
Modular Robot Design Optimization with Generative Adversarial Networks

Jiaheng Hu, Julian Whitman, Matthew Travers and Howie Choset

Abstract— Modular robots are made up of a set of com-
ponents which can be configured and reconfigured to form
customized robots for a wide range of tasks. Fully utilizing
the flexibility of modular robots is challenging, as it requires
the identification of optimal modular designs for each given
task, often with limited computation and time. Previous works
in design automation achieve efficient run-times by utilizing
machine learning to create a one-to-one mapping from task
to design. However, the problem of robot design is often
multimodal, where multiple distinct designs can be similarly
or equally good for a task. Alternative design solutions may
be needed in the field, for instance, if a module in the optimal
design fails and no replacement is available. This paper presents
a novel method based on generative adversarial networks
(GANs) that learns a one-to-many mapping from task to a
distribution of designs. We apply our method to construct
locomoting modular robots for terrains with varying obstacle
heights and infill. We compare our method against the state-of-
the-art, and find that our algorithm results in better solution
quality, diversity, and alternatives for when the optimal design
fails.

I. INTRODUCTION

Modular robots inspire a concept where instead of bringing
a family of robots into the field, one can bring a toolbox of
modules which are configured, and perhaps re-configured,
to provide a customized system design for a particular
task. This unique benefit poses many challenges, including
the need to determine a particular system design for each
given task. This problem, known as design automation, is
often solved through population-based optimization such as
Evolutionary Algorithms (EAs), where a diverse population
of candidate designs is maintained and updated in search
of high-performing designs [1], [2], [3]. Unfortunately, this
optimization process typically requires repeated simulation
and evaluation of many different designs, and can become
computational expensive in large design spaces. Though they
can produce high-quality designs, these methods cannot be
directly applied in scenarios like field deployment, where
time or computation is limited.

Recent works [4], [5], [6] utilize machine learning (ML) to
generate designs with a low computational cost at run-time.
Specifically, these works employ a training phase to learn
a one-to-one mapping from task to design for a range of
different tasks. This mapping is then used during deployment
to create new designs, whether or not the mapping was
trained on a given task. While such an approach may lead
to non-optimal designs, it does produce them in real-time.

The authors are with the Robotics Institute at Carnegie Mellon
University, Pittsburgh, PA 15289, USA {jiahengh, jwhitman,
mtravers, choset}@andrew.cmu.edu

Design SamplesInput Terrain

Generator

Design Output

1.

2.

3.

Fig. 1: We present a generative adversarial method to create
a modular robot design generator. The generator takes in a
task description (in this example, a terrain height map, left)
and outputs a distribution of designs, where high-performing
designs have high probability mass. We can then sample from
the distribution (middle) and provide the user a collection of
capable designs (right).

The low run-time cost of existing ML approaches make
them seemingly good candidates for use in the field. How-
ever, the problem of modular robot design generation is mul-
timodal by nature, where for any given task, there are often
multiple distinct designs that are similarly or equally capable.
By modelling the task-to-design mapping as a one-to-one
mapping, previous methods fail to fully describe the relation
between task and optimal designs. As a result, these methods
tend to neglect a variety of the optimal or near-optimal
designs. We posit that in a design automation problem,
keeping track of multiple distinct solutions can be valuable,
as they provide alternatives in case the “first-choice” solution
fails. For instance, if a module fails unexpectedly in the field,
and there are not sufficient spare modules to replace it, the
user will need to quickly identify and construct a “second-
choice” design. Similarly, if the first solution deployed does
not work as expected, perhaps due to a simulation to reality
gap, then the user will need a different design. We therefore
develop an algorithm that marries the solution quality and
diversity of EAs with the low run-time cost of ML.

In this work, we introduce RoboGAN, a generative ap-
proach to the problem of designing task-specific modular
robots. Our method learns a mapping from task to a distri-
bution of designs through a modified generative adversarial
network (GAN) [7], [8], [9], and can be used to generate di-
verse and high quality designs in a computationally-efficient
manner. We believe that maintaining a distribution of designs
allows for a search that does not require additional constructs,
like entropy, to force a trade-off between exploration and
exploitation.

Unlike past works using GANs, where a dataset is present

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 4282

Chassis Leg Wheel

Fig. 2: A set of modules - body, legs, and wheels - can
generate many different system configurations of robots.

prior to training [7], [8], [9], [10], [11], we have no data a
priori from which a mapping from task to robot design can
be distilled. Worse yet, collecting such a dataset from scratch
for modular robots is enormously computationally burden-
some, as obtaining each task-design pair requires solving a
combinatorial optimization problem. Instead, our approach
actively collects data on-line during training through a novel
self-guided data creation process inspired by EAs. This data
creation process looks for new promising designs around
the current generated designs, promoting the generator to
improve the quality and diversity of its output.

We apply our design automation approach to creating
mobile robots designs (Fig. 2) specialized for traversing
varying terrains. We show that our method is capable of run-
ning in real-time during testing, and outperforms competing
ML methods both in terms of solution quality and solution
diversity, as well as providing alternative solutions when the
first design fails.

II. RELATED WORK

Evolutionary Algorithms: Population-based stochastic
optimization algorithms, such as Evolutionary algorithms
(EAs), have been the de facto choice for design automa-
tion problems due to their ability to efficiently look for
solutions in a combinatorial design space [1], [2], [3], [12].
Specifically, [3] used a generative design encoding to evolve
locomoting robots. Similarly, [1] used an EA to discover
locomoting and swimming robots. EAs are also known for
their ability of finding multiple distinct solutions due to
their population-based nature, and are thus suitable for multi-
modal and multi-objective optimizations [13], [14]. However,
since EAs require repeated evaluation of the performance of
different designs, they can quickly become computationally
expensive in the domain of design automation, where eval-
uation of each design requires running a simulation with a
control policy. As a result, EAs are often too time-expensive
to be deployed directly in the field, limiting their applicability
to scenarios where time or computation is limited.

Learning-Based Design Automation: An alternative to
explicitly searching the design space during deployment
is to utilize machine learning techniques to map task to
designs. These methods utilize a long training phase to learn
a mapping from task to design, where the learned mapping

can be directly queried during deployment to generate task-
specific designs. Specifically, [4], [5] cast modular robot
design as a reinforcement learning (RL) problem, and use
Q-learning to learn a policy that sequentially adds nodes and
edges to the partial graph of designs conditioning on the task.
Fit2form [6] learns an end-to-end mapping from task to 3D
gripper design. Importantly, these methods have the benefit
of real-time execution. However, existing methods typically
pose their objective as predicting the single design that
maximizes performance for the queried task, possibly due to
the difficulty in learning a complex distribution over discrete
designs with a neural network. By doing so, they ignore the
multimodal nature of the design automation problem.

Generative Models: Instead of trying to learn a one-
to-one mapping from task to design, we propose to adopt
a generative approach to robot design, where we learn a
mapping from task to a distribution of designs. Generative
Adversarial Networks [7] have been widely adopted to learn
generative models. A GAN is an implicit generative model
that attempts to capture the patterns in a dataset, such
that the model can be used to generate new samples as if
they were drawn from the same underlying distribution as
the data. A GAN consists of two components: a generator
that learns a mapping from a noise vector to generated
data sample, and a discriminator that learns to distinguish
generated samples from real samples. These two components
are typically implemented as deep neural networks and are
optimized simultaneously through gradient descent. Since the
two networks have competing objectives, training a GAN can
be viewed as two players playing a minimax game [7]. The
conditional GAN [9] was later introduced as a variant that
output labeled samples by conditioning both the generator
and the discriminator on a given label.

Typically, GANs work with continuous domain, such as
images, due to the need for backpropagation through the
generated data during training. In order to apply GANs to
discrete data, Boundary Seeking GAN (BGAN) [8] trains
the generator via policy gradient with the likelihood ratio
estimated by the discriminator. Since a policy gradient loss
doesn’t need the data samples to be differentiable with
respect to the generator parameters, this method makes it
possible to train a GAN for discrete data such as graphs.

III. PROBLEM STATEMENT

Design generation requires an appropriate data structure
to represent the designs. Modular robots can be represented
with graphs, where nodes represent modules and edges rep-
resent connections between them. In this work, we represent
our design space X as graphs where the connection between
nodes (topology) are fixed but the node type (module type)
can be altered.

For each design X ∈ X, we assume the existence of a
control policy πX which is used to control the robot. In this
work, we obtain our control policy through a separate process
before applying our method, described in Sec. IV-D. Let T
denote the task space. Given a task T ∈ T, we can obtain a

4283

Fig. 3: We consider the task of traversing terrains with varying obstacle heights and infill. At each training iteration, a terrain
is generated at random and abstracted into a 2-D height map. The generator implicitly maps this height map into a population
of designs, symbolized in the red box. The self-guided data creation step explores around the generated designs by evolving
them using a procedure inspired by Evolutionary Algorithms, and creates a population of evolved designs, symbolized in
the green box. The discriminator takes as input the terrain and a robot design that is either from the generated designs or
the evolved designs, and tries to distinguish from which population the design comes from. The output of the discriminator
feeds into the loss function LG, guiding the generator towards generating high-performing designs.

measurement of X ’s performance for task T , J (X , T), by
controlling X in simulation with πX .

Our goal is to learn a function that maps each task T
to a distribution over designs X, where designs with high
performance have high probability density. We approach
this problem using conditional GANs [9]. The generator
Gθ(z, T) maps a queried task T and a randomly sampled
latent variable z ∼ N (0, I) to a design X . Gθ implicitly
defines a conditional distribution over designs, where we
sample from this distribution by sampling latent variable z
and passing it through the generator along with the task. Our
objective is to optimize the parameters θ of the generator
Gθ to maximize the expected performance of the generated
designs X , that is,

θ⋆ = argmax
θ

ET ∼T,z∼N (0,I) [J (Gθ(z, T), T)] (1)

In the following section, we describe our approach to
training the generative model Gθ that maximizes (1).

IV. ROBOGAN

Our system is composed of three key components: a gen-
erator, a discriminator, and a novel self-guided data creator.
An illustration of these components is shown in Fig. 3.
The generator maps tasks to a distribution of designs. The
discriminator tries to distinguish between designs generated
by the generator, and designs produced by the self-guided
data creator. Both the generator and the discriminator are
implemented as neural networks. At every iteration, the self-
guided data creator performs n steps of evolution on the
robot designs generated by the generator to obtain training
data. These evolution steps iteratively improve the output of
the generator, pushing the generator to approximate a distri-
bution of increasingly higher-performing candidate solutions.

A. Generator

The generator Gθ(z, T) takes as input a numerical encod-
ing of the queried task T , along with a P -dimensional vector
z ∈ RP sampled from a standard multivariate Gaussian
distribution, z ∼ N (0, I). In our experiments designing
mobile robots, each task is a different terrain to traverse,
so T is a 2D elevation map of the given terrain. T is first
passed through two convolution layers, each with a 3 × 3
kernel of filter size 32. The output of the convolution layer
is then flattened, passed through a full connected layer of
output dimension P , concatenated with z and passed into a
multi-layer perceptron (MLP) network with 3 hidden layers
of size 64 to generate the output. Batch normalization [15]
and ReLU activation [16] are applied at each hidden layer.

The output of the generator is a graph with m different
node types and n maximum amount of nodes allowed,
parameterized as a dense m × n annotation matrix Xdense.
Each node type corresponds to a module type, and therefore
Xdense specifies the type of module for each node. Each row
of the annotation matrix sums to 1 and can be viewed as a
categorical distribution over all possible module selections
for the given node. Thus, to generate a discrete design we
obtain a one-hot matrix X through a categorical sampling
of Xdense. This sampling process is non-differentiable and
prevents gradients from flowing through it. This prevents
us from using the more common continuous GAN loss [7].
We adopted Boundary Seeking GAN (BGAN) [8] to extend
GAN to graphs, by training the generator via policy gradient
based on the likelihood ratio estimated by the discriminator.
Since our generator is conditioned on the task, we developed
a conditional variant of BGAN, where the generator loss is

LG(z, T ,{X (1), ...,X (m)}; θ)

=−
∑
m

D(X (m), T)∑
m′ D(X (m′), T)

Pθ(X (m)|z, T)
(2)

4284

Fig. 4: From top to bottom, we show examples of queried
input, top four designs outputted by the trained generator,
randomly generated emergency constraints, and the designs
filtered by the added constraints for a near-flat terrain (left)
and a rough terrain (right). The emergency constraints re-
stricts the maximum number of a certain type of modules,
and are added to simulate unexpected module breaks or a
shortage during deployment. The diverse design candidates
produced by our method allows us to handle these constraints
more robustly compared to prior ML approaches.

where T is the task; z is a latent input; Pθ(X|z, T)
is the posterior probability for design X specified by
Xdense = Gθ(z, T); {X (1), ...,X (m)} are m designs sampled
from Pθ(X|z, T); and D(X (m), T) is the output of the
discriminator on the (design, task) pair, explained in detail in
section IV-B. During training, z is sampled from a standard
multivariate Gaussian distribution q(z), and T is uniformly
sampled from the task space.

B. Discriminator

The discriminator Dϕ(X , T) takes in a robot design graph
X and the task T , and outputs a scalar ∈ (0, 1). Similar to
the canonical GAN, this scalar can be viewed as a prediction
of whether the design is generated by the generator. The
discriminator has the same network structure as the generator
except for the input and output layer, which are adjusted to
correspond to the input and output dimensions. The training
data for the discriminator comes from two sources. Half of
the designs are synthesised by the generator, and are labeled
0 (“fake”). The other half are obtained from the self-guided
data creation step (explain in detail in section IV-C) and are
labeled 1 (“real”).

The discriminator is trained to minimize the cross entropy
loss between predicted and actual design labels:

LD(Xpop,Xgen, T ;ϕ) = −[logDϕ(Xpop, T)+

log(1−Dϕ(Xgen, T))]
(3)

where Xpop is a design obtained from the self-guided data
creation step, and Xgen is a design from the generator.

C. Self-Guided Data Creation

Our method is fundamentally different from a canonical
GAN since we do not have a dataset collected a priori.
Instead, we generate training data online through a novel self-
guided process, inspired by evolutionary algorithms, which
iteratively pushes the generator towards generating designs
with higher performance.

During each training iteration, we pass a task T and a
batch of randomly sampled latent vectors z through the
generator to obtain a batch of designs. These designs are
then treated as if they are the population of an EA, and
iterate through n EA steps (e.g. mutations, cross-over, eval-
uation, and elite selection) to create an evolved population.
The evolved population has in expectation a higher mean
performance than those generated by the current iteration
of the generator, and are passed into the discriminator in
place of what would be considered the “real” data in a
conventional GAN. By training the GAN with the evolved
samples, we effectively guide the generator to model a task-
conditioned distribution that is iteratively shifted towards
high-performing regions in the solution space.

The generator and discriminator are both conditioned on
the task description. Without this task-conditioning, the train-
ing procedure would be similar to a standard EA, wherein
a population of designs are evolved for a single task. By
conditioning the generator and the discriminator on the tasks,
and randomly sampling tasks at each iteration, the GAN
learns to interpolate between different tasks, which is the
key to how our approach is able to generalize to unseen
tasks during deployment.

Any variety of population-based optimization algorithm
could be used inside the data creation process. However,
the specific algorithm chosen will affect the convergence
behavior of the generator. We experimented with two ver-
sions of EA: a classical genetic algorithm [17] and a deter-
ministic crowding genetic algorithm [18]. The crowding GA
explicitly encourages diversity of the population by enforcing
a pair-wise replacement between parents and children. In
both cases, we used uniform crossover with a crossover
probability of 0.5 and a mutation rate of 0.1.

D. Control Policy

In order to evaluate the performance of each design, we
need a policy for each design in the design space. In other
words, the performance J is obtained by simulating a design
at a task given a policy. We adopted a learned modular policy
trained through deep reinforcement learning to control the
generated designs. The implementation and training of the
controller follows [19], and is completed before RoboGAN
starts training. Note that the methods of this paper could be
applied regardless of the type of controller used, since the
performance evaluation of a design includes both physical
and control parameters. We investigate the effect of the
controller in Sec. V-D.

4285

Comparison Metrics
Methods Max distance travelled (m)↑ # of distinct solutions ↑ Max dist. travelled (Emergency constraints) (m)↑

Fit2form [6] 4.03± 0.91 1.2± 0.2 2.55± 1.31
Q-learning [5] 4.31± 0.26 2.7± 0.9 3.10± 0.92
MolGAN [10] 3.82± 0.55 1.8± 0.3 2.93± 1.00

Random Sampling 0.72± 0.64 − 0.63± 0.69
RoboGAN (ours) 5.10± 0.42 2.2± 0.7 3.77± 1.18

RoboGAN-crowding (ours) 5.73± 0.22 5.8± 1.5 5.36± 0.52

TABLE I: Performance comparison between real-time algorithms. ↑ means higher is better. Compare to other algorithms
with constant test time, our approach produce designs that are superior both in performance and solution diversity, and
as a result handles emergency constraints much better.

V. EXPERIMENTS

We evaluated our method by designing locomoting robots
for different terrains. We generate random terrains by adding
blocks of randomly selected height, width, and spacing to flat
ground. Examples of such terrain can be seen in the first row
of Figure. 4. The design space consists of robots composed
from four different types of modules: leg, wheel, leg-wheel,
and chassis, where each of these modules corresponds to
physical hardware produced by Hebi Robotics [20] (Fig. 2).
A “none” module type is also allowed, so that designs may
have fewer than the maximum allowable number of modules.
Each robot contains one chassis, and each chassis has six
ports where modules can be attached. Therefore, there is a
total of 46 = 4096 different designs in our design space.
We defined the performance of each design on a given
terrain as the distance travelled within a fixed amount of
time, and obtain the performance by running simulations in
Pybullet [21]. We evaluate our method by querying them with
randomly sampled terrains and simulating the output designs.
Some of the generated designs can be seen in Figure 4.
Our supplementary video showcases the locomotion of some
of the generated designs in simulation. We conducted all
training and testing on a desktop computer with Ubuntu
18.04, Intel i7 eight-core processor at 1.9240GHz, and an
NVIDIA GTX 1070 graphics card.

A. Comparison Metrics

We compare our algorithm to a variety of related methods
using a set of metrics for the quality and diversity of the
output solutions. To measure the quality of the generated
designs, we record the performance of the best robot design
found by each algorithm, and report it as max distance
travelled. We then quantify the diversity of the generated
solutions following the benchmark proposed in [22] to obtain
the number of distinct solutions. Specifically, given a set of
candidate solutions produced by an algorithm, a candidate
solution counts as a distinct solution if it is at least δ distance
away from any existing distinct solution, and its performance
is within ϵ distance from the population’s highest perfor-
mance. We used δ = 1 and ϵ = 0.5 in our experiment.

To quantitatively examine the benefit of having solution di-
versity, we introduce the concept of “emergency constraints”
into our experiment. Emergency constraints take the form
of limitations on the maximum number of each type of
modules a design can contain. These constraints model a

scenario where a module unexpectedly broke, or a module
shortage is discovered during the prototyping process, and
these constraints are generated at random during testing. If
an algorithm fails to generate any design that satisfies the
constraints, a random design that satisfies the constraints is
used. We record this quantity as max distance travelled with
emergency constraints. For evolutionary algorithms, these
emergency constraints can be bypassed by rerunning the
search process from scratch while taking these constraints
into account. Therefore, we only report this quantity for real-
time algorithms.

Lastly, when comparing against evolutionary algorithms,
we included average runtime, which measures the wall
time of each algorithm during execution in minutes, to
demonstrate the computational efficiency of our algorithm.

B. Comparison with other real-time algorithms

We first compare against learning-based and rule-based
approaches. As with our algorithm, these methods can run
in near real-time after a longer training procedure. While the
related ML algorithms are all trained to generate a single
design, their trained model can often be queried stochasti-
cally to obtain multiple designs, albeit without any guarantee
that designs obtained in this manner are near-optimal. All
learning-based algorithms are trained for 12 hours on i.i.d.
sampled tasks. Specifically, we compare against:

Fit2form: Our implementation of Fit2form follows [6],
where a generator is trained to map task to a single design by
maximizing the expected performance of the design. Unlike
in the original work, the modular robot we are trying to
design in our experiment is not differentiable. Therefore,
instead of back-propagating directly with respect to the
expected performance, we used a policy gradient loss.

Q-learning: Our implementation of Q-learning follows
[5], where a policy sequentially adds nodes and edges to the
partial graph of designs. A value function, implemented as
neural network, is learned to serve as a search heuristic.

MolGAN: MolGAN [10] was originally introduced to
optimize molecule structure given a labelled dataset. This
approach involves using a GAN to keep diversity while
using reinforcement learning to promote performance. We
implement and evaluate a conditional variant of MolGAN
for modular robot design. Since we do not have a dataset
required for the MolGAN training, we randomly sample valid
robot designs from the design space to train the GAN.

4286

Comparison Metrics
Methods Max distance travelled (m) ↑ # of distinct solutions ↑ Avg. runtime (min.) ↓

GA-20 [17] 4.21± 1.43 1.8± 0.8 25.4± 0.7
GA-50 [17] 5.63± 0.34 2.0± 1.4 71.9± 1.3

GA-crowding [18] 5.33± 0.25 6.4± 1.3 97.6± 2.1
RoboGAN (ours) 5.10± 0.42 2.2± 0.7 0.003

RoboGAN-crowding (ours) 5.73± 0.22 5.8± 1.5 0.003

TABLE II: Performance comparison between tested algorithms. ↓ means lower is better, ↑ means higher is better. Compare
to evolutionary algorithms, our method can produce designs with on-par quality with significantly faster runtime.

Random Sampling: As a simple baseline, we also
examined the result of randomly sampling in the design
space. Specifically, a random design is generated by sampling
module types for each node of the design graph. For each
test terrain, we sample 10 i.i.d. designs, and record the one
with the highest performance.

RoboGAN: We included two versions of our algorithm,
RoboGAN and RoboGAN-crowding, where the latter ver-
sion explicitly encourages diversity by utilize deterministic
crowding, as explained in detail in Sec. IV-C.

Results are presented in Table I. Each entry is averaged
over 10 randomly sampled terrains, each with 20 independent
runs. We found that both versions of our algorithm out-
perform the competing algorithms both in terms of design
quality and design diversity. Further, when the emergency
constraints are introduced, the crowding version of our
algorithm outperforms all other algorithms by a significant
margin, demonstrating the advantage gained from outputting
multiple designs when the first-choice design fails.

C. Comparison with Evolutionary Algorithms

We also compare our algorithm against evolutionary algo-
rithms. These algorithms are computationally expensive, but
can produce high-quality designs. We compare against:

Classical genetic algorithm: Our implementation of
a classical genetic algorithm follows [17], with uniform
crossover and uniform mutation. We run two versions of the
classical genetic algorithm with population size of 20 and
50 respectively, with a max iteration of 50, and report their
results as GA-20 and GA-50 in Table I.

Crowding genetic algorithm: Crowding approaches are
introduced to EAs as an effective way to generate multi-
modal solutions [13]. We therefore use a deterministic
crowding genetic algorithm as a benchmark to examine the
capability of our algorithm to generate diverse solutions. Our
implementation follows [18], using a population size of 50
and a max iteration of 50.

Results are shown in Table II. Compared to EAs, both
versions of our algorithm are able to generate comparable
designs more efficiently. It is important to note that our
execution efficiency comes at the cost of the training time,
which EAs do not require. However, the training takes place
before the generator is deployed, and need only be trained
once before being used for many tasks. Also note that EAs
tend to find better solutions given larger population sizes and
more of iterations, but their time cost scales proportionally.

D. Effect of the controller applied

We also examined how the performance of our method
is affected by the controller applied to the robots. For this
experiment, we replaced the neural controller in section IV-D
by a hand-crafted controller, where the legs follow a cyclic
alternating-tripod gait, and the wheels spin forward. We re-
trained RoboGAN with this new controller, and compare the
max distance travelled by generated designs with Fit2form
and Random Sampling:

Fit2form Random RoboGAN-crowding
3.81± 1.22 0.86± 0.81 4.96± 0.45

The hand-crafted controller is rather simple, resulting in
a lower average distance travelled for each design than
did the neural control. Even so, our algorithm is still able
to find designs that are well-suited with this controller,
demonstrating that our algorithm is agnostic to the controller
used, as long as it is consistent at training and testing times.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a self-guided generative ap-
proach to task-based robot design generation in real-time.
By combining ideas from both ML and EA, our method
can quickly provide multiple suitable design candidates for
a given task, and could be used to assist non-expert modular
robot users with design prototyping. One limitation of our
method, shared by other ML methods, is the assumption that
new tasks will be from the same distribution as those seen
during training, such that the outputs from out-of-distribution
tasks may be poor. A second limitation is the need for the
designs to be made from discrete components, where we do
not currently have a method to include continuously varying
parameters such as leg lengths, except to discretize them.

While all of our experiments are done in simulation,
our generator could be directly deployed in real-world to
generate high-quality designs. In the future, we plan to
extend our work to larger design space, with more expressive
design representations. Designs with different topologies
will be introduced by adding an adjacency matrix [10] in
addition to the node type matrix. We also plan to extend
the scope of our tasks to more complex ones, such as those
that involve simultaneous manipulation and navigation, as
well as to other domains such as molecule generation for
drug discovery. Future work will aim to establish a rigorous
basis for substantiating the belief that a distribution drives
a balance between exploitation and exploration during the
search.

4287

REFERENCES

[1] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evolution:
Towards efficient automatic robot design,” in International Conference
on Learning Representations, 2018.

[2] G. S. Hornby, H. Lipson, and J. B. Pollack, “Evolution of generative
design systems for modular physical robots,” in Proceedings 2001
ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), vol. 4, 2001, pp. 4146–4151 vol.4.

[3] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling
evolution: evolving soft robots with multiple materials and a powerful
generative encoding,” ACM SIGEVOlution, vol. 7, no. 1, pp. 11–23,
2014.

[4] J. Whitman, M. Travers, and H. Choset, “Modular mobile robot design
selection with deep reinforcement learning,” in NeurIPS Workshop on
ML for engineering modeling, simulation and design, 2020.

[5] J. Whitman, R. Bhirangi, M. Travers, and H. Choset, “Modular robot
design synthesis with deep reinforcement learning,” in Proc. of the
AAAI Conf. on Artificial Intelligence, vol. 34, 2020, pp. 10 418–10 425.

[6] H. Ha, S. Agrawal, and S. Song, “Fit2Form: 3D generative model
for robot gripper form design,” in Conference on Robotic Learning
(CoRL), 2020.

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Neural Information Processing Systems, 2014.

[8] R. D. Hjelm, A. P. Jacob, T. Che, A. Trischler, K. Cho, and Y. Bengio,
“Boundary-seeking generative adversarial networks,” in International
Conference on Learning Representations, 2018.

[9] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[10] N. De Cao and T. Kipf, “MolGAN: An implicit generative model
for small molecular graphs,” ICML 2018 workshop on Theoretical
Foundations and Applications of Deep Generative Models, 2018.

[11] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias,
and A. Aspuru-Guzik, “Objective-reinforced generative adversarial
networks (organ) for sequence generation models,” arXiv preprint
arXiv:1705.10843, 2017.

[12] O. Chocron and P. Bidaud, “Evolutionary algorithms in kinematic
design of robotic systems,” in Proc. of the 1997 IEEE/RSJ Int’l
Conf.on Intelligent Robots and Systems, vol. 2, 1997, pp. 1111–1117.

[13] N. Casas, “Genetic algorithms for multimodal optimization: a review,”
arXiv preprint arXiv:1508.05342, 2015.

[14] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art,” Evolutionary computation,
vol. 8, no. 2, pp. 125–147, 2000.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[16] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[17] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algo-
rithm: past, present, and future,” Multimedia Tools and Applications,
pp. 1–36, 2020.

[18] O. J. Mengshoel and D. E. Goldberg, “The crowding approach to
niching in genetic algorithms,” Evolutionary computation, vol. 16,
no. 3, pp. 315–354, 2008.

[19] J. Whitman, M. Travers, and H. Choset, “Learning modular robot
control policies,” 2021.

[20] “Hebi robotics,” 2020. [Online]. Available: www.hebirobotics.com
[21] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-

ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

[22] X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark functions
for cec’2013 special session and competition on niching methods
for multimodal function optimization,” RMIT University, Evolutionary
Computation and Machine Learning Group, Australia, Tech. Rep,
2013.

4288

