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Abstract

6D object pose estimation is essential for robotic manipulation tasks.
Existing learning-based pose estimators often rely on training from labeled
absolute poses with fixed object canonical frames, which 1) requires
datasets with annotations of object absolute pose that are resource-
intensive to collect; 2) is hard to generalize to novel configurations and
unseen objects. Instead, we propose to investigate the utilization of
relative poses between: i) a single object in different orientations; ii)
pairs of interacting objects in manipulation tasks. In this thesis, we show
that by using relative poses as weak supervision, we can achieve better
label-efficiency and generalizability to novel object configurations and
unseen objects.

In the first part of this thesis, we investigate the problem of learning an
image-based object pose estimator self-supervised by relative object poses.
However, local rotation averaging problems can be difficult to optimize in
training due to the closed nature of the rotational manifold of SO(3). To
tackle this, we propose a new algorithm that utilizes Modified Rodrigues
Parameters to stereographically project 3D rotations from the closed
manifold of SO(3) to the open manifold of R3, allowing optimization to be
done on an open manifold improving the convergence speed. Empirically,
we show that the proposed algorithm is able to converge to a consistent
relative orientation frame much faster than algorithms that purely operate
in the SO(3) space, and subsequently enabling training pose estimators
self-supervised by relative poses.

In the second part, we study the problem of learning task-specific rela-
tive pose between interacting objects to solve manipulation tasks. For
example, hanging a mug on a rack requires us to reason about relative
pose between objects. We conjecture that the relative pose between ob-
jects is a generalizable notion of a manipulation task that can transfer
to new objects in the same category. We define this as “cross-pose”, and
propose a vision-based method that learns to estimate it for a variety of
manipulation tasks. Finally, we empirically show that our system is able
to generalize to unseen objects in both simulation and the real world from
very few demonstrations.
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Chapter 1

Introduction

6D Object pose estimation is the core component to enabling functional, robust

robotic manipulation system. Deep learning has offered a way to develop image-based

or pointcloud-based pose estimators; however, such estimators often require training

on a large labeled dataset, which can be time-intensive to collect. In this thesis

work, we explore different approaches to obtain accurate, generalizable 6D object

pose estimator for manipulation tasks with minimal supervision required.

In the first part the work, we explore whether self-supervised learning from

unlabeled image data can be used to alleviate this issue. By taking advantage of

the Specifically, we assume access to estimates of the relative orientation between

neighboring poses, such that can be obtained via a local alignment method. While

self-supervised learning has been used successfully for translational object keypoints,

in this work, we show that naively applying relative supervision to the rotational

group SO(3) will often fail to converge due to the non-convexity of the rotational

space. To tackle this challenge, we propose a new algorithm for self-supervised

orientation estimation which utilizes Modified Rodrigues Parameters to stereographi-

cally project the closed manifold of SO(3) to the open manifold of R3, allowing the

optimization to be done in an open Euclidean space. We empirically validate the

benefits of the proposed algorithm for rotational averaging problem in two settings:

(1) direct optimization on rotation parameters, and (2) optimization of parameters

of a convolutional neural network that predicts object orientations from images. In

both settings, we demonstrate that our proposed algorithm is able to converge to a

1



1. Introduction

consistent relative orientation frame much faster than algorithms that purely operate

in the SO(3) space.

In the second part of this work, we explore whether self-supervised learning from

unlabeled point cloud data can be used to alleviate this issue. Specifically, we take a

step back from the problem scope of 6D object pose estimation, and shift our focus

back to “manipulation” by thinking critically about what kind of pose estimator is

really necessary and best-suited for manipulation tasks. Specifically, we think about

the problem of,

How do we imbue robots with the ability to efficiently manipulate unseen objects

and transfer relevant skills based on demonstrations?

End-to-end learning methods often fail to generalize to novel objects or unseen

configurations. Instead, we conjecture that the task-specific pose relationship between

relevant parts of interacting objects is a generalizable notion of a manipulation

task that can transfer to new objects in the same category; examples include the

relationship between the pose of a lasagna relative to an oven or the pose of a mug

relative to a mug rack. We call this task-specific pose relationship “cross-pose” and

provide a mathematical definition of this concept. We propose a vision-based system

that learns to estimate the cross-pose between two objects for a given manipulation

task. The estimated cross-pose is then used to guide a downstream motion planner to

manipulate the objects into the desired pose relationship (placing the lasagna into the

oven or the mug onto the mug rack). We train a cross-pose estimator in simulation

and we demonstrate the capability of our system to generalize to unseen objects in

both simulation and the real world, deploying our policy on a Franka Emika with no

finetuning.
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Chapter 2

Deep Projective Rotation

Estimation through Relative

Supervision

2.1 Introduction

Pose estimation is a critical component for a wide variety of computer vision and

robotic tasks. It is a common primitive for grasping, manipulation, and planning tasks.

For motion planning and control, estimating an object’s pose can help a robot avoid

collisions or plan how to use the object for a given task. The current top performing

methods for pose estimation use machine learning to estimate the object’s pose from

an image; however, training these estimators tends to rely on direct supervision of

the object orientation [43, 83, 92]. Obtaining such supervision can be difficult and

requires either time-consuming annotations or synthetic data, which might differ from

the real world. In this work, we explore whether self-supervised learning can be used

to alleviate this issue by training an object orientation estimator from unlabeled data.

Specifically, we assume that we can estimate the relative rotation of an object between

neighboring object poses in a self-supervised manner. Such relative supervision can

be easily obtained in practice, for example through a local registration method such

as ICP [96] or camera pose estimation.

3



2. Deep Projective Rotation Estimation through Relative Supervision

Relative self-supervision has been previously used for representation learning

in estimating translational keypoints [50, 71, 72]. These methods use only relative

supervision to ensure that the keypoints are consistent across views of the object, and

do not directly supervise the keypoint locations. In this work, we explore whether

such relative self-supervision can similarly be used in estimating object orientations.

We show that naively applying such relative supervision to rotations on the SO(3)

manifold will often fail to converge. Unlike self-supervised learning of translational

keypoints, the rotational averaging problem [32] is inherently non-convex, with many

local optima. While there exist global optimization algorithms which jointly optimize

all pairs of rotations for this problem [23, 84], they are not easily integrated into the

iterative, stochastic gradient descent methods used to train neural network-based

pose estimators.

To address this issue, we propose a new algorithm, Iterative Modified Rodrigues

Projective Averaging, which uses Modified Rodrigues Parameters to map from the

closed manifold of SO(3) to the open space of R3. In doing so, we obtain faster

convergence with a lower likelihood of falling into local optima. Our experiments show

that our method converges faster and more consistently than the standard SO(3)

optimization and can easily be integrated into a neural network training pipeline.

Additionally, we include an intuitive theoretical example describing how, while not all

local optima are removed, the dimensionality of a set of problematic configurations is

greatly reduced when optimizing using our algorithm, as compared to optimizing in

the space of SO(3).

The primary contributions of this work are:

• We propose a new algorithm, Iterative Modified Rodrigues Projective Averaging,

which is an iterative method for learning rotation estimation using only relative

rotation supervision and can be applied to neural network optimization.

• We empirically investigate the convergence behavior of our algorithm as com-

pared to optimizing on the SO(3) manifold.

• We demonstrate that our algorithm can be used to train a neural network-based

pose estimator using only relative supervision.
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2. Deep Projective Rotation Estimation through Relative Supervision

2.2 Related Work

2.2.1 Averaging and Consensus Estimation

Consensus methods, sometimes referred to as averaging methods, have a long history of

research. The goal of these methods is, given a distributed set of estimates, to produce

a consistent prediction of a value using relative information. While there are iterative

algorithms with good convergence properties in Euclidean space [7, 16, 22, 51, 62],

optimizing over the closed manifold of SO(3) can be more difficult, as the region is

non-convex, with many local minima.

Rotation consensus, or what is commonly known as the rotation averaging problem,

can be solved under certain conditions. Manton [49] describes an iterative method for

computing the mean of a set of rotations, through Riemannian optimization, though

this algorithm is not guaranteed to produce a unique solution if the rotations do

not lie in a ball of radius r ≤ π
2

with respect to angular distance. Similarly, Tron

et al. [76], proposes a Riemannian optimization method via tangent space updates

in SE(3) and proves that it will converge to local minima, with later evaluation of

these minima [77, 78]. In the case where all orientations are in a planar configuration,

Piova et al. [56] provides a distributed method of localizing orientations. Hartley

et al. [31, 32] describe several methods of finding a consistent set of rotations, though

their convergence is similarly not guaranteed outside of a radius r ≤ π
2

ball in SO(3).

Wang and Singer [84] find an exact solution to this problem, using a combination of

a semidefinite programming relaxation and a robust penalty function. More recently,

Shonan Rotation Averaging [23] shows that projecting to higher dimensional spaces

allows for the recovery of a globally optimal solution using semidefinite programming.

These existing rotation averaging solvers either 1) require solving a semidefinite

programming problem; or 2) are global methods that require optimizing over the

entire set of relative orientations at once. These two settings are not well-applicable

for learning-based orientation estimators that are learned using neural networks.

Specifically, integrating semidefinite programming as differentiable trainable layers

in a neural net is still an active research area [2, 82]. Moreover, global rotation

averaging solvers will lead to memory explosion issue when applied direclty on a

neural net model. This is due to the fact that deep learned models commonly rely
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on back propagation to optimize its model weights. Specfically, back propagation

requires the model to compute and store every intermediate gradients of the loss

with respect to each weight per input to update the model weights. And doing so for

the entire set of relative orientation dataset is practically infeasible and will lead to

memory explosion. This is in fact the reason why in learning settings, it’s common

practice to train model in a mini-batch manner, where the model is optimized over a

mini-batch of the whole dataset during each update step, as in the case of stochastic

gradient descent.

Therefore, existing rotation averaging methods are infeasible for our problem setup

which requires doing local iterative updates with a differentiable neural network.

2.2.2 Supervised Orientation Estimation

Past work has explored using a neural network to predict an object’s orientation.

Traditionally, these methods rely on supervising the rotations using a known absolute

orientation, whether in the form of quaternions [40, 41, 92], axis-angle [25], or Euler

angles [69]. More recently, 6D [43, 97], 9D [44], and 10D [55] representations have been

developed for continuity and smoothness. Recently, Terzakis et al. [74] reintroduced

Modified Rodrigues Parameters, a projection of the unit quaternion sphere S3 to R3

commonly used in attitude control literature [19], to a range of common computer

vision problems. Terzakis et al. [74] does not, however, address the unique problems

found in the rotation averaging problem.

Some methods, such as DeepIM [45], have posed the rotation estimation problem

purely as a relative problem, computing the transform to rotate from one object pose

to another. Similarly, se(3)-TrackNet [87] tracks object pose using a Lie Algebra-based

orientation update. While these methods do remove the need for absolute supervision,

the resulting estimates are only useful when compared to an anchor image with an

absolute orientation given. In practice, obtaining an absolute pose can be useful for

both planning and joint learning of orientation representation and control. For this

reason, we seek to estimate an absolute pose using relative supervision.

Recently, there has been research into mapping the Riemannian optimization to the

Euclidean optimization used for network training [5, 11, 14, 17, 73]. These methods

focus on applying tangent space gradients from losses in 3D transformation groups.

6
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Specifically, Projective Manifold Gradient Layer [17] ensures that the gradients take

into account any projection operations, such that the gradients point towards the

nearest valid representation in the projection’s preimage. While this does map the

Riemannian optimization into a Euclidean problem, it does not solve the problems

caused by the closed manifold of SO(3), as this does not alter the underlying topology

of this manifold.

2.3 Problem Definition

We formally describe the problem of self-supervised orientation estimation below.

We assume that we are given a set of inputs observations {I1, . . . , IN}, of an object

where, in each input observation Ii, the object is viewed from an unknown orientation

Ri. These inputs could be in the form of images, point clouds, or some other object

representation. While we do not know the absolute object orientations Ri in any

reference frame, we assume that we do know a subset of the relative rotations Ri
j,

possibly from a local registration method like ICP, between the object in images Ij

and Ii, such that Ri = Rj
iRj. Our goal is to learn a function f(Ii) that estimates an

orientation of the object in each image, f(Ii) = R̂i that minimizes the pairwise error of

all input pairs, with respect to the geodesic distance metric d(Ri, Rj) = ∥ log(R⊤
i Rj)∥2.

Given a set of rotations R = {R1, . . . , RN}, the core optimization objective is thus:

min
R̂i,R̂j∈R

∑
i,j

d(Ri, R
j
iRj) (2.1)

Note that this optimization does not have a unique solution, since the solution

R̂i := SRi,∀i minimizes this error for any constant rotation S.

In many robotics tasks, relative rotations can be accurately estimated only when

their magnitude is small as many registration algorithms, such as ICP, requires a

good initialization near the optimum. Following this observation, we assume that we

can only accurately supervise relative rotations when they are small in magnitude.

This leads to a local neighborhood structure where each rotation Ri is connected to

Rj only in a local neighborhood around Ri, when d(Ri, Rj) < ϵ, and the set of all Rj ’s

connected to Ri form the neighborhood set of Ni. While the algorithms described in

this manuscript do not rely on this angle ϵ, it can be scaled as needed based on the
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accuracy of the relative rotation estimation method (e.g. ICP, camera ego motion

estimation).

Our eventual goal is to represent the function f(Ii) = R̂i as a neural network.

Thus, we restrict the methods with which we compare to iterative methods that are

updated using only a sampled subset of the rotations (as opposed to methods that

perform a global optimization over the entire set of rotations {R1, . . . , RN}). This

requirement is to match the conditions required by stochastic gradient descent, the

primary method of training neural networks.

2.4 Preliminaries

2.4.1 3D Rotation Representation

Every rotation in 3D can be defined by two elements,

• An axis of rotation through the origin

• An angle of rotation about the axis of rotation defined

For consistency, in this work, we follow the right-hand rule by assuming that the

angle of rotation always goes counter-clockwise about the axis of rotation.

There exist many different parameterization of 3D rotation, each with its own

pros and cons, as discussed below.

Rotation Matrix

Rotations are linear transformations of R3, and therefore can be represented by

matrices given that a basis in R3 is chosen. If we choose a basis formed by 3

orthonormal vectors in R3, then this leads to a set of orthogonal 3× 3 matrices that

uniquely describe every 3D rotation, called “Special Orthogonal Group” in dimension

3 , defined as

SO(3) ≜ {R ∈ R3×3|R⊤R = I3×3, det(R) = 1} (2.2)

forms a matrix Lie group. The set of all rotation matrices SO(3) is commonly referred

to as the 3D rotation group. A rotation matrix has 9 variables with 3 degrees of

freedom (DoF); the rest of the 6 variables are constrained via orthonormality.

8
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Rotation matrices are arguably the most intuitive and fundamental representation

of 3D rotation, with all useful rotation operations can be carried out via standard

matrix operations. Specifically, rotation composition can be carried out via standard

matrix multiplication, rotation can be applied to 3D point via matrix-vector multi-

plication, and the inverse can be obtained via matrix transportation. However, the

high-dimensional nature of rotation matrix means that it cloud be very cumbersome

to maintain and impose the orthonormality constraints in practice.

Euler Angles

Euler angles are 3-dimensional rotation representation defined as the composition

of three elemental rotations, which are rotations around the orthogonal axes of the

Cartesian coordinate system. The three rotations are usually denoted by the angle

of rotation in radians, such as (ϕ, θ, ψ) or (α, β, γ). Since rotation composition is

non-commutative, the order of the axes of rotations matters for the definition of any

set of Euler angles. There exist in total 12 possible sets of Euler angle conventions,

depending on the order of the 3 rotation axes. The axes can be of two types, either

of the form A-B-A, or A-B-C, where each unique letter represents one of the XYZ

axes. The three elemental rotations can be defined with respect to a static global

coordinate system, called extrinsic, or with respect to the moving body frame, called

intrinsic. The intrinsic Euler angles of the form A-B-C are usually referred to as

yaw-pitch-roll, commonly used in aerospace.

Although there is great merit in the intuitive geometric interpretation of the

representation of Euler angles, the literature has generally agreed that the downsides

of Euler angles make them far from ideal candidates for rotation representation in

practice [28, 74]. First, notice that even under a particular order of axes out of the

12 possible orders, Euler angles are not unique, since an unique 3D rotation can be

represented by many non-unique Euler angles representations. More critically, Euler

angles suffer from singularities known as gimbal lock, where at certain configurations

when two of the three rotation axes align, which renders the last rotation axis

useless, resulting in the loss of 1 DoF. More concretely, every rotation in Euler angles

representation is less than or equal to π/2 away from the nearest singularity.
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Axis-Angle

Every rotation in 3D can be represented by rotating around an axis of rotation

that can be represented by a unit R3 vector u, by a certain rotation angle θ. The

multiplication of the unit vector and the angle of rotation gives rise to the angle-axis

representation, a 3-dimensional rotation representation defined as,

ω ≜ θu ∈ R3 (2.3)

Notice that for any rotation represented by θu, the same rotation can be achieved

by rotating around u by −(2π − θ), thus we see that the axis-angle is not a unique

mapping of the SO(3) group, and in fact singularities exist at θ = 2kπ, ∀k ∈ N+.

Unit Quaternions

The discovery of the group of quaternions have historically been of fundamental

importance to the study of 3D rotations [3]. Quaternions are 4-dimensional real

vectors. The set of all quaternion is denoted as H and a quaternion is denoted by

q = (ρ, v1, v2, v3):

H ≜ {q|q = ρ+ v1i+ v2j + v3k} (2.4)

where

• ρ, v1, v2, v3 ∈ R

• i, j, k are the quaternion basis units satisfying i2 = j2 = k2 = ijk = −1

Quaternions can also be expressed in the form of,

q = ρ+ v⊤

 ij
k

 (2.5)

where ρ ∈ R is the scalar part and v ∈ R3 is the vector part. Unit quaternions live

on the unit hypersphere, S3 in R4 defined as

S3 ≜ {q ∈ H|∥q∥ =
√
ρ2 + v21 + v22 + v23 = 1} (2.6)
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Being a four-dimensional representation, with the added degree of redundancy,

unit quaternions do not suffer from singularities like the other three-dimensional

representations. However, its representation is not unique; any quaternion q and its

inverse −q represent the same 3D rotation, any such pair is called antipodal points.

In other words, the unit quaternion group is a double cover of the 3D rotational

group SO(3). Furthermore, quaternions require an extra parameter, leading to a

non-minimal parameterization, and require maintenance of the unit norm constraint.

Modified Rodrigues Parameters

Stereographic projection is a bijective conformal mapping to map from a sphere to

a plane. It is a well-defined, one-to-one mapping except at the point of projection,

where it is mapped to points of infinity on the projected plane. Modified Rodrigues

parameters utilize stereographic projection to map from the unit quaternion hyper-

shpere S3 to the open Euclidean hyperplane of R3, with singularities at ±2π. This

parameterization has been well established and is a popular choice for attitude control

in the aerospace literature [20, 64, 67, 79].

Stereographic projection projects points from the hypershpere onto the hyperplane

by designating a point of projection on the hypershpere and a projection hyperplane.

Then it shoots lines from the point of projection to all points on the hypershpere,

and the corresponding projected point for an arbitrary point on the hypershpere is

defined as the point of intersection between the projection plane and the line joining

itself and the point of projection.

Figure 2.1 shows a geometric illustration of a 2D stereographic projection, projected

from a 2D unit sphere S to a 1D Euclidean line R at the equator of the sphere.
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Figure 2.1: Illustration of stereographic projection in 2D. The point of projection is the
South Pole of the unit circle, S, denoted as qS . The projection line is the horizontal equator of the
unit circle, R. We denote the points on the unit circle as q’s, and the points on the projection line
as ψ’s. Geometrically, for an arbitrary point on the unit circle, qi, the corresponding projected
point on the projection line is the point of intersection of the line joining itself qi and the point of
projection qS, denoted as ψi in the figure.

Modified Rodrigues parameters (MRP), result from the application of stereographic

projection in 4D, mapping from the 4D unit sphere S3 to the 3D Euclidean hyperplane

R3. In fact, Figure 2.1 is a simplified illustration of the mapping between the quater-

nions on the 4D unit sphere and the corresponding MRP in the lower-dimensional

space of 2D, since visualizing the 4D topology on 2D paper is almost impossible.

In MRP, the South Pole of the unit quaternion sphere (qS = −1 + 0i + 0j + 0k)

is the point of projection, and the projection plane is the 3D plane that slides

through the unit sphere at the imaginary equator, spanned by the quaternion basis

units, i, j, k. MRPs are denoted by ψ ∈ R3, which can be obtained from quaternion

q = ρ+ v⊤
[
i j k

]⊤
=
[
ρ v

]
∈ H by,

ψ =
v

1 + ρ
(2.7)

Inversely, given a modified Rodrigues parameter, ψ, the unprojected corresponding

unit quaternion is given by

q =
1− ∥ψ∥2

1 + ∥ψ∥2
+

2

1 + ∥ψ∥2
ψ⊤

 ij
k

 =
[
1−∥ψ∥2
1+∥ψ∥2

2
1+∥ψ∥2ψ

⊤
]

(2.8)
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Modified Rodrigues parameters are a minimal parameterization of rotation of just

3 dimensions. It also allows for the representation of rotations on a noncompact

hyperplane, rather than staying on the compact manifold of SO(3), which is of key

significance for our work, as shown later.

2.4.2 Lie Group & Lie Algebra

Matrix Lie group is a differential manifold that locally resembles a Euclidean space,

which is composed of n× n invertible matrices. Every Lie group is associated with

a Lie algebra, which is a vector space that is the tangent space of the Lie group at

identity. The 3D rotation group SO(3) forms a matrix Lie group, and its associated

Lie algebra is so(3).

The Lie algebra so(3) is characterized by the vector space of 3× 3 skew-symmetric

matrices [32], which are usually denoted as Ω ∈ R3×3, that can be represented by a

vector ω =
[
ω1, ω2, ω3

]⊤
∈ R3 containing the entries of the skew-symmetric matrix,

Ω = [ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.9)

2.4.3 Exponential & Logarithmic Map for SO(3)

To map elements from a Lie algebra to its associated matrix Lie group, one utilizes

the exponential map. Inversely, logarithmic map maps from a Lie group to its Lie

algebra.

Exponential Map Formally, if G is a matrix Lie group with Lie algebra g, then

the exponential map for G is defined as the map [30],

exp(·) : g→ G (2.10)

For the matrix Lie group of SO(3), there are two common methods for computing

the exponential map from so(3) to SO(3). One way is to compute the matrix

exponential of the skew-symmetric matrix Ω ∈ so(3), and map it to its corresponding
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3D rotation matrix R ∈ SO(3) as,

R = exp (Ω) =
∞∑
k=0

Ωk

k!
(2.11)

Computing matrix exponentials are expensive and can only be computed approxi-

mately in practice, so this method of computing the exponential map is actually not

commonly used in practice.

Another way to compute the exponential map is to map from the axis-angle

representation ω ∈ R3 to rotation matrix R ∈ SO(3). This is enabled by the

Rodrigues’ rotation formula, which provides a method to compute the exponential

map from so(3)→ SO(3) without needing to compute the full matrix exponential [75].

We see that given an axis-angle representation ω ∈ R3, we can convert it to a skew-

symmetric matrix Ω = [ω]× through Eq. 2.9, which defines a bijection mapping

[·]× : R3 → so(3). In fact, the vector space R3 is a vector space isomorphism for

so(3) since it preserves both addition and scalar multiplication [32]. In fact, under

the Lie-bracket defined as [ω, η] = ω × η, where ω, η ∈ R3, this map is a Lie-algebra

isomorphism between R3 and so(3).

Given the geometric interpretation of axis-angle representation, we have ω = θu,

where u = ω
∥ω∥ is the unit vector representing the axis of rotation, and θ = ∥ω∥ is the

angle of rotation around the axis u.

Thus, via Lie-algebra isomorphism, we can establish the exponential map of,

exp [·]× : R3 → SO(3) (2.12)

where the conversion between an axis-angle ω = θu to its associated rotation matrix

R is given by the Rodrigues’ formula,

R = I + (sin θ)[u]× + (1− cos θ)[u]2× (2.13)

In this work, we always refer to this mapping between the axis-angle representation

ω ∈ R3 and R ∈ SO(3) when we talk about the exponential map and logarithmic

map for SO(3).

Logarithmic Map Formally, if G is a matrix Lie group with Lie algebra g, then
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the logarithmic map for G is defined as the map [30],

log (·) : G→ g (2.14)

Following the second definition of an exponential map from Eq. 2.12, defined as

the mapping between the axis-angle representation and the rotation matrix, the

logarithmic map of SO(3) is defined as the mapping of,

log (·) : SO(3)→ R3 (2.15)

Since the exponential map is not one-to-one and, in fact, periodic, the inverse can be

defined if we restrict the angle of rotation to the range of θ ∈ (−π, π), as,

[ω]× = log (R) =
θ

2 sin θ
(R−R⊤) (2.16)

And the angle of the rotation, θ is given by

θ = arccos
Tr(R)− 1

2
(2.17)

In this work, when referring to the geodesic metric on SO(3), we always assume that

it is the angle metric, which is the angle between two rotations.

2.4.4 Intuitive Implications of Compactness

The 3D rotational space of SO(3) ≜ {R ∈ R3×3 : R⊤R = I3×3, det (R) = 1} is

a compact matrix Lie group, which topologically is a compact manifold, which

is characterized by topologically wrapping around itself. Furthermore, the SO(3)

manifold is compact and has no boundary, making it a closed manifold. On the other

hand, an open manifold is defined as a non-compact manifold without a boundary.

The Euclidean space of Rn, for example, is an open manifold, which topologically

does not wrap around.

Due to the compactness of the SO(3) manifold, there exist configurations of pairs

of points where multiple, nonunique geodesically minimal paths exist between them;

for instance, there are two unique geodesically minimal paths for a pair of antipodal
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points on a circle, and there are infinitely many for a pair of antipodal points on a

sphere. This is not the case in an open manifold like the 3D Euclidean space of R3,

over which there exists a unique geodesically minimal path between any arbitrary pair

of points. The distinction in compactness between the 3D rotational space of SO(3)

and the 3D Euclidean space makes optimization over SO(3) more ill-conditioned than

over the space of R3. This results in the optimization over the rotational space being

non-convex. Specifically, as shown by Yau [93], there exists no non-trivial continuous

convex function over compact Riemannian manifolds.

Valid Final 
Configuration

Optimize on an open manifold

Optimize on a compact manifold Back to square one

Converging

Figure 2.2: A simple illustration on the effects of compact vs open manifold on the
convergence behaviour of optimization algorithm. Given a 2D circle, and 3 points that exist
on the 2D circle where their true values should overlap, (i.e., their ground truth values represent
the same point on the 2D circle), the left shows the valid final configuration. Now assign random
position on the circle to the three points as initialization, assuming we have access to the underlying
ground truth relative geodesic distance between all pairs of points, which in this case, are all 0,
we would like to make pairwise updates to minimize the difference between their current relative
geodesic distance and their ground truth relative geodesic distance (0). To execute each update, we
take a pair of points, and move both points in the direction that minimize their relative geodesic
distance, and repeatedly do this pairwise update for all pairs, until convergence or if maximum
number of steps is reached. The first row illustrates the configurations of doing pairwise updates for
all pairs of points on a compact manifold of a closed circle, and the second row shows the exact
same update procedure but applied on an open manifold of a curved line. In this case, we see that
optimization on the compact manifold results in failure in convergence, while optimization on an
open manifold results in progress in convergence.

Figure 2.2 gives an intuitive demonstration of the problem with optimization

over compact space, showing the different converging behaviours of a simple three-

point averaging problem over a compact 2D circle, vs. over an open 2D curve.

These properties of the SO(3) manifold will affect the convergence of self-supervised

orientation estimation, which we discuss below.
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2.5 Baselines

While self-supervised learning for object translation, specifically in the form of object

keypoints [50, 71, 72], has shown great success, in this work, we show that naively

applying such an iterative self-supervised formulation to the rotational group SO(3)

will often fail to converge. Below we discuss two approaches to self-supervised

orientation estimation in SO(3).

2.5.1 Quaternion Averaging

A standard objective in rotation estimation is to minimize the geodesic distance

between a predicted unit quaternion and its corresponding ground-truth orienta-

tion [32, 48], θ = arccos(2⟨q̂i,qgt⟩2) where q̂i is the predicted orientation in unit

quaternion for image i and qgt is the ground-truth orientation. An objective function

is often defined to directly minimize this geodesic distance [48].

In our task, defined above (Section 2.3), we are given the relative rotation qji
between some pairs of rotations qi and qj . Using this relative supervision, we can use

the geodesic distance between a sample estimate, q̂i, and its desired relative position.

with respect to a sampled neighbor and a known relative rotation qji , q̃i = qji ⊗ q̂j,
leading to the loss Lq = 1−⟨q̂i, qji⊗q̂j⟩2, where⊗ denotes the quaternion multiplication.

Note that this loss is monotonically related to the geodesic distance.when using unit

quaternions, while avoiding the need to compute an arccos.

2.5.2 SO(3) Averaging

To optimize the rotations with respect to the non-Euclidean geometry of the rotational

manifold of SO(3), one approach is described by Manton [49]. Each orientation is

iteratively updated in the tangent space using the logmap of SO(3) and projected

back to SO(3) using the exponential map. Specifically, we can take the gradient of

the loss

LSO(3) =
∥∥log

(
R⊤
i R

j
iRj

)∥∥2 (2.18)
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∇r̂iLSO(3) = r∆ = log
(
R⊤
i R

j
iRj

)
(2.19)

which gives the update step R̂i ← R̂i exp(γr∆), where γ is the learning rate and

log is the logmap of SO(3) as detailed in Sec 2.4.3 . When optimizing the full set of

orientations, this algorithm can fall into local optima due to the closed nature of the

space which allows any orientation to be reached by two unique straight paths, as

the space wraps around on itself.

2.6 Method

We propose an alternative that projects the optimization to an open image and

optimizes the distances in that space. Specifically, we use the Modified Rodriguez

Projection to minimize the relative error between neighboring poses in R3. We provide

experiments in Section 2.8 that show that self-supervised orientation estimation using

Modified Rodriguez Projection converges much faster than self-supervised orientation

estimation in SO(3), with theoretic analysis of an illustrative example demonstrated

in Section 2.7.
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2.6.1 Iterative Modified Rodrigues Projective Averaging

Figure 2.3: Illustration of Iterative Modified Rodrigues Projective Averaging. Projection
of relative supervision, qji , shown in red, from back-projected rotation q̂j := ϕ−1(ψ̂j) to q̂j into the
MRP space update, ϕ∆, shown in green. While q̃i could have been selected as the the goal rotation,
it would have induced a much larger movement in the projected space.

As mentioned previously, optimizing on a closed space, such as SO(3) or S3 can

be problematic, since the relative distance between two points can eventually be

minimized by moving them in the exact opposite direction of the minimum path

between them. To alleviate this issue, we would like to instead perform self-supervised

learning in an open space, where this symmetry is broken. This can be done using

Modified Rodrigues Parameters (MRP) [74, 88]. MRP is the stereographic projection

of the closed manifold of the quaternion sphere S3 to R3, and has been widely used in

attitude estimation and control [19]. In combining this projection with the mapping

between SO(3) and S3, this projection can be used to optimize rotations. We define a

unit quaternion q =
[
ρ ν

]
∈ S3 ≜ {x ∈ R4 : ∥x∥ = 1}, where ρ ∈ R defines the scalar

component and ν ∈ R3 defines the imaginary vector component of the unit quaternion.

The projection operator ϕ(q) = ψ ∈ R3 and its inverse ϕ−1(ψ) = q ∈ S3 are given

by [74, 88] where ψ = ϕ
([
ρ ν

])
= ν

1+ρ
and

[
ρ ν

]
= ϕ−1(ψ) =

[
1−∥ψ∥2
1+∥ψ∥2

2ψ
1+∥ψ∥2

]
.
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2. Deep Projective Rotation Estimation through Relative Supervision

Given this projective orientation space, we need to map our relative rotation Rj
i into

the projective space in order to use these relative rotations for the self-supervised

learning task. This projection is required, as the relative supervision is in SO(3), and

the direction and magnitude of this relative measurement are distorted differently in

different regions of the projective MRP space. Given a pair of estimated projected

rotations ψ̂i := ϕ(R̂i) and ψ̂j := ϕ(R̂j), we project ψ̂j back to a unit quaternion

ϕ−1(ψ̂j) = q̂j ∈ S3 and rotate it according to Rj
i , q̃i = qji ⊗ q̂j, where ⊗ is quaternion

multiplication and qji is the quaternion form of Rj
i . The resulting unit quaternion q̃i

is then projected back into the Modified Rodrigues Parameter space, ψ̃i. A simplified

visual analogy of this process is shown in Figure 2.3 1.

While this relative rotation could be applied and projected at either the sampled

point ψ̂i, or the neighboring location ψ̂j, we select the neighboring location ψ̂j, as it

does not require us to compute gradients through the forward or inverse projections

ϕ(·) and ϕ−1(·), respectively. This projected rotation ψ̃i represents the value ψ̂i

should hold, relative to the current predicted rotation ψ̂j. It should be noted that

ψ(q) ̸= ψ(−q), while q and −q represent the same rotation. In terms of the projective

space, this means that the sign of q̃i matters. To remove this ambiguity, we select the

nearest projection to ψ̂i in the projective MRP space. It should be noted that this is

different from selecting the closer antipode on S3, as the large deformations found

near the south pole2 can cause the nearer antipode in S3 to be further in MRP space.

In contrast, if we were to select a consistent sign for the scalar component q̃i, for

example ensuring the scalar component is always positive, a small change in ψ̂j can

cause large changes in ψ̃i. While this change is required to stabilize our optimization,

it does add some ambiguity to the direction of optimization. However, the directions

to each of the projected locations, ψ(q̃i) and ψ(−q̃i), are only anti-parallel (pulling in

exactly opposite directions) when ψ̃i − ψ̂i intersects the origin.

The loss with respect to a given estimate, ψ̂i, can then be written as the l2 distance

between its current value and the projected relative location, ψ̃i, relative to a given

neighbor, ψ̂j:

1Note that for the purpose of visualization clarity, we have lifted the projection plane from the
equator of the S3 unit sphere to above the unit sphere.

2The south pole in this case is described by the quaternion −1 + 0i+ 0j + 0k
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2. Deep Projective Rotation Estimation through Relative Supervision

LΨ+ =
∥∥∥ψ̂i − ϕ(q̃i)

∥∥∥2 (2.20)

LΨ− =
∥∥∥ψ̂i − ϕ(−q̃i)

∥∥∥2 (2.21)

LΨ = min(LΨ−,LΨ+) (2.22)

where we recall that, q̃i = qji ⊗ q̂j, and q̂j = ϕ−1(ψ̂j).

Note that, while ψ̂j is a predicted value, we do not pass gradients through it,

allowing it to anchor the update to a consistent orientation. The gradient update3 is

then given by:

∇ψ̂i
LΨ = ψ∆ =

ψ̂i − ϕ (q̃i) , if LΨ+ < LΨ−

ψ̂i − ϕ (−q̃i) , otherwise
(2.23)

Additionally, a maximum gradient step, η, in the projective space is imposed,if

the gradient exceeds a defined amount, as shown in Eq. 2.24.

ψ∆ ← η
ψ∆

∥ψ∆∥
(2.24)

This prevents extremely large steps from being taken, as the projective transform

can distort the space.

The full method for Iterative Modified Rodrigues Projective Averaging is shown

in Algorithm 1. In practice, we find γ = 0.5 and η = 0.1 to produce the best results.

2.7 Intuitive Example

We present an intuitive example to demonstrate when optimizing a set of orientations

to solve the rotation averaging problem described in Equation (1) can fail. In

this example, we show the benefits of the Iterative Modified Rodrigues Projective

Averaging (MRP(Ours)) approach over the baseline approach. We show that

3We omit a constant factor for brevity, and integrate it into the learning rate, γ.
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2. Deep Projective Rotation Estimation through Relative Supervision

Algorithm 1 Iterative Modified Rodrigues Projective Averaging

Require: Initial estimates Ψ̂ = {ψ̂1 . . . ψ̂N}
Require: Local neighborhood Ni for each rotations ψ̂i
Require: Relative rotations qji for each j ∈ Ni
Require: Step size γ
Require: Max gradient threshold η
Require: Max iteration steps M
Require: Global pairwise angular error ε← 0
Require: Global pairwise angular error threshold ε0
1: while ε ≥ ε0 or iteration ≤M do
2: Sample a projected rotation ψ̂i ∼ Ψ̂ to update
3: Sample a neighbor ψ̂j ∼ Ni
4: Update the projected rotation ψ∆ (Eq. 2.23)
5: if the magnitude of the update is larger than η then
6: Resize update to be of size η (Eq. 2.24)
7: end if
8: Apply update in MRP space ψ̂i ← ψ̂i + γψ∆

9: Update global pairwise angular error ε
10: end while
11: return Ψ̂

while both SO(3) averaging and MRP(Ours) share a class of nonoptimal critical

points, in the projective case, these critical points are a subset of the problematic

configurations for SO(3) averaging. Before diving into this, see Figure 2.2 for a

simplified pictorial illustration that demonstrates the intuition of how MRP(Ours)

reduces the dimension of critical points through stereographic projection.

22



2. Deep Projective Rotation Estimation through Relative Supervision

(a)

(c)

(b)

(d)

Figure 2.4: An illustration of the intuition behind how MRP reduces the dimension
of the set of problematic local optima through stereographic projection. (a) Take two
orientation quaternions in S3, shown in red and blue. We see that all points along the orange equator
are valid averages of these two quaternions in S3; (b) We can reduce the dimension of the set of valid
averages by using MRP to project these orientations into the hyperplane of R3; (c) And instead,
take the average of the two projected quaternion as seen in red and blue circles, which gives us the
average as the orange circle in R3; (d) The average in the projected space can be projected back to
the original orientation space when needed. Thus we have successfully reduced the dimension of the
set of problematic local optima from an equator of points to one point on the original manifold of
3D rotations (in this specific case, the unit quaternion sphere).

2.7.1 Examples of Critical Points

In this section, we analyze a class of critical points shared by both standard SO(3)

averaging and Iterative Modified Rodrigues Projective Averaging. For simplicity, we

will examine the N = 3 rotation case, where R = {R1, R2, R3} with relative rotations

of Rj
i := RiR

⊤
j . As this is an iterative algorithm, we need to initialize our predicted

rotations to some values R̂ = {R̂1, R̂2, R̂3}. In this case, we initialize each predictions

to R̂i := RiR0 exp
((
θ0 + i2π

N

)
ω0

)
where R0 is an arbitrary but constant rotational

offset, ω0 and θ0 define an arbitrary, but constant axis and constant rotation, about

which each initial estimate R̂i is rotated an additional angle of θi. We find that if

we use the previously described methods to update this initial configuration, under
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2. Deep Projective Rotation Estimation through Relative Supervision

certain values of R , R0, θ0, and ω0, the expected update at each value R̂i is 0,

forming a critical point for each algorithm.

Critical Point for SO(3) Averaging

Given the initial predictions of R̂ defined above, for all values of R , R0, θ0, and ω0,

we find that the expectation of the gradient of SO(3) averaging loss, Ei,j
[
∇r̂iLSO(3)

]
,

is 0. The gradient of any sampled pair i, j is given by

∇iLi,jSO(3) : = ∇r̂iLSO(3)

(
R̂i, R̂j, R

j
i

)
= log

(
R̂⊤
i R

j
i R̂j

)
= log

(
(RiR0 exp (θiω0))

⊤Rj
iRjR0 exp (θjω0)

)
= log (exp ((θj − θi)ω0))

= wrap[−π,π) [(θj − θi)]ω0

= wrap[−π,π)

[
2π

N
(j − i)

]
ω0

=
2π

N
(j − i)ω0.

This lead to an expected gradient of each estimate rotation R̂i of

Ej
[
∇r̂iLSO(3)

(
R̂i, R̂j, R

j
i

) ∣∣∣i = 1
]

=
1

2
wrap[−π,π)

[∑
j ̸=i

2π

N
(j − i)

]
ω0 = 0.

For all estimates R̂i, this sums to an integer multiple of 2πω0, which, due to the

definition of the SO(3) exponential map, wraps to 0.

Critical Point for Iterative Modified Rodrigues Projective Averaging

When optimizing using our Iterative Modified Rodrigues Projective Averaging method,

we find that this configuration is only a critical point when the relative orientations

between each pair of rotations are equal and opposite, i.e., Rj
i = Rk⊤

i → Rj
i =

exp
(
±2π

N
ω0

)
and the predicted orientations are initialized at identity: R0 = I. This
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2. Deep Projective Rotation Estimation through Relative Supervision

only happens when the true orientations R are evenly spaced about an axis of

rotations: Ri := exp
((
θ0 − i2πN

)
ω0

)
, leaving only axis of rotation ω0 and the constant

angular offset θ0 about that axis as free parameters.

As we are trying to update these rotations using a method compatible with

stochastic gradient descent, we are concerned with the expectation of our update

with respect to a sampled pair. In this case, the expected loss and update, defined

in Equations (3c) (4) in the main text, respectively, for any projected rotation ψ̂i

and its neighbor ψ̂j is Li,jΨ+ :=
∥∥∥ψ̂i − ϕ(qji ⊗ ϕ−1(ψ̂j))

∥∥∥2 where qji is the quaternion

associated with Rj
i . As all ψ̂i are initialized to the identity, i.e., ϕ(qI) = 0 where qI is

the identity quaternion, we get

Li,jΨ+ :=
∥∥−ϕ−1(qji )

∥∥2 ∇iLi,jΨ+ := −ϕ−1(qji )

Li,jΨ− :=
∥∥−ϕ−1(−qji )

∥∥2 ∇iLi,jΨ− := −ϕ−1(−qji )
The relative rotations in this configuration are

Rj
i := exp

(
±2π

3
ω0

)

with relative quaternions qji :=
[
cos(π

3
) ± sin(π

3
)ω0

]
, which leads to

ϕ(qji ) =
± sin(π

3
)ω0

1 + cos(π
3
)

=
±ω0√

3
ϕ(−qji ) =

∓ sin(π
3
)ω0

1− cos(π
3
)

= ±
√

3ω0.

This results in the potential losses for the positive and negative antipodes of

Li,jΨ+ = ∥ϕ(qji )∥ =
1

3
Li,jΨ− = ∥ϕ(−qji )∥ = 3

for all pairs of (i, j)todo. Selecting the minimum loss antipodes, we get gradients

of

∇iLi,jΨ =
∓1√

3
ω0 ∇iLi,jΨ =

±1√
3
ω0,

for j = i+ 1 and j = i− 1, respectively. The final expectation of the gradients with

respect to the neighborhood sampling is

Ej
[
∇ψ̂i
LSO(3)(ψ̂i, ψ̂j, R

j
i )|i = 1

]
=

1

2

∑
j ̸=i

∇iLi,jΨ =
1

2

(
1√
3
ω0 −

1√
3
ω0

)
= 0.

While this demonstrates that our method is not without critical points, even in this

simple example, it shows that this configuration is only problematic when the true

rotations are equally spaced around an axis of rotation, ω0, and the estimates are
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Figure 2.5: Relative rotation consensus results for direct parameter optimization. Relative
rotation consensus with direct optimization of rotation parameters over 50 unique environments with
100 random generated orientations each (left) and Alamo 1DSfM [89] (right). Median average-pair-
wise angular error (◦) between each estimated rotations is shown, with shaded region representing
the first and third quartile for each method. The max average-pair-wise angular error for each
algorithm at each iteration is shown as a dashed line.

initialized at identity. This compares very favorably to the SO(3) algorithm, which

can be in a critical point for any set of relative rotations, Rj
i , and with initialization

that can vary with an additional arbitrary constant rotation R0.

2.8 Experiments

Next, we perform experiments to show that our method converges faster and more

consistently than the alternative approaches. Our empirical results are grouped into

two settings: (1) direct optimization of randomly generated rotations, Section 2.8.1,

and (2) optimization of the parameters of a convolutional neural network using

synthetically rendered images, Section 2.8.2. In both cases, relative orientations

between elements in a neighborhood are provided. We show Iterative Modified

Rodrigues Projective Averaging is able to converge faster and more often than

alternative approaches. We further show in Section 2.8.2 that our method can easily

be used to supervise convolutional neural networks, when only relative orientation

information is available.
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2. Deep Projective Rotation Estimation through Relative Supervision

Avg Pairwise Angular Error < 5◦ Normalized AUC
Algorithm Mean Steps Max Steps Min Steps Mean Max Min

SO(3) 157.7K Not Converged 85.0K 24.47 82.92 7.55
4D PMG [17] 126.1K Not Converged 27.0K 15.67 52.40 3.06
6D PMG [97] 235.9K Not Converged 80.0K 43.53 89.15 11.34
9D PMG [44] 284.5K Not Converged 150.0K 62.94 101.77 17.77
Quaternion 160.3K Not Converged 40.0K 23.55 84.85 3.47

MRP (Ours) 37.5K 160.0K 15.0K 5.08 15.56 2.18

Table 2.1: Number of iteration steps until convergence and Normalized Area Under Curve (nAUC)
over 50 unique environments of 100 randomly generated orientations. 300K optimization steps are
taken for each experiment.

% Avg Pairwise Angular Error < 5◦ Final Error(◦)
Algorithm 30K 70K 100K 150K 300K Mean Median

SO(3) 0% 0% 6% 57% 94% 2.056 0.10
4D PMG [17] 2% 32% 46% 72% 90% 1.969 0.14
6D PMG [97] 0% 0% 4% 20% 52% 20.096 3.20
9D PMG [44] 0% 0% 0% 2% 20% 40.125 43.02
Quaternion 0% 12% 30% 56% 82% 9.72 0.04

MRP (Ours) 66% 88% 96% 98% 100% 0.004 0.004

Table 2.2: Percentage of experiments converged and final angular errors over 50 unique environments
of 100 randomly generated orientations. 300K optimization steps are taken for each experiment.

Mean Relative Mean Absolute

Error (◦) Error (◦) Mean nAUC

Algorithm E. Island Alamo E. Island Alamo E. Island Alamo

4D PGM [17] 11.94 15.00 7.34 9.94 25.60 47.20

6D PGM [97] 11.26 18.84 6.90 13.09 27.77 58.04

9D PGM [44] 10.22 16.32 6.32 11.43 29.31 60.14

Quaternion 11.58 13.40 7.23 8.93 16.01 22.57

MRP (Ours) 8.84 9.89 5.49 6.56 16.21 25.61

Table 2.3: Final results on 1DSfM [89] datasets after 20K iterations
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2.8.1 Direct Parameter Optimization

We evaluate the convergence behaviour of our Iterative Modified Rodrigues Projective

Averaging method, MRP (Ours) , described in Section 2.6.1, as well as the SO(3)

averaging method, described in Section 2.5.2. For the SO(3) averaging method, we

implement both the pure Riemannian optimization , SO(3), as well as a method

using a Projective Manifold Gradient Layer [17] to map the Riemannian gradient of

the SO(3) averaging loss, Equation 2.18, to a Euclidean optimization in RD, where

we test D = 4, D = 6 [97], and D = 9 [44], 4D PMG [17], 6D PMG [97], 9D

PMG [44], respectively. Additionally, we evaluate direct quaternion optimization,

described in Sections 2.5.1, Quaternion.

Uniformly Sampled Rotations

We test the performance of each algorithm when directly optimizing the rotation

parameters of a set of size N = 100 with known relative rotations Rj
i , and local

neighborhood structure. Ground truth and initial estimated rotations are both

randomly sampled from a uniform distribution in SO(3). Each rotation, Ri, has a

neighborhood, Ni, consisting of the closest |Ni| = 3 rotations with respect to geodesic

distance. The connectivity of this neighborhood graph is checked to ensure the graph

contains only a single connected component. We test all algorithms over 50 sets

of unique environments, each with N = 100 randomly generated orientations as

described above. The estimated rotations are updated by each algorithm in batches

of size 8, for 300K iterations.

As the goal of our algorithm is to improve the convergence properties of iterative

averaging methods, we analyze each algorithm at various stages of optimization. We

are particularly interested in the average number of update steps until the algorithm

has converged, which we define as when the average angular error between all pairs of

rotations is below 5◦. As we can see in Figure 2.5, the Iterative Modified Rodrigues

Projective Averaging method, MRP (Ours), converges before the standard SO(3)

averaging method. On average, our method converged to within 5◦ in 37K steps. The

next best method, 4D PMG [17], which takes over three times as many iterations

to converge to the same level of accuracy. Further, Table 2.1 shows that our method

is the only one to converge across all environments within 300K iterations. For each
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Mean Median
Algorithm Error (◦) Error (◦) 5◦ Acc (%)

4D PMG [17] 123.84 123.96 0
Quaternion 28.83 21.74 50

MRP (Ours) 3.71 3.73 100

Oracle 1.58 1.56 100

Table 2.4: Final results for image based rotation estimation.

method, we also compute the mean area under the pairwise error curve, with the

number of steps normalized to between zero and one (nAUC), also shown in Table 2.1.

We find that in the best-, average-, and worst-case scenarios, our method has the best

convergence behavior. We find that at each stage of training, the Iterative Modified

Rodrigues Projective Averaging, MRP (Ours), training has both a lower average

pairwise error, shown in Table 2.2. Our method converged far more often at each

stage of training, also shown in Table 2.2.

Structure from Motion Dataset

To test our algorithms under natural noise conditions, we also evaluate our algorithm

on the 1DSfM [89] structure from motions datasets. These datasets contain full

transforms for each sample; however, we are only concerned with optimizing the

rotations. Each environment is tested with 5 random initializations and the estimated

rotations are updated by each algorithm in batches of size 64, for 20K iterations. The

results of a subset of the environments are shown in Table 2.3 and the remainder

can be found in Appendix A.1. The noise characteristics of relative rotations in

this dataset are similar to those found when capturing relative poses, but, unlike

the environments found in the previous section (Uniformly Sampled Rotations), the

distribution of rotations does not fully cover the orientation space. Specifically, the

distribution of rotations mostly only vary in yaw, with limited variation in pitch and

roll. As a result, all methods converge relatively quickly. Our algorithm outperforms

the baselines in terms of accuracy. While the Quaternion optimization converges

slightly faster, it consistently finds a lower accuracy configuration, resulting in a low

nAUC, but higher relative and absolute accuracy.
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2.8.2 Neural Network Optimization

To show that the Iterative Modified Rodrigues Projective Averaging method, MRP

(Ours), can be used to learn object orientation from images using neural networks by

optimizing the parameters of a simple CNN, specifically a ResNet18 [33], we follow the

procedure as in Section 2.8.1 with some minor changes. Instead of operating directly

on a set of rotation parameters, we learn a function R̂i = f(Ii) from rendered images of

the YCB drill [92] model, shown in Figure 2.9, rendered at each of 100 random rotations

Ri. We continue to only supervise each method described in Section 2.8.1 using

the relative rotations between each image. For different rotation parameterizations

compared to Section 2.8.1, we modify the output of the neural net function so

that the predicted orientation is represented by the rotation parameterization of

which the method is compared. For example, for MRP(Ours), we learn a function

ψ̂i = f(Ii) where ψ̂i is the predicted modified Rodrigues parameters. The neural

network optimization experiment setup for image-based orientation estimation is

described in Figure 2.6.

ResNet

Figure 2.6: Experiment setup for image-based orientation estimation using neural network
optimization. Given the YCB drill model, the model is randomly rendered at two orientations,
producing a pair of images, (Ii, Ij), with ground truth relative rotation between them as Ri

j . We
then learn a function f(·) : I → SO(3) parameterized by a ResNet18 model that takes in an image
of an object, Ii, and outputs an absolute orientation prediction R̂i such that the geodesic distance
between the ground truth relative rotation Rj

i and the relative rotation induced from the pair of

orientation prediction (R̂i, R̂j) is minimized.

We compare the best performing methods, and, as a lower bound, we also train an

oracle network, Oracle, which is trained to output absolute rotations by regressing
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with the ground truth absolute orientations, Ri and optimized with the cosine

quaternion loss. We use the Adam [42] optimizer, batch size of 32 and learning rate

of 1 × 10−4 for all experiments, and with a maximum training time of 10K steps,

trained over 8 environments, each with 100 images associated with randomly rendered

rotations. We find that MRP (Ours) is capable of converging to a rotational frame

consistent with the relative rotations used for supervision relatively quickly, with a

significantly lower average pairwise error than all other relative methods, shown in

Figure 2.9 and Table 2.4.

Curriculum Training for Generalization to Test Set

At test time, we find that a curriculum is required for any relatively supervised method

to be generalized to unseen orientation pair. This curriculum training involves starting

with an initial base rotation. The model is rendered at this base rotation and a

random rotation within α = 30◦ of this base rotation. This base rotation is initially

sampled with θ = 30◦ of a constant anchor orientation, until the average training

angular error of the previous epoch drops below a given threshold, in this case, 5◦.

Once the error falls below this threshold, the angular range θ, from which this base

rotation is sampled, increases by 5◦. This process is repeated, increasing the value

of θ by 5◦ each time the training error threshold is reached until the angle of the

curriculum increases to 180◦ and concluding the training process with curriculum, as

shown in Figure 2.7

We find that MRP (Ours) is capable of completing the curriculum in a reasonable

number of iterations, approximately 100K, achieving a median final pairwise accuracy

of 5.19◦ in three training sessions. This test error calculated based on sampling from

two random rotations across the space of SO(3), different from the training error,

which is calculated by sampling based on the angle range of the curriculum and is

always, at most, 30◦ apart. The quaternion optimization method, Quaternion, stalls

out at curriculum angle of 90◦, achieving a final pairwise accuracy of 12.41◦ and the

4D PMG [17] method never gets past the first level of the curriculum, with a final

error of 125.09◦. The full training progression of each method, over three random

initialization each, can be seen in Figure 2.8
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Figure 2.7: Illustration of curriculum used for training. With a constant anchor orientation
denoted by the dashed line, the curriculum range is defined as the orientation range which is θ
degree away from this constant anchor orientation. In the figure, this curriculum range is defined by
the area enclosed by the orange lines. This curriculum range is increased whenever the training
error drops below a given error threshold, until θ reaches 180◦. The pair of orientations for training
is always selected to be within α = 30◦ of each other, whilst both located within the curriculum
range. For example, the blue and red triangles represent some valid orientation pairs.

2.9 Limitations & Future Directions

While this parameterization of the rotational space is valuable for learning rotations

using only relative supervision, it is not without limitations. One of the primary

ones is the need for a curriculum for generalizability to unseen relative rotations.

Without this, our experiment show that all representations fall into the local optima

of outputting a constant orientation. Additionally, in generalization experiments, we

are only able to achieve a final error of 5 degrees. This may not be accurate enough

for many fine motor tasks, though an additional refinement network that is trained

to handle rotations within a sub-region of the whole rotation space could reduce this

error.

2.10 Conclusions

In this work, we show that through the use of Modified Rodrigues Parameters, we

are able to open the closed manifold of SO(3), improving the convergence behavior of

the rotation averaging problem. While optimizing in the projective space of Modified

Rodrigues Parameters is still susceptible to a similar class of local optima as the

naive method, this, however, is only affected in a subset of these configurations,
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Figure 2.8: Curriculum Angle (left) and Average Pairwise Error (right), sampled over
the full orientation space for three training sessions with each method. Median average-
pairwise angular error (◦) is shown with shaded areas representing the first and third quartile over
all training sessions. The max average-pairwise angular error for each algorithm at each iteration is
shown as a dashed line.

greatly reducing the dimensionality of the problematic configurations. We show that

Iterative Modified Rodrigues Projective Averaging is able to outperform the naive

application of relative-orientation supervision in both direct parameter optimization

and image-based rotations estimation from neural networks. We hope our method

allows more systems to convert the relative supervision of relative methods, like ICP,

to consistent and accurate absolute poses.
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2. Deep Projective Rotation Estimation through Relative Supervision
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(a) Estimated rotation frame learned for the
YCB [92] drill model using Iterative Modified
Rodrigues Projective Averaging and relative
rotations (x, y, z)
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(b) Results for rotations estimated by neural
networks given images of the YCB drill [92]
rendered at each of 100 random rotations with
various supervisions

Figure 2.9: Neural net optimization results. Estimated rotation frame learned for the YCB [92]
drill model using Iterative Modified Rodrigues Projective Averaging and relative rotations (x, y, z)
(left). Results for rotations estimated by neural networks given images of the YCB drill [92] rendered
at each of 100 random rotations with various supervisions, (right). Median average-pairwise angular
error (◦) is shown with shaded areas representing the first and third quartile over all training sessions.
The max average-pairwise angular error for each algorithm at each iteration is shown as a dashed
line.
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Chapter 3

Task-Specific Cross-Pose

Estimation for Robot Manipulation

3.1 Introduction

Many manipulation tasks require that a robot is able to move an object to a location

relative to another object. For example, a cooking robot may need to place a lasagna

in an oven, place a pot on a stove, place a plate in a microwave, place a mug onto

a mug rack, or place a cup onto a shelf. Understanding and placing objects in

task-specific locations is a key skill for robots operating in human environments.

Further, the robot should be able to generalize to novel objects within the training

categories, such as placing new lasagnas into the oven or new mugs onto the mug rack.

A common approach in robot learning is to train a policy “end-to-end,” mapping from

pixel observations to low-level robot actions. However, end-to-end trained policies

cannot easily reason about complex pose relationships such as the ones described

above, and they have difficulty generalizing to novel objects.

In contrast, we propose achieving these tasks by learning to reason about an

object’s three-dimensional geometry. For the type of tasks defined above, the robot

needs to reason about the relationship between key parts on one object with respect

to key parts on another object. For example, to place a mug on a mug rack, the

robot must reason about the relationship between the pose of the mug handle and
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Demonstrations Observations Soft Correspondence Robot Execution

Figure 3.1: TAX-Pose in action. Top: PartNet-Mobility Placement Task. Bottom: Mug
Hanging Task. The model is trained using demonstrations of anchor and action objects in their
ground-truth cross-pose for the task. The model first observes the initial configuration of the objects,
estimates correspondence between the pair of objects, and then calculates the desired pose. The
desired pose is then used to guide robot motion planning.

the pose of the mug rack; if the mug rack changes its pose, then the pose of the

mug must change accordingly in order to still be placed on the rack (see Figure 3.2).

We name this task-specific notion of the pose relationship between a pair of objects

as “cross-pose” and we formally define it mathematically. Further, we propose a

vision system that can efficiently estimate the cross-pose from a small number of

demonstrations of a given task, generalizing to novel objects within the training

categories (see Figure 3.1). To achieve the manipulation task, we input the estimated

cross-pose into a motion planning algorithm which will manipulate the objects into

the desired pose relationship (e.g. placing the mug onto the rack, placing the lasagna

into the oven, etc).

In this paper, we present TAX-Pose (TAsk-specific Cross-Pose), a deep 3D vision-

based robotics method that learns to predict a task-specific pose relationship between

a pair of objects based on a set of demonstrations. We use this prediction to plan

a trajectory that actuates the objects to achieve the desired relative pose. Our

cross-pose estimation system is translation equivariant and can generalize from a

small number of demonstrations to new objects in unseen poses.

The contributions of this paper include:

1. A precise definition of “cross-pose,” which defines a task-specific pose relation-

ship between two objects.
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2. A novel method that estimates the cross-pose between two objects; this method

is provably translation equivariant and can learn from a small number of

demonstrations.

3. A robot system to manipulate objects into the desired cross-pose needed to

achieve a given manipulation task.

We present simulated and real-world experiments to test the performance of our

system in achieving a variety of cross-pose manipulation tasks, learning from a small

number of demonstrations. We show the generalizabilty of our model though an

object placement task, where the robot must accurately place objects in, on, or

around novel objects. We then show the precision of the method, hanging unseen

mugs onto a mug rack.

3.2 Related Work

Learning from Demonstration (LfD): LfD is a diverse field of study which

focuses on enabling robots to learn skills from expert demonstrations. We refer

the readers to previous survey papers [4, 9, 63] for a comprehensive review of LfD

approaches. The commonly-used LfD technique is Behavior Cloning (BC) [6, 59],

which involves imitating an expert agent given a set of demonstration trajectories by

learning to predict the expert’s action in a given state. This simple formulation has

proven successful in a variety of tasks, including autonomous driving [10], robotic

manipulation [58], and many more. In this project, we use the demonstrations to

estimate a “goal pose” and then use motion planning to manipulate the objects into

the desired pose.

Object Pose Estimation: Object pose estimation is the task of detecting and

inferring the 6DoF pose of an object, which includes its position and orientation.

Traditionally, the problem of 6D object pose estimation is tackled by matching feature

points between 3D models and images [47, 60]. However, these methods often require

rich visual features such as textures for a successful estimation and thus would fail

on texture-less objects. To tackle this, RGB-D images from depth cameras have been

shown to be able to work on texture-less objects [13, 36, 65], but are sensitive to

occlusions in the scene. Recent deep-learning based methods decouple pose estimation
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into semantic segmentation, translation and rotation estimation components [91],

leveraging keypoints [34], or fusing color and geometric information [35].

Although our task is related to that of object pose estimation, we do not aim

to estimate the pose of a single object; rather, we define the notion of “cross-pose”

which describes a task-specific relationship between a pair of objects, and focus on

the problem of predicting the task-specific relative SE(3) transformation between

interacting objects, which can be passed into a motion planner to produce a trajectory

for the manipulator to follow. There exist many manipulation pipelines that rely

on different object representations to tackle this problem of relative transformation

prediction. Traditionally, 6D object pose estimators as surveyed before, are used to

explicitly predict the 6DoF pose of manipulated objects and at test time, relative

transform between objects are obtained by matching the detected object 6DoF pose

to the desired object pose. However, training 6D object pose estimators requires

large object pose annotations which are resource-intensive to collect; moreover,

parameterizing an object pose by a fixed object pose template makes it difficult to

generalize to unseen objects within the same object category. More recently, [50, 57]

proposed to use 3D semantic keypoints as an alternative form of object representation

for manipulation. Specifically, semantic keypoint detectors are trained using large

hand-labeled task-specific object keypoints dataset, and at test time, keypoints are

predicted on new intra-category object instances. Detected keypoints are then used

to recover a local coordinate frame, and subsequently a relative transformation

can be extracted by solving a constraint optimization problem. Another line of

approach [27, 68] that is highly relevant to our work, instead approach this problem

by predicting dense descriptors over the observed object image/point cloud space. At

test time, given a set of query points from human task demonstrations, one can find the

matching query points on unseen intra-category object instances through descriptor

matching, and then extract a relative transformation via orthogonal Procrustes [80].

While this approach requires very few task demonstration to train on and also avoids

the need for large hand-annotated 6D pose or semantic keypoint dataset, it is however

very sensitive to the location and scale of the sampled query points. In practice, the

object region of which these query points are sampled from are hand selected by

humans.

Point Cloud Registration: Our method for estimating the cross-pose between
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two objects builds upon previous work in point cloud registration. The typical

objective in point cloud registration is to find the optimal rigid alignment between

two point clouds, to minimize the sum of squared distances between two sets of

points [80]. Traditionally, ICP [8] and its variants [1, 12, 29, 37, 61, 66] have been

used to compute the optimal rigid alignment between two point clouds. Deep Closest

Point (DCP) [85] avoids local minima common for ICP by seeking to approximate

correspondence in a high-dimensional learned feature space. Our method builds

upon the architecture of DCP for cross-pose estimation; however, in contrast to

point cloud registration, in which the objective is to minimize the sum of squared

distances between two sets of points, our objective is to estimate a task-specific pose

relationship between two different objects.

3.3 Problem Definition

We first define the notion of cross-pose in the context of object placement tasks.

Given two objects A and B, we define the “relative placement” task of placing object

A at a pose relative to object B. For example, consider the task of placing a lasagna

in an oven, placing a pot on a stove, or placing a mug on a rack, or placing a robot

gripper on the rim of a mug. All of these tasks involve placing one object (which we

call the “action” object A) at a semantically meaningful location relative to another

object (which we call the “anchor” object B)1.

In this work, we make the simplifying assumption that, for a given pair of objects

A and B, there is a single target relative pose needed to achieve a given task. Let

PA, PB be the point clouds of the objects, where Pk ∈ R3×Nk , and Nk denotes the

number of (x, y, z) points in the point cloud of object k. We define the task-specific

“cross-pose” between objects A and B via the function f(PA,PB) which has the

following properties: f(PA,PB) = I (where I is the identity) when A and B are each

in the target pose needed to complete the task (lasagna is in the oven; mug is on the

rack, etc). The task-specific cross-pose function f has these further properties:

f(T ·PA,PB) = T · f(PA,PB), f(PA,T ·PB) = f(PA,PB) ·T−1 (3.1)

1Note that the definition of action and anchor is symmetric; either object can be treated as the
action object and the other as the anchor.
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where T ∈ SE(3) is a pose transformation. We explore the desirable properties of

this definition of cross-pose in Appendix A.2.

As a corollary, if f(PA,PB) = I, then f(T ·PA,T ·PB) = I. In other words, the

target cross-pose is invariant to the reference frame or a global pose transformation.

Suppose that our task is to place a mug on a rack in a particular configuration. If

we transform (rotate and translate) the mug by transformation T and we similarly

transform the rack also by T, then the cross-pose between the mug and the rack will

be unchanged and the mug will still be “on” the rack, as seen in Figure 3.2.

Demonstration 
Pose

Transform 
Anchor

Transform 
Action

Figure 3.2: Visualization of the properties of cross-pose. If we transform both PA (mug) and
PB (rack) objects by the same transform, then the relative pose between these objects is unchanged
(the mug is still “on” the rack) so the cross-pose is unchanged.

We aim to learn a model, fθ, that takes as input the two point clouds and predicts

an SE(3) rigid transformation: fθ(PA,PB) = TAB, where TAB denotes the cross-pose

between object A and object B as defined above. We can then transform object A by

Tα and B by Tβ such that Tα ·TAB ·T−1
β = I. Given the properties of “cross-pose”

described above, this will shift objects A and B into the desired target pose for the

task. In practice, we typically transform only object A by Tα = T−1
AB without moving

object B, although in theory either (or both) objects can be moved.

3.4 Method

We frame the task of cross-pose estimation as a correspondence-prediction task

between a pair of point clouds, followed by an analytical least-squares optimization

to find the optimal cross-pose for the predicted correspondences. At a high level, our

method performs the following steps:
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1. Soft Correspondence Prediction: For a pair of objects A,B, a neural net-

work learns to predict a per-point embedding to establish a (soft) correspondence

between A and B.

2. Adjustment via Correspondence Residuals: To accommodate estimation

tasks where A and B may not be in direct contact or overlap, we apply a

pointwise residual vector to displace each of the predicted corresponding points.

This allows points in A to correspond to points in free space near B, for instance

when a pot (A) sits on top of a stove (B).

3. Find the optimal Cross-Pose Transform: We use a standard SVD solution

to the weighted Procrustes problem to find the optimal alignment given the

corrected soft correspondences.

Because each step above is fully-differentiable, our method can learn arbitrary

correspondences that solve arbitrary cross-pose estimation tasks. Our method is

heavily inspired by Deep Closest Point (DCP) [85]. The key difference between our

pose alignment model and DCP is that we are predicting the cross-pose between two

different objects for a given task instead of registering two point clouds of an identical

object. An overview of our method can be found in Figure 3.3. As we will discuss,

this correspondence-based approach allows our method to be translation-equivariant:

translating one object (A or B) will lead to a translated cross-pose prediction.

Embedding 
Network

Soft Correspondence & 
Correspondence Residual 

Motion 
Planning

Weighted 
SVD

Demo 
Task-Specific 
Cross-Pose

Apply Random 
SE(3)

Embedding 

Corrected
Corresponding Points (during inference)

Cross Object 
Attention

Transformer

Transformer

+

Figure 3.3: TAX-Pose training overview. Our method takes as input two point clouds given a
specific task and outputs the cross-pose between them for the task. TAX-Pose first learns point
clouds features using two DGCNN networks and two transformers. Then the learned features will
be input to two point residual networks to predict per-point soft correspondence, correspondence
residuals and SVD weights between the two objects. Then the desired cross-pose can be inferred
analytically using weighted singular value decomposition.

We now describe our Cross-Pose estimation algorithm in detail. To recap the

problem statement, given objects A and B with point cloud observations PA, PB re-
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spectively, our objective is to estimate the task-specific cross-pose TAB = f(PA,PB) ∈
SE(3). Note that the cross-pose between object A and B is defined with respect to a

given task (e.g. putting a lasagna in the oven, putting a mug on the rack, etc).

3.4.1 Cross-Pose Estimation via Soft Correspondence

Prediction

Soft Correspondence Prediction

The first step of the method is to compute two sets of correspondences between A
and B, one which maps from points in A to B, and one which maps from points in

B to A. These need not be a bijection, and can be asymmetric. We desire for this

correspondence to be differentiable, so following DCP we define a soft correspondence,

which assigns for every point pAi ∈ PA a corresponding virtual corresponding point

vA→B
i , which is a convex combination of points in PB, and vice versa. Formally:

vA→B
i = PBw

A→B
i s.t.

NB∑
j=1

wA→B
ij = 1 vB→A

i = PAw
B→A
i s.t.

NA∑
j=1

wB→A
ij = 1

with normalized weight vectors wA→B
i and wB→A

i . Importantly, these virtual cor-

responding points are not constrained to the surfaces of A or B; instead, they are

constrained to the convex hulls of PA and PB, respectively. Thus, we can reduce the

correspondence prediction problem to predicting wA→B
i and wB→A

i for each point in

PA and PB, respectively.

To accomplish this, we first encode each point cloud PA and PB into a latent

space using a neural network encoder. This encoder head is comprised of two distinct

encoders gA and gB, each of which receives point cloud PA and PB, respectively, and

outputs a dense, point-wise embedding for each object: ΦA = gA(PA), ΦB = gB(PB)

where ϕA
i ∈ ΦA is the d-dimensional embedding of the i-th point in object A, and

likewise for object B (see Figure 3.3). We zero-center each observation point cloud

before passing it into its encoder, and we employ a cross-object attention module

between the two embedding spaces. This enables our method to be translation-

equivariant, as discussed in Appendix A.3.

Since the point-wise embeddings ϕA
i and ϕB

i have the same dimension d, we can

select the inner product of the space as a similarity metric between two embeddings.
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For any point pAi , we can extract the desired normalized weight vector wB→A
i with

the softmax function:

wA→B
i = softmax

(
Φ⊤

Bϕ
A
i

)
, wB→A

i = softmax
(
Φ⊤

Aϕ
B
i

)
(3.3)

Adjustment via Correspondence Residuals

Correspondences which are constrained to the convex hull of objects are insufficient

to express a large class of desired tasks. For instance, we might want a point on the

handle of a teapot to correspond to some point above a stovetop, which lies outside

the convex hull of the points on the stovetop. To allow for such placements, we further

learn a residual vector that corrects each virtual corresponding point, allowing us

to displace each virtual corresponding point to any arbitrary location that might be

suitable for the task. Concretely, we use a point-wise neural network gR which maps

each embedding into a 3-D residual vector:

rA→B
i = gR

(
ϕA
i

)
, rB→A

i = gR
(
ϕB
i

)
Applying these to the virtual corresponding points, we get our corrected virtual

correspondence:

ṽA→B
i = vA→B

i + rA→B
i , ṽB→A

i = vB→A
i + rB→A

i (3.4)

as shown in Figure 3.4.

Least-Squares Cross-Pose Optimization with Weighted SVD

We now have two sets of points and their associated corrected virtual correspondence:(
PA, ṼB

)
and

(
PB, ṼA

)
, where ṼB =

[
ṽA→B
1 . . . ṽA→B

NA

]⊤
and similarly for ṼA.

We would like to compute the cross-pose transformation TAB that minimizes the

weighted distance between correspondences, where the weights signify the importance

of specific correspondences and are predicted as an additional channel of the encoding

neural networks, denoted as αA, αB for PA,PB respectively. This is the well-known

weighted Procrustes problem, for which there exists an analytical solution (see

Appendix A.4 for details). We use a differentiable SVD operation [54], which allows
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Figure 3.4: Computation of corrected virtual correspondence. Given a pair of objects A,B,
a per-point soft correspondence vA→B

i is first computed. Next to allow the predicted correspondence
to lie beyond object’s convex hull, these soft correspondences are adjusted with correspondence
residuals, rA→B

i , which results in the corrected virtual correspondence, ṽA→B
i .

us to compute a rotation R and translation t that minimizes the weighted distance

between correspondences (where TAB = [R, t]). Figure 3.5 goes through a visual

example of extracting cross-pose from corrected virtual correspondence through

weighted SVD.

3.4.2 Supervision

To train the encoders gA(PA), gB(PB) as well as the residual networks gR
(
ϕA
i

)
,

gR
(
ϕB
i

)
, we use a set of losses defined below. We assume we have access to a set of

demonstrations of the task, in which the action and anchor objects are in the target

relative pose such that TAB = I.

Point Displacement Loss

Instead of directly supervising the rotation and translation (as is done in DCP),

we supervise the predicted transformation using its effect on the points. For this

loss [45, 91], we take the point clouds of the objects in the demonstration configuration,

and transform each cloud by a random transform, P̂A = TαPA, and P̂B = TβPB.

This would give us a ground truth transform of TGT
AB = TβT

−1
α ; the inverse of this
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Figure 3.5: Illustration of weighted SVD. Given a point cloud, PA, the associated corrected
virtual correspondence, ṼB, and the per-point weights predicted, αA, we extract a SE(3) transfor-
mation, T. We can then apply to the original point cloud PA to result in a desirable cross-pose for
the task.

transform would move object B to the correct position relative to object A. Using this

ground truth transform, we compute the MSE loss between the correctly transformed

points and the points transformed using our prediction.

Ldisp =
∥∥TABPA −TGT

ABPA
∥∥2 +

∥∥T−1
ABPB −TGT−1

AB PB
∥∥2 (3.5)

Direct Correspondence Loss

While the Point Displacement Loss best describes errors seen at inference time, it can

lead to correspondences that are inaccurate but whose errors average to the correct

pose. To improve these errors we directly supervise the learned correspondences ṼA

and ṼB:

Lcorr =
∥∥∥ṼA −TGT

ABPA

∥∥∥2 +
∥∥∥ṼB −TGT−1

AB PB

∥∥∥2 . (3.6)

Correspondence Consistency Loss

Furthermore, a consistency loss can be used. This loss penalizes correspondences

that deviate from the final predicted transform. A benefit of this loss is that it can

help the network learn to respect the rigidity of the object, while it is still learning to

accurately place the object. Note, that this is similar to the Direct Correspondence

Loss, but uses the predicted transform as opposed to the ground truth one. As such,
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this loss requires no ground truth:

Lcons =
∥∥∥ṼA −TABPA

∥∥∥2 +
∥∥∥ṼB −T−1

ABPB

∥∥∥2 . (3.7)

3.4.3 Overall Training Procedure

We train with a combined loss Lnet as,

Lnet = Ldisp + λ1Lcorr + λ2Lcons (3.8)

where λ1 and λ2 are hyperparameters. We use a similar network architecture as

DCP [85], which consists of DGCNN [86] and Transformer [81]. We briefly experi-

mented with Vector Neurons [24] and found that this led to worse performance on

this task. In order to quickly adapt to new tasks, we optionally pre-train the DGCNN

embedding networks over a large set of individual objects using the InfoNCE loss [52]

with a geometric distance weighting and random transformations, to learn SE(3)

invariant embeddings.

Pre-Training

We utilize pre-training for the embedding network for the mug hanging task, and

describe the details below.

We pretrain embedding network for each object category (mug, rack, gripper),

such that the embedding network is SE(3) invariant with respect to the point clouds

of that specific object category. Specifically, the mug-specific embedding network is

pretrained on 200 ShapeNet [15] mug instances, while the rack-specific and gripper-

specific embedding network is trained on the same rack and Franka gripper used at

test time, respectively.

For the network to be trained to be SE(3) invariant, we pre-train with InfoNCE

loss [52] with a geometric distance weighting and random SE(3) transformations.

Specifically, given a point cloud of an object instance, PA, of a specific object

category A, and an embedding network gA, we define the point-wise embedding for

as ΦA = gA(PA), where ϕA
i ∈ ΦA is a d-dimensional vector for each point pAi ∈ PA.

Given a random SE(3) transformation, T, we define ΨA = gA(TPA).
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The weighted contrastive loss used for pretraining, Lwc, is defined as

Lwc : = −
∑

pAi ∈PA

log

[
exp(dij ·

(
ϕA⊤
i ψA

j

)
)∑

pAk ∈PA
exp(dik ·

(
ϕA⊤
i ψA

k

)
)

]
(3.9)

dij : =

µ tanh (λ∥pAi − pAj ∥2), if i ̸= j

1, otherwise
(3.10)

µ : = max (tanh (λ∥pAi − pAj ∥2)) (3.11)

For this pretraining, we use λ := 10.

3.5 Experiments

To evaluate TAX-Pose, we conduct a wide range of simulated and real-world experi-

ments on two classes of relative placement tasks: Object Placement and Mug Hanging.

The Object Placement objective is to place an action object on a flat surface on or

near an anchor object. The Mug Hanging task objective is to grasp and then hang

unseen mugs on a rack.

3.5.1 PartNet-Mobility Placement

Task Description

The PartNet-Mobility Placement task is defined as placing a given action object

relative to an anchor object based on a semantic goal positions. We select a set

of household furniture objects from the PartNet-Mobility dataset [90] as the an-

chor objects, and a set of small rigid objects released with the Ravens simulation

environment [94] as the action objects. For each anchor object, we define a set of

semantic goal positions (i.e. ‘top’, ‘left’, ‘right’, ‘in’), where action objects should be

placed relative to each anchor. Each semantic goal position defines a unique task

in our cross-pose prediction framework. Given a synthetic point cloud observation

of both objects, the task is to predict a cross-pose that places the object at the

specific semantic goal. We train a single model across anchor/action categories, one

model per semantic task (for a total of 4 models). We train entirely on simulated
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data, and transfer directly to real world with no finetuning. Details can be found

in Appendix A.5. We report rotation (ER) and translation (Et) error between our

predicted transform and the ground truth as geodesic rotational distance [32, 39] and

L2 distance, respectively.

Baselines

We compare our method to the following baselines:

• E2E Behavioral Cloning : Generate motion-planned trajectories using OMPL

that take the action object from start to goal. These serve as “expert” trajecto-

ries for Behavioral Cloning (BC), where we train a neural network to output a

policy that, at each time step, outputs an incremental 6-DOF transformation

that imitates the expert trajectory

• E2E DAgger : Using the same BC dataset as above, we train a policy using

DAgger [59]

• Trajectory Flow : Using the same BC dataset with DAgger, we train a policy to

predict a dense per-point 3D flow vector at each time step instead of a single

incremental 6-DOF transformation. Given this dense per-point flow, we can

extract a rigid transformation using SVD yielding the next pose

• Goal Flow : Instead of training a multi-step policy to reach the goal, train a

network to output a single dense prediction which assigns a per-point 3D flow

vector that points from each action object point directly to its corresponding

goal location. We extract a rigid transformation from these flow vectors using

SVD, yielding the goal pose

AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 42.26 0.73 37.82 0.82 37.15 0.65 44.84 0.68 30.69 1.06 40.38 0.69 45.09 0.76 45.00 0.79 45.65 0.64

E2E DAgger [59] 37.96 0.69 34.15 0.76 36.61 0.66 40.91 0.65 24.87 0.97 35.95 0.70 40.34 0.74 32.86 0.79 39.45 0.53

Ablations
Traj. Flow [26] 35.95 0.67 31.24 0.82 39.21 0.72 34.35 0.66 28.48 0.75 37.14 0.59 29.49 0.70 39.60 0.76 39.69 0.48

Goal Flow [26] 26.64 0.17 25.88 0.15 25.05 0.15 30.62 0.15 27.61 0.10 28.01 0.18 20.96 0.24 29.02 0.23 22.13 0.20

Ours TAX-Pose 6.64 0.16 6.85 0.16 2.05 0.10 3.87 0.12 4.04 0.08 12.71 0.31 6.87 0.37 5.89 0.13 14.93 0.18

Table 3.1: Goal Inference Rotational and Translational Error Results (↓). Rotational errors (ER)
are in degrees (◦) and translational errors (Et) are in meters (m). The lower the better.
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Anchor

Action

Franka 
Panda

Azure 
Kinect

Anchor 
Octomap

Figure 3.6: Real-world experiments illustration.
Left: work-space setup for physical experiments. Cen-
ter: Octomap visualization of the perceived anchor
object.

Goal Flow 0.18 0.38 0.37

TAX-Pose 0.95 0.95 0.85

Table 3.2: Real-world goal placement
success rate

Real-World Experiments

We design a set of of real world experiments to evaluate the performance of our

cross-pose prediction model on real objects. We choose several real-world furniture

objects similar to those found in the simulated training categories, annotate semantic

goal locations for each, and choose several analogous action objects (bowl, block) to

place at the goals. For each semantic goal, the task is to predict the appropriate

cross-pose directly from point clouds recorded by a depth camera and have a Franka

Emika Panda robot place the action object at the cross-pose (see Fig. 3.6 for the

workspace). We compare TAX-Pose and the Goal Flow baseline for pose estimation

and use OMPL motion planning on top of an Octomap [38] scene reconstruction

to plan placement trajectories. As ground-truth cross-pose is hard to define in the

real-world, we qualitatively define a “goal region” for each anchor object. Success is

defined as the inferred pose of the action object landing inside the goal region of the

anchor object. Details can be found in Appendix A.5.

Results

In both our simulated experiments (Table 3.1) and our real-world experiments

(Table 3.2), we find that TAX-Pose outperforms the baseline methods. In simulated

experiments, while direct regression via goal-flow outperforms TAX-Pose in some

rare cases of translation prediction, TAX-Pose performs substantially better than

all other baselines in rotation prediction. Moreover, in real-world experiments,

due to the provably translation-equivariant property of TAX-Pose, it generalizes to
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novel distributions of starting poses better than the Goal Flow regression baseline,

successfully placing action objects into the goal regions.

3.5.2 Mug Hanging

Task Description

The Mug Hanging task is consisted of two sub tasks: grasp and place. See Figure 3.7

for a detailed breakdown of the mug hanging task in stages.

Figure 3.7: Visualization of mug hanging task (upright pose). Mug hanging task is consisted
of two stages, given a mug that is randomly initialized on the table, the model first predicts a SE(3)
transform from gripper end effector to the mug rim Tg→m, then grasp it by the rim. Next, the
model predicts another SE(3) transform from the mug to the rack Tm→r such that the mug handle
gets hanged on the the mug rack.

To successfully execute the manipulation task of hanging a mug on a rack by

the mug’s handle requires the successful inference of two sequential task-specific

cross-poses: 1) predict a successful grasp pose; 2) predict the hanging pose of mug

relative to the rack. In the first stage, it requires our model to reason about the

cross-pose between the gripper and the mug, while the second stage requires prediction

of the cross-pose between the mug and the rack.

Task Setup

To evaluate the performance of our method in simulation, we utilize Pybullet [18] and

simulate a Franka Panda arm situated above a table with 4 depth cameras placed

at each table corner. For training, the model is provided with 10 demonstrations in

simulation, each on a different mug instances. At test time, we measure the task

execution success on unseen mug instances, with randomly generated initial poses.
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To evaluate robustness to different initial poses, we evaluate on two sets of initial

poses:

1. Upright Pose: where the mug is initialized to have an upright orientation, and

placed randomly on the surface of the table

2. Arbitrary Pose: where the mug is initialized to have arbitrary orientation and

position, irrespective of the location of the table surface

We measure task success rates of the following task categories:

• Grasping : where success is achieved when the object is grasped stably

• Placing : where success is achieved when the mug is placed stably on the rack

• Overall : when the predicted transforms enable both grasp and place success.

Baselines

In simulation, we compare our method to the results described in [68].

• Dense Object Nets (DON) [27]: Using manually labeled semantic keypoints

on the demonstration clouds, DON is used to compute sparse correspondences

with the test objects. These correspondences are converted to a pose using

SVD. A full description of usage of DON for the mug hanging task can be found

in [68].

• Neural Descriptor Field (NDF) [68]: Using the learned descriptor field

for the mug, the positions of a constellation of task specific quarry points are

optimized to best match the demonstration using gradient descent.

Training Data

To be directly comparable with the baselines we compared to, we use the exact same

sets of demonstration data used to train the network in NDF [68], where the data are

generated via teleportation in PyBullet, collected on 10 mug instances with random

pose initialization.

We compare our method to Neural Descriptor Field (NDF) [68] and Dense Object

Nets (DON) [27]. Details of these methods can be found in [68].

51



3. Task-Specific Cross-Pose Estimation for Robot Manipulation

Training and Inference

Using the pretrained embedding network for mug and gripper, we train a grasping

model for the grasping task to predict a transformation Tg→m in gripper’s frame

from gripper to mug to complete the grasp stage of the task. Similarly, using the

pretrained embedding network for rack and mug, we train a placement model for the

placing task to predict a transformation Tm→r in mug’s frame from mug to rack to

complete the place stage of the task. Both model are trained with the same combined

loss Lnet as described in the main paper. During inference, we simply use grasping

model to predict the Tg→m at test time, and placement model to predict Tm→r at

test time.

Motion Planning

After the model predicts a transformation Tg→m and Tm→r, using the known gripper’s

world frame pose, we calculate the desired gripper end effector pose at grasping and

placement, and pass the end effector to IKFast to get the desired joint positions

of Franka at grasping and placement. Next we pass the desired joint positions at

gripper’s initial pose, and desired grasping joint positions to OpenRAVE motion

planning library to solve for trajectory from gripper’s initial pose to grasp pose, and

then grasp pose to placement pose for the gripper’s end effector.

Grasp Place Overall Grasp Place Overall
Upright Pose Arbitrary Pose

DON [27] 0.91 0.50 0.45 0.35 0.45 0.17
NDF [68] 0.96 0.92 0.88 0.78 0.75 0.58

TAX-Pose (Ours) 0.99 0.97 0.96 0.75 0.84 0.63

Table 3.3: Mug on Rack Simulation Task Success Results

Results

We quantitatively evaluate our method in simulation on 100 trials on different initial

configurations on unseen mug instances with randomly generated pose configurations

for both Upright and Arbitrary poses and compare the performance of our method

against DON [27] and NDF [68]. See Table 3.3 for full simulation results.
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Model # Demos Used
1 5 10

DON [27] 0.32 0.36 0.45
NDF [68] 0.46 0.70 0.88

TAX-Pose (Ours) 0.77 0.90 0.96

Table 3.4: # Demos vs. Overall Success

Ablation Analysis

Number of Demonstrations. To study the effects of number of demonstrations used

on the performance of our method, we report quantitative performance of our method

alongside baseline methods trained on different numbers of demonstrations (10, 5, 1)

for upright pose mug hanging task as seen in Table 4. Our method outperforms the

baselines for all number of demonstrations; TAX-Pose can perform well even with

just 5 demonstrations.

Cross-Pose Estimation Design Choices

We analyze the effects of the different design choices made in our Cross-Pose

estimation algorithm for the upright pose mug hanging task. In order to examine

the effects of different design choices in the training pipeline, we conduct ablation

experiments with final task-success (grasp, place, overall ) as evaluation metrics for

Mug Hanging task with upright pose initialization for the following components of our

method, see Table 3.5 for full ablation results. For consistency, all ablated models

are trained to 15K batch steps.

1. Loss. In the full pipeline reported, we use a weighted sum of the three types of

losses described in Section 4.2 of the paper. Specifically, the loss used Lnet is

given by

Lnet = Ldisp + λ1Lcons + λ2Lcorr (3.12)

where we chose λ1 = 0.1, λ2 = 1 after hyperparameter search.

We ablate usage of all three types of losses, by reporting the final task perfor-

mance in simulation for all experiments, specifically, we report task success on

the following Lnet variants.

(a) Remove the point displacement loss term, Ldisp, after which we are left
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with

L′
net = (0.1)Lcons + Lcorr

(b) Remove the direct correspondence loss term, Lcorr, after which we are left

with

L′
net = Ldisp + (0.1)Lcons

(c) Remove the correspondence consistency loss term, Lcons, after which we

are left with

L′
net = Ldisp + Lcorr

(d) From testing loss variants above, we found that the point displacement

loss is a vital contributing factor for task success, where removing this loss

term results in no overall task success, as shown in Table 3.5. However, in

practice, we have found that adding the correspondence consistency loss

and direct correspondence loss generally help to lower the rotational error

of predicted placement pose compared to the ground truth of collected

demos. To further investigate the effects of the combination of these two

loss terms, we used a scaled weighted combination of Lcons and Lcorr, such

that the former weight of the displacement loss term is transferred to

consistency loss term, with the new λ1 = 1.1, and with λ2 = 1 stays

unchanged. Note that this is different from variant (a) above, as now the

consistency loss given a comparable weight with dense correspondence loss

term, which intuitively makes sense as the consistency loss is a function of

the predicted transform TAB to be used, while the dense correspondence

loss is instead a function of the ground truth transform, TGT
AB, which

provides a less direct supervision on the predicted transforms. Thus we

are left with

L′
net = (1.1)Lcons + Lcorr

2. Usage of Correspondence Residuals. After predicting a per-point soft

correspondence between objects A and B, we adjust the location of the predicted

corresponding points by further predicting a point-wise correspondence residual

vector to displace each of the predicted corresponding point. This allows the
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predicted corresponding point to get mapped to free space outside of the convex

hulls of points in object A and B. This is a desirable adjustment for mug

hanging task, as the desirable cross-pose usually require points on the mug

handle to be placed somewhere near but not in contact with the mug rack, which

can be outside of the convex hull of rack points. We ablate correspondence

residuals by directly using the soft correspondence prediction to find the cross-

pose transform through weighted SVD, without any correspondence adjustment

via correspondence residual.

3. Weighted SVD vs Non-weighted SVD. We leverage weighted SVD as

described in Section 4.1 of the paper as we leverage predicted per-point weight

to signify the importance of specific correspondence. We ablate the use of

weighted SVD, and we use an un-weighted SVD, where instead of using the

predicted weights, each correspondence is assign equal weights of 1
N

, where N

is the number of points in the point cloud P used.

4. Pretraining. In our full pipeline, we pretrain the point cloud embedding

network such that the embedding network is SE(3) invariant. Specifically, the

mug-specific embedding network is pretrained on 200 ShapeNet mug objects,

while the rack-specific and gripper specific embedding network is trained on

the same rack and Franka gripper used at test time, respectively. We conduct

ablation experiments where,

(a) We omit the pretraining phase of embedding network

(b) We do not finetune the embedding network during downstream training

with task-specific demonstrations.

Note that in practice, we find that pretraining helps speed up the downstream

training by about a factor of 3, while models with or without pretraining both

reach a similar final performance in terms of task success after both models

converge.

5. Usage of Transformer as Cross-object Attention Module. In the full

pipeline, we use transformer as the cross-object attention module, and we ablate

this design choice by replacing the transformer architecture with a simple 3-layer

MLP with ReLU activation and hidden dimension of 256, and found that this
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leads to worse place and grasp success.

6. Dimension of Embedding. In the full pipeline, the embedding is chosen to

be of dimension 512. We conduct experiment on much lower dimension of 16,

and found that with dimension =16, the place success is much lower, dropped

from 0.97 to 0.59.

Ablation Experiment Grasp Place Overall

No Ldisp 0.01 0 0

No Lcorr 0.89 0.91 0.84

No Lcons 0.99 0.95 0.94

Scaled Combination of Lcorr&Lcons ((1.1)Lcons + Lcorr) 0.10 0.01 0.01

No Adjustment via Correspondence Residuals 0.97 0.96 0.93

Unweighted SVD 0.92 0.94 0.88

No Finetuning for Embedding Network 0.98 0.93 0.91

No Pretraining for Embedding Network 0.99 0.72 0.71

3-Layer MLP In Place of Transformer 0.90 0.82 0.76

Embedding Network Feature Dim = 16 0.98 0.59 0.57

TAX-Pose (Ours) 0.99 0.97 0.96

Table 3.5: Mug Hanging Ablations Results

3.5.3 Failure Cases

Some failure cases for TAX-Pose happens when the predicted gripper misses the

rim of the mug by a xy-plane translation error, thus resulting in failure of grasp, as

seen in Figure 3.8. And common failure mode for the mug placement subtask is

charactereized by erroneous transform prediction that results in the mug’s handle

completely missing the rack hanger, thus resulting in placement failure, as seen in

Figure 3.9.
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.5

Figure 3.8: Failure of grasp prediction. Predicted TAX-Pose for the gripper misses the rim of
mug.

.5

Figure 3.9: Failure of place prediction. Predicted TAX-Pose for mug results in the mug handle
misses the rack hanger completely.

Figure 3.10: An illustration of unsuccessful TAX-Pose predictions for mug hanging. In
both subfigures, red points represent the anchor object, blue points represent action object’s starting
pose, and green points represent action object’s predicted pose.

3.6 Limitations & Future Directions

While our method is able to accurately predict the requisite transform to achieve a

given task, it does require an accurate segmentation of the objects of importance.

Additionally, while our method is tested with some occlusions, it performs better with

a mostly complete cloud of the object being manipulated. This means that multiple

views of that object must be captured. This can be done with multiple cameras, or

by lifting the object and capturing multiple views. Additionally, as our method is a
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function of correspondences, symmetries could cause potential problems. This could

be caused by interacting with symmetric objects or multimodality in the task to

be completed, such as objects with multiple valid placement surfaces, or racks with

multiple usable hangers. These problems could be alleviated using a consensus-based

method for mapping from multimodal soft correspondences to a single transform. We

leave this for future work.

3.7 Conclusions

In this part of the thesis, we show that dense soft correspondence can be used

to learn task specific object relationships that generalize to novel object instances.

Correspondence residuals allow our method to estimate correspondences to virtual

points, outside of the objects convex hull, drastically increasing the number of tasks

this method can complete. We further show that this “cross-pose” can be learned for

a task, using a small number of demonstrations. Finally, we show that our method

far outperforms the baselines on two challenging tasks in both real and simulated

experiments.
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Conclusions

In conclusions, we explored and presented two different approaches to training accurate,

generalizable 6D pose estimator for manipulation tasks with minimal supervision

needed, for image and point cloud data respectively.

In the first part, we show that through the use of Modified Rodrigues Parameters,

we are able to open the closed manifold of SO(3), improving the convergence behavior

of the rotation averaging problem. We show that Iterative Modified Rodrigues Pro-

jective Averaging is able to outperform the naive application of relative-orientation

supervision in both direct parameter optimization and image-based rotations estima-

tion from neural networks. We hope our method allows more systems to convert the

relative supervision of relative methods, like ICP, to consistent and accurate absolute

poses.

In the second part, we presented a new lens to solving pose estimation for

manipulation tasks, by instead of seeking to obtain accurate and robust single

object absolute poses, we instead of directly train network to learn to predict the

desired task-specific cross-pose between a pair of objects by learning from a few task

demonstrations. We show that dense soft correspondence can be used to learn task

specific object relationships that generalize to novel object instances. Correspondence

residuals allow our method to estimate correspondences to virtual points, outside of

the objects convex hull, drastically increasing the number of tasks this method can

complete. We further show that this “cross-pose” can be learned for a task, using a

small number of demonstrations. Finally, we show that our method far outperforms
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the baselines on two challenging tasks in both real and simulated experiments.

60



Appendix A

Appendix

A.1 Additional Local Rotation Averaging

Experiment Results on Structure from

Motion Dataset

We report results on all structure from motions datasets available in the 1DSfM [89].

Each environment is tested with 5 random initializations and the estimated rotations

are updated by each algorithm in batches of size 64, for 20K iterations. While

Iterative Modified Rodrigues Projective Averaging, MRP (Ours) outperform all

PMG [17] based methods, the direct Quaternion optimization regularly converges

to relatively accurate local optima more quickly than ours, as shown in Table A.3

and Figure A.1. That being said, our method converges to a more accurate final

configuration for most datasets, with respect to mean relative error, Table A.4, mean

absolute error, Table A.1, and median absolute error, Table A.2. Our method, as

well as the baselines, do not appear to perform well on the larger datasets. As a

reminder, this algorithm is specifically designed for training deep learned methods,

not for direct rotation optimization. When training deep learned methods, all of

the weights are shared, allowing the network to use a single example to improve the

accuracy of all rotations near that example. Additionally, we see poor performance on

datasets with extremely large observation noise, specifically Gendarmenmarkt, whose

median observation error is over 12 degrees. All dataset statistics can be found in
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Table A.5. These datasets do not fully cover the orientation space, and tend to largely

cover only variations in yaw. For results on datasets that represent full coverage of

the orientation space, see the Uniformly Sampled Rotations dataset or the Neural

Network Optimization dataset.
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Figure A.1: Optimization results for all 1DSfM [89] datasets, ordered by number of
cameras (N). Median average-pairwise angular error (◦) is shown with shaded areas representing
the first and third quartile over all training sessions. The max average-pairwise angular error for
each algorithm at each iteration is shown as a dashed line.
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Dataset
Mean Absolute Error

PGM 4D PGM 6D PGM 9D Quat MRP (Ours)

Ellis Island 7.5 7.03 6.41 7.44 5.59

NYC Library 9.23 8.32 7.38 8.92 6.03

Piazza del Popolo 16.37 16.1 15.88 15.24 10.03

Madrid Metropolis 13.55 13.23 11.78 13 11.25

Yorkminster 9.13 8.34 7.48 8.56 5.3

Montreal Notre Dame 8.17 7.65 6.24 7.76 4.02

Tower of London 8.02 8.12 8.36 7.44 5.58

Notre Dame 8.71 7.96 7.03 8.55 5.80

Alamo 9.41 11.98 10.98 8.74 6.42

Gendarmenmarkt 66.41 73.7 68.29 46.63 48.82

Union Square 32.46 40.86 40.92 13.44 10.22

Vienna Cathedral 29.18 31.42 32.94 18.67 13.60

Roman Forum 63.23 64.85 60.51 18.11 55.65

Piccadilly 53.35 84.37 106.84 26.29 29.98

Trafalgar 121.93 124.18 125.15 69.65 91.67

Table A.1: Final Mean Absolute Error (◦) on all 1DSfM [89] datasets after 20K iterations
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Dataset
Median Absolute Error

PGM 4D PGM 6D PGM 9D Quat MRP (Ours)

Ellis Island 3.68 3.25 3.12 4.04 2.96

NYC Library 6.11 5.52 4.85 6.11 4.04

Piazza del Popolo 9.51 9.32 9.32 9.29 6.12

Madrid Metropolis 9.37 9.06 7.86 9.07 6.99

Yorkminster 6.44 5.77 4.56 6.11 3.29

Montreal Notre Dame 3.86 3.56 2.86 3.90 2.30

Tower of London 4.87 5.84 6.36 4.64 3.59

Notre Dame 4.39 3.73 3.09 4.48 2.61

Alamo 4.73 5.77 5.16 4.90 3.48

Gendarmenmarkt 64.08 71.57 62.9 43.91 45.92

Union Square 27.75 34.68 34.84 9.75 6.85

Vienna Cathedral 13.80 13.77 16.73 11.67 6.34

Roman Forum 53.78 62.46 57.71 16.56 41.95

Piccadilly 42.34 79.74 107.32 19.67 15.09

Trafalgar 126.71 129.57 130.45 65.54 89.09

Table A.2: Final Median Absolute Error (◦) on all 1DSfM [89] datasets after 20K iterations

64



A. Appendix

Dataset
Mean nAUC

PGM 4D PGM 6D PGM 9D Quat MRP (Ours)

Ellis Island 22.56 24.07 25.02 15.05 14.58

NYC Library 28.53 31.12 32.07 18.20 16.84

Piazza del Popolo 37.36 44.18 43.98 25.13 22.21

Madrid Metropolis 35.91 38.49 39.15 24.34 24.48

Yorkminster 36.82 42.37 44.91 18.71 18.43

Montreal Notre Dame 33.97 37.54 40.37 17.69 16.19

Tower of London 39.98 45.99 49.54 18.14 18.85

Notre Dame 38.77 43.04 46.05 20.78 21.10

Alamo 39.87 49.08 50.22 20.47 22.05

Gendarmenmarkt 97.45 101.77 100.11 74.76 71.39

Union Square 77.22 87.01 89.76 34.60 46.20

Vienna Cathedral 72.25 81.07 83.48 38.74 42.94

Roman Forum 103.59 105.73 108.88 52.05 82.30

Piccadilly 115.83 123.41 126.16 62.87 78.31

Trafalgar 126.43 126.49 126.5 108.19 115.90

Table A.3: Final Mean Normalized AUC on all 1DSfM [89] datasets after 20K iterations
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Dataset
Mean Relative Error

PGM 4D PGM 6D PGM 9D Quat MRP (Ours)

Ellis Island 12.21 11.49 10.37 11.87 9.03

NYC Library 14.29 12.94 11.51 13.67 9.30

Piazza del Popolo 21.91 21.24 20.64 20.74 13.49

Madrid Metropolis 20.43 19.84 17.85 19.62 17.09

Yorkminster 13.73 12.64 11.58 12.97 8.35

Montreal Notre Dame 12.5 11.59 9.58 11.93 6.22

Tower of London 12.41 12.24 12.44 11.56 8.71

Notre Dame 14.15 13.1 11.65 13.86 9.66

Alamo 14.23 17.47 15.75 13.17 9.78

Gendarmenmarkt 84.21 89.61 84.77 60.25 62.98

Union Square 44.44 55.4 55.94 19.98 15.52

Vienna Cathedral 41.8 45.62 44.18 26.64 20.32

Roman Forum 79.24 77.18 78.03 25.04 64.25

Piccadilly 74.25 105.15 122.06 38.61 46.21

Trafalgar 126.18 126.42 126.49 81.28 97.53

Table A.4: Final Mean Relative Error (◦) on all 1DSfM [89] datasets after 20K iterations
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Dataset # Nodes # Edges Mean Error Median Error

Ellis Island 227 20K 12.52 2.89

NYC Library 332 21K 14.15 4.22

Piazza del Popolo 338 25K 8.4 1.81

Madrid Metropolis 341 24K 29.31 9.34

Yorkminster 437 28K 11.17 2.68

Montreal Notre Dame 450 52K 7.54 1.67

Tower of London 472 24K 11.6 2.59

Notre Dame 553 104K 14.16 2.7

Alamo 577 97K 9.1 2.78

Gendarmenmarkt 677 48K 33.33 12.3

Union Square 789 25K 9.03 3.61

Vienna Cathedral 836 103K 11.28 2.59

Roman Forum 1084 70K 13.84 2.97

Piccadilly 2152 309K 19.1 4.93

Trafalgar 5058 679K 8.64 3.01

Table A.5: Dataset sizes and observation accuracies (◦) for all 1DSfM [89] datasets

A.2 Definition and Properties of Cross-Pose

Relative placement tasks: In this paper, we are specifically interested in “relative

placement tasks,” which we define here. Loosely speaking, a relative placement task

is a task such that only the relationship between objects A and B is important for

task success. Specifically, suppose that T∗
A and T∗

B are poses for objects A and B
respectively (in some reference frame) for which a desired task is complete (lasagna

is in the oven; mug is on the rack, etc). Then for a relative placement task, if objects

A and B are in poses T ·T∗
A and T ·T∗

B (respectively) for any transform T, then the

task will also be complete. In other words, if T∗
B represents the pose of the oven and

T∗
A represents the pose of the lasagna in that oven (at task completion); then if we

transform the lasagna pose by T and likewise transform the oven pose by T, then

the lasagna will still be located inside the oven.

Definition of Cross-Pose: In this section we will investigate the properties of
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our definition of “cross-pose”, and explain why these properties are desirable. Let

us start by assuming that the “cross-pose” function for objects A and B takes the

form f(PA,PB) ∈ SE(3), where PA and PB are the point clouds associated with

objects A and B, respectively. For convenience of the below analysis, we overload the

function f to also receive as input the poses TA, TB of objects A and B respectively

(with respect to a global reference frame); in other words, we define cross-pose such

that f(TA, TB) := f(PA,PB).

We would like our definition of “cross-pose” to have the following properties:

1) Goal Consistency : Suppose that T∗
A and T∗

B are the poses of objects A and B
in a desired relative configuration that achieves the relative placement task. Then if

both objects are transformed by the same transform T, their cross-pose should be

unchanged. Specifically, we define “goal consistency” as the following property:

f(T∗
A,T

∗
B) = f(T ·T∗

A,T ·T∗
B)

for any transform T ∈ SE(3). This definition is consistent with the notion of success

for a relative placement task defined above; if objects A and B are in a configuration

such that the relative placement task is complete, then the cross-pose will be a

constant value.

Let us define the cross-pose for which the task is complete as f(T∗
A,T

∗
B) = T∗

AB ∈
SE(3). In our paper, we chose T∗

AB = I where I is the identity. We explain below

why the identity is a natural choice.

Note that we do not require that this property holds true if the objects are not in

the desired relative configuration; thus, if objects A and B are in arbitrary poses TA

and TB respectively (where TA ̸= T∗
A and TB ̸= T∗

B), then we do not require that

f(TA,TB) = f(T ·TA,T ·TB).

2) Usability : The purpose of estimating the cross-pose is to determine how to

transform the objects into a configuration such that the relative placement task

is successful; in other words, suppose that objects A and B have a cross-pose of

f(TA,TB). Then we wish to use the “cross-pose” f(TA,TB) and the desired “cross-

pose” f(T∗
A,T

∗
B) = T∗

AB to compute a transform T∆ such that we can transform

object A by T∆ to achieve the desired configuration for the relative placement task. In

other words, we wish to compute T∆ such that T∆ ·TA and TB are in a configuration
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that completes the task, i.e. objects A and B will be in poses T · T∗
A and T · T∗

B

(respectively) for some transform T; by the definition of the relative placement task

above, this configuration is considered a task success. As we will see below, our

definition of cross-pose allow us to compute T∆ easily.

Cross Pose Definitions and Its Properties The definition of “cross-pose”

used in our method is:

f(TA,TB) := TA ·T−1
B . (A.1)

Using only this definition, we obtain the following properties:

f(T ·TA,TB) = T ·TA ·T−1
B , f(TA,T ·TB) = TA ·T−1

B ·T
−1.

Without any extra assumptions, goal consistency does not hold for this definition

of cross-pose; if both objects are transformed by the same transform, the resulting

transform can differ from the original cross-pose:

f(T ·T∗
A,T ·T∗

B) = T ·T∗
A ·T∗−1

B ·T−1 ̸= T∗
A ·T∗−1

B = f(T∗
A,T

∗
B).

In order to achieve the property of goal consistency, we can add the assumption that

f(T∗
A,T

∗
B) = T∗

AB = I (A.2)

in the goal configuration. This implies that

f(T∗
A,T

∗
B) = T∗

A ·T∗−1
B = I.

Using this assumption, we then obtain that

f(T ·T∗
A,T ·T∗

B) = I,

which satisfies the definition of goal consistency, since we then have f(T∗
A,T

∗
B) =

f(T ·T∗
A,T ·T∗

B) = I for any transform T ∈ SE(3).

Next we check the usability property: suppose that objects A and B have a desired

“cross-pose” of f(T∗
A,T

∗
B) := T∗

AB = I. Let us assume that objects A and B have

a current pose of TαT
∗
A and TβT

∗
B respectively, for arbitrary transforms Tα and
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Tβ ∈ SE(3). Then the current “cross-pose” of objects A and B is:

f(TαT
∗
A,TβT

∗
B) := Tαβ = TαT

∗
ABT

−1
β = Tα ·T−1

β . (A.3)

Then we can compute a transform

T∆ := T∗
AB ·T−1

αβ = Tβ ·T−1
α ;

such that if we transform object A by T∆ then object A will be in the pose

T∆ ·Tα ·T∗
A = Tβ ·T−1

α ·Tα ·T∗
A = Tβ ·T∗

A.

Since object A will be in the pose Tβ ·T∗
A (after applying transformation T∆) and

object B is already in the pose Tβ ·T∗
B, then the objects will now be in the desired

relative configuration to complete the relative placement task. Note that, because of

goal consistency, T∗
AB is a constant, and above we have set it equal to the identity

I, so in this case T∆ = T−1
αβ , which is the inverse of the cross-pose between objects

A and B (see Equation A.3). Thus we have shown the usability property: we can

compute T∆ simply as the inverse of the cross-pose T−1
αβ ; by transforming object A by

T∆, we move the objects into the desired relative configuration, Tβ ·T∗
A and Tβ ·T∗

B

that will complete the relative placement task.

Alternative properties: The cross-pose function defined has these properties:

f(T ·TA,TB) = T · f(TA,TB), f(TA,T ·TB) = f(TA,TB) ·T−1 (A.4)

Now we ask whether we could instead define a cross-pose function that has the

properties of

f(T ·TA,TB) = T · f(TA,TB), f(TA,T ·TB) = T−1 · f(TA,TB). (A.5)

As it turns out, we cannot. Suppose that objects A and B initially have poses of

TA and TB respectively, with a cross-pose of f(TA,TB). If you transform object A
first by Tα and then transform object B first by Tβ, then the final “cross-pose” is
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computed as follows:

f(Tα ·TA,TB) = Tα · f(TA,TB)

f(Tα ·TA,Tβ ·TB) = T−1
β ·Tα · f(TA,TB)

On the other hand, if you first transform B by Tβ and then transform object A first

by Tα, then the cross-pose would be computed as

f(TA,Tβ ·TB) = T−1
β · f(TA,TB)

f(Tα ·TA,Tβ ·TB) = Tα ·T−1
β · f(TA,TB)

Note that we now would have two definitions of f(Tα ·TA,Tβ ·TB) which are not

equivalent, since T−1
β ·Tα ̸= Tα ·T−1

β . Thus, we cannot define a cross-pose function

to have the properties of Equation A.5 and instead we define our cross-pose function

to have the properties of Equation A.4.

A.3 Translational Equivariance

One benefit of our method is that it is translationally equivariant by construction.

This mean that if the object point clouds, PA and PB, are translated by random

translation tα and tβ, respectively, i.e. PA′ = PA + tα and PB′ = PB + tβ, then the

resulting corrected virtual correspondences, ṼB and ṼA, respectively, are transformed

accordingly, i.e. ṼB + tβ and ṼA + tα, respectively, as we will show below. This

results in an estimated cross-pose transformation that is also equivariant to translation

by construction. This is achieved because our learned features and correspondence

residuals are invariant to translation, and our virtual correspondence points are

equivariant to translation.

First, our point features are a function of centered point clouds. That is, given
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point clouds PA and PB, the mean of each point cloud is computed as

p̄k =
1

Nk

Nk∑
i=1

Pk.

This mean is then subtracted from the clouds,

P̄k = Pk − p̄k,

which centers the cloud at the origin. The features are then computed on the centered

point clouds:

Φk = gk(P̄k).

Since the point clouds are centered before features are computed, the features Φk

are invariant to an arbitrary translation Pk′ = Pk + tκ.

These translationally invariant features are then used, along with the original

point clouds, to compute “corrected virtual points” as a combination of virtual

correspondence points, vk
′
i and the correspondence residuals, rk

′
i . As we will see below,

the “corrected virtual points” will be translationally equivariant by construction.

The virtual correspondence points, vk
′
i , are computed using weights that are a

function of only the translationally invariant features, Φk:

wA′→B′

i = softmax
(

Φ⊤
B′ϕA′

i

)
= softmax

(
Φ⊤

Bϕ
A
i

)
= wA→B

i ;

thus the weights are also translationally invariant. These translationally invariant

weights are applied to the translated cloud

vA
′→B′

i = PB′wA→B
i = (PB+tβ)wA→B

i =
∑
j

pj,B·wA→B
i,j +tβ

∑
j

wA→B
i,j = PBw

A→B
i +tβ,

since
∑NB

j=1w
A→B
ij = 1. Thus the virtual correspondence points vA

′→B′
i are equivalently

translated. The same logic follows for the virtual correspondence points vB
′→A′

i . This

gives us a set of translationally equivaraint virtual correspondence points vA
′→B′

i and

vA
′→B′

i .
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The correspondence residuals, rk
′
i , are a direct function of only the translationally

invariant features Φk,

rk
′

i = gR(ϕk
′

i ) = gR(ϕki ) = rki ,

therefore they are also translationally invariant.

Since the virtual correspondence points are translationally equivariant, vA
′→B′

i =

vA→B
i +tβ and the correspondence residuals are translationally invariant, rk

′
i = rki , the

final corrected virtual correspondence points, ṽA
′→B′

i , are translationally equivariant,

i.e. ṽA
′→B′

i = vA→B
i + rki + tβ. This also holds for ṽB

′→A′
i , giving us the final

translationally equivariant correspondences between the translated object clouds as(
PA + tα, ṼB + tβ

)
and

(
PB + tβ, ṼA + tα

)
, where ṼB =

[
ṽA→B
1 . . . ṽA→B

NA

]⊤
.

As a result, the final computed transformation will be automatically adjusted

accordingly. Given that we use weighted SVD to compute the optimal transform,

TAB, with rotational component RAB and translational component tAB, the optimal

rotation remains unchanged if the point cloud is translated, RA′B′ = RAB, since

the rotation is computed as a function of the centered point clouds. The optimal

translation is defined as

tAB := ¯̃vA→B −RAB · p̄A,

where ¯̃vA→B and p̄A are the means of the corrected virtual correspondence points, ṼB,

and the object cloud PA, respectively, for object A. Therefore, the optimal translation

between the translated point cloud PA′ and corrected virtual correspondence points

ṼA′→B′
is

tA′B′ = ¯̃vA′→B′ −RAB · p̄A′

= ¯̃vA→B + tβ −RAB · (p̄A + tα)

= ¯̃vA→B + tβ −RAB · p̄A −RAB · tα
= tAB + tβ −RAB · tα

To simplify the analysis, if we assume that, for a given example, RAB = I, then we get

tA′B′ = tAB + tβ − tα, demonstrating that the computed transformation is translation

equivariant by construction.
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A.4 Weighted SVD

The objective function for computing the optimal rotation and translation given a

set of correspondences, {pki → ṽki }
Nk
i and weights {αki }

Nk
i , is as follows:

J (TAB) =

NA∑
i=1

αA
i ||TAB p

A
i − ṽA→B

i ||22 +

NB∑
i=1

αB
i ||T−1

AB p
B
i − ṽB→A

i ||22

First we center (denoted with ∗) the point clouds and virtual points independently,

and stack them into frame-specific matrices (along with weights) retaining their

relative position and correspondence:

A =
[
P∗

A Ṽ∗
A

]⊤
, B =

[
Ṽ∗

B P∗
B

]⊤
, Γ = diag

([
αA αB

])

Then the minimizing rotation RAB is given by:

UΣV⊤ = svd(AΓB) (A.6a) RAB = UΣ∗V
⊤ (A.6b)

where Σ∗ = diag(
[
1, 1, ...det(UV⊤)

]
and svd is a differentiable SVD opera-

tion [54].

The optimal translation can be computed as:

tA = ¯̃vB −RABp̄A tB = p̄B −RAB¯̃vA t =
NA

N
tA +

NB

N
tB (A.7a)

with N = NA +NB. In the special translation-only case, the optimal translation

and be computed by setting RAB to identity in above equations. The final transform

can be assembled:

TAB =

[
RAB t

0 1

]
(A.8)
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A.5 PartNet-Mobility Objects Placement Task

Details

In this section, we describe the PartNet-Mobility Objects Placement experiments in

details.

A.5.1 Dataset Preparation

Simulation Setup. We leverage the PartNet-Mobility dataset [90] to find common

household objects as the anchor object for TAX-Pose prediction. The selected subset

of the dataset contains 8 categories of objects. We split the objects into 54 seen and

14 unseen instances. During training, for a specific task of each of the seen objects, we

generate an action-anchor objects pair by randomly sampling transformations from

SE(3) as cross-poses. The action object is chosen from the Ravens simulator’s rigid

body objects dataset [95]. We define a subset of four tasks (“In”, “On”, “Left” and

“Right”) for each selected anchor object. Thus, there exists a ground-truth cross-pose

(defined by human manually) associated with each defined specific task. We then use

the ground-truth TAX-Poses to supervise each task’s TAX-Pose prediction model.

For each observation action-anchor objects pair, we sample 100 times using the

aforementioned procedure for the training and testing datasets.

Real-World Setup. In real-world, we select a set of anchor objects: Drawer,

Fridge, and Oven and a set of action objects: Block and Bowl. We test 3 (“In”,

“On”, and “Left”) TAX-Pose models in real-world without retraining or finetuning.

The point here is to show the method capability of generalizing to unseen real-world

objects.

A.5.2 Metrics

Simulation Metrics. In simulation, with access to the object’s ground-truth pose,

we are able to quantitatively calculate translational and rotation error of the TAX-

Pose prediction models. Thus, we report the following metrics on a held-out set of

anchor objects in simulation:
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Translational Error : The L2 distance be-

tween the inferred cross-pose translation

(tpredAB ) and the ground-truth pose trans-

lation (tGT
AB).

Rotational Error : The geodesic SO(3)

distance [32, 39] between the predicted

cross-pose rotation (Rpred
AB ) and the

ground-truth rotation (RGT
AB).

Et = ||tpredAB − tGT
AB||2 ER =

1

2
arccos

(
tr(Rpred⊤

AB RGT
AB)− 1

2

)

Real-World Metrics. In real-world, due to the difficulty of defining ground-truth

TAX-Pose, we instead manually, qualitatively define goal “regions” for each of the

anchor-action pairs. The goal-region should have the following properties:

[noitemsep]The predicted TAX-Pose of the action object should appear visually

correct. For example, if the specified task is “In”, then the action object

should be indeed contained within the anchor object after being transformed by

predicted TAX-Pose. The predicted TAX-Pose of the action object should not

violate physical constraints of the workspace and of the relation between the

action and anchor objects. Specifically, the action object should not interfere

with/collide with the anchor object after being transformed by the predicted

TAX-Pose. See Fig. A.4 for an illustration of TAX-Pose predictions that fail

to meet this criterion.

A.5.3 Motion Planning

In both simulated and real-world experiments, we use off-the-shelf motion-planning

tools to find a path between the starting pose and goal pose of the action object.

Simulation. To actuate the action object from its starting pose T0 to its goal

pose transformed by the predicted TAX-Pose T̂ABT0, we plan a path free of collision.

Learning-based methods such as [21] deal with collision checking with point clouds by

training a collision classifier. A more data-efficient method is by leveraging computer

graphics techniques, transforming the point clouds into marching cubes [46], which

can then be used to efficiently reconstruct meshes. Once the triangular meshes are

reconstructed, we can deploy off-the-shelf collision checking methods such as FCL

[53] to detect collisions in the planned path. Thus, in our case, we use position

76



A. Appendix

.5

Figure A.2: Failure of ”In” prediction. Predicted TAX-Pose violates the physical constraints by
penetrating the oven base too much.

.5

Figure A.3: Failure of ”Left” prediction. Predicted TAX-Pose violates the physical constraints
by being in collision with the leg of the drawer.

Figure A.4: An illustration of unsuccessful real-world TAX-Pose predictions. In both
subfigures, red points represent the anchor object, blue points represent action object’s starting
pose, and green points represent action object’s predicted pose.
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control to plan a trajectory of the action object A to move it from its starting pose

to the predicted goal pose. We use OMPL [70] as the motion planning tool and the

constraint function passed into the motion planner is from the output of FCL after

converting the point clouds to meshes via marching cubes.

Real World. In real-world experiments, we need to resolve several practical

issues to make TAX-Pose prediction model viable. First, we do not have access to

a mask that labels action and anchor objects. Thus, we manually define a mask

by using a threshold value of y-coordinate to automatically detect discontinuity in

y-coordinates, representing the gap of spacing between action and anchor objects

upon placement. Next, grasping action objects is a non-trivial task. Since, we are

only using 2 action objects (a cube and a bowl), we manually define a grasping

primitive for each action object. This is done by hand-picking an offset from the

centroid of the action object before grasping, and an approach direction after the

robot reaches the pre-grasp pose to make contacts with the object of interest. The

offsets are chosen via kinesthetic teaching on the robot when the action object is

under identity rotation (canonical pose). Finally, we need to make an estimation

of the action’s starting pose for motion planning. This is done by first statistically

cleaning the point cloud [26] of the action object, and then calculating the centroid

of the action object point cloud as the starting position. For starting rotation, we

make sure the range of the rotation is not too large for the pre-defined grasping

primitive to handle. Another implementation choice here is to use ICP [8] calculate

a transformation between the current point cloud to a pre-scanned point cloud in

canonical (identity) pose. We use the estimated starting pose to guide the pre-defined

grasp primitive. Once a successful grasp is made, the robot end-effector is rigidly

attached to the action object, and we can then use the same predicted TAX-Pose

to calculate the end pose of the robot end effector, and thus feed the two poses into

MoveIt! to get a full trajectory in joint space. Note here that the collision function

in motion planning is comprised of two parts: workspace and anchor object. That

is, we first reconstruct the workspace using boxes to avoid collision with the table

top and camera mount, and we then reconstruct the anchor object in RViz using

Octomap [38] using the cleaned anchor object point cloud. In this way, the robot is

able to avoid collision with the anchor object as well.
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A.5.4 Baselines Description

In simulation, we compare our method to a variety of baseline methods.

E2E Behavioral Cloning: Generate motion-planned trajectories using OMPL that

take the action object from start to goal. These serve as “expert” trajectories for

Behavioral Cloning (BC). We then use a PointNet++ network to output a sparse

policy that, at each time step, takes as input the point cloud observation of the action

and anchor objects and outputs an incremental 6-DOF transformation that imitates

the expert trajectory. The 6-DoF transformation is expressed using Euclidean xyz

translation and rotation quaternion. The “prediction” is the final achieved pose of

the action object at the terminal state.

E2E DAgger: Using the same BC dataset and the same PointNet++ architecture

as above, we train a sparse policy that outputs the same transformation representation

as in BC using DAgger [59]. The “prediction” is the final achieved pose of the action

object at the terminal state.

Trajectory Flow: Using the same BC dataset with DAgger, we train a dense policy

using PointNet++ to predict a dense per-point 3D flow vector at each time step

instead of a single incremental 6-DOF transformation. Given this dense per-point

flow, we add the per-point flow to each point of the current time-step’s point cloud,

and we are able to extract a rigid transformation between the current point cloud and

the point cloud transformed by adding per-point flow vectors using SVD, yielding

the next pose. The “prediction” is the final achieved pose of the action object at the

terminal state.

Goal Flow: Instead of training a multi-step sparse/dense policy to reach the goal,

train a PointNet++ network to output a single dense flow prediction which assigns a

per-point 3D flow vector that points from each action object point from its starting

pose directly to its corresponding goal location. Given this dense per-point flow, we

add the per-point flow to each point of the start point cloud, and we are able to

extract a rigid transformation between the start point cloud and the point cloud

transformed by adding per-point flow vectors using SVD, yielding goal pose. We

pass the start and goal pose into a motion planner (OMPL) and execute the planned

trajectory. The “prediction” is thus given by the SVD output.
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N/A

N/A

N/A

N/A
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In

On

Left

Right

Figure A.5: A visualization of all categories of anchor objects and associated semantic tasks, with
action objects in ground-truth TAX-Poses used in simulation training.

AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 42.37 0.69 40.49 0.80 50.79 0.59 48.02 0.61 30.69 1.09 36.59 0.81 48.48 0.42 41.42 0.84 42.49 0.37

E2E DAgger [59] 36.06 0.67 38.57 0.68 43.99 0.63 42.34 0.57 24.87 0.96 30.87 0.90 42.96 0.46 29.79 0.83 35.08 0.33

Ablations
Traj. Flow [26] 34.48 0.65 35.39 0.85 43.42 0.63 35.51 0.60 28.26 0.80 27.67 0.68 25.91 0.44 43.59 0.82 36.05 0.36

Goal Flow [26] 27.49 0.21 25.41 0.08 31.07 0.13 27.05 0.27 27.80 0.11 29.02 0.38 19.22 0.36 31.56 0.18 28.81 0.19

Ours TAX-Pose 11.74 0.23 5.81 0.11 1.82 0.08 5.92 0.11 3.67 0.07 19.54 0.41 7.96 0.63 5.96 0.12 43.27 0.33

Table A.6: Goal Inference Rotational and Translational Error Results (↓) for the “In’’ Goal.
Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower
the better.

AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 42.69 0.74 41.94 0.74 36.70 0.52 38.23 0.73 41.69 1.10 48.57 0.75 48.98 0.63

E2E DAgger [59] 37.68 0.70 39.24 0.69 31.63 0.54 41.06 0.68 37.72 1.03 35.94 0.75 40.47 0.51

Ablations
Traj. Flow [26] 35.13 0.76 34.78 0.70 39.14 0.59 31.10 0.69 33.07 0.97 35.61 0.71 37.09 0.87

Goal Flow [26] 22.10 0.20 27.82 0.26 20.43 0.09 34.66 0.10 22.71 0.12 26.48 0.27 0.48 0.32

Ours TAX-Pose 4.45 0.12 4.21 0.12 2.29 0.10 2.73 0.09 5.77 0.10 5.81 0.13 5.89 0.19

Table A.7: Goal Inference Rotational and Translational Error Results (↓) for the “On” Goal.
Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower
the better.
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AVG.

ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 44.87 0.74 30.95 0.89 36.86 0.72 56.86 0.52 34.35 1.03 31.69 0.77 46.86 0.78

E2E DAgger [59] 41.32 0.68 31.40 0.84 38.49 0.73 47.64 0.51 36.47 0.99 27.72 0.73 39.83 0.51

Ablations
Traj. Flow [26] 38.85 0.58 31.87 1.07 39.48 0.44 39.48 0.44 28.71 0.69 41.06 0.73 40.70 0.31

Goal Flow [26] 29.64 0.10 28.51 0.10 26.33 0.08 32.96 0.07 27.42 0.10 22.04 0.09 27.42 0.15

Ours TAX-Pose 6.02 0.17 12.73 0.28 1.59 0.11 2.91 0.12 4.41 0.08 12.12 0.34 6.38 0.12

Table A.8: Goal Inference Rotational and Translational Error Results (↓) for the “Left” Goal.
Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower
the better.

AVG.

ER Et ER Et ER Et ER Et ER Et ER Et

Baselines
E2E BC 39.11 0.76 37.89 0.86 24.26 0.77 36.27 0.88 52.86 0.48 44.26 0.78

E2E DAgger [59] 36.80 0.73 27.40 0.84 32.31 0.74 32.61 0.82 49.27 0.46 42.40 0.78

Ablations
Traj. Flow [26] 35.33 0.71 22.93 0.66 34.78 1.22 31.29 0.92 42.71 0.37 44.93 0.36

Goal Flow [26] 27.34 0.16 21.79 0.15 22.37 0.28 27.79 0.15 32.96 0.07 31.79 0.15

Ours TAX-Pose 4.33 0.13 4.64 0.14 2.48 0.11 3.91 0.15 6.47 0.17 4.17 0.08

Table A.9: Goal Inference Rotational and Translational Error Results (↓) for the “Right” Goal.
Rotational errors (ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower
the better.

A.5.5 Per-Task Results

In the main body of the paper, we have shown the meta-results of the performance

of each method by averaging the quantitative metrics for each sub-task (“In”, “On”,

“Left”, and “Right” in simulation and “In”, “On” and “Left” in real-world). Here

we show each sub-task’s results in Table A.61, Table A.7, Table A.8, and Table A.9

respectively.

As mentioned above, not all anchor objects have all 4 tasks due to practical

reasons. For example, the doors of safes might occlude the action object completely

1Categories from left to right: microwave, dishwasher, oven, fridge, table, washing machine, safe,
and drawer.
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and it is impossible to show the action object in the captured image under “Left” and

“Right” tasks (due to handedness of the door); a table’s height might be too tall for the

camera to see the action object under the “Top” task. Under this circumstance, for

sake of simplicity and consistency, we define a subset of the 4 goals for each object such

that the anchor objects of the same category have consistent tasks definitions. We

show a collection of visualizations of each task defined for each category in Fig. A.5.

Moreover, we also show per-task success rate for real-world experiments in Ta-

ble A.10.

In On Left

Goal Flow 0.00 0.10 0.30 0.05 N/A 0.20 0.50 0.65 0.60

TAX-Pose 1.00 1.00 0.85 1.00 N/A 1.00 0.85 0.90 0.70

Table A.10: Combined per-task results for real-world goal placement success rate.

82



Bibliography

••[1] Gabriel Agamennoni, Simone Fontana, Roland Y Siegwart, and Domenico G
Sorrenti. Point clouds registration with probabilistic data association. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4092–4098. IEEE, 2016. 3.2

[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond,
and J Zico Kolter. Differentiable convex optimization layers. Advances in neural
information processing systems, 32, 2019. 2.2.1

[3] Simon L Altmann. Hamilton, rodrigues, and the quaternion scandal. Mathematics
Magazine, 62(5):291–308, 1989. 2.4.1

[4] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483, 2009. 3.2

[5] Raman Arora. On learning rotations. Advances in neural information processing
systems, 22:55–63, 2009. 2.2.2

[6] Michael Bain and Claude Sammut. A framework for behavioural cloning. In
Machine Intelligence 15, pages 103–129, 1995. 3.2

[7] Amir Beck and Shoham Sabach. Weiszfeld’s method: Old and new results.
Journal of Optimization Theory and Applications, 164(1):1–40, 2015. 2.2.1

[8] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor
fusion IV: control paradigms and data structures, volume 1611, pages 586–606.
Spie, 1992. 3.2, A.5.3

[9] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Survey:
Robot programming by demonstration. Technical report, Springrer, 2008. 3.2

[10] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 3.2

[11] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE

83



Bibliography

Transactions on Automatic Control, 58(9):2217–2229, 2013. 2.2.2

[12] Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. Sparse iterative closest
point. In Computer graphics forum, volume 32, pages 113–123. Wiley Online
Library, 2013. 3.2

[13] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shot-
ton, and Carsten Rother. Learning 6d object pose estimation using 3d object
coordinates. In European conference on computer vision, pages 536–551. Springer,
2014. 3.2

[14] Romain Brégier. Deep regression on manifolds: a 3d rotation case study. arXiv
preprint arXiv:2103.16317, 2021. 2.2.2

[15] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 3.4.3

[16] Samprit Chatterjee and Eugene Seneta. Towards consensus: Some convergence
theorems on repeated averaging. Journal of Applied Probability, 14(1):89–97,
1977. 2.2.1

[17] Jiayi Chen, Yingda Yin, Tolga Birdal, Baoquan Chen, Leonidas Guibas, and
He Wang. Projective manifold gradient layer for deep rotation regression. arXiv
preprint arXiv:2110.11657, 2021. 2.2.2, ??, ??, ??, 2.8.1, 2.8.1, ??, 2.8.2, A.1

[18] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation
for games, robotics and machine learning. 2016. 3.5.2

[19] John Crassidis and F Markley. Attitude estimation using modified rodrigues
parameters. In Flight Mechanics/Estimation Theory Symposium, pages 71–86.
NASA, 1996. 2.2.2, 2.6.1

[20] John L Crassidis and F Landis Markley. Sliding mode control using modified
rodrigues parameters. Journal of Guidance, Control, and Dynamics, 19(6):
1381–1383, 1996. 2.4.1

[21] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox.
Object rearrangement using learned implicit collision functions. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 6010–6017.
IEEE, 2021. A.5.3

[22] Morris H DeGroot. Reaching a consensus. Journal of the American Statistical
Association, 69(345):118–121, 1974. 2.2.1

[23] Frank Dellaert, David M Rosen, Jing Wu, Robert Mahony, and Luca Carlone.
Shonan rotation averaging: Global optimality by surfing so(p)n. In European
Conference on Computer Vision, pages 292–308. Springer, 2020. 2.1, 2.2.1

84



Bibliography

[24] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi,
and Leonidas J Guibas. Vector neurons: A general framework for so (3)-
equivariant networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 12200–12209, 2021. 3.4.3

[25] Thanh-Toan Do, Ming Cai, Trung Pham, and Ian Reid. Deep-6dpose: Recovering
6d object pose from a single rgb image. arXiv preprint arXiv:1802.10367, 2018.
2.2.2

[26] Ben Eisner*, Harry Zhang*, and David Held. Flowbot3d: Learning 3d articulation
flow to manipulate articulated objects. In Robotics: Science and Systems (RSS),
2022. ??, ??, A.5.3, ??, ??, ??, ??, ??, ??, ??, ??

[27] Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learning
dense visual object descriptors by and for robotic manipulation. arXiv preprint
arXiv:1806.08756, 2018. 3.2, 3.5.2, 3.5.2, ??, 3.5.2, ??

[28] Jared Glover and Leslie Pack Kaelbling. Tracking 3-d rotations with the quater-
nion bingham filter. 2013. 2.4.1

[29] Dirk Hähnel and Wolfram Burgard. Probabilistic matching for 3d scan regis-
tration. In Proc. of the VDI-Conference Robotik, volume 2002. Citeseer, 2002.
3.2

[30] Brian C Hall. Lie groups, lie algebras, and representations. In Quantum Theory
for Mathematicians, pages 333–366. Springer, 2013. 2.4.3, 2.4.3

[31] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1 rotation averaging
using the weiszfeld algorithm. In CVPR 2011, pages 3041–3048. IEEE, 2011.
2.2.1

[32] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation
averaging. International journal of computer vision, 103(3):267–305, 2013. 2.1,
2.2.1, 2.4.2, 2.4.3, 2.5.1, 3.5.1, A.5.2

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016. 2.8.2

[34] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang Fan, and Jian Sun.
Pvn3d: A deep point-wise 3d keypoints voting network for 6dof pose estimation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11632–11641, 2020. 3.2

[35] Yisheng He, Haibin Huang, Haoqiang Fan, Qifeng Chen, and Jian Sun. Ffb6d:
A full flow bidirectional fusion network for 6d pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3003–3013, 2021. 3.2

85



Bibliography

[36] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski,
Kurt Konolige, and Nassir Navab. Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes. In Asian
conference on computer vision, pages 548–562. Springer, 2012. 3.2

[37] Timo Hinzmann, Thomas Stastny, Gianpaolo Conte, Patrick Doherty, Piotr
Rudol, Marius Wzorek, Enric Galceran, Roland Siegwart, and Igor Gilitschenski.
Collaborative 3d reconstruction using heterogeneous uavs: System and exper-
iments. In International Symposium on Experimental Robotics, pages 43–56.
Springer, 2016. 3.2

[38] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3d mapping framework based on
octrees. Autonomous robots, 34(3):189–206, 2013. 3.5.1, A.5.3

[39] Du Q Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of
Mathematical Imaging and Vision, 35(2):155–164, 2009. 3.5.1, A.5.2

[40] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose
regression with deep learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5974–5983, 2017. 2.2.2

[41] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of the IEEE
international conference on computer vision, pages 2938–2946, 2015. 2.2.2

[42] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 2.8.2

[43] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef Sivic. Cosypose:
Consistent multi-view multi-object 6d pose estimation. In European Conference
on Computer Vision, pages 574–591. Springer, 2020. 2.1, 2.2.2

[44] Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa,
Afshin Rostamizadeh, and Ameesh Makadia. An analysis of svd for deep rotation
estimation. arXiv preprint arXiv:2006.14616, 2020. 2.2.2, ??, ??, ??, 2.8.1

[45] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim: Deep iterative
matching for 6d pose estimation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 683–698, 2018. 2.2.2, 3.4.2

[46] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d
surface construction algorithm. ACM siggraph computer graphics, 21(4):163–169,
1987. A.5.3

[47] David G Lowe. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee, 1999. 3.2

86



Bibliography

[48] Siddharth Mahendran, Haider Ali, and René Vidal. 3d pose regression using con-
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