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Abstract

Localization is one of the fundamental capabilities to guarantee reliable
robot autonomy. Many excellent Visual-Inertial and LiDAR-based algo-
rithms have been developed to solve the localization problem. However,
deploying these methods on a real-time portable device is challenging due
to high computing power and high-cost sensors (LiDAR). Another option
would be Visual Place Recognition(VPR). Compared to Visual-Inertial
and LiDAR-based algorithms, VPR only needs to establish relationships
between observed and visited places, reducing the computing power. And
it mainly uses the camera as its input sensor, which is much cheaper
than LiDAR. However, most current VPR-related works do not pro-
vide an efficient and robust localization pipeline. Only a few work on
VPR-based methods in real-time with portable devices in non-challenging
environments. To cover the gap in the VPR field, we present a real-time
VPR-based localization system in changing and challenging environments.

This pipeline mainly utilizes the concept of images sequences matching. We
also choose to use the omnidirectional camera for visual inputs. Compared
to a pinhole camera or a fisheye camera, an omnidirectional camera
provides a broader field of view, thus increasing the performance and
robustness of our proposed localization pipeline. Our pipeline can also
detect an agent’s off-path status and re-localize the agent once he/she is
back on the path. We build a mapping rover robot with an omnidirectional
camera, LiDAR, Inertial Measurement Unit(IMU), and a localization
helmet with an omnidirectional camera and IMU as the portable device.
Furthermore, we gather a campus-scale dataset with omnidirectional
visual inputs and LiDAR inputs on ten different trajectories for eight
repeated times under different illuminations and viewpoints.

We show our pipeline’s quantitative performance by evaluating our col-
lected dataset against the ground truth. We then show the qualitative
performance by doing real-time demo with our robot at Carnegie Mellon
University. To show the robustness and generality of our pipeline, we
tested it in different changing and challenging environments, including
outdoor, long, and narrow indoor corridors and narrow and dark indoor
confined spaces.
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Chapter 1

Introduction

1.1 Background and Motivation

Robots have played essential roles in worldwide pandemics, space exploration, and our

daily life in the current age, where localization is one of the fundamental capabilities

to guarantee reliable robot autonomy. As mentioned in [38], during the battle with

COVID-19, mobile robots can provide contacting-free delivery for food, medicine,

and contaminated waste, as well as give remote access to front-line healthcare. In

the post-pandemic world, robotics delivery and autonomous driving [34] are changing

traditional transportation and our living habit. Thus, a robust, cheap, and efficient

localization system is necessary since it makes these new technologies affordable and

feasible for everyone in society.

In recent years, researchers have developed many excellent systems to solve the

localization problem. Visual-Inertial and LiDAR based SLAM systems are two

popular directions. However, localization systems based on these methods are either

inefficient or expensive. Another popular direction is Visual Place Recognition(VPR).

Compared to Visual-Inertial and LiDAR based SLAM systems, VPR only establishes

relationships between observed and visited places and uses the camera instead of

the LiDAR as its primary sensor, which makes it efficient and cheap. However,

most current VPR-related works do not provide an efficient and robust localization

pipeline. Only a few work on VPR-based methods in real-time with portable devices

in non-challenging environments.
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1. Introduction

To cover the gap in the VPR field, we present a real-time VPR-based localization

system. This system works efficiently and robustly in changing and challenging

environments, as shown in figure 1.1. We integrate and improve different place match

techniques and use existing place recognition techniques and mapping frameworks.

This pipeline consists of four main parts: global localization, local localization,

odometry fusion, and off-path detection. The global localization module can quickly

localize the agent in the given map, and the local localization module can provide

further continuous position tracking. The odometry fusion provides high-frequency

(10HZ) relative odometry information. Furthermore, the agent might not always be

on the given map. This system can detect the agent’s off-path status and re-localize

the agent once he/she is back on the path again.

Figure 1.1: It is not easy for a VPR system to work robustly in changing and
challenging environments. It needs to successfully distinguish (a), which looks very
similar. And it also needs to match (b), which looks very different due to illumination
and viewpoint changes.

We also build a mapping robot and a localization helmet to execute the real-time

localization system. The robot and the helmet are equipped with omnidirectional

cameras. An omnidirectional camera provides a wider field of view than a pinhole or a

fisheye camera, leading to more robust localization. Furthermore, we collect a dataset

with omnidirectional visual inputs and ground truth data to evaluate our proposed

method. This dataset can also be used to assess existing or future VPR-related works.
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1. Introduction

We perform quantitative and qualitative evaluations on our system using the

collected datasets. Our global localization module can achieve 0.925 Area Under

Precision-Recall Curve(AUC-PR), and the localization time is around 20 seconds

on a 400-meters map. And our local localization module can output the current

location’s estimation at 3HZ regardless of the size of the map. The local localization

module reaches 0.922 AUC-PR. To perform off-path detection, both global and

local localization modules must be able to differentiate between visited and new

places. Global and Localization modules achieve 0.93 and 0.96 Area Under Receiver-

Operating -Characteristic Curve(AUC-ROC) respectively. The details of these metrics

are explained in section 7.1. Qualitative experiments are also performed at Carnegie

Mellon University with the self-built mapping robot and localization helmet.

1.2 Contributions

Our contributions are summarized as follows:

1. We develop a real-time localization system in changing and challenging environ-

ments. This system runs on a helmet equipped with an omnidirectional camera.

It is robust, efficient, and can detect off-path and re-localize the agent when

he/she is back on the path again;

2. We gather a campus-scale dataset with ten different trajectories for eight re-

peated times under different illuminations and viewpoints. Each sequence has

omnidirectional visual inputs, LiDAR inputs, and ground truth data;

3. We build a mapping rover robot with an omnidirectional camera, LiDAR, and

Inertial Measurement Unit(IMU) and a localization helmet with an omnidirec-

tional camera and IMU.
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Chapter 2

Related Work

This chapter’s structure works as follows: Section 2.1 explains the reason for using

VPR-based methods to complete the proposed localization pipeline. Section 2.2 talks

about VPR techniques developed for changing and challenging environments. Section

2.3 introduces different VPR’s place match techniques, forming our pipeline’s main

parts. And section 2.4 discusses existing VPR datasets and the reason for us to

collect our own dataset.

2.1 Why Visual Place Recognition

Many LiDAR-based SLAM algorithms [44], [9], [45] have shown excellent performances

in localization. However, LiDAR is a costly sensor compared to a camera or an Inertial

Measurement Unit(IMU). Making all agents use it for localization on a pre-generated

high-quality map will be unfeasible and unnecessary. Despite the LiDAR-based SLAM

algorithm, there are many brilliant Visual-Inertial SLAM systems, such as ORB-

SLAM3 [5], VINS-Mono [29]. Nevertheless, ORB-SLAM3’s graph optimization part

consumes too much computation power, and VINS-Mono may become unstable given

challenging localization environments or unsteady motions. Thus, Visual-Inertial

SLAM is unsuitable for real-time localization with portable devices in challenging

and changing environments. Another probability in localization is Visual Place

Recognition (VPR). Compared to Visual-Inertial and LiDAR based SLAM systems,

VPR only establishes relationships between observed and visited places and uses the
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2. Related Work

camera instead of the LiDAR as its primary sensor, which makes it efficient and cheap.

According to [20], early VPR works often assume the environment stays relatively

similar, making VPR unsuitable for real-world localization. Consequently, researchers

have been focused on creating VPR algorithms adaptive to changing and challenging

environments, resulting in VPR’s possibility to do real-world localization.

2.2 Visual Place Recognition in Changing

Environments

As discussed in section 2.1, many researchers are developing VPR algorithms to

tackle the problem of localization in challenging and changing environments. Their

works can roughly be categorized into the following aspects: place representation

techniques, mapping frameworks, and place match techniques. Since our pipeline

mainly integrates and improves place match techniques, section 2.3 will introduce more

details about this category. This section focuses on the other two aspects. A good

place representation technique is the key to a robust VPR-based localization system.

The appearance of a place can change drastically due to illumination, viewpoint,

and dynamic objects. As shown in figure 1.1, an outstanding place representation

technique should be able to differentiate similarly but not same places and relate

the same place with vast appearance changes. Traditional (Non-learning) techniques

such as CoHoG [41], HOG [11], FAB-MAP [10] and Learning-based techniques

such as NetVLAD [1], RegionVLAD [16], HybridNet [8], OverlapNet [7] have all

shown reasonable place representation performances in changing and challenging

environments. Most of these methods will be later evaluated in chapter 8 to show

our proposed pipeline’s generality and compatibility.

The most simplified mapping framework is just pure images without any position

information. We can have a topological map with images by adding the relative

positions between images. Early VPR works FAB-MAP [10] and SeqSLAM[24]

use topological maps as their mapping frameworks. Then, with their corresponding

improved versions CAT-SLAM[21] and SMART [28], it is proved that adding odometry

information to the topological mapping frameworks can improve VPR’s performances.

To deal with changing environments, some come up with the idea of using a dynamic
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map which can remember and forget features. [4] forgets older features at different

rates depending on the timescale. [12], [25] use selective attention mechanisms and

rehearsal mechanisms to remember most occurring features and forget transient

features. Due to real-time requirements and portable devices’ limited computation

powers, our proposed localization pipeline uses a topological map with visual inputs

and odometry information.

Besides the mentioned three aspects, only a few tackle the problem of developing an

efficient and robust localization pipeline on portable devices in changing environments.

[26] presents a real-time localization system on a mobile device, yielding good results

in indoor environments. However, their pipeline needs a pre-training phase and

ignores illumination changes to satisfy the real-time constraint.

2.3 Place Match Techniques

Section 2.2 talks about two major categories of VPR research. This section focuses on

the remaining category: place match techniques, which forms the main parts of our

pipeline. The most straightforward place match technique uses an individual query

image to compare with the reference images. This place match concept is fast and

accurate in a non-changing environment with robust place representation techniques.

However, real-world environments are full of different places with similar features and

the exact places with different features due to spatial/dynamic scenery differences,

creating many noises for single image matching. Thus, recent approaches tend to use

images sequences comparisons instead of single image comparisons.

Using image sequences instead of single images exploits the assumption that the

VPR system is traversing a very similar path through the environment instead of only

a specific place, thus improving the tolerance to local scene changes and reducing

false positives with self-similarities environments. Seq-SLAM [24] and its related work

[28], [33] use a brute force method to perform sequence matching. It improves the

matching accuracy but is time-consuming in practice and cannot be directly used in

real-time. Thus, [19],[31],[14] proposed different methods to increase the efficiency of

SeqSLAM by using particle filter, approximate nearest neighbor and Hidden Markov

Model. Nevertheless, these methods’ efficiency may decrease when the number of

reference sequences is huge. [37] and [2] improves SeqSLAM by using dynamic query
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sequences and binary descriptors. These methods’ performances highly depend on

the condition of the environment, which is not robust enough to perform in changing

and challenging environments. Then, [39] and [40] introduce a framework that can

balance efficiency and accuracy by improving the SeqSLAM with a coarse-to-fine

searching method. This concept performs stably with long reference sequences and

has relatively low computation costs. Thus, our proposed localization pipeline used

this concept to perform global initialization. After the initial position is located,

we use local SeqSLAM to perform continuous tracking due to its high accuracy in

changing and challenging environments. Since we only perform SeqSLAM locally

instead of globally, we can largely reduce Seq-SLAM’s running time and meet the

real-time requirement.

2.4 Visual Place Recognition Datasets

There are already many existing Visual Place Recognition datasets. Many VPR related

works use existing datasets as their benchmarks: NordLand [32], Pittsburgh [35],

Tokyo 24/7 [36], NCLT [6], Oxford [22]. These VPR datasets are challenging and full of

query images with illumination and viewpoint changes. However, these datasets are all

collected using pin-hole cameras, which cannot be used to evaluate our omnidirectional

visual inputs based localization system. There are also existing datasets PanoraMIS[3],

Ford-Campus-Vision-and-LiDAR-Dataset[27] with omnidirectional visual inputs and

accurate ground truth. But these datasets do not have illumination and viewpoint

changes, which makes them not suitable for the VPR evaluation. Thus, we collected

a changing (illumination and viewpoint changes) and challenging campus-scale VPR

dataset with omnidirectional visual inputs and ground truth data. We use this dataset

to evaluate our proposed localization pipeline. Furthermore, we believe that this

dataset will be helpful in future visual place recognition research.
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Chapter 3

Image Sequences Matching

This chapter introduces the brute-force Seq-SLAM[24] and then explains our proposed

improved Fast Seq-SLAM inspired by the concept of coarse-to-fine [39], [40].

3.1 Seq-SLAM

The innovation of Seq-SLAM[24] is that it does not find a single reference image that

best matches a query image. It combines the query image at the current timestamp

with query images from previous timestamps to form a query sequence with length Q.

It then finds a sequence from the reference sequence with length Q that best matches

the query sequence. The first two sections are key parts of Seq-SLAM[24] : Contrast

Enhancement and Sequence Match. The last section introduces some key parameters.

3.1.1 Contrast Enhancement

In order to make the difference matrix between reference sequence and query sequence

more obvious, Seq-SLAM[24] applies a local contrast enhancement to each row of the

difference matrix as shown in figure 3.1. The red box shows the row to apply local

contrast enhancement as an example. The original element’s value of this row is set

to Di and the value after enhancement is set to D̂i. D̂i = Di−D̄l

σl
. D̄l is the local mean

and σl is the local standard deviation with rows around row i in range of Rwindow.
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3. Image Sequences Matching

Figure 3.1: This is a difference matrix between a 50 frames query sequence and a
50 frames reference sequence, which is not the usual case. Usually, the reference
sequence has far more frames than the query sequence. A lower value means a smaller
difference between query and reference frames. The red box marks the row applied
with local contrast enhancement, and the blue box shows the Rwindow for calculating
the local standard deviation and local mean.

After contrast enhancement, the darker block becomes even darker. A darker

block implicates a smaller difference between the query and the reference frame, which

means a better match. Figure 3.2 shows the local contrast Enhancement applied on

row i only. And figure 3.3 shows the local contrast enhancement applied on the entire

difference matrix.

Figure 3.2: The top image is the original difference matrix. The bottom image is the
difference matrix with local contrast enhancement applied to the row marked in red.
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3. Image Sequences Matching

Figure 3.3: The left image is the difference matrix before local contrast enhancement
and the right image is the difference matrix after local contrast enhancement with
Rwindow being 10.

3.1.2 Sequence Match

Seq-SLAM[24] performs a local search for most cells in the difference matrix. For

example, we work on a cell at D[Q,R] (a cell in difference matrix at row Q and column

R). A local search performs on multiple search lines with different slopes, where each

search line contains Vds cells around D[Q,R]. The search is based on the assumption

that velocities on repeated traverses of a path are roughly repeatable. So, we choose a v

between constant vmin and vmax to control the slope of the search line. For a specific v,

its search line contains the following cells : D[Q+v∗(i−Vds/2), R−Vds/2+i], i ∈ [0, vds].

Then we calculate the local match score Sv by summing up its’ search line’s cells’

values,

Sv =

vds∑
i=0

D[Q + v ∗ (i− Vds/2), R− Vds/2 + i]

v = vmin+ i∗vstep, i ∈ [0, (vmax−vmin)/vstep]. We have (vmax−vmin)/vstep+1 different

Sv for the cell D[Q,R]. We choose the smallest Sv to be our Sbest.

Sbest = min(Sv), v ∈
{
vmin + k ∗ vstep | k ∈ {0, 1, ..., (vmax − vmin)/vstep}

}
The entire search process is illustrated by figure 3.4.
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Figure 3.4: This image displays the local search process for the cell D[Q,R]. For this
example, there are five yellow search lines with five different v values. The smallest
sv is set to be the Sbest for cell D[Q,R].

For each column R, we repeatedly do this local search process for all rows. With

this repetition, we can get the Sbest i for each row i. We then choose the smallest

Sbest i,

Sbest in column R = min(Sbest i), i ∈ [0, number of rows]

We subsequently find the cell with Sbest in column R for each column. (except very first

and very end depends on the length of Vds, shown in figure 3.5).
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Figure 3.5: This image shows the columns being used for local searches and the
columns discarded since they cannot provide search lines with length of Vds.

Figure 3.6: This image depicts entire process of doing local searches over a difference
matrix with Vds=10. The left matrix shows local searches through each cell, and
the right image shows the final results on the difference matrix. The cell with
Sbest in column R for each column is marked in a red box, which means the cell’s row
represented query frame matches with the cell’s column represented reference frame.

This search process is illustrated in figure 3.6. As you can see from the graph, the

cell with Sbest in column R for each column is marked in a red box. However, there needs
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to be a way to measure if the match is not an outlier based on the score. A simple

way to do this is to use a constant threshold to preserve matches with scores above it

and discard matches with scores below it. However, this constant threshold is too

tricky to tune under changing and challenging environments. Thus, Seq-SLAM[24]

comes up with a method called windowed uniqueness thresholding.

Figure 3.7: This image shows the selection of best Sv (marked in orange) and second
best sv (marked in white) outside a window of width Swindow (marked in black). The
red box marks an example column R.

For windowed uniqueness thresholding, it looks at the uniqueness of the best Sv.

The best Sv is selected for each column. Each column has a second best Sv at another

row. The second best Sv needs to be outside a window of width Swindow around the

cell with the best Sv to avoid similarity between the best and the second best. The

uniqueness score is the best Sv

second best Sv
. Figure 3.7 shows this process.

With the uniqueness score being larger, the difference between the best Sv and the

second best Sv is not that big. For a big ratio, it means the uniqueness of the best Sv

is not that obvious since the second best Sv is very close to the best Sv. One query

image can only have one reference image match. Thus an ideal best Sv should be
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much smaller than the second best Sv, which makes the uniqueness score very small.

We can set a uniqueness threshold Sthreshold to eliminate matches with a uniqueness

score greater than this threshold. This uniqueness threshold is easier to tune since it

is less susceptible to a changing and challenging environment.

Algorithm 1 Sequence Match algorithm

varr ← linspace(vmin, vmax, vstep)

qs← len(query sequences)

rs← len(reference sequences)

match← [] ▷ Matching result

for R ← [vds/2, rs− vds/2] do

Sbest Q ←∞
Sv array ← []

matchQ ← 0

for Q ← [0, qs] do

for v ← varr do

Sv ←
∑vds

i=0D[Q + v ∗ (i− Vds/2), R− Vds/2 + i]

if Sv < Sbest Q then

Sbest Q ← Sv

matchQ ← Q

end if

end for

Sv array add Sbest Q

end for

Ssecond best Q ← min(Sv array[ : matchQ − Swindow/2] + Sv array[matchQ +

Swindow/2: ])

uniqueness score ← Sbest Q

Ssecond best Q

if uniqueness score < Sthreshold then

match add [R, matchQ, uniqueness score]

end if

end for
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3.1.3 Key Parameters

This section introduces some key parameters of Seq-SLAM[24]. Rwindow is used

in local contrast enhancement. With the real-time requirements, query sequences

should not have more than 60 frames. 10 is a good value for Rwindow given this

premise. vmin, vmax, vstep and Vds are used in the sequence match. The agent’s and

the reference map’s visual inputs are received and generated at the same interval.

So we set vmin = 0.8, vmax = 1.2, vstep = 0.1, which is around 1. Vds is set to 10,

which has been proved to be efficient and accurate in several different environments.

Swindow and Sthreshold are used in match selection. Similar to the selection of Rwindow,

given the average sequence number, 10 is a good value for Swindow. And for the

uniqueness Sthreshold, we don’t want to set it too strict since most of our environments

are changing and challenging. Thus, we set the Sthreshold to be 0.97, which helps us

eliminate some obvious outliers and reduce the possibility of creating false negatives

during match selection.

3.2 Fast Seq-SLAM

This original Seq-SLAM[24] method is too slow for a real-time pipeline. The big O

complexity for the algorithm is roughly O(MN), with M being the number of reference

sequence’s frames and N being the number of query sequence’s frames. To solve

this problem, we proposed the Fast Seq-SLAM. This algorithm uses the concept of

coarse-to-fine to perform the Seq-SLAM[24], which largely reduces the computation

cost. Details will be explained in the following sections.

3.2.1 Multi Resolution Sampling based Method

The high level of this coarse-to-fine concept is to set multiple resolutions for both the

query and the reference sequences. We do Seq-SLAM[24] between the down-sampled

query sequence and many reference sequence segments at first. After iterations, we

do Seq-SLAM[24] between the original query sequence and a few reference sequence

segments.

Initially, particles are spread evenly on the reference sequence. Both the reference
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and query sequences are set to very low resolution initially, which is every eight frames

in the graph. Each particle represents a specific reference sequence segment with a

length the same as the down-sampled query sequence. These particles’ segments can

have overlaps, controlled by a variable called τ , shown in figure 3.8. The number of

particles is calculated in the following way. We set Pinit to be the number of initial

particles, Q to be the number of frames of the non-down-sampled query sequences

and R to be the number of frames of the non-down-sampled reference sequences

Pinit =
R

Q
∗ τ

τ =
1

1− overlap

The particles are more dense with larger τ , leading to more overlapped regions.

Figure 3.8: This figure shows how the number of initial particles is calculated. The
red box is the query sequence, and the blue box is the reference sequence. Each
small rectangle inside is a frame; one example is marked in yellow. The variables Q
and R are the length of reference and query sequence. The orange and the green
boxes are two segments of two particles. The segment always has the same length
as the query sequence with the current resolution level. The purple part shows two
particle overlapped regions. Overlap = overlapped region

Q
, which is 1

2
and makes τ = 2

(overlapped rate 50%).

Particles have two attributes. First is the index of the segment it represents. Since

our goal is to localize, we choose the last frame to be the index. The second is the

weight. Initially, weights are just 1
Pinit

for every particle.

P = [p1, p2, p3, ...pPinit ]
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pj = [ij, wj]

.

Resolution levels are related to the rate of down-sampling. Figure 3.9 shows the

process to down-sample both query and reference sequence with a specific resolution

level. More frames are skipped with a larger resolution level, resulting in a short

reference and query sequence. The resolution level needs to be carefully tuned to

balance speed and accuracy. Down-sampled sequences with different resolution levels

are used in the subsequent algorithm instead of the original sequence.

Figure 3.9: This picture illustrates the down-sampling process. The original sequences
in the first row have every frame. When performing down-sampling, the algorithm
starts from the last frame and only preserves one frame every re level frames. In this
graph, re level = 4. The picked frames form the down-sampled reference and query
sequence. The resulting sequences are 1

re level
of their original lengths.

.

After one round of sequence match on all the segments, each particle’s segment

performs index shifting, weight updating, and segment merging. The sequence match

continues until the iteration times reach max iter or the current particles’ efficiency is

less than 50%. When one of these two requirements meets, the resolution level reduces

by half and decreases the down-sample rate. After the resolution level reaches 1, the

reference and query sequences restore to their original length. The algorithm can

determine the final match by doing sequence matches on the remaining few particles’

segments. The entire process is illustrated in figure 3.10.
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Figure 3.10: This figure depicts the entire structure of the Fast Seq-Match method.
# of p means the number of particles. re level is the resolution level, which is set as
four initially. For simplicity, only six particles are used and marked in different colors.
The process starts by down-sample the original reference and query sequence and
ends with finding the final query-reference match. Neff is the particle efficiency. The
grey shades mean active frames, which are used in the algorithm. The other white
frames are discarded. Since our system is used for localization, we match the last
frame of the particle segment to the query sequence’s last frame since the last frame
represents roughly the current location.

3.2.2 Particle Shift

When the sequence is down-sampled, and the particles are evenly distributed, all

particle segments go through the process of Seq-SLAM[24]. Each particle’s segment

generates an array of matches. Given the assumption that the query sequence is part

of the reference sequence and both query and reference frames are generated using

roughly the same distance intervals, the ideal matches should form a line across the

difference matrix with the slope around -1 and intercept around 0 (set the top-left

corner of the difference matrix as (0,0) in the Cartesian coordinate plane), which is

shown in figure 3.11. We want to shift the segment to make all matches stay on the
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ideal line.

Figure 3.11: This graphs shows an example difference matrix. As one can observe,
the ideal match pattern (marked in red line) is roughly on a line with slope around -1.

Figure 3.12: This graphs illustrates the concept of segment shifting. The shift amount
is decided by the value of the intercept. When intercept is positive, the segment
shift to the right. While when intercept is negative, the segment shift to the left.
P j.i = P j.i− intercept. We set the top-left corner of the difference matrix as (0,0) in
the Cartesian coordinate plane.
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We can calculate the intercept of the line formed by the matches. We shift the

particle’s segment to make the line’s intercept reaching zero. The whole process is

illustrated in figure 3.12. To obtain the intercept of the line formed by matches of

the segment, we use a brute-force method to search all the potential lines with slope

= -1 passing the segment’s difference matrix. Given Q as the number of frames of

the query sequence, potential lines can have intercepts from -Q to Q. Due to our

multi-resolution method, the difference matrix is very small. Thus the brute-force

method has a low computation cost. We find the line with most inliers. When a

match’s distance to the line is less than 2, it is considered an inlier of the line. Given

a match at row Q and col R, the following equations show its relationship to the line

x + y - intercept = 0.

D[Q,R] =

inlier, if Q+R−intercept√
2

≤ 2

not inlier, otherwise

Figure 3.13: This figure depicts the process of finding the amount to shift. Q is the
number of frames of the query sequence. This process starts after obtained matches
from the sequence match. Orange lines are all the potential lines that could pass
through the matrix. Only the pink line and the blue line has inliers, which are then
evaluated based on their inlier numbers and line score. Finally, the pink line has been
chosen, and its intercept is set to be this segment’s shift index, which is just 0.
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Each line has a score and a inliers’ count number. The line with most inliers is

set to be the best line. When there is a tie, the line with the highest score is chosen.

The score is one minus the average of all its inliers’ uniqueness scores. We set the

number of inliers to be N and the uniqueness score of each match be su

line score =

∑N
i=1 inlierisu

N

The intercept of this chosen line is used as this segment’s shifting amount. Figure

3.13 depicts this entire procedure.

3.2.3 Particle Merge and Resolution Update

After all particles’ segments shift to their optimal position, the particle merge starts.

With particle shifting, some particles’ segments may have large overlaps or even are at

the exact same place. In order to increase efficiency, particles with very close indexes

are merged. We set the closeness to be three frames, and the particle with a larger

weight is preserved. The weight of the particle is updated by multiplying the best

line’s line score. With a higher line score, the particle’s segment has more possibility

of being at the final matched index. The weight is normalized and the particle

efficiency is calculated after particle’s merge. For weight of remaining particles 1 to

N,

wi
n =

wi
n∑N

i=1 w
i

The particle efficiency for N particles is calculated using the following formula:

Neff =

∑N
i=1(w

i
n)2

N

The most effective particles’ distribution would be one particle’s weight is 1 and all

other particles’ weights are 0. Worst distribution would be all particle’s weight is
1
N

, which is the initial distribution. For the best distribution: Neff = 1
N

For the

worst distribution, Neff = N
N

= 1. Thus, we set the effective threshold to be 0.5.

When Neff is lower than 0.5, it means the particles are effective enough for the next

resolution level. In order to prevent the algorithm to loop forever, we set a maximum

21



3. Image Sequences Matching

iteration limits to wait for Neff to reach below 0.5. If the iteration times reach the

maximum iteration limits, the resolution reduces by half ignoring the value of Neff .

The maximum iteration is set to 3 to balance time and accuracy.

With resolution increasing from the old level to the new level, the current particle’s

index needs to increase as well. Previously skipped frames are now restored with

re-sampling. We set the old resolution level to a and the new resolution level to b.

new index =

old index ∗ a
b

+ 1, if [(a− 1) mod a
b
] = 0

old index ∗ a
b

+ [(a− 1) mod a
b
]− 1, otherwise

OFast = O(
re max∑
i=0

M
N
∗ τ

2re max−i
∗ ((N/2i)2 + N/2i) +

M
N
∗ τ

2re max−i
) (3.1)

= O(
re max∑
i=0

M
N
∗ τ

2re max−i
∗ ((N/2i)2 + 1)) (3.2)

= O(
re max∑
i=0

M
N
∗ τ

2re max−i
∗ (N/2i)2) (3.3)

= O(
re max∑
i=0

M ∗ τ
N ∗ 2re max−i

∗ N
2

22i
) (3.4)

= O(
re max∑
i=0

M ∗ τ
N ∗ 2re max−i

∗ N
2

22i
) (3.5)

= O(
re max∑
i=0

M ∗N ∗ τ
2re max+i

) (3.6)

= O(
M ∗N ∗ τ
22∗re max

∗ 1− 2re max

1− 2
) (3.7)

= O(
M ∗N ∗ τ ∗ (2re max − 1)

22∗re max
) (3.8)

(3.9)

3.2.4 Complexity Analysis

The complexity in Big O for Seq-SLAM[24] is O(MN). The same complexity analysis

must be performed for Fast Seq-SLAM as well to prove its improvement. The number

of reference sequence frames is M and the number of query sequence frames is N.

For each particle, Seq-SLAM[24] takes O((N/2i)2) and index shift takes O(N/2i)
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3. Image Sequences Matching

at resolution level 2i. Particles merging takes O(p). With p particles, the total

complexity is roughly O(p ∗ ((N/2i)2 +N/2i) + p). Particles number decrease roughly

by half on each resolution level. We set lowest resolution level be 2re max and highest

resolution level be 1. p = pinit

2re max−i =
M
N

∗τ
2re max−i .OFast is calculated from equations

(3.1) to (3.9). Given the parameters tuned in section 8.1 : τ = 3.0, re max = 2.

OFast = O(M∗N∗3∗3
16

) = 9
16
O(MN). Fast Seq-SLAM’s big O complexity reduces the

original big O complexity by nearly 50%. With even lower τ and bigger re max, the

complexity can be further decreased.
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Chapter 4

Robotic System

After introducing the main algorithm of our localization pipeline, we present the

robotic system we build.

4.1 Mapping Rover Robot

This mapping rover robot (shown in figure 4.1) includes a Ricoh THETA V omni-

directional camera, a Velodyne VLP-16 LiDAR, a T265 Intel Realsense Tracking

Camera (VIO), and an Xsens MTI IMU, and a Jetson AGX Xavier Nvidia AI Robot

Driver Development Kit as its main computing unit. It is used for data collection

and high-quality LiDAR odometry map generation. We also use a surface pro as a

tablet to visualize data and control sensors.

4.2 Localization Helmet

The localization helmet(shown in figure 4.2) has four main components: Two Leop-

ard Imaging Fisheye Cameras, an Epson IMU, a Jetson AGX Xavier as the main

computing unit, and a WIFI module for communication. The omnidirectional image

is generated using two fisheye cameras. The image stitching techniques are explained

in section 4.3. The Localization Agent is equipped with a helmet, a bag to store

battery, and a surface pro tablet to visualize data and control sensors and algorithms.

24



4. Robotic System

Figure 4.1: Mapping Rover Robot.

Figure 4.2: The left picture is the localization agent and the right picture is the
localization helmet with omnidirectional camera.
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4. Robotic System

4.3 Image Stitching

We use the algorithm RIGID MOVING LEAST SQUARES proposed by [15] and [30]

to complete panoramic image stitching. Figure 4.3 shows the main pipeline of the

stitching algorithm.

Figure 4.3: The processing flow of the RIGID MOVING LEAST SQUARES algorithm.

The algorithm first unwarps both fisheye images. Then it performs a 2d-interpolation

using a pre-computed Rigid moving least square (MLS). The rigid MLS aligns points

around the stitching boundary, which registers two unwarped fisheye images. However,

some misalignments still remain. Thus, a refined alignment is used to further align

the images. For the rigid MLS, control points p are selected from the front fisheye’s

unwarp image, and q is selected from the back fisheye’s unwarp image. These points

are located in the overlapping regions of the two images, where pi and qi represent

the same real-world location. Rigid MLS is used to find a function fr to deform the

back fisheye’s unwarp image and align it with the front fisheye’s unwarp image. The

example images with points p and q are shown in figure 4.4. For every point v in the

front fisheye’s unwarp image and the selected control points p and q,

fr(v) =
∑
i

q̂i(
1

µs

Ai + q∗)
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4. Robotic System

wi is the weights for each pi and qi

wi =
1

|pi − v|2α

p∗, q∗ are weighted centroids and ⊥ is an operator on 2D vectors such that

(x, y)⊥ = (−y, x)

p∗ =

∑
i wipi∑
i wi

q∗ =

∑
i wiqi∑
iwi

p̂i = v − p∗

q̂i = v − q∗

µs =
∑
i

wip̂ip̂i
T

Ai = wi

(
p̂i

−p̂i⊥

)(
v − p∗

−(v − p∗)
⊥

)T

Figure 4.4: Left: front unwarp fisheye image and pi on the overlapping areas(yellow
boxes). Right: back unwarp fisheye image and qi on the overlapping areas(green
boxes).

The refined alignment performs a fast template matching and utilizes the matching

displacements on both stitching boundaries to create eight pairs of control points.

These points are used to solve for a 3*3 affine matrix to warp the deformed image.
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Chapter 5

Localization System

Figure 5.1: The localization system framework.

Chapter 3 and chapter 4 introduce the main algorithm and localization devices. This

chapter presents the framework and different modules of the localization system.
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5. Localization System

5.1 System Overview

The system has five main parts: Map creation, Global Localization, Local Localization,

Odometry Fusion, and Off Map Detection. Each part will be explained with details

in the following sections. The created map has two types of information: LiDAR

odometry [43] and Omnidirectional images. Agent receives two types of information:

Omnidirectional visual inputs and real-time odometry generated by VINS-MONO

[29]. Figure 5.1 shows the system framework.

5.2 Map Creation

Our localization system is based on VPR. Thus, creating a high-quality map with

visual inputs is the first step. The mapping robot (introduced in 4) generates a

LiDAR odometry trajectory with refined point cloud data. The LiDAR odometry

is saved every 0.25 meters. For each saved odometry, an associated image’s feature

array is also saved, which is generated by CoHOG [41](section 8.2 explains detailed

reasons). Figure 5.2 shows the generated high-quality map’s format. There is a height

difference between the agent’s visual input and the mapping rover’s visual input.

Figure 5.3 shows visual inputs’ comparisons. Our pipeline needs to be robust enough

to handle the altitude changes.

5.3 Global Localization

When an agent enters a new environment with the map, the pipeline does not know the

agent’s starting position. Thus, a global localization module is needed. The module

uses Fast Seq-SLAM. Since we utilize the concept of sequence matching, the system

needs to store enough frames to form a sequence to start global localization. Thus, the

agent needs to walk around 7 to 12 meters initially (depending on the query sequence

length) for the pipeline to localize its initial position on the map. The module’s

output position is categorized as success when the matched segment’s line score is

greater than thresholdG, which is set to 0.2 based on experiments. Figure 5.4 shows

the module’s working flow. Agent receives the visual input and the odometry every
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5. Localization System

0.25 meters, which is the same as the pre-generated map.

Figure 5.2: This graphs shows the format of the created map. In this example, 304
odometry are stored in the map. Each odometry is associated with an image, which
is marked by red arrows. These images are then transferred to features and stored in
the map.

Figure 5.3: Viewpoint differences between the mapping robot and the localization
agent.
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5. Localization System

Figure 5.4: The working flow of the global localization module. The agent starts
from a random unknown position on the map. After walking for a certain distance,
the agent receives enough visual inputs, which can form into a query sequence. The
query sequence and the reference sequence(generated map) form a difference matrix
through the place representation technique. The module computes the match with
the difference matrix using Fast Seq-SLAM and outputs the agent’s current position
on the map.

5.4 Local Localization

After global localization, the pipeline knows the agent’s current location on the map.

Instead of doing Seq-SLAM with the entire reference sequence, we only need to

perform it with a local neighborhood of the reference sequence around the current

location. In this way, we can benefit from the high accuracy of Seq-SLAM and not

worry about its high computation cost. The big O complexity for Seq-SLAM in

this pipeline is now O(N2) instead of O(NM), where N << M (N is the number of

query sequence’s frames and M is the number of reference sequence’s frames, which

is the map). We obtain a matched reference sequence’s frame index after global
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5. Localization System

localization. We set it to IR. When a new visual input comes in, we first increase

IR by one since we know that reference and query sequences have roughly the same

distance intervals. Since the visual input is received per 0.25 meters, around 10HZ.

The local localization can only perform around 3HZ(more details in section 8.3.3).

So, we cannot perform local localization on every visual input. We record the missing

visual input numbers as IM . The system stores previous inputs’ features, and it

performs a Seq-SLAM between query features[len(query features)-S+1:] and reference

features[IR + 1 + IM −N : IR + 1 + IM ] for the forward direction. And between query

features[len(query features)-S+1:] and reference features[IR−1+IM−N : IR−1+IM ]

for the backward direction. With the output matches, we want its formed line’s

intercept to reach zero, as stated in section 3.2.2. Thus, we shift the matched reference

sequence’s frame index by the amount of the intercept. The updated IR after global

localization is IR+1+M-intercept or IR-1+M-intercept depending on the directions,

in which the current position is the map’s odometry data’s IR element.

5.5 Odometry Fusion

The agent receives odometry information every 0.25 meters (around 10 HZ) from

VINS-MONO[29]. We transform the received odometry positions using the map’s

coordinates system and add the agent’s starting position as an offset. We fuse the

transformed odometry positions and the local localization’s output map’s positions

to make the system more robust. The fused information is passed into gtsam[13],

which is our back-end factor graph optimizer. Each transformed odometry position is

associated with visual input. Since local localization can only give matched positions

at 3HZ instead of 10HZ, not all the transformed odometry is associated with a matched

position on the given map. The transformed odometry is passed into the back-end as

a factor. The matched position is passed into the back-end as a ground truth value

for the associated odometry factor. The back-end optimizer does a quick optimization

every time it receives a ground truth value. The local localization matched position

is only added to the gtsam back-end when the match result’s line score is greater

than thresholdl, which is set to 0.1 based on experiments.
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5. Localization System

5.6 Off-Path Detection

The agent might not always stay on the pre-generated map. So, our localization

system includes an off-path detection module. As shown in 5.1, the off-path detection

module decides whether to use pure odometry or the fusion of local localization’s

match results and odometry. Off path is defined when the agent deviates from the

map, which means the agent starts to explore places not visited before. In this case,

Seq-SLAM cannot output a match on the given map. Our system needs to have the

ability to find out when the agent is off the path and when is back on the path again.

5.5 shows an example of off-path localization, including the off-path and back-on-path

parts.

Figure 5.5: The figure is an example of an agent’s movement, including off-path. The
red line is the pre-generated map, and the green line is the agent’s path. When the
agent enters the yellow-shaded area, he/she is off the map. When the agent moves
out of the yellow-shaded area, he/she is back on the map again.

When the local localization module outputs match with line score below thresholdol

(0.05 based on experiments) 5 times continuously, the off-path detection module de-
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5. Localization System

termines the agent is now off the path. The local localization module stops running,

and the system keeps running global localization until the agent is back on the map.

Meanwhile, the output estimated location only relies on pure transformed odometry

at off-path status. When the global localization module generates a match with

line score greater than thresholdG (0.2 based on experiments), the system determines

that the agent moves back to the map again. The local localization module starts

running again, and the global localization stops. The local localization module uses

the match generated by global localization as the current IR.
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Chapter 6

Dataset

To evaluate our pipeline and facilitate future research, we collect a visual place recog-

nition dataset with omnidirectional images in challenging and changing environments.

Figure 6.1: This picture shows ten collected trajectories inside Carnegie Mellon
University. Their overlapped junctions are marked in yellow, around 20 to 30 meters.
Different colors of trajectories do not have a specific meaning, which is only used for
better clarity since they are inter-connected. The trajectory number are also marked
for future reference.
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6. Dataset

6.1 Overview

This dataset focuses on localization with omnidirectional visual inputs in outdoor

campus-type environments. We collected 80 real-world unmanned ground vehicles

(UGV) sequences using a rover robot (mentioned in section 4.1). There are in total

ten different trajectories. For each trajectory, we traversed eight times, including

forward(start point to end point)/backward(endpoint to start point) directions and

day-light (2pm to 4:30pm)/night-light (6am to 7am or 5pm to 6pm). Eight times

includes two forward sequences and two backward sequences during day-light and two

forward and two backward sequences during dawn-light. Each trajectory is at least

overlapped at one junction with the others, and some trajectories even have multiple

junctions. This feature enables the dataset to be used in LiDAR place recognition

and multi-map fusion tasks. Figure 6.1 is the overview of ten collected trajectories on

the google map. Their overlapped junctions are also marked. Backward and forward

creates viewpoint changes. Day-light and night-light make illumination changes.

Dynamic objects and Cars’ flashing headlights on the street create challenges for

VPR. Figure 6.2 shows these changes and challenges with detailed examples.

6.2 Data Format

The dataset consists of 4 types of data, described as :

- Global maps: Global maps are processed to contain the 3D structure of each

trajectory which is provided in Point Cloud Data (PCD) file format.

- Odometry : Odometry is generated by LOAM [43] and provided in (TXT) file

format.

- Ground Truth: Ground Truth is processed by Interactive SLAM [17] to generate

the relative positions of the other sequences compared to the reference sequence.

The data is provided in (TXT) file format.

- Omnidirectional pictures : For each key pose within odometry, a corresponding

high resolution (1024x512) omnidirectional picture is provided in (PNG) file

format.
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6. Dataset

Figure 6.2: This picture shows the changes and challenges described in the paragraph
above, such as viewpoint changes, illumination changes and some challenges.

6.3 Ground Truth Generation

For each trajectory, one out of the eight sequences is selected as the reference

sequence and the rest seven sequences are function as non-reference sequence, which

are segmented to many query sequences during evaluations. Its poses are generated

by LOAM [43] and later optimized by Interactive SLAM[17], as shown in figure 6.3.

We then used Interactive SLAM[17] to generate the relative positions of the other

sequences compared to the reference sequence. These data can be used as relative

ground truth data. Interactive SLAM[17] needs the user to first do a manual loop

closure to connect the two sequences. We fix our reference sequence, and the manual

loop closure only shifts the other sequence. After shifting, the software does an

automatic loop closure detection with each point on both sequences to refine the

relative positions. When the automatic loop closure reaches a certain threshold, users

can stop it and output the relative position of the other sequence in the world frame

of the reference sequence. Figure 6.4 depicts the whole process.
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Figure 6.3: The Interactive SLAM’s[17] representation of a trajectory. Each key
pose’s odometry is represented by a red dot and each of them has its associated point
cloud data. Trajectory 3 is used for this example.

Figure 6.4: This picture shows the entire process to generate the ground truth data
using Interactive SLAM[17]. Trajectory 3 is used for this example.
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Chapter 7

Experimental Setup

The chapter first introduces the metrics we used for reasoning. The following section

introduces two extra indoor datasets used for evaluation. The third section introduces

three different place match techniques we used for evaluations and comparisons. The

final two sections explain how we measure time and accuracy for both global and

local localization modules.

7.1 Metrics

For metrics, we have two primary metrics for VPR based algorithm. VPR algorithms

usually are evaluated with query sequences as part of the reference sequences. Thus,

there are no true negatives. Therefore, precision and recall are used to evaluate

true positives, false positives, and false negatives. Since our system has the off-path

detection module, we test with query sequences with true negatives. In this case,

Receiver-Operating -Characteristic(ROC) curve is used.

7.1.1 PR Curve

We set True-Positive to TP, False-Positive to FP and False-Negative to FN.

Precision =
TP

TP + FP
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Recall =
TP

TP + FN

For VPR, with a query frame and a score threshold, TP is a correctly retrieved image

of a place based on ground-truth information. FP represents an incorrectly retrieved

image of a place based on ground-truth information. And FN is a correctly retrieved

image, but with a match score less than score threshold. For most VPR datasets, the

query sequences do not have unseen parts compared to the reference sequences. Thus

there are no True-Negatives. Ground-truth matches exist for all the query images in

the datasets.

Different score threshold values can lead to different precision and recall pairs,

which form a curve. The area under the curve is called AUC-PR. For AUC-PR, its

ideal value is one, which means the precision equals one for all recall values.

The odometry difference between the retrieved reference image and the query

image is used to decide the correctness of this retrieval. We set the odometry difference

tolerance to 2.5 meters.

Figure 7.1: The Venn diagram shows the relationship between TP, FP and FN under
the metric precision and recall.

7.1.2 ROC Curve

Precision and recall do not consider True-Negatives. True-Negatives mean the query

images for which the ground truth correct reference match does not exist, which can

be considered new places. Receiver-Operating -Characteristic(ROC) curve is a plot

between true-positive rate(TPR) and false-positive-rate(FPR). We set True-Positive
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to TP, False-Positives to FP, False Negatives to FN, and True Negatives to TN.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

Same as the PR curve, different score threshold values lead to different TPR and

FPR, forming the ROC curve. The area under the curve is called AUC-ROC. A

perfect AUC-ROC is one, which means TPR equals one for all FPR. For AUC-ROC

below 0.5, the algorithm cannot separate visited and new places or even create

opposite labels.

Like the PR curve, We set the odometry difference tolerance to 2.5 meters.

7.2 Indoor Datasets

Two extra indoor datasets are collected at Carnegie Mellon University and Hawkins (A

Va Pittsburgh Health Care Int) to make the evaluation datasets more comprehensive.

These datasets provide confined spaces and narrow and long corridors with repeated

features, as shown in figure 7.2

Figure 7.2: Examples of confined spaces, narrow and long corridors with repeated
features in this indoor datasets.
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To mimic the altitude changes mentioned in section 5.3, we collected sequences

with high viewpoints and low viewpoints using the mapping rover robot with ground

truth. Figure 7.3 shows the collection device.

Figure 7.3: Mapping rover robot is used to collect dataset with low viewpoint. We
put it on a cart to collect sequence with high viewpoint.

This way, we can conduct quantitative analysis to tune the parameters with

altitude change. We also collected more drastic illumination changes. The reference

sequence is recorded with lights. We turned off some lights and used our LED to

record some not-bright sequences. We then turned off all the lights to record the dark

query sequence. These changes are shown in figure 7.4.

The CMU indoor dataset contains one reference sequence with low view point

and direction forward. And four non-reference sequences being :

- Non-reference 1: low viewpoint and direction forward.

- Non-reference 2: low viewpoint and direction backward.
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- Non-reference 3: high viewpoint and direction forward.

- Non-reference 4: high viewpoint and direction backward.

The Hawkins indoor dataset contains one reference sequence with low view point

and bright illumination condition. And four non-reference sequences being :

- Non-reference 1: low viewpoint and not-bright illumination condition.

- Non-reference 2: low viewpoint and dark illumination condition.

- Non-reference 3: high viewpoint and not-bright illumination condition.

- Non-reference 4: high viewpoint and dark illumination condition.

Figure 7.4: Viewpoint and Illumination changes in two extra indoor datasets.
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7.3 Three different place match techniques

As mentioned in section 2.3, there are three different place match techniques. The

most direct way is single image match. One can also exploit the characteristics of

VPR by using image sequences, which leads to Seq-SLAM and Fast Seq-SLAM. Figure

7.6 illustrates the comparison between these three methods. Single Image match

compares a single image with the entire reference sequence. The match result is the

reference frame with the highest score. Seq-SLAM matches the query sequence with

the entire reference sequence. And Fast Seq-SLAM uses multi-resolution sampling to

match the query sequence efficiently with the entire reference sequence.

Figure 7.5: This graphs shows the difference between three different place match
techniques. The first row shows the single image match. The second row represents
Fast Seq-SLAM and the Last row shows the Seq-SLAM.

Theoretically: For AUC-PR, it should be Seq-SLAM > Fast Seq-SLAM > Single

Match. And for run-time, it should Seq-SLAM > Fast Seq-SLAM >> Single Match.

As mentioned in chapter 5, we choose Fast Seq-SLAM, which balances the run-time

and accuracy as our global localization method. And use local Seq-SLAM to do

local localization with initial positions, which has high accuracy and robustness to

environmental changes. By doing the Seq-SLAM locally, we can avoid the high
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computation cost. The section 8.3.2 and 8.3.3 prove the theory mentioned above and

our algorithm choices for tasks.

7.4 Global Localization Evaluation

We set the non-reference sequence length to be NR and the reference sequence length

to be R. Frame numbers for the non-reference sequence are set from one to NR,

with an interval equal to one. The query sequence used for sequence-based matching

methods has length Q. Q should be << NR, which Q’s value is discussed in section

8.1

All three methods mentioned in the previous sections are evaluated for global

localization. We test with all the possible query frames to assess the global localization.

Since sequence-based matching methods need enough frames to form a query sequence,

the first query frame that can be used to evaluate is the frame with index Q of the

non-reference sequence, which enables Q frames to be stored. The index range for

usable query frames is from Q to NR, with an interval equal to one.

We record each usable query frame’s matched reference frame index and matching

score for a single image match. The matched result’s odometry difference can be

calculated using ground truth data and the matched reference frame index. If the

difference is smaller than the odometry tolerance (mentioned in section 7.1), we set

the match to be one and otherwise zero.

For sequence-based matching methods (including Seq-SLAM and Fast Seq-SLAM),

7.6 shows the evaluation process. For each evaluation between a non-reference sequence

and a reference sequence, we obtain query sequences [1 to Q], [2 to Q+1], ...,[NR-Q+1,

NR] of the non-reference sequence, which all have the length of Q. We then use these

query sequences to perform Seq-SLAM or Fast Seq-SLAM with the reference sequence.

We can get each query sequence’s matched reference frame index and matching score.

Just as single matching, matched reference frame indexes are transferred to either

one or zero.

We can combine these matches and scores and use the precision and recall metric

to get the AUC-PR and PR-curve for each non-reference sequence given a reference

sequence. We integrate each non-reference sequence’s matched results to form a

trajectory’s matched results, which can be evaluated to a final AUC-PR and PR-
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curve. Depending on different datasets, one trajectory usually has one reference

sequence and four or seven non-reference sequences.

Figure 7.6: This process shows the global localization evaluation process for sequence-
based matching methods. For this example, Q equals 30, R equals 1195, and NR equals
1200. The non-reference sequence X has been divided into many query sequences of
length S. The global localization performs with each query sequence and the reference
sequence. The resulting matches lead to X’s final AUC-PR.

All the matching-time-related evaluations are performed on the Jetson AGX

Xavier. For global localization, the time period starts when the first query image is

received, and the time ends when a correct localization result is provided. Sequencing-

based matching methods need to wait for the entire query sequence. And for a

single image match, the matching-time is relatively short since it only requires one

query image. Like AUC-PR, we average each non-reference sequence’s average query

sequences’ matching-time results to form a trajectory’s final matching-time.

7.5 Local Localization Evaluation

Instead of evaluating the entire localization system, we separate the evaluation into

global and local due for the following reason. Since an incorrect global match leads

to subsequent incorrect local matches, evaluating the entire system does not reveal

the actual performance of the local localization. We set the non-reference sequence

length to be NR and the reference sequence length to be R. Frame numbers for the
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non-reference sequence are set from one to NR, with an interval equal to one. The

query sequence used for sequence-based matching methods has length Q.

Only single image match and Seq-SLAM are evaluated for local localization. Fast

Seq-SLAM is not evaluated. During local localization, matches are performed between

a matching sequence with length Q and a local reference sequence with length Q.

In this case, the coarse to a fine concept does not exist. As mentioned in section

3.2, Pinit = R
Q
∗ τ . With Q=R, the initial particle numbers are just τ . And for

these τ particles, they all have the same particle index, which makes multi-resolution

sampling meaningless.

To evaluate local localization, we need to give the module the correct initial

positions. For the same reason mentioned in the previous section, the index range for

usable query frames is from Q to NR, with an interval equal to one. For each query

frame X, the correct initial matched reference-sequence frame index Y is given at

query frame X-1. The local localization first uses the query sequence with frame index

ranging from X-Q+1 to X. After each local localization, Y is updated as stated in

section 5.4 (here we assume an ideal case, which IM=0). Then, the local localization

runs again using the query sequence with frame index ranging from X-Q+2 to X+1

with the updated Y given at query frame X. For each query frame X, the local

localization runs until the query frame’s index increases to NR. For each non-reference

sequence, there are all together (NR-(Q)+1) + (NR-(Q+1)+1) + (NR-(Q+2)+1) +

.. + (NR-(NR)+1)=
∑NR−Q

i=0 NR − Q − i + 1 = (NR−Q+2)∗(NR−Q+1)
2

matches. Each

match includes a reference frame index Y and a match score. Y is then transferred

to 0 and 1. The only difference for a single image match is that it compares the

new received query frame X instead of the query sequence with the local reference

sequence. We integrate each query sequence’s matched results to form a trajectory’s

final AUC-PR.

All the matching-time related evaluation is performed on the Jetson AGX Xavier.

For local localization, the time period starts when the new query image is received,

and the time ends when a correct local localization result is provided. While for a

single image match, the matching-time is extremely short since it only needs to make

a comparison between one query image and a local reference sequence. Like AUC-PR,

we average each non-reference sequence’s average query sequences’ matching-time

results to form a trajectory’s final matching-time.
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Chapter 8

Results

The previous section explains our experiments’ setups, and this section shows the

experiments’ results. The first section gives detailed explanations for choosing specific

parameter values for Fast Seq-SLAM. The following section shows different place

representation techniques performances and explains why we choose CoHOG[41].

Then, we present both quantitative and qualitative evaluations.

8.1 Fast Global Localization Parameters

As discussed in section 3.2, these three parameters (τ , Q, and re max) are very

important to the performance of the Fast Seq-SLAM, which is the main algorithm for

the global localization module in the system. To give a brief overview, τ determines

the particles’ density, Q represents the number of frames of the query sequence, and

re max controls the initial resolution level, which is 2re max.

We test with τ = [1, 1.33, 1.66, 2, 3, 4, 5, 6], which covers particle overlap rates

from 0% to 80%, which is fairly comprehensive. To make this localization system

usable, we cannot have a query sequence with too many frames. Q is set to be among

[20,30,40,50,60] (unit frames). With 0.25 meters per frame, 10 to 15 meters is a

reasonable distance for global localization. And for re max, we test between 1 and

2. Since our choices for Q are not very large, re max greater than 2 reduces too

many frames. For example, with re max equals 3, and Q equal to twenty. Q is only

two after down-sampled with the resolution being 8, making the evaluated results
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meaningless.

We used CMU’s indoor dataset and the collected dataset - trajectory one as our

evaluation datasets. These two datasets are comprehensive, including illumination

changes, directional viewpoint changes, and altitude viewpoint changes. They also

have challenging components: dynamic objects and long and narrow corridors with

repeated features. We test with different τ and Q combinations under different

re max. We use CoHOG[41] as our place recognition technique to set up the same

environment for all the parameter values. The AUC-PR and time evaluation methods

followed section 7.4.

From the results in table 8.1, table 8.2 and figure 8.1, we can have the following

conclusions. re max= 1 does not have significant accuracy improvement compared

to re max = 2, but costs more time. τ = 3.0 and Q = 40 balances best between

accuracy and time in both datasets. Thus, for the Fast Seq-SLAM : τ = 3.0, Q = 40

and re max = 2.

Figure 8.1: The four pictures show the AUC-PR results for two different datasets with
different re max values. The interval between each frame is around 0.25 meters. CMU
indoor dataset’s reference sequence has 1195 frames, around 298 meters. Collected
dataset - trajectory one’s reference sequence has 1783 frames, around 445 meters.
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re max=2 re max=1
20 30 40 50 60

1.0 9.0 12.1 16.2 21.0 25.3
1.33 8.5 12.7 17.1 21.4 25.7
1.66 8.6 13.2 17.9 22.7 26.1
2.0 8.5 13.2 18.6 22.9 27.9
3.0 9.9 14.4 19.0 23.5 29.5
4.0 9.6 14.9 19.4 24.1 28.5
5.0 10.0 14.4 20.2 23.0 30.5
6.0 11.3 14.3 19.5 24.7 31.1

20 30 40 50 60
1.0 11.0 13.5 17.9 21.2 25.8
1.33 11.6 14.2 18.6 23.4 28.5
1.66 12.3 15.2 21.2 24.2 28.9
2.0 12.9 15.2 22.1 25.6 32.1
3.0 12.6 17.1 22.8 27.3 34.8
4.0 13.4 17.8 24.5 28.4 35.0
5.0 15.0 19.1 25.7 30.4 38.5
6.0 14.9 20.0 24.8 31.7 39.5

Table 8.1: Time(s) results with CMU indoor dataset. τ = [1, 1.33, 1.66, 2, 3, 4, 5, 6] as
rows and Q = [20, 30, 40, 50, 60](frames) as columns. Reference Sequence has 1195
frames, around 298 meters.

re max=2 re max=1
20 30 40 50 60

1.0 12.1 16.8 21,5 27.5 31.8
1.33 12.4 18.1 22.8 29.0 33.6
1.66 12.9 18.6 24.2 28.0 34.7
2.0 14.0 19.2 25.9 28.9 34.8
3.0 13.8 19.4 26.4 30.8 34.3
4.0 15.3 19.7 25.9 31.6 35.7
5.0 16.5 20 26.8 31.3 37.5
6.0 15.6 21.5 27.5 32.6 38.7

20 30 40 50 60
1.0 13.6 17.3 21.7 27.1 31.8
1.33 14.2 18.1 23.5 29.4 35.7
1.66 15.4 19.6 25.7 31.5 38.5
2.0 15.9 20.8 26.9 32.8 41.2
3.0 15.7 23.8 29.9 36.2 44.4
4.0 16.8 25.1 31.5 39.3 47.7
5.0 18.9 26.9 33.8 40.7 48.9
6.0 20.4 29.3 34.7 42.7 52.7

Table 8.2: Time(s) results with collected dataset - trajectory one. τ =
[1, 1.33, 1.66, 2, 3, 4, 5, 6] as rows and Q = [20, 30, 40, 50, 60](frames) as columns.
Reference Sequence has 1783 frames, around 445 meters.
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8.2 Place Representation Technique

There are many place representation techniques. Some of these have been introduced

in section 2.2. With the help of [42], I can evaluate the following eight different

representation techniques (CoHoG [41], HOG [11], CALC [23], NetVLAD [1], Region-

VLAD [16], HybridNet [8], AMOSNet [8] and AlexNet [18]) and choose the best one

for our localization system. For the learning methods above, we just used pre-trained

model provided by [42].

As mentioned in the section 8.1, we used CMU’s indoor dataset and the collected

dataset - trajectory one as our evaluation datasets due to their comprehensiveness.

Figure 8.2 and figure 8.3 show the resulting difference matrices. For each dataset, a

difference matrix is created with each type of non-reference sequence and the reference

sequence using the place representation techniques mentioned above.

Figure 8.2: CMU’s indoor dataset has four non-reference sequences’ types: High
Backward, Low Backward, High Forward, and Low Forward, which function as rows.
Each column is a place representation technique. Each cell is the difference matrix
between its row’s non-reference sequences’ type and the reference sequence. The
reference sequence has type low forward, 1195 frames, around 298.75 meters. Details
about these query types can be found in section 7.2 and figure 7.4.
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Figure 8.3: Collected datasets’ trajectory one has four non-reference sequences’ types:
Day Forward, Night Forward, Day Backward, and Night Backward, which function
as rows. Each column is a place representation technique. Each cell is the difference
matrix between its row’s non-reference sequences’ type and the reference sequence.
The reference sequence has the type Day Forward, 1783 frames, around 445 meters.
Details about these query types can be found in section 6.1 and figure 6.2.

As one can see from these two graphs, HOG [11], CALC [23], HybridNet [8],

AMOSNet [8] and AlexNet [18] cannot handle viewpoint changes (between forward

and backward). Thus, we do not consider to use these methods.

For the rest methods : CoHoG [41], NetVLAD [1], RegionVLAD [16], we evaluate

their performances for global localization with three different methods and local

localization with two different methods. This evaluation shows two points: First,

we can show the theory’ correctness and generality presented in 7.3 using different

place representation techniques. Second, we can determine the place representation

technique most suitable for our localization pipeline.

Table 8.3 and table 8.4 show the AUC-PR with CoHOG, NetVLAD and Region-

VLAD on both datasets. Table 8.5 and table 8.6 show the matching-time. AUC-PR

and Time are measured followed methods in section 7.4 and section 7.5. The PR-

Curves behind the AUC-PR can be found in figure 8.4 and figure 8.5. The PR-Curve

shows that Seq-SLAM has the highest precision when recall equals one, followed by

Fast Seq-SLAM. Single match has a relatively low precision value when recall equals
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one compared to sequence-based methods.

From these tables, we can see the following patterns.

AUC-PR: Seq-SLAM > Fast Seq-SLAM > Single Match

Match time : Seq-SLAM > Fast Seq-SLAM >> Single Match

Our theory in section 7.3 is proved regardless of representation techniques. And using

Fast Seq-SLAM for global localization and Seq-SLAM for localization is the right

choice based on the evaluation results. To balance time and accuracy, we choose

CoHoG [41] to be our place recognition technique.

CMU Indoor Dataset : AUC-PR
Global Localization CoHOG NetVLAD RegionVLAD

Single Match 0.84 0.93 0.87

Fast Seq-SLAM 0.87 0.92 0.89

Seq-SLAM 0.97 0.96 0.97

Local Localization CoHOG NetVLAD RegionVLAD

Single Match 0.29 0.68 0.23

Seq-SLAM 0.88 0.93 0.85

Table 8.3: These tables show the AUC-PR results on CMU indoor dataset. Each
row represents different matching method. The top parts show results for global
localization and bottom parts show results for local localization. The reference
sequence has 1195 frames, around 298.75 meters.

Collected Dataset - Trajectory 1 : AUC-PR

Global Localization CoHOG NetVLAD RegionVLAD

Single Match 0.78 0.91 0.73

Fast Seq-SLAM 0.93 0.93 0.94

Seq-SLAM 0.93 0.94 0.94

Local Localization CoHOG NetVLAD RegionVLAD

Single Match 0.12 0.28 0.12

Seq-SLAM 0.92 0.93 0.93

Table 8.4: These tables show the AUC-PR results on collected dataset - trajectory
one. Each row represents different matching method. The top parts show results for
global localization and bottom parts show results for local localization. The reference
sequence has 1783 frames, around 445 meters.
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Figure 8.4: The Precision-Recall curves behind table 8.3 and table 8.4’s AUC-PR
results related to global localization for both datasets.

Figure 8.5: The Precision-Recall curves behind table 8.3 and table 8.4’s AUC-PR
results related to local localization for both datasets.
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CMU Indoor Dataset : Time(s)

Global Localization CoHOG NetVLAD RegionVLAD

Single Match 0.13 3.21 3.13

Fast Seq-SLAM 19.05 121.16 91.63

Seq-SLAM 33.15 176.17 160.62

Local Localization CoHOG NetVLAD RegionVLAD

Single Match 0.04*10−1 0.04*10−2 0.03*10−1

Seq-SLAM 0.20 0.31 0.24

Table 8.5: These tables show the matching-time(s) results on CMU indoor dataset.
Each row represents different matching method. The top parts show results for
global localization and bottom parts show results for local localization. The reference
sequence has 1195 frames, around 298.75 meters.

Collected Dataset - Trajectory 1 : Time(s)

Global Localization CoHOG NetVLAD RegionVLAD

Single Match 0.21 3.52 3.34

Fast Seq-SLAM 26.46 130.82 97.48

Seq-SLAM 36.52 184.37 167.55

Local Localization CoHOG NetVLAD RegionVLAD

Single Match 0.04*10−1 0.04*10−2 0.03*10−1

Seq-SLAM 0.19 0.35 0.27

Table 8.6: These tables show the matching-time(s) results on collected dataset -
trajectory one. Each row represents different matching method. The top parts show
results for global localization and bottom parts show results for local localization.
The reference sequence has 1783 frames, around 445 meters.

8.3 Quantitative Results

Quantitative experiments are necessary to evaluate the localization system’s different

modules. This section presents the quantitative evaluation results. The first subsection

explains the datasets used for evaluation. The following two subsections show the

evaluation results of the global and local localization modules. The last section

displays the system’s ability to detect off-path.
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8.3.1 Evaluation Environment

Carnegie Mellon University and Hawkins Indoor Datasets (section 7.2) are used.

They include confined spaces, long narrow corridors with repeated features, drastic

illumination changes, viewpoint changes, and altitude changes. We also use the

collected dataset with all ten trajectories, which have 80 sequences. They include

dynamic objects, illumination changes, viewpoint changes, and outdoor features.

Each non-reference and reference sequence’s frames are generated with intervals

of 0.25 meters. The ground truth data is obtained by Interactive SLAM[17] and

LOAM[43] (Details mentioned in chapter 6).

8.3.2 Global Localization

We evaluate the three place matching techniques for global localization using the

methods mentioned in section 7.4. The following table 8.7 shows the AUC-PR for

each trajectory. For all the sequences, CoHOG is used as the place representation

technique. PR-Curves behind the AUC-PR can be found in figure 8.6.

From table 8.7, single match performs the worst on average. Due to the very

challenging environments, we can see that single match performs poorly compared to

sequence-based methods in the Hawkins dataset. Fast Seq-SLAM does not perform as

excellent as Seq-SLAM in more challenging environments(CMU and Hawkins Indoor

datasets). With outdoor datasets, it performs as well as Seq-SLAM. From figure 8.6,

we can see that Seq-SLAM has the highest precision values for most trajectories when

recall equals one. Fast Seq-SLAM has lower precision values than Seq-SLAM when

recall equals one but is still acceptable. And single match has the lowest precision

values when recall equals one for all datasets.

We also evaluate the matching-time for global localization using the methods

stated in section 7.4. Due to their comprehensiveness, we used CMU indoor dataset

and the collected dataset - trajectory one as our evaluation datasets. For matching-

time performance, the number of frames of the reference sequence is the key factor. We

want to evaluate different methods’ performance with reference sequences containing

different numbers of frames. A reference sequence with different numbers of frames is

created with different frame intervals. We cut some frames to round up the number

of frames. We set the number of frames to be [500, 1000, 2000, 3000, 4000, 8000].
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With frame intervals being 0.25 (our standard setup mentioned in 5.1), 500 and 1000

frames would be a small map, and 2000, 3000, and 4000 frames make a normal map.

8000 frames make a large map, which can compare different algorithms’ performance

in extreme conditions.

Global Localization : AUC-PR

CMU Hawkins O1 O2 O3 O4

Single Match 0.85 0.66 0.78 0.87 0.87 0.78

Fast Seq-SLAM 0.86 0.92 0.93 0.90 0.97 0.97

Seq-SLAM 0.97 0.95 0.93 0.88 0.99 0.98

Reference Sequence’s Frames 1200 341 1943 1412 2142 2940

Reference Sequence’s Distance(m) 304 86 487 354 537 738

O5 O6 O7 O8 O9 O10

Single Match 0.90 0.94 0.89 0.87 0.88 0.84

Fast Seq-SLAM 0.96 0.98 0.97 0.91 0.87 0.85

Seq-SLAM 0.95 0.98 0.97 0.93 0.84 0.84

Reference Sequence’s Frames 2240 2248 1588 769 1302 1180

Reference Sequence’s Distance(m) 561 563 390 193 326 295

Table 8.7: This table shows the AUC-PR for each algorithm in each trajectory for
global localization. CMU indoor dataset is abbreviated as CMU and Hawkins indoor
dataset is abbreviated to Hawkins. Collected dataset - trajectory one is abbreviated
to be O1 and two be O2 and etc.

CMU Indoor Dataset : Times(s)

Number of Reference Frames 500 1000 2000 3000 4000 8000

Single Match 0.21 0.29 0.40 0.51 0.64 1.10

Fast Seq-SLAM 14.04 17.09 22.80 41.25 59.42 90.53

Seq-SLAM 20.8 54.3 188.1 411.3 752.2 4687.39

Table 8.8: This table shows the matching-time(s) for global localization with three
different matching algorithms. They are evaluated under reference sequences with
different numbers of frames on Xavier using CMU indoor dataset.
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Collected Dataset - Trajectory 1 : Times(s)

Number of Reference Frames 500 1000 2000 3000 4000 8000

Single Match 0.22 0.29 0.41 0.50 0.63 1.12

Fast Seq-SLAM 15.13 20.12 27.18 41.80 49.52 107.22

Seq-SLAM 22.73 57.51 187.51 411.09 750.97 4703.45

Table 8.9: This table shows the matching-time(s) for global localization with three
different matching algorithms. They are evaluated under reference sequences with
different numbers of frames on Xavier using collected dataset - trajectory one.

Figure 8.6: The Precision-Recall curves behind table 8.7’s AUC-PR results for all 12
trajectories.

Table 8.8 and table 8.9 shows the run-time performance for global localization.

Single match is undoubtedly the fastest since it does not need to store frames for

the query sequence. Fast Seq-SLAM is roughly two times faster than Seq-SLAM

with small and normal maps, and the speed boost is even larger when the map’s

size becomes larger. It also shows fast Seq-SLAM balances time and accuracy best

among these three different place matching techniques. The result is relatively stable

within different datasets, proving this choice’s generality. Overall, The evaluation
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results matched our theory and proved our choice to use Fast Seq-SLAM for global

localization is correct.

8.3.3 Local Localization

We evaluate two place matching techniques for local localization using the mentioned

methods in section 7.5. The following table 8.10 shows the AUC-PR for each trajectory.

For all the sequences, CoHOG is used as the place representation technique. PR-

Curves behind the AUC-PR can be found in figure 8.7.

From table 8.10, we can see that single-match performs as well as Seq-SLAM

in local localization. We also evaluated the local localization’s matching time on

Xavier. The evaluation method is the same as the global localization matching time’s

evaluation.

Local Localization : AUC-PR

CMU Hawkins O1 O2 O3 O4

Single Match 0.40 0.31 0.13 0.35 0.39 0.34

Seq-SLAM 0.87 0.97 0.92 0.87 0.96 0.98

Reference Sequence’s Frames 1200 341 1943 1412 2142 2940

Reference Sequence’s Distance(m) 304 86 487 354 537 738

O5 O6 O7 O8 O9 O10

Single Match 0.41 0.48 0.32 0.50 0.50 0.41

Seq-SLAM 0.94 0.98 0.98 0.96 0.83 0.81

Reference Sequence’s Frames 2240 2248 1588 769 1302 1180

Reference Sequence’s Distance(m) 561 563 390 193 326 295

Table 8.10: This table shows the AUC-PR for each algorithm in each trajectory for
local localization. CMU indoor dataset is abbreviated as CMU and Hawkins indoor
dataset is abbreviated to Hawkins. Collected dataset- trajectory one is abbreviated
to be O1 and two be O2 and etc.
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Figure 8.7: The Precision-Recall curves behind table 8.10’s AUC-PR results related
for all 12 trajectories

CMU Indoor Dataset : Times(s)

Number of Reference Frames 500 1000 2000 3000 4000 8000

Single Match (∗10−1) 0.04 0.05 0.05 0.04 0.05 0.05

Seq-SLAM 0.32 0.33 0.33 0.34 0.33 0.34

Table 8.11: This table shows the matching-time(s) for local localization with two
different matching algorithms. They are evaluated under reference sequences with
different numbers of frames on Xavier using CMU indoor dataset.

Collected Dataset - Trajectory 1 : Times(s)

Number of Reference Frames 500 1000 2000 3000 4000 8000

Single Match (∗10−1) 0.05 0.03 0.05 0.05 0.05 0.04

Seq-SLAM 0.34 0.32 0.33 0.33 0.34 0.34

Table 8.12: This table shows the matching-time(s) for local localization with two
different matching algorithms. They are evaluated under reference sequences with
different numbers of frames on Xavier using collected dataset - trajectory one.
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Table 8.11 and table 8.12 show the run-time performances for local localization

on both datasets. The difference between single image and sequence matches is less

obvious than global localization since the sequence match only needs to perform with

local reference sequences. By only matching with local reference sequence instead of

global, local localization’s times for both methods are relatively stable with reference

sequences with different numbers of frames. This way, the system can provide stable

local localization matches at around 3HZ regardless of the map size and environmental

conditions. Seq-SLAM has high AUC-PR, is robust to environmental changes, and

can provide a 3HZ matching frequency. Thus, it is correct to choose Seq-SLAM

for the local localization module. The evaluation result is relatively stable within

different datasets, proving this choice’s generality.

8.3.4 Off-Path Detection

Our proposed localization system can do off-path detection and agents re-localization.

Thus, evaluating the global and local localization module’s ability to discriminate

between visited and new places is necessary. We used the same methods mentioned in

section 7.4 and section 7.5 to evaluate the differentiation ability. The only difference is

that we use the ROC metric (section 7.1.2) instead of the PR metric, which considers

true negatives.

As mentioned in the section 8.1, we used CMU indoor dataset and the collected

dataset - trajectory one as our evaluation datasets due to their comprehensiveness.

We modified these two datasets so that each non-reference sequence has the same

number of new and visited places. The number of true-positives and true-negatives is

kept equal because ROC curves work well for balanced classification problems [42].

Figure 8.8 shows the ROC curves for global and local localization under two

modified datasets. As one can see from the graph, Fast Seq-SLAM has a very good

class separation capacity during global localization, and Seq-SLAM also has a very

good class separation capacity during local localization. Thus, it is reasonable for this

pipeline to detect off-path and re-localize based on the evaluation results. Detailed

AUC-ROC values can be seen from table 8.13.
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Figure 8.8: The ROC curves for both global and local localization under two modified
datasets. The top row is the evaluation results for off-path detection on global
localization module and the bottom row shows the results for off-path detection on
local localization module.

AUC-ROC

Global Localization CMU Indoor Dataset Collected Dataset - Trajectory One

Single Match 0.89 0.87

Fast Seq-SLAM 0.92 0.94

Seq-SLAM 0.94 0.93

Local Localization CMU Indoor Dataset Collected Dataset - Trajectory One

Single Match 0.97 0.96

Seq-SLAM 0.96 0.96

Table 8.13: The AUC-ROC values of the ROC curves presented in figure 8.8.

8.4 Qualitative Results

We state that this localization pipeline works in real-time with portable devices. It

is necessary to conduct a real-time demo. We collected a map at Carnegie Mellon
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University, including both indoor and outdoor features. Section 8.4.1 explains more

details about the environment and the query frames’ types we used for qualitative

evaluation. Section 8.4.2 shows qualitative results without off-path conditions. Section

8.4.3 shows a qualitative result with off-path conditions.

8.4.1 Demo Environment

The reference map is collected at Carnegie Mellon University, including indoor and

outdoor features. It has 1190 frames and 478 meters, with a frame interval being

0.25 meters. Figure 8.9 shows the map overview with trajectory generated by LiDAR

Odometry and point cloud data. The reference map is collected in the day-light in

the forward direction.

Figure 8.9: This is the collected reference sequence(map). The orange path is the
LiDAR Odometry, and the white points are the point cloud data. The reference
map’s start and end points are marked in red dots. The forward direction is from
start to end, and the backward direction otherwise. The reference map is collected in
the daytime in the forward direction.
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Figure 8.10 shows the query frames’ types used in the following sections. Types

include day-light with forward direction, day-light with backward direction, and

dusk-light with backward direction. All query sequences have altitude changes since

it is performed with the localization helmet. (mentioned in section 5.3).The quality

of the stitched image and the Ricoh Theta V’s omnidirectional image also have

some differences, making the localization more challenging. The query image has a

resolution of 256*128, and the reference image has a resolution of 1024*512. The

map must be high-quality with high-resolution images for any query sequence types.

The query image can only have low resolution due to real-time and portable device

requirements.

Figure 8.10: First row shows the the altitude and image quality changes between
reference image from mapping robot and query image from the localization helmet.
Second rows show adds viewpoint changes. Third row adds illumination changes.

8.4.2 Non off-path Results

This section shows the qualitative evaluation results of the localization system without

off-path conditions.
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Figure 8.11: This figure explains different symbols used in this chapter’s rest figures.
The agent’s start position is marked in a blue circle on the map. The orange line
is the map trajectory, the white points are point cloud data, and the green line
is the estimated localization results of the agent. As said in chapter 5, the agent
needs to walk a certain distance to store frames for the query sequence for the global
localization. This process happens on the path marked in black, which is between
the blue start point and the green estimated localization results.

Figure 8.12 shows the qualitative evaluation results, in which the query images

are received in a forward direction and day-light. The only differences between the

query image and the reference image are the altitude and pictures’ qualities.

Figure 8.13 shows the qualitative evaluation results, in which the query images

are received in a backward direction and day-light. The differences between the query

image and the reference image are the viewpoint, altitude, and pictures’ qualities.

Figure 8.14 shows the qualitative evaluation results, in which the query images

are received in a backward direction and dusk-light. The differences between the

query sequence and the reference image are the viewpoint, illumination, altitude, and

pictures’ qualities. As one can see, the system’s performance decreases given a very

challenging and changing environment. Our system eventually succeeded in localizing
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most of the agent’s positions.

Figure 8.12: Figure shows the qualitative localization results. The left picture shows
a localization process that starts from a random location A. The right picture shows
the process starts from a random location B. Figure 8.11 explains components on the
graph. The entire demo video can be seen at video links.

Figure 8.13: Figure shows the qualitative localization results. The picture shows
a localization process that starts from a random location A. Figure 8.11 explains
components on the graph. The entire demo video can be seen at video links.
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Figure 8.14: Figure shows the qualitative localization results. The picture shows
a localization process that starts from a random location A. Figure 8.11 explains
components on the graph. The entire demo video can be seen at video links.

Figure 8.15: Figure shows the qualitative localization results. The picture shows
a localization process that starts from a random location A. Figure 8.11 explains
components on the graph. The off path region is marked in a red box. The entire
demo video can be seen at video links.
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8.4.3 Off-path Results

The previous sections show the qualitative evaluations without off-path conditions.

The current section displays the qualitative evaluation with off-path conditions.

Figure 8.15 shows the qualitative evaluation results, in which the query images are

received in a forward direction and day-light. The only differences between the query

and the reference images are the altitude and pictures’ qualities. As shown in figure

8.15, the agent walks into the area marked in the red box, which is not on the map.

So the system runs purely on odometry and waits for the agent to return to the path

again. When the agent is back on the path, the red arrow indicates the location

where the system re-localizes the agent on the map.
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Chapter 9

Conclusions and Future Works

9.1 Conclusions

In this thesis, we introduced a real-time localization system that takes works robustly

and efficiently in changing and challenging environments.We first presented the

motivation to use the camera-based visual place recognition method instead of Visual-

Inertial and LiDAR-based SLAM systems. Then, We introduced the main research

focus in the field of VPR and the current research gap. We explained why developing

an efficient and robust localization system is necessary. We built our mapping rover

robot and the portable localization device with omnidirectional cameras to achieve our

pipeline. The proposed system contains a global localization module using Fast Seq-

SLAM, a local localization module using Seq-SLAM, and an off-path detection module.

The system also integrates odometry fusion for more robust performances. We perform

quantitative and qualitative evaluations on our system using the collected datasets in

changing and challenging environments. Our global localization module can achieve

0.925 AUC-PR, and the localization time is around 20 seconds on a 400-meters map.

And our local localization module can output the current location’s estimation at

3HZ regardless of the size of the map. The local localization module reaches 0.922

AUC-PR. To perform off-path detection, both global and local localization modules

must be able to differentiate between visited and new places. Global and Localization

modules achieve 0.93 and 0.96 AUC-ROC, respectively. Qualitative experiments are

also performed at Carnegie Mellon University with the self-built mapping robot and
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localization helmet, which is provided with screenshots and videos. We observed that

our algorithm choices for global localization, local localization, and off-path modules

are correct from the quantitative and qualitative evaluation results.

9.2 Future Works

9.2.1 Localization Device

The current localization device is too big and heavy. Our team will develop and

design a new device with a smaller size and better computation power. Furthermore,

it can easily be attached to an agent, a robot, or a drone. In this way, this localization

system can be used in more scenarios. Figure 9.1 shows the prototype of the new

localization device.

Figure 9.1: This is a newly designed localization device. It is smaller, more robust,
and with higher computer power with a new version of Xavier.

9.2.2 Complicated Map

The current localization system only works on a one-way path. This pipeline cannot

localize agents on a map with intersections. However, in the real world, most maps

have intersections. In most cases, an agent can have multiple paths to move from

point A to point B. With these complex maps, the ideal matches are not always at

70



9. Conclusions and Future Works

the diagonal line. Figure 9.2 shows the comparison between a simple map and a

complex map.

Figure 9.2: The picture on the left is a simple one-way map. For any two locations A
and B on the map, the agent can only move in one path, marked in red. However, for
the picture on the right with intersections, the agent can have multiple ways (black
and green paths, there should be more paths) to move from A to B on the Map.

Furthermore, the current pipeline cannot localize an agent with multi-direction

paths. However, it’s also common for an agent or a robot to move back and forth on

the map. It would be exciting while challenging to upgrade the current localization

system to work on maps with intersections and multi-direction paths.
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