typically a variational autoencoder) [41], where the encoder
𝑔𝑒𝑛𝑐 : X → Z maps from the discrete composition space X to a continuous latent
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space Z and the decoder 𝑔𝑑𝑒𝑐 : Z → X maps data points from the latent space to
the combinatorial composition space. Continuous optimization can subsequently
be performed in the latent space Z using standard continuous optimization algo-
rithms such as BO. LSO has been shown to be an effective framework for domains
involving discrete data, including natural language [4], arithmetic expressions [43],
programs generation [14] and molecules synthesis [22, 36]. In the domain of robot
composition automation, however, LSO has not seen much success. [39] made ini-
tial progress in learning a latent representation of robot morphology, but only with
a small set of serial-chain topology designs, and no optimization was performed.
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C h a p t e r 3

OVERVIEW

In this chapter, we consider the problem of robot composition during field deploy-
ment, where compositions need to be generated in real-time. A de facto approach
for solving composition problem in robotics is to utilize metaheuristic optimiza-
tion algorithm such as Genetic Algorithms (GA)[29], Genetic Programming (GP)
[48], and Particle Swarm Optimization (PSO)[80], where a diverse population of
candidate compositions is maintained and updated in search of high-performing
compositions. Unfortunately, this optimization process typically requires repeated
simulation and evaluation of many different compositions, and can quickly become
computationally expensive. Though they can produce high-quality compositions,
these methods cannot be directly applied in scenarios like field deployment, where
time or computation is limited.

Recent works [75, 76, 25] utilize machine learning (ML) to generate compositions
with a low computational cost at run-time. Specifically, these works employ a
training phase to learn a one-to-one mapping from task to composition for a range
of different tasks. This mapping is then used during deployment to create new
compositions, whether or not the mapping was trained on a given task. While
such an approach may lead to non-optimal compositions, it does produce them in
real-time.

The low run-time cost of existing ML approaches make them seemingly good
candidates for use in the field. However, the problem of robot composition generation
is often multimodal and multi-objective by nature, where for any given task, there
are multiple competing objectives (e.g. maximizing speed and minimizing energy
consumption for locomotion robot); and for each objective, there exist multiple
distinct compositions that are similarly or equally capable. By modelling the task-
to-composition mapping as a one-to-one mapping, previous learning-based methods
tend to compute a most likely candidate for an optimal solution, as opposed to
maintaining a distribution of candidate optimal solutions, thereby hinders a true
search for an optimal solution. As a result, these methods fail to fully describe
the relation between task and optimal compositions, which not only lead to inferior
decisions, but also hamper exploration during training.
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Furthermore, in a composition automation problem, keeping track of multiple dis-
tinct solutions can be valuable, as they provide alternatives in case the “first-choice”
solution fails. For instance, if a module fails unexpectedly in the field, and there
are not sufficient spare modules to replace it, the user will need to quickly identify
and construct a “second-choice” design. Similarly, if the first solution deployed
does not work as expected, perhaps due to a simulation to reality gap, then the user
will need a different design. Finally, in case where there exist multiple competing
composition objectives, a set of solutions can be used to demonstrate the optimal
trade-off between these competing objectives (i.e. the pareto set). We therefore
develop an algorithm that marries the solution quality and diversity of EAs with the
low run-time cost of ML.

In this work, we introduce Evolution-guided GAN (EG-GAN), a framework for
real-time generation of task-specific robot compositions. Our method learns a
mapping from a task to a distribution of compositions through a modified generative
adversarial network (GAN) [23, 27, 56], and can be used to generate diverse and
high quality compositions in a computationally-efficient manner.

We apply Evolution-guided GAN to two distinct robot composition problems, as
shown in Fig. 1.1. In the first setting, we seeks to create mobile modular robots de-
signs specialized for traversing varying terrains. In the second setting, we compose
heterogeneous robots into teams for coverage tasks. In both cases, we demonstrate
that our method is capable of running in real-time during testing, and outperforms
competing ML methods both in terms of solution quality and solution diversity, as
well as providing alternative solutions when the first design fails. We further demon-
strate the capability of Evolution-guided GAN to handle multi-objective composition
on the problem of multi-robot team formation.
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C h a p t e r 4

EVOLUTION-GUIDED GENERATIVE MODEL

Our system is composed of three key components: a generator 𝐺\ , a discriminator
𝐷𝜙, and a novel evolution-guided data creator. An illustration of these components is
shown in Fig. 4.1. The generator maps a task to a distribution of compositions. The
discriminator tries to distinguish between compositions generated by the generator
X𝑔𝑒𝑛, and compositions produced by the evolution-guided data creator X𝑝𝑜𝑝. Both
the generator and the discriminator are implemented as neural networks, where \
and 𝜙 are the respective trainable weights. At every iteration, the evolution-guided
data creator performs 𝑛 steps of evolution on the robot compositions generated by
the generator to obtain training data. These evolution steps iteratively improve
the output of the generator, pushing the generator to approximate a distribution of
increasingly higher-performing candidate solutions. The pseudocode of our training
pipeline can be seen in Algorithm 1.

Notation: We present a general pipeline for generating compositions X ∈ X con-
ditioning on a task T ∈ T, where X is a pre-defined composition space and T is
a pre-defined task space. The specific representation of X and T , as well as the
network architecture of the generator and the discriminator, depend on the target
application. Notice that we slightly abuse the notation here, where X𝑔𝑒𝑛 and X𝑝𝑜𝑝
refers to a batch of compositions instead of a single composition.

Algorithm 1 Training of Evolution-guided GAN
1: Initialize Generator 𝐺 \ , Discriminator 𝐷𝜙

2: for number of training iterations do
3: Sample task T from task distribution T
4: Sample a batch of i.i.d noise vectors 𝑧 from noise prior N(0, 𝐼)
5: Generate a batch of compositions X𝑔𝑒𝑛 from 𝐺 \ (𝑧,T)
6: Evolution-guided data creation (sec. 4.3):
7: X𝑝𝑜𝑝 ← EVO(X𝑔𝑒𝑛,T)
8: Update the generator with (4.1):
9: \ ← \ − ∇\𝐿𝐺 (𝑧,T }; \)

10: Update the discriminator with (4.3):
11: 𝜙← 𝜙 − ∇𝜙𝐿𝐷 (X𝑝𝑜𝑝,X𝑔𝑒𝑛,T ; 𝜙)
12: end for
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Figure 4.1: We present an abstracted version of our pipeline, where we assume that
the components used for composition can be represented as shown in the blue box. At
each training iteration, a task is generated at random from a predefined distribution
of tasks. The generator implicitly maps the task into a population of compositions
X𝑔𝑒𝑛, symbolized in the red box. The evolution-guided data creation step explores
around the generated compositions by evolving them using a procedure inspired
by Evolutionary Algorithms, and creates a population of evolved compositions
X𝑝𝑜𝑝, symbolized in the green box. The discriminator takes as input the task and
a robot composition that is either from the generated compositions or the evolved
compositions, and tries to distinguish from which population the composition comes
from. The output of the discriminator feeds into the loss function 𝐿𝐺 , guiding the
generator towards generating high-performing compositions.

4.1 Generator
The generator 𝐺\ : R𝑃 × T → X takes as input a numerical encoding of the
queried task T ∈ T, along with a 𝑃-dimensional vector 𝑧 ∈ R𝑃 sampled from a
standard multivariate Gaussian distribution, 𝑧 ∼ N(0, 𝐼), and output a numerical
representation of a robot composition X ∈ X. I.e. X ∼ 𝐺\ (𝑧,T)

For compositions with a continuous representation (e.g. large-scale multi-robot
team formation), the generator directly outputs a composition and is trained using
the standard conditional GAN loss [56]:

𝐿𝐺 (𝑧,T ; \) = log(1 − 𝐷𝜙 (𝐺\ (𝑧,T),T)) (4.1)

where𝐷𝜙 (𝐺\ (𝑧,T),T) is the scalar output of the discriminator on the (composition,
task) pair, explained in detail in section 4.2.

However, not all composition problem have a continuous representation. For com-
positions that are discrete (e.g. design graph), the output of the generator is still
a continuous matrix, which now represents a distribution X̃ over the composition,
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from which we can sample discrete compositions X. I.e. X̃ = 𝐺\ (𝑧,T), X ∼ X̃.
This sampling process is non-differentiable and prevents gradients from flowing
through it. This prevents us from using the more common continuous GAN loss
[23]. We therefore adopted Boundary Seeking GAN (BGAN) [27], by training the
generator via policy gradient based on the likelihood ratio estimated by the discrim-
inator. Since our generator is conditioned on the task, we developed a conditional
variant of BGAN, where the generator loss is

𝐿𝐺 (𝑧,T ,{X (1) , ...,X (𝑚)}; \)

= −
∑︁
𝑚

𝐷𝜙 (X (𝑚) ,T)∑
𝑚′ 𝐷𝜙 (X (𝑚′) ,T)

𝑃\ (X (𝑚) |𝑧,T)
(4.2)

where T is the task; 𝑃\ (X|𝑧,T) is the posterior probability for composition X
specified by X̃ = 𝐺\ (𝑧,T); {X (1) , ...,X (𝑚)} are 𝑚 compositions sampled from
𝑃\ (X|𝑧,T), and 𝐷𝜙 (X (𝑚) ,T) is the scalar output of the discriminator.

During training, T is uniformly sampled from the task space. Both T and 𝑧 are
re-sampled at the start of each training iteration.

4.2 Discriminator
The discriminator 𝐷𝜙 : X × T → (0, 1) takes in a robot composition X and the
task T , and outputs a scalar 𝑑 between 0 and 1. I.e. 𝑑 = 𝐷𝜙 (X,T) ∈ (0, 1).
Similar to the canonical GAN, this scalar can be viewed as a prediction of whether
the composition is generated by the generator. The discriminator has the same
network structure as the generator except for the input and output layer, which are
adjusted to correspond to the input and output dimensions. The training data for the
discriminator comes from two sources. Half of the compositions are synthesised
by the generator, and are labeled 0 (“fake”). The other half are obtained from the
evolution-guided data creation step (explain in detail in section 4.3) and are labeled
1 (“real”).

The discriminator is trained to minimize the cross entropy loss between predicted
and actual composition labels:

𝐿𝐷 (X𝑝𝑜𝑝,X𝑔𝑒𝑛,T ; 𝜙) = −[log𝐷𝜙 (X𝑝𝑜𝑝,T)+
log(1 − 𝐷𝜙 (X𝑔𝑒𝑛,T))]

(4.3)

where X𝑝𝑜𝑝 is a batch of compositions obtained from the evolution-guided data
creation step, and X𝑔𝑒𝑛 is a batch of compositions generated from the generator.
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Algorithm 2 Evolution-guided Data Creation (single-objective)
1: function EVO(X𝑔𝑒𝑛,T )
2: X𝑐𝑢𝑟 ← X𝑔𝑒𝑛
3: for 𝑛 iterations do
4: X𝑛𝑒𝑤 ← ∅
5: for each (parent1, parent2) ∈ X𝑐𝑢𝑟 do
6: child1, child2← Crossover(parent1, parent2)
7: child1, child2←Mutation(child1, child2)
8: 𝑑𝑖 𝑗 ← Dis(parent i, child j), 𝑖, 𝑗 ∈ {1, 2}
9: if 𝑑11 + 𝑑22 < 𝑑12 + 𝑑21 then

10: candidate1 = arg max(parent1, child1) Fitness(𝑥)
11: candidate2 = arg max(parent2, child2) Fitness(𝑥)
12: else
13: candidate1 = arg max(parent1, child2) Fitness(𝑥)
14: candidate2 = arg max(parent2, child1) Fitness(𝑥)
15: end if
16: X𝑛𝑒𝑤 .append(candidate1)
17: X𝑛𝑒𝑤 .append(candidate2)
18: end for
19: X𝑐𝑢𝑟 ← X𝑛𝑒𝑤
20: end for
21: return X𝑛𝑒𝑤
22: end function

4.3 Evolution-guided Data Creation
Our method is fundamentally different from a canonical GAN since we do not have a
dataset collected a priori. Instead, we generate training data online through a novel
evolution-guided process, inspired by evolutionary algorithms, which iteratively
pushes the generator towards generating designs with desirable properties.

During each training iteration, we pass a task T and a batch of randomly sampled
latent vectors 𝑧 through the generator to obtain a batch of compositionsX𝑔𝑒𝑛. These
compositions are then treated as if they are the population of an EA, and iterate
through 𝑛 EA steps (e.g. mutations, cross-over, evaluation, and elite selection) to
create an evolved population X𝑝𝑜𝑝. The choice of the the specific EA algorithm
determines the property of the evolved population: for a single-objective EA, the
evolved population X𝑝𝑜𝑝 should have higher diversity and performance; for a multi-
objective EA, X𝑝𝑜𝑝 should have better Pareto optimality. Finally, X𝑝𝑜𝑝 are passed
into the discriminator in place of what would be considered the “real” data in a
conventional GAN. By training the GAN with the evolved samples, we effectively
guide the generator to model a task-conditioned distribution that is iteratively shifted
towards higher-quality regions in the solution space.
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Algorithm 3 Evolution-guided Data Creation (multi-objective)
1: function EVO(X𝑔𝑒𝑛,T )
2: X𝑐𝑢𝑟 ← X𝑔𝑒𝑛
3: for 𝑛 iterations do
4: Evaluate Objectives Values for X𝑐𝑢𝑟 on T
5: for 𝑥 in X𝑐𝑢𝑟 do
6: Assign Rank (level) based on Pareto Optimality
7: Generate sets of Nondominated Solutions
8: Determine Crowding Distance
9: end for

10: Generate New Population X𝑛𝑒𝑤:
11: Roulette Wheel Selection
12: Crossover and Mutation
13: X𝑐𝑢𝑟 ← X𝑛𝑒𝑤
14: end for
15: return X𝑛𝑒𝑤
16: end function

The generator and discriminator are both conditioned on the task description. With-
out this task-conditioning, the training procedure would be similar to a standard
EA, wherein a population of allocation plans are evolved for a single target region.
By conditioning the generator and the discriminator on the tasks, and randomly
sampling tasks at each iteration, the GAN learns to interpolate between different
tasks, which is the key to how our approach is able to generalize to unseen tasks
during deployment.

Any variety of population-based optimization algorithm could be used inside the
data creation process. However, the specific algorithm chosen will affect the con-
vergence behavior of the generator. For single objective composition, we used a
deterministic crowding genetic algorithm [54], which explicitly encourages diver-
sity of the population by enforcing a pair-wise replacement between parents and
children, with detail shown in algorithm 2. For multi-objective composition, we
used NSGA-ii [17], a well-known fast sorting and elite multi-objective evolutionary
algorithm [82], with detail shown in algorithm 3.
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C h a p t e r 5

RESULTS & EXPERIMENTS

We examine EG-GAN on two distinct robot composition problems: 1. designing
modular robot and 2. forming teams for multi-robot systems. We conducted all
training and testing on a desktop computer with Ubuntu 18.04, Intel i7 eight-core
processor at 1.9240GHz, and an NVIDIA GTX 1070 graphics card.

5.1 Modular Robot Design Automation
We first evaluated our method by composing modular robots for traversing different
terrains, as shown in the left column of Figure 1.1. We evaluate our method by
querying them with randomly sampled terrains and simulating the output designs.
Some of the designs generated by EG-GAN can be seen in Figure 5.1.

Composition Space
The composition space of this experiment consists of robots composed from four
different types of modules: leg, wheel, leg-wheel, and chassis, where each of
these modules corresponds to physical hardware produced by Hebi Robotics [26].
A “none” module type is also allowed, so that designs may have fewer than the
maximum allowable number of modules. Each robot contains one chassis, and each
chassis has six ports where modules can be attached. Therefore, there is a total of
46 = 4096 different designs in our design space.

Each composition can be think of as a fixed topology graph, which is numerically
represented as a 𝑚 × 𝑛 one-hot matrix X, where 𝑛 is the number of different node
types and 𝑚 is the total number of nodes. Each node type corresponds to a module
type, and therefore X specifies the type of module for each node. Notice that this
composition space is discrete, which as mentioned in sec 4.1 requires the generator
to output a distribution over compositions X̃. We set X̃ to be continuous 𝑚 × 𝑛
matrix. Each row of X̃ sums to 1 and can be viewed as a categorical distribution
over all possible module selections for the given node. We can then obtain a discrete
composition X through a categorical sampling of X̃.
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Figure 5.1: From top to bottom, we show examples of queried input, top four designs
outputted by the trained generator, randomly generated emergency constraints, and
the designs filtered by the added constraints for a near-flat terrain (left) and a rough
terrain (right). The emergency constraints restricts the maximum number of a certain
type of modules, and are added to simulate unexpected module breaks or a shortage
during deployment. The diverse design candidates produced by our method allows
us to handle these constraints more robustly compared to prior ML approaches.

Task Space
We define the task space as the space of different terrains. Each task T is therefore
represented as a 2D elevation map of the given terrain. We generate random terrains
by adding blocks of randomly selected height, width, and spacing to flat ground.
Examples of such terrain can be seen in the first row of Figure. 5.1. We defined the
performance of each design on a given terrain as the distance travelled within a fixed
amount of time, and obtain the performance by running simulations in Pybullet [11].

Network Architecture
To generate compositions conditioning on the task T , T is first passed through two
convolution layers, each with a 3 × 3 kernel of filter size 32. The output of the
convolution layer is then flattened, passed through a full connected layer of output
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Comparison Metrics

Methods Max distance travelled (m)↑ # of distinct solutions ↑ Max dist. (EC) (m)↑
Fit2form [25] 4.03 ± 0.91 1.2 ± 0.2 2.55 ± 1.31

DQN based [76] 4.31 ± 0.26 2.7 ± 0.9 3.10 ± 0.92
MolGAN [16] 3.82 ± 0.55 1.8 ± 0.3 2.93 ± 1.00

Random Sampling 0.72 ± 0.64 − 0.63 ± 0.69
EG-GAN (ours) 5.10 ± 0.42 2.2 ± 0.7 3.77 ± 1.18

EG-GAN-crowding (ours) 5.73 ± 0.22 5.8 ± 1.5 5.36 ± 0.52

Table 5.1: Performance comparison between real-time algorithms for modular
robot design. ↑means higher is better. Compare to other algorithms with constant
test time, our approach produce designs that are superior both in performance and
solution diversity, and as a result handles emergency constraints much better (as
shown in the EC column).

dimension 𝑃, concatenated with 𝑧 and passed into a multi-layer perceptron (MLP)
network with 3 hidden layers of size 64 to generate the output. Batch normalization
[34] and ReLU activation [2] are applied at each hidden layer.

Control Policy & Objective Evaluation
In order to evaluate the performance of each design, we need a policy for each design
in the design space. In other words, the performance J is obtained by simulating a
design at a task given a policy. We adopted a learned modular policy trained through
deep reinforcement learning to control the generated designs. The implementation
and training of the controller follows [74], and is completed before EG-GAN starts
training. Note that the methods of this chapter could be applied regardless of the
type of controller used, since the performance evaluation of a design includes both
physical and control parameters. We investigate the effect of the controller in Sec.
5.1.

Comparison Metrics
We compare our algorithm to a variety of related methods using a set of metrics
for the quality and diversity of the output solutions. To measure the quality of the
generated designs, we record the performance of the best robot design found by each
algorithm, and report it as max distance travelled. We then quantify the diversity
of the generated solutions following the benchmark proposed in [46] to obtain
the number of distinct solutions. Specifically, given a set of candidate solutions
produced by an algorithm, a candidate solution counts as a distinct solution if it
is at least 𝛿 distance away from any existing distinct solution, and its performance
is within 𝜖 distance from the population’s highest performance. We used 𝛿 = 1
and 𝜖 = 0.5 in our experiment, where the distance between two compositions is
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Comparison Metrics

Methods Max distance travelled (m) ↑ # of distinct solutions ↑ Avg. runtime (min.) ↓
GA-20 [37] 4.21 ± 1.43 1.8 ± 0.8 25.4 ± 0.7
GA-50 [37] 5.63 ± 0.34 2.0 ± 1.4 71.9 ± 1.3

GA-crowding [54] 5.33 ± 0.25 6.4 ± 1.3 97.6 ± 2.1
EG-GAN-crowding (ours) 5.73 ± 0.22 5.8 ± 1.5 0.003

Table 5.2: Performance comparison between tested algorithms for modular robot
design. ↓means lower is better, ↑means higher is better. Compare to evolutionary
algorithms, our method can produce designs with on-par quality with significantly
faster runtime.

measured by their hamming distance.

To quantitatively examine the benefit of having solution diversity, we introduce the
concept of “emergency constraints” into our experiment. Emergency constraints take
the form of limitations on the maximum number of each type of modules a design
can contain. These constraints model a scenario where a module unexpectedly
broke, or a module shortage is discovered during the prototyping process, and
these constraints are generated at random during testing. If an algorithm fails to
generate any design that satisfies the constraints, a random design that satisfies
the constraints is used. We record this quantity as max distance travelled with
emergency constraints. For evolutionary algorithms, these emergency constraints
can be bypassed by rerunning the search process from scratch while taking these
constraints into account. Therefore, we only report this quantity for real-time
algorithms.

Lastly, when comparing against evolutionary algorithms, we included average run-
time, which measures the wall time of each algorithm during execution in minutes,
to demonstrate the computational efficiency of our algorithm.

Comparison with other real-time algorithms
We first compare against learning-based and rule-based approaches. As with our
algorithm, these methods can run in near real-time after a longer training proce-
dure. While the related ML algorithms are all trained to generate a single design,
their trained model can often be queried stochastically to obtain multiple designs,
albeit without any guarantee that designs obtained in this manner are near-optimal.
All learning-based algorithms are trained for 12 hours on i.i.d. sampled tasks.
Specifically, we compare against:

Fit2form: Our implementation of Fit2form follows [25], where a generator is
trained to map task to a single design by maximizing the expected performance of
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the design. Unlike in the original work, the modular robot we are trying to design in
our experiment is not differentiable. Therefore, instead of back-propagating directly
with respect to the expected performance, we used a policy gradient loss.

DQN based: Our implementation of DQN follows [76], where a policy sequentially
adds nodes and edges to the partial graph of designs. A value function, implemented
as neural network, is learned to serve as a search heuristic.

MolGAN: MolGAN [16] was originally introduced to optimize molecule structure
given a labelled dataset. This approach involves using a GAN to keep diversity
while using reinforcement learning to promote performance. We implement and
evaluate a conditional variant of MolGAN for modular robot design. Since we do
not have a dataset required for the MolGAN training, we randomly sample valid
robot designs from the design space to train the GAN.

Random Sampling: As a simple baseline, we also examined the result of randomly
sampling in the design space. Specifically, a random design is generated by sampling
module types for each node of the design graph. For each test terrain, we sample 10
i.i.d. designs, and record the one with the highest performance.

Results are presented in Table 5.1. Each entry is averaged over 10 randomly
sampled terrains, each with 20 independent runs. We found that both versions of
our algorithm outperform the competing algorithms both in terms of design quality
and design diversity. Further, when the emergency constraints are introduced, the
crowding version of our algorithm outperforms all other algorithms by a significant
margin, demonstrating the advantage gained from outputting multiple designs when
the first-choice design fails.

Comparison with Evolutionary Algorithms
We also compare our algorithm against evolutionary algorithms. These algorithms
are computationally expensive, but can produce high-quality designs. We compare
against:

Classical genetic algorithm: Our implementation of a classical genetic algorithm
follows [37], with uniform crossover and uniform mutation. We run two versions of
the classical genetic algorithm with population size of 20 and 50 respectively, with
a max iteration of 50, and report their results as GA-20 and GA-50 in Table 5.2.

Crowding genetic algorithm: Crowding approaches are introduced to EAs as an
effective way to generate multi-modal solutions [6]. We therefore use a determin-
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istic crowding genetic algorithm as a benchmark to examine the capability of our
algorithm to generate diverse solutions. Our implementation follows [54], using a
population size of 50 and a max iteration of 50.

Results are shown in Table 5.2. Compared to EAs, both versions of our algorithm
are able to generate comparable designs more efficiently. It is important to note
that our execution efficiency comes at the cost of the training time, which EAs do
not require. However, the training takes place before the generator is deployed, and
need only be trained once before being used for many tasks. Also note that EAs
tend to find better solutions given larger population sizes and more of iterations, but
their time cost scales proportionally.

Effect of the controller applied
We also examined how the performance of our method is affected by the controller
applied to the robots. For this experiment, we replaced the neural controller in sec-
tion 5.1 by a hand-crafted controller, where the legs follow a cyclic alternating-tripod
gait, and the wheels spin forward. We retrained EG-GAN with this new controller,
and compare the max distance travelled by generated designs with Fit2form and
Random Sampling:

Fit2form Random EG-GAN-crowding
3.81 ± 1.22 0.86 ± 0.81 4.96 ± 0.45

The hand-crafted controller is rather simple, resulting in a lower average distance
travelled for each design than did the neural control. Even so, our algorithm is still
able to find designs that are well-suited with this controller, demonstrating that our
algorithm is agnostic to the controller used, as long as it is consistent at training and
testing times.

Notice that here we focus on relatively restrictive design space (fixed topology),
where composition space with arbitrary connectivity is addressed in Part. III.

5.2 Multi-robot Team Formation
In our second experiment, we consider composition in multi-robot systems. Specifi-
cally, we consider the problem of multi-robot coverage, where our goal is to dispatch
robot teams to each of the sub-regions in a given search domain to maximize the
overall coverage (Fig. 5.2). We assume that the sub-regions are obtained through
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voronoi partitioning of target regions based on terrain features before the start of
the training, where the detail of partition follows [32]. We focus on using EG-GAN
to allocate robots to each of the sub-terrains (sub-tasks) in this work, which can be
think of as a multi-objective composition problem with two conflicting objectives:
the coverage cost and the deployment cost. Our generative model for team com-
position is trained for 20 hours on i.i.d. satellite images sampled from the training
dataset before testing. Both the generator and the discriminator are optimized using
Adam optimizer [40] with a learning rate of 1𝑒−5.

Composition Space
The composition problem in this experiment is spanned by a set of heterogeneous
robots R = {𝑟1, ..., 𝑟𝑁 } to allocate to each sub-region. Each robot 𝑟𝑖 belongs to
a species [62], 𝑜𝑖 ∈ O which determines its motion and sensing capability. The
motion capability of a robot is quantified by its maximum velocity in each terrain.
Each robot takes 20 observations during an episode. These observations are given
a “coverage weight” based on the species, with a higher coverage weight indicating
better sensing capabilities. We set our robot bank to contain three different species
of robots: aerial robots, ground robots and aquatic robots. We hand-selected the
max velocities and coverage weights of each species, as summarized in Table 5.3.

A robot team 𝑎𝑖 is defined as a subset of available robots R which act as a team
to cover a sub-region. A composition corresponds to an allocation plan X =

{𝑎1, . . . 𝑎𝐾}, which consists of 𝐾 teams, one for each task, where
⋃𝐾
𝑖=1 𝑎𝑖 ⊆ R, and

∀𝑖 ≠ 𝑗 : 𝑎𝑖 ∩ 𝑎 𝑗 = ∅. We numerically represent an allocation plan as a continuous
non-negative 𝐾 ×O matrixX𝑔𝑒𝑛, where𝑂 is the total number of robot species. Each
entry of X𝑔𝑒𝑛 (𝑖, 𝑗) specifies the fraction of robots of species 𝑗 to deploy to task 𝑖.
The integer number of robots of species 𝑗 to deploy to sub-region 𝑖 can then be
calculated through a continuous relaxation 𝑁 (𝑖)

𝑗
= round(𝑁 𝑗 ×X𝑔𝑒𝑛 (𝑖, 𝑗)), where 𝑁 𝑗

is the total available number of robots of species 𝑗 .

Task Space
Our task space consists of a set of sub-terrains to be covered. The set of sub-terrains
is determined through applying domain decomposition [50] on the DroneDeploy
real-world satellite image dataset [60], which contains 6888 satelite image chips
of 300x300 pixels, where each pixel has a corresponding terrain label. In our
experiment, each terrain label belongs to one of the following four categories:
[Water, Mountain, Plain, City]. The task T is numerically represented as a 𝐾 × 𝑀
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Figure 5.2: We consider the problem of multi-robot coverage, where our goal is
to dispatch robot teams to each of the sub-regions in a given search domain to
maximize the overall coverage. The sub-regions are pre-computed from a terrain
map of the target region using voronoi partition. In this work, we are interested in
the transition from (c) to (d), which requires us to composition heterogeneous robots
into teams based on the terrain features of each sub-region.

terrain features matrix, where 𝐾 is the number of sub-regions, and 𝑀 is the number
of distinct terrain types. Each row of the terrain features matrix correspond to the
terrain features distribution of a specific sub-region, and sum to 1.

Network Architecture
The generator 𝐺\ (𝑧,T) is implemented as a multi-layer perceptron (MLP) network
with 3 hidden layers of size 64, with batch normalization [34] and ReLU activation
[2] at each hidden layer. 𝐺\ (𝑧,T) takes in a 𝑃-dimensional vector 𝑧 ∈ R𝑃 sampled
from a standard multivariate Gaussian distribution, 𝑧 ∼ N(0, 𝐼), along with a 𝐾×𝑀
terrain features matrix, and output a 𝐾 × O allocation plan X𝑔𝑒𝑛.

Control Policy & Objectives Evaluation
We denote the coverage cost of a robot team 𝑎 on task 𝑡 as 𝑓 (𝑎, 𝑡) ∈ R, and use
the sum of the coverage cost on all tasks as the total coverage cost for a given team
composition. The coverage cost for each robot team 𝑎𝑖 is measured via the path
ergodicity [52], a popular metric for information-gathering and search tasks [55,
53, 3, 1]. Intuitively, and disregarding the effect of the species weights 𝑤 𝑗 , the
ergodic metric is minimized when the number of observations taken in any area of
the full region is proportional to the amount of information in that area. In this work,
we assume that the information is uniformly distributed over the entire region, so,
ideally, observations should be equally spaced. We used a model predictive control
policy similar to [53] to optimize the trajectories of the robots relative to the ergodic
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metric.

In addition, each robot 𝑟𝑖 deployed incurs a deployment cost 𝑐𝑖, where the total
deployment cost is the sum of the cost of all deployed robots. Both the deployment
cost and the coverage cost are objectives to be minimized. We thus frame multi-
robot team formation as an multi-objective composition problem, where the goal
is to find a set of allocations with optimal trade-offs between the two conflicting
objectives, i.e. the Pareto-optimal allocations.

Max velocity for different terrains (m/s)
Species Water Mountain Plain City Coverage Weight

Ground robot 0 20 40 50 20
Aerial robot 50 50 50 30 10

Aquatic robot 50 0 0 30 20

Table 5.3: In our experiment, each species of robot has different motion and sensing
capabilities. The maximum velocity of a robot is terrain-dependent while the
coverage weight is constant. This table shows the capabilities of each species of
robot.

Pareto front Comparison
To the best of our knowledge, no other real-time algorithm can generate / approximate
a set of Pareto front solutions for the problem of composition. We therefore compare
EG-GAN against traditional multi-objective optimization approaches such as multi-
objective genetic algorithms (MOGA). Although MOGAs do not fit our problem
statement needs due to their high computational cost, they can nevertheless be used
as a benchmark for evaluating the quality of the Pareto front solutions generated by
our generative model. The goal of this experiment is to determine whether generative
allocation can produce allocations that match or surpass traditional centralized task
allocation approaches, while reducing computational expense at run-time.

We compare between the generative allocation and NSGA-ii [17], a well-known fast
sorting and elite multi-objective evolutionary algorithm [82]. Our implementation
of NSGA-ii used single-point arithmetic crossover with a crossover probability of
0.5 and uniform mutation with a mutation rate of 0.1. The maximum number
of iterations is set to be 50, where NSGA-ii:20 has a population size of 20, and
NSGA-ii:50 has a population size of 50.

We numerically evaluate the Pareto fronts discovered by the tested algorithms on
hypervolume [84], a common set-quality indicators for stochastic multi-objective
optimizers [45]. The hypervolume set-quality indicator maps a point set in R𝑑 to the
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Figure 5.3: Our generator outputs a set of allocation plans that show the trade-off
between coverage cost and deployment cost, i.e., a Pareto front of allocations. This
plot shows the solution sets obtained by NSGA-ii [17] with population size 20,
NSGA-ii with population size 50, and our generator, all evaluated on the same test
terrain. Here, our generator performs similarly to NSGA-ii of population size 50
and outperforms NSGA-ii of population size 20, with an average runtime that is
significantly shorter. On the right, we also include two different allocation plans
from the generated solution set, which illustrate how the allocation plan varies with
the deployment cost.

measure of the region dominated by that set and bounded above by a given reference
point, also in R𝑑 , where 𝑑 is the number of objectives. As is visually evident, a
larger hypervolume is better. In our experiment, we used (0.25, 60) as the reference
point. we additionally report average runtime, which measures the wall time of each
algorithm during execution in minutes, to demonstrate the computational efficiency
of our algorithm.

Quantitative results of the experiments are presented in Table 5.4, where each entry is
averaged over five independent runs. A visualization of the Pareto fronts discovered
by the tested algorithms for a specific terrain and the corresponding solutions can
be seen in Fig. 5.3. Compared to NSGA-ii, our trained generator is able to generate
comparably effective allocations more efficiently, since its execution only consist of
a neural network forward pass. It is important to note that our execution efficiency
comes at the cost of the training time, which NSGA-ii do not require. However, the
training takes place before the generator is deployed, and need only be trained once
before being used for many tasks. Also note that NSGA-ii solution quality tends
to improve solutions given larger population sizes and more iterations, but its time
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cost scales proportionally.

Methods Hypervolume ↑ Avg. runtime (min.) ↓
NSGA-ii:20 9.4 ± 1.0 43.1 ± 0.6
NSGA-ii:50 11.9 ± 1.5 107.6 ± 0.9

EG-GAN (ours) 11.8 ± 0.8 0.02

Table 5.4: Performance comparison between tested algorithms for multi-robot team
composition. ↓ indicates that lower measures are better, ↑ that higher are better.
NSGA-ii:20 and NSGA-ii:50 [17] have a population size of 20 and 50 respectively.
Compared to evolutionary algorithms, our generative allocation (EG-GAN) method
produces allocations of similar quality with significantly faster runtime, making it
suitable for time-critical deployment.

Coverage Comparison
The primary goal of this set of experiments is to justify the effectiveness of the
overall decomposition and allocation pipeline. Specifically, we provide comparison
results on the following three variants:

• No Decomposition. Robots are randomly distributed across the entire search
and directly planned their trajectories using distributed MPC.

• Decomposition + Random Allocation. A decomposition step is first carried
out and then the robots are randomly grouped into teams and allocated to each
sub-region, as a baseline.

• Decomposition + Generative Allocation (ours). The robots are grouped into
teams based on the output of our trained generative model.

We present coverage performance under different deployment cost limits. In this
work, we assume for simplicity that each robot incurs a deployment cost of 1.
Therefore, the total deployment cost corresponds to the number of robots deployed.
A higher deployment cost corresponds to more deployable robots, which naturally
results in higher coverage performance. Notice that with generative allocation, the
allocation plans under different deployment cost limits are generated simultaneously
as solutions on the same Pareto front, i.e., different parts of the latent space input
to the generator map to different Pareto-optimal solutions for the same task. Vi-
sualizations of selected results can be seen in Fig. 5.4. Quantitative results of the
experiments are collected through evaluation on 100 test terrains, and are presented
in Table 5.5.
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Generative Allocation Random Allocation No Decomposition

Robots:
Aerial
Aquatic
Ground

Terrains:

            Water                             Plain
            Mountain                City

Figure 5.4: A visual comparison of coverage performance between decomposition
with generative allocation (left column, ours), random allocation (middle column),
or no decomposition (right column), on three different test terrains (top, middle, and
bottom rows). On all three test terrains, our method achieves higher coverage over
the target region than the other two methods.

We observe from the visualization that with No Decomposition, some of the robots
would get trapped in a undesirable local optima due to unfavorable initialization;
while with Decomposition + Random Allocation, there tends to be an uneven distri-
bution of robots that leaves certain sub-regions relatively unexplored. As a result,
both of them leave a considerable amount of area uncovered. Our framework out-
performs these other approaches in this setting, demonstrating the effectiveness of
both the decomposition and the generative allocation.
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Coverage Cost (×10−2) ↓
Methods Deploy Cost ≤ 15 Deploy Cost ≤ 30 Deploy Cost ≤ 45

No Decomposition 0.365 ± 0.076 0.153 ± 0.035 0.056 ± 0.037
Dec + RanA 0.732 ± 0.231 0.401 ± 0.144 0.062 ± 0.015

Dec + EG-GAN (ours) 0.049 ± 0.006 0.018 ± 0.004 0.007 ± 0.001

Table 5.5: We studied the effect of decomposition and allocation on the coverage
performance under different deployment cost budgets. ↓ indicates that a lower value
is better, and ↑ that higher is better. RanA stands for Random Allocation, EG-
GAN stands for Generative Allocation using Evolution-guided GAN. Each value
is averaged over 100 test terrains. Our framework outperforms the other tested
methods under all three deployment cost limits, demonstrating the effectiveness of
both the decomposition and the generative allocation.
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C h a p t e r 6

OVERVIEW

In the previous chapter, we primarily focus on relatively simple composition space
(e.g. modular robot with fixed topology). However, real world robot composi-
tion problem can involve high-dimensional and complex composition space (e.g.
modular robot with arbitrary topology), which makes search and optimization in
the composition hard. Classic design automation approaches resort to discrete
black-box optimization techniques such as Genetic Algorithms (GA)[29], Genetic
Programming (GP) [48], and Random Graph Search (RGS)[72]. While these meth-
ods typically work well when the objective function is inexpensive to evaluate (e.g.
obtaining the locomotion speed of a simple robot in simulation with a pre-defined
controller), they require a large number of objective function evaluations and are
not suitable for situations where evaluation is expensive (e.g. through real-world
evaluation, or creating customized dynamic motion plans for each new design).
Recent works utilize graph grammar rules to confine the search space [83, 29], such
that the number of evaluations can be reduced. However, they still operate in a
high-dimensional combinatorial search space and require a considerable number of
sample evaluations.

In this work, we introduce Grammar-guided Latent Space Optimization (GLSO), a
framework for sample-efficient robot composition automation. Given a robot com-
position space defined by the possible combinations of a set of discrete primitive
components, GLSO first learns a low-dimensional, continuous representation of the
robot composition space through unsupervised learning. The learned representation
allows us to then convert the combinatorial composition automation search into a
continuous optimization problem, where we apply sample-efficient Bayesian Opti-
mization (BO) [59] to search in the latent space for high-performing composition.
GLSO uses a graph variational auto-encoder (VAE) to learn mappings between
the composition space and latent space. Importantly, the learned latent space can
be used to optimize compositions for multiple different tasks without the need for
retraining.

GLSO is inspired by recent advancements in molecule synthesis [43, 36]. However,
unlike molecule optimization, where existing large-scale datasets such as ZINC [35]



32

1

Encoder D
ec

od
er

Reconstructed Design 
Graph Representation

Low Dimensional 
Latent Representation

Graph Grammar Rules for 
Data Generation

Pr
ed

ic
to

r

Robot World 
Space Features

Input Design
Graph Representation

Figure 6.1: Our framework begins by collecting a dataset of robot designs based on
a set of graph grammar rules, as shown on the top left. This process of enumerating
designs is computationally inexpensive, as no controller is needed. The collected
data (example on bottom left) is subsequently used to train a graph variational
autoencoder (VAE), which defines a mapping between a low dimensional continuous
latent space and the combinatorial design space. A property predictor (shown as
the green trapezoid) is simultaneously trained to predict the world space features
grounding of the robots from the latent vector, in order to encourage physically
similar robots to be grouped together in the latent space. After the VAE is trained,
optimization can be performed in the latent space in search of high-performing
designs. This VAE can further be used for multiple distinct tasks without the need
for retraining.

are readily available to supervise training, the domain of robot composition has no
such dataset available. Instead, GLSO generates training data by leveraging graph
grammar rules [83], which confine the search space and implicitly inject a prior into
our learned latent representation.

An additional challenge associated with robot composition automation is the poten-
tially “chaotic” objective function, i.e. that two structurally similar robot composi-
tions may have very different performance for a given task. For example, consider
the designs shown in Fig. 7.1b: they have nearly the same design graph, but they
all have drastically different locomotive performance. We address this problem by
including an additional objective in our VAE training, which ensures that neighbor-
ing compositions in the latent space not only have similar graphs, but also share
similar world space features, such as the bounding box of a robot or the end-effector
workspace. That is, in addition to the conventional VAE encoder/decoder recon-
struction loss, GLSO simultaneously trains a neural network to learn world space
feature grounding the robot compositions, which we called the property prediction
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network. The complete pipeline can be seen in Fig. 6.1 1.

We evaluate GLSO by designing robots for a set of locomotion tasks, with a com-
ponent library that includes different joints and links with various rotational angles
and axes, sizes, and weights. Our method outperforms state-of-the-art robot de-
sign automation methods, consistently identifying higher-performing designs when
given the same number of sample evaluations.

1Upper left portion of the figure adopted from [81] with author’s approval
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C h a p t e r 7

GRAMMAR-GUIDED LATENT SPACE OPTIMIZATION

7.1 GLSO: Learning Latent Composition Representation
GSLO trains a generative model that defines a mapping between a continuous
latent space and the discrete composition space. Similar to previous LSO works,
our method uses a VAE as a generative model. The VAE consists of an encoder
(section 7.1) and a decoder (section 7.1). In addition to the encoder and decoder, we
co-train a property prediction network (section 7.1) to predict world space features
of the compositions. The goal of co-training the property predictor is to encourage
compositions with similar physical properties to be close together in the latent space;
we find that in turn, this makes optimization in the latent space more efficient. The
training data for the VAE is generated through recursively applying a set of graph
grammar rules (section 7.1). The grammar ensures that the training compositions
are valid, which implicitly bias the mapping from latent space to composition space
towards promising compositions. Importantly, the trained VAE can be reused to
search for compositions specialized to multiple different tasks without retraining.

Notation. In this work, we define a composition as a modular robot design, and use
design and composition interchangeably. Each design is represented as an acyclic
graph G = (𝑉, 𝐸) where 𝑉 corresponds to the hardware components (nodes) and 𝐸
the connectivity between them (edges). Note that an acyclic design graph can also
be viewed as a tree, where the root node corresponds to the one component on the
body, and the each of the leaf nodes correspond to the robot’s end-effectors. We
use 𝑖, 𝑗 , 𝑘 to refer to nodes indices, and define 𝑁 (𝑖) as the neighbor of a node 𝑖. We
denote the sigmoid function as 𝜎(·) and the ReLU function as 𝜏(·), and trainable
weights in the models as𝑊 and𝑈.

Data Collection via Graph Grammar
For a given set of robot hardware components, GSLO begins by collecting a dataset
of robots composed of these hardware components. This dataset will then be used
to train the graph VAE. We desire a dataset that covers much of the design space,
while containing few invalid designs.

One key idea behind GSLO is that graph grammar rules can serve as a guiding
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tool to generate a large dataset of designs, due to their ability to filter out invalid
designs and to produce a tractable and meaningful subspace of designs. Specifically,
we adopt the set of grammar rules proposed in RoboGrammar [83]. To generate
a random design using RoboGrammar, we start from the start symbol “S” and
randomly apply valid grammar rules until the design graph consists of only terminal
nodes. Each terminal node corresponds to a specific hardware component, and
therefore each design graph has a one-to-one correspondence with a physical robot.
We additionally collect each design’s contact locations when that design is placed
at rest on flat ground in simulation. These contact locations will be used to train
the property predictor in section 7.1. Since the data collection process does not
involve creating controllers, it can be readily applied to a new set of grammar rules
/ hardware components. In our experiments, the data collection process produces
around 5𝑒5 designs on a 8-core desktop computer in approximately four hours.

Robot Encoder
Since the robots are represented as graphs, we use a graph autoencoder to encode
the robots via a graph message passing neural network (MPNN)[13, 36]. MPNNs
operate on graph-structured inputs, where hidden representations of the graph nodes
are updated iteratively via messages sent along graph edges [79]. Each node 𝑣𝑖
contains a one-hot feature vector 𝑥𝑖 indicating its type. We denote a message from
a node 𝑣𝑖 to 𝑣 𝑗 as 𝑚𝑖, 𝑗 , and 𝑚 𝑗 ,𝑖 vice versa.

At each message passing iteration, messages are updated as:

𝑚𝑖, 𝑗 = GRU(𝑥𝑖, {𝑚𝑘𝑖}𝑘∈𝑁 (𝑖)/ 𝑗 ) (7.1)

where GRU refers to Gated Recurrent Unit [9] adapted for graph message passing.
The GRU formula is shown below, where 𝑊 and 𝑈 refer to trainable weights, 𝑠, 𝑧
and 𝑟 are internal variables, and 𝑚 refers to the messages.

𝑠𝑖 𝑗 =
∑︁

𝑘∈𝑁 (𝑖)/ 𝑗
𝑚𝑘𝑖 (7.2)

𝑧𝑖 𝑗 = 𝜎(𝑊 𝑧𝑥𝑖 +𝑈𝑧𝑠𝑖 𝑗 + 𝑏𝑧) (7.3)

𝑟𝑘𝑖 = 𝜎(𝑊𝑟𝑥𝑖 +𝑈𝑟𝑚𝑘𝑖 + 𝑏𝑟) (7.4)

�̃�𝑖 𝑗 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑖 +𝑈
∑︁

𝑘∈𝑁 (𝑖)/ 𝑗
𝑟𝑘𝑖

⊙
𝑚𝑘𝑖) (7.5)

𝑚𝑖 𝑗 = (1 − 𝑧𝑖 𝑗 )
⊙

𝑠𝑖 𝑗 + 𝑧𝑖 𝑗
⊙

�̃�𝑖 𝑗 (7.6)
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(a) Latent Space with PPN (b) Latent Space without PPN

Figure 7.1: Visualization of two different spaces (a) when the VAE is co-trained with
the property predictor, and (b) without the property predictor. Here we project the
latent points into a two-dimensional space, for visualization purposes, by taking the
first two principal components. The color of the points correspond to its performance
for a given task (here, traversing flat terrain), where a darker color denotes worse
performance. We additionally show designs neighboring the same robot (with red
border) in the two different latent spaces. We can see that the addition of the
property predictor implicitly encourages designs with similar performance to be
grouped together, which we find results in more efficient optimization.

After 𝑡 iterations of message passing, we obtain the latent representation of each
node by aggregating its inward messages,

ℎ𝑖 = 𝜏(𝑊 𝑒𝑥𝑖 +
∑︁
𝑘∈𝑁 (𝑖)

𝑈𝑒𝑚𝑘𝑖). (7.7)

The robot graph representation is calculated as the sum of the latent representation
of the leaf nodes,

ℎG =
∑︁

ℎleaf. (7.8)

Finally, the mean `G and the log variance 𝜎G of the variational posterior approx-
imation are computed from ℎG by applying two separate affine layers, where the
latent vector 𝑧G is sampled from a Gaussian distribution 𝑧G ∼ N(`G , 𝜎G)

Robot Decoder
The robot decoder maps the continuous latent vector 𝑧G back to a robot design tree
G by sequentially adding nodes to a partial design tree in depth-first order, starting
from the root. For every visited node, the decoder first predicts whether it has
children to be generated. If so, a new node is created and attached to the current
node, with its node type predicted by the decoder. This procedure is recursively
applied to the newly created nodes until the current node has no more children to
generate, where the decoder backtracks to its parent node and repeat this process.
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The decoder makes predictions based on message propagation in the current partial
tree at each time step. The messages are propagated using the same GRU structure
as in the encoder. The decision of whether to create new node at each time step is
predicted as a probability 𝑝𝑡 based on the inward messages ℎ𝑘,𝑖, latent vector 𝑧G and
the node features 𝑥𝑖,

𝑝𝑡 = 𝜎(𝑢𝑐 · 𝜏(𝑊𝑐
1𝑥𝑖𝑡 +𝑊

𝑐
2 𝑧G +𝑊

𝑐
3

∑︁
𝑘

ℎ𝑘,𝑖𝑡 )). (7.9)

For a new node 𝑗 created from parent 𝑖, the label 𝑞 𝑗 is predicted as,

𝑞 𝑗 = softmax(𝑈𝑙𝜏(𝑊 𝑙
1𝑧G +𝑊

𝑙
2ℎ𝑖, 𝑗 )). (7.10)

The decoder is trained to maximize the reconstruction likelihood 𝑝(G|𝑧G). Let 𝑝𝑡
and 𝑞 𝑗 be the ground truth values of 𝑝𝑡 and 𝑞 𝑗 respectively, the decoder loss can be
written as:

L𝑑 (G) =
∑︁
𝑡

L𝑐 (𝑝𝑡 , 𝑝𝑡) +
∑︁
𝑗

L𝑙 (𝑞 𝑗 , 𝑞 𝑗 ) (7.11)

Where L𝑐 and L𝑙 are cross-entropy losses. Similar to language generation, we
apply teacher forcing [78] during training, where ground truth topology and labels
are used at each step for prediction.

Property Predictor
We hypothesize that a learned latent space in which designs with similar capabilities
are close together, and which contains few invalid designs, will allow for more
efficient optimization. To obtain such a latent space, we propose to co-train a
property prediction network (PPN) with the VAE. The PPN maps the mean of
the variational encoding distribution `G to the corresponding robot’s world space
features, which implicitly encourages robots with similar world space features to have
similar latent representation. In this work, since we are primarily experimenting with
locomotion tasks, we define the world space features as a vector 𝑣contact consisting
of the robot’s 2D contact locations on flat ground. The contact locations are sorted
based on their x values and zero padded to a fixed length to form 𝑣contact. 𝑣contact is
collected together with the robot data as described in section 7.1. The PPN is trained
to minimize the mean square error between the predicted contact vector �̂�contact and
the ground truth contact vector 𝑣contact, i.e. L𝑃𝑃𝑁 = | |�̂�contact − 𝑣contact | |2.

Training:

The final loss of the graph VAE is a weighted sum of the decoder loss L𝑑 , the PPN
lossL𝑃𝑃𝑁 , and the kl-divergenceL𝑘𝑙 between the variational posterior and the prior
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latent distribution N(0, 𝐼):

L𝑣𝑎𝑒 = L𝑑 + L𝑘𝑙 + _L𝑃𝑃𝑁 (7.12)

We minimize L𝑣𝑎𝑒 using gradient descent. We use a learning rate of 1e-3, which
is decayed every 40000 training steps at a rate of 0.9. We optimize the trainable
weights using Adam [40], while applying a gradient clipping of magnitude 50. We
trained the model for 400000 steps with a batch size of 32 to obtain the reported
results. Notice that we anneal the weight of KL loss from zero to one during training,
which helps ensure that the encoder does not start by pushing the KL loss to zero,
as noted in [4].

Training took around five hours on a 8-core desktop computer with a NVIDIA GTX
1070 graphics card.

7.2 GLSO: Optimization in the Learned Latent Space
The trained VAE associates each robot design with a latent vector, given by the mean
of the variational encoding distribution `G . We can use the VAE to transform robot
design automation from a combinatorial optimization problem into a continuous
one. We then apply Bayesian Optimization to search for the latent vector where the
associated robot design has the highest performance.

Controller & Evaluation
To evaluate the performance of a given robot structure, we need to derive its controls.
This reveals one challenge in robot composition optimization– hidden inside each
evaluation of the composition optimization objective function is a trajectory or
policy optimization problem, which itself is often computationally expensive. In
this work, we utilized model predictive control (MPC) [21] to create controllers for
different robot structures across different terrains. MPC predicts future behaviour
using a model of the system, optimizes controls for a finite horizon, executes a small
number of the optimized control, and then replans. Specifically, we used model
predictive path integral control (MPPI) [77], a sampling based MPC method for
controlling the generated robot designs. Our implementation follows [83]. Each
robot is controlled in a simulation implemented using the Bullet Physics library
[10]. We adopt the same objective function as in [83], where robots are rewarded
for forward progression while maintaining its initial orientation. Computing the
trajectory of each robot takes 30 - 60s on a 8-core computer, and is the primary
computational bottleneck of the design optimization.
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(a) Frozen Lake (b) Flat Terrain (c) Ridged Terrain (d) Wall Terrain

Figure 7.2: We evaluate our framework on a set of locomotion tasks as shown in the
figures. The above images showcase the best design identified by our method for
four tasks.

Bayesian Optimization in Latent Space
We use Bayesian Optimization (BO) [59], a sample-efficient black-box optimizer, to
perform optimization in the latent space. Specifically, our BO implementation uses
Gaussian Process (GP) [65] to build a model of the objective function, which includes
both the current estimation of the function and the uncertainty around the estimation.
We then use expected improvement (EI) as the acquisition function to determine the
optimal point to sample next. The sampled point is subsequently evaluated and used
to update the GP model. This procedure is repeated until we reach the computation
limit, defined as the maximum number of objective function evaluations. We
additionally apply domain reduction [68], where the bounds of the latent space are
contracted during the optimization to reduce oscillation. Our Bayesian Optimization
(BO) implementation begins with 50 steps of random exploration, which helps
diversify the exploration space. Subsequent sampling points are determined by
the Expected Improvement (EI) acquisition function. Every 10 steps, a random
point is sampled to explore. We used an optimization bound of [−3, 3] across
all latent dimensions. Our EI acquisition function has b = 0.01, which controls
the exploration rate. Our Gaussian Process uses a Matern kernel with a = 2.5.
We additionally apply domain reduction, with shrinkage parameter 𝛾osc = 0.7,
panning parameter 𝛾pan = 1.0, zoom parameter [ = 0.9. We used [58] for our BO
implementation.
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C h a p t e r 8

RESULTS & EXPERIMENTS

We evaluate our method by generating designs for the following four locomotion
tasks, each defined by its corresponding terrain:

• Flat Terrain: A flat plane with a friction coefficient of 0.9.
• Frozen Lake Terrain: A flat plane with a low friction coefficient of 0.05.
• Ridged Terrain: Includes hurdles that the robots must jump or crawl over.
• Wall Terrain: Includes high walls placed in a slalom-like manner.

The reward of each robot is measured as described in section 7.2. We report
comparisons to previous approaches as well as ablated versions of our approach.
For each each task, we allow each method a maximum of 500 objective function
evaluations, i.e., control and trajectory optimization for up to 500 designs. Images
of the tasks and optimized designs are shown in Fig. 7.2.

8.1 Comparisons and Baselines
To demonstrate the effectiveness of GLSO, we benchmark our method against the
following:

Random Search: Random designs are generated using the graph grammar rules.

Monte Carlo Tree Search (MCTS): A baseline adopted from [83], performing
Monte Carlo Tree Search (MCTS) [5] on a search tree defined by the graph grammar
rules.

Graph Heuristic Search (GHS): A design automation method proposed in [83].
GHS performs search on the same graph grammar search tree as does MCTS. Our
implementation follows [83].

Genetic Algorithm (GA): Our implementation of Genetic Algorithm (GA) follows
[72], where graph mutation with uncertainty is used to mutate the population at each
iteration. We used a population size of 50 and evolved them until the number of
evaluation limit was reached. Note that unlike the other comparison methods, GA
does not operate in the grammar space, as crossover and mutation operations are not
clearly defined for the graph grammar proposed by [83].
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(a) Frozen Lake (b) Flat Terrain (c) Ridged Terrain (d) Wall Terrain

Figure 8.1: Comparison against related methods. The solid line shows average
over 3 different random seeds, and the error band represents the maximum and
minimum. In each task, GLSO produces higher-reward designs within 500 steps
(design samples).

(a) Frozen Lake (b) Flat Terrain (c) Ridged Terrain (d) Wall Terrain

Figure 8.2: Comparison of GLSO with ablated variants. The solid line shows
average over 3 different random seeds, and the error band represents the maximum
and minimum. These results show that both the graph grammar and the property
predictor are important to GLSO.

The optimization curves for each of the tested algorithms is shown in Fig. 8.1. We
found our method outperform all comparison methods and baselines.

8.2 Ablation Studies.
We performed ablation studies to investigate the effects of the graph grammar
rules and the property prediction network. Results are shown in Fig. 8.2. In the
“GLSO_nogram” test, we removed the graph grammar rules during data collection,
and the VAE training set is created through random generation of topology and node
labels. In the “GLSO_nopred” test, we removed the property prediction network
during VAE training. We found that both the graph grammar and property predictor
are crucial to the success of GLSO. Additionally, we created a visualization of
how the property prediction network influences the latent space. Fig. 7.1 presents
points in the latent space created by training the VAE with and without the property
prediction.
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C h a p t e r 9

CONCLUSION

In this thesis, we presented our works that improve the robustness, sample-efficiency
and quality of existing robot composition automation algorithms. To robustly gen-
erate robot composition in real-time, we proposed an evolution-guided generative
adversarial network which learns a one-to-many mapping from task to designs. By
combining ideas from both ML and EA, our method can quickly provide multiple
suitable composition candidates for a given task, and could be extended to multi-
objective settings. One limitation of our method, shared by other ML methods, is the
assumption that new tasks will be from the same distribution as those seen during
training, such that the outputs from out-of-distribution tasks may be poor. Secondly,
we only experiment with two objectives in our work. It would be interesting to see
if EG-GAN will scale to higher dimensional objectives spaces.

To efficiently search in complex robot composition space, we proposed GLSO which
transforms the composition search space into low dimensional latent space. We be-
lieve that our work is general to the domain of robot composition, and represents a
step towards achieving efficient robot composition automation, in particular when
evaluation of each composition is computationally expensive. An important limita-
tion of our approach is the requirement for a pre-defined set of graph grammar rules
as well as world space features. Extending this work to different sets of hardware
components and tasks will likely take some expert knowledge or domain intuition.
A second limitation of this work is that we restricted our design space to only acyclic
graphs. Allowing cycles in the design graphs is theoretically viable as shown in the
recent progress on graph generation [47], but would require a new set of grammar
rules and likely additional computation.
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C h a p t e r 10

FUTURE WORKS

While our works can potentially be extended in lots of different directions, we present
three future works that we believe are most crucial and fundamentally impactful.
We refer the reader to the conclusion sections of our publications [33, 32, 31] for
more domain-specific future works.

10.1 Expeditionary structural composition
An exciting extension of our work is to go beyond robot composition and see if they
can also be applied to other composition problems. We are particularly interested
in applying GLSO to expeditionary structural composition, where the goal is to
quickly set up field hospital using modular components. We believe that GLSO
can be useful in determining the suitable field hospital structure, for more efficient
deployment.

10.2 Real-time generation of composition with arbitrary connectivity
An interesting future direction is to use the latent representation of the compo-
sitions learned in GLSO to help with fast composition generation. For example,
evolution-guided generative adversarial network may benefit from learning to output
a continuous latent vector instead of a complete composition. This would potentially
provide a way to output high-dimensional composition in real time.

10.3 Determine when to re-compose
In this thesis, we primarily focus on the problem of “how to compose”. However,
a parallel problem that is also extremely interesting is “when to compose / re-
compose”. This would likely require us to reason about the re-composition cost
versus the potential gain we can obtain, and would be an important step towards the
full automation of modular / multi-agent robotic systems.
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