
Distributed Reinforcement Learning for

Autonomous Driving

Zhe Huang

CMU-RI-TR-22-09

April 28, 2022

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Jeff Schneider, advisor

David Held
Adam Villaflor

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2022 Zhe Huang. All rights reserved.

To those who have inspired me,
especially my parents.

iv

Abstract

Due to the complex and safety-critical nature of autonomous driving,
recent works typically test their ideas on simulators designed for the very
purpose of advancing self-driving research. Despite the convenience of
modeling autonomous driving as a trajectory optimization problem, few
of these methods resort to online reinforcement learning (RL) to address
challenging driving scenarios. This is mainly because classic online RL
algorithms are originally designed for toy problems such as Atari games,
which are solvable within hours. In contrast, it may take weeks or months
to get satisfactory results on self-driving tasks using these online RL
methods as a consequence of the time-consuming simulation and the
difficulty of the problem itself. Thus, a promising online RL pipeline for
autonomous driving should be efficiency driven.

In this thesis, we investigate the inefficiency of directly applying generic
single-agent or distributed RL algorithms to CARLA self-driving pipelines
due to the expensive simulation cost. We propose two asynchronous
distributed RL methods, Multi-Parallel SAC (off-policy) and Multi-
Parallel PPO (on-policy), dedicated to accelerating the online RL train-
ing on the CARLA simulator via a specialized distributed framework
that establishes both inter-process and intra-process parallelization. We
demonstrate that our distributed multi-agent RL algorithms achieve state-
of-the-art performances on various CARLA self-driving tasks in much
shorter and reasonable time.

v

vi

Acknowledgments

I would like to express my wholehearted gratitude to my advisor and
committee chair, Prof. Jeff Schneider, for his invaluable guidance and
extensive support to me and my research throughout my two-year study
here at the Robotics Institute, CMU. Without his supervision and his
Auton Lab, the whole project would not have been made possible.

Speaking of the computational resources from the Auton Lab, I especially
would like to thank Dr. Predrag Punosevac for his excellent operations
and maintenance on the lab infrastructure.

I would like to extend my gratitude to Prof. David Held as well. Being
my committee member, he has spent his valuable time on reviewing my
work and sharing his constructive opinions during my thesis talk.

I have to mention that I am not alone when doing my research. I am
fortunate to collaborate with many awesome labmates. I truly appreciate
Hitesh Arora and Tanmay Agarwal, our lab alumni, for providing sub-
stantial help on understanding the existing codebase as well as sharing
their pilot experience on the CARLA self-driving problem. Moreover,
I am greatly thankful to Adam Villaflor, Brian Yang, Swapnil Pande
and Yeeho Song, for their significant assistance, effort and feedback that
make my project drastically better. I honestly believe that our sincere
conversations and discussions are extremely helpful and indispensable.
All names mentioned in this paragraph are listed in alphabetical order.

Along my journey of my life, I cannot stress this enough that I am deeply
indebted to my entire family for their love, care and commitment. I am also
grateful to Prof. Yin Li, who has inspired me during my undergraduate
years in UW-Madison. Lastly, I simply will not forget all my dear friends,
worldwide, who contribute a lot to my happiness and well-being.

At this very moment, I would like to take this opportunity to say “thank
you very much indeed” to every individual mentioned above that I cherish.
I sincerely wish everyone all the best in life.

vii

viii

Funding

We thank the CMU Argo AI Center for Autonomous Vehicle Research1

for supporting the work presented in this thesis.

1https://labs.ri.cmu.edu/argo-ai-center/

ix

x

Contents

1 Introduction 1

2 Background 5
2.1 Autonomous Driving . 5

2.1.1 Modular Pipelines . 5
2.1.2 Imitation Learning . 6
2.1.3 RL for Self-driving . 7

2.2 Reinforcement Learning . 9
2.2.1 Preliminaries . 9
2.2.2 Off-policy vs. On-policy RL 11
2.2.3 Model-free vs. Model-based RL 11
2.2.4 Online vs. Offline RL . 12
2.2.5 Parallel & Distributed RL . 12

3 Simulation Environment 15
3.1 CARLA Simulator . 15

3.1.1 Introduction . 15
3.1.2 Sensor Affordances . 16
3.1.3 Groundtruth Affordances . 17
3.1.4 Planners . 18

3.2 CARLA Benchmarks . 19
3.2.1 CoRL2017 Benchmark . 20
3.2.2 NoCrash Benchmark . 21
3.2.3 Leaderboard Benchmark . 22

4 Multi-Parallel SAC 25
4.1 Overview . 25
4.2 Problem Setup . 26
4.3 Method . 27

4.3.1 Distributed Framework . 27
4.3.2 Multi-agent SAC . 32

4.4 Experiments . 34
4.4.1 Implementation Details . 34
4.4.2 NoCrash Baselines . 35

xi

4.4.3 NoCrash Results . 37
4.4.4 Sensitivity Analysis . 40

5 Multi-Parallel PPO 43
5.1 Overview . 43
5.2 Problem Setup . 44
5.3 Method . 45

5.3.1 Distributed Framework . 45
5.3.2 Multi-agent PPO . 47

5.4 Experiments . 51
5.4.1 Implementation Details . 51
5.4.2 NoCrash Baselines . 52
5.4.3 NoCrash Results . 52
5.4.4 Leaderboard Baselines . 56
5.4.5 Leaderboard Results . 57

6 Conclusions 61

A Supplementary Materials 63
A.1 Hyperparameters . 63
A.2 Adaptive Update Interval . 63
A.3 Synchronization Between Servers . 65
A.4 Instability in Leaderboard . 65

B Limitations of this Study 67
B.1 Inaccurate Training Speed Profiling 67
B.2 Insufficient Leaderboard Experiments 67
B.3 Lack of Qualitative Analysis . 68

C Future Work 69
C.1 Massive Parallelization . 69
C.2 Asynchronous Servers . 70
C.3 Accelerating Future Research . 70

D Extensions to Other Projects 71
D.1 Online RL with Vision-based Features 71
D.2 Offline RL with Parallelized Self-play 72

Bibliography 73

When this thesis is viewed as a PDF, the page header is a link to this Table of Contents. This
thesis template is retrieved from https://github.com/felixduvallet/ri-thesis-template.

xii

List of Figures

2.1 A common workflow of modular pipeline for autonomous driving.
Different methods may have slightly different workflows. 6

2.2 A common workflow of imitation learning pipeline for self-driving
at test time. This figure is only for illustrative purposes. Different
methods may have completely different workflows. 8

2.3 The workflow of reinforcement learning pipeline for autonomous driving
at test time. This figure is for illustrative purpose only. Different
methods may have different inputs and workflows. 9

2.4 An overview of a typical single-agent reinforcement learning (RL)
pipeline. RL often involves an agent and an environment. An RL agent
consists of an actor and a learner. The actor takes an action to interact
with the environment. The environment returns new observations and
rewards as feedback. The learner learns a better policy from such
feedback data. 10

4.1 The hierarchy of the proposed distributed RL framework. It modifies
and extends the standard parameter server architecture [55] with
features specifically designed for the CARLA self-driving. There are
also two levels of parallelizations, the inter-process level and the intra-
process level, both of which run asynchronously. 28

4.2 An overview of the worker-level intra-process parallelization. Each
worker is a single process. At worker level, it hosts multiple agents.
Each agent has its own local policy copy that can be different from
others This helps to maintain asynchronicity at this level. To alleviate
communication overhead, agents does not sync with servers. Instead,
they fetch local policy updates from workers. Their state transitions
will also be gathered at worker’s temporary buffer storage. This is
similar to having a parameter server at worker-level. 28

xiii

4.3 An overview of the server-level inter-process parallelization. In order
to share resources constantly, the server process utilizes multithreading
and Each server is a thread. All communications are point-to-point.
This is good for scalability and fault-tolerance. Servers handle different
requests from workers as well as updating the global policy using the
global buffer with value/Q function. 29

4.4 The simulation per-step time against number of agents in the envi-
ronment. With more agents added into the environment, while the
time for CARLA to render a frame is increasing, the average step time
(i.e. interacting once) for each agent is decreasing until it rebounds. It
is therefore concluded that the optimal number of agents on a single
CARLA simulation environment is around 7 to 9. 31

5.1 The obstacle sensor array for retrieving obstacle affordances from all
angles around of the ego-vehicle. Note that this is purely for illustrative
purposes. Neither the sensing radii & ranges nor the sensor placements
are drawn exactly. 45

5.2 The workflow of single-agent Proximal Policy Optimization (PPO) [79]
algorithm, it features an actor-critic pipeline for policy and value
function updates. This figure is only for illustrative purposes. Many
components, such as trajectory buffer and importance sampling, are
not shown for simplicity. 46

5.3 Different choices of update schemes for distributed on-policy RL. With
the driving policy improving, on average, training episodes typically
become longer. Option A chooses to update the global policy with a
fixed short interval. This might be good initially but will harm the
optimization in the long term by breaking up long episodes into several
trajectories as well as making agents out-of-sync from the global policy.
Option B chooses to update the global policy with a fixed, relatively
long interval. This might be good in the long run but will slow down
the initial training due to less frequent updates. Option C (Ours)
chooses to update adaptively based on the length of training episodes,
addressing above-mentioned problems. 47

xiv

List of Tables

3.1 Quantitative results on CoRL2017 [23] benchmark under different
tasks. Numbers represent the average success rate (in percentage) out
of all testing episodes. Refer to 4.4.2 for details about these methods. 20

3.2 Three traffic conditions defined in NoCrash [20] benchmark. 21

3.3 An overview of the CARLA Leaderboard driving route splits. Testing
routes are held-out exclusively on the Leaderboard Challenge servers
and their details are not publicly available. 22

4.1 Quantitative results on NoCrash [20] benchmark under empty, regular,
dense traffic conditions (defined in 3.2.2). Numbers represent the
average success rate (in percentage) out of 25 testing episodes. Details
of all baseline methods are in 4.4.2. MPSAC stands for our method,
Multi-Parallel SAC. MPSAC(1x) refers to our implementation of single-
agent SAC [33]. MPSAC(std64x) refers to the 64-agent MPSAC using
standard parameter server setup where locally computed gradients are
used for the global update. 38

4.2 Approximate simulation timesteps per hour under different settings.
MPSAC stands for our method, Multi-Parallel SAC. “Std. param.
server” indicates whether the standard parameter server workflow is
used (i.e. agents computing gradients w.r.t. local policies and sending
them to servers) As is mentioned in 4.3.1, agents refer to individual
actor and each worker can have multiple agents. The total number
of agents in one training system is equal to the number of workers
multiplied by the number of agents per worker. Due to the stochastic
nature of reinforcement learning, the number of timesteps needed for
one method to reach its peak performance is highly unpredictable.
Even for the same method, total training time (defined as the time
needed for a method to reach its peak performance) of multiple runs
varies a lot. Thus, we report how many timesteps a given method
can complete in an hour instead. Nonetheless, the reported profiling
results are heavily dependent on cluster status. We acknowledge that
our results are indicative and not ideal for quantitative comparison at
a fine-grained level. 39

xv

4.3 Sensitivity test of entropy regularization term α on NoCrash [20]
benchmark under empty, regular, dense traffic conditions (defined in
3.2.2). Numbers represent the average success rate (in percentage) out
of 25 testing episodes. All experiments use Multi-Parallel SAC with
the same hyperparameter setup except for the α. 41

5.1 Quantitative results on NoCrash [20] benchmark under empty, reg-
ular, dense traffic conditions (defined in 3.2.2). Numbers represent
the average success rate (in percentage) out of 25 testing episodes.
Baseline methods are detailed in 4.4.2. MPSAC stands for Multi-
Parallel SAC, whereas MPPPO stands for Multi-Parallel PPO. In
addition, MPPPO(std64x) refers to the 64-agent MPPPO using stan-
dard parameter server setup where locally computed gradients are
used for the global update. MPPPO(1K64x) refers to the 64-agent
MPPPO with a fixed global update interval at 1,000 timesteps, whereas
MPPPO(100K64x) refers to the 64-agent MPPPO with a fixed global
update interval at 100,000 timesteps. 54

5.2 The impact on the training progress using different rollout lengths and
update intervals. The experiment with the adaptive update interval
does not use a fixed rollout length as previously described in 5.3.2.
Comparing the average reward at the initial of the training (i.e. at 1K
timesteps) with the average reward after 1M timesteps, the experiment
with the adaptive update interval improves the most during this period
of training, showing the effectiveness of our design over a fixed update
interval with a fixed rollout length. 54

xvi

5.3 Approximate simulation timesteps per hour under different settings.
MPSAC stands for Multi-Parallel SAC, whereas MPPPO stands for
Multi-Parallel PPO. “Std. param. server” indicates whether the
standard parameter server workfow is used (i.e. agents computing
gradients w.r.t. local policies and sending them to servers). As is
mentioned in 4.3.1, agents refer to individual actor and each worker
can have multiple agents. The total number of agents in one training
system is equal to the number of workers multiplied by the number
of agents per worker. Due to the stochastic nature of reinforcement
learning, the number of timesteps needed for one method to reach its
peak performance is highly unpredictable. Even for the same method,
total training time (defined as the time needed for a method to reach
its peak performance) of multiple runs varies a lot. Thus, we report
how many timesteps a given method can complete in an hour instead.
Nonetheless, the reported profiling results are heavily dependent on
cluster status. We acknowledge that our result are indicative and not
ideal for quantitative comparison at a fine-grained level. 56

5.4 Leaderboard evaluation results. MPSAC stands for our proposed
method, Multi-Parallel SAC, which in this case is trained with the
15-dim state space described in 5.2. MPPPO stands for our proposed
method, Multi-Parallel PPO. The “Routes” column indicates how dif-
ferent methods are evaluated. Except for TransFuser AT and MPPPO,
other methods are tested on held-out test routes. Hence, our method
is only directly comparable with TransFuser AT. Descriptions of these
metrics can be found in the leaderboard of the CARLA Leaderboard
Challenge, the link to which can be found in 5.4.4. “DS” stands for
driving scores. “RC” stands for route completion (in %) For conve-
nience, we merge some official metrics into a single category. “Collis.”
combines all types of collisions in original leaderboard. “Viol.” com-
bines red light and stop sign violation, as well as off-road infraction.
Infractions in collisions or violations indicate control or perception
issues. “Dev.” stands for route deviations, infractions in this category
indicate planning issues lane departure issues. “Timeouts” combines
the original timeout metric as well as situations when the agent gets
blocked. The unit for all infraction-related metrics is infractions per
kilometer. 58

A.1 General hyperparameters for all experiments. Note that for obstacle
affordance in NoCrash experiments, only a front obstacle sensor is used. 64

A.2 Hyperparameters for Multi-Parallel SAC. 64

A.3 Hyperparameters for Multi-Parallel PPO. 64

xvii

xviii

Chapter 1

Introduction

Many advances in autonomous driving focus on a modular approach, where the whole

task is divided into multiple subtasks such as perception, planning and control [12,

46, 54, 61, 63, 94]. While this paradigm has been performing well for typical traffic

scenarios, it struggles to tackle out-of-distribution driving situations without heavily

handcrafted special procedures for edge cases. To cope with this issue, reinforcement

learning (RL) has come under the spotlight since autonomous driving can be naturally

viewed as a trajectory optimization problem, where we need to find an optimal

control over the course of driving. Empirical evidence suggests that RL methods

are able to achieve this goal in an highly automated manner, without the trouble of

manually handling challenging long-tail and rare cases. Their success has already been

demonstrated in numerous decision-making tasks, such as playing strategy games or

manipulating robots [8, 60, 74, 78, 79, 81, 88].

In spite of its huge potential, RL is not extensively studied in autonomous driving,

mainly due to the safety and legal concerns. RL algorithms learn an optimal policy in a

trial-and-error fashion, which is simply not allowed in the real world. Fortunately, with

the emergence of simulators built for facilitating autonomous driving research [23, 27],

utilizing RL methods to improve self-driving capabilities is finally made possible.

1

1. Introduction

Among all categories of RL methods, online RL methods seem to be the most

promising considering the help of the simulation environment. An online RL method

explores & exploits the learning environment and receives feedbacks directly from

the groundtruth dynamics. This allows an online RL method to create its own

dataset on the fly, without the worry of biased data distribution on pre-collected

datasets. Moreover, training online RL methods often involves random trial-and-error

behaviors, which helps them explore rare and long-tail events that are not able to

observe otherwise. Recently, several online RL methods have been proposed to handle

the decision making process in an automated fashion for autonomous driving [1, 23, 85].

They build their pipelines on the CARLA simulator [23], one of the most widely

used simulators in the self-driving community. The built-in complex traffic scenarios,

along with the photorealistic rendering, make it ideal for training and testing novel

self-driving algorithms. This is also our simulator of choice in this study. A detailed

description of the CARLA simulator is in Chapter 3.

However, even with the help of the CARLA simulator, online RL methods for

autonomous driving are still few due to its inefficiency. First, autonomous driving by

itself is not a simple problem as opposed to the toy control problems (e.g. cartpole [6]

or bipedal walker1) which are often used to benchmark RL algorithms. The continuous

action space with wide ranges, the complex traffic scenarios and the presence of other

dynamic traffic actors in the environment result in combinatorial number of total

feasible states. This complicates both the exploration and the exploitation process for

RL algorithms, meaning that a significant number of interactions with the simulator

are inevitable for policy optimization. Moreover, to simulate high quality graphics and

realistic environment physics, the CARLA simulator is computationally intensive and

is noticeably more time-consuming than common environments used for benchmarks

such as OpenAI Gym [10] or Mujoco [84]. Therefore, it is understandable that the

time needed to train a self-driving agent on CARLA is orders of magnitude longer

than to solve a simple benchmark problem. This makes training online RL algorithms

on many CARLA tasks take weeks to months to finish. This discourages the use of

online RL methods on autonomous driving.

1https://gym.openai.com/envs/BipedalWalker-v2/

2

1. Introduction

One key observation is that those online RL algorithms [1, 23, 85] used for autonomous

driving are straightforward adaptations of classic and generic RL methods. Though

they work surprisingly well with properly designed state space for perceiving the

surrounding environment dynamics, they poorly scale up to harder decision-making

problems such as self-driving. To deal with the above-mentioned issue, it is necessary

to accelerate the training of RL agents in simulation environments by introducing

large-scale parallelization for online RL. To date, there are many out-of-box parallel

or distributed RL algorithms [25, 26, 37, 41, 60, 65, 74, 83, 91, 95]. However, they are

mainly designed for problems where the utilization of computational resources, the

skewed distribution of workloads and the heterogeneity among agents participating

in the training are not taken into consideration.

When it comes to parallelizing online RL methods on the CARLA simulator, following

issues must be addressed. First, CARLA is resource intense, consuming ∼2GB

GPU memory per simulator instance, not to mention the CPU resources it uses for

simulation dynamics. This means parallelized methods for the CARLA self-driving

should be capable of running across multiple machines in a distributed fashion. Second,

current single-agent CARLA RL methods largely under-utilize a single simulator

instance. Because single-agent algorithms only have one active ego-vehicle in the

environment, at each simulation timestep it only interacts with its near surroundings

while the vast majority of the environment is unseen and unused. To prevent the

waste of computation, online RL algorithms for self-driving should be devised to

parallelize multiple agents within the same environment instance. Third, self-driving

as a goal-directed navigation problem has a high variability. The task durations

and difficulty levels alternate throughout the training. We simply cannot design a

multi-agent algorithm that waits for other agents before it can move to the next step.

Thus, asynchronism is indispensable for multi-agent systems in this context.

In this thesis, we propose two distributed multi-agent RL methods, namely, Multi-

Parallel SAC and Multi-Parallel PPO. They are designed with the philosophy of

addressing all parallelization issues mentioned above. First, the parameter server

infrastructure, which is at the heart of both methods, manages all communications

via TCP sockets, allowing our training system to be distributed across different

3

1. Introduction

GPUs & CPUs on different machines. Second, to make full utilization of every

simulation step, our methods are designed with both inter-process and intra-process

parallelization. Inter-process parallelization allows multiple CARLA environments to

participate in the distributed training system, whereas intra-process parallelization

allows multiple ego-vehicles to run concurrently in each CARLA instance. Third, our

methods support asynchronicity across different processes. There are no collective

synchronization throughout the training, hence no delays. This also contributes to

the great scalability and fault tolerance of our proposed methods.

Although the backbones of our methods are two completely different generic RL

algorithms (i.e. off-policy vs. on-policy), they share the same parameter server [55]

infrastructure. We achieve this versatility by accommodating the needs of both

types of RL algorithms when designing our distributed RL framework. On the one

hand, off-policy RL requires the collected data to be shared across learners as well

as a high throughput design that handles frequent policy updates. On the other

hand, on-policy RL assumes improving a policy directly using data collected from the

same policy, which requires that all training participants host similar policies at all

times. Therefore, for off-policy RL, the focus is to increase concurrency and reduce

communication overhead due to its frequent update interval. This is addressed by

having worker-level parameter servers from the multi-level framework. For on-policy

RL, the focus is to reduce the delay between local policies and global policies. We

also devise an adaptive update interval mechanism to mitigate this issue.

To sum up, in this thesis, we introduce a distributed RL framework designed for

the CARLA self-driving problem. We instantiate it with two representative RL

methods, denoted as Multi-Parallel SAC and Multi-Parallel PPO. We would like to

demonstrate that our parallelized methods have the capability of accelerating the

online RL training on the CARLA simulator as well as achieving state-of-the-art

performances on challenging CARLA self-driving tasks in the meantime.

4

Chapter 2

Background

2.1 Autonomous Driving

2.1.1 Modular Pipelines

Modular pipelines are one of the most popular autonomous driving methods. As is

illustrated in Figure 2.1, these methods aim at dividing the autonomous driving task

into multiple subtasks (i.e. submodules) that separately handle planning, control,

perception, mapping and localization problems. [12, 46, 54, 61, 63, 94]

Modular pipelines typically start with sensor inputs and routing information, followed

by a mapping and localization submodule which helps the ego-vehicle estimate its

location and pose. [5, 9, 94]. After this stage, a dedicated perception system, also

using a suite of sensor inputs, is used to perceive the surrounding environment,

resulting in predictions such as lane detection, traffic sign recognition, obstacle

detection or pedestrian behavior forcast [3, 5, 54, 94]. These perception predictions

are subsequently used for motion planning. In modular systems, motion planners

5

2. Background

Figure 2.1: A common workflow of modular pipeline for autonomous driving. Different
methods may have slightly different workflows.

are often used to predict optimal future trajectories and then invoke the control

module to manipulate the actuators [22, 53, 54, 62]. Many recent works are also

focused on improving individual subtasks. For example, Djuric et al. [54] propose

an uncertainty-aware motion planning method via rasterized bird’s-eye-view images.

Gwon et al. [31] design an efficient high-definition road-map generation system with

refined 3D road geometry data.

One obvious advantage of these modular systems is that they are intuitively designed

in an interpretable way. On the other hand, being strictly modularized, it requires

huge engineering efforts to implement and maintain system functionalities. Also,

as different submodules are highly interdependent, the flexibility of changing or

upgrading some of the submodules is doubtful. Furthermore, it seems the whole

system works with lots of configurable parameters from each submodule. This

combinatorial complexity could make it hard to tune.

2.1.2 Imitation Learning

Imitation learning methods attempt to learn a policy from collected expert data

which maps input data to (pseudo-)groundtruth actions. As is illustrated in Fig 2.2,

the input data typically consists of high-dimensional sensor inputs and additional

low-dimensional inputs such as destination locations or directional commands. During

the training stage the objective is to mimic an expert’s behaviors based on the same

input data used by the expert. Thus, for imitation learning methods, it is key to get

6

2. Background

a wide variety of expert demonstrations which covers most scenarios.

Recently, many imitation learning methods have been proposed for self-driving.

Dosovitskiy et al. [23] directly learn a controller via imitation learning on perception

features and speed measurements. Codevilla et al. [19] propose a conditional imitation

learning algorithm that utilizes vision-based inputs as well as high-level command

inputs as constraints, which makes imitation learning agent capable of responding to

navigational commands at test time. Chen et al. [14] train a pure vision-based agent

out of a privileged agent learnt from groundtruth data, both with imitation learning.

There is also another family of imitation learning pipelines where imitation learning

is combined with reinforcement learning (RL). Liang et al. [56] utilize visual and

odometry inputs to train an imitation learning model for preliminary self-driving and

then use online RL to finetune the model. Chen et al. [15] first train an offline RL

agent using a dataset containing privileged information collected on the CARLA [23]

simulator. They then treat the learnt agent as an expert driver and use knowledge

distillation [38] with imitation learning to produce a sensorimotor agent.

One of the biggest challenges for imitation learning methods, not only on the self-

driving problem, but on many others as well, is their poor generalizability. They

often fail at situations that are unseen during the training [42]. Moreover, the learnt

imitation learning policies may be biased since the distribution of an expert dataset

is imbalanced with only having few or no negative examples at all [20, 42]. This leads

to an undesired scenario where imitation learning agents cannot recover from unseen

errors. Those small errors, accumulated over time, result in completely deviated

trajectories [68]. Also, the performance of imitation learning, if not provided with

additional help, is often capped by the expert’s ability [11].

2.1.3 RL for Self-driving

Reinforcement learning (RL) methods view the autonomous driving problem as a

long-trajectory decision-making problem which is solvable using various RL methods.

7

2. Background

Figure 2.2: A common workflow of imitation learning pipeline for self-driving at
test time. This figure is only for illustrative purposes. Different methods may have
completely different workflows.

Different RL methods on self-driving may have different structures and training

procedures. As is shown in Figure 2.3, the input used in RL methods typically

involves information regarding current state of the environment, such as perception

feedbacks, and goal-directing features such as short-term route planning information

(e.g. the next waypoint or orientation).

Recently, more and more RL methods have been proposed to tackle self-driving

problem. Mnih et al. [60] learn an A3C agent on TORCS [27] simulator using only

RGB images as input. Dosovitskiy et al. [23], stack two image frames together

with low-level measurements to learn their agent on CARLA. Kendall et al. [47] use

VAE [50] to decode monocular RGB camera input along with speed and steering

inputs, they train a DDPG [57] agent and demonstrate its capability on simple driving

tasks. Toromanoff et al. [85] use a ResNet [36] that encodes vision inputs to implicit

affordances. This results in a low-dimensional input for RL agent, thus making it

easier for the agent to optimize on urban self-driving tasks. Chen et al. [15] explore

offline RL on self-driving. They first collect an offline dataset on CARLA. Assuming

a non-reactive world model and a low-dimensional and compact forward model of the

ego-vehicle, a tabular Q-learning is performed using dynamic programming. They

then use knowledge distillation [38] to train a visuomotor policy to avoid the use

of privilege information. Agarwal et al. [1] choose a set of CARLA affordances to

simplify the state space in their RL setup. They demonstrate its effectiveness with

different online RL methods on CARLA.

As is empirically shown in aforementioned studies, formulating autonomous driving

8

2. Background

Figure 2.3: The workflow of reinforcement learning pipeline for autonomous driving
at test time. This figure is for illustrative purpose only. Different methods may have
different inputs and workflows.

as an RL problem has the following benefits.

• Self-driving is naturally a sequential decision-making problem. RL is specialized

to solve this kind of trajectory optimization problems.

• Dense rewards and modest time horizons enable RL to make drastic changes

and quickly respond to driving situations.

• RL has the potential to explore long-tail events and learn from such experiences.

Also, when compared with modular approaches, which requires handcrafting every

rule for every possible edge case, RL being highly automated makes it easier to train

and deploy as a fully functional self-driving system. In addition, when compared with

imitation learning, RL often showcases better generalizability and its performance is

not upper-bounded by a demonstrator’s performance.

2.2 Reinforcement Learning

2.2.1 Preliminaries

Reinforcement learning (RL) is widely used to solve trajectory optimization problems.

Generally, RL algorithms involve generating samples by running a policy, estimating

the return of that policy and improving the policy accordingly. An anatomy of general

9

2. Background

Figure 2.4: An overview of a typical single-agent reinforcement learning (RL) pipeline.
RL often involves an agent and an environment. An RL agent consists of an actor
and a learner. The actor takes an action to interact with the environment. The
environment returns new observations and rewards as feedback. The learner learns a
better policy from such feedback data.

RL algorithms is illustrated in Figure 2.4. RL algorithms are typically made up of an

agent taking actions in an environment, which provides observations and rewards as

the feedback in response to such actions.

The RL environment is generally treated as a Markov decision process (MDP) [7],

which can be represented as (S,A, p,R, γ), where S denotes the state space, A
denotes the action space. p(s′|s, a) represents the transition probability from an

individual state s to s′ given action a, where s, s′ ∈ S and a ∈ A. R is the reward

function and γ ∈ [0, 1] is the discount factor.

Denote a sequence of rewards along a trajectory τ as

rτ = {r0, r1, . . . , rT}. (2.1)

The discounted reward at step t can be given as

Rt =
T∑
i=t

γt−i ri. (2.2)

10

2. Background

The goal of RL is to find a policy that maximizes the expectation over the total

discounted cumulative reward,

E [R0] = E

[
T∑
t=0

γt rt

]
. (2.3)

2.2.2 Off-policy vs. On-policy RL

RL algorithms can be categorized into off-policy methods and on-policy methods.

Off-policy algorithms evaluate and improve a target policy that is different from the

one they used to explore the environment and generate experiences. Popular methods

in this category are most of Q-learning family (DQN [59], Dueling DQN [89], Double

DQN [86]), off-policy actor-critic methods such as SAC [33, 34], and off-policy policy

gradients methods (DPG [80], DDPG [57], TD3 [29]). These methods often collect a

large pool of state transitions (i.e. experiences) formulated as (s, a, s′, r, d) where d

denotes the termination state indicator. At the time of update they randomly sample

a batch of transitions to improve their policy. These methods often have explicit

exploration strategies such as ε-greedy [59].

On the other hand, on-policy methods directly improve a target policy on top of the

current policy. Popular methods in this category include on-policy temporal-difference

learning variants such as SARSA [75], on-policy actor-critic methods (AC [51], A2C

& A3C [60]) and on-policy policy gradients methods (REINFORCE [92], TRPO [78],

PPO [79]) Many of them make use of long-term cumulative rewards instead of learning

on the temporal difference. This may be helpful for long trajectory optimizations.

2.2.3 Model-free vs. Model-based RL

Most online RL methods are model-free by design, meaning that they do not assume

access to latent environment dynamics and thus cannot know the impact of their

11

2. Background

actions beforehand. This gives them greatly flexibilities on problems in different

domains. Model-based RL algorithms (World Models [32], I2A [90], MBMF [64],

MBVE [28], AlphaZero [81]), however, taking advantage of the groundtruth model

behind the environment, have the capability of predicting the next states and rewards

in the environment and planning their actions accordingly.

2.2.4 Online vs. Offline RL

Most common RL methods are online RL methods. They gather their experiences

by constantly exploring and exploiting in an interactive environment from which

they get live feedbacks on their actions and information regarding their status in

the environment. These feedbacks and updates are exact as they come from the

environment dynamics. However, in offline RL, we lose such direct access to the

groundtruth environment. Instead, a fixed dataset is used in offline RL and consists

of trajectories collected by some behavioral policy in the environment. Offline

algorithms subsequently learn a policy based on the limited data with no interactions

with the environment they will be deployed upon. There is a wide variety of offline

RL algorithms, both model-free (e.g. CQL [52], Decision Transformer [16]) and

model-based (e.g. MOReL [48], MOPO [93], Trajectory Transformer [44]).

2.2.5 Parallel & Distributed RL

Large-scale parallel and distributed RL methods [8, 25, 26, 37, 40, 41, 60, 65, 81,

83, 88, 91, 95] are essential for solving challenging trajectory optimization problems

where the complexity of those environments is orders of magnitude higher than toy

problem environments typically used by RL community to benchmark RL algorithm

performance. These methods aim for extending the existing single-agent RL opti-

mization process to a multi-agent training system with a pool of processes working

on the same optimization objective.

12

2. Background

One of the major branching points of those methods is about the way they handle

the synchronization. Synchronous RL methods sync their policy or local progress,

fully or partially, across participating processes at all times (or most of times) in the

course of the training. It is usually done by collective synchronization operations

such as all-reduce or broadcast. Such synchronous methods suffer greatly in terms of

the scalability and the stability of such systems. With the number of processes in

a training system growing, the communication cost for synchronization also grows

linearly. The fault tolerant ability of such system is also questionable as one failed

process may block the synchronization, thus blocking the whole system.

Asynchronous RL [40], on the other hand, refers to methods that do not require col-

lective synchronizations to maintain the uniformity or synchronicity across processes.

Hence, they do not have the above-mentioned issues. In order to implement this idea,

they often have an asymmetrical design where the training procedure is divided into

two tasks, namely, data collecting and learning. Data collectors (i.e. agents) are

only responsible for collecting rollouts in the environment whereas a learner, such

as a parameter server [55], is used to update the policy using collected data. All

communications and data transfers are point-to-point, which are good for scalability

and overall fault tolerance of the training system.

Off-policy methods, since they learn from other policies by design, it is relatively

intuitive to parallelize them via asynchronism. The majority of the existing asyn-

chronous multi-agent RL algorithms are from the off-policy family. Nair et al. [65]

propose a distributed DQN framework named GORILA which uses parameter servers

to coordinate actor-learner synchronization. To improve the reliability, servers are

able to deny and drop outdate gradient updates from learners. Horgan et al. [41]

design a distributed DQN algorithm called Ape-X DQN using a distributed prioritize

replay buffer [77] to improve the training efficiency.

Unfortunately, most on-policy methods achieve massive parallelization with synchro-

nism, or they tend to break the on-policy learning practice by either optimizing on

trajectories from other policies or truncated trajectories with compromise cumulative

rewards. Zhang et al. [95] design a synchronous PPO framework named MDPPO by

13

2. Background

mixing up trajectories from different policies, which essentially converts PPO algo-

rithm to off-policy methods. Wijmans et al. [91] propose a decentralized distributed

PPO algorithm that asynchronously collects data while synchronously updating the

policy. To reduce synchronization wait time, it forcibly terminates some longer-than-

other episodes. This potentially makes some scenarios never get learnt. Stooke et

al. [83] propose both synchronous and asynchronous methods for PPO policy updates.

However, the asynchronous method, namely APPO, requires frequent breakup of

trajectories (e.g. every 64 timesteps), resulting in inaccurate cumulative rewards

which weaken the performance. Moreover, Mnih et al. [60] propose an on-policy

actor-critic method called Asynchronous Advantage Actor-Critic (A3C). However,

the model is put in shared memory and is updated via Hogwild [72], thus remaining

synchronized throughout the training. Due to this, it can only be deployed on a single

machine. Whether this can be counted as a bona fide asynchronous RL algorithm

remains a question. Hence, Espeholt et al. [25] try to parallelize the A3C method via

V-trace correction during updates, allowing training across multiple machines.

Recently, there is also a trend among large-scale RL methods that they often come

with a task-specific design to fully consider the characteristics of the task environment.

Silver [81] propose a board game agent, namely AlphaZero, which utilizes Monte

Carlo tree search (MCTS) with different search spaces for chess, shogi as well as Go.

Vinyals et al. [88] train an RL agent called AlphaStar on the real-time strategy game

Starcraft II 1. To deal with the complexity of this game and its adversarial nature, an

RL pipeline including self-imitation learning and game theory is specifically designed

for solving this problem. Berner et al. [8] train an RL agent to play Dota 2 2 with

competitive self-play and hero-specific observation spaces and features.

1https://starcraft2.com/en-us/
2https://www.dota2.com/home

14

Chapter 3

Simulation Environment

3.1 CARLA Simulator

3.1.1 Introduction

For online Reinforcement Learning (RL) algorithms, learning to drive requires a

large number of samples, which are only possible in simulators. In this study,

we choose to use one of the most popular urban driving simulators, namely the

CARLA simulator [23]. CARLA is open-source and is built upon Unreal Engine [24]

which features photorealistic graphics, as well as PhysX1 which performs realistic

physics simulation. To facilitate autonomous driving research, CARLA Python-

API has a full suite of tools, including pre-defined urban driving maps, common

perception sensors and configurable environment dynamics. CARLA is also used as a

performance evaluator for autonomous driving, hosting a wide variety of self-driving

benchmarks, including CoRL2017 [23], NoCrash [20] and CARLA Leaderboard2. In

1https://developer.nvidia.com/physx-sdk
2https://leaderboard.carla.org/

15

3. Simulation Environment

conclusion, CARLA provides autonomous driving researchers an all-in-one platform

for developing, training and evaluating their self-driving systems and comparing them

in a standardized simulation environment.

3.1.2 Sensor Affordances

One of the benefits of using the CARLA simulator is its comprehensive sensor library,

such as IMU, GNSS, LIDAR and various semantic or RGB cameras. In self-driving

systems, those sensors provide measurements of ego-vehicle’s current status as well

as building up inputs for ego-vehicle’s perception system which are crucial to most

autonomous driving solutions. Like other methods, our parallel RL methods also take

advantage of these sensors in the observation space of our agent. Here are the details

of relevant sensors used in our methods.

IMU sensor. The inertial measurement unit (IMU) in CARLA measures linear

acceleration (in m/s2), angular velocity (in rad/sec) and orientation (in radians,

where north is [0.0,−1.0, 0.0]) of the ego-vehicle. This sensor is ticked per simulation

step. After receiving IMU readings, we are able to keep track of the ego-vehicle

odometry as well as its current velocity.

GNSS sensor. The Global Navigation Satellite System (GNSS) sensor in CARLA

provides the raw latitude, longitude and altitude information of the ego-vehicle

every timestep. After getting the raw geolocation coordinates, we can compute local

projected coordinates which are used by many CARLA APIs following the data

conversion rules in World Geodetic System 1984 (WGS 84) [66]. For this step, we

use pyproj3 package to do the projection.

Lane invasion detector. This sensor in CARLA detects the crossing of various lane

markings, such as solid yellow lines, broken white lines or crosswalk curbs. This helps

us determine whether the ego-vehicle has made lane changes during an episode. Based

3https://github.com/pyproj4/pyproj

16

3. Simulation Environment

on this information, we can detect lane invasion infractions such as deviating from

the designated lane or driving onto sidewalks. In all our experiments, we terminate

the current episode once a lane invasion event is detected.

Collision detector. This sensor in CARLA detects collisions between ego-vehicle

and other objects in the driving environment, including static objects such as buildings,

bushes, poles as well as dynamic objects such as pedestrians and other vehicles. Note

that several collisions may be detected at a single timestep. During training, we use

the collision sensor to determine whether the ego-vehicle has hit something and if so

we will terminate the training episode. We terminate an episode and count it as a

failure at test time if any collision infraction is detected.

Obstacle detector. This sensor in CARLA detects any obstacle that is in its

capsular-shape sensing range (sphere tracing in Unreal Engine[24]). It is capable of

tracing both static and dynamic objects. The radius and maximum sensing proximity

is configurable. Once some actors are within the specified threshold, it will report

the obstacle types as well as the distances between them and the ego-vehicle. This

is of a great assistance to carry out self-driving experiments without the trouble of

setting up a vision-based perception system.

3.1.3 Groundtruth Affordances

Besides using sensors, we can directly query useful groundtruths pertaining to the

world dynamics of the CARLA simulator and incorporate it into the feature space of

our agent. These groundtruths are often referred to as privilege information. The only

reason that they are directly accessible is that the CARLA simulator has such features.

In real-world self-driving applications, we are unable to have privilege information at

hand without the use of sensors and corresponding perception algorithms.

Since we are focused on solving the decision-making problem for self-driving (i.e.

controlling the steering and the throttle of the ego-vehicle), we would like to access

17

3. Simulation Environment

useful affordances to simplify the self-driving problem in simulation settings. This is

a reasonable act as all the affordances we use in our methods are well-studied and

solved problems in the real world. They are just not the focus of our study.

Traffic light affordance. We assume full access to traffic light information including

knowing which traffic light is currently affecting the ego-vehicle and its state (i.e.

red, yellow or green). In real-world driving environment where direct access to this

information is infeasible, traffic light detection problem has been tackled using object

detection framework with high definition maps [21, 39].

Stop sign affordance. Similar to the traffic light affordance, we assume full access

to which stop sign is currently affecting the ego-vehicle. To further simplify this

problem, in our implementation we directly convert a stop sign to a timed red light,

absorbing it into the traffic light affordance in our feature space. In real-world driving

environment where direct access to this information is infeasible, this is actually a

special case of the traffic sign recognition problem and it has been well addressed by

modern vision-based recognition framework [30, 45].

Dense waypoints. A waypoint is a CARLA 3D vector object consisting of its

location on the map as well as its orientation. The ego-vehicle is supposed to drive

along waypoints and follow the direction its nearest waypoint specifies. CARLA

provides users with a groundtruth waypoint system that covers every lane on every

road in the simulation environment. They are critical for navigating the ego-vehicle

from one location to another on the map. In real-world self-driving solutions, the

high definition map often contains similar features for navigation [31, 58].

3.1.4 Planners

There are two types of route information inputs in the CARLA simulator, waypoints

or waypoint-command pairs, which contain high-level navigational commands, such

as “go straight”, “turn left” or “move one lane to the right”. Thus, we mainly have

18

3. Simulation Environment

two types of planner for solving the route planning problem (i.e. finding a path from

the origin to the destination at each episode).

Waypoint planner. This planner takes two waypoints as input, representing the

starting location and the destination location, correspondingly. The waypoint planner

then uses a heuristic-based A∗ search [35] algorithm that determines the optimal

trajectory between them at a configurable resolution. The planner returns a detailed

waypoint list and navigates the ego-vehicle via nearest waypoint. This planner is the

default planner provided by CARLA [23].

Waypoint-command planner. Waypoint-commands are introduced by CARLA

Leaderboard Benchmark (see details in 3.2.3). They take the format of waypoint-

command pairs where each waypoint is followed by a verbal command indicating the

desired moving direction of the ego-vehicle (e.g. left turn, right turn, straight, etc.).

This planner takes multiple waypoint-commands as input. The waypoint-command

planner will break them into multiple straight driving sections and concatenate these

sections based on high-level commands. Within each section the high-resolution

waypoints are generated using the waypoint planner mentioned above. In the end,

the waypoint-command planner returns a concatenation waypoint list with proper

order. Since we include dense waypoint affordance in the state space of our methods,

in all of our Leaderboard experiments we do not use waypoint-command planner.

Instead, we query dense waypoint affordance from Leaderboard and use the waypoint

planner instead.

3.2 CARLA Benchmarks

Like many other algorithms, the performance of imitation learning and reinforcement

learning (RL) algorithms is highly dependent on trajectories (i.e. datasets) that those

methods are optimized on. In order to standardize the training and evaluation of

imitation learning or RL self-driving methods, many benchmarks are created on the

CARLA simulator. These benchmarks act like “datasets”. They set up training and

19

3. Simulation Environment

CIL CIRL CAL CILRS LBC IA ARL
Straight 97 100 93 96 100 100 100

One Turn 59 71 82 84 100 100 100
Navigation 40 53 70 69 98 100 100

Dynamic Navi. 38 41 64 66 98 98 100

Table 3.1: Quantitative results on CoRL2017 [23] benchmark under different tasks.
Numbers represent the average success rate (in percentage) out of all testing episodes.
Refer to 4.4.2 for details about these methods.

testing trajectories with pre-defined routes at pre-defined traffic densities.

However, unlike datasets of many other learning-based tasks, in an RL task, data

samples extracted from the same trajectory may still be different at each run. This

is due to the stochasticity in both the environment that hosts this task as well as

the RL exploration process itself. Therefore, in the CARLA simulator, different runs

on the same trajectory may give different results due to aforementioned stochastic

factors. During training time, this is actually helpful as it naturally encourages

data augmentation and creates more traffic scenarios. At test time, however, this

introduces instabilities and it is suggested that we run the evaluation multiple times

to reduce the variance.

3.2.1 CoRL2017 Benchmark

The CoRL2017 benchmark [23], also known as the Original CARLA Benchmark,

proposes four evaluation tasks: Straight, One Turn, Navigation, Dynamic Navigation.

Testing routes of each task are defined using dense waypoints from source locations

used to spawn the ego-vehicle to destinations. As is suggested in their names, Straight

task consists of routes that only needs driving straight, whereas in One Turn task

every destination is one turn away from the source location. To make it more difficult,

each route in Navigation task has multiple intersections and is longer than routes

of previous tasks. Dynamic Navigation task further adds dynamic actors (i.e. other

vehicles) into the testing environment.

20

3. Simulation Environment

Task # of vehicles at training # of vehicles at testing
NoCrash Empty 0 0
NoCrash Regular 20 15
NoCrash Dense 100 70

Table 3.2: Three traffic conditions defined in NoCrash [20] benchmark.

However, this benchmark only examines whether the ego-vehicle can successfully

reach the destination. It does not consider infractions as failure cases. The naive

success criteria make this benchmark a little unrealistic and too simple. Due to such

setup, this benchmark is considered solved. As is shown in Table 3.1, LBC [14],

IA [85] and ARL [1] are able to achieve near-full or full success in all testing tasks.

Therefore, in this study, we would like to focus on improving our RL methods on

other benchmarks which are more challenging.

3.2.2 NoCrash Benchmark

Since the CoRL2017 benchmark (described in 3.2.1) fails to address infractions,

which include traffic light violations, lane invasions or collisions, it is not capable of

accurately measuring the driving performance of self-driving algorithms realistically.

It also over-simplifies the self-driving problem because of the lack of dynamic actors in

most of its tasks. Thus, the NoCrash benchmark [20] is proposed to fix this problem

by identifying collisions as failures. This benchmark sets up training in CARLA

Town01 and evaluates the agent’s driving behaviors on 25 goal-directed navigation

routes in Town02. It also configures three traffic density levels, from roads being

empty to dense congestions during test time by adjusting the number of dynamic

actors. Specific settings are shown in Table 3.2.

If the ego-vehicle can navigate itself from the source to the destination without hitting

other objects, including both dynamic actors and static environmental objects, the

success criteria are met. However, infractions other than collisions, such as traffic

light violations or lane invasions, are still not addressed in the NoCrash benchmark.

21

3. Simulation Environment

Open-access # of routes Maps
Devtest Yes 4 Town01, Town03, Town04, Town06
Training Yes 50 Town01, Town03, Town04, Town06

Evaluation Yes 26 Town02, Town04, Town05
Test No Unknown Unknown

Table 3.3: An overview of the CARLA Leaderboard driving route splits. Testing
routes are held-out exclusively on the Leaderboard Challenge servers and their details
are not publicly available.

3.2.3 Leaderboard Benchmark

To further benchmark driving proficiency, a more realistic and complex benchmark

called CARLA Leaderboard 4 is introduced. This benchmark consists of goal-oriented

urban driving dynamics across multiple CARLA towns, with both highway driving

(i.e. driving on controlled access roads) and city driving scenarios. Moreover, it

adds ten NHTSA5 pre-crash scenarios that reproduce real-world driving risks. Those

scenarios can be summarized as below.

• recovery from control loss

• emergency brake for objects

• lane changing

• lane merging onto highway

• negotiations at traffic intersections

• handling traffic lights and signs

Many of them (e.g. lane change, lane merge, coping with pedestrians, etc.) require

dealing with dynamic objects in the environment, which significantly increases the

level of difficulty. When it comes to the evaluation, instead of only indicating the

success or failure of a testing episode, the Leaderboard benchmark calculates a driving

score for each episode from multiple aspects. These include infractions (collisions,

traffic light or sign infractions, lane invasions and out-of-road infractions), route

completion, scenario-specific penalties and overall driving time. The final driving

score is also more comprehensive compared with the NoCrash benchmark. Instead of

just focusing on success rate at test time, the leaderboard score is evaluated from

4https://leaderboard.carla.org/
5https://www.nhtsa.gov/

22

3. Simulation Environment

multiple aspects, including the number of collisions, the number of infractions, overall

route completion rate, etc.

As is shown in Table 3.3, CARLA Leaderboard provides publicly available devtest,

training and evaluation routes. However, the testing routes are held out privately

and can only be accessed by participating in the CARLA Leaderboard Challenge6.

6https://leaderboard.carla.org/challenge/

23

3. Simulation Environment

24

Chapter 4

Multi-Parallel SAC

4.1 Overview

In this chapter, we propose a multi-agent RL algorithm, namely, Multi-Parallel

SAC, to efficiently handle the complex urban autonomous driving problem. We

set up our RL problem formulation following [1] and achieve the state-of-the-art

performance on CARLA NoCrash[20] benchmark in a timely manner. Multi-Parallel

SAC is a distributed off-policy reinforcement learning (RL) method that is meant

to significantly accelerate the training of online RL on the CARLA simulator. It

consists of two levels of parallelization. For inter-process parallelization, it utilizes

the parameter server architecture [55] to split the workload and assign different tasks

on different processes. The two main components of this multiprocessing architecture

are servers and workers. To avoid single-point failure, workers run asynchronously

during the entire training. We use the PyTorch1 [69] built-in Gloo2 backend for the

inter-process point-to-point communication. To further improve the utilization of

a single CARLA instance, a multi-agent subsystem is used to achieve intra-process

1https://pytorch.org/docs/stable/distributed.html
2https://github.com/facebookincubator/gloo

25

4. Multi-Parallel SAC

parallelization.

4.2 Problem Setup

RL algorithms generally prefer low-dimensional features and actions to high-dimensional

ones as low-dimensional inputs and outputs require less exploration to cover most of

the feasible states. Hence, we choose to follow [1] by using navigational sensor inputs

(IMU & GNSS), affordances (i.e. privilege information) in the CARLA simulator

(discussed in 3.1) to formulate low-dimensional vector representations for this RL

problem. We also follow their design of reward function with minor adaptations.

State space. The vectorized state space, S, can be expended into a 7-dim vector,

denoted as

S =
[
w̃θ of

v of
∆ eθ ev ẽδ r̃

]T
, (4.1)

where terms with a tilde indicate they come from affordances whereas terms without

a tilde are from sensors. Specifically, w̃θ is the average orientation (in radians) of next

5 waypoints, of
v and of

∆ are front obstacle speed and distance w.r.t. the ego-vehicle,

respectively. eθ and ev refers to the current steering angle and current speed of the

ego-vehicle, which can be inferred from the IMU sensor. ẽδ stands for the lane center

deviation (in meters) of the ego-vehicle from waypoints. r̃ indicates the status of

restrictions (i.e. traffic light affordance and stop sign affordance) imminent ahead.

We do not include the distance to the goal described in [1] in our state space as in

preliminary experiments we do not find it helpful.

Action space. To simply the vehicle control problem, we refer to [1] to define a

2-dim vectorized action space, A, consisting of the target speed of the ego-vehicle,

êv, as well as the predicted steering angle of the ego-vehicle, êθ. In our settings, it is

possible that our policy network outputs a negative êθ. We interpret such negative

êθ as the full braking of the ego-vehicle since the ego-vehicle does not reverse in our

settings. In all experiments, we clip êθ to a range of [−0.5, 0.5] and clip êv to [0, 25]

26

4. Multi-Parallel SAC

km/h. We then use a longitudinal PID controller [4, 73] to infer the adjustment

needed on the actuator, subsequently configuring the throttle and the brake in order

to reach the predicted target speed êv given ev.

Reward function. For the reward function, R, we imitate [1] and formulate it as

R = αvRv + αθRθ + αδRδ + αIRI , (4.2)

where α terms are positive coefficients. Rv is the reward for the speed, which can

be both positive or negative depending on situations. Rθ, Rδ and RI are negative

penalties for steering angles, lane center deviation and infractions, respectively. We

do not clip the reward during the training.

4.3 Method

Overall, Multi-Parallel SAC can be disintegrated into two parts, the distributed

training framework via the parameter server structure [55] and the Soft Actor Critic

(SAC) [33] algorithm that powers each agent in such training framework.

4.3.1 Distributed Framework

The overview of the asynchronous distributed RL framework used in Multi-Parallel

SAC is illustrated in Figure 4.1. It is mainly built upon a parameter server frame-

work. At the inter-process level of parallelization, shown in Figure 4.3, two sets of

processes are assigned with two different tasks. They are called servers and workers,

correspondingly. Servers refer to processes which maintain a shared copy of latest

policy. On the other hand, workers refer to processes which have their local copies

of policies that are periodically sync-ed with servers by requesting policy parameter

updates. This makes sure that no synchronization happens among workers, reducing

27

4. Multi-Parallel SAC

Figure 4.1: The hierarchy of the proposed distributed RL framework. It modifies
and extends the standard parameter server architecture [55] with features specifically
designed for the CARLA self-driving. There are also two levels of parallelizations,
the inter-process level and the intra-process level, both of which run asynchronously.

Figure 4.2: An overview of the worker-level intra-process parallelization. Each worker
is a single process. At worker level, it hosts multiple agents. Each agent has its
own local policy copy that can be different from others This helps to maintain
asynchronicity at this level. To alleviate communication overhead, agents does not
sync with servers. Instead, they fetch local policy updates from workers. Their state
transitions will also be gathered at worker’s temporary buffer storage. This is similar
to having a parameter server at worker-level.

28

4. Multi-Parallel SAC

Figure 4.3: An overview of the server-level inter-process parallelization. In order to
share resources constantly, the server process utilizes multithreading and Each server
is a thread. All communications are point-to-point. This is good for scalability and
fault-tolerance. Servers handle different requests from workers as well as updating
the global policy using the global buffer with value/Q function.

the possibility of single-point failure when the number of workers is significant in

distributed RL applications. In our setup, each worker has its own CARLA instance

as the RL environment. Servers do not interact with the environment themselves.

Instead, they interact with workers to handle push and fetch requests from workers.

In order to minimize the computation and communication cost, we substantially

modify the original parameter server framework in [55] for this CARLA self-driving

problem via the following approaches. First, in the original parameter server frame-

work, local policy gradients are computed on the worker side and workers are supposed

to push the gradients to servers, where servers apply them to update the global policy.

There are many issues raised by following this practice on this specific RL problem.

1) As we setup our problem using low-dimensional state space and action space,

the size of state transitions are significantly smaller than the size of gradients. It

is relatively inefficient for workers to send out gradients to servers, unnecessarily

increasing the overall communication cost. 2) Collecting locally computed gradients

to update a global policy does not make sense in RL as local data pools are non-i.i.d.

since they are generated from unique experiences of individual agents. This results in

gradients being highly biased. 3) Due to the nature of trial-and-error process, RL

29

4. Multi-Parallel SAC

methods generally suffer high instability and generate noisy gradients, especially when

it comes to a single local agent exploring complex problems such as urban self-driving.

This directly impacts the training progress as some of the out-of-distribution local

gradients may poison the global policy. 4) One of the bottlenecks of training an

RL agent on the CARLA simulator is that the simulator needs noticeable amount

of time to render each timestep. In our framework it is the workers that interact

with simulators, which keeps them highly occupied throughout the training while

servers are not busy at all. In this case, the additional computation for workers to

generate gradients via backpropagation will make this workload distribution further

asymmetrical. Thus, in Multi-Parallel SAC, we decide to let servers maintain a global

experience replay buffer and draw batches of state transitions to carry out policy

updates throughout the training following the rules defined in single-agent SAC [33]

algorithm. Workers, consequently, only need to collect state transitions by exploring

their simulation environments and periodically push them to the centralized buffer

hosted on servers, which reduce the computation burden on workers.

Another unique problem we pay attention to in Multi-Parallel SAC is how to max

out the utilization of resources on every single CARLA simulator instance. We

have already created an inter-process level parallelization by previously mentioned

parameter server framework. However, we have not addressed the intra-process

efficiency of each worker. Without the parallelization at intra-process level, we can

only have a single ego-vehicle (i.e. a single RL agent) in each CARLA instance. At

each timestep the ego-vehicle only interacts with its near surroundings while other

places rendered by the simulator are simply ignored. This wastes a lot of computations

and GPU resources. As is illustrated in Figure 4.4, it takes around 0.08s for CARLA

to render one step (i.e. for all agents in the same environment to interact with

the environment once) when there is only one agent in the simulator. Compared

with having 8 agents in a single CARLA environment, although the per-step time is

increased to around 0.20s, the total number of interactions made during that CARLA

step is 8. On average, it takes only around 0.025s to interact with the environment

once. This significantly improves the utilization rate of each CARLA instance. Based

on the diminishing return shown in Figure 4.4, having roughly 8 agents in one worker

will make full use of this intra-process parallelization. As is depicted in Figure 4.2, to

30

4. Multi-Parallel SAC

Figure 4.4: The simulation per-step time against number of agents in the environment.
With more agents added into the environment, while the time for CARLA to render
a frame is increasing, the average step time (i.e. interacting once) for each agent is
decreasing until it rebounds. It is therefore concluded that the optimal number of
agents on a single CARLA simulation environment is around 7 to 9.

31

4. Multi-Parallel SAC

avoid intra-process level agent-server or agent-worker synchronization, workers now

maintain a separate policy for each agent and will make fetch & push requests once

an agent demands. Since CARLA renders every simulation synchronously, at this

level, all agents run sequentially but use individual policies, which is still considered

to be (partially) asynchronous in terms of how the RL algorithm executes.

4.3.2 Multi-agent SAC

At the core of this self-driving trajectory optimization pipeline is the SAC [33]

algorithm. While this is not the focus of this study, for completeness, we will briefly

demonstrate how SAC works in Multi-Parallel SAC hierarchy. The main difference

is that because workers only periodically (i.e. not every timestep) fetch the up-

to-date global policy with servers and there is no synchronization among workers,

asynchronicity is thus introduced into the system. Presumably, there will be multiple

SAC policies coexisting throughout the training.

To represent this multi-policy system, we define a totally ordered set of policies as

(πΘ,≤) = {π(0)
θ , π

(1)
θ , π

(2)
θ , . . . } (4.3)

which contains all policies generated during the training process. The superscripts

are ordinal timestamps for each policy, representing a strict old-to-new order. At

initialization, this policy set only has one element, π
(0)
θ , referring to the initial policy.

As is discussed in 4.3.1, severs always maintain an up-to-date global policy which

can be inferred as π
(|πΘ|−1)
θ . After each server policy update, a new policy, π

(|πΘ|)
θ , is

created and is appended to πΘ. Thus, the cardinality of πΘ will keep incrementing as

the training goes.

For a set of n agents, W = {w1, w2, w3, . . . , wn}, their role in Multi-Parallel SAC is

to provide the global experience buffer, D, with state transitions (si, a
(j)
i , ri, s

′
i, di)

consisting of current state si, policy-dependent action a(j), reward ri, the next state s′i,

and terminal state indicator di, where a(j) ∼ π
(j)
θ (·|s), 0 ≤ j < |πΘ| and the subscript

32

4. Multi-Parallel SAC

i, where i ∈ W , denotes which agent this transition comes from.

Thus, we can represent the global buffer D as

D = {(si, a(j)
i , ri, s

′
i, di) : i ∈ W, 0 ≤ j < |πΘ|}. (4.4)

Since π
(j)
θ ≤ π

(|πΘ|−1)
θ and π

(j)
θ , π

(|πΘ|−1)
θ ∈ πΘ, this indicates that transitions in D from

agents using different old policies are equivalent to past experiences of different global

policies as if they were generated by servers at different timestamps. Thus, we can

simplify this problem to resemble single-agent SAC where D = (s, a, r, s′, d).

We then would like to show that the off-policy updates keep making progress. Following

SAC update routine, we sample a batch of transitions, B, from D. We can compute

the gradient of Q-functions by

∇i
1

|B|
∑

(s,a,r,s′,d)∈B

(
Q

(|πΘ|−1)
i (s, a)− y(r, s′, d)

)2

for i = 1, 2, (4.5)

where Q
(|πΘ|−1)
i represents Q-functions associated with the latest policy, π

(|πΘ|−1)
θ .

Given discount factor γ and entropy coefficient α, Q-function targets y(r, s′, d) can

be expended as

y(r, s′, d) = r + γ(1− d)

(
min
i=1,2

Q
(|πΘ|−1)
i (s′, ā′)− α log π

(|πΘ|−1)
θ (ā′|s′)

)
, (4.6)

where ā′ ∼ π
(|πΘ|−1)
θ (·|s′). The policy gradient can be updated by using the gradient

∇ 1

|B|
∑
s∈B

(
min
i=1,2

Q
(|πΘ|−1)
i (s, ã)− α log π

(|πΘ|−1)
θ (ã|s)

)
, (4.7)

where ã ∼ π
(|πΘ|−1)
θ (·|s) and is differentiable w.r.t. the policy parameters.

As is shown in Equation 4.5, 4.6 and 4.7, the optimization only happens on the latest

policy and its Q-functions. This simply implies that we keep generating the next

policy π
(|πΘ|)
θ on top of the current latest one. Thus, it theoretically guarantees that

33

4. Multi-Parallel SAC

the trajectory optimization is always moving forward. We can only achieve this by

shifting the policy update from the worker end to the server end, since adding up

gradients computed on old policies from workers following the standard parameter

server procedure does not necessarily optimize the global policy.

4.4 Experiments

In this section, we will discuss the experiment results of the proposed Multi-Parallel

SAC on the NoCrash benchmark [20]. We will discuss both the performance of our

method as well as the training speed-up compared with single-agent methods.

4.4.1 Implementation Details

Following SAC [33], the actor network (i.e. policy network) is a two-layer MLP

with ReLU and Tanh activations, whereas critic networks (i.e. Q-networks) are

three-layer MLPs with ReLU activations. The target Q-networks are obtained by

Polyak averaging [70] the Q-network parameters over the course of training. We

instantiate both policy network and two sets of Q-networks for clipped double-Q

design on servers, which are updated every 25 global timesteps. Since Multi-Parallel

SAC separates actors and learners, workers do not need access to Q-networks. Only

policy networks are instantiated on workers, which are sync-ed with servers at every

25 local timesteps. To add more flexibility, each worker will host multiple instances

of policy networks and each instance is assigned to a different agent of that worker.

Those copies do not share weights and they sync with servers individually via workers.

During the training, this makes agents running in the same environment act differently.

We fix the entropy coefficient, α since we find using the learnable entropy temperature

proposed in [34] makes the training more unstable. For additional hyperparameter

settings and implementation details, see Appendix A.

34

4. Multi-Parallel SAC

We use CARLA 0.9.10.13 for all experiments. We train our Multi-Parallel SAC on

Town01 for at most 16 million timesteps, including 10, 000 initial timesteps of random

exploration. However, we find that test time performance has already peaked after

2∼3 million timesteps of training. During the training, we terminate an episode when

we meet any of the following criteria.

• The agent crashes into other objects.

• The agent is out of the designated target lane.

• The agent reaches time limit (10, 000 steps for each episode).

• The agent successfully reaches within 10m of the goal.

Hardware-wise, we run all experiments on a 4-GPU (GeForce RTX 2080Ti 4) node

on our cluster with 192GB RAM and 40 CPU cores available.

During test time, we only use one agent to perform driving tasks on Town02. To

mitigate the stochasticity in the CARLA environment, for each evaluation task, we

run 3 times using different seeds. The final result is the average success rate on

NoCrash [20] tasks with empty, regular or dense traffic.

4.4.2 NoCrash Baselines

Following [1] , we exhaustively compare our method against all three popular self-

driving approaches, namely, the modular approach, the imitation learning and rein-

forcement learning (RL). For RL methods, we compare our method with both online

RL methods and offline RL methods. Details of other methods are as follows. Note

that the description of CIRL [56] is for 3.2.1.

Conditional Imitation Learning (CIL) [19]. This work proposes a conditional

imitation learning algorithm that utilizes vision-based inputs as well as high-level

3https://carla.org/2020/09/25/release-0.9.10/
4https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2080-ti/

35

4. Multi-Parallel SAC

command inputs as constraints, which makes imitation learning agent capable of

responding to navigational commands at test time.

Controllable Imitative Reinforcement Learning (CIRL) [56]. This work pro-

poses a two-stage imitation-to-RL pipeline for urban self-driving. It pre-trains the

policy using supervised imitation learning and then continues the policy optimization

via an off-policy RL method based on DDPG [57].

Conditional Affordance Learning (CAL) [76]. This work proposes the use of a

pre-trained VGG-16 [82] as a feature extractor to extract high-level low-dimensional

affordances from videos. After getting affordance predictions, a rule-based controller

is used to manipulate the ego-vehicle.

Conditional Imitation Learning-based ResNet (CILRS) [20]. This work

builds on top of CIL and proposes the use of the ResNet [36] to directly predict the

desired steering angle and target speed from vision inputs.

Learning by Cheating (LBC) [14]. This work proposes a two-stage imitation

learning pipeline to train a pure vision-based self-driving agent. It first trains a

privileged agent with expert demonstrations. After that, the privileged agent will

guide the learning of the sensorimotor agent. Both trainings involves the use of

imitation learning.

RL with Implicit Affordances (IA) [85]. This work proposes to learn a DQN [59]

agent for urban autonomous driving. To extract a high-level observation space, it

uses the ResNet [36] that encodes vision inputs to implicit affordances, resulting in

low-dimensional features for RL agent.

Affordance-based RL (ARL) [1]. This work proposes a series of online RL methods

to solve complex urban driving problem. It explicitly selects helpful affordances from

CARLA sensors and groundtruths as RL inputs .

World on Rails (WOR) [15]. This work proposes a vision-based and model-based

36

4. Multi-Parallel SAC

offline RL method that assumes a non-reactive world model and a low-dimensional and

compact forward model of the ego-vehicle. After offline RL training and knowledge

distillation [38], a visuomotor policy is eventually learnt to only use raw sensor inputs

to carry out autonomous driving.

Since we have not reproduced many of the aforementioned methods, we use numbers

reported from those works to present their performances. It is worth noting that not

all methods originally run on the same version of the CARLA simulator. This might

slightly affects the result for vision-based methods as the rendering engine, texture

details and shading & lighting are varying by versions. This, however, does not affect

our method because we do not use any high-dimensional visual inputs.

When it comes to the training speed comparison, we only compare our Multi-Parallel

SAC with ARL [1] as we share similar state space. Also, since we run our methods

on our lab cluster, we only have a rough approximation of the training speed as the

workload on the cluster is always fluctuating and beyond our control.

4.4.3 NoCrash Results

We begin with the analysis of the success rate on NoCrash [20] benchmark under

different traffic conditions. The overall results for all above-mentioned methods and

our proposed Multi-Parallel SAC (denoted as MPSAC) are in Table 4.1. Especially

for dense traffic scenario, which is the most challenging task in this benchmark, our

method achieves state-of-the-art performance, surpassing all other methods.

We notice that MPSAC(std64x), a 64-agent training system with standard parameter

server workflow, fails miserably as it does not learn how to drive at all. This suggests

that the local gradients are highly noisy and biased, which are unable to optimize

the global policy. Also, since these gradients are computed using local objectives

instead of the global objectives shown in Equation 4.5 and 4.7, they lack theoretical

guarantee on making progress in the training. Hence, the global policy cannot be

37

4. Multi-Parallel SAC

CIL CAL CILRS LBC IA WOR ARL
MPSAC

(1x)
MPSAC
(std64x)

MPSAC
(64x)

Empty 48 36 51 100 99 94 100 96 0 97
Regular 27 26 44 94 87 89 98 92 0 96
Dense 10 9 38 51 42 74 91 92 0 92

Table 4.1: Quantitative results on NoCrash [20] benchmark under empty, regular,
dense traffic conditions (defined in 3.2.2). Numbers represent the average success
rate (in percentage) out of 25 testing episodes. Details of all baseline methods are
in 4.4.2. MPSAC stands for our method, Multi-Parallel SAC. MPSAC(1x) refers to
our implementation of single-agent SAC [33]. MPSAC(std64x) refers to the 64-agent
MPSAC using standard parameter server setup where locally computed gradients are
used for the global update.

effectively updated using such gradients. This highlights the importance of modifying

the original parameter server workflow to support distributed RL methods.

We also notice that the success rate of our agents does not differ by much when

changing the number of dynamic actors in the test environment. This is different from

CIL [19], CAL [76], CILRS [20], LBC [14], IA [85], WOR [15], whose performances

drop sharply when the driving environment becomes more complex and chaotic. We

suspect this is because these agents do not properly stop for obstacles or traffic lights,

whereas our agents, which use similar state space as ARL [1], do a much better job at

obstacle avoidance and traffic rule obedience. In addition, we discover that almost all

failure cases of our multi-agent runs come from timeouts where our agent basically

gets stuck on the road, being static. We suspect this is because the low-dimensional

state space and action space are susceptible to a special deadlock situation, where

the agent erroneously predict a zero or effectively zero target speed in certain states.

Once the agent stops, our low-dimensional observation is basically frozen unless there

are changes in affordances. Consequently, the same observation causes the agent to

keep making the same error as SAC is deterministic at test time.

We also report the approximate simulation timesteps per hour for different methods.

Results and settings are in Table 4.2. We only compare our method with ARL [1]

since we share many similarities in terms of the RL setup. We choose not to report

the total training time for each method although our method with 64 agents can finish

38

4. Multi-Parallel SAC

ARL MPSAC
of servers - 1 1 1 1 4
of workers - 1 8 8 8 8

of agents per worker - 1 1 8 8 8
Std. param. server - × × X × ×

Approx. steps per hour 15K 15K 110K 30K 340K 345K

Table 4.2: Approximate simulation timesteps per hour under different settings.
MPSAC stands for our method, Multi-Parallel SAC. “Std. param. server” indicates
whether the standard parameter server workflow is used (i.e. agents computing
gradients w.r.t. local policies and sending them to servers) As is mentioned in 4.3.1,
agents refer to individual actor and each worker can have multiple agents. The
total number of agents in one training system is equal to the number of workers
multiplied by the number of agents per worker. Due to the stochastic nature of
reinforcement learning, the number of timesteps needed for one method to reach its
peak performance is highly unpredictable. Even for the same method, total training
time (defined as the time needed for a method to reach its peak performance) of
multiple runs varies a lot. Thus, we report how many timesteps a given method can
complete in an hour instead. Nonetheless, the reported profiling results are heavily
dependent on cluster status. We acknowledge that our results are indicative and not
ideal for quantitative comparison at a fine-grained level.

39

4. Multi-Parallel SAC

the training under 7 hours, which is days in advance compared with ARL’s [1] typical

1∼2 weeks of training time. The reason that we are reluctant to report the total

training time is that the RL training process is highly stochastic and unstable [2, 18].

Thus, we do not suggest interpreting the total training time as a sound metric for

quantitative analysis. Instead, we will focus on simulation timesteps per hour to

demonstrate the effectiveness of distributed training.

Based on our our experiments, our 64-agent Multi-Parallel SAC, MPSAC(64x),

accelerates the training significantly by more than 20× compared with our single-

agent Multi-Parallel SAC baseline, MPSAC(1x). Combined with their results shown in

Table 4.1, it indicates that this acceleration is not at the expense of the performance.

We also notice that the number of servers do not affect the training speed even

with a large number of agents active in the training system. This may suggest the

bottleneck of the training is still at the worker end with the simulator rather than

the communication or the computation on servers. This indicates further speeding

up by scaling up is still possible. As is also clearly shown in the result, compared

with only having a single agent in a worker, having multiple agents in one simulator

can make better use of the simulation environment, improving the training efficiency.

This also proves the effectiveness of our multi-level parallelization design.

As an ablation study on our modified update scheme, we find that MPSAC(std64x),

the 64-agent MPSAC using standard parameter server routine, has a much slower

training speed in comparison with MPSAC(64x), which pushes local buffers to servers,

avoiding local gradient computations.

4.4.4 Sensitivity Analysis

We notice that ARL [1], which also uses low-dimensional affordances, seems to suffer

less from the timeout issue as they are built upon on-policy PPO [79] algorithm.

Thus, we suspect that complex trajectory optimization problems like self-driving

are not ideal for entropy-regularized RL methods such as SAC because they heavily

40

4. Multi-Parallel SAC

log(α) -2 -1 0 1 2 3
Empty 0 0 92 97 100 99
Regular 0 0 93 96 92 56
Dense 0 0 93 92 56 44

Table 4.3: Sensitivity test of entropy regularization term α on NoCrash [20] benchmark
under empty, regular, dense traffic conditions (defined in 3.2.2). Numbers represent
the average success rate (in percentage) out of 25 testing episodes. All experiments
use Multi-Parallel SAC with the same hyperparameter setup except for the α.

rely on a fragile balance between exploration and exploitation, which is hard to

find in such problems. This might result in SAC converging suboptimally. To

demonstrate this problem, we investigate the importance of the entropy regularization

coefficient, α, used in Equation 4.6 and 4.7. It strongly determines the trade-off

between incentivizing more entropy (i.e. exploration) versus maximizing the total

return (i.e. exploitation). Thus, we conduct different experiments on the NoCrash

benchmark using different αs while keeping all other hyperparameters the same.

As is shown in the Table 4.3, we search over different αs linearly on logarithmic scale.

These results clearly demonstrate that SAC algorithm is sensitive on the exploration-

exploitation trade-off as small tweaks in α can lead to drastic performance gap.

Generally, we find that the larger the entropy regularization term α is, the more SAC

encourages stochastic behaviors. When faced with simple driving scenarios such as no

other vehicles nearby (i.e. an empty town), a high entropy level helps the ego-vehicle

avoid overfitting, thus improving the generalization during similar scenarios at test

time. However, this high entropy adversely affects the ego-vehicle’s ability to solve

challenging scenarios such as driving in a busy traffic where the margin of error

is much more constrained. Suboptimal behaviors in such scenarios will certainly

cause accidents or infractions. On the other hand, having little to no entropy (i.e.

log(α) = −2,−1) in the environment will prevent the agent from exploring possible

solutions to the problem, thus not learning correctly.

Our best result comes from using log(α) = 1 (i.e. α = e), which seems to find a good

balance between exploration and exploitation for NoCrash Benchmark. However, this

does not necessarily work for other benchmarks. To this end, we report the MPSAC

41

4. Multi-Parallel SAC

agent performance on the Leaderboard benchmark also using log(α) = 1, which

is detailed in Table 5.4. The multi-agent system is trained with the same 15-dim

enhanced state space described in 5.2. The overall performance is very poor with lots

of timeout issues, which are the same symptom demonstrated by MPSAC agents on

NoCrash benchmark with little to no entropy (i.e. log(α) = −2,−1). Hence, this

indicates that the entropy level needed for different tasks differs a lot, which is not

ideal for complex and uncertain environments.

These experiments confirm our speculation that off-policy RL methods, often with

explicit entropy regularization, are only suitable to solve problems where subproblems

have the same or similar level of difficulty with each other. With diverse driving tasks

and intractable variability, it is hard to maintain the balance between exploration

and exploitation for self-driving tasks. Therefore, we would like to neutralize this

problem using on-policy RL methods.

42

Chapter 5

Multi-Parallel PPO

5.1 Overview

Our preliminary parallel RL method, Multi-Parallel SAC, has achieved great training

time speed-up as well as maintaining a good performance at test time. However,

during the development we also realize the following problems. We notice that

the SAC [33, 34], being an off-policy reinforcement learning (RL) method, heavily

relies on an accurate tuning of the exploration-exploitation trade-off, which requires

certain prior knowledge to the environment dynamics. This alone is unrealistic for

autonomous driving because of the variability presented in the environment. For

example, the amount of uncertainty varies a lot when comparing driving straight

with no other actors nearby versus making a left turn in heavy traffic. Another

issue revealed in our previous method is that off-policy methods tend to update their

policies and replay buffers at a high frequency (e.g. per timestep, every 5 timesteps

or every 25 timesteps). This results in frequent worker-server communication for

buffer and parameter transfer. Although we have shown in 4.4.3 that serves are able

to handle such workload, this inevitably interrupts the training routine on workers as

they have to frequently upload buffer contents and reload network parameters. In

43

5. Multi-Parallel PPO

conclusion, our concerns are as follows.

• It is hard for off-policy RL methods to balance between exploration and ex-

ploitation due to the complexity of self-driving problem.

• The pattern of off-policy RL methods frequently updating parameters create

heavy communication workload for workers.

On the other hand, on-policy RL methods [60, 78, 79, 92] are born with solutions to

these problem. First, on-policy learners do not have a dilemma where they must weigh

between exploration and exploitation. They optimize directly on their past trajectories.

Also, on-policy methods optimize on long-term cumulative rewards, allowing them to

collect longer trajectories between each policy update. In our distributed asynchronous

training setup, this effectively reduces worker-server communication.

In this chapter, we propose yet another multi-agent RL algorithm called Multi-Parallel

PPO which inherits the same parallelization framework from Multi-Parallel SAC while

effectively addressing above-mentioned issues. Furthermore, besides showing near-

perfect performance on NoCrash [20] benchmark, we would like to demonstrate that

Multi-Parallel PPO achieves competitive result on CARLA Leaderboard (described

in 3.2.3), whose difficulty is significant and unmatched by any other benchmarks so

far in the CARLA simulation environment.

5.2 Problem Setup

As a continuation of our previous research, our RL problem setup is basically the

same as we describe in 4.2. For tackling NoCrash benchmark, we use the same state

space S, action space A and reward function R as we previously described. However,

for CARLA Leaderboard, since it contains scenarios such as lane change and lane

merging, only accessing front obstacle information, of
v and of

∆, is not enough. These

scenarios are intractable without obstacle affordances from other directions.

44

5. Multi-Parallel PPO

Figure 5.1: The obstacle sensor array for retrieving obstacle affordances from all
angles around of the ego-vehicle. Note that this is purely for illustrative purposes.
Neither the sensing radii & ranges nor the sensor placements are drawn exactly.

As a result, we tweak our state space S for the CARLA Leaderboard experiments

while still keeping A and R the same. As is illustrated in Figure 5.1, we intuitively

add four more obstacle sensors on the ego-vehicle, facing front-left, rear-left, rear-right

and front-right, respectively. All non-front obstacle sensors are configured to have

a wider and shorter sensing range to reduce irrelevant detections. Hence, our new

15-dim state space can be represented as

S =
[
w̃θ Ov O∆ eθ ev ẽδ r̃

]T
, (5.1)

where

Ov =
[
of
v ofl

v orl
v orr

v ofr
v

]T
, O∆ =

[
of

∆ ofl
∆ orl

∆ orr
∆ ofr

∆

]T
. (5.2)

5.3 Method

5.3.1 Distributed Framework

As our distributed framework is designed to be compatible with both off-policy

and on-policy methods, we continue to use our two-layer parallelization hierarchy

illustrated in Figure 4.1. For asynchronous communication, we continue to use our

modified parameter server architecture described in 4.3.1 with some necessary changes

45

5. Multi-Parallel PPO

Figure 5.2: The workflow of single-agent Proximal Policy Optimization (PPO) [79]
algorithm, it features an actor-critic pipeline for policy and value function updates.
This figure is only for illustrative purposes. Many components, such as trajectory
buffer and importance sampling, are not shown for simplicity.

for on-policy optimization. For servers, they now do not maintain a global experience

replay buffer. Instead, they now only maintain a trajectory buffer which only saves

trajectories sent by workers. This buffer empties itself after each update as each trajec-

tory are used only once. For agents, they now only make push request after collecting

a compete trajectory (i.e. finishing an episode) using their local policies. To make

sure all trajectories are consistent, agents do not request for policy synchronization

with servers in the middle of an episode. They now only fetch global policy once an

episode is terminated. These changes together make our distributed parameter server

architecture coordinate the training in an on-policy fashion. Since trajectories in

self-driving problem typically last for hundreds or thousands of simulation timesteps.

This reduces worker-server communication frequency significantly.

46

5. Multi-Parallel PPO

Figure 5.3: Different choices of update schemes for distributed on-policy RL. With
the driving policy improving, on average, training episodes typically become longer.
Option A chooses to update the global policy with a fixed short interval. This might
be good initially but will harm the optimization in the long term by breaking up long
episodes into several trajectories as well as making agents out-of-sync from the global
policy. Option B chooses to update the global policy with a fixed, relatively long
interval. This might be good in the long run but will slow down the initial training
due to less frequent updates. Option C (Ours) chooses to update adaptively based
on the length of training episodes, addressing above-mentioned problems.

5.3.2 Multi-agent PPO

While it may be relatively trivial and intuitive to parallelize off-policy methods by

simply adding more agents as data collectors, the way to parallelize on-policy methods

are not that obvious.

As its name suggests, Multi-Parallel PPO is built on top of PPO [79], an online

single-agent on-policy RL method. The workflow of PPO is depicted in Figure 5.2.

At every update, PPO performs policy optimization using just its own trajectories.

However, with our training framework being asynchronous, at any given time there

might be multiple policies in the system. Local policies on workers are not necessarily

the up-to-date policy and may be out of sync over the course of training due to the

lack of communication. If we still try to collectively learn a global policy by either

sending local trajectories or local gradients to servers, it will violate the assumption of

on-policy methods that they should learn from their own trajectories. Not alleviating

this issue might break the PPO algorithm. Hence, we would like to show how

47

5. Multi-Parallel PPO

we specifically handle this problem and adapt the original single-agent PPO for

distributed asynchronous training.

Therefore, our objective right now is to find a way to scale up standard PPO algorithm

while keeping the integrity of on-policy optimization. To figure that out, let us dig

into the theory behind PPO. We first define what is a trajectory. A trajectory τ is a

sequence of states and actions as

τ = {s1, a1, s2, a2, . . . , sT , aT}. (5.3)

One of the PPO variants updates the objective using first-order approximation (i.e.

PPO-CLIP [79]). This involves two policies, the to-be-calculated new policy, πθ,

and the current policy, πθold , which is used for trajectory collection, parameterized

by θ and θold, respectively. Given advantage estimation Ât, we can retrieve θ by

maximizing the expectation of Ât. We have the objective as

θ = argmax
θ

T∑
t=1

E(st,at)∼pθ(st,at)[Ât], (5.4)

where pθ(·) is the probability distribution of states and actions under policy πθ. Thus,

we can write down the corresponding loss function as

L(θ) =
T∑
t=1

E(st,at)∼pθ(st,at)[Ât] =
T∑
t=1

Est∼pθ(st)

[
Eat∼πθ(at|st)[Ât]

]
. (5.5)

As θ right now is unknown and we do not have any samples from πθ, we can use

importance sampling [67] to utilize samples from πθold to optimize L(θ). We can

re-write our loss function as

L(θ) =
T∑
t=1

Est∼pθold (st)

[
pθ(st)

pθold(st)
Eat∼πθold (at|st)

[
πθ(at|st)
πθold(at|st)

Ât

]]
. (5.6)

The term pθ(st)
pθold (st)

represents how probability distribution of state st shifts from πθold to

πθ. One of our assumptions here is that πθold and πθ are very close since we constrain

48

5. Multi-Parallel PPO

the change in policy. As a result, we can ignore this term by assuming pθ(st)
pθold (st)

≈ 1.

We can then simply approximate the loss as

L(θ) ≈
T∑
t=1

Est∼pθold (st)

[
Eat∼πθold (at|st)

[
πθ(at|st)
πθold(at|st)

Ât

]]
= Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
, (5.7)

where the expectation Êt[. . .] indicates the empirical average over a finite batch of

samples. We notice that the final output of Equation 5.7 is exactly the surrogate

objective LCPI(θ) shown in original PPO [79] paper for PPO-CLIP (Equation 6).

Now that we have connected our deduction to PPO’s, we notice that the only

assumption we make here is that πθold and πθ should be close to each other. In

our asynchronous multi-agent PPO setup, we have multiple local policies which

are parameterized by different θolds, denoted as θ
(1)
old, θ

(2)
old, θ

(3)
old, ..., θ

(n)
old , and an up-to-

date global policy which is parameterized by parameter θglb. Thus, so long as θolds

synchronize with θglb frequently, it is safe to assume

p
θ
(i)
old

(st)

pθglb(st)
≈ 1, i = 1, 2, . . . , n, (5.8)

Due to asynchronicity, we need to use samples collected from πθolds to optimize

the unknown new policy, πθ. We can re-formulate the loss function by importance

sampling on πθ as

L(θ) =
T∑
t=1

Est∼p
θ
(i)
old

(st)

[
pθ(st)

p
θ
(i)
old

(st)
Eat∼π

θ
(i)
old

(at|st)

[
πθ(at|st)
π
θ
(i)
old

(at|st)
Ât

]]
. (5.9)

Given the assumption in Equation 5.8, we have

pθ(st)

p
θ
(i)
old

(st)
≈ pθ(st)

p
θ
(i)
old

(st)
·
p
θ
(i)
old

(st)

pθglb(st)
=

pθ(st)

pθglb(st)
≈ 1, i = 1, 2, . . . , n, (5.10)

which means we can proceed with training the global policy with local trajectories iff.

49

5. Multi-Parallel PPO

our assumptions in 5.8 hold. This means although asynchronous RL is necessary for

practicality, we should bridge the gap between the global policy and local policies as

much as possible in order to limit the overall asynchronicity in the training system.

To uphold these assumptions on policy proximity, in Multi-Parallel PPO, the ideal

case is that worker-server synchronization always happens more frequently or at

least as frequently as the global policy is updated. However, due to the on-policy

constraint, we cannot intervene the sync frequency between servers and each agent in

workers since we are not able to switch policies in the course of an episode. Also, we

cannot control the length of an episode, either.

To save us from this dilemma, we propose to set global policy update interval

adaptively according to the average length of current training episodes (i.e. length of

episodes). An illustration of different update schedules is in Figure 5.3. Specifically,

we do not enforce a fixed rollout length such as 100 or 1K that might break up an

episode. In case that an episode is unreasonably long, we truncate the trajectory

after it reaches some exceptional length, such as 20,000. Otherwise, we only collect

complete trajectories when an episode terminates. Thus, the length of the trajectories

is varied during the training, reflecting the average length of the episodes. Our update

frequency is therefore adjusted to be equal to the number of workers multiplied by

the average length of certain number of past trajectories in a sliding window fashion.

By using our adaptive update interval, we are able to quickly update the global policy

at the early stage of the training when the average trajectory length is short. As

the training proceeds, the average length of trajectories tend to increase as agents

make fewer mistakes and can stick on the road longer. The policy update interval

on servers is thus automatically increased to make sure each agent in workers can

keep pace with the global policy. This makes policy update less frequent during the

later stage of training when each agent performs longer episodes and seldom has the

chance to sync up its local policy. While we do not set an upper limit, we impose a

minimal interval between updates which ensures at the early stage of the training we

get enough meaningful trajectories before computing policy gradients.

50

5. Multi-Parallel PPO

5.4 Experiments

In this section, we will discuss the experiment result of the proposed Multi-Parallel

PPO on both NoCrash benchmark [20] and CARLA Leaderboard (detailed in 3.2.3).

For NoCrash benchmark, We will discuss both the performance of Multi-Parallel

PPO as well as the training acceleration compared with other methods, including

Multi-Parallel SAC. For Leaderboard, We mainly focus on analyzing the driving

performance of our agent.

5.4.1 Implementation Details

Multi-Parallel PPO specifics. Both the policy network and value function network

are three-layer MLPs with Tanh activations. Following Multi-Parallel SAC, different

agents in the same worker do not share the same local policy. Instead, they individually

fetch the global policy from servers through worker-server communication after

finishing an episode. Agents only push full trajectories to servers in order to keep

cumulative rewards accurate. They do not upload partial trajectories in the middle of

an episode. The minimal global policy update interval is 100 timesteps. Servers will

adjust the update scheme roughly in proportion to the average length of episodes in

recent training. For additional hyperparameter settings and implementation details,

especially w.r.t. the adaptive update interval, see Appendix A.

NoCrash experiments. For NoCrash experiments, we follow all previous training

and testing setups described in 4.4.1. As this is true for most on-policy methods,

we find that Multi-Parallel PPO requires more simulation interactions to converge

compared with Multi-Parallel SAC, bringing up the total number of timesteps needed

to reach peak performance at test time to around 10 million.

Leaderboard experiments. For CARLA Leaderboard, we train 16 million simula-

tion timesteps on all training routes. Unlike Nocrash benchmark, Leaderboard routes

51

5. Multi-Parallel PPO

are across multiple towns, including Town01, Town03, Town04 and Town06. Thus,

we randomly switch the map on each environment every 100 episodes during the

training. To avoid deterministic behaviors, we turn off pre-defined traffic scenarios,

which regulate other actors’ behaviors. For Leaderboard evaluation, since we have no

access to testing routes used for the Leaderboard Challenge, we evaluate our method

on evaluation routes via official released evaluation script 1.

5.4.2 NoCrash Baselines

In consistent with Multi-Parallel SAC, we continue to use those methods described

in 4.4.2 as NoCrash benchmark baselines in our comparison. We categorize them

into modular pipelines, imitation learning and reinforcement learning (RL), which

are listed as follows.

• Modular pipelines: CAL [76].

• Imitation Learning: CIL [19], CILRS [20], LBC [14].

• Reinforcement Learning: IA [85], ARL [1], WOR [15].

5.4.3 NoCrash Results

We begin with the analysis of the success rate on NoCrash [20] benchmark under

different traffic conditions. The overall results for all above-mentioned methods

and our proposed Multi-Parallel SAC (denoted as MPSAC) and Multi-Parallel PPO

(denoted as MPPPO) are in Table 5.1. Especially for dense traffic scenario, which is

the most challenging task in this benchmark, our method achieves state-of-the-art

performance, surpassing all other methods.

As an ablation study, we report the performance of MPPPO(std64x), which is a

1https://github.com/carla-simulator/leaderboard

52

5. Multi-Parallel PPO

64-agent training system following standard parameter server routine where the global

policy is updated based on local gradients. After 10M timesteps of training, the

MPPPO(std64x) seems to learn nothing. We suspect that even with the difference

between local policies and the global policy being very small thanks to frequent

synchronizations, the local gradients of MPPPO(std64x) agents are still too divergent

to collectively optimize the global policy in a stable direction. This is in consistent

with what we have observed from MPSAC(std64x). We also report the performance

of MPPPO(1K64x) and MPPPO(10K64x), which uses a fixed short update interval

and a fixed long update interval respectively (illustrated in Figure 5.3). As expected,

when the global update interval is too short, the model truncates its trajectories too

often, making long horizon events hard to capture. Thus, it fails to handle traffic

lights and obstacles properly, resulting in poor performance in regular and dense

traffic scenarios. For MPPPO(100K64x) where the update interval is set longer to

circumvent the aforementioned issue, it results in low utilization of shorter episodes in

the course of the training, especially those at the early stage. This makes the whole

training inefficient and unable to finish using the same number of total interactions

with the environment.

We further investigate the effectiveness of the proposed adaptive update interval via

comparing it with a series of experiments using fixed update schedules with varied

fixed rollout lengths. The result is shown in Table 5.2. The average reward at 1K

timesteps indicates the initial status of the training. Due to the stochasticity, these

numbers are varied but are generally around -900. After roughly 1M timesteps of

training, it is noticeable that the experiment using our adaptive update interval

progresses the most in terms of having the largest average reward in comparison

with all other experiments. It is also shown that the rollout length may affect the

training according to those three experiments using 10K as the update interval but

each has a different rollout length. The optimization tends to be less effective with

the rollout length being either too short (i.e. 125) or too long (i.e. 1K). Evidence also

suggests that using a small update interval may improve the training in the CARLA

self-driving problem. However, the minimal interval is lower-bounded by the fixed

rollout length. This prevents us from further increasing the update frequency without

making the rollout length unreasonably short.

53

5. Multi-Parallel PPO

CIL CAL CILRS LBC IA ARL WOR
MPSAC

(64x)
MPPPO
(std64x)

MPPPO
(1K64x)

MPPPO
(100K64x)

MPPPO
(64x)

Empty 48 36 51 100 99 100 94 96 0 99 99 99
Regular 27 26 44 94 87 98 89 92 0 68 64 99
Dense 10 9 38 51 42 91 74 92 0 12 51 96

Table 5.1: Quantitative results on NoCrash [20] benchmark under empty, regular,
dense traffic conditions (defined in 3.2.2). Numbers represent the average success
rate (in percentage) out of 25 testing episodes. Baseline methods are detailed in 4.4.2.
MPSAC stands for Multi-Parallel SAC, whereas MPPPO stands for Multi-Parallel
PPO. In addition, MPPPO(std64x) refers to the 64-agent MPPPO using standard
parameter server setup where locally computed gradients are used for the global
update. MPPPO(1K64x) refers to the 64-agent MPPPO with a fixed global update
interval at 1,000 timesteps, whereas MPPPO(100K64x) refers to the 64-agent MPPPO
with a fixed global update interval at 100,000 timesteps.

Multi-Parallel PPO
Rollout length 125 200 200 1K 1K 1.2K -
Update interval 10K 10K 1K 10K 1K 100K Adaptive

Avg. reward at 1K timesteps -830 -820 -925 -1,034 -875 -1,073 -1,027
Avg. reward at 1M timesteps -457 -267 -282 -501 -229 -552 -93

Table 5.2: The impact on the training progress using different rollout lengths and
update intervals. The experiment with the adaptive update interval does not use a
fixed rollout length as previously described in 5.3.2. Comparing the average reward
at the initial of the training (i.e. at 1K timesteps) with the average reward after
1M timesteps, the experiment with the adaptive update interval improves the most
during this period of training, showing the effectiveness of our design over a fixed
update interval with a fixed rollout length.

54

5. Multi-Parallel PPO

Similar to the performance of Multi-Parallel SAC, the success rate of Multi-Parallel

PPO is not drastically affected by the number of dynamic actors presented in the

environment, indicating a well-learnt controller capable of safety-critical driving.

Compared with Multi-Parallel SAC, Multi-Parallel PPO prevails on all three tasks.

Since our methods share the same asynchronous and parallel training framework, the

only difference is the underlying RL algorithm itself. This echoes with our speculation

that off-policy methods struggle to balance between exploration and exploitation

in complex urban autonomous driving situations. Without this dilemma, on-policy

methods are more robust to such world dynamics.

We also find that our Multi-Parallel PPO agent outperforms ARL [1] on NoCrash

regular and dense environments. This is interesting since ARL uses the same single-

agent PPO backbone and similar low-dimensional affordances. We suspect this is

either because the increased diversity of trajectories in multi-agent system is helpful

for finding a better local optima, or because ARL agent has not fully converged

especially on difficult tasks, which definitely take a very long time to do, or both.

When it comes to the training acceleration (shown in Table 5.3, we do notice that

our 64-agent Multi-Parallel PPO trains slightly slower than Multi-Parallel SAC. This

might be because the single-agent baseline version of Multi-Parallel PPO runs slower

than both ARL [1] and Multi-Parallel SAC. Still, we are able to show that our

parallelization framework results in a 25× speed-up comparing single-agent version

versus 64-agent version and a 50× speed-up comparing single-agent version versus 128-

agent version. This linear acceleration in scale also suggests that the training system

is still capable of accommodating more agents until it starts to show a diminishing

return. We also notice that MPPPO(std64x), the 64-agent MPPPO using standard

parameter server routine, consumes much more time by computing gradients and

transferring them to servers, resulting in a severe reduction of the training speed.

55

5. Multi-Parallel PPO

ARL MPSAC MPPPO
of servers - 1 4 1 4 4 4
of workers - 1 8 1 8 8 16

of agents per worker - 1 8 1 8 8 8
Std. param. server - × × × X × ×

Approx. steps per hour 15K 15K 345K 12K 50K 300K 600K

Table 5.3: Approximate simulation timesteps per hour under different settings.
MPSAC stands for Multi-Parallel SAC, whereas MPPPO stands for Multi-Parallel
PPO. “Std. param. server” indicates whether the standard parameter server workfow
is used (i.e. agents computing gradients w.r.t. local policies and sending them to
servers). As is mentioned in 4.3.1, agents refer to individual actor and each worker
can have multiple agents. The total number of agents in one training system is equal
to the number of workers multiplied by the number of agents per worker. Due to the
stochastic nature of reinforcement learning, the number of timesteps needed for one
method to reach its peak performance is highly unpredictable. Even for the same
method, total training time (defined as the time needed for a method to reach its
peak performance) of multiple runs varies a lot. Thus, we report how many timesteps
a given method can complete in an hour instead. Nonetheless, the reported profiling
results are heavily dependent on cluster status. We acknowledge that our result are
indicative and not ideal for quantitative comparison at a fine-grained level.

5.4.4 Leaderboard Baselines

CARLA Leaderboard is a newly established benchmark in the CARLA community

and is under rapid development. We select publicized and non-anonymous sensor

track submissions 2 as our baselines. Except for IA [85], LBC [14], CILRS [20]

and WOR [15], which are already detailed in 4.4.2, other methods, including Trans-

Fuser [71], TransFuser+ [43], NEAT [17] and LAV [13], are briefly introduced as

follows.

Multi-Modal Fusion Transformer (TransFuser) [71]. This work proposes an

imitation learning pipeline for tackling complex urban driving problem. It designs a

privileged expert to collect a multi-modal (images and LiDAR point clouds) dataset

for training the agent. It uses transformer [87] for attention-based sensor fusion. In

our experiments, we also include this TransFuser autopilot into our Leaderboard

2https://leaderboard.carla.org/leaderboard/

56

5. Multi-Parallel PPO

baselines, denoted as TransFuser AT, accordingly.

Simple and Effective Expert Driver (TransFuser+) [43]. This work proposes

an improved imitation learning pipeline for TransFuser [71]. Instead of using original

TransFuser autopilot, the agent learns on expert data collected by a better rule-based

autopilot which handles traffic rules and collision avoidance more realistically.

Neural Attention Fields (NEAT) [17]. This work proposes a conditional imitation

method with multi-veiw images. After feature extraction by the ResNet [36], the model

predicts waypoints and semantic segmentation results via an attention mechanism

and a continuous implicit function for scene representation.

Learning from All Vehicles (LAV) [13]. This work proposes a new framework

on top of WOR [15] by utilizing trajectories from other vehicles presented nearby

the ego-vehicle in the course of training. This is made possible by a learnt viewpoint

invariant perception system. To actively avoid collisions, the agent also learns a

vehicle-aware motion planner.

5.4.5 Leaderboard Results

Because CARLA Leaderboard forbids the direct usage of privilege information in

any self-driving method, we cannot run our Multi-Parallel PPO on the privately

held-out test routes. The reason for our method relying on privilege affordances is

that we would like to focus on solving long-trajectory planning and control problems

for self-driving via pure online RL without the participation of imitation learning like

all other methods do. We will not be able to bypass these affordances unless we shift

our concentration to working on perception and sensor fusion problems, which we are

reluctant to do. Still, we would like to show our result in Table 5.4 on Leaderboard

evaluation routes using official evaluator, both of which are open to public access.

We acknowledge that our results are not comparable with leaderboard submissions

57

5. Multi-Parallel PPO

Routes DS RC Collis. Viol. Dev. Timeouts
CILRS Test 5.37 14.40 6.52 6.17 4.14 4.28
LBC Test 8.94 17.54 1.56 2.23 0.03 4.69

TransFuser Test 16.93 51.82 2.19 1.83 0 1.97
NEAT Test 21.83 41.71 1.40 3.38 0 5.22

IA Test 24.98 46.97 4.80 2.37 1.44 1.73
WOR Test 31.37 57.65 2.98 1.75 1.69 0.47

TransFuser+ Test 34.58 69.84 0.77 0.93 0 2.41
LAV Test 61.85 94.46 0.76 0.42 0 0.14

TransFuser AT Eval. 83.95 99.63 0.04 0.08 0 0.01
MPSAC Eval. 8.29 10.52 0.19 2.04 0.41 11.68
MPPPO Eval. 80.64 99.27 0.06 0.05 0 0.03

Table 5.4: Leaderboard evaluation results. MPSAC stands for our proposed method,
Multi-Parallel SAC, which in this case is trained with the 15-dim state space described
in 5.2. MPPPO stands for our proposed method, Multi-Parallel PPO. The “Routes”
column indicates how different methods are evaluated. Except for TransFuser AT and
MPPPO, other methods are tested on held-out test routes. Hence, our method is only
directly comparable with TransFuser AT. Descriptions of these metrics can be found
in the leaderboard of the CARLA Leaderboard Challenge, the link to which can be
found in 5.4.4. “DS” stands for driving scores. “RC” stands for route completion (in
%) For convenience, we merge some official metrics into a single category. “Collis.”
combines all types of collisions in original leaderboard. “Viol.” combines red light and
stop sign violation, as well as off-road infraction. Infractions in collisions or violations
indicate control or perception issues. “Dev.” stands for route deviations, infractions
in this category indicate planning issues lane departure issues. “Timeouts” combines
the original timeout metric as well as situations when the agent gets blocked. The
unit for all infraction-related metrics is infractions per kilometer.

58

5. Multi-Parallel PPO

due to discrepancies in our settings. However, we demonstrate that our method is

capable of achieving a high driving score with few collisions, traffic rule violations

and timeouts. This suggests that our Multi-Parallel PPO, or generally online RL

methods, are capable of navigating through complex and even adversarial driving

scenarios assuming a perfect perception system.

We also demonstrate that the performance of TransFuser autopilot [71] (denoted as

TransFuser AT) on evaluation routes. TransFuser AT is the privileged expert used

in TransFuser which also makes use of privilege information. However, unlike our

agent, TransFuser AT is a sophisticated rule-based agent strictly calculating on the

environment dynamics for its every movement. Surprisingly, as is shown in Table 5.4,

the performance of our method across multiple metrics is on par with the TransFuser

AT. This strongly suggests that our 15-dim state space with simple affordances can

effectively deal with challenging scenarios.

59

5. Multi-Parallel PPO

60

Chapter 6

Conclusions

In this thesis, we have proposed two distributed asynchronous multi-agent reinforce-

ment learning (RL) algorithms, namely, Multi-Parallel SAC and Multi-Parallel PPO.

We have addressed various problems regarding the online training of RL agents on

the CARLA simulator, including the low utilization of computational resources, the

skewed distribution of workloads and the heterogeneity among agents participating in

the training. We have demonstrated that our methods can significantly accelerate the

online RL training on the CARLA simulator and achieve state-of-the-art performances

across different CARLA self-driving benchmarks in significantly less time.

61

6. Conclusions

62

Appendix A

Supplementary Materials

A.1 Hyperparameters

In all experiments on both methods, hyperparameters we used in general are in

Table A.1 during the training. Notions are in consistent with that have been used in

the main body of this thesis. To produce our best models for both NoCrash and the

Leaderboard benchmarks, hyperparameters specifically related to Multi-Parallel SAC

and Multi-Parallel PPO are listed in Table A.2 and Table A.3, respectively. We use

Adam optimizer [49] with default parameters among all experiments.

A.2 Adaptive Update Interval

In 5.3.2, we mention that our global update interval is adaptive compared with fixed

update intervals typically used in other distributed RL methods. We are aware that

many asynchronous distributed RL methods do not enforce a precise global update

63

A. Supplementary Materials

Notation Description Value
Rv Default speed reward. 1
αv Coefficient for speed reward. 1
Rθ Default steering penalty. -1
αθ Coefficient for steering penalty. 0
Rδ Default lane deviation penalty. -1
αδ Coefficient for lane deviation penalty. 1
RI Default infraction penalty. -1
αI Coefficient for infraction penalty. 250
max of

v Front obstacle detection range. 10m
max of

∆ Front obstacle detection radius. 0.5
max Ov \ of

v Other obstacle detection ranges. 5m
max O∆ \ of

∆ Other obstacle detection radii. 0.7854

Table A.1: General hyperparameters for all experiments. Note that for obstacle
affordance in NoCrash experiments, only a front obstacle sensor is used.

Notation Description Value
lrπ Learning rate of the global policy. 4e-4
lrq Learning rate of Q-networks. 4e-4
lrτ Step size of Polyak averaging. 0.01
α Fixed entropy temperature. e
buffer size The size of global buffer pool. 1,000,000
batch size Batch size of each gradient update. 512
freqq Q-network update frequency. 25
freqt Target Q-network update frequency. 25

Table A.2: Hyperparameters for Multi-Parallel SAC.

Notation Description Value
lrπ Learning rate of the global policy. 4e-4
ε Clipping range for policy updates. 0.2
∇clip Gradient clipping parameter. 0.5
min steps Minimum interval between updates. 100
win size Sliding window size for rollout length. 100
n steps Maximum rollout length. 20,000
n epochs Number of epochs in each update. 10

Table A.3: Hyperparameters for Multi-Parallel PPO.

64

A. Supplementary Materials

schedule due to the nature of asynchronicity. Their policy update mechanism typically

involves agents terminating local trajectories at some fixed rollout length. Upon

receiving local trajectories, learners will either directly make a gradient update, or

will wait until they collect a certain number of trajectories from different agents to

ensure the stability of the training. Either way, their update schedules are performed

roughly around a pre-determined frequency which does not reflect the current progress

of the training, unlike our adaptive update interval, which is dynamically adjusted

depending on the current status of the training.

A.3 Synchronization Between Servers

Though we do not need synchronizations between workers since they are designed to

run asynchronously, we do have to constantly keep all servers synced to maintain a

uniformity of the global policy. We do so by simply using multi-threading and put all

servers on a single machine in all our experiments. In theory, servers are able to live

on different machines with an efficient low-level communication mechanism.

A.4 Instability in Leaderboard

During both the training and the testing on Leaderboard, we sometimes observe a

weird error pertaining to loading pedestrians on the Leaderboard’s end, which often

causes pedestrian objects missing from scenarios. Here is one example of such error

messages that we have encountered.

Skipping scenario ‘Scenario3’ due to setup error:

Error: Unable to spawn vehicle walker.pedestrian.0016 at

Transform(Location(x=252.996002, y=-76.986099, z=2.390000),

Rotation(pitch=0.000000, yaw=541.393188, roll=0.000000))

65

A. Supplementary Materials

Due to this intermittent issue out of some Leaderboard internal disfunctions, our

Leaderboard evaluation results on Multi-Parallel PPO and TransFuser autopilot [71]

may not be accurate.

66

Appendix B

Limitations of this Study

B.1 Inaccurate Training Speed Profiling

We acknowledge the fact that the training speed fluctuates a lot even during a single

training run, not to mention the variance across multiple runs and multiple machines

on the lab cluster. Since running these large-scale experiments requires multiple

GPUs and CPU cores, we simply cannot find a reliable local workstation isolated us

from other cluster users to profile our methods. Hence, in this thesis we give our best

approximations by averaging out the instability over a long period of training.

B.2 Insufficient Leaderboard Experiments

We acknowledge the fact that we cannot fairly compare our models with publicized

Leaderboard Challenge results since 1) we access the CARLA groundtruth affordances

at test time and 2) we do not run our models on the same testing routes as those routes

67

B. Limitations of this Study

are undisclosed to the public. Since our fundamental research question is centered on

efficiently solving complex self-driving scenarios by pure online reinforcement learning

(RL). In order to better focus on our objective, we assume full access to our simple

and effective selection of necessary affordances and leave the problem on how we can

get these affordances in real-world situation to others (see 3.1.3).

B.3 Lack of Qualitative Analysis

We acknowledge the fact that we do not include qualitative analysis (e.g. images

and videos) on the driving behavior of our agents. This is not because we do not

have qualitative materials at hand, but because it is hard to demonstrate them in

this medium. In fact, we would like to claim that our models can drive stably, turn

smoothly and stay at the center of lane steadily. We would also like to claim that our

models constantly obey traffic lights & stop signs and yield to all types of obstacles.

However, we cannot find an effective way to show these properties without showing

videos of those driving scenarios, which is implausible to include in the thesis. Instead,

We select eight representative driving videos featuring different benchmarks and

scenarios. We upload them on the YouTube 1 for public access. Please refer to those

video clips as qualitative evidence on the performance of our trained agents.

1https://www.youtube.com/playlist?list=PL6MavIKKfWVR8I8jxJ6PaUNJN5hW-EoF9

68

Appendix C

Future Work

C.1 Massive Parallelization

Currently, due to the resource constraint, we are only able to run our distributed RL

framework at a relatively small scale (e.g. 64 agents or 128 agents). We rely on our

lab cluster to perform all the experiments. Without inter-node InfiniBand connection,

the maximum number of GPUs we can utilize right now during a single experiment is

limited to 4 GPUs on a single node. Since each CARLA simulator instance requires

lots of GPU memory (∼2GB), currently the lack of GPUs is our bottleneck.

With new 8-GPU nodes consisting of massive memory graphics cards recently added

to our lab cluster, we are hopefully able to run massive parallelization with hundreds

or thousands of agents collaborating in the training system. We would thus want to

try if we can solve the CARLA self-driving benchmarks in hours or even minutes.

69

C. Future Work

C.2 Asynchronous Servers

Currently, because of using shared resources on the server end, our servers must be

put on the same machine, which is not good for the scalability as well as the fault

tolerance of the distributed system. At present, we have to do this since servers need

constant synchronization. In the future, we would like to remove this synchronicity

from our distributed RL framework, which will make our training system enjoy

the full benefit of being asynchronous. This might be achieved through adapting

asynchronous gradient update methods to our needs.

C.3 Accelerating Future Research

In this thesis, we have shown that RL is promising for self-driving tasks. In order to

develop novel RL ideas to further improve the self-driving, we need to extend our

proposed distributed RL framework to accelerate future RL research on the CARLA

simulator. In fact, we have already begun using our distributed RL framework in

some of our ongoing CARLA self-driving research works with some proper adaptation.

Details of those projects are in Appendix D.

70

Appendix D

Extensions to Other Projects

One of the very purposes of this study is to build a generic distributed multi-

agent framework to accelerate future reinforcement learning (RL) research on the

CARLA simulator [23]. We achieve this goal by successfully presenting a parameter

server-based distributed training system for both off-policy and on-policy methods

with two-layer parallelization specifically designed for the CARLA self-driving. To

demonstrate that our framework is versatile to the need of many other RL tasks, we

briefly describe two concurrent RL projects in our lab that take advantage of our

framework.

D.1 Online RL with Vision-based Features

One of the projects currently in our lab involves training an online RL agent with

bird’s-eye view RGB camera as perception input. To infuse image observations into

our state space, latent features are extracted out of stacked RGB images via an

autoencoder pre-trained with auxiliary tasks.

71

D. Extensions to Other Projects

As is discussed in the paper, online RL training on CARLA takes very long time to

converge, let alone the added burden of the high-frequency sensor stream. Therefore,

we adapt our current distributed framework to accept the new state space. In order

to lower the GPU memory usage, we instantiate a single autoencoder per worker that

is shared with all the agents in that worker. It functions perfectly and helps them

develop their novel method in a timely manner.

D.2 Offline RL with Parallelized Self-play

Another ongoing project in our lab resorts to offline RL to learn an effective self-driving

policy with the goal that it will eventually be deployed to learn from pre-collected

real-world driving logs. Inspired by LAV [13], they find it helpful to simultaneously

learn from other actors’ experiences because they may encounter interesting scenarios

while the ego-vehicle does not. Borrowing the idea of self-play from AlphaStar [88],

which is deemed useful for RL training in adversarial environment, they initialize and

adapt driving policies used by non-ego-vehicles over time in the training with old

policies from the learning ego-vehicle or rule-based autopilot.

To achieve the goal of learning from multiple self-play actors, we apply our distributed

asynchronous framework in this project by docking it with an multi-agent offline

self-driving environment and adapting our worker-server communication protocol to

periodically distribute old policies to non-ego-vehicles for self-play purposes.

72

Bibliography

[1] Tanmay Agarwal, Hitesh Arora, and Jeff Schneider. Affordance-based reinforce-
ment learning for urban driving. arXiv preprint arXiv:2101.05970, 2021. 1, 2.1.3,
3.2.1, 4.1, 4.2, 4.2, 4.4.2, 4.4.3, 4.4.3, 4.4.4, 5.4.2, 5.4.3, 5.4.3

[2] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan
Girgin, Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin,
Marcin Michalski, et al. What matters in on-policy reinforcement learning? a
large-scale empirical study. arXiv preprint arXiv:2006.05990, 2020. 4.4.3

[3] Eduardo Arnold, Omar Y. Al-Jarrah, Mehrdad Dianati, Saber Fallah, David
Oxtoby, and Alex Mouzakitis. A survey on 3d object detection methods for au-
tonomous driving applications. IEEE Transactions on Intelligent Transportation
Systems, 20(10):3782–3795, 2019. doi: 10.1109/TITS.2019.2892405. 2.1.1

[4] Karl Johan Åström and Tore Hägglund. PID Controllers: Theory, Design, and
Tuning. ISA - The Instrumentation, Systems and Automation Society, 1995.
ISBN 1-55617-516-7. 4.2

[5] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo,
Vinicius B Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M
Paixao, Filipe Mutz, et al. Self-driving cars: A survey. Expert Systems with
Applications, 165:113816, 2021. 2.1.1

[6] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike
adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13(5):834–846, 1983. doi:
10.1109/TSMC.1983.6313077. 1

[7] Richard Bellmen. A markovian decision process. Journal of Mathematics
and Mechanics, 6(5):679–684, 1957. ISSN 00959057, 19435274. URL http:

//www.jstor.org/stable/24900506. 2.2.1

[8] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christo-

73

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506

Bibliography

pher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub W. Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim
Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie
Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. ArXiv, abs/1912.06680, 2019. 1, 2.2.5

[9] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. Simultane-
ous Localization And Mapping: A Survey of Current Trends in Autonomous
Driving. IEEE Transactions on Intelligent Vehicles, XX:1, 2017. doi: 10.1109/
TIV.2017.2749181. URL https://hal.archives-ouvertes.fr/hal-01615897.
2.1.1

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016. 1

[11] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator
imitation learning via automatically-ranked demonstrations. In Conference on
robot learning, pages 330–359. PMLR, 2020. 2.1.2

[12] Mark Campbell, Magnus Egerstedt, Jonathan P. How, and Richard M. Mur-
ray. Autonomous driving in urban environments: approaches, lessons and
challenges. Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, 368(1928):4649–4672, 2010. doi:
10.1098/rsta.2010.0110. URL https://royalsocietypublishing.org/doi/
abs/10.1098/rsta.2010.0110. 1, 2.1.1

[13] Dian Chen and Philipp Krähenbühl. Learning from all vehicles. arXiv preprint
arXiv:2203.11934, 2022. 5.4.4, D.2

[14] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by
cheating. In Conference on Robot Learning, pages 66–75. PMLR, 2020. 2.1.2,
3.2.1, 4.4.2, 4.4.3, 5.4.2, 5.4.4

[15] Dian Chen, Vladlen Koltun, and Philipp Krähenbühl. Learning to drive from a
world on rails. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15590–15599, 2021. 2.1.2, 2.1.3, 4.4.2, 4.4.3, 5.4.2, 5.4.4

[16] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer:
Reinforcement learning via sequence modeling. Advances in neural information
processing systems, 34, 2021. 2.2.4

[17] Kashyap Chitta, Aditya Prakash, and Andreas Geiger. Neat: Neural attention
fields for end-to-end autonomous driving. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15793–15803, 2021. 5.4.4

[18] Kaleigh Clary, Emma Tosch, John Foley, and David Jensen. Let’s play again:

74

https://hal.archives-ouvertes.fr/hal-01615897
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2010.0110
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2010.0110

Bibliography

Variability of deep reinforcement learning agents in atari environments. arXiv
preprint arXiv:1904.06312, 2019. 4.4.3

[19] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey
Dosovitskiy. End-to-end driving via conditional imitation learning. In 2018 IEEE
international conference on robotics and automation (ICRA), pages 4693–4700.
IEEE, 2018. 2.1.2, 4.4.2, 4.4.3, 5.4.2

[20] Felipe Codevilla, Eder Santana, Antonio M. López, and Adrien Gaidon. Ex-
ploring the limitations of behavior cloning for autonomous driving. CoRR,
abs/1904.08980, 2019. URL http://arxiv.org/abs/1904.08980. (document),
2.1.2, 3.1.1, 3.2, 3.2.2, 4.1, 4.4, 4.4.1, 4.4.2, 4.4.3, 4.1, 4.4.3, 4.3, 5.1, 5.4, 5.4.2,
5.4.3, 5.1, 5.4.4

[21] Moises Diaz, Pietro Cerri, Giuseppe Pirlo, Miguel A. Ferrer, and Donato Impe-
dovo. A survey on traffic light detection. In Vittorio Murino, Enrico Puppo,
Diego Sona, Marco Cristani, and Carlo Sansone, editors, New Trends in Image
Analysis and Processing – ICIAP 2015 Workshops, pages 201–208, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-23222-5. 3.1.3

[22] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh
Chou, Tsung-Han Lin, Nitin Singh, and Jeff Schneider. Uncertainty-aware short-
term motion prediction of traffic actors for autonomous driving. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
2095–2104, 2020. 2.1.1

[23] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Sergey Levine, Vincent
Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual Conference
on Robot Learning, volume 78 of Proceedings of Machine Learning Research,
pages 1–16. PMLR, 13–15 Nov 2017. URL https://proceedings.mlr.press/
v78/dosovitskiy17a.html. (document), 1, 2.1.2, 2.1.3, 3.1.1, 3.1.4, 3.1, 3.2.1,
D

[24] Epic Games. Unreal engine. URL https://www.unrealengine.com. 3.1.1, 3.1.2

[25] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International Conference on Machine Learning, pages 1407–1416. PMLR,
2018. 1, 2.2.5

[26] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michal-
ski. Seed rl: Scalable and efficient deep-rl with accelerated central inference.
arXiv preprint arXiv:1910.06591, 2019. 1, 2.2.5

[27] Eric Espié, Christophe Guionneau, Bernhard Wymann, Christos Dimitrakakis,

75

http://arxiv.org/abs/1904.08980
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://www.unrealengine.com

Bibliography

Rémi Coulom, and Andrew Sumner. Torcs, the open racing car simulator. 2005.
1, 2.1.3

[28] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonza-
lez, and Sergey Levine. Model-based value estimation for efficient model-free
reinforcement learning. arXiv preprint arXiv:1803.00101, 2018. 2.2.3

[29] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International conference on machine
learning, pages 1587–1596. PMLR, 2018. 2.2.2

[30] O. K. Golovnin and R. V. Yarmov. Universal convolutional neural network
for recognition of traffic lights and road signs in video frames. In Denis B.
Solovev, Grigorios L. Kyriakopoulos, and Terziev Venelin, editors, SMART
Automatics and Energy, pages 459–468, Singapore, 2022. Springer Singapore.
ISBN 978-981-16-8759-4. 3.1.3

[31] Gi-Poong Gwon, Woo-Sol Hur, Seong-Woo Kim, and Seung-Woo Seo. Generation
of a precise and efficient lane-level road map for intelligent vehicle systems. IEEE
Transactions on Vehicular Technology, 66(6):4517–4533, 2016. 2.1.1, 3.1.3

[32] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy
evolution. Advances in neural information processing systems, 31, 2018. 2.2.3

[33] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning, pages 1861–1870. PMLR,
2018. (document), 2.2.2, 4.3, 4.3.1, 4.3.2, 4.4.1, 4.1, 5.1

[34] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018. 2.2.2, 4.4.1, 5.1

[35] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136.
3.1.4

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016. 2.1.3, 4.4.2, 5.4.4

[37] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of
locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286,
2017. 1, 2.2.5

76

Bibliography

[38] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2(7), 2015. 2.1.2, 2.1.3, 4.4.2

[39] Manato Hirabayashi, Adi Sujiwo, Abraham Monrroy, Shinpei Kato, and Masato
Edahiro. Traffic light recognition using high-definition map features. Robotics and
Autonomous Systems, 111:62–72, 2019. ISSN 0921-8890. doi: https://doi.org/
10.1016/j.robot.2018.10.004. URL https://www.sciencedirect.com/science/
article/pii/S0921889018301234. 3.1.3

[40] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal
Behbahani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang,
Kate Baumli, et al. Acme: A research framework for distributed reinforcement
learning. arXiv preprint arXiv:2006.00979, 2020. 2.2.5

[41] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado Van Hasselt, and David Silver. Distributed prioritized experience replay.
arXiv preprint arXiv:1803.00933, 2018. 1, 2.2.5

[42] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne.
Imitation learning: A survey of learning methods. 50(2), apr 2017. ISSN
0360-0300. doi: 10.1145/3054912. URL https://doi.org/10.1145/3054912.
2.1.2

[43] Bernhard Jaeger. Expert drivers for autonomous driving. Master’s thesis,
University of Tübingen, 2021. 5.4.4

[44] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning
as one big sequence modeling problem. In Advances in Neural Information
Processing Systems, 2021. 2.2.4

[45] Ajay Jose, Harish Thodupunoori, and Binoy B Nair. A novel traffic sign recog-
nition system combining viola–jones framework and deep learning. In Soft
Computing and Signal Processing, pages 507–517. Springer, 2019. 3.1.3

[46] Takeo Kanade, Chuck Thorpe, and William (Red) L. Whittaker. Autonomous
land vehicle project at cmu. In Proceedings of ACM 14th Annual Conference on
Computer Science (CSC ’86), pages 71 – 80, February 1986. 1, 2.1.1

[47] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda,
John-Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to
drive in a day. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8248–8254. IEEE, 2019. 2.1.3

[48] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten
Joachims. Morel: Model-based offline reinforcement learning. Advances in
neural information processing systems, 33:21810–21823, 2020. 2.2.4

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

77

https://www.sciencedirect.com/science/article/pii/S0921889018301234
https://www.sciencedirect.com/science/article/pii/S0921889018301234
https://doi.org/10.1145/3054912

Bibliography

CoRR, abs/1412.6980, 2015. A.1

[50] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013. 2.1.3

[51] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Society for Industrial
and Applied Mathematics, 42, 04 2001. 2.2.2

[52] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative
q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:1179–1191, 2020. 2.2.4

[53] Stephanie Lefevre, Dizan Vasquez, and Christian Laugier. A survey on motion
prediction and risk assessment for intelligent vehicles. Robomech Journal, 1, 07
2014. doi: 10.1186/s40648-014-0001-z. 2.1.1

[54] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren
Kammel, J. Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, Michael
Sokolsky, Ganymed Stanek, David Stavens, Alex Teichman, Moritz Werling, and
Sebastian Thrun. Towards fully autonomous driving: Systems and algorithms.
In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 163–168, 2011. doi:
10.1109/IVS.2011.5940562. 1, 2.1.1

[55] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, pages 583–598, USA, 2014. USENIX Association. ISBN 9781931971164.
(document), 1, 2.2.5, 4.1, 4.3, 4.1, 4.3.1

[56] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controllable
imitative reinforcement learning for vision-based self-driving. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 584–599, 2018.
2.1.2, 4.4.2

[57] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015. 2.1.3, 2.2.2,
4.4.2

[58] Rong Liu, Jinling Wang, and Bingqi Zhang. High definition map for automated
driving: Overview and analysis. Journal of Navigation, 73(2):324–341, 2020. doi:
10.1017/S0373463319000638. 3.1.3

[59] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 2.2.2, 4.4.2

78

Bibliography

[60] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Maria Florina Balcan and Kil-
ian Q. Weinberger, editors, Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/mniha16.html. 1, 2.1.3, 2.2.2, 2.2.5, 5.1

[61] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri
Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe Hoffmann, Burkhard
Huhnke, Doug Johnston, Stefan Klumpp, Dirk Langer, Anthony Levandowski,
Jesse Levinson, Julien Marcil, David Orenstein, Johannes Paefgen, Isaac Penny,
Anna Petrovskaya, Mike Pflueger, Ganymed Stanek, David Stavens, Antone Vogt,
and Sebastian Thrun. Junior: The stanford entry in the urban challenge. Journal
of Field Robotics, 25(9):569–597, 2008. doi: https://doi.org/10.1002/rob.20258.
1, 2.1.1

[62] Sajjad Mozaffari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings, and
Alexandros Mouzakitis. Deep learning-based vehicle behavior prediction for
autonomous driving applications: A review. IEEE Transactions on Intelligent
Transportation Systems, 23(1):33–47, 2020. 2.1.1

[63] Farzeen Munir, Shoaib Azam, Muhammad Hussain, Ahmed Sheri, and Moongu
Jeon. Autonomous vehicle: The architecture aspect of self driving car. pages
1–5, 10 2018. ISBN 978-1-4503-6620-5. doi: 10.1145/3290589.3290599. 1, 2.1.1

[64] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free
fine-tuning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7559–7566. IEEE, 2018. 2.2.3

[65] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, et al. Massively parallel methods for deep reinforcement
learning. arXiv preprint arXiv:1507.04296, 2015. 1, 2.2.5

[66] National Imagery and Mapping Agency. Department of defense world geodetic
system 1984: its definition and relationships with local geodetic systems. Tech-
nical Report TR8350.2, National Imagery and Mapping Agency, St. Louis, MO,
USA, January 2000. URL http://earth-info.nga.mil/GandG/publications/
tr8350.2/tr8350 2.html. 3.1.2

[67] Man-Suk Oh and James O. Berger. Integration of multimodal functions by monte
carlo importance sampling. Journal of the American Statistical Association,
88(422):450–456, 1993. doi: 10.1080/01621459.1993.10476295. URL https:

//www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476295. 5.3.2

79

https://proceedings.mlr.press/v48/mniha16.html
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html
https://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476295
https://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476295

Bibliography

[68] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter
Abbeel, and Jan Peters. An algorithmic perspective on imitation learning. arXiv
preprint arXiv:1811.06711, 2018. 2.1.2

[69] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf. 4.1

[70] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.
doi: 10.1137/0330046. URL https://doi.org/10.1137/0330046. 4.4.1

[71] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion
transformer for end-to-end autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7077–7087, 2021.
5.4.4, 5.4.5, A.4

[72] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!:
A lock-free approach to parallelizing stochastic gradient descent. Advances in
neural information processing systems, 24, 2011. 2.2.5

[73] Daniel E. Rivera, Manfred Morari, and Sigurd Skogestad. Internal model
control: Pid controller design. Industrial & Engineering Chemistry Process
Design and Development, 25(1):252–265, 1986. doi: 10.1021/i200032a041. URL
https://doi.org/10.1021/i200032a041. 4.2

[74] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk
in minutes using massively parallel deep reinforcement learning. In Conference
on Robot Learning, pages 91–100. PMLR, 2022. 1

[75] G. Rummery and Mahesan Niranjan. On-line q-learning using connectionist
systems. Technical Report CUED/F-INFENG/TR 166, 11 1994. 2.2.2

[76] Axel Sauer, Nikolay Savinov, and Andreas Geiger. Conditional affordance
learning for driving in urban environments. In Conference on Robot Learning,
pages 237–252. PMLR, 2018. 4.4.2, 4.4.3, 5.4.2

[77] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015. 2.2.5

[78] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp

80

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1137/0330046
https://doi.org/10.1021/i200032a041

Bibliography

Moritz. Trust region policy optimization. In International conference on machine
learning, pages 1889–1897. PMLR, 2015. 1, 2.2.2, 5.1

[79] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
(document), 1, 2.2.2, 4.4.4, 5.1, 5.2, 5.3.2, 5.3.2, 5.3.2

[80] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In Proceedings
of the 31st International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, pages 387–395. JMLR.org, 2014. 2.2.2

[81] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general
reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/science.aar6404. 1,
2.2.3, 2.2.5

[82] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 4.4.2

[83] Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement
learning. arXiv preprint arXiv:1803.02811, 2018. 1, 2.2.5

[84] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109. 1

[85] Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free
reinforcement learning for urban driving using implicit affordances. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages
7153–7162, 2020. 1, 2.1.3, 3.2.1, 4.4.2, 4.4.3, 5.4.2, 5.4.4

[86] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 30, 2016. 2.2.2

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 5.4.4

[88] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja

81

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Bibliography

Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,
Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, To-
bias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina
McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, pages 1–5, 2019. 1, 2.2.5, D.2

[89] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and
Nando Freitas. Dueling network architectures for deep reinforcement learning.
In International conference on machine learning, pages 1995–2003. PMLR, 2016.
2.2.2

[90] Théophane Weber, Sébastien Racaniere, David P Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nico-
las Heess, Yujia Li, et al. Imagination-augmented agents for deep reinforcement
learning. arXiv preprint arXiv:1707.06203, 2017. 2.2.3

[91] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi
Parikh, Manolis Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect
pointgoal navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357,
2019. 1, 2.2.5

[92] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992. 2.2.2, 5.1

[93] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey
Levine, Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing Systems, 33:14129–
14142, 2020. 2.2.4

[94] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A
survey of autonomous driving: Common practices and emerging technologies.
IEEE access, 8:58443–58469, 2020. 1, 2.1.1

[95] Zhenyu Zhang, Xiangfeng Luo, Tong Liu, Shaorong Xie, Jianshu Wang, Wei
Wang, Yang Li, and Yan Peng. Proximal policy optimization with mixed
distributed training. In 2019 IEEE 31st International Conference on Tools
with Artificial Intelligence (ICTAI), pages 1452–1456, 2019. doi: 10.1109/
ICTAI.2019.00206. 1, 2.2.5

82

	1 Introduction
	2 Background
	2.1 Autonomous Driving
	2.1.1 Modular Pipelines
	2.1.2 Imitation Learning
	2.1.3 RL for Self-driving

	2.2 Reinforcement Learning
	2.2.1 Preliminaries
	2.2.2 Off-policy vs. On-policy RL
	2.2.3 Model-free vs. Model-based RL
	2.2.4 Online vs. Offline RL
	2.2.5 Parallel & Distributed RL

	3 Simulation Environment
	3.1 CARLA Simulator
	3.1.1 Introduction
	3.1.2 Sensor Affordances
	3.1.3 Groundtruth Affordances
	3.1.4 Planners

	3.2 CARLA Benchmarks
	3.2.1 CoRL2017 Benchmark
	3.2.2 NoCrash Benchmark
	3.2.3 Leaderboard Benchmark

	4 Multi-Parallel SAC
	4.1 Overview
	4.2 Problem Setup
	4.3 Method
	4.3.1 Distributed Framework
	4.3.2 Multi-agent SAC

	4.4 Experiments
	4.4.1 Implementation Details
	4.4.2 NoCrash Baselines
	4.4.3 NoCrash Results
	4.4.4 Sensitivity Analysis

	5 Multi-Parallel PPO
	5.1 Overview
	5.2 Problem Setup
	5.3 Method
	5.3.1 Distributed Framework
	5.3.2 Multi-agent PPO

	5.4 Experiments
	5.4.1 Implementation Details
	5.4.2 NoCrash Baselines
	5.4.3 NoCrash Results
	5.4.4 Leaderboard Baselines
	5.4.5 Leaderboard Results

	6 Conclusions
	A Supplementary Materials
	A.1 Hyperparameters
	A.2 Adaptive Update Interval
	A.3 Synchronization Between Servers
	A.4 Instability in Leaderboard

	B Limitations of this Study
	B.1 Inaccurate Training Speed Profiling
	B.2 Insufficient Leaderboard Experiments
	B.3 Lack of Qualitative Analysis

	C Future Work
	C.1 Massive Parallelization
	C.2 Asynchronous Servers
	C.3 Accelerating Future Research

	D Extensions to Other Projects
	D.1 Online RL with Vision-based Features
	D.2 Offline RL with Parallelized Self-play

	Bibliography

