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Abstract
A variety of problems in econometrics and ma-
chine learning, including instrumental variable re-
gression and Bellman residual minimization, can
be formulated as satisfying a set of conditional
moment restrictions (CMR). We derive a gen-
eral, game-theoretic strategy for satisfying CMR
that scales to nonlinear problems, is amenable
to gradient-based optimization, and is able to ac-
count for finite sample uncertainty. We recover
the approaches of (Dikkala et al., 2020) and (Dai
et al., 2018) as special cases of our general frame-
work before detailing various extensions and how
to efficiently solve the game defined by CMR.

1. Introduction
Let X , Y , and Z be random variables on (potentially non-
finite) sample spaces X , Y , and Z . We are interested in
finding a function h ∈ H that satisfies a set of conditional
moment restrictions (Chamberlain, 1987),

∀z ∈ Z, E[Y |z] = E[h(X)|z], (1)

or CMR for short. While this problem might seem a bit ab-
stract, it is at the core of two disparate problems in machine
learning: instrumental variable regression and Bellman-
residual minimization. We give a brief introduction to each
before presenting a unified method for solving for consis-
tent h from finite samples that elegantly scales to nonlinear
problems. Throughout, we assume we optimize over a class
H that is convex, compact, closed under negation, and of
finite Rademacher complexity.

Our key insight is that we can formulate conditional moment
matching as a zero-sum game, allowing us to both eliminate
double sample issues and explicitly reason about the effects
of constraint relaxation. We call this family of techniques
estimation via relaxation.
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1.1. Instrumental Variable Regression

Let’s assume that X , Y , and Z have the following depen-
dency structure:

Z X Y

U

g h

Figure 1. The graphical model considered in instrumental variable
regression. We are interested in finding h, the causal relationship
from X to Y , even though there is an unobserved confounder, U .

We refer to X as the treatment and Y as the response or out-
come. Given a dataset of (x, y, z) tuples, we are interested
in determining the causal relationship between X and Y ,
E[Y |do(x)]. In the above graphical model, this is equivalent
to determining h. Because of the presence of an unobserved
confounder, U , that affects both X and Y , standard regres-
sion (e.g. Ordinary Least Squares or OLS) can produce in-
consistent estimates. If we only have observational data and
are unable to perform randomized control trials, a canonical
technique to recover h is Instrumental Variable Regression
(IVR) (Winship & Morgan, 1999). Formally, an instrument
Z must satisfy:

1. Unconfounded Instrument: Z ⊥⊥ U – i.e. “indepen-
dent” randomization from instrument.

2. Exclusion: Z ⊥⊥ Y |X – i.e. no extraneous paths.

3. Relevance: Z 6⊥⊥ X – i.e. conditioning has an effect.

We note that the unconfounded instrument and exclusion
conditions are structural assumptions that cannot be checked
from observational data. Assuming access to such a Z and
linear relationships between all variables, one can recover
h(x) = βx by computing β = E[ZX]−1E[ZY ]. Notice
that the recovered h satisfies the CMR (1). With a bit of
linear algebra, one can show this calculation is equivalent to
a Two-Stage Ordinary Least Squares (2SLS) procedure, for
which one first regresses from Z to X and then regresses
from the predicted X̂ to Y , returning the latter coefficients.

We focus on the general, nonlinear problem, which can still
be formulated in terms of CMRs. We assume that noise
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U enters additively to Y 1, and write out the following
equations:

X = g(Z,U), (2)
Y = h(X) + U. (3)

Without loss of generality, we assume that E[U ] = 0. As is
standard in the causal inference literature (Nie et al., 2020),
we assume that our collected data satisfies consistency of
potential outcomes (i.e. the data generating process did
not change since our dataset was collected (Rehkopf et al.,
2016)) and overlap (i.e. we have data for all X we care
about (Imbens, 2000)). Perhaps the most natural way to
tackle this problem would be to minimize some notion of
squared error between the two sides of the CMR:

min
h∈H

Ez[E[Y − h(x)|z]2]. (4)

For nonlinear problems, gradient-based optimization is a
common and scalable technique. Unfortunately, differenti-
ating the squared expectation in the preceding expression
leads to a “double sample” issue in which one needs two in-
dependent samples from P (X|z) to compute each gradient
step, which can be quite challenging outside of simulated
environments. To resolve this issue, (Dikkala et al., 2020)
propose instead solving the following zero-sum game:

min
h∈H

max
f

E[2(Y − h(X))f(Z)− f(Z)2], (5)

which they prove produces consistent estimates of h and
does not involve a squared expectation. We show in Sec. 2
that this is an example of a general technique for satisfying
CMR.

1.2. Bellman Residual Minimization

Consider a Markov Decision Process (MDP) parameterized
by 〈S,A, T , r, γ〉, where S is the state space,A is the action
space, T : S × A → ∆(S) is the transition operator, r :
S ×A → [−1, 1] is a reward function, and γ is the discount
factor. It is a well-known fact that one can find the optimal
policy, π, for this MDP by first computing the optimal value
function via the Bellman Equation,

V (s) = max
a∈A

r(s, a) + γEs′∼T (s,a)[V (s′)], (6)

and choosing actions greedily (Puterman, 2014):

π(s) = arg max
a∈A

r(s, a) + γEs′∼T (s,a)[V (s′)]. (7)

We can combine these two expressions into one that is satis-
fied by the optimal (V, π) pair:

V (s) = E a∼π(s)
s′∼T (s,a)

[r(s, a) + γV (s′)]. (8)

1This is an assumption inherited from standard regression.
Without it, one can only bound the treatment effect (Kilbertus
et al., 2020).

When one cannot simply enumerate all states and actions to
perform either policy or value iteration (Russell & Norvig,
2002), a standard technique is Bellman residual minimiza-
tion – minimizing the difference between the two sides of
(8). The updated value function can then be used to compute
a more optimal policy via the greedy optimization of (7).
We can write (8) in the template of CMR by setting

Z = s, a (9)

X = s, h(X) = V (s) (10)
Y = r(s, a) + γEs′∼T (s,a)[V (s′)]. (11)

Similar to (4), one could attempt to satisfy the CMR by
minimizing the expected squared Bellman error:

min
V :S→R

E[E[V (s)− (r(s, a) + γEs′∼T (s,a)[V (s′)])|s, a]2],

(12)
which also has double sample issues (Baird, 1995). Recently,
(Dai et al., 2018) suggested that one could avoid double
sample issues by instead solving the following zero-sum
game:2

min
V :S→R

max
f :S×A→R

Es,a,s′ [2(r(s, a)+V (s′)−V (s))f(s, a)−f(s, a)2],

(13)
which they derive via an appeal to convex conjugates (Boyd
et al., 2004). We present an alternative construction of
this objective which helps elucidate the properties of the
algorithm proposed by (Dai et al., 2018).

2. Estimation via Relaxation

SETTING Z X AND h(X) Y

IVR INSTRUMENT TREATMENT OUTCOME
RL (s, a) s AND V (s) r(s, a) + γEs′ [V (s′)]

Table 1. The work of both (Dikkala et al., 2020) and (Dai et al.,
2018) can be seen as examples of a more general template for
satisfying conditional moment restrictions from finite samples and
for nonlinear problems.

Throughout this section, we use bold fonts to designate
vectors. To aid us in our quest to satisfy the conditional
moment restrictions, we are given access to N samples
from the joint distribution ofX , Y , and Z. Because we have
finite samples and can therefore only estimate conditional
expectations up to some tolerance, it is natural to relax the
CMRs to

minh∈H, δ J(δ)
s.t. |E[Y − h(X)|z]| ≤ δz ∀z ∈ Z, (14)

where the δz are slack variables and J is some convex func-
tion of δ that keeps the slacks from getting too large. We

2For simplicity, we drop the entropy regularization in their
objective. Our derivations can be easily extended.
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note that (14) is reminiscent of the classical framework of
Tikhinov regularization before presenting some interesting
properties that result from setting J(δ) = 1

2Ez[δ
2
z ]. The

Lagrangian with a P (z)-weighted inner product is

L(h, δ,λ) =
∑
z∈Z

P (z)λz(E[Y−h(X)|z]−δz)+P (z)
1

2
δ2z ,

(15)
where λ are the Lagrange multipliers.3 Applying the sta-
tionarity component of the KKT conditions, one arrives
at

∇δzL(h, δ,λ) = −P (z)λz + P (z)δz = 0, (16)

implying that δz = λz . Plugging this back into the La-
grangian, we can simplify our function to

L(h,λ) =
∑
z∈Z

P (z)λzE[Y − h(X)|z]−P (z)
1

2
λ2z. (17)

We refer to (17) as the Regularized Lagrangian or ReLa for
short. Now, solving for the optimal Lagrange multipliers
via stationarity, we arrive at

∇λzL(h,λ) = P (z)E[Y −h(X)|z]−P (z)λz = 0, (18)

which implies the equilibrium λz is equal to E[Y −h(X)|z].
Plugging this back into (17) recovers function

L(h) =
∑
z∈Z

P (z)E[Y − h(X)|z]2. (19)

Thus, in the population limit, we are optimizing the condi-
tional MSE of (Chen & Pouzo, 2012), leading to consistent
estimates.

2.1. Generative Modeling Approach

Perhaps the most immediate way to minimize (19) over
h ∈ H would be to minimize the empirical MSE,

min
h∈H

1

N

N∑
i

(yi − h(xi))
2. (20)

Unfortunately, this only gives us a function that matches
unconditional moments (i.e. E[Y ] = E[h(X)]). For the
IVR setting, this would give us the inconsistent, OLS-like
estimates of h we are explicitly trying to avoid. For the
MDP setting, this would not produce a valid value function.

Instead, one could learn the distribution P (X|z) = g(z)
and pass samples from it to a candidate h, ensuring one is
attempting to match the conditional moments. Intuitively,
this is the generalization of the 2SLS procedure to nonlinear

3While written above in terms of finite z, our derivation easily
extend to infinite sets.

functions. Because the second stage is nonlinear, one cannot
simply compute the first moment of the P (X|z) distribution
(which is recovered by linearly regressing from X to Z in
the 2SLS procedure). To see this, considerH being the set
of quadratic functions of X . Then,

E[h(X)|z] =
∑
x∈X

p(x|z)h(x) (21)

=
∑
x∈X

p(x|z)(ax2 + bx+ c) (22)

= aE[X2|z] + bE[X|z] + c. (23)

Here, one needs to have access to E[X2|z] to check the
CMR. For more complex H, one therefore needs to learn
the entire P (X|z). This kind of approach was first proposed
for the IVR setting by (Hartford et al., 2017) and amounts
to first learning a g(z) via maximum likelihood estimation
and then solving

min
h∈H

1

N

N∑
i

(yi − Ex̂∼g(zi)[h(x̂)])2. (24)

Unfortunately, this approach suffers from the well-known
“double-sample” issue where multiple independent samples
from g(z) are required to compute gradients of h. To see
this, note that the gradient w.r.t. h of (24) is

N∑
i

(yi − Ex̂∼ĝ(zi)[h(x̂)])(−Ex̂∼ĝ(zi)[
∂

∂h
h(x̂)]). (25)

Approximating this gradient with a single sample,

N∑
i

( E
x̂∼ĝ(zi)

[(yi − h(x̂))
∂

∂h
h(x̂)]), (26)

can produce biased estimates of the gradient that are incon-
sistent in the limit of infinite data. Additionally, learning
an accurate first-stage model might be quite challenging for
some problems.

2.2. Game-Theoretic Approach

Ideally, we would like to avoid the added complexity of
learning a generative model and the double-sampling re-
quired for gradient based-optimization. One gets a two-
for-one deal by instead solving the two-player zero-sum
game with the ReLa (17) as the payoff. Denoting by
f ∈ F ⊆ {Z → R} the function that maps z’s to cor-
responding Lagrange multipliers, we can write this game
as:

min
h∈H

max
f∈F

E[2(Y − h(X))f(Z)− f(Z)2]. (27)

Notice the similarity of this expression to the objectives of
(Dikkala et al., 2020) (5) and (Dai et al., 2018) (13) and
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that there are no squared expectations of h and therefore no
double sample issues. Additionally, one does not need to
learn a generative model of P (X|z) for these sorts of game-
theoretic approaches. Under the assumption that E[Y −
h(X)|z] ∈ F , finding a Nash equilibrium of this game
corresponds to finding a h ∈ H that is close in an `2 sense
to satisfying the CMR.

2.3. Takeaways Thus Far

We pause briefly to consider some of the important facts
revealed to us by the above derivation:

1. The approaches of (Dikkala et al., 2020) and (Dai
et al., 2018) are solving a relaxed CMR problem with
a penalty on the `2 norm of the constraint violation.
Thus, their consistency is in an `2 sense rather than a
uniform, `∞ sense.

2. The choice of J allows us to control how slack is
dispersed between the CMRs – derivations like the
above allow us to explicitly consider the effects of the
kind of regularization we choose.

3. The value of f(z) (regardless of the choice of J) is
exactly the amount of conditional moment mismatch
the optimization procedure tolerates. If this value is
particularly high for values of z where we have many
samples, we might need to consider a more expressive
H. Thus, we can explicitly reason about the effects of
finite-sample uncertainty in satisfying CMRs.

3. Extensions
We now briefly sketch two extensions to our above setup
before diving into how to solve ReLa games efficiently.

3.1. Constraints on δ

A natural question after the above discussion might be how
one could include information about sample uncertainty
into the optimization procedure, rather than performing an
after-the-fact check. Let nz denote the number of samples
we have for z. For simplicity, we assume nz > 0, ∀z ∈ Z .
A Hoeffding bound tells us that we should expect a sample
expectation Ênz [·|z] to be within ∝ 1√

nz
of the population

expectation. We refer to this sampling error as εz . Then, in
expectation over Z,

EZ [ε2z] =
∑
z∈Z

P (z)ε2z ≈
∑
z∈Z

nz
N

(
1
√
nz

)2 =
|Z|
N

= κ(N).

(28)
Our relaxed optimization problem then becomes

minh∈H, δ 0
s.t. |E[Y − h(X)|z]| ≤ δz ∀z ∈ Z

EZ [δ2z ] ≤ κ(N).
(29)

Algorithm 1 No-Regret Conditional Moment Matching
Input: DatasetD of (x, y, z) tuples. No-regret algorithm
overH, Best-response oracle over F , Threshold ε
Output: Causal effect of X on Y , h
Set t = 1, ht ∈ H, f t ∈ F , L(ht, f t) = 2ε
while L(ht, f t) > ε do
L(ht, f t) = E(x,y,z)∼D[2(y−ht(x))f t(z)− f t(z)2]
No-regret alg. computes ht over L(·, f t) history.
Best-response computes f t = arg maxf∈F L(ht, ·).
t← t+ 1

end while
Return ht.

This form, reminiscent of Ivanov regularization, takes into
account sample uncertainty explicitly and could be solved
via standard constrained optimization machinery like Aug-
mented Lagrangians (Hestenes, 1969). We note that in
practice, it is far more common to solve the Tikhanov-style
problem (14) and scale J based on performance on some
holdout data.

3.2. Regularization of h

Consider two solutions (h1, f1), (h2, f2) of the ReLa Game
(27) such that

|E[Y − h1(X)|z]| ≤ f1(z), ∀z ∈ Z, (30)
|E[Y − h2(X)|z]| ≤ f2(z), ∀z ∈ Z, (31)

EZ [f1(z)2] = EZ [f2(z)2]. (32)

Our game-theoretic perspective wouldn’t be able to break
ties between h1 and h2, regardless of desirable properties h1
might have over h2 like smoothness in X or being the max-
margin classifier. This is because as long as two solutions
exist within CMR-violation balls of the same size (e.g. in `2
norm), we consider them equally optimal. Thus, some sort
of regularization on h, producing an optimization problem
of the form

minh∈H, δ J(δ) + αR(h)
s.t. |E[Y − h(X)|z]| ≤ δz ∀z ∈ Z (33)

with α tuned empirically on hold-out data might be helpful
for finding h with additional desirable properties. Con-
cretely, one could regularize to the OLS solution by setting
R(h) = E[(h(X)− Y )2], encouraging h to also match un-
conditional moments. Both (Dikkala et al., 2020) and (Dai
et al., 2018) consider regularization on h (e.g. in ||·||2H norm
or by entropy-regularizing the policy), which we identify as
a form of tie-breaking.

3.3. Efficiently Solving the ReLa Game

Solving a two-player game like (27) can be done provably
efficiently via a reduction to no-regret online learning, fol-
lowing the classic analysis of (Freund & Schapire, 1997).
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For completeness, we provide such a procedure in Algo-
rithm 1 and prove efficiency below.
Proof. Let L(h, f) = E[2(Y − h(X))f(Z)− f(Z)2]. Our
no-regret assumption tells us that

1

N

N∑
t

L(ht, f t)− 1

N
min
h∈H

N∑
t

L(h, f t) ≤ ε. (34)

for some N that is poly( 1
ε ). Under a realizability assump-

tion, we can write that

1

N

N∑
t

L(ht, f t) ≤ ε+
1

N
min
h∈H

N∑
t

L(h, f t) ≤ ε. (35)

Then, utilizing the fact that there must be at least one ele-
ment in an average that is at most the value of the average,

min
t
L(ht, f t) ≤ 1

N

N∑
t

L(ht, f t) ≤ ε. (36)

To complete the proof, we recall that f t is chosen as the
best response to ht in Algorithm 1, giving us that:

min
t

max
f

L(ht, f) ≤ ε (37)

Thus, the ht that minimizes L(ht, f t) is half of an ε-
approximate Nash equilibrium of the ReLa game and can
be computed within poly( 1

ε ) iterations. In our setting, ε
corresponds to the additional expected CMR violation our
recovered h suffers on top of the best element inH.

We note this reduction allows one to plug in any no-regret
algorithm (e.g. Follow the Regularized Leader (McMahan,
2011) or Multiplicative Weights (Arora et al., 2012)) and
the efficiency and approximate CMR satisfaction result to
still hold. Practically, one could instantiate this no-regret
reduction via a GAN-like optimization procedure with the
learning rate for the h player much lower than that of the f
player, simulating the no-regret vs. best response iterations
of Algorithm 1. While the connection to no-regret online
learning is not made explicit, both (Dikkala et al., 2020) and
(Dai et al., 2018) follow an approach in this vein to scale
their methods to high-dimensional tasks.

4. Discussion
We unify the techniques of (Dikkala et al., 2020) and (Dai
et al., 2018) under the umbrella of satisfying relaxed con-
ditional moment restrictions, providing a framework that
allows one to reason about sample uncertainty and the ef-
fects of regularization on such problems. We further con-
sider explicit constraints on slack variables, the tie-breaking
benefits of regularizing h, and provide a reduction to no-
regret online learning for efficient solving of Regularized
Lagrangian Games.

Moving forward, we would be interested in passing the
higher bar of matching not just the first moments of Y |z but
the whole distribution, as well as fitting other problems into
the framework of conditional moment restrictions.
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