
Synergistic Scheduling of Learning and Allocation of Tasks in
Human-Robot Teams

Shivam Vats1 Oliver Kroemer1 Maxim Likhachev1

Abstract— We consider the problem of completing a set
of n tasks with a human-robot team using minimum effort.
In many domains, teaching a robot to be fully autonomous
can be counterproductive if there are finitely many tasks to
be done. Rather, the optimal strategy is to weigh the cost
of teaching a robot and its benefit- how many new tasks it
allows the robot to solve autonomously. We formulate this as
a planning problem where the goal is to decide what tasks
the robot should do autonomously (act), what tasks should
be delegated to a human (delegate) and what tasks the robot
should be taught (learn) so as to complete all the given tasks
with minimum effort. This planning problem results in a search
tree that grows exponentially with n – making standard graph
search algorithms intractable. We address this by converting
the problem into a mixed integer program that can be solved
efficiently using off-the-shelf solvers with bounds on solution
quality. To predict the benefit of learning, we propose a
precondition prediction classifier. Given two tasks, this classifier
predicts whether a skill trained on one will transfer to the
other. Finally, we evaluate our approach on peg insertion and
Lego stacking tasks, both in simulation and real-world, showing
substantial savings in human effort.

I. INTRODUCTION

For real world applications of robotics, like manufacturing
and health-care, autonomy is not an end in itself, but a means
to improve productivity and safety. It is often infeasible or
expensive to teach robots to be fully autonomous due to
changing environments and task requirements. In practice,
these autonomous systems often have the option of falling
back on human help when needed. In this work, we consider
two modes of help provided by a human– giving demon-
strations on how to do a new task and fully taking over
a task. The former allows the capabilities of a robot to be
extended, which is useful when similar tasks are expected
to be encountered again in the future. The latter allows the
robot to avoid attempting or having to learn one-off tasks.

Consider a manufacturing facility that gets its orders at the
start of each day and needs to fulfil those orders by its end.
The factory operators may have only an approximate idea
about future demand. Hence, when the orders arrive there
will be tasks that the robot can not complete autonomously.
This leads to a number of questions: Should additional robot
teaching be done? If so, on which tasks? What tasks should
be done by robots and what tasks by humans?

To this end, we propose a decision making framework
Act, Delegate, or Learn (ADL) that jointly reasons about
autonomous execution in synergy with both of these modes
of human assistance. In particular, we look at a setting where

1Robotics Institute, Carnegie Mellon University {svats,
okroemer, mlikhach} @andrew.cmu.edu

Fig. 1: Consider three assembly tasks visualized in a 2D task state-
space. Each colored oval covers tasks that can be solved by a
specific robot skill. Note that skill B covers more tasks than the
other two skills while task C remains uncovered even after learning
skill B. Our framework schedules teaching of only those skills
that cover enough future tasks to offset the cost of robot teaching.
Remaining tasks are delegated to a human for completion.

tasks come in a fixed sequence. This is motivated by time and
cost critical domains like agile assembly lines in factories and
robots in outer space, where a diverse but known set of tasks
need to be accomplished with minimum human and robot
effort. While human help is available, it is at a premium.
Hence, we would like to use it optimally so as to minimize
the overall effort.

Each of these two modes has been investigated individu-
ally in prior works. A number of works [1], [2], [3], [4] in
Learning from Demonstrations (LfD) [5], [6] use measures
of confidence in the robot’s actions and active learning [7] to
teach a robot with fewer human demos. By not considering
the option of delegating tasks to a human, these approaches
seek to achieve full autonomy, which is not cost-effective in
settings where delegation is possible. In contrast, planners
for task allocation [8], [9], [10] and adjusting the level
of autonomy [11], [12] have been proposed for human-
robot teams. The focus on these works is on handling
spatiotemporal constraints and different human models [13],
[14], [15]. However, they assume a static model of the robot’s
capabilities, which does not allow them to leverage robot
learning in their framework.

In summary, the main contributions of our work are:
(1) Act, Delegate or Learn Framework: We formulate the

problem of completing a given sequence of tasks with human
help at minimum total expected human and robot effort as
a Stochastic Shortest Path problem. (2) Efficient Planning:
We propose a mixed integer programming formulation to
efficiently solve this problem. (3) Precondition Prediction:



Fig. 2: Overall approach: (i) Training in Simulation Skills are
learned (using RL) and deployed on tasks τ ∼ D to collect data on
what other tasks can be solved by a skill learned for a particular
task. A precondition prediction model is trained using this data.
(ii) Real World Execution Our planner makes use of the learned
model to decide when the robot should attempt a task, when it
should delegate to a human and when it should learn a new skill
for a task.

Planning requires the ability to foresee the benefit of robot
teaching before committing to it. To this end, we propose a
precondition prediction model that predicts what other tasks
the robot will be able to solve after getting demonstrations
for a task. We train this model offline using a domain-specific
simulation. (4) Simulated and Real World Evaluation 1 : We
evaluate the benefits of our approach on two challenging
manipulation tasks: (a) Peg-in-a-hole: Insert pegs into holes
under uncertainty using environmental contact for localiza-
tion and (b) Lego Stacking: Robustly stack complex parts
made with Lego bricks onto a Lego base plate.

II. RELATED WORK

Function Allocation is the decision making problem
of determining which functions should be performed by
machines and which by humans [16], [17]. While a number
of strategies have been proposed, the one closest to our work
is economic allocation [16], [18] which finds an allocation
that ensures economic efficiency.

Adaptive Automation can accommodate changes in the
environment or the human for function allocation. A number
of frameworks have been proposed over several decades [19],
[20], [21], [22] which focus on optimizing operator work-
load, attention and efficiency. Consequently, their focus has
been on modeling the human [13], [14], [15]. [12] recently
propose an interactive model of autonomy, where a system
learns a model of its competence online. All these strategies
assume that the robot has certain fixed capabilities

Learning from Demonstrations: There are three main
categories[23] of LfD– kinesthetic teaching, teleoperation
and passive observation. Kinesthetic teaching is the most
common approach for providing demos in manufacturing
and health-care [23], while teleoperation does not require
the user to be copresent with the robot. Passive observation
usually requires multiple demos [4], special instrumentation

1Videos and supplementary material are available at https://sites.
google.com/view/actdelegateorlearn

(motion capture, force-torque sensors) depending on the task
and is complicated to solve due to the need for retargeting.
Despite recent progress, teaching robots generalizable skills
still requires significant human effort.

Consequently, a number of works [1], [2], [3], [4] seek
to minimize the number of demos required for teaching.
In particular, Confidence-Based Autonomy [1] uses classifi-
cation confidence to choose between autonomous execution
and request for a demo. [24] propose an online approach to
training a set of controllers from demonstrations that tries to
myopically minimize human effort. ThriftyDAgger [25] uses
estimated probability of task success to determine when to
solicit human interventions.

Multi-task Learning: [26] look at learning a single
policy in a multi-task setting with a continuous set of tasks.
[27] learn a two level policy where the low level policy
controls the robot for a given context and the high level
policy generalizes among contexts. In contrast, we take a
library of independent skills approach, where generalization
happens only at the lower level.

III. PRELIMINARIES

Skill Preconditions: We model skills using the options
framework [28], [29], [30]. We use a probabilistic notion of
skill preconditions [31], where the preconditions of a skill is
a classifier ρ : Θ → [0, 1] that takes in features describing
a task and returns the probability that the skill will be able
to successfully complete the task. This classifier is usually
trained by executing the skill on a distribution of tasks to
generate success/failure labels [32], [33]. However, this is
an expensive process which requires real world execution of
the robot.

Skill Library: A popular approach for solving related
tasks is to learn a parameterized skill [34], that adapts the
policy based on changes in the task. This approach is practi-
cal if only some aspects of the task can change. Adapting to
various changes in the tasks requires a more complex skill
parameterization that makes the learning problem harder and
more sample complex. An alternative approach, which we
take in this work, is to have the robot maintain a library
L = {π1, · · · , πn} of skills, each of which is learned on a
narrow task distribution from demonstrations. Given a task τ ,
the robot picks an appropriate skill for it. by selecting a skill
with the highest probability of success: arg maxπ∈L ρπ(τ).
This representation has a number of advantages over learning
a monolithic skill, chiefly, modularity, allowing local updates
and providing alternatives in case of execution failure.

IV. THE ACT, DELEGATE OR LEARN FRAMEWORK

We are interested in completing a sequence of tasks with
minimum total expected human and robot effort. At train
time, we are provided a distribution D of tasks that are
expected to be encountered. The robot may be pre-trained
with a set of skills based on this knowledge. The actual tasks
and the order in which they need to be done are revealed only
at test time. In this stage, a decision needs to be made for
every task: should the robot do the task, should it delegate the

https://sites.google.com/view/actdelegateorlearn
https://sites.google.com/view/actdelegateorlearn


(a) (b)

Fig. 3: (a) Transition Model: Our MDP has three actions: arob, ahum and ademo with associated costs of crob, chum and cdemo

corresponding to the options act, delegate and learn. A human intervenes to complete a task if robot execution fails. We assume that a
human can complete all the tasks and is available at all times to teach the robot. (b) Simplified Transition Model: We can replace the
two stochastic outcomes due to arob with a single outcome whose cost is an expectation over them.

task to a human or should it ask to be taught how to do the
task? We require that every task be completed. Hence, each
robot failure incurs additional cost due to human intervention
to complete the task and correct the setup. Finally, we assume
that a human is available at all times to intervene if needed
- either to correct a robot failure or to teach it, for example,
by providing demonstrations.

A. Problem Formulation
We formulate this problem as a Stochastic Shortest Path

(SSP) problem (S,A, T , C,G) [35] where S is a state space,
A is an action space, T : S ×A×S → [0, 1] is a transition
model, C : S × A × S → R+ is a cost function and G ⊂ S
is a set of goal states. We define each of these components
of the MDP for our problem:

State Space: Each state s ∈ S is a tuple 〈L, k〉, where L
is the skill library of the robot at that state and k refers to
the tasks completed so far.

Action Space: A = {arob, ahum, ademo}, where arob
implies that the robot attempts to solve the task, ahum
implies that the human solves it and ademo implies that the
human teaches the robot a new skill for it in addition to
solving it.

Transition Function T models whether the skill library
got updated or a task was completed after an action. Though
the outcome of robot execution is stochastic, we can convert
it into a deterministic MDP by taking an expectation over the
two outcomes (see figure 3 for details). We will be using the
resulting simplified transition model in the rest of the paper.
The transition model makes it clear that arob and ahum do
not affect the skill library in any way. On the other hand
ademo updates the library by adding a new skill π to its
repertoire.

Cost Function The cost function is defined as

C(si, a) =


crob(i) + Pr(fail) · cfail(i) a = arob

chum(i) a = ahum

cdemo(i) a = ademo

where, Pr(fail) = 1−maxπ∈L ρπ(τi). The cost of a robot
execution includes the cost of a potential failure and hence
depends on the robot’s skill library. crob, chum and cdemo
are domain and task dependent costs specified by a domain
expert. For example, in manufacturing, where minimizing
the economic cost of production is crucial, crob could reflect
the cost of operating a robot, while chum and cdemo could
depend on the efficiency of a human collaborator. There exist
a number of approaches [14], [15], [36] to model human
performance. cfail corresponds to the difficulty of fixing a
mistake made by the robot. In some domains, this could be
as simple as asking a human in the factory to complete the
remaining task, while in others, it may be high if there is a
risk of damage due to a failure.

Goal: A goal state is reached once all the tasks have been
completed.

Let {τi}ni=1 be the sequence of tasks and η = {ηi}ni=1

be the sequence of actions taken. Then, the expected cost
of execution is: J(η) =

∑n
i=1 C(si, ηi), where si+1 =

T (si, ηi) and our goal is to find an optimal plan η∗ =
arg minη∈An J(η).

V. PLANNING

The standard techniques used to solve a deterministic SSP
are graph search algorithms like Dijkstra’s algorithm and A*.
Unfortunately, the search graph induced by our problem has
exponentially many states in the number of tasks to be done.
Though A*-like algorithms can leverage heuristics to speed-
up search, their performance is highly dependent on the
quality of the heuristic and hence incur substantial overhead
for designing good heuristics.

Motivated by this, we propose a mixed integer program-
ming (MIP) formulation of the SSP which can be solved
using off-the-shelf solvers without the need to design heuris-
tics. These solvers provide high quality solutions (with sub-
optimality bounds) and are highly scalable.



A. MIP Formulation

We introduce decision variables for every task: xi, yi, zi ∈
{0, 1}, wi ∈ [0, 1],∀i ∈ {1, · · · , n}. Let binary decision
variable xi be 1 if a demo is sought on task τi, yi be 1
if a human is asked to solve it and zi be 1 if the robot
is asked to attempt the task. As the robot may fail in its
attempt, we model the probability of human intervention with
a continuous decision variable wi– note that it is non-zero
only if robot execution is chosen for a task. We exercise
indirect control over wi via the probability of failure of the
action taken.

Our overall objective is:

min

n∑
i=1

cdemo(i)xi + chum(i)yi + crob(i)zi + cfail(i)wi

where, zi = 1 − xi − yi as we allow exactly one of
these three actions for a task. Hence, the objective can be
simplified.

min

n∑
i=1

c′demo(i)xi + c′hum(i)yi + cfail(i)wi (1)

where ∀i ∈ {1, · · · , n}

c′demo(i) = cdemo(i)− crob(i)
c′hum(i) = chum(i)− crob(i)
wi = 1−max {ρ0, ρ1(τi)x1, · · · , ρi(τi)xi, yi}

The max term in the last equation is a maximization over the
success probabilities of the available ways to solve the task
– using pre-trained skills (with precondition ρ0), learning
new skills (with preconditions ρ1 · · · , ρn) and delegating to
a human (represented by yi). yi is 1 if the robot delegates
the task to a human, in which case we are assured of task
completion. In its current form this program is not linear
due to the max operation. However, we can easily convert it
into a linear MIP by introducing additional binary decision
variables. Some solvers like Gurobi [37] can directly take
this program and do the linearization under the hood.

Note: Alternatively, we can also formulate it as a facility
location problem [38], where all tasks are customers and
opening a facility corresponds to either seeking a demo or
delegating to a human. While solving the facility location
problem optimally is NP-hard, it has O(log n) approximation
algorithms which can be useful if the MIP is too big to solve
optimally.

VI. PRECONDITION PREDICTION MODEL

A key requirement of our planner is the ability to foresee
the benefit of robot teaching before committing to it. Past
works [32], [33] have looked at the problem of precondition
learning, wherein a classifier is trained for an existing skill to
predict what other tasks can be solved by it. By contrast, we
need to predict the preconditions of a skill that will be learned
if we choose to teach the robot– a precondition prediction
problem. Our proposed solution is to learn a classifier (see
figure 4) that takes as input a train task and a test task and

Fig. 4: Precondition prediction model predicts the probability of
success on a test task τ ′ after the robot has been trained on a task
τ .

predicts whether a robot trained on the former will be able to
solve the latter. Intuitively, this can be thought of as learning
a similarity metric between tasks.

We collect training data for the precondition model using
algorithm 1. This can be prohibitively expensive as we need
to learn robot policies to generate labels. We get around this
limitation by observing that we do not need to transfer robot
skills from sim2real but only task relationships— the former
requires high fidelity simulation while the latter does not. It is
often the case that a lower dimensional state representation
is sufficient to discriminate between tasks. The key is to
simplify the problem such that inter-task relationships remain
intact– tasks that are similar/dissimilar in the real world
should remain so in simulation and vice versa. Concretely,
we define an abstraction [39], [29] M as a pair of functions
(f, g) such that f : S → S′ maps the original problem state
space S to a smaller state space S′ and g : A→ A′ maps the
full action space to a smaller action space. The specific state
and action abstraction to be used in training are provided as
domain knowledge.

Algorithm 1 Data collection in abstract simulation.
1: procedure GETTRAININGDATA(m,n)
2: X ← φ, Y ← φ
3: S ← SAMPLE m TASKS FROM D
4: for i ∈ {1, · · · , n} do
5: SAMPLE τ FROM D
6: π ← LEARN POLICY FOR τ
7: for τ ′ ∈ S do
8: x ← (τ, τ ′)
9: y ← EVALUATE π ON τ ′

10: X.INSERT(x), Y.INSERT(y)
return X, Y

VII. EXPERIMENTS

We evaluate our approach, both in simulation and in the
real world, on two challenging problems (1) block insertion
under uncertainty and (2) Lego stacking. Our objectives are
(1) to understand the benefits of the ADL framework as
compared to baselines that are myopic or reason about only a
subset of the three options (2) to evaluate our hypothesis that
the precondition model can be trained in simulation. In both
these experiments, we use a 2-layer fully connected neural
network as our precondition prediction model and we are
able to solve our mixed integer program optimally in well



Fig. 5: Block (peg) insertion under uncertainty in simulation and
in real world.

under a second using Gurobi [37]. We provide additional
details in the appendix.

Baselines: We compare our approach against three base-
lines: (1) Act Delegate (AD): The robot chooses between
acting and delegating based on the expected costs of these
two actions. (2) Confidence-Based Autonomy (CBA) [1]:
Given a fixed threshold θ, the robot attempts a task if
its confidence in success is greater than θ and asks for
demonstrations, otherwise. (3) Act-Learn Myopic (ALM):
Similar to the strategy used by [24], the robot chooses
between attempting a task and asking for human demos by
comparing the immediate expected costs of both the actions.

Metrics: The main evaluation metric is the total cost
of completing all the given tasks. We also compare the
methods based on the number of demonstrations and human
interventions and the number of failures.

Skill Representation: In both our experiments, the robot
end-effector is controlled using Cartesian-space impedance
control which commands torques at the end-effector based on
errors in the Cartesian space using a spring-damper system.
A skill is a sequence of waypoints in the robot’s end-effector
frame, where each waypoint is defined by a 6D pose and
the stiffness to be used in the corresponding spring-damper
system.

A. Block Insertion

Our first evaluation is in simulation to understand how
well our planner performs in comparison with standard non-
planning approaches.

Task: Each task involves inserting a block of dimensions
1 cm x 1 cm x 6 cm into a slot of dimensions 1.2 cm x 1.2
cm x 2 cm in a known environment with a noisy estimate
of the slot location ∼ N (0, 0.32cm2). We generate four
different environments of dimensions 20 cm x 20 cm each,
with different numbers of walls arranged in a grid. We use
the Nvidia Isaac Gym simulator [40] to simulate the tasks
and to train the precondition model.

Simulation Results: We compare ADL with AD,
CBA(θ = 0.5) , CBA(θ = 0.2) and ALM in figure 6,
where 0.2 is the optimal CBA threshold found using grid-

Fig. 6: Comparison of ADL vs baselines in total cost for solving
20 block insertion tasks at different levels of skill pretraining.
Pretraining is done by teaching the robot randomly sampled tasks
from the task distribution. ADL is strictly better than all baselines
at every level of pre-training. However, after pre-training with 8
skills, both ADL and AD converge to full autonomy as the robot
is able to solve most of the tasks with pre-trained skills. We use
crob = 10, chum = cfail = 100 and cdemo = 200.

search. ADL outperforms all the baselines at every level of
pretraining. However, the improvement provided by ADL
drops with increase in pretraining as the robot can complete
more of the tasks autonomously without seeking additional
demos or delegating. Also note that CBA outperforms AD
at low levels of pretraining but the opposite holds at higher
levels as demos sought by CBA are not cost-effective for
the task set. We provide comparisons using different costs
and qualitative results from a real-world experiment in the
appendix.

B. Lego Stacking

In our second domain of Lego stacking we seek to evaluate
how well our method works in the real world. In particular,
we want to understand whether a precondition model learned
using an abstract simulation is able to reduce effort in real
world.

Task: Each task involves picking up a part made up of
Lego bricks from a table and stacking it firmly onto a Lego
base plate. A robot execution fails if two or more corners
of the part are not locked onto the plate or the robot hits
the base at any point. The robot is provided a bounding box
around the part, a grasp location and a target location by the
user. We use a 66D feature vector for each task– binarized
and resized image (to 8 × 8 ) along with its original size.
Before running the experiments, we record 5 demos for each
task in the ground set. Every time the robot requests a demo
for a task, one of the 5 pre-recorded demos is provided by
sampling randomly.

Skill: Each stacking skill consists of three sub-skills
executed in sequence: pickup, place-and-wiggle and robust-
tapping. The first two are hand-designed and common across
all tasks, while robust-tapping needs to adapt the number and



Fig. 7: (Top) The ground set of 15 tasks from which test sets of 10
tasks each are sampled uniformly randomly. (Bottom) The Franka-
Emika Panda robot stacking one of the parts onto the base plate.

location of taps based on the geometry of the part. The latter
is learned in the grasp-frame and scaled based on the size
of the part. This allows the skill to generalize to different
locations and across parts of similar shape but different sizes.

Data Collection: Physics-based simulators struggle to
simulate interactions among multiple Lego bricks and the
interference fit mechanism used in them. Consequently, we
use a custom simulation based on our observation that the
primary reason for variability in skills is the geometry of the
parts. We can afford to ignore physics and robot dynamics as
we do not transfer the learned skills to the real world. Our
coverage-based simulation takes in a 2D image of a part
and identifies only the number and location of taps needed
to cover the whole part by randomly sampling points on the
image. Experimentally, we found that a single tapping action
has an effect upto about 3cm from the tapping location. We
use this knowledge in the simulation to determine whether a
part is covered or not after a sequence of taps. We capture 10
images of each of the 15 tasks, along with a bounding box
around the part and the grasp location. After training skills
for each of the resulting 150 tasks in our coverage-based
simulation, we evaluate them on all the tasks to generate
binary success labels.

Real World Results: We evaluate all the approaches on 10
sets of 10 Lego-stacking tasks each using crob = 10, chum =
cfail = 100 and cdemo = 200. We choose cdemo > chum as
it takes much more time to provide a demo than for the
human to stack the Lego themself, while chum = cfail as a
failed robot execution can be fixed quickly by a human. crob

Fig. 8: Comparison of ADL vs baselines in the Lego stacking
domain using crob = 10, chum = cfail = 100 and cdemo = 200.
ADL is the only planner that leverages synergy among acting,
delegating and learning to complete tasks at minimum cost.

is the smallest cost as we value human time much more than
robot time in this domain. Figure 8 shows the total cost of
completing all tasks using each of the methods. AD delegates
all tasks as the skill library is empty at the beginning, CBA
asks for too many human demos as it doesn’t take into
account their relevance to the task set and ALM doesn’t ask
for any demos as its upfront cost is higher than failing at a
task. In contrast, ADL finds the optimal synergy among all
the three options to solve the tasks with minimum cost.

VIII. CONCLUSION AND FUTURE WORK

We propose a planning and learning framework for com-
pleting n tasks with a human-robot team using minimum
total effort. Our approach has two key components: (1) a
general mixed integer programming formulation and (2) a
learned domain-dependent precondition prediction model
to predict the benefits of learning a new skill. Simulated
and real world evaluations on two challenging manipulation
domains indicate that our approach saves significant human
and robot effort compared with approaches that do not plan
ahead.

In the future, we are interested in extending the planner
so that it can also optimize the order of tasks. We would
also like to continue working on the precondition prediction
problem to make it less data-hungry and more accurate by
using multiple sources of data. Finally, a major limitation of
the precondition prediction model is that it currently assumes
each skill is trained on only one task. We would like to extend
this to skills that are trained on a set of tasks which will allow
the use of parameterized robot skills in our framework.

IX. ACKNOWLEDGEMENT

The authors thank Kevin Zhang for help with robot ex-
periments and Jayanth Krishna Mogali for discussions. This
work is supported by ONR Grant No. N00014-18-1-2775 and
ARL grant W911NF-18-2-0218 as part of the A2I2 program.



REFERENCES

[1] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Re-
search, vol. 34, pp. 1–25, 2009.

[2] M. Cakmak, C. Chao, and A. L. Thomaz, “Designing interactions
for robot active learners,” IEEE Transactions on Autonomous Mental
Development, vol. 2, no. 2, pp. 108–118, 2010.

[3] E. Gribovskaya, F. d’Halluin, and A. Billard, “An active learning
interface for bootstrapping robot’s generalization abilities in learning
from demonstration,” in RSS Workshop Towards Closing the Loop:
Active Learning for Robotics, vol. 86, 2010.

[4] B. Hayes and B. Scassellati, “Discovering task constraints through
observation and active learning,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 4442–
4449.

[5] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[6] S. Chernova and A. L. Thomaz, “Robot learning from human teach-
ers,” Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, vol. 8, no. 3, pp. 1–121, 2014.

[7] B. Settles, “Active learning literature survey,” 2009.
[8] M. Gombolay, R. Wilcox, and J. Shah, “Fast scheduling of multi-robot

teams with temporospatial constraints,” 2013.
[9] M. C. Gombolay, R. J. Wilcox, A. Diaz, F. Yu, and J. A. Shah,

“Towards successful coordination of human and robotic work using
automated scheduling tools: An initial pilot study,” in Proc. Robotics:
Science and Systems (RSS) Human-Robot Collaboration Workshop
(HRC), 2013.

[10] C. J. Shannon, L. B. Johnson, K. F. Jackson, and J. P. How, “Adaptive
mission planning for coupled human-robot teams,” in 2016 American
Control Conference (ACC). IEEE, 2016, pp. 6164–6169.

[11] K. H. Wray, L. Pineda, and S. Zilberstein, “Hierarchical approach to
transfer of control in semi-autonomous systems,” in Proceedings of the
2016 International Conference on Autonomous Agents & Multiagent
Systems, 2016, pp. 1285–1286.

[12] C. Basich, J. Svegliato, K. H. Wray, S. Witwicki, J. Biswas, and
S. Zilberstein, “Learning to optimize autonomy in competence-aware
systems,” 2020.

[13] R. W. Pew, “The speed-accuracy operating characteristic,” Acta Psy-
chologica, vol. 30, pp. 16–26, 1969.

[14] J. Y. C. Chen and M. J. Barnes, “Human–agent teaming for multirobot
control: A review of human factors issues,” IEEE Transactions on
Human-Machine Systems, vol. 44, no. 1, pp. 13–29, 2014.

[15] C. J. Shannon, D. C. Horney, K. F. Jackson, and J. P. How, “Human-
autonomy teaming using flexible human performance models: An
initial pilot study,” in Advances in human factors in robots and
unmanned systems. Springer, 2017, pp. 211–224.

[16] T. Inagaki et al., “Adaptive automation: Sharing and trading of
control,” Handbook of cognitive task design, vol. 8, pp. 147–169, 2003.

[17] P. Fitts, M. S. Viteles, N. L. Barr, D. R. Brimhall, G. Finch,
E. Gardner, W. F. Grether, W. E. Kellum, and S. S. Stevens, “Human
engineering for an effective air-navigation and traffic-control system,
and appendixes 1 thru 3,” 1951.

[18] A. Dearden, M. Harrison, and P. Wright, “Allocation of function:
scenarios, context and the economics of effort,” International Journal
of Human-Computer Studies, vol. 52, no. 2, pp. 289–318, 2000.

[19] W. B. Rouse, “Adaptive allocation of decision making responsibility
between supervisor and computer,” in Monitoring behavior and su-
pervisory control. Springer, 1976, pp. 295–306.

[20] M. Scerbo, “Theoretical perspectives on adaptive automation,” 1996.

[21] D. B. Kaber, J. M. Riley, K.-W. Tan, and M. R. Endsley, “On the
design of adaptive automation for complex systems,” International
Journal of Cognitive Ergonomics, vol. 5, no. 1, pp. 37–57, 2001.

[22] T. B. Sheridan, “Adaptive automation, level of automation, allocation
authority, supervisory control, and adaptive control: Distinctions and
modes of adaptation,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 41, no. 4, pp. 662–
667, 2011.

[23] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
Advances in Robot Learning from Demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 297–
330, 2020.

[24] M. Rigter, B. Lacerda, and N. Hawes, “A Framework for Learning
from Demonstration with Minimal Human Effort,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2023–2030, 2020.

[25] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and
K. Goldberg, “Thriftydagger: Budget-aware novelty and risk gating for
interactive imitation learning,” arXiv preprint arXiv:2109.08273, 2021.

[26] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task
policy search for robotics,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2014, pp. 3876–3881.
[Online]. Available: http://arxiv.org/abs/1307.0813.

[27] A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P. Vadakkepat,
and G. Neumann, “Data-Efficient Generalization of Robot Skills with
Contextual Policy Search,” Artificial Intelligence, vol. 247, pp. 415–
439, 2017.

[28] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[29] G. Konidaris and A. Barto, “Efficient skill learning using abstraction
selection,” in Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[30] O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning
for manipulation: Challenges, representations, and algorithms,” arXiv
preprint arXiv:1907.03146, 2019.

[31] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Symbol acquisition
for probabilistic high-level planning,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[32] O. Kroemer and G. S. Sukhatme, “Learning spatial preconditions of
manipulation skills using random forests,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids). IEEE,
2016, pp. 676–683.

[33] M. Sharma and O. Kroemer, “Relational learning for skill precondi-
tions,” arXiv preprint arXiv:2012.01693, 2020.

[34] B. Da Silva, G. Konidaris, and A. Barto, “Learning parameterized
skills,” arXiv preprint arXiv:1206.6398, 2012.

[35] A. Kolobov, “Planning with markov decision processes: An ai per-
spective,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 6, no. 1, pp. 1–210, 2012.

[36] M. Gombolay, A. Bair, C. Huang, and J. Shah, “Computational
design of mixed-initiative human–robot teaming that considers human
factors: situational awareness, workload, and workflow preferences,”
The International journal of robotics research, vol. 36, no. 5-7, pp.
597–617, 2017.

[37] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2021.
[Online]. Available: http://www.gurobi.com

[38] V. V. Vazirani, Approximation algorithms. Springer Science &
Business Media, 2013.

[39] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of
state abstraction for mdps.” ISAIM, vol. 4, p. 5, 2006.

[40] Nvidia. (2020) Isaac sim. [Online]. Available: https://developer.nvidia.
com/isaac-gym

http://arxiv.org/abs/1307.0813.
http://www.gurobi.com
https://developer.nvidia.com/isaac-gym
https://developer.nvidia.com/isaac-gym

	Introduction
	Related Work
	Preliminaries
	The Act, Delegate or Learn Framework
	Problem Formulation

	Planning
	MIP Formulation

	Precondition Prediction Model
	Experiments
	Block Insertion
	Lego Stacking

	Conclusion and Future Work
	Acknowledgement
	References

