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Abstract

A robot that operates efficiently in a team with humans in an unstructured outdoor
environment must translate commands into actions from a modality intuitive to its
operator. The robot must be able to perceive the world as humans do so that the
actions taken by the robot reflect the nuances of natural language and human perception.
Traditionally, a navigation system combines individual perception, language process-
ing, and planning blocks that are often trained separately with different performance
specifications. They communicate with restrictive interfaces to ease development (i.e.,
point objects with discrete attributes and a limited command language), but this also
constrains the information one module can transfer to another.

The tremendous success of deep learning has revolutionized traditional lines of research
in computer vision, such as object detection and scene labeling. Visual question answer-
ing, or VQA, connects state-of-the-art techniques in natural language processing with
image understanding. Symbol grounding, multi-step reasoning, and comprehension of
spatial relations are already elements of these systems. These elements are unified in
an architecture with a single differentiable loss, eliminating the need for well-defined
interfaces between modules and the simplifying assumptions that go with them.

We introduce a technique to transform a text language command and a static aerial
image into a cost map suitable for planning. We build upon the FiLM VQA architecture,
adapt it to generate a cost map, and combine it with a differentiable planning loss (Max
Margin Planning) modified to use the Field D* planner. With this architecture, we take
a step towards unifying language, perception, and planning into a single, end-to-end
trainable system.

We present an extensible synthetic benchmark derived from the CLEVR dataset, which
we use to study the comprehension abilities of the algorithm in the context of an unbiased
environment with virtually unlimited data. We analyze the algorithm’s performance
on this data to understand its limitations and propose future work to address its
shortcomings. We offer results on a hybrid dataset using real-world aerial imagery and
synthetic commands.

Planning algorithms are often sequential with a high branching factor and do not map
well to the GPUs that have catalyzed the development of deep learning in recent years.
We carefully selected Field D* and Max Margin Planning to perform well on highly
parallel architectures. We introduce a version of Field D* suitable for multi-GPU data-
parallel training that uses the Bellman-Ford algorithm, boosting performance almost ten
times compared to our CPU-optimized implementation.

The fluid interaction between humans working in a team depends upon a shared under-
standing of the task, the environment, and the subtleties of language. A robot operating
in this context must do the same. Learning to translate commands and images into
trajectories with a differentiable planning loss is one way to capture and imitate human
behavior and is a small step towards seamless interaction between robots and humans.
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6.23 Histogram of Fréchet error for synthetic paths . . . . . . . . . . . . . . . . . . . . . . 103
6.24 Performance for batch selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.25 Performance for Epsilon-A* for single runs . . . . . . . . . . . . . . . . . . . . . . . . 108
6.26 Results for Epsilon A* for various ϵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.27 Histogram of image scales for DOTA training set . . . . . . . . . . . . . . . . . . . . 110
6.28 Sample images extracted from iSAID/DOTA dataset . . . . . . . . . . . . . . . . . . 111
6.29 Performance plots for training on DOTA/iSIAD dataset . . . . . . . . . . . . . . . . 113
6.30 Examples from DOTA/iSAID experiment . . . . . . . . . . . . . . . . . . . . . . . . 114
6.31 Performance plots for a deep network with MMP with reduced data . . . . . . . . . 115

7.1 Testing planning with occlusion using CLEVR . . . . . . . . . . . . . . . . . . . . . 121
7.2 Viewpoints for navigation commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 Simulation experiment for planning with time . . . . . . . . . . . . . . . . . . . . . . 127

8.1 Example image, question, and partial scene graph from CLEVR . . . . . . . . . . . . 130
8.2 Sample template and program for command family 1. . . . . . . . . . . . . . . . . . 131
8.3 Worst examples from sample of CLEVR-derived validation dataset . . . . . . . . . . 132
8.3 Worst examples from sample of CLEVR-derived validation dataset (continued) . . . 133
8.24 Error histograms for train and test dataset, command family 0. . . . . . . . . . . . . 141
8.25 Error histograms for train and test dataset, command family 1. . . . . . . . . . . . . 141
8.26 Error histograms for train and test dataset, command family 2. . . . . . . . . . . . . 142
8.27 Error histograms for train and test dataset, command family 3. . . . . . . . . . . . . 142
8.37 Worst examples from sample of DOTA-derived training dataset . . . . . . . . . . . . 147
8.37 Worst examples from sample of DOTA-derived training dataset (continued) . . . . . 148
8.38 Worst examples from sample of DOTA-derived validation dataset . . . . . . . . . . . 150
8.38 Worst examples from sample of DOTA-derived validation dataset (continued) . . . . 151

xii



List of Tables

2.1 Comparison of some of the properties of robot navigation systems. . . . . . . . . . . 9

3.1 Survey of leading VQA architectures as of early 2019. . . . . . . . . . . . . . . . . . 21
3.2 Reference VQA implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Command transformed into tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Field D* cell traversal cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Incremental path cost and map gradient for general case . . . . . . . . . . . . . . . . 71
5.3 Incremental path cost and map gradient for external cost-to-goal . . . . . . . . . . . 72
5.4 Analysis for accelerated loss computation . . . . . . . . . . . . . . . . . . . . . . . . 74
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Chapter 1

Introduction

A robot that operates seamlessly with a human must translate commands into the desired actions.

In scenarios as disparate as disaster recovery, combat, and elder care, it can not be assumed that the

operator has the time or the training to generate detailed instructions using specialized interfaces.

In short, the ideal robot would follow instructions as well as any other human teammate, perhaps

with text or spoken language serving as the command interface, and make appropriate assumptions

about ambiguous command or perception data to execute the intended actions.

This challenging problem lies at the intersection of perception, natural language processing, and

artificial intelligence. In this thesis, we plan to address just one example of this large and very

significant problem: how to traverse an aerial image, given starting and ending locations and a

spoken or written command. Even in this restricted context, we face challenges similar to the larger

problem; both language and perception are often ambiguous and are only clarified using the large

amount of implicit knowledge that underlays our everyday interactions with the world and each

other.

Almost as soon as the first mobile robots were made, researchers have been looking towards

natural languages as an ideal way to command them. Shakey the Robot (Nilsson [4]) used a

command language that was directly translated into a first-order predicate calculus statement. It

operated in an office environment specially constructed to make the perception problem as simple as

possible. Shakey’s world was distilled into an array of predicate calculus statements. A plan was a

sequence of elementary actions that manipulated the world model into the desired state. In Shakey’s

case, perception was assumed to directly yield discrete symbols that could be processed with classical

artificial intelligence techniques such as logical inference. Indeed, modeling perception was explicitly

not a design objective of this system to simplify an already complex problem of integrating language

and symbols to produce a plan.

Many early robots used sonar and lidar as primary sensors. Sonar measures the presence of an

obstacle with a physical process that is well understood and straightforward to model mathematically,

making it possible to directly integrate these models with algorithms like occupancy grids (Moravec
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[5]), particle filter localizers (Thrun [6]) and SLAM systems (Thrun et al. [7]). In turn, these systems

have been integrated into the intelligence and navigation architectures of robots that operate in

many different environments, like CARMEL (Congdon et al. [8]) and Boss (Urmson et al. [9]).

Unlike sonar or lidar, computer vision is uniquely challenging to model because even the simplest

of objects can be difficult to describe with mathematical precision even before considering the sheer

volume of noisy and often ambiguous data in real-world images. Marr [10] is an example of a

pioneering attempt to model human vision processing at varying levels of abstraction by combining

fundamental features such as contours and blobs to match object models. Ultimately, this concept

has proven intractable outside of machine vision applications and does not represent modern object

detection systems, which usually haven’t any explicit object models. Instead, the model is internal

to a deep neural network, having been learned from many samples and requiring no human-designed

models for the countless scenarios in which that object might appear.

Because of this problem, it is also much more difficult to effectively integrate the output of

higher-level vision systems with navigation architectures. Our own recent experience with outdoor

field robotics (Oh et al. [11]) supports this observation. Simplified models are necessary to condense

complex visual information from an object detector (Zhu et al. [12]) and a semantic scene labeler

(Munoz [13]) into mathematical concepts that the navigation system can manipulate. These models

are carefully engineered for a particular task (such as the exemplar 3D models in Zhu et al. [12])

or are extremely general, such as a bounding box with a confidence metric used to define vehicles

and humans. By making these simplifications, higher-level perception information can be integrated

into existing navigation architectures, but at the cost of the nuance and flexibility lost when data is

discarded.

Abstract models are often difficult to maintain, given the diversity of objects and scenarios in the

presence of ambiguous and noisy data. Based on recent experience with modern object detectors, it

is likely better to have implicit models trained by sampling realistic data than to maintain a catalog

of carefully engineered models.

Modular systems are often trained on many sub-tasks with performance metrics different from

the task metric. For example, a scene labeler maximizes an intersection-over-union metric over

labeled regions, but many classes may be irrelevant to the robot task. The semantic scene labeler in

Munoz [13] did not distinguish the importance of road pixels from sky pixels, which are irrelevant

for the ground robots in Oh et al. [11]. An integrated system trained end-to-end could automatically

learn the behaviors that best support the overall task.

The challenge of integrating perception with navigation is compounded by the problem of

translating a written or spoken command into the intended plan. The command will likely reference

objects in the world that must be supported with evidence gathered by perception. Even with

a highly structured language such as in Oh et al. [11], there remains the problem of matching

the symbols in the command to imperfect perception data, in addition to modeling the physical

meaning of unassumingly difficult concepts such as “to the left of” or “behind.” This process is called

grounding, and has usually been accomplished with probabilistic inference over abstract models

of the world, such as in Kollar et al. [14]. Again, the abstraction of perception to a simple model
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makes the problem tractable yet sacrifices the nuances that make visual data informative.

Computer vision has recently seen incredible development. The deformable parts model (DPM)

(Felzenszwalb et al. [15]), a leading object detector ten years ago, has been overtaken by deep learning

approaches. DPM is an exemplar of a high-performing model-based computer vision technique,

highly optimized for detecting structured objects such as vehicles or people. Modern object detection

algorithms do not have any explicit model and rely on vast quantities of labeled data to learn an

implicit model from the data itself. Without the constraint of an apriori model, these techniques

can freely adapt to the data, even when it is imperfect or ambiguous.

Image understanding and natural language processing architectures share many deep learning

techniques (e.g., LSTM, RNN), supporting the natural fusion of these domains into a single framework.

This has already occurred with Image Captioning (Chen et al. [16] and others) and Visual Question

Answering (Johnson et al. [17] and others). The most recent examples all have some form of symbol

grounding, which is essential to robot navigation with a spoken or written command. Tamar et al.

[18] study the convergence of perception and navigation via deep learning, and Anderson et al. [19]

study the combination of perception, language, and navigation.

We choose to approach the problem of integrating perception, natural language processing, and

planning from the point of view of deep learning, using techniques in visual question answering

as a starting point for our architecture, suitably modified for the unique context of our problem.

Different from recent research, such as Oh et al. [11], the grounding mechanism is not explicitly

modeled. Instead, we propose to learn the desired trajectory directly from the command and map,

precluding the need for interfaces between modules and allowing for the simultaneous training of

language, perception, and planning elements against the same loss metric that measures the robot’s

performance.

1.1 Problem Statement

We are given an aerial orthographic image Ii, for i ∈ 1...N , a natural language command Λij , for

j ∈ 1...M , a set of starting and ending points, Xij and Yij , and a set trajectories µ∗
ij , provided

by experts (Figure 1.1). Our goal is to interpret a new command Λ′, image I ′, and starting and

ending locations X ′, Y ′, and generate a trajectory µ′ that conforms to what an expert would have

drawn. We do this by employing a deep network, whose output, F (I ′,Λ′, X ′, Y ′), is a cost map

that induces the path planner to select the trajectory which meets the constraints of the intended

path1. We assume the world is static and fully observable. Robot navigation is simplified into a

more constrained task that still poses the exciting challenge of how to unify command parsing, scene

understanding, and path planning into a single, fully differentiable process.

1We carefully note that in its original form, cost map denotes an obstacle/non-obstacle map. We adopt the
convention used by the Maximum Margin Planning algorithm of Ratliff et al. [20]. Although modeled on an MDP, it
is a structured learning algorithm, and the authors specifically refer to the output as a cost map and not a reward
function. Other works, such as MaxEnt IRL (Ziebart et al. [21]) and its derivatives do estimate an underlying reward
function of an MDP. We will refer to either as a cost map in general and use the term value function when writing
specifically in the context of an MDP.
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Figure 1.1: Simplified system schematic of a multi-modal planning algorithm which accepts a
command (Λj), image (Ii) and path endpoints (Xij , Yij) and synthesizes a cost map suitable for a
path planner which generates path µij . The differentiable planning loss (L) facilitates end-to-end
learning and requires no explicit abstraction of perception data or symbol grounding.

1.2 Thesis Organization

In Chapter 2, we introduce prior work on how spoken or written commands and perception are

integrated to generate plans. We examine their strengths and weaknesses to motivate the idea that

it is necessary and useful to build a navigation system that unifies natural language processing,

image understanding, and path planning with a deep network and a single loss metric.

In Chapter 3 we introduce two related Inverse Optimal Control (IOC) techniques, Maximum

Margin Planning (MMP) and Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL),

that have been used to imitate trajectories. We also examine Visual Question Answering (VQA)

architectures to understand how they might adapt to map text commands and static images into

cost maps suitable for path planning. VQA architectures now address many of the same problems

that modular language-perception-planning systems have had to solve, such as symbol grounding.

As demonstrated by Hu et al. [22] and Lu et al. [23] among many others, VQA systems have different

performance characteristics depending on the question posed. This is often due to limitations in the

grounding strategies the underlying model can express. We select the Feature-wise Linear Modulation

network (FiLM) from Perez et al. [24] as the basis for our algorithm because it demonstrates superior

performance on the CLEVR benchmark (Johnson et al. [25]) without an explicit model of the

reasoning process used to answer a question. This is helpful because real-world computer vision

tasks often defy procedural modeling. Finally, we introduce the metrics we will use to evaluate

system performance.

We begin Chapter 4 by modifying the Maximum Margin Planning loss for a trivial problem

with a simple neural network to understand what is required to make it numerically stable for more

complex architectures. Next, we show how FiLM, a vastly more complex deep network, can be

modified for our task. We use Dijkstra’s algorithm (Dijkstra [26]) as the planner for the initial work
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and later demonstrate how Field D* can be adapted to work with MMP to learn and produce more

realistic paths.

In Chapter 6 we introduce the datasets we use to evaluate the performance of our algorithm.

As we have not found a dataset suited to our problem, we have adapted two existing ones. The

CLEVR dataset (Johnson et al. [25]) was initially designed as a benchmark for VQA systems that

uses synthetic images and questions with no external bias that a careful observer may exploit. The

data are generated using a script that we have re-engineered to create planning scenarios. As with

CLEVR, we introduce a mechanism to ensure that our commands require correct reasoning about

both the image and the command and for which default strategies are unlikely to perform well.

We have also modified the DOTA/iSAID dataset (Dataset of Object deTection in Aerial images)

(Ding et al. [27], [28], Xia et al. [29], and Zamir et al. [30]), a large dataset of annotated aerial

imagery, to generate a new hybrid dataset with real objects and synthetic commands. We explore

the performance of our algorithm under varying conditions and analyze its limitations to inform

future directions of research.

Deep learning’s success is intimately tied to massively parallel computation engines and carefully

selected algorithms suited to these architectures. However, robot path planning algorithms are not

generally part of the repertoire of tools that come with frameworks such as PyTorch or TensorFlow.

In Chapter 5 we discuss the algorithms selected for this work and their adaptation for GPU

architectures. While time-consuming, this work is also necessary. An algorithm with excessive run

time is difficult to develop and test and impractical to deploy.

We conclude the thesis with Chapter 7, restating the contributions of this work but also

highlighting unanswered questions and future directions for continuing research.

1.3 Contributions

The significant contributions of this thesis are as follows:

• An architecture for unifying natural language processing, image understanding, symbol ground-

ing, and path planning into a single deep learning framework with a single evaluation metric. We

evaluate the algorithm on two datasets, highlighting strengths and weaknesses and identifying

directions for future work.

• A synthetic dataset, based on the CLEVR (Johnson et al. [25]) and DOTA (Ding et al.

[28]) datasets, for testing the reasoning abilities of this and similar systems in an unbiased

environment with virtually unlimited data. The dataset generation scripts have been re-targeted

for our problem space but are extensible and may be of use to other researchers.

• Scalable and massively parallel implementations of Field D*, the Fréchet coupling metric, and

Max Margin Planning that enable training and evaluation of deep networks with planning losses

without CPU limitations. These tools are an essential bridge between theoretical contributions

and future practical applications.
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Chapter 2

Commanding Robots with

Language

This chapter summarizes recent work in robotics where language and perception are combined to

plan robot paths. Second, we present our practical experience with a robot tested in an outdoor

environment. We do this to understand what kinds of problems these systems solve and what

opportunities exist for improvement.

2.1 Prior Work

Symbol grounding is the process of relating symbols in the form of words to concrete representations

in perception data first formulated in Harnad [31]. This process is essential for planning robot

trajectories with language commands. Shakey (Nilsson [4]) did this by directly translating the

instruction into the same predicate calculus statements that comprised the world model. Perception

was vastly simplified by engineering the robot’s environment to minimize clutter and false detections.

These discrete and unambiguous object detections were translated into more predicate calculus

symbols in the world model. There was no ambiguity in understanding the meaning of the command

or the state of the world.

The real world is not nearly so ideal. Commands may be ambiguous because of information they

leave out or assume as implicit or even because one person’s understanding of a phrase may differ

from another (Oh et al. [11]). Objects may be in a cluttered environment, partially obstructed, have

multiple or false detections, or may have an appearance that does not exactly match the exemplar

object.

One method for dealing with ambiguity and error is to develop appropriate fallback and error

recovery routines. In MacMahon et al. [32], the authors assume that only the instruction may be

ambiguous and not perception. The simulated environment in which they run human and automated

trials is a maze of corridors with sparse features and a limited set of actions at each intersection.
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Their core contribution is a method by which a natural language instruction is parsed into a syntax

tree and then translated into a robust set of commands for the robot to follow, using hard-coded

knowledge to fill in information implicit in the natural language instruction. This reduction of the

world to a topological map with discrete decision points is common in literature and is appropriate

for highly structured environments composed of corridors and discrete features. However, it does

not scale well for open environments that lack distinctive landmarks and where one may arrive at

the same goal with many solutions.

Kollar et al. [14] is an instructive example of how probabilistic reasoning can be used to solve

the grounding problem. We expand upon this example because it is more readily summarized than

more complex systems yet expresses some of the core techniques common to the others, such as

codifying relational concepts from language (e.g. “left of” or “right of”) as probabilistic equations.

In Kollar et al. [14], the authors show that it is possible to automatically translate more than

ninety percent of human-generated instructions used to describe paths in a real office environment

using a hierarchical formalism called spatial description clauses (SDC), allowing for natural language

communication with only occasional parsing errors. Each command is parsed into a tree of nested

SDCs using a CRF to label words as objects, verbs, landmarks, or spatial relationships grouped into

a tree that reflects the hierarchical structure of the command. This structure is later grounded to

generate instructions that the robot can execute.

With slightly more formalism, given a path P , a sequence of SDCs S, and detected objects O,

the path that best satisfies the sequence of relations specified in the SDCs is:

P ∗ = argmax
P

p(P, S|O) = argmax
P

p(S|P,O)p(P |O) (2.1)

Perception is not modeled in this process as the objects, O, are given. In addition, the algorithm

returns the most probable path to the exclusion of others. The authors decompose the path into

discrete viewpoints vi in a topological map, with each SDC inducing a change in viewpoint with the

following approximation:

p(P, S|O) ≈ p(sdc1, ...sdcM |v1...vM+1, O)p(v1...vM+1, O) (2.2)

≈
[

M∏

i=1

p(sdci|vi, vi+1, O)

][
M∏

i=1

p(vi+1|vi, ...v1)
]
p(v1) (2.3)

Finally, each SDC is decomposed into the underlying grammar model by expanding it into an object

(f), verb (a), landmark (l), and spatial relationship (s) (Equation (2.5)).

p(sdci|vi, vi+1, O) = p(fi, ai, si, li︸ ︷︷ ︸
sdci

|vi, vi+1, O) (2.4)

≈ p(fi|vi, vi+1, o1...oK)︸ ︷︷ ︸
object

p(ai|vi, vi+1)︸ ︷︷ ︸
action

p(si|li, vi, vi+1, o1...oK)︸ ︷︷ ︸
spatial relation

p(li|vi, vi+1, o1...oK)︸ ︷︷ ︸
landmark

(2.5)
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The action term in Equation (2.5) is a hard-coded model that relates terms such as “left” or

“straight” to the physical motion required to move from vi to vi+1. The landmark and object terms

are computed using image co-occurrence statistics gathered from Flickr. That is, given the objects

ok that are visible at vi, p(li|...) is the most likely pairwise co-occurrence between ok and li. Finally,

the spatial relation term encodes phrases like “through” or “to the left of.” This is learned from

a distribution of examples drawn by humans. Perception is not modeled in any meaningful way.

The robot’s world is segmented into a topological map, where again, there are discrete actions and

viewpoints.

The key difference fromMacMahon et al. [32], however, is that the grounding model is probabilistic.

The model’s goal is to jointly predict the most likely path between viewpoints in the topological

map with the command, given landmark detections. The authors use hand-engineered features to

compute the probability of how landmarks and spatial relations comport with the command. For

example, spatial relations for 11 prepositions were learned from hand-drawn examples from humans.

This method, however, has no explicit model for noisy object detections. The probabilistic

formulation for grounding makes the model more flexible. Still, as it selects the path that maximizes

the joint probability of the path and command, it cannot recover from errors. It avoids the

need to create an explicit model of hard to define human expressions by learning the meaning of

spatial relations from human examples. However, it assumes the meaning of the spatial relation

is independent of the object, its orientation, or even the rest of the command. Further, specific

elements of the command language map directly to the hand-engineered features. Real language

is not so regular or so easily decomposed. Finally, the model reasons about paths in the context

of a topological map, making it easier to perform inference over a discrete set of positions and

orientations, but which may not be appropriate for outdoor and unstructured environments.

Other systems solve these problems with two techniques. First, the command language is usually

restricted to a limited set of nouns, actions, and modifiers that take a regular form that is easily

parsed into a syntactic tree (Boularias et al. [33], Guadarrama et al. [34], Hemachandra et al. [35],

and others). By limiting the selection of nouns, we can train detectors for well-defined object classes

that map directly to them.

The second strategy condenses discrete objects in perception data to a form suitable for Bayesian

inference on a graphical model. The graph itself is a relational representation of how the various

symbols and the command’s structure comport to perception features. By limiting the types of

modifiers (e.g. “left of”, “above”, etc.), we can develop scoring mechanisms to determine how well a

hypothesized configuration of the graph conforms to the statement.

Table 2.1 lists several other navigation systems that we have investigated. For example, Gupta

et al. [36] show that its possible to learn cost maps for each image that a robot sees as a travels

through an office environment. Anderson et al. [19] use reinforcement learning to follow a path

through a home environment that has a topological map. None of the literature we have seen, to

this point, also integrate language and the paths are usually constrained by nature of the map (i.e.

topological) or because the plan is very short term. While each have their strengths, none of them

cover all the properties that we are interested in. More recently, Chen et al. [37] is a vision language
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Table 2.1: Comparison of some of the properties of robot navigation systems.

Kollar et al.
[41]

Anderson et
al. [19]

Tamar et al.
[18]

Misra et al.
[42]

Wulfmeier et
al. [43]

Probabilistic LSTM Value Iteration Net Deep RL Deep IRL

Map Type Topological Topological Metric Metric Metric

Deep Features No Yes Yes Yes Yes

Structured
Prediction

No No Yes No Yes

Grounding /
Attention

Yes Yes No Yes No

Language Yes Yes No Yes No

navigation system that solves a similar problem to Anderson et al. [19] using a graph neural network

on a topological map. Wang et al. [38] finds traversable paths for a vehicle in a problem similar to

Wulfmeier et al. [39], but without language. Song [40] is an example of deep inverse reinforcement

learning for planning in unstructured environments using single words to condition the map. In

summary, we choose to explore the problem of combining language and vision for navigation on a

map for use in unstructured environments, which is less developed than other related areas.

2.2 An Example Architecture

We have experience with a field robot that uses a text-based command language and perception

to plan paths without any apriori maps as part of the Robotics Collaborative Technology Alliance

(RCTA) program sponsored by the United States Army Research Laboratories (ARL). This work

has been published in Oh et al. [1], Oh et al. [11], Oh et al. [44], Suppé et al. [45], and Oh et al. [46]

and others, with the complete navigation system independently evaluated in Lennon et al. [47]. The

robot operates in an outdoor environment where discrete landmarks are often sparse, unlike some

prior work that used topological maps suited for indoor environments.

The robot platform is based on a ClearpathTM Husky (Figure 2.1) equipped with a high dynamic

range camera with a 120-degree horizontal field of view and a scanning lidar with a 360-degree

field of view and an 80-meter range. The lidar was used to detect buildings and walls and position

labeled image pixels in 3D.

Our image classifier is the Hierarchical Inference Machine (HIM, Munoz [13]). This pixel labeler

segments the image into superpixels and then labels the superpixels using a forest of decision trees

to classify the contents of each superpixel based on features such as dense SIFT (Lowe [49]), Local

Binary Patterns (LBP, Ojala et al. [50]), and texture (Shotton et al. [51]). Neighboring superpixels

are grouped into a hierarchical structure with regional features so that it uses global as well as local

information in the final labeling. The image classifier works in parallel with an object detector (Zhu

et al. [12]) and a person detector (Yang et al. [48]).

Figure 2.3 shows the construction of the command language called the tactical behavior spec-

ification (TBS) used in our experiments. It is a structured language expressed in Backus-Naur
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Camera

Lidar

Years 2013-present

Wheelbase ≈1.5m

Weight 50kgs

Camera GDRS Adonis HDR

Resolution 1280x768

HFOV 120◦

Lidar GDRS XR LADAR

Range ≈80m

HFOV 120◦

VFOV 45◦

CPU i7-3615QM@2.3GHz × 4

Object Detector Active DPM (Zhu et al. [12])

Person Detector (Yang et al. [48])

Image Classifier HIM (Munoz [13])

Sec / Frame ≈ 2.5

Resolution 640x384

Features SIFT, LAB, Texture

Figure 2.1: Technical details for Husky robots used in Oh et al. [1].

form. The named objects map directly to scene labeler and object detector categories, so there is

no ambiguity in their meaning. The TBS encodes several spatial relationships, such as “left of” or

“behind” and two modal constraints: “covertly” and “quickly.” This affects the kind of path the

robot may take in a hostile or friendly environment.

The grounding process consists of two steps. First, nouns in the TBS are mapped to observations

in the world. This is accomplished with a grounding graph, detailed in Duvallet [52]. As with other

navigation systems, these actions are grounded against simplified representations of the perception

system (Figure 2.2), with points representing most small objects and cylinders, planes, and boxes

for more voluminous ones, discarding any more detailed information beyond object class and a

confidence metric. Second, the meanings of phrases such as “behind” are expressed using a cost

map that is learned using Maximum Margin Planning (Ratliff et al. [20]), as detailed in Boularias et

al. [33] and Boularias et al. [53].

Our field experiments are reported in Oh et al. [1] and independently evaluated in Lennon et

al. [47]. The test environment was a simulated town situated on a military base designed to train

soldiers. Of 46 runs with 30 unique TBS commands, 35 were considered successful. However, the

interface between perception and planning was a common problem during the tests. For example,

misperception on the part of the semantic classifier often populated the robot’s map with phantom

objects, causing the robot to ground the command against objects that did not exist. Moreover,

the image classifier was trained to perform well on a metric that is probably not the correct one to

achieve the best performance for the robot’s overall task.

In the RCTA architecture and many others, information flows in one direction, from perception

to grounding/intelligence processes. The perception process is essentially autonomous from the

rest of the robot, making development and testing much more manageable and presenting a few

problems.

First, the perception process is not trained with a loss function relevant to the task set. For
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Source Image
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Hydrant 200 reports
Traffic Barrel 1120 reports

Simplified Point Objects

Figure 2.2: Example of perception data flow in RCTA system for semantic scene labeler. Labeled
images are fused with 3D lidar to produce a labeled point cloud that is abstracted to point objects
with attributes, discarding a large amount of scene data.

example, the HIM semantic classifier in Munoz [13] was designed to be competitive on the Stanford

Background Dataset (Gould et al. [54]) and the MSRC-21 dataset (Shotton et al. [51]), which have

many labels that are not relevant. Performance is measured by the number of correctly labeled

pixels in total or averaged across classes. For a ground robot, each pixel in a scene will not have the

same importance due to perspective effects, and some pixels may have little relevance to the task at

all (e.g., sky pixels).

It is important to match the performance of the classifier to the robot’s task, but it is not

apparent how to do that. For example, a mislabeled grass region may not be as important as a

mislabeled goal object. There may be multiple detection systems, each with its own characteristics

and training criterion and no clear way to integrate the information into a single world model.

Each module is trained on individual corpora of task-relevant images independent of each other

and independent of the robot’s test scenario. In part, this is because each module was developed

separately from the others to simplify collaboration, but a scene labeler may be helpful to an object

detector by providing information about the image context. For example, sky pixels are unlikely to

contain true-positive observations of humans but may contain birds or airplanes.

The interfaces between one module and the next are similarly difficult to define. In our case,

labeled pixels are mapped to 3D points with a calibrated lidar. These point clouds were then

condensed into simplified objects in the robot’s local map. These models may not be appropriate

for all kinds of objects and tasks, and each model must be engineered by hand. For example, color

may be important for one object in a particular task, and relative orientation may be important for

another object and task.

The task does not affect how the perception system works. All image regions have equal

importance, even if the region is irrelevant to the command in question. This wastes computational

power but also invites unnecessary errors. For example, a system planning a path through an office
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2. Commanding Robots with Language

⟨tbs⟩ |= ⟨action⟩ [⟨direct-obj⟩] [⟨mode⟩] ⟨goal⟩ [⟨goal-constraint⟩]
⟨action⟩ |= ⟨navigate⟩ | ⟨search⟩ | ⟨observe⟩

⟨direct-obj⟩ |= ⟨named-obj⟩
⟨named-obj⟩ |= ⟨named-object1⟩ | ⟨named-obj2⟩

⟨named-obj1⟩ |= Robot | Building | Wall | Door | Grass | Asphalt | Concrete

⟨named-obj2⟩ |= Person | TrafficBarrel | Car | GasPump | FireHydrant

⟨mode⟩ |= ⟨simple-mode⟩{⟨path-constraint⟩}
⟨simple-mode⟩ |= quickly | covertly

⟨path-constraint⟩ |= ⟨constraint-list⟩
⟨goal-constraint⟩ |= ⟨constraint-list⟩
⟨constraint-list⟩ |= ⟨constraint⟩ | ⟨constraint⟩ { ⟨operator⟩ ⟨constraint⟩ }

⟨constraint⟩ |= [not] ⟨spatial-relation⟩⟨landmark⟩ | [not] (⟨constraint-list⟩)
⟨spatial-relation⟩ |= left | right | behind | front | around | near | away

⟨landmark⟩ |= ⟨named-object⟩
⟨operator⟩ |= ⟨and⟩ | ⟨or⟩

⟨goal⟩ |= to | ⟨spatial-relation⟩ ⟨named-obj⟩

Figure 2.3: Tactical Behavior Specification (TBS). Figure adapted from Boularias et al. [33].

environment may choose to look for chairs in specific regions of an image and can safely dispense

with looking for vehicles unless presented with extraordinary data. The algorithm should have some

expectation as to what can be found in an environment given a task.

2.3 Improving Existing Architectures

Based on our own experience and our survey of other state-of-the-art navigation systems similar, we

have identified three potential research directions to improve the state-of-the-art.

• Training with a single loss metric: The complete navigation system should be trained

with a single loss metric. Individual modules developed in isolation may not perform optimally

when combined into a navigation system.

• Data-defined interfaces: The interface between perception, language processing, and

planning must be more flexible and expressive. Ideally, communications should be multi-lateral

so that information from one module can be used by others.

• Task-specific planning/perception: The perception/planning process is complex but needs

only support the behaviors required to achieve optimal performance for the overall task. A

navigation system with a state-of-the-art object detector for ImageNet (Deng et al. [55]) may

not be as good as a custom detector architecture for a few task-relevant objects. Further,

object detections by themselves may have lower performance than mid-level features, which

convey more information but in a less accessible form.
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2.4 Summary

Weaving together the many disparate modules that compose a robotic navigation system is not easy.

The system architecture helps compartmentalize development and complexity and is essential to

collaborative work. However, with increasing computational and data resources combined with end-

to-end learning, we can fuse previously separate tasks, eliminating the need for discrete interfaces and

optimizing the system for peak performance under a single metric, addressing the points mentioned

earlier.

As an example of the rapid progress toward data-driven monolithic architectures, consider the

Discrete Parts Model (DPM, Felzenszwalb et al. [15]), which was a state of the art object detector

only a few years ago. The DPM contains a flexible and abstract framework for modeling the HOG

features in different regions of an object as the object deforms or changes position and orientation.

In a few short years, DPM has been replaced by many different neural network architectures that

are essentially model-free, with no explicit features or model for object appearance except for what

is learned directly from the training data and internalized in the network weights.

Integrating path planning, vision, and language processing into a single deep learning framework

is consistent with this trend and neatly solves several problems we have identified in existing

navigation approaches. Fortunately, the fusion of language parsing and image understanding is

already an area of active research from which we can draw inspiration. In Chapter 3 we discuss

candidate deep networks as well as differentiable planning losses that we can combine to create a

novel navigation architecture.
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Chapter 3

Background & Theory

This chapter introduces the relevant theory and techniques to construct a navigation system for

planning robot trajectories through static aerial images using naturalistic text commands. We

present deep networks that could be modified to generate cost maps for planning, the loss function

used for training, and appropriate metrics to measure performance.

The primary goal of this work is to fuse perception, natural language processing, and planning

with a single differentiable loss function. In Section 3.2 we introduce Inverse Optimal Control

techniques for imitation learning and discuss the reasons for selecting Maximum Margin Planning

(MMP) as the loss function we use for our experiments. In Section 3.3, we evaluate several Visual

Question Answering (VQA) architectures to motivate the argument that they can adapt to serve as

the foundation for our planning system. We explore a few networks in detail and select Feature-wise

Linear Modulation (FiLM, Perez et al. [24]) as the base architecture for our work, primarily because

it is a successful model-free approach to VQA (Section 3.3.3). Finally, we introduce the Hausdorff

and Fréchet distance metrics in Section 3.4, two standard techniques for measuring the conformity

of a path to a reference trajectory.

3.1 Markov Decision Processes for Robot Planning

Markov decision processes (MDP) have long been used in robot planning. In brief, an agent (robot)

is said to be in state si with a reward R(si). The robot may transition to state sj with probability

pij . This transition is independent of prior history. The graph of interconnected states may be

sparse, as in a topological planner, or regular and metric, as is often the case for field robots path

planners. Finding the policy, µ, that minimizes the expected cost of transitioning between two

states is a common task. This policy is stochastic for cases where pij ̸= 1, or deterministic when

pij ∈ {0, 1}.
A robot operating in an office environment, for example, may have no difficulty traversing between

rooms. A sparsely connected graph representing natural decision points may be an appropriate
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3. Background & Theory

model, with a local planner spanning the gap between nodes. In contrast, a robot operating outside

must contend with irregularly shaped regions with variable traversability, obstacles, and poorly

defined decision points. A rasterized map with connections to a limited area around each state

may be more suitable. In both cases, stochastic transitions capture uncertainty in the agent or the

environment.

An MDP with a sparse topological map can be adapted to model a rasterized map. However,

the algorithms we use to efficiently solve problems modeled by one graph type are not the same for

the other. The number of distinct paths connecting two points in a topological map may be large,

but it is still reasonable to compute all policies connecting two states for many practical problems.

This is often not the case for maps because they contain many more states, not all of which have

equal importance. In this work, we constrain our model to maps with regular, square cells and

connections between the 8-connected neighbors of each cell.

The Bellman equation (Equation (3.1)) computes the value, V (s), for a policy, π, that has arrived

at state s. The equation is recursively defined by virtue of the Markovian property, and prior state

transitions do not affect future decisions. Psπ(s) is a state transition probability matrix used for

stochastic models. γ discounts the value of past states to keep the sequence bounded for problems

with an infinite time horizon.

V π(s) = R(s) + γ
∑

s′

Psπ(s)(s
′)V π(s′) (3.1)

The related function Q(s, a) (Equation (3.2)) is also recursively defined and computes the value of

an action a at state s. Psa is a state action probability matrix.

Qπ(s, a) = R(s) + γ
∑

s′

Psa(s
′)V π(s′) (3.2)

π(s) is the optimal decision at state s according to optimal policy π. This optimal policy is

defined for V π(s) and Qπ(s, a) for all states s ∈ S as:

π(s) ∈ argmax
s∈S

V π(s) (3.3)

π(s) ∈ argmax
a∈A,s∈S

Qπ(s, a) (3.4)

An enormous number of path planning problems have been modeled as MDPs with an equally

large number of techniques for finding optimal policies (Figure 3.1). The reward function R(s) is

unknown in the problem studied here, as human behavior is often difficult to capture in an abstract

model.

Methods such as value iteration, policy iteration, and Q-learning require knowledge of the cost

or reward for a state. For example, Mnih et al. [56] learn to play video games by using the score to

determine high-value states. A robot manipulation strategy may use the end-effector proximity to a

target as a similar metric to signify desirable states.
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Reinforcement Learning

• Value Iteration

• Q-learning

• Policy Iteration

• . . .

Inverse Optimal Control

• Max Margin

• Inverse Reinforcement Learning

Apprenticeship Learning

MaxEnt IRL

Known R(s) Unknown R(s)

Figure 3.1: Relational diagram of various MDP methods.

Neither technique is well-suited to this problem. We envision a system that produces trajectories

similar to those a human would generate, given the same command and image. As such, the system

must interpret the syntax and underlying meaning of the command and image features, using a cost

function identical to the human. For example, one could make states behind an object cheaper for

a command that specifies a target towards the rear of an object. However, given the exponential

combination of even simple geometric constraint clauses, this cost function would be difficult to

code.

We pose our problem as learning a mapping from image and text inputs to path outputs by

imitating expert policies which we model as an Inverse Optimal Control (IOC) problem.

3.2 Learning from Example with Inverse Optimal Control

Abbeel et al. [57] establish that the feature expectation (Equation (3.5)) is sufficient to determine the

discounted rewards for any policy and that the goal of the IRL algorithm is to match the observed

feature expectation. Equation (3.5) is the expected reward for the policy π with discount γ and a

reward function R(st).

Eso∼D[V π(s0)] = E[

∞∑

t=0

γtR(st)|π] (3.5)

= E[

∞∑

t=0

γtw · ϕ(st)|π] (3.6)

= w · E[

∞∑

t=0

γtϕ(st)|π]
︸ ︷︷ ︸
feature expectation

(3.7)

Both Max Margin Planning (MMP, Ratliff [58]) and Maximum-Entropy Inverse Reinforcement

Learning (MaxEnt IRL, Ziebart [59]) model the cost or reward, respectively, as a wTϕ(st), where

ϕ(st) is a feature vector at state st and w is a learned set of weights (Equation (3.6)). This

formulation, presented in Abbeel et al. [57], is particularly useful because it means that the weights

w are separable from the feature expectation (Equation (3.7)). The linear separation of cost/reward
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and policy is a key insight of this work.

The features are often carefully engineered to suit the problem. In Ratliff et al. [20], the features

are a vectorized representation of the source image, blurred at different scales and with a quantized

colorspace. In Ziebart et al. [60], these features are also a blurred representation of an obstacle map

for an office environment. By using deep features instead of engineered features, we are no longer

constrained by the designer’s skill to select features appropriate for the problem. This may make it

easier to model more complicated interactions between the environment and the agent.

Ng et al. [61] note that this is an under-constrained problem with sparse rewards and few expert

examples. Abbeel et al. [57] solve this with a constrained linear program. Figure 3.2 is an example

of reward maps recovered from the policy (blue arrows). There are many solutions to the problem.

MaxEnt IRL and MMP solve the ill-posed problem by using the principle of maximum entropy and

max-margin structured learning, respectively.

(a) Expert policy. (b) Recovered reward, λ = 0. (c) Recovered reward, λ = 1.

(d) Recovered reward, λ = 2. (e) Recovered reward, λ = 3. (f) Recovered policy, λ = 7.

Figure 3.2: Linear Programming method to recover grid world cost map. Large λ will degrade result.
(Bottom right)

3.2.1 Max-Margin Planning

Max-Margin Planning (MMP), introduced by Ratliff et al. [20], is a form of Inverse Optimal Control

where the objective is to imitate a state/action visitation count, µi, demonstrated by an expert

for some input xi, with corresponding features ϕ(xi). The variable µ is a |S||A| × 1 vector of

17



3. Background & Theory

state/actions visited by a policy and is generally sparse. The features, ϕ(xi), are a d× |S||A| matrix.

The weights, w, are a d× 1 vector that combines the features into a cost for each state/action. The

algorithm is deterministic and the cost for a path is succinctly expressed as wTϕ(xi)µi.

The Max-Margin Planning algorithm solves for w by optimizing over the structured loss constraint

in Equation (3.8). This formulation assumes that the cost of a policy is linear with respect to its

state/action visitation counts. As with Abbeel et al. [57], the solution to this problem is ill-defined.

The authors solve this by introducing a max-margin constraint.

wTϕ(xi)µi ≤ min
µ∈Gi

{
(
wTϕ(xi) + ℓ(µi)

T
)
µ} (3.8)

The loss function ℓ(µi) is chosen to suit the problem. For a map, this could be a function of

the distance transform from the expert path. Paths that follow the expert path should have no

loss, while those that deviate should be penalized based on how far they go astray. The constraint

states that the optimal policy must always have a cost less than or equal to any other policy µ ∈ Gi
between the same starting and ending states.

Ratliff et al. [20] show how to efficiently find a solution for w as a constrained optimization

problem in Equations (3.9) and (3.10).

max
w,ζi∈R+

1

N

∑

i

ζqi +
λ

2
∥w∥2 (3.9)

s.t. ∀i wTϕ(xi)µi + ζi ≤ min
µ∈Gi

{
(
wTϕ(xi) + ℓ(µi)

)
µ} (3.10)

Since {µ, µi, ℓ(µi)} ≥ 0 and ℓ(µi)µi = 0, then ζi ≥ 0, and there is no need to enforce this

constraint explicitly.

ζi = min
µ∈Gi

{ϕ(xi)µ+ ℓ(µi)} − ϕ(xi)µi (3.11)

Substituting ζi into the objective yields Equation (3.12), which is the max-margin planning objective.

L(Ii, µi, θ) =
1

N

∑

i

min
µ∈Gi

{ϕ(xi)µ+ ℓiµ} − ϕ(xi)µi +
λ

2
∥θ∥2 (3.12)

Since ϕ(xi) is a cost map, there is an additional requirement that ϕ(xi) > 0 to avoid infinite loops.

This is also a prerequisite to solve for µ using Dijkstra/A*. In our model, ϕ(xi) is replaced with

a deep network F(Ii,Λi, θ) which receives image Ii and language input Λi and is not likely to be

convex.

L = min
w

(
1

N

∑

i

βi

q

∥∥∥∥wTϕ(xi)µi − min
µ∈Gi

(
wTϕ(xi) + ℓ(µi)

T
)
µ

∥∥∥∥
q

+
λ

2
∥θ∥2

)
(3.13)

The trajectories through the state space are normalized by path length with the parameter βi so

that short sequences and long sequences are weighted equally. q is either 1 or 2, and λ is a standard
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weight decay.

Ratliff et al. [20] have demonstrated this technique’s ability to imitate trajectories through an

aerial image. Additionally, MMP was used by Duvallet [52] to translate command phrases, such as

“left of”, into robot trajectories by imitating expert examples.

3.2.2 Max-Entropy Inverse Reinforcement Learning

Inverse Reinforcement Learning is a form of Inverse Optimal Control that seeks to recreate the

reward function that explains an agent’s demonstrated state/action sequence. This is different

from MMP which merely attempts to reproduce the agent’s behavior. Since the IRL problem

is well known to be ill-posed, Maximum Entropy IRL (Ziebart et al. [21]) utilizes the maximum

entropy principle (Jaynes [62]) to learn the reward function that reproduces the expected feature

counts with no more commitment to any one piece of evidence over another. This concept has been

demonstrated in Ziebart et al. [21] to accurately predict a taxi driver’s route preferences as they

traverse a topological map and to predict a pedestrian’s route preference through a metric grid map

(Lee et al. [63], Ziebart et al. [60], and others).

As with MMP, the original work assumes the reward for any state/action is a linear combination

of features engineered to suit the task. For example, the features in Ziebart et al. [21] include road

type, speed, number of lanes, and a discrete set of maneuvers to transition from one path segment

to the next (hard right, straight, etc.). The basic features for each state in Ziebart et al. [60] are an

obstacle indicator and 4 Gaussian blurs of an occupancy map. More recent work, such as Huang et

al. [64], uses an 819-D HOG as the basic feature.

Since the MaxEnt IRL loss function is differentiable and amenable to gradient descent optimiza-

tion, Wulfmeier et al. [39] recently proposed a combination of Deep Learning with a MaxEnt Inverse

Reinforcement loss function to learn features and the reward function simultaneously. Finn et al. [65]

introduce a method called Guided Cost Learning, which is a sample-based MaxEnt IRL algorithm

more suited for models with very large and continuous state sets, such as the configuration space of

a robot arm.

MaxEnt IRL has two advantages over Max-Margin Planning. First, the MMP model assumes

that there is one best solution for the structured loss. If there are multiple ways to go between two

endpoints with equal cost, the result will be unpredictable, as noted in Ziebart et al. [60]. For example,

in Figure 4.2d, if both the ground truth path and the computed path are correct, the gradient

should be zero everywhere. Instead, the optimizer will receive antagonistic corrections. Further,

if the features are ambiguous, MMP will not converge to a solution. Second, when planning with

uncertainty, it is better to have a distribution of possible policies from which to draw alternatives.

The cost of this flexibility is often increased training time. Wulfmeier et al. [66] note that the

computation of the expected state visitation is a bottleneck, although they do not explicitly state

the cause. The map is just 100× 100 pixels in their experiment. To capture enough visual detail,

we feel that larger aerial images are necessary. In Finn et al. [65], the authors use adaptive sampling

to estimate the partition function more efficiently. However, this technique has not yet been applied
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directly to computer vision.

We have chosen to first examine MMP as a differentiable loss function for our network because

the minimizer is efficiently retrieved using A* at each time step, with the developmental loss function

running on a CPU. As we will expand in Section 5.3, the shortest path computation can be one

of the larger computational bottlenecks, stalling the GPU while the loss function is updated on

the CPU. This is different from traditional deep learning computer vision applications where the

GPU is the primary processor. The inherently sequential nature of the Single Source Shortest Path

(SSSP) algorithm does not map well to the GPU’s processing model. This has compelled us to

move MMP to the GPU and switch to the Bellman-Ford-Moore algorithm, which ultimately has

similar runtime to Value Iteration, which is at the core of MaxEnt IRL. MaxEnt IRL is therefore an

appealing algorithm for future work.

3.3 Deep Networks for Cost Map Generation

Visual Question Answering is the problem of taking an image and a free-form, open-ended question

and generating an answer to that question, often in a single word. It has been likened to the problem

of solving artificial intelligence, in general.

As a motivation for our argument that VQA architectures can be used for navigation, consider

Transparency by Design Networks (TBD) (Mascharka et al. [67]). This network is designed to

generate meaningful attention maps after each layer of the recurrent network as a window into what

a VQA architecture is thinking. It uses the ground truth algorithms from a procedurally generated

synthetic dataset, CLEVR (Johnson et al. [25]), to train a network that builds a customized modular

recurrent network to solve each query. The examples in Figures 3.3 and 3.4 demonstrate that the

Source Image Purple Cylinder Right

Figure 3.3: Operator sequence: Right of purple cylinder. Reproduced from Mascharka et al. [67].

algorithm learns to parse language, ground symbols, and identify regions of space in relation to

objects. These are necessary skills also required for our navigation task. However, this particular

architecture has a strong model of the reasoning process, which makes it unsuitable for our work.

Table 3.1 lists a few of the architectures that we studied which were high-performing at the

commencement of this work. It is almost certain current VQA methods are a better choice for

solving the general navigation problem. However, as a pathfinder, our primary selection criteria

were that a notional base architecture has reasonable performance, training time, model size, and
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Source Image

Large Metal Sphere Left

And

Green Metal Right

Large

Figure 3.4: Question: What color is the big object that is left of the large metal sphere and right of
the green metal thing? Reproduced from Mascharka et al. [67].

no internal task-specific model that would make it difficult to port to navigation-related problems.

The architectures in Table 3.1 can be divided into groups that were designed for CLEVR (Johnson

et al. [25]) or the Visual Genome (Krishna et al. [68]) datasets. There are major differences between

techniques designed for one dataset or another.

Name Dataset Platform

Pythia [69] VG 1st place VQA Challenge 2018

Multi-modal Factorized High-order Pooling (MFH)
[70], [71]

VG 2nd place VQA Challenge 2018

Bi-Linear Attention Net (BAN) [72] VG 3rd place VQA Challenge 2018

Dense CoAttention Net (DCN) [73] VG 6th place VQA Challenge 2018

Neural-Symbolic [74] CLEVR

Differentiable Dynamic Reasoning (DDR) [75] CLEVR

Compositional Attention Networks (MAC) [76] CLEVR

Transparency by Design (TBD) [67] CLEVR

Table 3.1: Survey of leading VQA architectures as of early 2019.

Agrawal et al. [77] introduce a benchmark dataset to test artificial intelligence algorithms with a

broad set of images and human-engineered questions that are designed to challenge the intellect of a

hypothetical toddler, alien, or smart robot. That is, the questions were designed to be non-obvious,
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requiring background knowledge and reasoning skills that current state-of-the-art systems may not

possess. COCO (Lin et al. [78]), Visual7W (Zhu et al. [79]), and DAQUAR (Malinowski et al. [80])

are also commonly used in this field, and ask generic questions, usually from a human’s perspective

of the world. They contain images of human environments and the objects commonly found in them.

This work is more concerned with establishing the capability of a VQA-derived system to

understand concepts related to navigation. This means identifying landmarks and their orientations

in relation to a hypothetical robot. These concepts are not generally tested by the questions and

environments found in the datasets mentioned above. We instead turn to the CLEVR dataset

(Johnson et al. [25]), which is designed to test spatial and abstract reasoning for VQA systems.

While the task posed by each dataset is the same conceptually, the datasets are rather different.

CLEVR uses realistic images that are nevertheless synthetic, with a limited number of objects

in a single context. The questions are algorithmically generated from a set of templates. While

the number of question variants is quite large, there are fundamentally just six kinds of questions.

In robot planning, it is not unusual to have a limited, structured language reminiscent of the

algorithmically generated CLEVR questions. In contrast, the Visual Genome dataset uses real

images annotated by crowdsourcing. The questions and answers are more diverse than those from

CLEVR and naturally will lead to different strategies for designing the network.

The CLEVR dataset has effectively been solved. For example, Yi et al. [74] perform better

than 99 percent correct for all categories of questions. Further, this paper lists six other models

that also perform better than 90 percent for all categories. Because CLEVR has been solved, it is

reasonable to believe that many of the spatial, relational, and grounding skills required to answer

CLEVR questions have been accurately modeled by many of the proposed architectures. However,

it can also be said that these models probably over-fit the synthetic data and may not work as

well with real images. While this is likely true, the objective of this project is to demonstrate that

it is possible to fuse command parsing, image processing, and path generation into a single deep

learning framework. Since the CLEVR architectures are more mature, there is more certainty in the

intermediate outputs required to perform our task.

Table 3.2: Reference VQA implementations considered at the commencement of this work. Not all
networks report CLEVR performance.

Name Year Accuracy % Reasoning
Model

Language
Model

Attention
Model

Source
Code

Inferring & Executing Programs (IEP)[17] 2017 88.6-96.9 Dynamic,
Modular

2-layer
LSTM

Procedural Torch

End-to-End Module Networks (N2NMN)[22] 2017 72.1 Dynamic,
Modular

2-layer
LSTM

Procedural TensorFlow

Stacked Attention Networks (SAN)[3] 2016 68.5 Iterative,
Monolithic

LSTM/CNN Multiplicative
co-attention

Theano

Multimodal Compact Bilinear Pooling (MCB)[81] 2016 51.4 Static, Mono-
lithic

2-layer
LSTM

Bilinear CAFFE

Visual7W[79] 2016 - Static, Mono-
lithic

LSTM Additive
co-attention

Torch

Feature-wise Linear Modulation (FiLM) [24] 2018 97.7 Static, Mono-
lithic

GRU - Torch

For this reason, we have carefully selected architectures that perform well with CLEVR but are
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also general and not engineered specifically to the dataset. We categorize the different algorithms by

their architectures in Table 3.2. A monolithic architecture has no modules used to solve particular

sub-problems, which is in contrast to a modular network that uses specialized sub-networks. A

dynamic network will choose the appropriate module for each iteration of the problem-solving

process. In contrast, an iterative network maintains the same architecture but applies it repeatedly,

as in a traditional recurrent network. Co-attention is an iterative attention process whereby an

attention map is updated via repeated operations on both the image and query data. Finally, a

static network will generate an answer in a single time step, as in Figure 3.5.

Most of the architectures for CLEVR follow a similar structure based on the original paper in

Johnson et al. [25]. They have a base network, usually a pre-trained variant of ResNet-101 (He et al.

[82]) from which 14 × 14 × 1024 dimensional mid-level features are extracted, an adapter (stem)

that conditions the features for the VQA task in general, a network core for modulating the feature

based on the input phrase, and a decoder that generates an answer.

The CLEVR dataset is algorithmically generated, and ground truth algorithms are available.

Most architectures predict the correct sequence of operations to predict the algorithm from the

query and then dynamically construct a network to solve that program. The prediction task is then

two-fold; to predict the correct algorithm and then the correct answer.

This is not possible for the general questions and answers found in Visual Genome. For this

reason, the architectures for Visual Genome in Table 3.1 all have static architectures without

specialized sub-units. For most queries, there is no clear, logical set of operations to generate a

robust program. Likewise, because we wish to learn paths from demonstration, given a command

and an image, we, therefore, do not consider the models that attempt to reconstruct an underlying

algorithm. This excludes DDRProg, Neural Symbolic VQA, and TBDNets.

In contrast to these networks, the bodies of FiLM and Compositional Attention Networks (MAC)

are a static sequence of feature modulation blocks that alter the feature map with respect to the

encoded query. This implies that it is not necessary to model the underlying logical process to predict

the correct answers to the CLEVR dataset, which makes these architectures ideal candidates for

our work. Further, they have no task-specific modules, such as color or shape recognition sub-nets,

indicating the generality of these architectures.

Finally, both networks train very quickly and consistently in contrast to architectures that model

the underlying algorithm used to generate the data. While it may seem that having the ground

truth algorithms makes the task easier to learn, the recurrent network becomes non-differentiable

at the point where the command encoding network selects the various modules to construct each

network instance. To work around this problem, some have used techniques like REINFORCE (as in

IEP Johnson et al. [17] or Neural Symbolic VQA Yi et al. [74]) to perform policy gradient descent.

FiLM satisfies our constraints of a fully differentiable network without specialized modules that

are specific to a given task. As such, we feel it is a good choice as the core of our network. We will

now delve into two networks that demonstrate simplified principles in VQA architectures and then

introduce FiLM.
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3.3.1 Basic VQA Architectures
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Figure 3.5: Basic VQA architecture adapted from Zhou et al. [2]. Image from SBD (Gould et al.
[54])

Figure 3.5 is an example of a typical early system for solving this problem using a bag-of-words

question representation (Zhou et al. [2]). Image features are supplied by high-performing classifiers

that were pre-trained on other tasks, such as ResNet (He et al. [82]), GoogLeNet (Szegedy et al.

[83]) or VGG (Simonyan et al. [84]). Features are extracted from the last layer of GoogLeNet in this

purposely näıve baseline architecture. The feature vector is concatenated with the embedded query

vector, and a shallow, fully connected network generates an answer to the query with a softmax

output. The network is trained with cross-entropy loss.

However, this example network suffers from many limitations, two of which are critical to our

task. First, the bag-of-words representation makes it difficult to encode complex queries. This is

fatal for a navigation language, as even simple instructions, such as “Go to the left of the car that is

next to the building” would have the same encoding as “Go to the left of the building that is next

to the car.” Second, it cannot perform any kind of reasoning or attention process found in current

high-performing architectures because there is no spatial information in the image features and no

attention mechanism. This näıve implementation was unsurprisingly designed as a baseline and not

as a competitive architecture.

A solution to the text encoding problem is to use the Long Short-Term Memory (LSTM),

Convolutional Neural Network (CNN), or Gated Recurrent Unit (GRU) to produce a sequence-

dependent representation. Figure 3.6 is an example of an architecture from Agrawal et al. [77] that

uses LSTMs for language encoding. The final hidden state of the LSTM encodes the embedded

query. For clarity, we have omitted that each word is first encoded as a one-hot vector that is

embedded with a matrix We, followed by a tanh non-linearity, where We ∈ R300×N and N is the

number of words in the input vocabulary.

The word embedding matrix, We, can be learned, but in other models, the embedding is pre-
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Figure 3.6: VQA architecture with LSTM text encoding adapted from Agrawal et al. [77]. Word
embedding left out for clarity.

trained using GloVe (Pennington et al. [85]), word2vec (Mikolov et al. [86]), and others. The choice

of encoding can affect results, as word2vec, for example, is designed to place semantically similar

words, like “red” and “blue” in close proximity in the vector space, which may make discrimination

between the two colors more difficult since they have a similar embedding.

Graves [87] demonstrates that LSTMs with larger hidden state perform better in machine

translation tasks. This is reflected in VQA architectures such as Johnson et al. [17] and Hu et al.

[22]. Agrawal et al. [77] try a two-layer LSTM and observe some benefit, especially when combined

with L2 normalization of the image features.

Alternatively, the hidden state may be used as it evolves over time. Xiong et al. [88] use the

hidden state sequence from a bi-directional Gated Recurrent Unit (GRU) to assemble facts from

both image and text features. Finally, Yang et al. [3] use a CNN for question encoding. However, it

is not recurrent, and this network is limited to the three successive words of the CNN’s receptive

field, limiting its ability to encode complex structure in the query.

3.3.2 Attention Models

Spatial information is still missing from this architecture. A query such as “Is there a dog in the

image?”, may work, but a more complex question, such as, “Is there a dog next to the chair?” will

not. The image feature vector is a flattened gestalt representation of the image. One solution is

to use mid-level feature maps that retain spatial information. Attention mechanisms are another

approach to solve this. The method presented here is a form of soft attention, where regions of the

feature map are weighted based on their perceived importance.

Symbol grounding is essential to navigation, and therefore attention mechanisms are of particular

interest to this work. However, FiLM in Section 3.3.3 exhibits good performance without an explicit

attention model.
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Visual7W

Visual7W (Zhu et al. [79]) is an example of a network that integrates spatial information using

an LSTM through a multiplicative attention model for grounded VQA (Figure 3.7). They use a

modified LSTM to encode a question and an image at the same time and then use a decoding step

to generate an answer. Equations (3.14) to (3.17) include an additional term to the forget, input,

and output, LSTM functions.

h1 h2 h3 h4

Is there a boat

x5x4x3x2

h0

VGG-16

x1

448 × 448

VGG-16

448 × 448

h5 x0 ∈ R512

Softmax

Attention Feature

C(I)

a4 C(I)

Encode Decode

14× 14 512× 14× 14

h3

r4

Figure 3.7: Simplified diagram of the Visual7W VQA network adapted from Zhu et al. [79]. The
attention mechanism is integrated with the LSTM query encoding process. Not all attention map
updates are illustrated for clarity.

ft = σ(Wfxt + Ufht−1+Wrfrt + bf ) (3.14)

it = σ(Wixt + Uiht−1+ Wrirt + bi) (3.15)

ot = σ(Woxt + Uoht−1+Wrort + bo) (3.16)

gt = ϕ(Wcxt + Ucht−1+Wrcrt + bc) (3.17)

ct = ft ◦ ct−1 + it ◦ gt (3.18)

ht = ot ◦ ϕ(ct) (3.19)

h0 = c0 = 0 (3.20)

This additional input, rt, is generated by the attention mechanism, which is a function of the
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hidden state and the feature map C(I) ∈ R512×14×14 taken from the fourth convolutional layer of

VGG-16. Equations (3.21) to (3.23) shows that the attention term is the weighted sum of the vectors

in the feature map. Given the hidden state of the LSTM, ht−1, which is dependent on the prior

words in the questions and the image, the attention mechanism adjusts the weights of the image

features to amplify those which are pertinent to the question.

et = wT
a ϕ(Whcht−1 +WccC(I)) + ba (3.21)

at = softmax(et) (3.22)

rt = aTt C(I) (3.23)

Finally, to complete the architecture, the initial inputs and final output to the process are defined

as:

x0 = WiF (I) + bi (3.24)

x1 = WwOH(t1) (3.25)

Z = softmax(F (I) · hn) (3.26)

Here, F (I) is the output of the last fully connected layer of VGG-16, and OH is the one-hot

representation of the word t1. Ww ∈ R512×N and Wi ∈ R512×4096 are embedding matrices, where N

is the number of words in the vocabulary.

Stacked Attention Network (SAN)

Instead of integrating attention with question encoding, one can also make it an independent process,

as in that Stacked Attention Network (SAN) from Yang et al. [3] (Figure 3.8). The additive attention

mechanism in this model receives both the 512× 14× 14 feature map from the last pooling layer of

VGG-16 and the encoded question, which can either come from an LSTM or a CNN. For brevity,

we will not describe the CNN question encoding. While competitive, it is not common in the VQA

literature.

hA = ϕ(WI,Avi ⊕ (WQ,AvQ + bA)) (3.27)

pI = softmax(WPhA + bP ) (3.28)

Here, vI ∈ Rd×m where m are the number of image regions, in this case, 196 from a 14 × 14

feature map, and d is the dimension of the feature vector, 512. The feature map from VGG-16 is

converted from a 3D tensor to a 2D array of feature vectors. In Equation (3.27), the input image

representation vI is embedded and combined with the question representation using the ⊕ operator.

The attention map is the generated in Equation (3.28), similar to Equation (3.22). Each image

feature is weighted by this attention map and summed to compute a new, overall image representation
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Figure 3.8: Simplified diagram of a Stacked Attention Network adapted from Yang et al. [3]. The
attention mechanism is a separate process after input encoding. In this case, there are two attention
layers.

vector (Equations (3.29) and (3.30)).

ṽI =
∑

i

pivi (3.29)

u = ṽI + vQ (3.30)

This new representation, u, can be reprocessed to address queries that require iterative refinement,

such as, “What is on the desk next to the chair next to the sofa?” (Equations (3.31) and (3.32))

The new representation, uk is computed in a similar fashion in Equations (3.29) and (3.30).

hk
A = ϕ(W k

I,Avi ⊕ (W k
Q,Auk−1 + bkA)) (3.31)

pkI = softmax(W k
Ph

k
A + bkP ) (3.32)

The final answer is computed as:

pans = softmax(Wuu
K + bu) (3.33)

We have seen attention via multiplication and addition, but there are other attention mechanisms

such MutliModal Compact Bilinear Pooling (Fukui et al. [81]) that use an outer product.
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3.3.3 Adapting FiLM for Cost Map Generation

FiLM (Perez et al. [24]) stands for Feature-wise Linear Modulation. This architecture performs

well on the CLEVR dataset without an explicit reasoning model. This generic design makes FiLM

adaptable to different domains. It uses a similar LSTM architecture for language as SAN and

Visual7w but instead uses a simple and novel feature map modulation technique with no attention

model. For this reason, we have chosen FiLM as the basis of our architecture.

The core element of FiLM is the FiLM-ed residual block (ResBlock) (Equation (3.36), Figure 3.9),

which conditions the image features with an affine transform produced from the language input.

These blocks are derived from the residual learning building blocks from He et al. [82]. Equation (3.36)
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Figure 3.9: Deep Max-Margin Planning network architecture developed in this thesis.

describes how the FiLM layer of the ResBlock modulates the feature map by scaling and offsetting it

with function fc(xi) and hc(xi), where i indexes the FiLM layer and c indexes the feature channel.

γi,c = fc(xi) (3.34)

βi,c = hc(xi) (3.35)

FiLM(Fi,c|γi,c, βi,c) = γi,cFi,c + βi,c (3.36)

FiLM uses pre-trained ResNet-101 mid-level features with a resolution of 14× 14× 128. They are
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Command How many green objects are there
Tokens [<START>, how, many, green, objects, are, there, <END>]
Encoded [ 1 46 31 68 12 64 33 2 0 0 0 0 0 0 0 0 0 0 0 0 ]

Table 3.3: Command transformed into tokens.

augmented with two channels that encode the row and column for each position of the feature map.

The FiLM parameters γi,c and βi,c do not include spatial information. Because FiLM only multiplies

and offsets the feature map, it is computationally efficient and scales well with feature map size.

The functions fc(xi) and hc(xi) are the final hidden state of the input sequence encoder. FiLM

uses a Gated Recurrent Unit (GRU), but may also use an LSTM, followed by a linear net to decode

the hidden state into the FiLM vector. The GRU hidden state is R4096. The input query is tokenized

(Table 3.3) into a fixed length string and embedded into a R200 vector using word2Vec (Mikolov et

al. [86]). We have also successfully trained models using GloVe (Pennington et al. [85]). The hidden

state after the last non-null token is taken as the output which is decoded into FiLM parameters.

Since each of the 4 FiLMed ResBlocks scales and offsets a 128-channel feature map, the output of

the language encoder must be R1024.

After feature modulation, FiLM uses three standard residual blocks, which reduce the number

of channels in the feature map, followed by an output classifier. In our adaptation for navigation,

we replace the classifier with a 1× 1 convolution to reduce the number of channels, followed by an

up-sampling to increase spatial resolution. An absolute value output function produces non-negative

cost map values, required by planners such as Dijkstra’s or A*. We augment the feature map with

a one-hot encoded start and end location of the agent to assist with commands that implicitly

reference the agent’s starting location.

3.4 Metrics

Robot trajectories are the ultimate product of the system, making trajectory metrics an essential

part of the performance evaluation. The cost function of the notional robot operator that we are

trying to replicate is unknown and, in general, difficult to reconstruct by means other than by

example. Therefore, the metrics used here are constrained to those which assume nothing about

path cost or the latent cost function.

Two metrics are standard in robotics and computer vision literature: the Hausdorff metric and

the Fréchet metric. The planning system generates polygonal curves, limiting our scope to suitably

specialized versions of the metrics for a two-dimensional Euclidean space with piece-wise linear

paths.
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3.4.1 Hausdorff Distance Metric

For point sets P and Q in a Euclidean space, the Hausdorff metric can be written as:

d(p, q) = ∥p− q∥ (3.37)

d1(P,Q) = max
p∈P

(
min
q∈Q

d(p, q)

)
(3.38)

dH(P,Q) = max (d1(P,Q), d1(Q,P )) (3.39)

Figure 3.10a is a graphical example of a one-sided pointwise Hausdorff metric. We will refer to the

one-sided match of each element in P to the nearest neighbor in Q as the Hausdorff coupling.

Dubuisson et al. [89] examined variants of this metric for greater robustness in the presence

of noise. In particular, the median of the minimum distance from points in P onto Q is defined

as Equation (3.40). The definition of the modified Hausdorff distance metric is then stated in

Equation (3.41).

d50 = 50Kth
p∈P

(
min
q∈Q

d(p, q)

)
(3.40)

dMHD(P,Q) = max (d50(P,Q), d50(Q,P )) (3.41)

We report the 90th percentile Hausdorff distance over a sample when computing aggregate metrics,

denoted as 90HGT and 90HSP when compared to the ground truth path or the shortest path that

avoids obstacles, respectively.

Dubuisson et al. [89] examined the utility of the Hausdorff distance metric (and others) as

a metric for conformity between point sets in the presence of noise. They determined that the

modified Hausdorff metric (MHD), Equation (3.41), is the most robust variant of the metrics studied.

Huttenlocher et al. [90] use the Hausdorff metric as a way to align exemplar models to binary edge

images. Shapiro et al. [91] also consider more general image transformations using an averaged

one-sided Hausdorff distance (Equation (3.38)). It has since been used in many recent works relevant

works for robot navigation and human path prediction, such as Wulfmeier et al. [66] and Lee et al.

[63].

This algorithm is O(n) for discrete point sets, a great advantage for numeric optimization.

However, while a low Hausdorff metric is a necessary condition to ensure point set conformity, it is

hardly sufficient, as we shall discuss in Section 3.4.3.

3.4.2 Discrete Fréchet Distance Metric

The Fréchet Distance between continuous curves is defined as:

F (A,B) = inf
α,β

max
t∈[0,1]

d(A(α(t)), B(β(t))) (3.42)
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Figure 3.10: Example of Hausdorff and Fréchet couplings
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Figure 3.11: Example Sequence Walk problem with potential couplings (dashed) corresponding to
Equation (3.46).

where A and B are continuous curves parameterized by functions α and β on the interval of [0, 1].

Also called the dog leash distance, the intuitive explanation of this metric is that each point in one

curve must be matched to a point in the other. We move along the curves monotonically using the

parameterized function α(t) and β(t), one being the dog and the owner the other. Either may stop or

slow down, but they can never go back or skip ahead on the curve. Among all the possible traversals

of the curves, determined by some (α(t), β(t)), the Fréchet distance is the one with a maximum

leash length less than all others (Figure 3.10b). This metric is difficult to compute analytically for

arbitrary continuous curves.

The discrete Fréchet distance metric is a variant that measures conformity between point

sequences. Introduced by Eiter et al. [92], it has a compact dynamic programming solution

(Equation (3.47)) with a näıve runtime of O(n2)1, and is closely related to other sequence walk

problems, such as Dynamic Time Warping and Longest Common Sub-sequence. At each timestep,

the algorithm chooses to advance the position of the owner, the dog, or both (Section 3.4.2). This

metric was used by Oh et al. [11] for evaluating paths used for robot navigation.

C0,0 = d(p0, qo) Base Case (3.43)

Ci,0 = max (d(pi, q0), Ci−1,0) Edge Case 1 (3.44)

1We approximate n ≈ |P | ≈ |Q|.
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C0,j = max (d(p0, qj), C0,j−1) Edge Case 2 (3.45)

Ci,j = max (d(pi.qj),min(Ci,j−1, Ci−1,j , Ci−1,j−1)) General Case (3.46)

δF = C|P |−1,|Q|−1 Discrete Fréchet Metric (3.47)

The Fréchet distance between polygonal curves is more complicated than a sequence walk upon

the vertices of P and Q. This is because the shortest distance between a point pi ∈ P may fall

in the interval [qj , qj+1] ∈ Q. Eiter et al. [92] show that the error between the discrete Fréchet

distance metric for point sequences (δdF ) compared to the true Fréchet distance for the associated

polygonal curve (δF ) is bounded by the maximal distance between any two sequential points in P

or Q (Equation (3.48)).

δdF (P,Q) ≤ δF (P,Q) + max (D(P ), D(Q)) (3.48)

D(P ) = max
i=2...|P |

d(pi, pi−1) (3.49)

D(Q) = max
i=2...|Q|

d(qi, qi−1) (3.50)

In practice, we interpolate polygonal curves such that δF (P,Q) ≤= 0.1pixels. This means that the

size of the dynamic programming table increases by a factor of 100. For a 103 × 103 pixel image,

we can expect a path to be approximately 103 pixels long. The approximate table size is then(
103 × 10

)
×
(
103 × 10

)
= 108 entries. While the table is large, each entry is visited just once, with

a systematic expansion that leads to good memory locality and is well within the limits of modern

desktop computers. If the Fréchet couplings themselves are not required, only the frontier nodes

need to be stored in memory. The entire computation will easily fit within the cache of most CPUs

or the register file of a GPU streaming multiprocessor.

After termination of the recurrence in Equation (3.46), the matches between points in P

and Q, or couplings, are determined by back-tracking from CN−1,M−1, following the path of

min(Ci,j−1, Ci−1,j , Ci−1,j−1) and recording the coordinates (i, j) at each step. We report the 90th

percentile coupling distance over a sample when computing aggregate metrics, denoted as 90FGT

and 90FSP when compared to the ground truth path or the shortest path that avoids obstacles,

respectively.

Alt et al. [93], Agarwal et al. [94], and others have improved runtime slightly. For example,

Agarwal et al. [94] reduces runtime to O(n2 log logn
logn ) by using geometric principles to eliminate

non-viable solutions, but this increases the complexity of a practical implementation. This is

particularly problematic for GPU architectures that are unable to efficiently process divergent code,

and therefore, the basic dynamic programming definition is the most viable choice for this work.

3.4.3 Discussion

The Hausdorff metric is simple to compute (O(n)) in comparison to the Fréchet metric (O(n2)). The

Hausdorff metric also has a simple form, which makes it attractive for integration into more complex
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Figure 3.12: Modified Hausdorff Distance of red curve to green curve is the same as the MHD from
blue curve to green curve.

algorithms such as Max Margin Planning (Section 3.2.1). However, the simplicity of the Hausdorff

metric comes at the cost of it being less discriminant. The red a blue curves in Figure 3.12 have the

same modified Hausdorff distance, despite the red curve’s radically different shape. Figure 3.10a

lends some insight as to how this is possible. The shape of the blue curve when y < 0 is completely

irrelevant to the metric and can be made arbitrarily negative without affecting the metric. In

contrast, in Figure 3.10b every point is visited and contributes to the metric.

3.5 Summary

This chapter introduced the theory and related works that support our architecture. The MDP

formulation of the planning problem is distinct from other probabilistic graph formulations used in

robot navigation, such as Kollar et al. [14], primarily because of the Markovian assumption. This

simplification gives us access to a great wealth of prior work in MDPs. We use a map representation

with a finite time horizon. Since the reward function is undefined, we use Inverse Optimal Control

to imitate an expert agent using samples of its behavior.

Ng et al. [61] note that Inverse Reinforcement Learning is ill-posed; there is generally not

enough information in the data to reconstruct a unique solution. We have explored three techniques

that add constraints sufficient to produce a usable cost map. Ratliff [58] uses the max-margin

hypothesis, and Ziebart [59] uses the principle of maximum entropy. We choose MMP because

it is less computationally intensive since it uses an efficient optimizer in the form of A* or Field

D*. However, it is entirely possible to perform similar research with MaxEnt IRL, and with our

transition to a GPU planner based on the Bellman-Ford algorithm in Section 5.3, the runtime

difference between MaxEnt IRL and MMP is much more similar.

We review existing network architectures for VQA that were state-of-the-art at the commencement

of this work and study how the methods they use to fuse language and vision to answer questions

can adapt to generate cost maps. We choose FiLM because it is model-free. This work is relevant
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3. Background & Theory

precisely because it is difficult to model human planning explicitly, just as it was difficult to model

human object detection in the past. Deep learning has largely replaced model-based vision methods,

and they will likely do the same for robot navigation. The next chapter will explore how Max

Margin Planning acts as a loss function for a simple problem and develop the tools required to

combine it with a deep network.
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Chapter 4

Foundational Experiments

In this chapter, we introduce our solution for robot navigation, as stated in Section 1.1. We begin

by applying the Maximum Margin Planning (MMP) to a reduced problem (Sections 4.1 and 4.2).

Since it is not a loss function commonly used for deep learning, it is necessary to understand how it

behaves in a simple context before moving to a complex model. Li et al. [95] use a related SVM

margin loss to train a 3D human pose estimator. The loss equation specified by Ratliff et al. [20]

must be carefully translated into a computational algorithm that is stable over millions of iterations.

We have identified problems attributable to numerical stability and offer solutions to make the

algorithm practical.

4.1 Adapting MMP for Deep Learning

Ratliff [58] finds the w which minimizes the loss in Equation (3.13) using a sub-gradient descent

method. We adapt this method to our problem by first incorporating the weight vector w as part

of the non-linear function F (Ii, Zj ; θ)
1. This is a deep network, which accepts as input an image

Ii with attribute Zj , and returns a d × |S||A| matrix of d dimensional feature vectors for each

state/action pair. This is not necessarily a convex problem, so the sub-gradient optimization is not

guaranteed to converge. However, that is also true for the gradient descent methods employed in

deep learning in general.

The states S are positions on a n × m map, and the actions are moves to the 8-connected

neighbors of any location. Therefore, our µ are 8|n||m| dimensional sparse vectors, which would

imply that F (·) is also 8|n||m| dimensional. However, our actual model for F is simpler than it

would first appear.

In its non-vectorized form, F is a map of the cost of traversing a region of space. Actions that

move horizontally or vertically incur one-half of the current cell plus one-half the cost of the new cell.

When moving diagonally, this cost increases by a factor of
√
2 to account for the longer distance

1In future references to F , we may omit the parameters such as θ, Λ, etc., for brevity.
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Figure 4.1: Transformation of path into state visitation count, µ, for path between 8-connected
neighbors.

traveled. The state/action matrix (Figure 4.1b) can be quite large but is also sparse (Figure 4.1a).

This matrix is readily condensed into a weighted vector of dimension |S|, which we define as the

state visitation, µ2. This process is described by Algorithm 1.

With feature map F (·) an |n||m| × 1 vectorized cost map the path cost is succinctly expressed

by the linearly separable Equation (4.1).

C(µ) = F (·)Tµ (4.1)

The objective is now Equation (4.2), with the sub-gradient for q = 2 in Equation (4.3) and the

sub-gradient for q = 1 in Equation (4.4). As in Ratliff et al. [20], the minimizer for the loss-augmented

cost map (Equation (4.5)) is found efficiently using Dijkstra’s algorithm or A*. However, in our

experience, Dijkstra’s algorithm is more appropriate since the cost map may be very noisy, especially

in the early phases of training, and any heuristic to guide the search will not improve performance or

violate assumptions necessary for correctness. While efficient, optimizers such as Dijkstra’s algorithm

prohibit the agent from visiting the same state more than once, limiting the paths the algorithm

can learn.

L = min
θ


 1

N

∑

i

βij

q

∥∥∥∥∥∥∥
F (Ii, Zj ; θ)µij − min

µ∈Gi


F (Ii, Zj ; θ) + ℓ(µij)

T

︸ ︷︷ ︸
loss-augmented cost map


µ

∥∥∥∥∥∥∥

q

+
λ

2
∥θ∥2


 (4.2)

2Ratliff [58] specifies a more general form of F , which specifies different costs for each state and action. In our
simplified problem, the cost for traversing a map cell is isotopic.
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Algorithm 1 Path visitation for A* paths. P is a sequence of path coordinates. Mr is the number
of rows in the map. Pr(i) and Pc(i) access the row and column of the i-th path element.

1: function PathVisitation(P , Mr)
2: V←0 ▷ Zero vector ∈ RMrMc

3: v ←0
4: for i in 0...|P | − 1 do
5: r0←Pr(i)
6: c0←Pc(i)
7: if i ̸= |P | − 1 then
8: r1←Pr(i+ 1)
9: c1←Pc(i+ 1)

10: if r0 ̸= r1 and c0 ̸= c1 then

11: v ←
√
2
2 ▷ Diagonal path segment

12: else
13: v ← 1

2 ▷ Vertical/Horizontal path segment
14: end if
15: end if
16: V (r0 +Mrc0)← V (r0 +Mrc0) + v ▷ Accumulate visitation count
17: end for
18: return V
19: end function

∂L

∂F
=

1

N

N∑

i=1

βij

(
F (Ii, Zj ; θ)µij − (F (Ii, Zj ; θ) + ℓ(µij)

T )µ∗)F (Ii, Zj ; θ)(µij − µ∗
ij) + λθ (4.3)

∂L

∂F
=

1

N

N∑

i=1

βij sgnF (Ii, Zj ; θ)
T ◦ (µij − µ∗

ij) + λθ (4.4)

µ∗ = argmin
µ∈Gi

(F (Ii, Zj ; θ) + ℓ(µij)
T )µ (4.5)

The gradients in Equations (4.3) and (4.4) are a |S| × 1 vector of derivatives for each state

in the map and only containing corrections where µ and µ∗ differ and is therefore sparse. The

regularization term in Equation (4.4) is handled by the deep learning framework. We keep it here

for consistency.

Figures 4.2a to 4.2d demonstrates the process of computing the loss for a single update for

a single path. The source image is synthetic (Figure 4.2a). The distance transform is computed

around the ground-truth path (Figure 4.2b), exaggerated for clarity which is then used to generate

the loss-augmented cost map in Figure 4.2c. Using the same endpoints, a planner generates µ∗ (not

depicted). This is in turn used to produce the L1 loss gradient in Figure 4.2d. The gradient increases

the cost of cells where µ∗ should not visit and decreases the cost of the cells that it should.

The loss gradient in Figure 4.2d is sparse. We combine a mini-batch of examples for each

backward pass of the network to form a combined gradient (Figure 4.2e). This gradient is still

sparse, with the majority of states not visited. See Algorithm 2 for a summary of the process.
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(a) Source image (b) Distance transform of µij (c) Loss-augmented cost map

(d) Loss gradient (e) Accumulated loss gradient

Figure 4.2: Visualization of MMP planning loss.

4.2 Max Margin Planning with a Simple Network

Consider the simplified problem of reconstructing a cost map that is the linear combination of three

cost maps encoding roads (low cost), dirt fields (medium cost) and vegetated areas (high cost),

illustrated in Figure 4.3. Given a number of demonstration paths and the three cost map components

in F (I) ∈ R3×|S| we wish to recover wc ∈ R3 such that the original cost map, F ′ = wT
c F (I).

We restate the MMP loss from Equation (4.6), with the addition of wc to make the cost map a

linear function of the features. There is no language input, Λiand the cost map is independent of

the path starting and ending location.

L = min
wc

(
1

N

∑

i

βi

q

∥∥∥∥wT
c F (Ii)µi − min

µ∈Gi

(
wT

c F (Ii)µ+ ℓi(µi)
Tµ
)∥∥∥∥

q

+
λ

2
∥wc∥2

)
(4.6)

gwc
=

1

N

N∑

i=1

βi

(
wT

c F (Ii)µi − (wT
c F (Ii) + ℓi(µi)

T )µ∗)F (Ii)(µi − µ∗) + λ ∥wc∥ (4.7)

gwc
=

1

N

N∑

i=1

βiF (Ii)(µi − µ∗) + λ ∥wc∥ (4.8)

µ∗ = argmin
µ∈Gi

(wT
c F (Ii) + ℓi(µi)

T )µ (4.9)
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Algorithm 2 Psuedo-code for Max Margin Planning with a deep network. w are network weights. I
are map images. µ are expert paths of |S|× |A|. Λ are language inputs. K is a spatial normalization
constant, typically set to the map diagonal in pixels.

1: function DeepMMPLoss(w,I,µ,Λ,q)
2: L← 0
3: dLdF ← 0
4: F ←Forward(w,I, µ, Λ) ▷ Network forward pass
5: for Fi, µi in F , µ do
6: len←PathLength(µi)
7: βi ← K

len
8: A ←Fi + ℓ(µi) ▷ Loss-augmented cost map
9: µ̂i ←Dijkstra(A, µi) ▷ Cheapest path with same endpoints as expert

10: µ∗
i ←PathVisitation(µ̂i) ▷ Convert to vectorized state visitation count

11: µi ←PathVisitation(µi)
12: Lx←βi

∥∥vec(Fi)
Tµi − vec(A)Tµ∗

i

∥∥
13: if q = 1 then
14: L ←L+ Lx ▷ L1 loss and gradient
15: dLdF ← dLdF + βi sgn(vec(Fi))(µi − µ∗

i )
16: else
17: L ←L+ 1

2 (Lx)
2

▷ L2 loss and gradient
18: dLdF ← dLdF + βiLx(µi − µ∗

i )
19: end if
20: end for
21: return L

|I| ,
dLdF
|I|

22: end function

The update equation for wc is Equation (4.10) for this trivial example.

wc = wc + ηgwc
(4.10)

The cost maps are randomly generated with 2D Gaussians as hills, a randomly generated road that

crosses the scene, and a fixed cost for all other regions (Figure 4.3a). All paths end at the edge of the

scene on a point on the road and start at random locations in the interior. The correct solution to

this diagnostic problem has zero error. Dijkstra’s algorithm computes the ground truth paths with

maps cells connected to their eight neighbors. There are 250 maps with a resolution of 128× 128,

each with about 64 example paths, with two-thirds of the maps used for training and one-third used

for testing. Since this is a diagnostic dataset, there is no hold-out data.

We use the cost map components as the input to a simplified loss for initial experiments. The

correct solution to this diagnostic problem has zero error. Later, we use the synthetic RGB image

as input to a deep network to generate features from image data.

For the following experiments, we use a learning rate of η = 10−4, λ = 10−2, and use the absolute

value function to generate the cost map. We use a distance transform from the ground truth path

to each map cell to produce the augmented cost map. We train with stochastic gradient descent

(SGD) with mini-batches composed of 10 percent of the available paths for one cost map at each
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1

1

(a) RGB image. (b) Learned cost map.

Figure 4.3: Example from dataset used in experiments (128 × 128 resolution). Road (grey),
dirt(brown), vegetation(green) have increasing travel cost. Red path (left), ground truth. Green
path (right), inferred path.

iteration. The cost maps are randomly permuted at each epoch.

4.2.1 Compensated Dot Product

Given weights wc drawn from the standard uniform distribution, we find that the algorithm often

diverges with large gradients when using the L2 version of the loss, q = 2 in Equation (4.6). Therefore,

we begin by examining the L1 loss (q = 1) and discover the loss itself is very noisy (Figure 4.4a).

Consider a test image of 1000× 1000 pixels. It is reasonable to assume that a path in this image

may be 1000 steps long. Stochastic gradient descent computes the loss gradients using random

mini-batches of paths, perhaps about 100 examples. The loss in Equation (4.7) is a dot product

between the weighted features and the path visitation count, wT
c F (I)ui. This is a sum of 100000

floating-point numbers across all mini-batches.

Significant numerical errors may arise when adding many small values when performed without

consideration for the practical aspects of floating-point addition. When accumulating a sum of many

small numbers, the accumulator may have a significantly larger magnitude than an addend. The

difference in magnitude between the two numbers limits the precision at which the smaller number

can be expressed internal to the addition, potentially even rounding it to zero and resulting in a

loss-of-precision error. This error is especially problematic for the L2 case of Equation (4.7) because

this accumulation is used to scale the gradient. This is not a problem for the L1 version of the loss.

The optimization is not stable without careful implementation, even if the equation is correct.

We use a compensated summation algorithm from Ogita et al. [96] to compute the terms in

the loss equation3. Like the classic Kahan-Babǔshka ([98], [99]) or Knuth ([100]) algorithms for

summation, Algorithm 3 compensates for numerical error by utilizing additional variables to store

3The Knuth TwoSum algorithm in this paper is incorrect. The last line should read y = (a− (x− z) + (b− z).
This was noted by Simon [97].
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(a) Uncompensated dot product.
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(b) Compensated dot product.

Figure 4.4: L1 loss with uncompensated dot product (left) is more variable and has slower convergence
compared to loss with compensated dot product (right). Linear pattern in compensated plot are
individual outlier paths.

less significant mantissa bits that would normally be discarded. It is important to be certain that

the compiler does not perform algebraic simplifications that overlook the subtleties of this algorithm.

Algorithm 3 Compensated dot product from Ogita et al. [96].

1: function CompensatedDotProduct(A, B)
2: s← 0
3: y ← 0
4: for a, b in A,B do
5: a← a ∗ b ▷ Product
6: x← s+ a ▷ Sum
7: z ← x− a
8: y ← y + ((a− (x− z) + (s− z)) ▷ Residual
9: s← x

10: end for
11: s← s+ y ▷ Compensated dot product
12: return s
13: end function

Before resorting to this algorithm, we had also considered using 64-bit precision variables.

Another solution is to sort the summands and either add them sequentially, from smallest to largest,

or a pairwise reduction of summands with similar magnitude. We reject these approaches for two

reasons. Sorting algorithms create additional workload with program branching and unpredictable

memory access. The additional cost of a few more 32-bit operations is low for modern CPUs

and GPUs with tremendous floating-point throughput. GPUs generally have poor 64-bit floating-

point performance. The compensated dot-product allows single-precision operations to emulate
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double-precision arithmetic with modest additional runtime costs.

Figure 4.4b demonstrates how the compensated dot product reduces the noise when computing

the L1 loss. The version with the compensated dot product converges faster and can reduce loss by

many orders of magnitude when compared to Figure 4.4a. The simplified problem presented here

has an exact solution, although zero loss is rarely achievable in practice.

We are careful to note that the cost map and the MMP loss function do not have a fixed scale.

Many cost maps with varying scales can have zero loss if they induce the planner to imitate the

ground-truth path correctly. Consequently, incorrect predictions may have a loss with a varying

scale from one run to the next but generally are well within the same order of magnitude, and the

results are therefore comparable.

4.2.2 Huber Loss

The compensated summation algorithm helps to stabilize the L2 loss. However, the L2 loss is often

unable to reliably converge given a random initial state of the network. Large errors at initialization

produce even larger numbers when squared, leading to a numeric overflow. Further, the distance

transform is not well suited as an error metric as it is the same as using a generalized Hausdorff

coupling as a loss function (Figure 3.12). It does not accurately reflect the error for extreme cases

found at the start of optimization.

In contrast, the L1 loss is less noisy and converges reliably but does not always reach a reasonable

minimum. In the L1 mode, the MMP loss increases the costs of cells that should not have been

visited by a fixed amount and decreases the cost of cells that should have been visited. It does not

use the loss function to scale the correction. Early in the optimization, this is an effective strategy

when the loss function is a poor approximation of the Fréchet coupling metric. However, the distance

transform is a good approximation of the Fréchet metric for small errors, which is why it is better

to use the L2 loss after the optimization has reached initial convergence.

We use the Huber loss ([101]) to combine the best features of the L1 and L2 versions of MMP

(Equation (4.11)). The Huber loss transitions smoothly from L1 loss to an L2 loss when L ≤ δ.

Lδ(L) =





1
2L

2 |L| ≤ δ

δ
(
|L| − 1

2δ
)
|L| > δ

(4.11)

In the following experiment, we use the same dataset and model from Section 4.2.1, applying the

Huber loss to each training example individually, instead of on the mini-batch as a whole, so that the

losses from individual examples have similar scale. The error gradient is similarly accumulated using

the appropriate version for the Huber loss case selected for each training example. The regularizer

in Equation (4.6) is not affected. We choose δ = 1e− 3 and a learning rate of 1e− 1.

Figure 4.5a shows a clear transition from an aggressive L1 optimization to a more precise L2

optimization. It also shows individual traces of outlier paths during the terminal phase of the

minimization as the loss approaches zero. Figure 4.5b is an average over three runs and shows that
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(a) Compensated Huber loss, single run.
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(b) Compensated Huber loss, average of 3 runs.
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(c) Compensated L2 loss.

Figure 4.5: Huber loss allows aggressive corrections for the initial phase of optimization without
divergence. The loss floor in Figures 4.5a and 4.5b is artificial, set to prevent underflow errors.

the Fréchet distance metric follows the Huber loss. Figure 4.5c is a trace averaging three L2 runs

with the largest learning rate that does not diverge. After 5000 iterations, the L2 loss is far behind

the Huber loss.

4.2.3 Negative Values and Smoothness Regularization

Dijkstra’s algorithm and its descendants can not plan with negative cost cells. Our version of

Dijkstra’s algorithm will expand a negative cost cell once to prevent infinite cycles. The planner

may return an incorrect solution, forcing the gradients to add cost to the incorrectly visited cells.

This naturally removes negative values, but only for the cells in the map that have been visited.

Ratliff et al. [20] suggests an optional projection step in the weight update to remove violations

of any convex constraints. However, this approach does not seem tractable for a large non-linear

network. We have also experimented with a regularization term to penalize negative cells directly
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Algorithm 4 Psuedo-code for Max Margin Planning with Huber loss. w are network weights. I are
map images. µ are expert paths of |S| × |A|. Λ are language inputs. K is a spatial normalization
constant, typically set to the map diagonal in pixels. Parameter δ sets Huber loss switch point.

1: function DeepMMPHuberLoss(w,I,µ,Λ,δ)
2: L← 0
3: dLdF ← 0
4: F ←Forward(w,I, µ, Λ) ▷ Network forward pass
5: for Fi, µi in F , µ do
6: len←PathLength(µi)
7: βi ← K

len
8: A ←Fi + ℓ(µi) ▷ Loss-augmented cost map
9: µ̂i ←Dijkstra(A, µi) ▷ Cheapest path with same endpoints as expert

10: µ∗
i ←PathVisitation(µ̂i) ▷ Convert to vectorized state visitation count

11: µi ←PathVisitation(µi)
12: Lx←βi

∥∥vec(Fi)
Tµi − vec(A)Tµ∗

i

∥∥
13: if |Lx| > δ then
14: L ←L+ δLx − 1

2δ
2 ▷ L1 loss and gradient

15: dLdF ← dLdF + δβi sgn(vec(Fi))(µi − µ∗
i )

16: else
17: L ←L+ 1

2 (Lx)
2 ▷ L2 loss and gradient

18: dLdF ← dLdF + βiLx(µi − µ∗
i )

19: end if
20: end for
21: return L

|I| ,
dLdF
|I|

22: end function

but have had the best results with the square or absolute value output functions (not shown in

Equation (4.6)). Operations such as softmax do not work well because they are highly non-linear

by design. In practice, we prefer the absolute value function since it does not amplify large values,

especially true when q = 2 in Equation (4.6). We explore the selection of the output function under

more realistic conditions in Section 6.1.2.

Finn et al. [65] successfully used Deep Inverse Optimal Control to learn trajectories for a robot

arm. They use a path smoothness penalty expressed as the accumulation of a time derivative

over the ground-truth path (Equation (4.12)), where C(x) is the cost for state/action x. We have

modified this equation to normalize the path length, which varies significantly between examples.

glcr =
λlcr

2

∑

xt∈µij

[
1

|µij |
(C(xt+1)− C(xt))− (C(xt)− C(xt−1))

]2
(4.12)

This regularization did not help appreciably with our early experiments but may be worth revisiting

with a more refined architecture.
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4.3 Summary

This chapter detailed some of the fundamental work required to make Max Margin Planning a stable

loss function for training a deep network. Robotics can be described as the practical implementation

of theory from many disciplines, suitably adapted and augmented to fit reality. While our work is

still far from operating on a functional robot, it must operate on the same computational machinery.

Numerical precision and floating-point artifacts have been long-studied but are easily overlooked.

We designed the simplified experiments described in this chapter to uncover potential numerical

stability concerns before they confound the development of our deep planning algorithm. It is

difficult to debug a deep network that fails to converge or even diverges. The careful application of

compensated summation allows 32-bit floating-point numbers to act with much higher precision. It

is often challenging to fully utilize the powerful floating-point units on modern CPUs and GPUs.

The addition of a few additional operations and registers costs very little. While CPUs can perform

almost as well with double-precision floating-point, GPUs are especially weak in this regard, except

for high-end scientific computing engines. Therefore, compensated summation is necessary for

porting Max Margin Planning to the GPU.

We find that the initial state of an untrained network may lead to extreme losses. While the

problem outlined above stems from adding many very small numbers, this problem is a consequence

of exceedingly large ones. By using Huber Loss, we can operate in a mode where the Max Margin

Planning Loss naturally constrains the loss gradient so that the training process remains stable.

Unlike Ratliff et al. [20], we do not use a projection step to correct weight updates that violate

planning constraints (i.e., negative values). In Chapter 5, we will substitute the linear conversion of

features into a cost map with a highly non-linear deep network, and it is, therefore, more intuitive

to use a non-negative activation as the output of the network instead.
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Chapter 5

Deep Planning with Field D*

This chapter describes a few of the many specialized tools we developed to make this project practical.

The recent wave of deep learning research over the last ten years would not have been possible

without accessible tools and accelerated neural network building blocks. Toolboxes such as PyTorch

[102], TensorFlow [103], Caffe [104], and others accelerate research by utilizing massively parallel

computation without requiring in-depth knowledge of the underlying computational architecture.

While the work in this thesis makes great use of PyTorch (and initially Caffe), many of the more

novel elements of our design are distant enough from commonly researched topics that there are

no comparable frameworks or modules for accelerated computing. Our implementation of Field D*

and the Fréchet coupling distance are generic enough that they are a useful contribution to others

performing similar research in path planning. As these two algorithms are the major performance

limiters for our research, we will detail their implementation here.

We begin with a comprehensive description of our implementation of Field D* for the CPU in

Section 5.1. This is a re-statement of and expansion upon the work of Ferguson et al. [105], which

we do for three important reasons.

First, it is essential to understand the optimization it performs so that we can modify it to

produce gradients suitable for Max Margin Planning. Second, while the basic algorithm is stated

in Ferguson et al. [105]–[107], many details of the path cost derivation are omitted. We show our

version of the derivation in Section 5.2 to be explicit about our implementation, particularly in the

case of path reconstruction and path termini that are not aligned to the cost field1. Finally, as

planning is a bottleneck in our system, it is essential to understand the algorithm so that it performs

well on both CPUs and GPUs.

We perform an analysis to justify the time and effort required to make a GPU accelerated version

of the algorithm in Section 5.3, followed by technical details of our implementation in Section 5.3.1.

Finally, we present an accelerated Fréchet coupling metric used for measuring planning performance.

We have also implemented the complete Max Margin Planning loss on the GPU. It is a straight-

1Additional details may be in the Ferguson et al. [107], but we have been unable to view a copy.
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5. Deep Planning with Field D*

forward translation of the CPU version of the algorithm. The loss computation is a minor expense

once the accelerated planner has computed the antecedent data; there is no need to redesign the

algorithm to extract more parallelism. A GPU implementation eliminates the latency of trans-

ferring intermediate cost maps to the CPU and subsequently moving gradients to the GPU for

back-propagation.

5.1 The Field D* Algorithm

Field D* (Ferguson et al. [107]) is a recognized and frequently used algorithm for field robot path

planning. To our knowledge, it has not previously been used in the context of deep learning as

part of a differentiable loss. There are two advantages of Field D* over Dijkstra’s algorithm, used

by Ratliff [58]. First, it is an any-angle path planner that generates more realistic paths without

the restriction of having to transition between the 8-connected nearest neighbors on a grid. These

trajectories more closely approximate what a human would generate, an important quality as our

objective is to imitate human behavior. Second, Field D* can recompute paths when local costs

change without recomputing the entire solution.

Field D* is a derivative of D*-Lite (Koenig et al. [108]) and Incremental A* (Koenig et al. [109])

and traces its lineage to Focused D* (Stentz [110]), D* (Stentz [111]), and eventually A* (Hart et al.

[112]), which was used on Shakey the Robot (Nilsson [4]). All are solutions to variants of the Single

Source Shortest Path (SSSP) problem. Similar to Dijkstra’s algorithm, these algorithms frame the

path planning problem as an incremental construction of g(s), the lowest cost path from the state s

to the goal2.

g(s) =




0 if s = sgoal

mins′∈Pred(s) g(s
′) + c(s, s′) otherwise

(5.1)

The planners have a similar dynamic program that expands the frontier for efficient search

(Equation (5.1)). The function g(s) is the current estimated minimum cost from state s to the goal

and Pred(s) are the immediate predecessor states of s, with c(s, s′) the incremental cost of traveling

between s and s′.

These planners are sequential and use a heuristic to select a node on the frontier to expand at

each iteration. The heuristic biases the search to candidates likely to be on or near the path to the

start vertex and often reduces the number of states visited before termination. However, this is not

required for the algorithm to converge to the correct solution. This heuristic function, h(s1, s2), is

deemed admissible when it meets the condition in Equations (5.2) and (5.3).

h(sstart, sstart) = 0 (5.2)

h(s, sstart) ≤ c(s, s′) + h(s′, sstart) (5.3)

2Different implementations of these algorithms begin the search from the goal or start vertex. We choose g(s) to
be the cost-to-goal following the convention of Field D*.
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5. Deep Planning with Field D*

for all s ∈ S and s′ ∈ Succ(s) where s ≠ sgoal, and Succ(s) is the set of permissible transitions to

successor states. In short, the heuristic must always over-estimate the remaining cost to the goal

compared to the true cost.

Modifications for Planning with Deep Networks

While the path planner used in this work is derived from Field D*, it also not a direct implementation

of Field D*. The search heuristic has been removed because it is impossible to guarantee that the it

always overestimates the cost of completing the path. The output function of our deep network is

always non-negative, but there are no restrictions on the scale of the cost map or the minimum cost

of any cell. Further, we eliminate the incremental replanning capability of Field D* since the entire

cost map changes after each update pass of the deep network3.

Without the A* search heuristic, the value of g(s) is computed similarly to Dijkstra’s algorithm,

using the recurrence relation in Equation (5.1) but with a different traversal cost, to be introduced

in Section 5.1.1. Once the algorithm terminates, the shortest path is constructed from the start

location, choosing the next state with Equation (5.4) at each step until the goal is reached.

si+1 = argmin
s′∈Pred(si)

g(s′) (5.4)

The planner presented here is best viewed as a modified version of Dijkstra’s algorithm that has

been augmented with the cost interpolation technique from Field D*. Likewise, our GPU-accelerated

version (Section 5.3.1) is best viewed as a hybrid of the Bellman-Ford algorithm ([113], [114]) with

the same interpolation technique borrowed from Field D*. We refer to our implementation as a

version Field D* to highlight its lineage.

5.1.1 Field D* Cost Derivation

In this section, we restate and analyze the field cost computation from Ferguson et al. [105]. We

do this primarily to understand how to generate gradients suitable for Max Margin Planning. In

addition, we must implement it efficiently for CPUs and GPUs after removing parts not relevant in

our context.

While the basic algorithm is stated in Ferguson et al. [105]–[107], many details of the path

reconstruction are omitted. The authors note that Field D* is typically used to calculate a global

trajectory in conjunction with an arc-based local planner, possibly explaining why this information

was not published. We show our version of the derivation to be explicit about our implementation of

the cost interpolation algorithm, particularly in the case of path reconstruction. During our analysis,

we have discovered an inconsistency in the interpolated cost computation, which we address in

Section 5.1.3.

Field D* allows paths to transition between cells less restrictively than the 8-connected neighbors

visited by A*. Instead of computing the cost of travel from state to state, Field D* computes the

3Future work may utilize this feature, updating only a part of the cost map as a robot explores.
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Figure 5.1: Traversal cases for Field D* path. Figure adapted from Ferguson et al. [107]. Values b
and c are the traversal costs for the cell. Black dots are values of field g(s).

traversal cost at discrete field points that are interpolated to represent the cost of paths that may

not align to the grid (Figure 5.1). Unlike A* and its variants, the field points, s, are located at the

junctions between map cells.

When the path is on the border of two cells, the incremental cost for a path segment −→ss1 is

defined by Equation (5.5), illustrated in Figure 5.1a.

|g(s1)− g(s)| = min(b, c) (5.5)

The estimated onward cost of any path starting on the edge −−→s1s2 is a linear interpolation of the

field values g(s1) and g(s2) (Equation (5.6)).

g(sy) = g(s1)y + g(s2)(1− y) (5.6)

Combining the two equations leads to the general form of the recursive cost for a Field D* path
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(Equation (5.7)).

g(s) = min
x,y

[
bx+ c

√
(1− x)2 + y2 + yg(s2) + (1− y)g(s1)

]
(5.7)

The shape of the path is determined by the parameters x ∈ [0, 1] and y ∈ [0, 1]. The cell traversal

cost is a linear combination of the fixed map costs b and c and the free variables x and y. By

selecting appropriate x and y, Field D* can generate the paths in Figure 5.1 and Table 5.1, with

the exception of a path where x > 0 and y > 0 (Case 6 in Table 5.1), which is explictly forbidden

because it is never optimal. The reason for this is discussed in Section 5.1.4.

Table 5.1: Cell traversal cases for varying x and y parameters. Case 6 is never optimal. See
Section 5.1.4 for explanation.

Case Figure x y Path Description

1 Figure 5.1a 0 0 Boundary between b and c to s1
2 Figure 5.1a 1 0 Boundary between b and c to s1
3 Figure 5.1b 0 1 Diagonal across cell to s2
4 Figure 5.1b 0 0 < y < 1 Diagonal across cell, does not terminate at

corner

5 Figure 5.1c 0 < x < 1 1 Part of bottom, then direct to s2
6 Figure 5.3 0 < x < 1 0 < y < 1 Part of the bottom, part of the right edge of

cell, may or may not terminate at corner

For convenience, Ferguson et al. [107] rewrite Equation (5.7) by substituting f = g(s1)− g(s2)

to yield Equation (5.8).

g(s) = min
x,y

[
bx+ c

√
(1− x)2 + y2 + (1− y)f + g(s2)

]
(5.8)

The variable f is a decision variable that features prominently in the optimization strategy for the

incremental path cost in Algorithm 5, as reproduced from Ferguson et al. [107]. We now inspect the

cases in Table 5.1 and Algorithm 5 in more detail.

5.1.2 Cases 1 & 2

If f < 0, then Ferguson et al. [107] state without a detailed proof that it is always cheapest to go

direct to s1 (Figure 5.1a). The path cost is defined by Equation (5.11) when y = 0 and x ∈ 0, 1 and

is reflected in Algorithm 5 line 7 and line 9. Our re-implementation of Field D* has revealed that

this is not always the case.

g(s) = min
x,y

[
bx+ c

√
(1− x)2 + 02 + (1− 0)f + g(s2)

]
y = 0 (5.9)

g(s) = min
x,y

[
bx+ c

√
(1− x)2 + g(s1)− g(s2) + g(s2)

]
x ∈ 0, 1 (5.10)

g(s) = min(b, c) + g(s1) (5.11)
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Algorithm 5 Cost computation from Ferguson et al. [105]. This version has an error described in
Section 5.1.3.

1: function BasicCost(g(s1), g(s2), c, b)
2: if min(b, c) =∞ then
3: vs←∞
4: else
5: if g(s1) < g(s2) then
6: if b < c then ▷ Case 2
7: x← 1 y ← 0
8: else ▷ Case 1
9: x← 0 y ← 0

10: end if
11: vs← min(b, c) + g(s1)
12: else
13: f = g(s1)− g(s2)
14: if f ≤ b then
15: if c ≤ f then ▷ Case 3
16: x← 0 y ← 1
17: vs← c

√
2 + g(s2)

18: else ▷ Case 4
19: x← 0
20: y ← min(1, f√

c2−f2
)

21: vs← c
√
1 + y2 + f(1− y) + g(s2)

22: end if
23: else
24: if c ≤ b then ▷ Case 3
25: x← 0 y ← 1
26: vs← c

√
2 + g(s2)

27: else ▷ Case 5
28: x← 1−min(1, b√

c2−b2
) y ← 1

29: vs← bx+ c
√
1 + (1− x)2 + g(s2)

30: end if
31: end if
32: end if
33: end if
34: return vs, x, y
35: end function

Consider Equation (5.12), which must be true when f < 0, as asserted in Algorithm 5. It states

that a direct path to s1 must always be cheaper than a diagonal path to some intermediate state

between s1 and s2.

min(b, c) + g(s1) ≤ c
√

1 + y2 + f(1− y) + g(s2) (5.12)

min(b, c) ≤ c
√
1 + y2 + f(1− y)− (g(s1)− g(s2)) (5.13)

min(b, c) ≤ c
√
1 + y2 + f(1− y)− f (5.14)
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min(b, c) ≤ c
√
1 + y2 − fy (5.15)

It is clear that 0 < y < 1 is valid solution for certain b > 0 and c > 0 even when f < 0. Cases 1 and

2 may be optimal even when f > 0.

5.1.3 Counterexample

Consider an example where g(s1) = 2, g(s2) = 1, c = 2 and b = 1. Since g(s1) ≥ g(s2), Algorithm 5

will execute case 4 (Line 19) and return a value of 3.73 (Figure 5.2a). However, case 2 is even

cheaper (Line 7), traversing the bottom edge of the cell with cost min(b, c) + g(s1) = 1+ 2 = 3. The
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Figure 5.2: Algorithm 5 returns the incorrect minimum in Figure 5.2a. Figure 5.2b is an example of
a correct result from Algorithm 5, after adjusting B.

real solution to the boundary condition in eq. (5.12) lays along a quadratic, without consideration

of the case where x ̸= 0.

5.1.4 Excluding Case 6

Case 6 in Table 5.1 is a three segment path, where x ∈ (0, 1] and y ∈ (0, 1] which is never optimal.

Ferguson et al. [107] construct a geometric proof to show this (Figure 5.3), reproduced in greater

detail here. Suppose the optimal path passes through −−−−−→ssxsys2. Then the cost of this path must be

less than the cost around the perimeter of the cell (Equation (5.16)).

xmin(b, c) + c
√
(1− x)2 + y2 + (1− y)f ≤ xmin(b, c) + (1− x)min(b, c) + yf + (1− y)f (5.16)

c
√
(1− x)2 + y2 ≤ (1− x)min(b, c) + yf (5.17)
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Figure 5.3: Setting for geometric proof that a path where both x ∈ (0, 1] and y ∈ (0, 1] is sub-optimal.

Equation (5.17) is an inequality on the sides of a right triangle. Suppose we carefully choose y2 =

(1− y) and x2 = (1− x)(1− y)/y, which yields an inequality for a similar triangle (Equation (5.18)).

c
√
(1− x2)2 + y22 ≤ (1− x2)min(b, c) + y2f (5.18)

Because the triangles are similar, we can add the triangle sides to yield a new path. We compute

the cost by adjusting the cost of g(s), the cost for the original path (Equation (5.19)).

g(s)′ = g(s)

K︷ ︸︸ ︷
− (1− x2)min(b, c)︸ ︷︷ ︸

Shortened −→ssx

+ c
√
(1− x2)2 + (1− y)2︸ ︷︷ ︸

Lengthened hypotenuse

− (1− y)f︸ ︷︷ ︸
Shortened −−→sys2

(5.19)

However, from Equation (5.18) we know:

√
(1− x2)2 + (1− y)2 ≤ (1− x2)min(b, c) + (1− y)f (5.20)

K = −(1− x2)min(b, c)+
√
(1− x2)2 + (1− y)2 − (1− y)f ≤ 0 (5.21)

We substitute Equation (5.21) into Equation (5.19) to show that g(s)′ ≤ g(s), and g(s) is never

optimal for x ∈ (0, 1], y ∈ [0, 1).

5.1.5 General Case

The general formula for the cost is:

g(s) = bx+ c
√

(1− x)2 + y2 + f(1− y) + g(s2) (5.22)

We have excluded the possibility that both x > 0 and y > 0 in Section 5.1.4. If f < b, then it is

cheaper to optimize y and set x = 0. If f > b, then it is cheaper to optimize x and set y = 0. To
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understand this, consider the inequality in Equation (5.23). If f < b, then:

c
√
1 + y2 + f(1− y) + g2 ≤ bx+ c

√
(1− x)2 + 1 + g2 (5.23)

c
√
1 + y2 + f(1− y) ≤ bx+ c

√
(1− x)2 + 1 (5.24)

Substituting x = 1− y′, Equation (5.26) is only true if f ≤ b and it is therefore better to optimize y

instead of y′.

c
√

1 + y2 + f(1− y) ≤ b(1− y′) + c
√
(1− (1− y′))2 + 1 (5.25)

c
√
1 + y2 + f(1− y) ≤ b(1− y′) + c

√
y′2 + 1 (5.26)

We now optimize the two cases, first supposing x = 0, then:

g(s) = c
√

1 + y2 + f(1− y) + g(s2) (5.27)

Take derivative and set it to zero to find optimal y∗.

∂g(s)

∂y
=

1

2
c(1 + y2)−

1
2 2y − f = 0 (5.28)

cy√
(1 + y2)

= f (5.29)

c2y2

1 + y2
= f2 (5.30)

c2y2 = f2 + f2y2 (5.31)

y∗ =

√
f2

c2 − f2
(5.32)

Clearly, y∗ can be arbitrarily large but can not be larger than 1, the cell size.

y∗ =

√
f2

c2 − f2
≤ 1 (5.33)

f2

c2 − f2
≤ 1 (5.34)

f2 ≤ c2 − f2 (5.35)

c ≥ f
√
2 (5.36)

This bound is more strict than c > f in Algorithm 5, which is required to prevent the denominator

of Equation (5.32) and Line 20 from becoming zero or negative. Note that the algorithm also limits

y ≤ 0.

Suppose y = 1, then:

g(s) = bx+ c
√
(1− x)2 + 1 + g(s2) (5.37)
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Take the derivative and set it to zero to find optimal x∗.

∂g(s)

∂x
= b+

1

2
c
(
(1− x)2 + 1

)− 1
2 2(1− x)(−1) = 0 (5.38)

b = c
1− x√

(1− x)2 + 1
(5.39)

x∗ = 1− b√
c2 − b2

(5.40)

We must ensure that x ≥ 0.

0 ≤ 1− b√
c2 − b2

(5.41)

c2 − b2 ≥ b2 (5.42)

c ≥ b
√
2 (5.43)

5.1.6 Revised Algorithm

The optimization process is summarized in Equation (5.44) and our revised Algorithm 6, without

the decision variables used in Algorithm 5.

g(s) = min





min(b, c) + g(s1)

b(1− b√
c2 − b2︸ ︷︷ ︸
x∗

) + c
√
1 + b2

c2−b2 + g(s2) for c ≥ b
√
2

f(1− f√
c2 − f2

︸ ︷︷ ︸
y∗

) + c
√
1 + f2

c2−f2 + g(s2) for c ≥ f
√
2

c
√
2 + g(s2)

(5.44)

The solution cases’ criteria are almost as complex as the solutions themselves. These criteria

become even more complex if the map cells are not unit-sized, which happens when reconstructing

the optimal path. Computing the minimum of all solutions naturally corrects the erroneous case in

Section 5.1.3 and replaces a control-flow dependency in the program with a data-flow dependency.

Instead of branching to a different case of Equation (5.44), the CPU can compute all solutions

and choose the minimum in a single stream of mathematical operations. This technique better

utilizes the pipelined floating-point units in modern CPUs and is especially critical to achieving

good performance with a GPU.

5.1.7 Computing the Field

As with Dijkstra’s algorithm, Field D* is fundamentally a sequential breadth-first search that

expands the state with the current cheapest path to the start state. States that are not yet visited
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Algorithm 6 Cost computation from Ferguson et al. [105] with correction from Section 5.1.3. The
min function returns the tuple with the smallest first element.

1: function BasicCostV1(g(s1), g(s2), c, b)
2: if min(b, c) =∞ then
3: vs←∞ x← 0 y ← 0
4: else
5: f ← g(s1)− g(s2)
6: if (b < c) then x1 ← 1 else x1 ← 0
7: v1 ← min(b, c) + g(s1) ▷ Cases 1,2
8: v3 ← c

√
2 + g(s2) ▷ Case 3

9: v4 ←∞ y4 ← 0
10: v5 ←∞ x5 ← 0
11: t← c2 − f2

12: if t > 0 then
13: y4 ← f√

t

14: if y4 ≤ 1 then
15: v4 ← c

√
1 + y24 + f(1− y4) + g(s2) ▷ Case 4

16: end if
17: end if
18: if c > b then
19: x5 ← 1− b√

c2−b2

20: if x5 > 0 then
21: v5 ← bx5 + c

√
(1− x5)2 + 1 + g(s2) ▷ Case 5

22: end if
23: end if
24: vs, x, y ← min ((v1, x1, 0), (v3, 0, 1), (v4, 0, y4), (v5, x5, 1))
25: end if
26: return vs, x, y
27: end function

are given a value of infinity. Once a frontier state is selected, the field is updated using the cost map

and the g value of neighboring nodes, as described by Algorithm 7.

Algorithm 7 Computation of single field element, g(s).

1: function FieldVertexCost(g,m)
2: v1 ← BasicCostV1(g(s12), g(s02),m(s01),m(s11))
3: v2 ← BasicCostV1(g(s01), g(s02),m(s01),m(s00))
4: v3 ← BasicCostV1(g(s01), g(s00),m(s00),m(s01))
5: v4 ← BasicCostV1(g(s10), g(s00),m(s00),m(s10))
6: v5 ← BasicCostV1(g(s10), g(s20),m(s10),m(s00))
7: v6 ← BasicCostV1(g(s21), g(s20),m(s10),m(s11))
8: v7 ← BasicCostV1(g(s21), g(s22),m(s11),m(s10))
9: v8 ← BasicCostV1(g(s12), g(s22),m(s11),m(s01))

10: return min(v1, v2, v3, v4, v5, v6, v7, v7)
11: end function

We use matrix notation to identify the neighboring map and field values, as detailed in Figure 5.4.
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Case s1 s2 c b

1 s12 s02 m01 m11

2 s01 s02 m01 m00

3 s01 s00 m00 m01

4 s10 s00 m00 m10

5 s10 s20 m10 m00

6 s21 s20 m10 m11

7 s21 s22 m11 m10

8 s12 s22 m11 m01

(a) Parameters for each optimization in Al-
gorithm 7.

s0,0 s0,1 s0,2

s1,0 s1,1 s1,2

s2,0 s2,1 s2,2
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(b) Potential solutions for minimal cost-to-goal
path.

Figure 5.4: Field D* computes the minimal cost-to-goal for a path originating at s11 through any of
eight neighbor edges.

A state, sij , is located to the upper left of a map cell mij . When computing path costs, we assume

that vertex s = s11. The colored arrows in Figure 5.4b depict the different solutions in Algorithm 7.

5.1.8 Terminating Conditions

The original Field D* algorithm terminates when the start vertex is removed from the heap. Because

we start and end on nodes in the middle of map cells, we instead terminate when the four corner

vertices of the starting map cell are marked closed and are self-consistent. With a field value for all

edges of the cell, we can use the path extraction algorithm to interpolate a path from the start to

the goal.

5.2 Path Extraction

Path extraction requires a more general cost computation formula than used for estimating the

field. This derivation was not found in Ferguson et al. [105]–[107], but is based on the principles

presented in those papers and outlined in Section 5.1. Consider a path at the edge of a map cell

with 0 < y < 1 after the prior extraction step. This path will end on a horizontal or vertical edge

(Figure 5.5), and we need to find the next waypoint to the goal.

This is a general case of the earlier computation, with cells that are not unit sized, having been

scaled by sx and sy, where sx, sy ∈ (0, 1]. The traversal cost is defined by Equation (5.45).

g(s) = bsxx+ c
√
(sx(1− x))2 + (syy)2 + f(1− y) + g(s2) (5.45)

We do not yet consider the case when both sx < 1 and sy < 1. This will be addressed in Section 5.2.1.
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s0,0 s0,1 s0,2

s1,0 s1,1 s1,2

sy3
= yt sx1 = 1− yt

1

3

c c

Figure 5.5: Cost interpolation for point on map cell boundary. Paths 1 and 3, labeled with same
convention as Figure 5.4b, have scaling factors sx1

, sy3
for the x and y coordinates respectively.

Note that f is also scaled. For path 3, f is defined in Equation (5.46).

f = g(s0,1)− g(s0,0) (5.46)

g(s0,1) = g(s0,0) + sy3 (g(s0,2)− g(s0,0)) (5.47)

Suppose x = 0, then:

g(s) = c
√
s2x + s2yy

2 + f(1− y) + g(s2) (5.48)

Take derivative and set it to zero to find optimal y∗.

∂g(s)

∂y
=

1

2
c(s2x + s2yy

2)−
1
2 2s2yy − f = 0 (5.49)

cs2yy√
(s2x + s2yy

2)
= f (5.50)

(cs2yy)
2 − (fsyy)

2 = (fsx)
2 (5.51)

s2yy
2(s2yc

2 − f2) = (fsx)
2 (5.52)

y∗ =

√
(fsx)2

s2y((syc)
2 − f2)

=
sx
sy

f√
(syc)2 − f2

(5.53)

We must ensure that y∗ ≤ 1, which happens when Equation (5.59) is satisfied.

y∗ =
sx
sy

√
f2

(syc)2 − f2
≤ 1 (5.54)

f2 ≤
(
sy
sx

)2

((syc)
2 − f2) (5.55)

f2

(
sx
sy

)2

(1 +

(
sy
sx

)2

) ≤ (syc)
2 (5.56)
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√√√√f2

s2y

((
sx
sy

)2

+ 1

)
≤ c (5.57)

√√√√f2

s2y

((
sx
sy

)2

+

(
sy
sy

)2
)
≤ c (5.58)

c ≥ f

s2y

√
s2x + s2y (5.59)

Suppose y = 1, then the cost is defined by Equation (5.60).

g(s) = bsxx+ c
√
(sx(1− x))2 + s2y + g(s2) (5.60)

Take derivative and set it to zero to find optimal x∗.

∂g(s)

∂x
= bsx +

1

2
c((sx(1− x))2 + s2y)

− 1
2 2s2x(1− x)(−1) = 0 (5.61)

bsx = c
s2x(1− x)√

(sx(1− x))2 + s2y

(5.62)

(bsxsy)
2 = (c2 − b2)s4x(1− x)2 (5.63)

(bsxsy)
2

c2 − b2
= s4x(1− x)2 (5.64)

bsy

sx
√
c2 − b2

= (1− x) (5.65)

x∗ = 1− sy
sx

b√
c2 − b2

(5.66)

We must ensure that x ≥ 0, which happens when Equation (5.70) is satisfied.

0 ≤ 1− sy
sx

b√
c2 − b2

(5.67)

1 ≥
(
sy
sx

)2
b2

c2 − b2
(5.68)

c2 − b2 ≥
(
sy
sx

)2

b2 (5.69)

c ≥ b

√
1 +

(
sy
sx

)2

=
b
√
s2x + s2y

sx
(5.70)

It is no longer simple to determine from inspection if the optimal solution has x > 0 or y > 0 as in

Equation (5.23). We again construct the cost inequality, and substitute x = 1− y′.

bsxx+ c
√
(sx(1− x))2 + s2y + g(s2) ≥ c

√
s2x + (syy)2 + f(1− y) + g(s2) (5.71)
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bsxx+ c
√

(sx(1− x))2 + s2y ≥ c
√
s2x + (syy)2 + f(1− y) (5.72)

bsx(1− y′) + c
√
(sx(1− (1− y′)))2 + s2y ≥ c

√
s2x + (syy)2 + f(1− y) (5.73)

bsx(1− y′) + c
√
(sxy′)2 + s2y ≥ c

√
s2x + (syy)2 + f(1− y) (5.74)

It does not seem as if a closed-form solution is possible because of the complex dependency on

sx and sy when sx ̸= sy. As before, we compute all real solutions and then select a minimum, as

in Algorithm 8 and Equation (5.75). The boundaries between solutions are at least as complex

to compute as the solutions themselves. Computing the minimum of all possible solutions is less

error-prone, as well. This algorithm is used primarily during path reconstruction and does not

contribute significantly to run-time.

g(s) = min





min(b, c)sx + g(s1)

bsx

(
1− sy

sx

b√
c2 − b2

)

︸ ︷︷ ︸
x∗

+c

√
s2y +

(
bsy√
c2−b2

)2
+ g(s2)

c

√
s2x +

(
sxf√

(syc)2−f2

)2

+ f


1− sx

sy

f√
(syc)2 − f2

︸ ︷︷ ︸
y∗


+ g(s2)

c
√
s2x + s2y + g(s2)

(5.75)

The optimal x∗, y∗ ∈ [0, 1] from these computations must be scaled by sx or sy and appropriately

offset to recover solutions in the same coordinate space as the map.

5.2.1 Non-Aligned Path Endpoints

Our datasets use map-centered coordinates. Integer coordinates are aligned with the center of map

cells, whereas g(s) vertices are defined at the corners of map cells. This section adapts the cost

interpolation to suit the case where a path endpoint is at the center of a map cell.

Field D* constructs g(s), the cost to the goal from state s, as an iterative expansion from the

goal point. If the goal point is not already on a field vertex, we must compute the cost from the field

vertices that bracket the goal point. We term this the internal cost-to-goal computation, illustrated

in Figure 5.6a and detailed in Section 5.2.2. The external cost-to-goal computation is used for paths

that end on the edge of a map cell that contains a goal point and is illustrated in Figure 5.6b and

described in Section 5.2.3.

5.2.2 Internal Cost-to-Goal

For each field vertex that brackets the goal point we compute the cost to the goal using the

interpolated path equations in Algorithm 8 with the added constraints that all paths must end at
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Algorithm 8 Interpolated cost computation.

1: function InterpCostV1(g(s1), g(s2), c, b, sx, sy)
2: if min(b, c) =∞ then
3: vs←∞ x← 0 y ← 0
4: else
5: f ← g(s1)− g(s2)
6: if (b < c) then x1 ← 1 else x1 ← 0
7: c1 ← min(b, c)sx + g(s1)

8: c2 ← c
√

s2x + s2y + g(s2)

9: c3 ←∞ y3 ← 0
10: c4 ←∞ x3 ← 0
11: t← (syc)

2 − f2

12: if t > 0 then
13: y3 ← sx

sy

f√
t

14: if y ≤ 1 then
15: c3 ← c

√
s2x + (syy3)2 + f(1− y3) + g(s2)

16: end if
17: end if
18: if c > b then
19: x4 ← 1− sy

sx
b√

c2−b2

20: if x4 > 0 then

21: c4 ← bsxx4 + c
√
s2x(1− x4)2 + s2y + g(s2)

22: end if
23: end if
24: vs, x, y ← min ((c1, x1, 0), (c2, 0, 1), (c3, 0, y3), (c4, x4, 1))
25: end if
26: return vs, x, y
27: end function

the goal, s2. The goal flag is added to Algorithm 9 for this purpose. We fix g(s2) = 0. Depending

on the path taken in Figure 5.6a, g(s1) is one of gN , gS , gE , gW . The value of gx represents the cost

of the direct path to s2 (Equation (5.76) and Algorithm 9).

g(s1) =





gN = csx

gS = c(1− sx)

gE = c(1− sy)

gW = csy

(5.76)

5.2.3 External Cost-to-Goal

When updating the field value of a vertex (s in Figure 5.6b) with both s1 and s2 bracketing a goal

cell, another special routine is required. This is because gS ≠ (g(s2)− g(s1))sy + g(s1). The cost
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(a) Internal cost-to-goal computation.
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s
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sy 1− sy

gS

1
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(b) External cost-to-goal computation.

Figure 5.6: Cost-to-goal computation for field estimation.

along edge −−→s1s2 is piecewise linear and there are two potential solutions, with either y ∈ [0, sy] or

y ∈ [sy, 1]. For the second case, we must further generalize Algorithm 8 to enforce solutions that

traverse the shaded area in Figure 5.6b but only return solutions y ∈ [sy, 1].

Starting with Equation (5.77), we insert an offset term yo to account for the traversal of the

shaded region in Figure 5.6b. When the offset term is non-zero, solutions that terminate on the

interval y ∈ [s1, gS) are prohibited.

g(s) = bsxx+ c
√
(sx(1− x))2 + (syy + yo)2 + f(1− y) + g(s2) (5.77)

If x = 0, we can solve for y∗ by taking the derivative of the cost and setting it to 0. The optimal y∗

is expressed by Equation (5.79).

y∗ = −fsx
√
c2sy2 − f2 + f2yo − c2sy

2yo

sy(f2 − c2sy2)
(5.78)

y∗ =
fsx
sy

1√
c2sy2 − f2

− yo
sy

(5.79)

For y = 1, the optimal value for x∗ is expressed by Equation (5.81).

x∗ =
b2sx − c2sx + bsy

√
c2 − b2 + byo

√
c2 − b2

sx (b2 − c2)
(5.80)

x∗ = 1− b(sy + yo)

sx
√
c2 − b2

(5.81)

The new results are summarized in Equation (5.82) and realized in Algorithm 9, with appropriate

tests to ensure a valid domain and range for each case.

With the core routine complete, we can write the update rule for field values when s1 and s2 are
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Algorithm 9 Interpolated cost computation amended for cost-to-goal computation. Goal flag
excludes cases that do not terminate at s2, which is located at the goal point (Figure 5.6a).

1: function InterpCostV2(g(s1), g(s2), c, b, sx, sy, yo, goal)
2: if sx = 0 and sy = 0 then
3: vs← 0 x← 0 y ← 0
4: else
5: if min(b, c) =∞ then
6: vs←∞ x← 0 y ← 0
7: else
8: f ← g(s1)− g(s2)
9: c1 ←∞

10: c2 ← c
√
s2x + (sy + yo)

2
+ g(s2)

11: c3 ←∞ y3 ← 0
12: c4 ←∞ x4 ← 0
13: if goal = False then
14: if yo = 0 then
15: if (b < c) then x1 ← 1 else x1 ← 0
16: c1 ← min(b, c)sx + g(s1)
17: end if
18: t← (syc)

2 − f2

19: if t > 0 and sy > 0 then

20: y3 ← sx
sy

f√
t
− yo

sy

21: if 0 < y3 < 1 then
22: c3 ← c

√
s2x + (syy3 + yo)2 + f(1− y3) + g(s2)

23: end if
24: end if
25: end if
26: if c > b then and sx > 0
27: x4 ← 1− sy+yo

sx
b√

c2−b2

28: if 0 < x4 < 1 then
29: c4 ← bsxx4 + c

√
s2x(1− x4)2 + (sy + yo)2 + g(s2)

30: end if
31: end if
32: vs, x, y ← min ((c1, x1, 0), (c2, 0, 1), (c3, 0, y3), (c4, x4, 1))
33: end if
34: end if
35: return vs, x, y
36: end function

both goal bracketing vertices, as in Figure 5.6b (Algorithm 11). The IsGoal function return true if a

vertex is one of the four vertices that border a map cell with a goal point. The GoalApproachParams

function returns the associated gx, face, c, and b for a path that is approaching a map cell containing

a goal and bordered by s1 and s2, where face is the north, south, east or west face of the cell. It

also returns the offset of the goal point from the upper left corner of the cell, sx and sy. We use

column-major linear indices to identify the vertices s. (See Section 5.5) The test on Line 9 uses this
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Algorithm 10 Internal cost-to-goal values for nodes bracketing the goal state. The values cx
correspond to paths in Figure 5.6a.

1: function InternalGoalCost(s0,0, s0,1, s1,0, s1,1, sx, sy, c, bN , bS , bE , bW )
2: gN ← csx
3: gW ← csy
4: gS ← c(1− sx)
5: gE ← c(1− sy)
6: c1 ← InterpCostV2( gE , 0, c, bE , sx, 1− sy, 0, True)
7: c2 ← InterpCostV2( gN , 0, c, bN , 1− sy, sx, 0, True)
8: c3 ← InterpCostV2( gN , 0, c, bN , sy, sx, 0, True)
9: c4 ← InterpCostV2( gW , 0, c, bW , sx, sy, 0, True)

10: c5 ← InterpCostV2( gW , 0, c, bW , 1− sx, sy, 0, True)
11: c6 ← InterpCostV2( gS , 0, c, bS , sy, 1− sx, 0, True)
12: c7 ← InterpCostV2( gS , 0, c, bS , 1− sy, 1− sx, 0, True)
13: c8 ← InterpCostV2( gE , 0, c, bE , 1− sx, 1− sy, 0, True)
14: g(s0,1)← min(c1, c2)
15: g(s0,0)← min(c3, c3)
16: g(s1,0)← min(c5, c6)
17: g(s1,1)← min(c7, c8)
18: return g(s0,0), g(s1,0), g(s1,1), g(s0,1)
19: end function

property to quickly determine the orientation of s1 relative to s2. If sx = sy = 0.5 then this test

redundant.

5.2.4 Path Reconstruction

To begin path reconstruction, we compute the lowest cost-to-goal for a path starting at the non-integer

start coordinate (Figure 5.7a, Algorithm 12). As before, there are eight possible configurations

for the path, of which we choose the cheapest option. Unlike the cost-to-goal computation in

Figure 5.6a, the values of gN , gS , gE , gW are interpolated using their bracketing field vertices, as in

g(s) = min





bsx + g(s1)

csx + g(s1)

b

(
1− (sy + yo)

b

sx
√
c2 − b2

)

︸ ︷︷ ︸
x∗

+c

√
(sy + yo)2 +

(
b(sy+yo)√

c2−b2

)2
+ g(s2)

c

√
s2x +

(
f

sy+yo

1√
(syc)2−f2

)2

+ f



1−

(
1

sy

f√
(syc)2 − f2

− yo
sy

)

︸ ︷︷ ︸
y∗




+ g(s2)

c
√
1 + (sy + yo)2 + g(s2)

(5.82)
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Algorithm 11 External cost-to-goal for cases where s1 and s2 are both goal bracketing vertices.

1: function BasicCostV2(s1, s2, g(s1), g(s2), c, b)
2: if IsGoal(s1) and IsGoal(s2) then
3: g(sx), face, c, b, sx, sy ← GoalApproachParams(s1, s2)
4: if face = South or face = North then ▷ Edge on north or south face of goal cell
5: δ ← sy
6: else
7: δ ← sx
8: end if
9: if s1 < s2 then

10: c1 ← InterpCostV2( g(s1), g(sx), c, b, 1, δ, 0, False) ▷ Case 1
11: c2 ← InterpCostV2( g(sx), g(s2), c, b, 1, 1− δ, δ, False) ▷ Case 2
12: else
13: c1 ← InterpCostV2( g(s1), g(sx), c, b, 1, 1− δ, 0, False) ▷ Case 1
14: c2 ← InterpCostV2( g(sx), g(s2), c, b, 1, δ, 1− δ, False) ▷ Case 2
15: end if
16: return min(c1, c2)
17: else
18: return BasicCostV1(g(s1), g(s2), c, b)
19: end if
20: end function

Algorithm 12 Line 2. These are estimates of the path cost to the goal from the point inside the map

cell, not to the point inside the map cell. This means that the algorithm is not exactly symmetrical;

a path from the start to the goal is not the same as a path from the goal to the start.

For consistency, each call to the interpolated cost function InterpCostV2 in Algorithm 12 returns

an x value. However, all these values should be 0 or 1 since the cost within the goal cell is uniform,

and any non-direct path to the edge will not be optimal.

This function returns both a cost and a path waypoint coordinate in the form of two field vertices

(s1 and s2) and an offset (y) on Line 22. The pair of vertices constitute a unit-vector in space with

y as the offset. There are two ways to express a waypoint using this information. We standardize

the form to be convenient for efficient translation to the discrete map coordinates used for storage.

In our implementation, data is stored in a column-major format using unsigned integer indices. (See

Section 5.5) We use these indices to to compactly identify s1 and s2. We standardize the coordinate

by ensuring the linear index of s1 is less than the linear index of s2.

5.2.5 Path Reconstruction: Approaching Goal Cell

When computing the optimal path towards an edge that borders the goal point, we must employ a

specialized algorithm. If our last step lands precisely on a vertex, then we proceed as in Algorithm 11.

However, this algorithm does not return waypoints since it is designed for estimating the field values,

and further, the more likely case is that we start on an interpolated waypoint. A more general

algorithm is required.

There are 6 configurations to consider, illustrated in Figure 5.8. In these figures, the value gx is
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Figure 5.7: Path reconstruction for non-integer endpoints.

Algorithm 12 Internal cost-to-goal values for starting node for path reconstruction. The min
operator selects the path coordinate tuple with the lowest cost.

1: function StartCost(s0,0, s0,1, s1,0, s1,1, δx, δy)
2: gN ← (g(s0,1)− g(s0,0)) δy + g(s0,0)
3: gS ← (g(s1,1)− g(s1,0)) δy + g(s1,0)
4: gW ← (g(s1,0)− g(s0,0)) δx + g(s0,0)
5: gE ← (g(s1,1)− g(s0,1)) δx + g(s0,1)
6: c1, x1, y1 ← InterpCostV2(gE , g(s0,1), C, C, 1− δy, δx, 0, False) ▷ Case 1
7: c2, x2, y2 ← InterpCostV2(gN , g(s0,1), C, C, δx, 1− δy, 0, False) ▷ Case 2
8: c3, x3, y3 ← InterpCostV2(gN , g(s0,0), C, C, δx, δy, 0, False) ▷ Case 3
9: c4, x4, y4 ← InterpCostV2(gW , g(s0,0), C, C, δy, δx, 0, False) ▷ Case 4

10: c5, x5, y5 ← InterpCostV2(gW , g(s1,0), C, C, δy, 1− δx, 0, False) ▷ Case 5
11: c6, x6, y6 ← InterpCostV2( gS , g(s1,0), C, C, 1− δx, δy, 0, False) ▷ Case 6
12: c7, x7, y7 ← InterpCostV2( gS , g(s1,1), C, C, 1− δx, 1− δy, 0, False) ▷ Case 7
13: c8, x8, y8 ← InterpCostV2(gE , g(s1,1), C, C, 1− δy, 1− δx, 0, False) ▷ Case 8
14: c, y, s1, s2 ← (c1, δx(1− y1), s0,1, s1,1)
15: c, y, s1, s2 ← min((c, y, s1, s2), (c2, δy + y2(1− δy), s0,0, s0,1))
16: c, y, s1, s2 ← min((c, y, s1, s2), (c3, δy(1− y3), s0,0, s0,1))
17: c, y, s1, s2 ← min((c, y, s1, s2), (c4, δx(1− y4), s0,0, s1,0))
18: c, y, s1, s2 ← min((c, y, s1, s2), (c5, δx + y5(1− δx), s0,0, s1,0))
19: c, y, s1, s2 ← min((c, y, s1, s2), (c6, δy(1− y6), s1,0, s1,1))
20: c, y, s1, s2 ← min((c, y, s1, s2), (c7, δy + y7(1− δy), s1,0, s1,1))
21: c, y, s1, s2 ← min((c, y, s1, s2), (c8, δx + y8(1− δx), s0,1, s1,1))
22: return c,y,s1,s2
23: end function

pre-computed in Algorithm 10. That is, gx is not linearly interpolated by the field values at s01 and

s11, which is a condition unique to the goal cell, as in Section 5.2.2.

Cases 1,2,4 and 5 do not have search intervals that coincide with the projection of the goal point

onto the edge. The value of g(s1) is adjusted, but the cost computation is otherwise unchanged

(Line 11).

Cases 3 and 6 are more complex. As with Figure 5.6b, there are two regions to consider. We

67



5. Deep Planning with Field D*

bW bEc

δ 1− δ

yo sy

yo − δ

gx gy

s0,0 s0,1

s1,0 s1,1

s2,0 s2,1

(a) Case 1

bW bEc

δ 1− δ

yo sy

gx

s0,0 s0,1

s1,0 s1,1

s2,0 s2,1

(b) Case 2

bW bEc

δ 1− δ

yo sy

δ − yo

gxgy

s0,0 s0,1

s1,0 s1,1

s2,0 s2,1

(c) Case 3

bW bEc

δ 1− δ

sy yo

δ − sy

gxgy

s0,0 s0,1

s1,0 s1,1

s2,0 s2,1

(d) Case 4

bW bEc

δ 1− δ

sy yo

gx

s0,0 s0,1

s1,0 s1,1

s2,0 s2,1

(e) Case 5

bW bEc

δ 1− δ

sy yo

sy − δ

gx gy

s0,0 s0,1

s1,0 s1,1

s2,0 s2,1

(f) Case 6

Figure 5.8: Approaching goal cell from linearly interpolated state. Cases 3 and 6 have two potential
solutions.
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Figure 5.9: Degenerate cases for internal cost-to-goal computation.

select the lowest cost solution among the two regions (Line 15), taking care to transform the solution

into the same coordinate space as the initial problem (Line 19). Unlike Algorithm 12, the final

transformation of the solution into standard coordinates is left to a higher level routine.

This algorithm is a more general version of Algorithm 11. To see this, set sx = sy = 1 and yo = 0.

If s1 < s2, then we reach case 3, with ϵ = δ and gy = g(s1). The parameters to the interpolation

function are identical. The coordinate transform is not required for Algorithm 11. If s1 ≥ s2, then

ϵ = 1− δ and gy = g(s1) and again, the parameters to the interpolation function are identical to

Algorithm 11.

5.2.6 Path Reconstruction: Goal Edge to Goal State

The final part of the reconstruction is the path from the goal edge to the goal itself, as illustrated in

Figures 5.7b and 5.7c. Figure 5.7b illustrates the case where we are at a non-integer coordinate on an

edge bounding the goal state. This case is in addition to the normal path reconstruction cases that

choose another edge waypoint. To understand why this is necessary, suppose that in Figure 5.7b,

C > 0 and BN , BW , BE = 0. It may very well make sense to travel around the perimeter of the

goal state and reach the goal from the north. We select the path to the goal if it is cheaper than

any path of equivalent cost. This is computed in Algorithm 14.

5.2.7 Degenerate Cases

It is important to check that the algorithms are well-behaved if the goal or start location is on a

grid line or vertex (Figure 5.9).

Algorithm 9 is the core routine used by many of the special case computations. In particular if

sx = 0 or sy = 0, cases C1 and C2 return solutions that make sense given the geometric constraint

if one or both these conditions are true. However for case C3, sy must be greater than 0 since there

is a division by sy at line 20. Similarly for case C4, a division by sx at line 27 requires that sx > 0.

We have therefore added guards to protect these cases.
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Algorithm 13 External cost-to-goal for cases where s1 and s2 are both goal bracketing states

1: function GoalApproachCost(s1, s2, g(s1), g(s2), c, b, sx, sy, yo)
2: gx, face ← GoalApproachParams(s1, s2)
3: if face = South or face = North then ▷ Edge on north or south face of goal cell
4: δ ← sy
5: else
6: δ ← sx
7: end if
8: if s1 < s2 then
9: if yo ≥ δ then ▷ Cases 1, 2

10: ϵ← yo − δ
11: gy ← (g(s2)− gx)

ϵ
1−δ + gx

12: v, x, y ← InterpCostV2( gy, g(s2), c, b, sx, sy, yo, False)
13: else ▷ Cases 3
14: ϵ← δ − yo
15: gy ← (g(s1)− gx)

ϵ
δ + gx

16: v1, x1, y1 ← InterpCostV2( gy, gx, c, b, sx, ϵ, 0, False)
17: v2, x2, y2 ← InterpCostV2( gx, g(s2), c, b, sx, sy − ϵ, ϵ, False)
18: if v1 < v2 then
19: v ← v1 x← x1 y ← 1

sy
ϵy1

20: else
21: v ← v2 x← x2 y ← 1

sy
((sy − ϵ)y2 + ϵ)

22: end if
23: end if
24: else
25: if δ ≥ sy then ▷ Cases 4, 5
26: ϵ← δ − sy
27: gy ← (g(s2)− gx)

ϵ
δ + gx

28: v, x, y ← InterpCostV2( gy, g(s2), c, b, sx, sy, yo, False)
29: else ▷ Case 6
30: ϵ← sy − δ
31: gy ← (g(s1)− gx)

ϵ
1−δ + gx

32: v1, x1, y1 ← InterpCostV2( gy, gx, c, b, sx, ϵ, 0, False)
33: v2, x2, y2 ← InterpCostV2( gx, g(s2), c, b, sx, sy − ϵ, ϵ, False)
34: if v1 < v2 then
35: v ← v1 x← x1 y ← 1

sy
ϵy1

36: else
37: v ← v2 x← x2 y ← 1

sy
((sy − ϵ)y2 + ϵ)

38: end if
39: end if
40: end if
41: return v, x, y
42: end function

Appropriate corrections have been added to other algorithms to protect against these edge cases.

Finally, we restrict the reconstructed path from visiting a node that has already been visited to

prevent cycles. The next lowest cost path forward is selected when this case is encountered.
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Algorithm 14 Path reconstruction for points proximal to the goal.

1: function GoalTerminalCost(s1, s2, y)
2: gx, face ← GoalApproachParams(s1, s2)
3: if face = North then
4: B ← BN gx ← gN sx ← |y− δy| sy ← δx
5: end if
6: if face = South then
7: B ← BS gx ← gS sx ← |y− δy| sy ← 1− δx
8: end if
9: if face = East then

10: B ← BE gx ← gE sx ← |y− δx| sy ← 1− δy
11: end if
12: if face = West then
13: B ← BW gx ← gW sx ← |y− δx| sy ← δy
14: end if
15: return InterpCostV2( gx, 0, C, B, sx, sy, 0, True)
16: end function

5.2.8 Max Margin Planning Loss with Field D*

Table 5.2: Incremental path cost and map gradient for general case.

General Cost Computation

Case ∆g(s) ∂∆g(s)
∂b

∂∆g(s)
∂c

x = 1, y = 0 bsx sx 0

x = 0, y = 0 csx 0 sx

x = 0, y = 1 c
√
s2x + s2y 0

√
s2x + s2y

x > 0, y = 1 bsxx+ c
√
(sx(1− x))2 + s2y sxx

√
(sx(1− x))2 + s2y

x = 0, y > 0 c
√
s2x + (syy)2 0

√
s2x + (syy)2

The path cost of a Field D* solution is the sum of the cost of individual path segments. Tables 5.2

and 5.3 shows the incremental cost of each path segment. It is immediately apparent that the total

cost is expressible as the dot product of a vectorized cost map and a generalized state visitation

vector. As with A*, the map gradient is sparse. Unlike A*, the cost of a path segment may depend

on more than one map cell. The visitation vector is recovered by Algorithm 15.

71



5. Deep Planning with Field D*

Table 5.3: Incremental path cost and map gradient for external cost-to-goal.

External Cost-to-Goal Computation

Case ∆g(s) ∂∆g(s)
∂b

∂∆g(s)
∂c

x = 1, y = 0 b 1 0

x = 0, y = 0 c 0 1

x = 0, y = 1 c
√
1 + (sy + yo)2 0

√
1 + (sy + yo)2

x > 0, y = 1 bx+ c
√
(1− x)2 + (sy + yo)2 x

√
(1− x)2 + (sy + yo)2

x = 0, y > 0 c
√
1 + (syy + yo)2 0

√
1 + (syy + yo)2

Algorithm 15 Path visitation for Field D* paths. P is a sequence of path coordinates. Mr and
Mc are the number of rows and columns in the map, M . Pr(i) and Pc(i) access the row and column
of the i-th path element.

1: function PathVisitationFDStar(P , M , Mr, Mc)
2: V←0 ▷ Zero vector ∈ RMrMc

3: for i in 0...|P | − 2 do
4: r0←Pr(i) + 0.5 c0←Pc(i) + 0.5 ▷ Field coordinates to map coordinates
5: r1←Pr(i+ 1) + 0.5 c1←Pc(i+ 1) + 0.5
6: r ←Int(min(r0, r1)) c ←Int(min(c0, c1)) ▷ Integer map coordinates for cell C
7: v ←

√
(c0 − c1)2 + (r0 − r1)2

8: B ←∞
9: C ←∞

10: if (r < Mr) and (c < Mc) then
11: C ←M(r, c)
12: end if
13: if r0 = r1 and ro <floor(r0)+ϵ then ▷ Horizontal boundary between cells
14: if r > 0 then
15: B ←M(r − 1, c) ▷ B is cell above C
16: end if
17: if B < C then
18: r ← r − 1 ▷ B contributes to cost and not C
19: end if
20: end if
21: if c0 = c1 and co <floor(c0)+ϵ then ▷ Vertical boundary between cells
22: if c > 0 then
23: B ←M(r, c− 1) ▷ B is cell left of C
24: end if
25: if B < C then
26: c← c− 1 ▷ B contributes to cost and not C
27: end if
28: end if
29: ▷ Other cases internal to cell C
30: V (r +Mrc)← V (r +Mrc) + v ▷ Accumulate visitation count
31: end for
32: return V
33: end function
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5.3 Accelerated Learning

We performed an analysis of our algorithm to determine the performance-limiting factors. We use

PyTorch ([102]) as our deep learning framework. PyTorch is a mix of CPU and GPU-optimized deep

learning routines coordinated by Python scripts, which combines the performance of customized,

low-level code with the flexibility of Python. The result of our analysis highlights the need for an

accelerated loss computation, the benefits of which are most clearly illustrated in hindsight by the

figures in Table 5.4.

In Table 5.4, we see that the GPU accelerated code is as much as nine times faster than the CPU

version of the code, given the same number of CPU cores (light blue). At least 6 CPU cores are

required to achieve peak performance with the GPU. These cores are primarily used to transfer data

from the disk to the GPU. The light gray row shows that most of the speed improvement comes

from the CUDA implementation of Field D* and not the CUDA version of the MMP loss. Note

that these metrics utilize only one GPU, and a three GPU system would be data-starved, given an

18-core CPU.

We reduce the number of available cores to emulate typical server configurations (as of 2021).

For example, an Amazon EC2 P2 instance has a CPU core/GPU ratio of 4:1. A more advanced P4

instance has a CPU core/GPU ratio of 12:1, but these high-performance machines are generally too

expensive for exploratory research.

The CPU loss algorithm tested in Table 5.4 is already highly optimized. Our research began with

a 4-core desktop CPU, with the loss algorithm at least 35 times slower than the GPU accelerated

version. The improvement from the original un-optimized version of the CPU loss function (not

shown) is even more considerable. Early training runs took days to complete but now finish in a few

hours. Figure 5.10 illustrates how a hybrid CPU/GPU system operates during training. In all cases,

the CPU is responsible for loading training data and sending it to the GPU for the forward pass of

the network. This is not shown and is usually an asynchronous background process that prepares

and sends the next batch of data ahead of the next training step.

The loss function Figure 5.10a receives the result of the forward pass of the network. The CPU

computes the loss and sometime later returns the gradients for the backward pass through the

network. In our case, these are several hundred cost maps and associated gradients amounting to

a few megabytes of data. While the amount of data is not large, this introduces communications

latency and forces the GPU to idle while the CPU is busy.

There are methods for distributed deep learning that allow for looser coupling between computing

nodes. One could imagine a pipeline-parallel system such as in Figure 5.10b. Kosson et al. [115] is

an example of a fine-grained form of pipelined backpropagation. However, this is only helpful if the

computational time for the CPU stage is approximately the same as for the GPU stages. This is

not the case for our task when considering commercial deep learning cloud instances that do not

provide a large number of CPU cores. The latency of the pipeline stages will remain unbalanced,

which will limit any performance gain according to Amdahl’s law.

Translating an algorithm for use on a GPU is not yet an automated process. The GPUs
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Table 5.4: Analysis for accelerated loss computation. Test map tensor is 128× 128, N=200. CPU
is Intel i9-10980XE, 18 Cores at 3.0 GHz, 2 × NVIDIA RTX 2080Ti. One GPU used in this
benchmark.

CUDA CPU Cores Time (sec) Iter/sec Speedup(GPU) Speedup (4-core)

Y 18 15.82 63.20 8.92 35.28

Ya 125.65 7.96 1.12 4.44

N 141.16 7.08 1.00 3.85

Y 8 15.86 63.05 18.31 35.19

N 290.46 3.44 1.00 1.92

Y 6 15.79 63.36 23.60 35.35

N 372.58 2.68 1.00 1.50

Y 4 62.91 15.90 8.87 8.87

N 558.17 1.79 1.00 1.00

aCPU Field D* with GPU loss computation.

used in this research are programmed with C++, yet despite using the same language as our

CPU implementation, the algorithms are quite different. This is primarily because the Single

Instruction Multiple Thread (SIMT) programming model of the GPU belies a vastly different

hardware architecture, with the potential for tremendous parallelism but only after careful attention

to code branching and memory access patterns. These details are not as important for CPUs, which

devote large amounts of hardware towards hiding the latency introduced by branching code and

non-ideal memory access patterns. The GPU sacrifices this for more computational hardware.

A very high-end server in 2021 may have 64 cores (Ryzen Threadripper 3990x), each independent

of the other. In contrast, a GPU typically contains thousands of computational cores, giving a

theoretical peak floating-point performance far in excess of any CPU. This is possible because the

GPU does not have the physical hardware that a CPU uses to excel in generic tasks. Instead, it

specializes in tasks where computation is tightly coupled to a regular computational graph that

admits highly parallel arithmetic and memory operations. While frameworks such as OpenCL [116]

strive to automate the process of transforming plain C++ into accelerated code for the GPU, our

experiments with this have not been productive.

We will next show how the Field D* algorithm and the Fréchet metric are implemented on the

GPU to accelerate overall system performance by removing the CPU computational bottleneck. We

omit the conversion of the Max Margin Planning loss and the Modified Hausdorff Metric because

they are of less technical interest. The MMP loss is not computationally expensive and does not

require extensive modification to translate to the GPU. The Hausdorff metric is implemented as a

simplified version of the accelerated Fréchet metric.
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Figure 5.10: Different modes for parallel computation in a heterogeneous system.

5.3.1 Accelerated Field D*

The original Field D* algorithm for the interpolated cost computation is not well-suited for GPU

applications. In the following text, we will discuss the computational bottlenecks that prevent

effective utilization of GPU resources and how we modify the algorithm to eliminate them.

The GPU is central to many machine learning applications because it has exceedingly high

memory and computational throughput. Like most work in deep learning, our algorithm makes

extensive use of this capability, albeit invisibly through PyTorch. However, unlike most applications,

our loss function contains a planning step that is not easily expressed with the computational

primitives integral to PyTorch or other CUDA libraries.

An NVIDIA GPU partitions processing cores into groups of 32 threads, called warps, which are

scheduled as a unit and execute the same instructions in lock-step4. If some threads enter a code

branch, all other threads will wait until the branch completes and the warp reaches a common point

in the code. If one thread must execute a branch (for a condition that occurs on a map border, for

example), the remaining 32 threads must wait. A CPU is less affected by this problem because

each core is usually fully independent, runs multiple tasks to hide latency, and devotes significant

resources to branch prediction and memory caching.

5.3.2 Bellman-Ford-Moore Field Computation

Much like Dijkstra’s Algorithm, Field D* updates the cost field by expanding a single frontier node

at each time step. The location of that node is hard to predict, which also makes it hard to hide

memory access latency by pre-loading data. The algorithm is computationally efficient, but it is

also a poor fit for GPU architectures.

The Bellman-Ford algorithm (Bellman [114]), also called the Bellman-Ford-Moore algorithm, is

4There are exceptions to this rule depending on the hardware and the instruction being executed.
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an alternative to Dijkstra’s algorithm and its derivatives. This algorithm can fully utilize the GPU

multiprocessors and predictably access memory by assigning one thread to each row of the map.

While in comparison to Dijkstra’s algorithm, it requires far more computational steps to complete,

these operations occur on a massively parallel architecture and require little coordination between

threads.

We observe that the field update in Equation (5.82) are additive with respect to g(s1) and g(s2),

the field values. Therefore, the field values are monotonically decreasing as the algorithm progresses

and the inductive proof of convergence for Bellman-Ford is still correct. Ferguson et al. [105] must

have followed similar reasoning when extending A* to use the field update equations.

The runtime of Bellman-Ford is O(mn). While not work efficient, it fully utilizes the far more

numerous processors on the GPU, enhancing the speed of the overall system at the cost of redundant

computations. The Bellman-Ford algorithm is intimately related to value iteration and has similar

runtime. While our initial intent in selecting Max Margin Planning was to utilize the CPU for

efficient planning with A*/Field D*, the move to Bellman-Ford on the GPU has made the difference

less relevant.

There is extensive research on accelerating the fundamental algorithm of computing the shortest

path through a graph. Much of it focuses on very large generic graphs, as opposed to the regular,

locally connected graph discussed here. This research generally devotes great effort to increasing

work efficiency by avoiding redundant relaxations. Instead, we choose to minimize main memory

access, code branching, and code complexity so that the worker threads and the floating-point units

are fully utilized.

The ∆-stepping algorithm (Meyer et al. [117], [118]) and variants (Duriakova et al. [119] and

Chakaravarthy et al. [120]) are hybrids between Dijkstra’s algorithm and the Bellman-Ford algorithm

that use parallelism intelligently to maintain high work efficiency. When the parameter ∆ = 1,

they are a version of Dijkstra’s algorithm. When ∆ =∞, they behave like Bellman-Ford. Radius

stepping is a related algorithm (Blelloch et al. [121]). These algorithms are more suitable for very

large problems solved with CPU clusters that have non-uniform memory access (NUMA) constraints.

Generally, parallelism comes from breaking the graph into smaller pieces that local processors solve.

These graphs are irregular, and the algorithms are highly branching. Peng et al. [122], Prasad et al.

[123], and Nazarifard et al. [124] are different approaches that are also better suited for irregular

graphs on multi-core systems.

Busato et al. [125], Surve et al. [126], Davidson et al. [127], Kumar et al. [128], and Harish et

al. [129] are various GPU implementations to solve the shortest path problem on general graphs

that are defined with adjacency lists. Because our topology is locally connected and regular, we

can partition the work more efficiently. In particular, modern GPUs have features that were not

available to older work, such as Harish et al. [129].
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5.3.3 Divergent Branches in Field Computation

We have modified Algorithm 6 to eliminate branching in the field computation5. Recall that all

threads in a 32-thread group must execute the same code at the same time. In the case of a

branch, all other threads wait until the branching thread(s) complete their branch. This means that

parallelism may be reduced by a factor of 32.

Algorithm 16 Accelerated cost computation. Excess branches were removed to eliminate pipeline
stalls.
1: function BasicCostGPU(g(s1), g(s2), c, b)
2: v1 ← min(b, c) + g(s1)
3: f ← g(s1)− g(s2)
4: z ← min(f, b)
5: a← c/z
6: y ← min(1.0, 1.0√

a2−1.0
)

7: v2 ← (c
√

y2 + 1 + z(1− y) + g(s2)
8: return min(v1, v2)
9: end function

We have applied the following optimizations to Algorithm 6 to arrive at Algorithm 16.

• The optimal x and y are not used when computing g(s). (Deleted)

• If b = ∞ or c = ∞, the result will be ∞. No need for a special test for this condition.

Returning early actually increases runtime since all other threads in the warp will be delayed.

• Cases 4 and 5 in Algorithm 6 are merged by observing the symmetry in Equation (5.44),

swapping f and b.

• A min operator on Line 6 ensures that the solution is not greater then 1.0. When y = 1.0, the

solution is the same as Case 3 in Algorithm 6. If the radical on line 6 returns a NaN (when

a < 1), IEEE 754 specifies that min(1.0f, NaN) = 1.0f.

These modifications transform control-flow dependencies into data-flow dependencies. The floating-

point unit of the GPU has tremendous throughput if the instruction pipeline is full, which is often

difficult to achieve. This optimization is also beneficial to our CPU implementation.

5.3.4 Efficient Memory Access

The NVIDIA GPU architecture generally does not have a complex system for caching memory

accesses. The GPU is intended for massively parallel computation, and memory access latency

is instead hidden with context swapping between warps to ensure that the execution units are

constantly occupied. Each GPU multiprocessor does have a local shared memory with lower access

latency than the main memory. This memory is about 49KB For the GPU (NVIDIA RTX 2080

Ti), a fraction of the 11 GB of main memory. Both the main memory and shared memory have

5The interpolated cost computation used for path reconstruction is not similarly optimized since it accounts for a
fraction of the runtime.

77



5. Deep Planning with Field D*

B
or
d
er

R
eg
is
te
r
C
ac
h
e

B
or
d
er

R
eg
is
te
r
C
ac
h
e

32 Thread Warp

Processing Direction

Map Registers Field Registers

8 × 32 Interpolated Cost Field 10 × 32 Map and Cost Cache

Figure 5.11: A single CUDA warp iterates until convergence over a patch of the Field D* cost map,
carefully keeping all data in local registers to minimize access latency and maximize floating-point
utilization.

restrictions to ensure efficient access. In general, each thread in the warp must access memory as

part of a single 1024-bit contiguous read. Any other access pattern leads to delay. For this reason,

we use shared memory mostly for communication between threads warps.

Instead, we efficiently use register memory. Each multiprocessor has 256KB of register memory,

more than five times the available shared memory. Registers are the fastest memory with no access

restrictions, but a thread’s registers are not directly visible to other threads and can not be shared

with other warps. The CUDA warp shuffle operation allows threads in a warp to communicate by

exchanging register contents directly.

We partition the cost field into 32×N non-overlapping blocks of work, large enough to utilize

all available register memory. Within a block, each thread stores one row of the map and one row of

the cost field in local registers (Figure 5.11). The rows are length N + 2, but the block updates only

the central N field values. The two excess values are constant and required to compute the central

values (Figure 5.4b).

Algorithm 17 is a version of Bellman-Ford that iterates over the block until no cell has changed

by more than δ = 10−5, as broadcast by a warp reduction. The computation proceeds similarly to

Algorithm 7, substituting memory accesses with warp shuffle operations for variables not in the

thread’s register cache, depicted by wavy arrows in Figure 5.12. An arrow pointed downwards

transfers memory from the thread above. An arrow pointed upwards transfers a value from the

thread below. All shuffle operations between neighboring threads in a warp execute concurrently.

All threads execute the East-South operation, then the East-North operation, etc., in lockstep.

The order of the field updates is different from Algorithm 7. This order was selected to carefully

avoid redundant transfers between threads and to quickly use transferred values so as not to occupy

registers unnecessarily. If the thread is the first or last thread in the warp, then there are no

neighboring threads for some of these transfers. In this case, a second shuffle operation reads from a
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Figure 5.12: Sequence of operations for a single worker thread in Figure 5.11. Blue values are
stored locally in a register. Values in black are transferred using a warp shuffle (wavy line) from a
neighboring thread. The top-most and bottom-most threads in the warp with no neighbors use a
warp shuffle to read from a register cache distributed among all threads in the warp.

79



5. Deep Planning with Field D*

Algorithm 17 Relaxation process for single thread in warp of 32. The ĝ(·) and m̂(·) return register
cache values of g and m as described in Figure 5.12.

1: function FieldDStarBlock(g,m,row0,col0)
2: parfor i ∈ [row0 . . row0 + 31] do
3: δwarp =∞
4: while δwarp > 10−5 do
5: δrow = 0
6: for j ← col0 . . col0 +N − 1 do
7: v8 ← BasicCostGPU(ĝ(si,j+1), ĝ(si+1,j+1), m̂(si,j), m̂(si−1,j) ) ▷ ES
8: v1 ← BasicCostGPU(ĝ(si,j+1), ĝ(si−1,j+1), m̂(si−1,j), m̂(si,j) ) ▷ EN
9: v2 ← BasicCostGPU(ĝ(si−1,j), ĝ(si−1,j+1), m̂(si−1,j), m̂(si−1,j−1) ) ▷ NE

10: v3 ← BasicCostGPU(ĝ(si−1,j), ĝ(si−1,j−1), m̂(si−1,j−1), m̂(si−1,j) ) ▷ NW
11: v4 ← BasicCostGPU(ĝ(si,j−1), ĝ(si−1,j−1), m̂(si−1,j−1), m̂(si,j−1) ) ▷ WN
12: v5 ← BasicCostGPU(ĝ(si,j−1), ĝ(si+1,j−1), m̂(si,j−1), m̂(si−1,j−1) ) ▷ WS
13: v6 ← BasicCostGPU(ĝ(si+1,j), ĝ(si+1,j−1), m̂(si,j−1), m̂(si,j) ) ▷ SW
14: v7 ← BasicCostGPU(ĝ(si+1,j), ĝ(si+1,j+1), m̂(si,j), m̂(si,j−1) ) ▷ SE
15: v = min(v1, v2, v3, v4, v5, v6, v7, v7)
16: δrow = max(δrow, |ĝ(si,j)− v|)
17: ĝ(si,j) = v
18: end for
19: δwarp = WarpReduceMax(δrow) ▷ Max reduction across all threads in warp
20: end while
21: end parfor
22: return δwarp

23: end function

border cache (Figure 5.11) that is distributed across all threads.

The register cache is pre-loaded at the invocation of Algorithm 17. Out-of-bounds accesses are

padded with infinity. At the conclusion of Algorithm 17, the updated values for ĝ are written back

to the main memory as a sequence of aligned coalesced writes.

At a higher level, Algorithm 18 coordinates a team of warps that relax non-overlapping map

blocks until all blocks report a maximal change less than δ = 10−5 for any cell between iterations.

5.3.5 Accelerated Fréchet Metric

The solution table for the accelerated Fréchet metric can be computed in parallel on an expanding

wavefront, with each thread executing the equations outlined in Section 3.4.2.

Figure 5.13a illustrates the motion of a collection of threads on this wavefront. Red indicates

the active area, and blue indicates completed computations, which are discarded. Only results in

the green region influence the active region. Figure 5.13b illustrates the local computation for each

thread. Wavy arrows show intra-warp communication between neighboring threads. Straight arrows

represent transfers from register memory. Only the lead thread, t0, accesses shared memory to

retrieve path points for the next computation step, making the computation extremely efficient.

We tested the performance of our algorithm and report the results in Table 5.5. This test first
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5. Deep Planning with Field D*

Algorithm 18 Bellman-Ford-Moore variant of Field D*

1: function BellmanFordFieldDStar
2: δ ←∞
3: parfor s ∈ States do
4: g(s)←∞
5: end parfor
6: while δ > 10−5 do
7: parfor block in Blocks do
8: row0, col0 ← Origin(block)
9: δblock = FieldDStarBlock(g, m, row0, col0)

10: δ = BlockReduceMax(δblock)
11: end parfor
12: end while
13: end function
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P
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(a) Wavefront expansion
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Ci,j = max(Dij),min(Ci−1,j , Ci−1,j−1, Ci,j−1))

(b) Local computation

Figure 5.13: Fréchet coupling metric computed with expanding wavefront. Values in red are active.
Values in green are cached. Values in blue are past results that are discarded.

uses Field D* to compute a path for a map and then compares it to the ground truth using the

Fréchet metric. The map size is 128× 128 and we set δdF = 0.1 pixels.

The performance of the GPU algorithm is about five times faster than the CPU version for

N = 128 and increases to almost ten times faster for N = 384. This advantage will be even more

dramatic in comparison to CPUs with fewer cores or with larger map sizes and longer paths.

5.4 Summary

Our objective, to imitate human-generated trajectories given a command and image, is only possible

with a path planner capable of expressing fluid paths. The Field D* algorithm has this property,

and it uses a similar efficient dynamic program as A*. The Field D* path cost is conveniently
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5. Deep Planning with Field D*

Table 5.5: Runtime in seconds for various versions of Fréchet metrics computation over 1000
iterations. Intel i9-10980XE, 18 Cores at 3.0 GHz, 2×NVIDIA RTX 2080Ti.

N 128 256 384

CPU 45.6 83.6 164.7
GPU 9.2 12.5 16.6

expressed as the dot product of the vectorized cost map and a generalized state visitation count,

making it ideal for extending Max Margin Planning. This is a unique contribution, to the best of

our knowledge.

We have presented a detailed description of our Field D* implementation and show that it

translates well to massively parallel architectures after appropriate simplification and optimization.

While the availability of high-performance, highly parallel computational engines in the form of

GPUs has catalyzed the field of deep learning, no accelerated planning libraries were available at

the commencement of this work.

The initial planner used an 18-core high-performace CPU to minimize GPU idle time and

maximize throughput. These CPUs are not common in commercial deep learning hardware, such as

the Amazon Cloud, which uses smaller CPU instances as a conduit for moving data to the GPU.

The disparity grows more significant with powerful GPUs in clusters. We eliminate this problem by

moving the entire planning and loss computation to the GPU. While time-consuming, this work was

necessary and is a valuable contribution to others researching deep learning and planning algorithms.

5.5 Appendix

Our implementation of Field D* organizes map memory in a column-major format. Each vertex

has a linear integer index. This makes memory addressing trivial and compactly stores the 2D

coordinate as a single integer, saving CPU cache space. With this scheme, it is easy to compute

the indices of neighbors without requiring any comparisons for coordinate overflow or underflow,

except for the border regions. We resolve this by carefully padding the map with regions initialized

to infinity.

Cells in the border region are never updated by Field D* because they have infinite cost and

are never returned by the heap for expansion. The CPU does not need to test for map boundary

conditions, which increases execution speed by reducing the branching of the algorithm considerably.

5.5.1 Memory Layout

Figure 5.14 demonstrate the extreme cases for the map. Given and N ×M map, we have (N +

1)× (M + 1) states enveloping the map. In Figure 5.14a, we are performing an update centered

on s1,1. This involves updating the g values of the neighbors of s1,1, which includes s0,0, denoted

with a circle. An update of s0,0 will require the g values of all the nodes in the blue rectangle and
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5. Deep Planning with Field D*

associated map values. The red and blue paths denote the two most extreme cases, each requiring

the map value C and the B with the matching color.

One solution to this boundary problem is to have a guard condition that prevents out-of-bounds

memory access. However, this condition will need to execute for every memory access. An alternative

is to pad the map with values so that specific nodes are never expanded but can always be accessed.

In the example of the red path, since C and B are both infinities, the cost of any path will also

be infinity. However, the algorithm in Ferguson et al. [105] computes the minimum cost expansion

for the neighbor-of-the-neighbor of a node. Therefore, when computing the field value for s0,0, the

algorithm may access s−2,−2.

Two additional rows and columns are required at the top and left sides of the map. The bottom

and right sides of the map must also be padded. However, because the map is a linear array of

memory, rows 4 and 5 will alias to cells at the top of the map, one column to the right, which is

already padded.

s−2,−2 s−2,−1 s−2,0 s−2,1 s−2,2 s−2,3

s−1,−2 s−1,−1 s−1,0 s−1,1 s−1,2 s−1,3

s0,−2 s0,−1 s0,0 s0,1 s0,2 s0,3

s1,−2 s1,−1 s1,0 s1,1 s1,2 s1,3

s2,−2 s2,−1 s2,0 s2,1 s2,2 s2,3
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Figure 5.14: Extreme update cases for padded map. Red region contains map and field values that
are valid. Blue region are values that field computation will access.

Figure 5.15 shows the total memory padding for the map. Two other cells are required in the

upper right since accesses from the lower right of the map are aliased here. All map and g values in

the red regions are initialized to infinity.

The total memory allocated is (M + 3)× (N + 5) + 2. The column stride is M + 3 and regular

map pixels begin at (2, 2) which is a linear address of 2(M+3)+2. In general, map pixels correspond

to padded pixels with the formula:

l = (col + 2)(M + 3) + (row + 2)

These strategies simplify the code by removing almost all boundary and coordinate overflow/underflow
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M ×N

2× (N + 5)

1× (N + 5)

M × 2 M × 3

2× 1

Figure 5.15: Memory padding for map and g. Blue region contains original map. Red region padded
with infinity.

checks.
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Chapter 6

Datasets & Results

In this chapter, we present two datasets that we use to evaluate the performance of our system.

Annotating images is ordinarily expensive and time-consuming. Without existing datasets and

a proven system, we have decided to create a synthetic dataset to trial our design. We have

also developed a semi-synthetic dataset, which uses real aerial images that have been annotated

with major features, which we augment with synthesized commands and trajectories. The step

towards producing our own datasets was taken only after investigating existing work that might be

tangentially suitable for training a deep network for robot navigation. By first working with synthetic

data, we can refine our techniques before investing the time to develop realistic, human-annotated

datasets.

We present an error analysis of the algorithm when trained on synthetic data in Section 6.2 so

that we can understand what kinds of scenarios the model has difficulty learning. This analysis will

be more useful in the future when the dataset is expanded to include more elaborate commands.

In Section 6.3, we perform a clustering analysis of the FiLM modulation vectors to lend insight

into how the algorithm transforms image features. We examine how language affects the cost map

by directly comparing cost maps produced by the deep network, with and without language input.

In Section 6.4, we note that some path/command examples convey less information than others

because the path changes little, with or without the command. To improve convergence and

performance on hard examples, we develop a minibatch selection algorithm to bias sampling towards

the most problematic examples and find that it does indeed improve performance. We also experiment

with enhancing the gradient information by randomly exploring sub-optimal states adjacent to the

lowest-cost path.

Finally, in Section 6.6 we present some initial results with a hybrid dataset, developed with

human-labeled aerial images and augmented with synthetic commands. Our results are preliminary,

and while the algorithm trains successfully, it does not perform better than our baseline for the

validation data. Nevertheless, we are confident that future work will improve upon this result.
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6. Datasets & Results

6.1 Synthetic Dataset

The synthetic dataset is derived from CLEVR (Johnson et al. [25]), a diagnostic dataset developed

for early VQA systems such as DDRProg (Suarez et al. [75]). The images are computer generated

using Blender [130], a professional computer animation tool with realistic rendering capabilities,

including specular and diffuse reflections and shadows with multiple light sources (Figure 6.1a). The

CLEVR dataset is generated using a script that creates random scenes and questions according

to a sequence of templated operations. It is trivial to generate answers with full awareness of the

virtual world. Early efforts to solve this dataset focused on predicting the sequence of template

operators that were used to answer a question (the program) and then instantiating a modular

neural network to produce a solution, such as in Suarez et al. [75]. FiLM makes no assumptions

about the underlying model which is appropriate for our application.

We heavily modify the data generation scripts from Johnson et al. [25] to make a new synthetic

dataset for navigation. Figure 6.1 shows one example scenario from the regenerated CLEVR dataset.

(a) Synthetic image (b) Perspective mask (c) Aerial orthographic mask

Figure 6.1: Synthetic image generated with perspective and aerial masks. Each object in the mask
is identified by unique coloration.

Table 6.1 shows the basic template for each command, with the meta-tags corresponding to the

properties in Table 6.2. We have omitted alternative templates that express the same concept with a

different form for brevity. Each template is associated with a program that utilizes the information

in the scene graph to randomly generate interesting cost maps that fulfill the command.

Figures 6.2 to 6.6 are examples of the command families from Table 6.1. The cost maps in these

figures are generated from testing data using the model trained in Section 6.1.1. This cost map

is not the cost map generated by the templates, but rather is inferred from the image features,

commands, and path data.

The dataset used in Section 6.1.1 has 2048 randomly generated scenes in the train, test, and

validation sets. For each scene, 16 paths for each of the five command families are randomly

generated, yielding 32768 examples per set.
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6. Datasets & Results

Table 6.1: Command types in synthetic dataset. Object tags in Table 6.2. Optional properties in
parentheses. Alternative templates (not shown) and word substitution generate a wider variety
of commands than apparent in this sample. Command family 5 used only in result presented in
Table 6.13.

Family Command Template

0
Single set of objects
Go 〈A〉ing [the] ( 〈Z〉 〈C〉 〈M〉 ) 〈S〉.

1
Union of two sets of objects
Go 〈A〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (along with) [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

2
Intersection of two sets of objects
Go 〈A1〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 and 〈A2〉ing [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

3
Subset of a set
Go 〈A〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (except) [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

4
Choice of object sets
Go 〈A1〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 or [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

5
Agent-relative object identification
Go 〈A〉ing [the] 〈Z〉 〈C〉 〈M〉 〈S〉 〈D〉[est] to [me | my location].

Table 6.2: Object attributes for synthetic dataset and associated template tags.

Description Tag Options

Affordance 〈A〉 Avoid, Trust

Color 〈C〉 Gray, Red, Blue, Green, Brown, Purple, Cyan, Yellow

Distance 〈D〉 Near, Far

Material 〈M〉 Rubber, Metal

Relation 〈R〉 Left, Right, Back, Front

Shape 〈S〉 Cube, Cylinder

Size 〈Z〉 Small, Large

The synthesized cost map has a resolution of 128× 128, and the ground truth paths are scaled

accordingly. We generate paths using A*, Field D*, and OMPL (Şucan et al. [131]) path planners.

The OMPL path is the shortest distance non-obstacle path and represents an agent that avoids

obstacles and uses no other information. We pre-compute the Fréchet and Hausdorff metrics for the

A* and Field D* paths with respect to this baseline.

Scene images are rendered at 512× 512 resolution. This is down-sampled to 256× 256 for feature

extraction. We use ResNet-101 (He et al. [82]) mid-level features which result in R256×32×32 feature

maps. This model has been pre-trained on the ImageNet V2 dataset (Russakovsky et al. [132]) and

supplied by the Torchvision package (Marcel et al. [133]).

We use ResNet features because the original FiLM algorithm does as well, but it is reasonable to

assume that other stem networks may produce features more appropriate to our task. The features

are static to reduce network complexity due to hardware constraints and training time. However,
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Command Family 0: Single set of objects
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Figure 6.2: Command: “Navigate avoiding the small rubber things.” Ground truth path in blue,
inferred path in red.

Command Family 1: Union of two sets of objects
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Figure 6.3: Command: “Hide from tiny cubes along with the small matte objects.” Ground truth
path in blue, inferred path in red.

future work may fine-tune the stem network after initialization with a pre-trained model. That

features from a network with vastly different purposes work at all for our problem testifies to the

ability of deep learning to grasp fundamental concepts in vision that apply to many tasks.

The command text is converted into a token sequence which the FiLM LSTM/GRU reads as

one-hot vectors that are embedded and then converted into modulation vectors. We experimented

with GloVe ([85]), a pre-trained word embedding, and observed no change in performance. However,

because GloVe vectors group words with similar concepts “near” each other, it permits some

flexibility when testing with commands that contain words not seen in the training corpus.

For more detail on the dataset generation process, please refer to Section 8.1

6.1.1 Meta-Parameter Selection

This section introduces a basic model and experiments with the generic meta-parameters to establish

a performance baseline. We vary the learning rate (η), regularizer (λ), batch size (N), Huber delta

parameter (δ), and optimizer choice. The data presented here come from an early version of our

architecture that uses A* instead of Field D* with a simplified command. We have noted that the

Field D* variant is more robust to parameter selection than the A* variant, possibly because the

gradient from Field D*, while also sparse, is not quantized like the gradient from A*.

The model is sensitive to the selection of the learning rate parameter, η. Large values cause
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Command Family 2: Intersection of two sets
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Figure 6.4: Command: “Go giving wide berth to metal cylinder and fearing tiny blue matte block.”
Ground truth path in blue, inferred path in red.

Command Family 3: Subset of a set
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Figure 6.5: Command: “Navigate giving wide berth to cubes except the tiny green block.” Ground
truth path in blue, inferred path in red.

numerical overflow instabilities, despite efforts to augment precision. This is especially true in the

early part of training but can occur sporadically in later epochs for batch samples with large errors.

We have not observed any benefit to training with small learning rates over long periods, as the

authors of Perez et al. [24] have observed. On the contrary, we have found that small learning

rates generally lead to over-fitting and poor validation performance. The dataset used for these

experiments is considerably simpler than theirs, and this may yet be a good strategy in future work.

Typical values are η ∈ [10−3, 10−4]. The model is relatively insensitive to the regularizer parameter,

λ, which is typically [10−5, 10−6].

The model is not very sensitive to the value of the Huber δ parameter, the switching point

between L1 and L2 loss. It is most important for containing extreme losses and gradients in the

initial part of the training. We typically use a value between 0.1 and 10 with little notable change

in convergence or ultimate performance. The L2 version of the loss metric generally leads to a lower

ultimate error. A smaller value of δ lead to prolonged use of the L1 loss and higher final error.

We have observed that a batch size between 80 and 128 examples leads to the fastest convergence.

Small batch sizes cause instability, likely due to large sample variance. In contrast, large batch

sizes lead to slower convergence with a larger ultimate validation error, probably due to mundane

examples masking the gradients of more informative ones. These observations are consistent with

machine learning literature.
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Command Family 4: Choice between sets
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Figure 6.6: Command: “Trust the brown metal object or the brown rubber blocks.” Ground truth
path in blue, inferred path in red.

We have experimented with various optimizers (SGD, AdaGrad, Adam, AMSGrad) with no

notable difference in training performance.

Figure 6.7 illustrates the behavior of a properly tuned system. The Huber loss (Figure 6.7b)

switches from L1 loss to L2 loss at approximately the same point where the performance of the

system passes the performance of a näive system which chooses the shortest non-obstacle path

between the given endpoints. There is a pronounced knee in the loss (Figure 6.7a) that occurs at

this point. The Fréchet error (Figure 6.7c) tracks the max-margin loss. Specifically, we monitor the

value of the 90th percentile of the Fréchet metric for the 4160 sample paths. The total run-time was

6 hours.

As a comparison, runs with no language input (Figure 6.7d) show performance on par with the

baseline metric. This was accomplished by fixing the FiLM parameters to γ = 1 and β = 0. Table 6.3

shows the performance of the model at the end of the training run for the different command types,

with the scores for the 90th percentile Fréchet distance highlighted. Command family 4 requires

reasoning about the starting and ending point of a path and is more challenging to learn. For both

the modified Hausdorff metric and the Fréchet distance, the mean is significantly larger than the

median, indicating that there are outlier paths that the model does not learn well and are not well

represented in the loss. Examples of the worst-performing paths from this run can be found in

Section 8.2. We examine the errors in detail in Section 6.2.

Table 6.3: Metrics by command family from validation set, 4160 samples.
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0 1.7e-03 2.7e-03 1.4e-03 2.1e-03 1.34 5.13 0.57 1.05 0.42 2.12 0.15 0.36
1 1.7e-03 1.8e-03 1.4e-03 2.2e-03 1.35 4.35 0.66 1.17 0.43 1.88 0.16 0.40
2 1.9e-03 2.3e-03 1.5e-03 2.6e-03 1.83 6.19 0.70 1.19 0.65 2.80 0.17 0.46
3 1.7e-03 1.3e-03 1.4e-03 2.3e-03 1.59 6.08 0.64 1.09 0.57 2.89 0.17 0.41
4 3.0e-03 2.7e-03 2.3e-03 5.1e-03 3.74 7.30 1.28 8.25 1.61 3.78 0.48 2.98
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(a) Typical loss curve, η = 10−3, λ = 10−5, N = 80
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(b) Huber loss statistics, δ = 1
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(d) 90th percentile Fréchet loss, no language input

Figure 6.7: Typical training performance plots for a properly tuned system. Baselines in Figures 6.7c
and 6.7d (dashed) are Fréchet distance between non-obstacle shortest paths and ground truth paths.
Figure 6.7d shows that language is essential to perform well on dataset.

6.1.2 Output Function

We experimented with different output functions for the network. Both Field D* and A* do not

work with negative values as these can induce infinite cycles. In some of our early experiments, we

avoided this problem by prohibiting states from being visited more than once. This can still lead to

problematic results for the loss function when computing path gradients and is only suitable for

cases where negative values occur in only the minority of states.

A more durable solution is to use a non-negative output function. Viable choices are the absolute

value, quadratic, or sigmoid functions. The sigmoid is a poor fit for our task since there is a rapid
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change in the derivative between the two saturated regions by design. Ratliff [58] use an exponential

function in their LEARCH algorithm. Networks with these output functions are volatile in the

initial epochs.

In general, when using the quadratic output function, we see a foot in the performance plot

(Figure 6.8b), where training slows for a bit. This foot occurs approximately where the Huber

loss transitions from L1 to L2 loss. In general, networks with the absolute value output function

(Figure 6.8a) train more quickly, with validation performance tracking training performance more

closely. With the quadratic output function, there is a lag of at least ten epochs between training

and validation performance. Generally, there is a much slower convergence rate with results no

better than for the networks with the absolute value output.
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(b) Fréchet metric, quadratic output function

Figure 6.8: Performance metrics for networks with absolute value function and quadratic output
function.

To understand the reason for this, consider the loss function as defined in Equation (6.1), where

q is either 1 or 2. If F (·) is a quadratic function of the network output, and q = 2, then we are

effectively optimizing over the 4th power of the network output, which likely creates extreme values

and gradients that affect numerical performance.

L = min
θ
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 (6.1)

6.2 Error Analysis

In most cases, the ground truth cost map is not expressible or knowable for human-labeled data.

One benefit of having a fully synthetic dataset is that we have access to the ground truth cost maps.
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In the following section, we use this information to lend insight into the kinds of errors made by the

algorithm. Our analysis determines whether paths with similar costs yet largely different trajectories

contribute significantly to the aggregate error. Max-Margin Planning cannot model examples with

multiple correct solutions, unlike Max-Entropy techniques that model the distribution over solutions.

We generate a cost map and path, µ̂i, for each input (µi, Λi, Ii). We compute the path cost for

µ̂i on the ground truth cost map, which is never otherwise used for testing or training and is usually

discarded during dataset generation. We then compute the path cost for µi but on the ground truth

cost map. For each example, we compute the Fréchet distance between paths and the percent error

in the cost relative to the ground truth cost. The paths in this analysis are generated with the A*

algorithm.

We use the ground truth cost map for this analysis because the generated cost map is not

guaranteed to have the same scale as the original. Although unlikely, it is also possible that the

generated cost map does not resemble the latent cost map because MMP is a discriminative classifier.

It is sufficient for it to create paths that imitate the training data. It is also not strictly possible to

compare the cost maps directly.

Figures 6.9a and 6.9c are 2D histograms of the percent cost error relative to ground truth cost

vs the Fréchet distance metric. The count/coloration of the plot is on a logarithmic scale. It shows

that a large number of paths have large Fréchet distances to ground truth yet have low cost (left

border). This confirms that a significant fraction of the Fréchet loss derives from alternative paths

that have almost equal cost to the ground truth.

Figures 6.9b and 6.9d contain the same data as the prior plots with a logarithmic x-axis.1 The

training set (Figure 6.9b) can be partitioned into four regions.

• Region 1 is the set of paths with low Fréchet distance and low path cost error. These paths

approximately match the ground truth paths and have “normal” errors.

• Region 2 is the set of paths with high cost but low Fréchet distance.

• Region 3 is the set of alternative paths with a similar cost to ground truth but with high

Fréchet cost.

• Region 4 contains those paths with a high relative cost error and high Fréchet distance.

We have selected the worst examples from each region to visualize the kinds of errors the algorithm

produces. Please refer to the appendix in Section 8.3 for the following discussion.

Region 2 paths (Section 8.3.2) typically cut through an object and incur high costs. Examining

the ground truth and learned cost maps in Figures 8.9b and 8.9c, we see that the learned cost map

lacks sharp object boundaries. In general, it is known in robot navigation that non-traversable

regions are hard to enforce with a cost map alone. While one could use infinite costs to designate

undesirable areas, this may cause scaling problems. Explicit keep-out regions are a better solution

and point towards future work to make the algorithm practical.

Region 3 generated paths (Section 8.3.3) have similar costs to the ground truth path but take

very different trajectories. The generated tracks have comparable lengths to the ground truth path,

1Cases where the percent cost error is < 10−1 are assigned a value of 10−1 to avoid log(0).
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Figure 6.9: Error histograms for train and test dataset, all families.

and the generated cost map is similar to the ground truth cost map. The difference in cost between

the paths is less than 15 percent. The algorithm did produce a path of similar cost to the expert if

measured by the ground truth cost map.

Region 4 errors (Section 8.3.4) are paths with large cost error and large Fréchet error. This is

usually the result of a clearly incorrect cost map. Figure 8.19 shows that the learned cost map

incorrectly increased cost around the red cylinder on the left (perhaps because it looks brown) and

takes a longer path to the right of the image. Figures 8.21 to 8.23 seem to overestimate the cost

around objects that are to be avoided, forcing the planner to choose a longer route that is more

costly on the ground truth cost map. Figure 8.20 seems to fail similarly, but it also incorrectly

increases the cost for small purple objects. This error increases the cost for the learned path but

does not increase the cost for the ground truth path, indicating the cost in the vicinity of the ground

truth path must be overestimated.

Section 8.4 contains supplementary error histograms for each command family, excluding com-

mand family 4. These plots largely echo the patterns observed in the aggregate data.

Table 6.4 gives statistics for each region and how they affect the Fréchet score of the classifier.
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Table 6.4: Count of datapoints in each region, 90th percentile Fréchet distance metric for accumulated
regions.

Region Count 90FGT Region

Train 1 39138 4.00 1

2 197 4.00 1,2

3 625 4.47 1,2,3

4 18 4.47 1,2,3,4

Test 1 37429 5.10 1

2 501 5.66 1,2

3 1591 7.00 1,2,3

4 392 7.78 1,2,3,4

Table 6.5: Frequency of each command family in error regions 2, 3, and 4.

Family 0 1 2 3

Region 2 Train 0.127 0.365 0.310 0.198

Test 0.076 0.343 0.411 0.170

Region 3 Train 0.189 0.318 0.246 0.246

Test 0.206 0.300 0.275 0.219

Region 4 Train 0.056 0.389 0.556 0.000

Test 0.023 0.472 0.398 0.107

The Fréchet metric is not significantly affected with the addition of region 2. These high-cost paths

still have low Fréchet distance. Including region 3 increases the Fréchet loss notably. The addition

of region 4 error does not contribute to the overall loss as significantly.

Table 6.5 shows the frequency that each command family appears in either region 2, 3, or 4.

Command families 1 and 2 are the most significant error source.

Table 6.6 shows the Fréchet score for each command family for both the generated path (90FGT )

and the baseline shortest non-obstacle path (90FSP ). In all cases 90FGT is less than the näıve

shortest path solution, 90FSP . Additionally, we compare the distributions of the generated paths’

Fréchet metric to that of the baseline by using the Kullback-Leibler divergence to show that the

distribution is quite different (which is good).

However, for family 4, performance for validation and testing is almost on par with the baseline.

This is because commands of this variety cannot be expressed with just an image and command but

also require path endpoints as input to the network. This was not provided to this model. This

command class’s relatively good training performance can be attributed to over-fitting.

6.2.1 Summary

We have decomposed the error into four regions by regenerating the ground truth cost map and

re-analyzing the paths generated by the algorithm. This procedure is only possible with synthetically
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Table 6.6: 90th percentile Fréchet distance in pixels (90FGT ) for each command family compared
to ground truth (lower is better) and shortest non-obstacle path baseline (90FSP ) compared to
ground truth. KL divergence (DKL) between distribution of Fréchet distance to ground truth (p)
and non-obstacle shortest path distribution to ground truth (q), in bits. Higher is better.

Train Validation Test

Family 90FGT
90FSP DKL

90FGT
90FSP DKL

90FGT
90FSP DKL

All 4.95 29.35 4.60 10.61 30.00 3.58 10.61 29.67 3.58

0 4.00 28.28 4.89 5.10 28.43 4.40 5.00 28.28 4.04

1 4.95 31.20 4.59 9.90 32.57 3.25 9.90 31.82 3.72

2 5.00 31.00 4.69 9.00 32.03 3.43 9.00 31.31 3.30

3 4.24 30.38 4.76 6.08 30.74 4.34 6.00 30.08 4.11

4 5.00 27.20 4.31 24.75 27.83 1.97 24.75 27.58 1.82

generated data since it is not, in general, possible to express or even know the cost map a human

uses to make similar decisions.

As evident from region two paths, the algorithm may benefit from a separate representation

for non-traversable areas. While this affects only about 1 percent of paths, a better cost map

representation may improve performance for all examples by mitigating potential numerical problems

from representing very high-cost forbidden regions concurrently with low-cost traversable areas.

In region three paths, we see how MMP has learned to generalize the training examples into

cost maps that correctly generate paths of similar cost. As noted in the literature, MMP can

not handle cases where multiple paths have equal costs. This behavior is expected and does not

result in pathological outcomes. The algorithm seems to converge towards sensible cost maps when

trained on aggregate data. We suspect that the erroneous examples in region three are local minima

that approximate the original cost map but are very hard to escape. Switching to an algorithm

like MaxEnt IRL may be one way to eliminate errors of this variety, but with added numerical

complexity.

In region 4, we see that the number of genuinely wrong examples is relatively sparse, about 1

percent in the testing set. While we cannot offer a specific remedy to these examples, it is worth

exploring how changing meta-parameters and network architecture affects these outliers.

6.3 Visualizing the Effects of Language

In this section, we show how language input affects the cost map. We can see that the algorithm

appropriately modulates the cost map by examining it with and without language input. We also

perform a clustering experiment on the modulation vectors to visualize the hidden structure learned

by the model.
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Typical Command

Command Navigate giving wide berth to gray object
Tokens [<START>, navigate, giving, wide, berth, to, gray, object, <END>]
Encoded [ 1 46 31 68 12 64 33 48 2 0 0 0 0 0 0 0 0 0 0 0 0 ]

Empty Command

Command -
Tokens [<START>, <END>]
Encoded [ 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

Table 6.7: A typical command and an empty command transformed into tokens.

6.3.1 Cost Map Modulation

We use a similar model to the one used in Section 6.2. We extract the cost map for a given command

in the usual fashion and compare it against a cost map without language input. We use the same

model to generate this cost map to make the comparison as direct as possible. Direct comparison is

only possible after accepting two approximations.

First, we assume that two cost maps will have a similar scale. Cost maps are not unique. For

example, increasing the cost of an object can have a similar effect as reducing the costs of others.

Nonetheless, we assume that we can directly compare one cost map to another. In Section 6.2, we

carefully avoided this assumption.

Second, we require modulation vectors for the feature maps that are comparable with those

upon which the model was trained because the FiLM architecture in Figure 3.9 uses the feature

modulation vectors to generate a cost map. We, therefore, devise a procedure to elicit modulation

vectors from the language encoder that contain no command content. It is important to note that

the architecture is not being re-trained with empty commands. We presume that it has generalized

enough that empty commands (which have not been trained upon) will produce neutral cost maps.

Directly setting the modulation vectors’ γ = 1 and β = 0 does not produce usable cost maps.

Each command is encoded into a string of numerical tokens (Table 6.7), with three special tokens:

<START>, <END>, and <NULL>. <NULL> tokens pad the end of a token stream so that all commands

have the same length. The tokens are embedded with word2vec. The hidden state of the RNN is

extracted after the <END> token. That hidden state (R7168 in this example) is transformed into

the feature modulation vectors described in the prior section using a fully connected layer. The

empty command is simply the <START> and <END> tokens which produces modulation vectors that

generate plausible cost maps without language content.

We present 20 random examples drawn from the validation set here and in Section 8.5 to illustrate

how the language modulates the cost map. Figures 6.10, 6.11, 6.13, 6.14 and 6.19 are good examples

of the 5 commands families.

Figure 6.16 is an example of a poor result. The algorithm detects none of the referent objects.

Inspection of the generated path (not shown for clarity) shows that it has a low Fréchet distance
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(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.10: Command: “Fear big things.” Command family: 0.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.11: Command: “Proceed avoiding the large matte cylinders including the tiny shiny object.”
Command family: 1.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.12: Command: “Navigate trusting the small objects including the yellow rubber cylinder.”
Command family: 1.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.13: Command: “Stay away from small cube and fear the small green block.” Command
family: 2.
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(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.14: Command: “Avoid shiny cubes except for the large cubes.” Command family: 3.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.15: Command: “Stay away from the large cubes but not matte things.” Command family:
3.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.16: Command: “Proceed trusting the purple cube or the tiny red shiny cube.” Command
family: 4.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.17: Command: “Proceed keeping away from the big cyan metallic object or big brown
cylinder.” Command family: 4.
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(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.18: Command: “Proceed trusting the yellow rubber object or the large metal cube.”
Command family: 4.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.19: Command: “Go hiding from the purple matte object or tiny gray cylinder.” Command
family: 4.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 6.20: Command: “Avoid the big blue matte cylinder or tiny shiny cylinder.” Command
family: 4.

from the ground truth path despite not correctly modulating the cost map.2

It is possible that the way we approximate the no-language output has introduced an error that

is of no consequence to actual testing scenarios. However, this is also an example of a command

that is inconsequential to the path and, therefore, a low-information training example as evidenced

by the small Fréchet error between the ground truth and shortest paths. The algorithm will not

learn how language and image features map to a proper cost map given low-quality training samples

similar to this one. How to measure the information in the training example and weight them

2Command family 4 is has poor performance, but this is expected since identifying the cheapest of two plans
requires knowledge of the starting and stopping points of the path. This was accidentally omitted when performing
the analysis.
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accordingly is an interesting problem that we address in Section 6.4.

6.3.2 t-SNE Clustering of Language Encoder Output

In this section, we perform a clustering analysis on the FiLM modulation vectors to gain insight

into what the algorithm learns. We used an accelerated version of t-SNE by Ulyanov [134], which

was originally published by Maaten et al. [135] and Maaten [136].
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Figure 6.21: t-SNE plot for all command families, training set. Perplexity = 50, N = 5000.

Figure 6.21 shows clustering of 5000 FiLM vectors from the training set derived from the hidden

state of the language encoding RNN. The vectors are R1024 and modulate the feature maps that

generate the cost map by scaling and offsetting each channel. Note how the points corresponding to

command family 4 (green) are segregated from other points. These correspond to commands that

offer a choice; “Avoid the red cube or avoid the blue cylinder.” They are fundamentally different

than the other commands in that the algorithm must make an inference about which option set

produces a cost map and path with the least cost.

The purple points are also segregated into smaller clusters. Command family 3 has commands of

the form “Trust the blue cubes except for the small ones,” which exercise computing the subset of a

set. A deeper inspection of the individual points in each cluster reveals that they contain commands
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with similar structures. For example, the cluster marked “A” has commands that all begin with

“Avoid the objects except...” The cluster marked “B” has commands that trust various kinds of cube

shapes.

This pattern appears to be true for command family 0 as well, which has the form “Go fearing

the blue cubes”. In general, we observe that clusters generally form from commands that refer to

similar object types. The cluster marked “C” has commands that all refer to various cyan objects,

even for data points in commands family 3 (purple).

Commands families 1 and 2 are generally commingled. Command family 1 has the form “Go

[fear | avoid] the [objects] and [other objects].” Command family 2 has the form “Go [fear | avoid]
the [objects] and [fear | avoid] [other object].” Upon closer inspection of the template used to

generate these two commands families, it is apparent that the algorithm has correctly identified

that commands family 1 as a subset of 2.

Figure 6.22 illustrates a similar pattern in the validation dataset.
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Figure 6.22: t-SNE plot for all families, validation set. Perplexity = 50, N = 5000.

The clustering analysis lends insight into what the algorithm is learning. However, it is important

to note that while t-SNE is a valuable tool to visualize high-dimensional data, the results are

stochastic with each run of t-SNE, just as the data are stochastic with each training run. The

distance between clusters does not indicate how well the algorithm separates commands expressing
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different concepts from each other. It would be interesting to see how this clustering analysis changes

with more comprehensive datasets and elaborate commands.

6.4 Learning from the Most Informative Paths

In Section 6.3.1, we noted the existence of low-information training examples. In this section, we

analyze our dataset to determine the extent of this problem and offer a revised training procedure

to mitigate the effects.

Low-information commands are those for which the ground truth path differs little from the

non-obstacle shortest path between endpoints. The algorithm learns the meaning of a command by

observing its impact on the ground truth trajectory. While commands with trivial answers are an

important part of learning, too many such commands can also interfere with learning by making

default strategies unreasonably successful.

Figure 6.23a depicts the distribution of the Fréchet distance of paths with respect to the baseline

shortest non-obstacle path. More than 50 percent of the paths are very similar to a näıve plan,

indicating that those paths provide relatively little information to the learning process. For example,

a command “Avoid the red cubes” does not alter a path if there are no red cubes or if they are so

far away to have little effect.
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Figure 6.23: More than 50 percent of all paths have a Fréchet distance of fewer than 10 pixels when
compared to the shortest path, regardless of command (left). Example error histogram (right, β = 1,
blue line) used to generate new mini-batch selection weights.

The imbalanced class learning problem in object classification literature arises from long-tail

distributions with many rare object classes that pose a significant challenge to learning. One solution

to the problem is to statically rebalance the dataset by removing examples with trivial solutions so

that the network trains on a more diverse set of problems. The original CLEVR dataset generation

103



6. Datasets & Results

code from Johnson et al. [25] rejects questions that have trivial answers with high probability.

Identifying and rejecting trivial commands and paths is more difficult in our setting. A command

may generate a relatively direct path after balancing many complex constraints. A synthetic

benchmark allows us to view this otherwise latent process, as in Section 6.2, but that is not possible

for human-labeled data.

Another solution is to sample the dataset dynamically. Jiang et al. [137] generate a cumulative

distribution function of the losses in each epoch, exponentiated by a selectivity parameter 0 <

β ≤ 1, to generate a selection distribution. When β = 0, all examples are uniformly selected for

backpropagation. When 0 < β < 1, examples from the long tail are more likely to be selected

than otherwise. Figure 6.23b depicts this process for a CDF linearly decreasing error (β = 1, blue).

Jiang et al. [137] show they can accelerate training convergence by favoring challenging examples for

back-propagation. All examples go through the forward pass, but not all gradients go through the

expensive backpropagation step.

Dong et al. [138] addresses the class imbalance problem by introducing a class rectification

regularizer that rebalances the cross-entropy loss used in their image attribute recognition problem.

As with Jiang et al. [137], a CDF is constructed for each training batch but sorted by ground truth

attributes instead. Those examples in the upper 50th percentile are considered minority classes,

and those in the lower 50th percentile are majority classes. This information is used to construct

regularizers based on contrastive loss, triplet ranking loss, and distribution similarity. It is not clear

how this strategy can map to high dimensional outputs such as paths, where each command may

have multiple paths of equivalent cost.

Zhang et al. [139] use a repulsive point process to bias minibatch sampling, while Katharopoulos

et al. [140] and Johnson et al. [141] apply importance sampling to deep learning. All three of these

methods use the loss function as a proxy for the importance of a sample. Our loss may underestimate

the true loss dramatically because it is based on the Hausdorff metric more suited towards points

clouds in comparison to the Fréchet metric. These techniques are also more complex than required

for an initial exploration of the benefits of dynamic sampling for our problem.

We have adapted Jiang et al. [137] as a dynamic mini-batch sampling strategy (Algorithm 19).

It is simpler than more principled sampling strategies such as importance sampling. It does not

require explicit knowledge of the loss function, as with Dong et al. [138], yet by observing the

Fréchet error, the strategy increases the likelihood of training on difficult examples. Different from

Jiang et al. [137], we use the selection process to create mini-batches rather than select loss-gradient

components. We use Adam, AMSGrad, and AdaGrad optimizers which record loss statistics over

time. Selective back-propagation is more complicated to implement with these optimizers than

with SGD. Additionally, constant-sized mini-batches are best suited for efficient GPU utilization.

As with Jiang et al. [137], we create a histogram and convert the error to a CDF, which is used

to generate sample weights, parameterized by a selectivity index, β. We draw samples from the

weighted examples with replacements to generate mini-batches for the following epochs.

For the examples in Figure 6.24, we profile the dataset every two epochs and record the Fréchet

distance to the ground truth path as an indicator of difficulty. It shows that selectivity with β = 0.25
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Algorithm 19 Dynamic mini-batch sampling for accelerated learning. Parameters are the same as
Algorithm 4 with the addition of the profiling interval S, the selectivity parameter β ∈ [0..1], and
epochs, which define the number of epochs to execute.

1: function DynamicSampling(I, µ, Λ, q, δ, N , S, β, epochs)
2: w ∼ Uniform(·) ▷ Random initial model weights
3: p(x)← Uniform(·) ▷ Uniform sample weights
4: for i = 1 to epochs do ▷ Iterate over epochs

5: for k = 1 to ⌊ |µ|N ⌋ do ▷ One epoch
6: for n = 1 to N do
7: In, µn, Λn ∼ p(x) ▷ Sample mini-batch
8: end for
9: L, dLdF ←DeepMMPHuberLoss(w,IN ,µN ,ΛN ) ▷ Forward

10: w ←Backward(L,dLdF ) ▷ Backward
11: end for
12: if i mod S = 0 then ▷ Profile dataset
13: for j = 1 to |µ| do
14: Mj←Forward(w,Ij ,µj ,Λj)
15: µ̂j ←Planner(Mj ,µj) ▷ Plan with non-augmented cost map
16: Fj ←FrechetMetric(µ̂j , µj) ▷ Accumulate metrics
17: end for
18: P (x)←CDF(F ) ▷ Histogram and compute CDF metrics
19: p(x)← P (x)β ▷ Update selection distribution
20: end if
21: end for
22: end function

converges faster than training with no selectivity. However, higher selectivity, with β = 0.5, does

not improve convergence further. This suggests a limit to how much this technique can improve

training and is likely dataset-dependent.

Table 6.8: 90FGT for individual command families using mini-batch sampling with various β on
validation set. All results from epoch 10.

Command Family
β 0 1 2 3 4

0.00 2.00 8.26 10.51 4.38 12.18
0.25 1.16 2.98 3.70 1.33 13.37
0.50 1.09 3.55 3.27 1.56 14.46
1.00 1.17 4.49 4.56 2.00 11.83

Table 6.8 breaks down the performance of the mini-batch sampling technique by command

family. Initially, this was envisaged to improve the performance of command family 4, which does

not perform as well as other command families. While the performance of command family four has

not improved, it is clear that the model learns all the other command families more efficiently than

the default sampling strategy when β = 0. The result in Figure 6.7 use β = 0.50.
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(a) Batch selection: β = 0
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(b) Batch selection: β = 0.25
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(c) Batch selection: β = 0.50
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(d) Batch selection: β = 1.0

Figure 6.24: Performance for batch selection for single runs. N = 80, η = 10−3, λ = 10−5.

Practical Considerations

Shuffling and sampling training data on the GPU causes memory fragmentation in our implementation.

The GPU runs out of contiguous memory despite sufficient memory, triggering out-of-memory errors.

We have adopted the FairScale[142] library to mitigate this, which implements the ZeRO-3[143]

and Sharding[144] optimizations for PyTorch. In addition to improved stability, this optimization

provides a speed increase for dual GPU training of about 20 percent, along with more usable memory

for larger models or batch sizes.
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6.5 Epsilon-Greedy A*

The gradient generated by A* is sparse and quantized, corresponding to the eight directions a path

may take when crossing a map cell (Figure 4.1). The sparse gradient information may lead to coarse

cost maps with low training loss but do not generalize well. We introduce an epsilon-greedy strategy

for use with A* path planning during training that generates more diverse gradients by randomly

deviating from the ideal policy, similar to Mnih et al. [56] as applied to Q-learning. This is not used

for testing or collecting runtime metrics.

The problem with sparse gradients is analogous to the exploration-exploitation trade-off in

reinforcement learning. A typical solution to this problem is for the agent to follow the optimal

policy at every time step with probability 1−ϵ, and perform a random action with probability ϵ. The

learning algorithm can develop a complete model of the value/cost of policies in the neighborhood

of the optimal policy and escape local minima through this strategy.

Epsilon-greedy A* uses similar logic to generate paths close to the optimal path to generate more

diverse gradients and explore the vicinity of the optimal policy. By entering sub-optimal states, we

gain information about bad strategies that, for example, enter into the interior of objects and would

not otherwise be visited.

When reconstructing the path from the cost-to-goal table, we choose a random next state with

ϵ probability. We carefully avoid cells previously visited to preclude loops. It is necessary to

compute the cost-to-goal for all map cells because of the random nature of the path recovery strategy.

Therefore, we run A* to completion instead of terminating early. Although improbable, the path

can visit every state on the map. If ϵ = 0, the algorithm returns the optimal path as usual.

Table 6.9: Epsilon-A* performance by family for various ϵ on validation set. All results from epoch
32.

Command Family
ϵ 0 1 2 3

0.00 6.00 10.24 9.00 7.00
0.01 5.00 10.67 9.00 5.66
0.05 5.66 11.00 9.90 6.00
0.10 11.00 23.64 21.86 21.06

Table 6.9 shows that the performance of the ϵ-greedy A* algorithm is similar to the standard

algorithm (ϵ = 0), except for ϵ = 0.10. At this point, random behavior overwhelms the ability to

learn, and the algorithm adopts a default non-obstacle shortest path strategy. Figure 6.25 depicts

selected cost maps from the validation set. Objects in the scene develop a more diffuse cost in

their vicinity with increasing ϵ. The baseline cost map trained with normal A* (Figure 6.26a), has

relatively sharp edges compared to when ϵ = 0.05 in Figure 6.26c.

We have not pursued this strategy further because Field D* (Section 5.1) produces a gradient

that, while sparse, is also continuous and not quantized. Combined with a large number of path

examples, cost map smoothness is not a problem. However, it is likely that human-labeled datasets
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(a) ϵ = 0
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δdF = 10.0/pix

(b) ϵ = 0.01
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(c) ϵ = 0.05
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(d) ϵ = 0.10

Figure 6.25: Performance for Epsilon-A* for single runs. N = 100, η = 10−3, λ = 10−5.

will have fewer training examples per image, again leading to policies that only visit a minority of

the map cells during training. Supplementing training with a few sub-optimal states may prove

beneficial, with care taken to be sure that there is no loss of performance, as in Table 6.9.

6.6 Semi-Synthetic Dataset and Results

The semi-synthetic dataset combines human-annotated aerial images and synthetically generated

commands and trajectories. It is a low-cost stepping stone between the CLEVR-derived dataset and

human-labeled navigation datasets, which do not exist for this task to the best of our knowledge.
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(a) ϵ = 0 (b) ϵ = 0.01 (c) ϵ = 0.05 (d) ϵ = 0.10

Figure 6.26: Results for Epsilon-A* for various ϵ. N = 100, η = 10−3, λ = 10−5.

A dataset for this task must be taken from an aerial viewpoint and have pixel or polygonal

object labeling that accurately follows object contours, with several objects per scene and multiple

object classes. Objects should have some meta-data beyond labels, such as orientation, color, etc.

Finally, the dataset needs to be large enough to support training a deep network.

We use the DOTA V1.5 dataset (Dataset of Object deTection in Aerial images, Ding et al. [27],

[28] and Xia et al. [29]) as the basis of our hybrid dataset. It contains more than 2800 images

at various scales from different image sources distributed between train (50%), test (33%), and

validation sets. The images have varying spatial resolutions centered at about 30 centimeters per

pixel and are generally a few megapixels in size. The images are of urban and suburban settings and

contain scenes of marinas, ports, airports, and logistics hubs which may support many interesting

planning scenarios while not overly cluttered.

Table 6.10: DOTA object categories. Those highlighted in green required in each sample. Those
highlighted in red excluded from samples.

Vehicle airplane 8072 ship 32973 large vehicle 22218
small vehicle 126501 helicopter 635

Infrastructure storage tank 5346 bridge 2075 harbor 6016
roundabout 437 crane 142

Sport baseball field 412 basketball court 529 tennis court 2425
running track 331 soccer field 338 swimming pool 2181

The objects in each image are individually labeled using bounding boxes with 16 categories

(Table 6.10). Vehicles are tagged with an oriented bounding box, which allows us to extend our work

towards commands that refer to object orientation and position. The images are not geo-registered,
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so it’s impossible to supplement them with road or terrain data.

The iSAID dataset (Zamir et al. [30]) supplements DOTA with pixel-level annotations. The

pixel-level instance masks allow us to reconstruct a scene graph that we can export to our synthetic

dataset generation script. We describe the process of hybrid dataset generation in Section 6.6.1.

We have considered partially annotated aerial datasets, such as the INRIA Aerial Image Labeling

Benchmark (Maggiori et al. [145]), ATLAS GOSHEP [146], and a dataset constructed by Yuan et al.

[147]. These were either too small or sparse, annotated with too few object classes to allow interesting

scenarios. Imagery from earth observation satellites, such as the dataset used by Iglovikov et al.

[148], primarily labels land usage at a granularity too coarse for our work. We have experimented

with supplementing the object classes with OpenStreetMap [149], provided geo-referenced images

are available, but without satisfactory results.

We have also examined well-developed computer vision datasets, such as ImageNet (Russakovsky

et al. [132]) and VisualGenome (Krishna et al. [68]). While these datasets are expansive with many

object classes, the images usually only contain a few objects labeled with bounding boxes and have

significant background clutter due to the image perspective and environment.

6.6.1 Hybrid Dataset Generation

The dataset generation process reconstructs a scene graph and uses the iSAID scene mask to identify

objects’ position, class, orientation, and extent. We use the same scripts for the synthetic dataset

with appropriate modifications to the command templates to create a new hybrid dataset. We have

adapted the command template for the difference in the scene. We generate 1024 scenes for each of

the train, test, and validation splits.
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Figure 6.27: Histogram of image scales for DOTA training set. Images with a spatial resolution of
less than 0.1 cm per pixel and greater than 0.30 cm per pixel were excluded from our hybrid dataset.
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(a) Sampled image (b) Sampled image

Figure 6.28: Sample images extracted from megapixel source images. We recover object orientation
from DOTA and the center of mass and object extent from iSAID, which are combined to create
a scene graph indexed by the object identification number and associated object mask (blended
colors).

We exclude a fraction of the available images due to substantially different scales or poor image

quality (i.e., gray-scale). One of the design goals for DOTA is to test object detection for varying

scales from different sources. We exclude images with a scale of less then 0.1cm and greater than

0.30cm (Figure 6.27). We randomly sub-sample the megapixel images into 384× 384 sub-images. A

valid sample must contain an object with a center of mass in a radius that includes 50 percent of the

pixels. The object must also fit into the image. In addition, we require the sample to contain at least

three objects in total so that we can devise interesting scenarios. Currently, we only include samples

with the specific object classes and exclude other scenes with any instances of others (Table 6.10).

This was done to simplify the initial dataset and remove expansive objects that overwhelm the

free space in the image. Future work may include the sports categories by augmenting the dataset

generation script to recognize these as traversable surfaces.

The command set used in this experiment is not aware of object orientation (Table 6.11), so we

can augment the data by transforming the scene with small offsets and flipping without changing

the meaning of a command. This will not be possible with more elaborate commands that refer to

left, right, front, back, etc. The allowable value of the affordance tag, 〈A〉, are avoid and trust. The

shape tag, 〈S〉, can be any of the object categories in the dataset. We generate four instances for

each command family to produce a dataset with 1024 scenes and approximately 16,000 training

examples for each of the train, test, and validation splits.
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Table 6.11: Command types in hybrid dataset. Optional properties in parentheses. Alternative
templates (not shown) and word substitution generate a wider variety of commands than apparent
in this sample.

Family Command Template

0
Single set of objects
Go 〈A〉ing [the] 〈S〉

1
Intersection of two sets of objects
Go 〈A〉ing [the] 〈S1〉(along with) [the] 〈S2〉

2
Union of three sets of objects
Go 〈A1〉ing [the] 〈S1〉and 〈A2〉ing [the] 〈S2〉

3
Subset of a set
Go 〈A〉ing [the] 〈S1〉(except) [the] 〈S2〉

6.6.2 Experiment

Figure 6.29 shows that the algorithm overfits the training data. Both train and validation splits

decrease in loss until the validation loss begins increasing (Figure 6.29a). Figure 6.29b shows that

the training Fréchet distance compared to the ground truth path (90FGT ) continues to decrease

while the validation data does no better than the baseline non-obstacle shortest path (90FSP ). This

problem affects all command families (Table 6.12). The mean Fréchet distance (F̄GT ) is significantly

larger than the median, indicating that there is a large minority of examples that skew the metrics.

Table 6.12: 90th percentile Fréchet distance in pixels (90FGT ) for each command family compared to
ground truth (lower is better) and shortest non-obstacle path baseline (90FSP ) compared to ground
truth. 50FSP is 13.41 for the training set and 13.56 for the validation set.

Train Validation

Family 90FSP
90FGT

50FGT F̄GT σFGT
90FSP

50FGT
50FGT F̄GT σFGT

All 66.20 6.93 3.21 4.22 5.17 69.11 71.50 14.89 28.14 32.83

0 5.85 3.02 3.64 3.34 65.56 13.92 25.78 29.74

1 5.97 3.00 3.54 2.20 78.48 13.83 28.79 34.80

2 6.67 3.25 4.12 5.17 74.47 15.45 29.11 34.50

3 10.92 4.13 6.21 8.73 74.97 17.57 29.49 31.85

Figure 6.30 shows two images sampled from the training dataset. They are among the worst

16 performers from 4096 randomly selected training examples. The cost maps generated in both

examples successfully ignore clutter (unlabeled regions, such as the buildings on the left side of

Figure 6.30a) to produce reasonable paths. However, the cost map is less distinct than the synthetic

dataset.

In particular, the trailers in Figure 6.30b show aliasing, suggesting that the cost map upsampling

technique is reaching its technical limits. In this case, the diagonal orientation of the trailers is

misaligned with the axes of the feature map. A fuzzy cost map makes it more difficult for the
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(a) Loss curve, η = 10−4, λ = 10−5, N = 150
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Figure 6.29: Training performance plots for MMP applied to modified DOTA/iSAID dataset. Loss
curve in Figure 6.29a shows over-fitting. Baselines in Figure 6.29b (dashed) are Fréchet distance
between non-obstacle shortest paths and ground truth paths.

planner to find routes through tight spaces. More results on the training and validation datasets are

in Section 8.6.

We have tried several experiments to train a network that generalizes. The work described

in Section 6.4 was motivated by this problem. We have made learning easier by augmenting the

image data with the object mask and simplifying commands to one word: ”Go.” None of these were

successful, which leads us to believe there is a problem with path learning.

To investigate this, we modify our CLEVR-derived dataset with fewer examples per scene and

get similar results. Table 6.13 show that as the number of examples per command family per scene

becomes smaller than 8, the algorithm has trouble generalizing. We believe that the problem may

result from insufficient examples for the algorithm to learn to generalize, given that each example

path visits just a fraction of the map cells.

This trend is reflected in the Fréchet loss curves in Figure 6.31. A dataset with just 1 example

of each command family per scene will have 32 times fewer examples per epoch than the largest

dataset. It is important to keep this in mind when comparing the plots. However, it is clear that

with only 1 example per command family, Figure 6.31d shows a different shape than the other plots.

The training error has reduced significantly with no sign of the validation loss beginning to reduce.

It is plausible that the DOTA/iSAID-derived dataset is too sparse to train properly. This may

be resolved by increasing the number of training examples, which is trivial for a synthetic dataset.

However, realistic human-labeled datasets will not be so rich in examples. Efficient learning from

limited samples may be an area of future research.
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(a) Train: Go fearing the objects in addition to ships.
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(b) Train: Trust the things and trust the large vehicles.

Figure 6.30: Worst training examples from sample of 4096 for DOTA/iSAID experiment. Source
image (left), generated cost map (center), error gradient (right), ground truth path (green), generated
path (red).

Table 6.13: Training and validation performance suffers when the number of examples per family
per scene (K) are reduced. Reported values are 90FGT in pixels using CLEVR-derived dataset.

Command Family
Training Validation

0 1 2 3 5 All 0 1 2 3 5 All

K

1 2.48 3.39 3.24 2.98 2.36 2.94 21.77 28.32 27.43 27.38 23.00 24.31
4 4.15 6.48 6.32 11.88 4.10 6.28 15.32 22.77 22.02 22.38 16.54 20.62
8 1.17 3.43 2.00 2.00 1.34 1.96 1.66 14.17 10.50 4.75 2.00 4.51
32 1.05 5.70 2.22 1.52 1.22 1.77 1.33 12.45 4.85 2.16 1.55 2.75

6.7 Summary

In this chapter, we have demonstrated the deep planning algorithm using a synthetic dataset.

Removing language as an input shows that it uses the command to modulate image features to

generate a cost map. This supports the concept that a deep network can produce trajectories using

an image and a command without an explicit model of the latent process that generated the ground
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(a) 32 examples per command family per scene.
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(b) 8 examples per command family per scene.
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(c) 4 examples per command family per scene.
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(d) 1 example per command family per scene.

Figure 6.31: Performance plots for a deep network with MMP with fewer examples per command
family per scene. η = 10−4, λ = 10−5, N = 256.

truth. There is a clear benefit to biasing minibatch selection towards more informative examples.

Importance sampling techniques may also be an excellent way to identify valuable examples without

making strong assumptions about the underlying model.

However, this work is not complete and not without limitations. We have yet to show better than

baseline performance with more realistic data. Improving this result is necessary before testing with

human-labeled data and practical application. The number of examples per image or the information

content of each trajectory may be insufficient for the algorithm to generalize. Our synthetic and

hybrid datasets, and the revised CLEVR tools to generate them, are a valuable contribution to

researchers developing planning and navigation algorithms that operate in a similar context. To the
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best of our knowledge, there are no similar datasets currently available.

The loss function effectively uses a generalization of the Hausdorff metric as a loss function

instead of the Fréchet coupling, which is more appropriate for paths. While the Hausdorff metric

does approximate the Fréchet metric for small errors, this may direct the optimization towards

local minima early in training when this approximation is less appropriate and may be especially

problematic with noisier, naturalistic image data. Future investigators may wish to experiment with

alternative loss functions within the MMP framework.
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Chapter 7

Conclusions & Future Work

In Chapter 1, we establish that there is a need for a field robot navigation system that combines

language understanding, perception, and path planning with a single loss metric. As a surrogate to

this very complex problem, we study the simplified problem of a notional robot that must navigate

through a static aerial scene, reducing complexity without losing the fundamental challenge of this

work.

In Chapter 2, we explore relevant research to understand how others have approached similar

problems so that we may improve upon and contribute to the state-of-the-art. Most existing

research targets structured environments for which topological maps are best suited, such as indoor

environments, where the agent may take a few discrete actions at a relatively small number of

junctions. Techniques based on reinforcement learning are suitable for this kind of problem.

In contrast, our notional robot operates on a metric graph, often with no identifiable decision

points. Without knowing the relative value of visiting one state over another, we believe that inverse

reinforcement learning techniques are suitable. Max Margin Planning and Maximum Entropy IRL

are two solutions to the ill-posed problem of reconstructing the latent value function of an MDP

given a limited number of input-output observations. We initially selected Max Margin Planning

as the vehicle for our research because it is less numerically demanding on the CPU, as it uses

efficient planners in A*/Field D* to find optimal paths through a cost map. However, our later

move towards the Bellman-Ford algorithm as part of an all-GPU implementation makes MaxEnt

IRL an appealing alternative.

Without prior work that precisely matches the task, we study network architectures from the

related field of Visual Question Answering, using attention maps as an analogy for the cost maps

used in planning. We select the FiLM architecture because it makes few assumptions about the

underlying process used to generate the training and testing data, unlike its contemporary networks.

This model is appropriate since the model humans use to perform similar tasks is often inscrutable.

In Chapter 4, we develop the required techniques to make MMP a stable loss function suitable

for training a deep network over millions of iterations. We show in Chapter 5 how MMP can
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use the Field D* algorithm to produce more naturalistic paths. In Chapter 6, we combine FiLM

with MMP and a newly developed synthetic dataset to explore how the algorithm performs under

controlled conditions and present several analyses. We also experiment with a hybrid dataset that

uses human-labeled aerial imagery with computer-generated commands and paths as the first step

towards an entirely human-annotated dataset.

Finally, in Section 5.3, we show how the algorithms used in this thesis translate to highly parallel

GPU architectures to facilitate accelerated learning. Over the past decade, the rapid progress of

deep learning has been driven by libraries of modular and highly optimized parallel algorithms

provided by frameworks such as TensorFlow, PyTorch, and others. As similar planning elements did

not exist for our task, we have built our own, deliberately selected algorithms that efficiently use

the vast computational power of contemporary GPUs.

7.1 Key Findings

We have shown that it is possible to fuse perception, language understanding, symbol grounding,

reasoning, and planning into a single differentiable process for generating trajectories on a map.

These elements are discrete modules that are designed and trained separately in prior navigation

systems. There are two primary benefits to integrating the modules into a single system.

First, difficult to define human concepts in language, perception, and planning are captured by

directly imitating expert behavior. Our goal is to develop a navigation system for a hypothetical

robot that can operate in a team with humans. This requires that it communicates naturally,

perceives the world as humans do, and acts in a manner consistent with other humans. Without the

ability to directly model this latent process, we must instead learn by example. Although we have

shown results only with synthetically generated data, we feel that the approach is the correct one.

Second, modular systems are often trained on sub-tasks that may not directly support the overall

task metric. There is no feedback from the task-level goal to adapt the parts to perform optimally

as a system. For example, a perception module may treat all object classes with equal importance

when some are not required for the task. These modules and their interfaces have been removed

from the system in favor of an end-to-end, data-driven approach.

VQA systems internally perform many of the tasks required of navigation systems, primarily

symbol grounding, logical inference, and attention mapping. The FiLM architecture is one of many

VQA models that may adapt to form the core of a navigation system simply by changing the output

function to produce cost maps instead of classifications. We have shown that our architecture learns

and generalizes when trained with synthetic data. Language inputs improve performance beyond

baselines, demonstrating that the algorithm and dataset require language and perception to achieve

good performance.

We have adapted Max-Margin Planning as our planning loss and have shown that it effectively

trains a deep network to generate cost maps by mapping commands and image features to trajectories.

In a novel combination with Field D*, it can produce smooth human-like trajectories, which are

needed when learning from human-labeled data. In contrast, prior work produces linear paths
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because it uses A* in combination with MMP.

Planning on the CPU is a computational bottleneck that prevents the algorithm from utilizing

the GPU effectively. We have modified Field D* to use the Bellman-Ford-Moore algorithm, which is

more scalable and time-efficient on the GPU, but less work-efficient than our initial implementation

on the CPU. With the CPU no longer limiting performance, we note that the Bellman-Ford algorithm

has similar runtime to Value Iteration and presents an opportunity to explore MaxEnt IRL as an

alternative loss function.

In summary, our contributions are:

• A network architecture for unifying natural language processing, image understanding, symbol

grounding, and path planning into a single deep learning framework with a single objective

function. We evaluate the algorithm on two datasets, highlighting strengths and weaknesses

and identifying directions for future work.

• An extensible synthetic dataset for testing the reasoning abilities of this and other similar

systems in an unbiased environment with virtually unlimited data, based on the CLEVR

dataset (Johnson et al. [25]) and DOTA/iSAID dataset (Ding et al. [28] and Zamir et al. [30]),

but re-targeted for our problem space.

• A scalable, massively parallel implementation of the Maximum Margin Planning, Field D*,

Fréchet and Modified Hausdorff coupling metrics that enable efficient training and evaluation

of deep networks with planning losses. These tools are an essential bridge between a theoretical

contribution and a practical method.

7.2 Basic Extensions

This thesis demonstrates the viability of fusing language processing, scene understanding, and

planning into a deep network with a single loss function as a future navigation system for field

robots. Nonetheless, there remain many required enhancements to make the work practically useful.

Benchmark Against Alternative Navigation Systems

We have not performed a baseline comparison against other navigation systems, such as Oh et al.

[11]. Robot navigation systems are complex and often highly specialized to a particular task and

sensor set. It isn’t easy to find a common dataset for a fair comparison between systems, and this is

further complicated by the need for large datasets to train deep learning models.

While difficult to implement, this comparison would be very insightful. For example, Oh et al.

[11] use a command language backed by a grammar with a precise meaning, unlike our system,

which infers the meaning of commands from example path data without any formalism. One can

expect that some commands, perhaps compound statements or recurrent constructions, will cause

errors for one method and not another. This analysis may uncover the kinds of commands that

elicit erroneous plans and evaluate how this affects the utility of a robot.

Survey of Contemporary VQA

We studied a few VQA network architectures in section 3.3, evaluating the suitability of architectures
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that were state-of-the-art at the commencement of this work. Much has changed in the interim. While

conceptually straightforward, modifying the base network in our model requires some adaptation and

innovation. When the loss function and dataset are more mature, a comparison of different network

architectures may give insight into the kinds of commands and concepts that a given architecture

has the capacity to learn.

The use of language as a sensor is a concept that features prominently in Duvallet [52]. Commands

and the information they convey are intimately tied to the scenes they describe. Taken to an extreme,

a command such as: ”Go to the cube hidden behind the sphere” requires the algorithm to find the

sphere and speculate on the features of a hidden object through language. Deep networks with

fine-grained, joint embedding are one way to realize this concept without requiring an explicit process

to integrate the two sources of information into a single world model. Newer VQA architectures

may use better methods for joint embedding of language and image features than FiLM.

Learning from Pixels to Plans

We use pre-trained mid-level ResNet features (He et al. [82]) as the input to our algorithm. That a

model trained for a different purpose on a vastly different dataset is useful for our task speaks to

the notion that deep networks learn fundamental concepts in vision. We use pre-trained features to

reduce the number of free variables in our model to make it more tractable, both computationally

and theoretically. True end-to-end learning can be achieved by fine-tuning a pre-trained model and

adapting it to the task and data.

We use ResNet features because that is what FiLM uses. However, our model is utterly agnostic

towards the number of channels in the feature map and mildly affected by changes in the map

dimensions. Therefore, different stem networks may be substituted for ResNet with minor work.

Some stem networks are likely better suited to our task than others.

Maximum Margin Planning with Fréchet Metric

The L2 version of the Maximum Margin Planning loss effectively minimizes the cost of a path over

a cost map augmented with a form of Hausdorff coupling metric. The Fréchet coupling metric more

accurately represents the conformity between paths, whereas the Hausdorff metric is better suited

to measuring the conformity of point clouds. When the paths are substantially non-conforming,

the loss does not represent the true quality of the path. Early in training, when the Hausdorff and

Fréchet metrics are likely to be very different, the L2 loss gradient will direct the model towards

weights which increase the conformity between point clouds, but may not reflect the information

required to produce more congruent paths.

Max Margin Planning intentionally discards information crucial to the problem by using the

Hausdorff metric as a proxy to the Fréchet metric. At the same time, MMP is computationally

efficient precisely because the minimizer at each step, µ∗, is recovered using a dynamic program such

as Field D* or Dijkstra’s algorithm. The simultaneous optimization of the path and the Hausdorff

metric is computed by adding a distance transform of the exemplar path, ℓ(xi) to the objective

(Equation (4.2)).

Conversely, there is no apparent efficient solution to simultaneously optimize a path through a

cost map with an additional Fréchet coupling metric objective. The planner and Fréchet coupling
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(a) 90 degrees (b) 75 degrees (c) 60 degrees (d) 0 degrees

Figure 7.1: CLEVR scene rendered at varying angles to test planning with occlusion.

metric have efficient solutions in the same feasible space but operate in different state spaces (paths

vs. path couplings). An approximate solution may yield results comparable to an exact one without

undue complexity. Alternatively, a computationally expensive yet exact solution may be used in the

initial training phases, when the Fréchet metric significantly differs from the Hausdorff metric, to

direct the model towards a local minimum more suitable for learning paths, as opposed to point

clouds.

Spatial Reasoning with Perspective Images

The aerial images used in this work are a necessary simplification to develop a system without the

complication of hidden objects. Robots in the real world do not have this level of omniscience,

and most do not have the benefit of aerial imagery. A system that views the world at an oblique

angle must plan a path while reasoning about hidden and partially obstructed objects and the space

they occupy. For example, the command ”Go to the green cube behind the purple cylinder” must

generate a reasonable plan even if the green cube is entirely obstructed, based on the knowledge

that it is somewhere behind the purple cylinder. This knowledge may come from prior experience,

as encoded in the network weights, or from the use of language as a sensor, as developed by Duvallet

[52].

The CLEVR dataset generation scripts can synthesize images from varying angles (Figure 7.1),

all with the same command and ground truth paths. Ideally, the cost map generated for an image

with 60-degree obliquity should be the same as one generated with a 90-degree obliquity. The reality

is that this transformation loses some information. In addition to occluded objects, some degree of

three-dimensional information must be recovered from a two-dimensional projection of the scene.

For the case of Figure 7.1b, this transformation may be approximated with a homography. In

more extreme cases, such as Figure 7.1d, a reconstructed cost map would require information about

the relative sizes of objects to disambiguate scale and distance, spatial reasoning to determine which

objects are occluded by others, and other prior knowledge and assumptions to generate a reasonable

cost map with incomplete information.

Planning with perspective transformations and occlusion using differentiable transforms within

deep networks has been demonstrated by Gupta et al. [36]. While we do not know if our architecture

can effectively learn to plan under similar conditions, a synthetic dataset allows us to study candidate
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architectures in a controlled fashion. In particular, a fully synthetic benchmark will enable us to

learn how the generated cost map in the occluded regions differs from the ideal cost map, similar to

the study in Section 6.2.

Endpoint Prediction and Multi-Segment Paths

Our current architecture accepts commands that describe how to get from one place to another

but can not determine where to go. Another limitation of the planner is that it cannot produce

self-crossing paths. This precludes commands such as: “Go around the car.” It is a side effect of the

dynamic programming techniques common to planners like Dijkstra’s algorithm. To mitigate this,

we envision a network architecture with a second output channel encoding a probability distribution

of likely destinations and a cost map, trained with a joint objective.

Max Margin Planning is an efficient discriminative method for structured prediction. It predicts

a single solution for a given set of inputs, lacking the flexibility of MaxEnt IRL, which generates

predictions from a distribution. Our approach would create a hybrid system, merging a high-

dimensional discriminative classifier for path generation with a low-dimensional generative classifier

to predict endpoints, lending flexibility to the system. This architecture will require a loss objective

that combines the planning loss with an endpoint loss in the form of a cross- or max-entropy loss.

This architecture may use a recurrent network to generate intermediate waypoints to break a

path into segments individually expressible by the planner. This will allow the system to solve

commands with waypoint path constraints such as: “Go to the front of the house and then to the

car.” This recurrent network also introduces a more granular level of planning for intermediate

goals, with MMP as the local planning algorithm. Multi-resolution planning is a common feature in

practical robot navigation systems that must efficiently plan over larger scales.

Position and Orientation Encoding

We have experimented with encoding the start position of the agent by augmenting the ResNet

feature map with additional channels. We have experimented with various methods to embed the

information but are not satisfied with the results and feel that more work is required. While the

commands that rely on this information perform better than baseline (Table 6.3), they also perform

worse than other command types. In addition, the network must encode the agent’s orientation to

support future work with commands that reference the agent’s point of view.

FiLM already augments the feature map with two channels, encoding the feature’s x and y

coordinates. We follow their lead and embed an additional channel encoding the start position, but

there are other places in the network where this information may be helpful. We have experimented

with embedding the start location in the initial hidden state of the language encoder to influence the

cost map generation process through the FiLM modulation vectors. While preliminary experiments

did not seem promising, it is reasonable to assume that both the interpretation of the command

and the image features should be influenced by the position and orientation of the agent. A more

thorough investigation on how to embed this information is required.

Expanded Synthetic Dataset

The CLEVR- and DOTA-derived datasets should be expanded to test more elaborate scenarios

than those presented in this thesis. An expansive dataset will reveal the limits of this architecture

122



7. Conclusions & Future Work

Viewpoint

Figure 7.2: Viewpoints for navigation commands.

and may point towards networks or loss functions better suited for navigation than the one we have

chosen. We expect there are some concepts that our model simply can not learn.

In the CLEVR-derived dataset, commands are given with reference to the observer. The position

and orientation of the observer (“Viewpoint” in Figure 7.2) are implicit in the image. This viewpoint

defines the relative position and orientation of objects to each other. Further, the objects in CLEVR

do not have a discernible orientation.

However, there are additional viewpoints that we have not yet considered, especially when objects

have unambiguous orientations. Figure 7.2 is a scenario within which a command may refer to

objects relative to the absolute coordinates (compass), the robot, and other objects. Expanding the

dataset to include these kinds of commands is a necessary step towards a more evolved navigation

system. It must coincide with some of the architectural developments mentioned above.

Extending the dataset is not technically challenging because a modular scripting language

generates plans. Table 6.13 includes a promising result for command family 5, which is defined in

Table 6.1. This command family tests the model’s ability to identify objects that are nearest or

farthest from the agent’s starting position. Table 7.1 contains some of the templates that we plan to

use in an evolved navigational system.

Ultimately, the system should be tested against data entirely generated by humans: human

commands and human-generated paths with natural images. Human-labeled data is expensive and

time-consuming to collect, and this should not occur until the algorithm has demonstrated good

performance on a large corpus of synthetic scenarios. The network and loss function must evolve

concurrently to ensure that the system can imitate human proficiency in translating commands and

images into paths.

Human-Labeled Dataset

A human-labeled dataset is essential for testing a system designed to interface a robotic teammate
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with its human companions. Our synthetic dataset contains commands and paths that have all been

generated using a single latent process. In contrast, there is significant variation in the thinking

processes of individual humans. Human-labeled data introduces a new level of complexity and

variability not captured by the synthetic dataset.

Collecting and annotating enough data to train a deep network is a daunting and expensive

task that we have delayed until the model is mature enough to justify the investment. Still, it is a

necessary step towards developing a practical navigation system.

7.3 Towards a Practical Navigation System

We have identified a set of qualities in the literature that practical navigation systems for a ground

robot must possess. Our model requires significant architectural changes to address these points.

1. Produce stable paths over time.

2. Accumulate information about the world that has been observed.

3. Operate from a ground-vehicle perspective in a world that is never fully observable.

4. Efficiently explore when there is no definitive plan.

5. Reason about topological and metric command constraints.

6. Declare success or detect a failure and ambiguous situations.

7. Integrate additional sources of information and demonstrate compatibility with existing

algorithms.

Time is the most critical element of a practical navigation system not addressed by our architecture.

Our model assumes the world is static and that all information is available to the system at once.

Time introduces a new planning horizon, beyond which there is information that requires the

robot to re-evaluate and re-plan to maintain optimal behavior. This planning problem is similar

to reasoning beyond an obstruction, as introduced in Section 7.2, but with much more profound

consequences to the system architecture. Note that we continue to assume the world is static, just

not fully observable at t = 0.

Algorithm 20 is a sketch of a simple planning loop that addresses some of the qualities enumerated

above. The navigation systems we have surveyed (Oh et al. [1] and Hemachandra et al. [35], and

others) are similarly invoked in a loop without information about previous plans that can affect

future decisions.

While each contains a map that is updated periodically, the grounding and planning operations

are independent of prior plans. The planning loop will yield the same result at each iteration

given a static and fully observable world. However, new information accumulated on the map may

make another plan more desirable in a partially observable world, perhaps leading to radical and

undesirable changes. During experiments detailed in Oh et al. [1], we observed robot behavior that

may be explained in this way.

Another problem is that the map update (Algorithm 20 Line 7) is independent of the planner.
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Algorithm 20 Simple planning loop with map memory. Λ is command, I are image/sensor inputs,
M is map store, X is robot state.

1: function PlanningLoop(Λ, I, M , X)
2: success← False
3: failure← False
4: t← 1
5: M0 ← ∅ ▷ Initialize map
6: while success and failure do
7: Mt ← Update(Mt−1,Xt,F (It)) ▷ Store new information in map
8: pt ← Plan(Mt,Xt,Λ) ▷ Update plan
9: Xt+1 ← Execute(pt) ▷ Execute one step

10: success, failure← CommandComplete(Λ, It, Xt+1, Mt)
11: t← t+ 1
12: end while
13: return success, failure
14: end function

This prohibits end-to-end training with the planning loss, and the system can not learn from or

store historical information that affects task performance. There is also no apparent strategy to

combine prior information with updates.

7.3.1 Integrating Memory, Planning, and Strategy

Zhang et al. [150] explore map building with a deep network using concepts from Graves et al. [151]

for a location addressable memory that is also a differentiable recurrent network. They point out

this is a feature not found in other navigation systems that integrate neural networks, such as Gupta

et al. [36]. The feature and memory updates are part of a single recurrent network, solving several

problems outlined above.

Gupta et al. [36] demonstrate that a deep network can transform sensor information from the

robot’s perspective into an aerial map that conveys the potential reward for moving into a map cell.

This model is trained with a loss function that operates in the aerial frame and does not require an

explicit model for feature transformation. Gupta et al. [36] also produce a confidence map that may

be useful for planning with uncertainty, which integrated robot systems sometimes do not model

adequately.

In an integrated system, the planner is no longer independent at each iteration of the planning

loop. Therefore it will need to train over a sequence of plans generated as the robot explores as

part of some greater strategy. This suggests a two-part objective function (Equation (7.1)). In this

equation, the planning loss is the loss function we have studied in this thesis and reflects the quality

of the current best path given all evidence. The strategy loss scores prior plans in light of recent

evidence, encouraging effective exploration and integration of prior knowledge to predict future

events. The two components may be identical, or the strategy loss may also include metrics on how

long the robot takes to reach its goal, how much the solution paths change over time, or how often
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the robot fails to find a solution.

L = LP (pn)︸ ︷︷ ︸
Planning

+

n∑

i=1

Ls(pi)︸ ︷︷ ︸
Strategy

(7.1)

7.3.2 Other Goals

If the world is not fully observable at t = 0, then it is possible that some referent in a command is

not observable. Existing robot navigation systems use topological maps that parallel metric maps to

plan with unseen objectives. The topological map conveys the relationship between objects without

requiring specific knowledge about where they exist. This could happen if a command refers to an

object that is not in view, but that is suspected to be behind a visible object and might come into

view in the future from a different location. Duvallet [52] solve a similar problem by generating

phantom goal points in a metric map to provide hypotheses over which their model can reason and

plan.

It is unclear how to integrate topological and metric mapping into our framework. However,

Gupta et al. [36] have demonstrated a deep network that forecasts the likely location of unseen

objects in the context of planning. The hypothetical target is not explicitly modeled but results

from the deep network’s integration of prior knowledge with current inputs.

Many problems arise when integrating new technology into an established platform. In particular,

robots have many other real and virtual sensors. A robust navigation system naturally integrates

many sensor inputs, not just imagery. Combining all these sensing modalities into a single system

will be challenging.

The system needs to know when it has succeeded, when it has failed, and when it is lost. Low

confidence in task completion should prompt the higher-level intelligence processes to enter a recovery

mode or prompt the operator for clarification. This implies a capacity for interaction that is more

complex than simply providing a command.

7.3.3 Planning in Simulation

One of the challenges of this work has been to find large amounts of labeled data for our experiments

with the right properties. Planning with time will require labeled sequences of commands and

images, which will be very hard to find and expensive to develop.

A simplified environment may be sufficient to address some of the abovementioned points. We

propose to use CLEVR and Blender in the planning loop to simulate time for an agent with a limited

field of view (Figure 7.3). However, Blender is not a very good choice for high-speed rendering.

Open-source simulation environments, such as AirSim (Shah et al. [152]), are well-suited for this

task.
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(a) Map I0 (b) It

Figure 7.3: A simple experiment using Blender in the planning loop to simulate time. Shaded area
is beyond sensor range for agent (red). Map of the world grows as agents moves through scene
(Figure 7.3b).

7.4 Conclusion

This thesis has developed one small piece of a much larger robot navigation architecture. New

techniques in machine intelligence have allowed us to re-think what this architecture looks like and

how the pieces fit together. Deep learning enables us to internalize the many different elements of

traditional architectures into a monolithic process. While this often leads to better performance,

end-to-end learning is not without challenges.

Deep learning techniques typically require large amounts of labeled data and training time. As

tasks become more complex, we believe that simulation environments are one way to solve this

problem. We have posited just a few of the qualities an evolved navigation architecture would require

to be practical, and a simulated environment can help develop most of them. However, a good

teammate must also anticipate human needs and meet human expectations, which are difficult to

replicate algorithmically. To be of practical value, a system trained on massive amounts of simulated

data must transfer this knowledge to the real world and supplement its experience with data that is

unpredictable, imperfect, and precious.
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Table 7.1: Proposed viewpoint relative command types for revised synthetic dataset.

Major Minor Direct object identification, simple affordances

0 0 Go 〈A〉ing [the] ( 〈Z〉 〈C〉 〈M〉 ) 〈S〉.

0 1 Go 〈A〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (along with) [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

0 2 Go 〈A1〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 and 〈A2〉ing [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

0 3 Go 〈A〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (except) [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

0 4 Go 〈A1〉ing [the] ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 or [the] ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

Major Minor Direct object identification, complex affordances

1 0 Go 〈A〉ing [the] 〈R〉 side of ( 〈Z〉 〈C〉 〈M〉 ) 〈S〉.

1 1
Go 〈A〉ing [the] 〈R1〉 side of ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (along with) [the] 〈R2〉 side of
( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

1 2
Go 〈A1〉ing [the] 〈R1〉 side of ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 and 〈A2〉ing [the] 〈R2〉 side of
( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

1 3
Go 〈A〉ing [the] 〈R1〉 side of ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (except) [the] 〈R2〉 side of ( 〈Z2〉
〈C2〉 〈M2〉 ) 〈S2〉.

Major Minor Indirect object identification, simple affordances

2 0 Go 〈A〉ing [the] object to the 〈R〉 of the ( 〈Z〉 〈C〉 〈M〉 ) 〈S〉.

2 1
Go 〈A〉ing [the] object to the 〈R1〉 of the ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (along with) [the]
object to the 〈R2〉 of the ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

2 2
Go 〈A1〉ing [the] object to the 〈R1〉 of the ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 and 〈A2〉ing [the]
object to the 〈R1〉 of the ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

2 3
Go 〈A〉ing [the] object to the 〈R1〉 of the ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉 (except) [the] object
to the 〈R1〉 of the ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

Major Minor Indirect object identification, complex affordances

3 0 Go 〈A〉ing [the] 〈R1〉 side of the object to the 〈R2〉 of the ( 〈Z〉 〈C〉 〈M〉 ) 〈S〉.

3 1
Go 〈A〉ing [the] 〈R1〉 side of the object to the 〈R2〉 of the ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉
(along with) [the] 〈R3〉 side of the object to the 〈R4〉 of the ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

3 2
Go 〈A1〉ing [the] 〈R1〉 side of the object to the 〈R2〉 of the ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉
and 〈A2〉ing [the] 〈R3〉 side of the object to the 〈R4〉 of the ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.

3 3
Go 〈A〉ing [the] 〈R1〉 side of the object to the 〈R2〉 of the ( 〈Z1〉 〈C1〉 〈M1〉 ) 〈S1〉
(except) [the] 〈R3〉 side of the object to the 〈R4〉 of the ( 〈Z2〉 〈C2〉 〈M2〉 ) 〈S2〉.
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Appendix

This chapter contains notes on the dataset generation process (Section 8.1) and additional examples

from error analyses. Section 8.2 shows the worst-case examples for the network in Section 6.1.1.

Results for the different error regions for all command families can be found in Section 8.3 and

Section 8.4. Finally, Section 8.5 contains additional examples of the effect of language on cost map

modulation.

8.1 Synthetic Dataset Generation

We build upon the work of Johnson et al. [25] and extend the CLEVR dataset to include new

functions suitable for path generation instead of visual question answering.

Figure 8.1 is an example of a typical CLEVR scene. Each object has one of three shapes, eight

colors, two materials, and two sizes. Between three and ten objects are randomly generated and

placed in the scene, ensuring that no object significantly obstructs another from the camera’s point

of view. The data generation process produces scene graphs that contain all information used to

create the image. It is then possible to generate questions with known answers and controlled

properties algorithmically. For example, queries with trivial answers are usually rejected so that

they do not dominate the dataset.

We first modify the image generation script to produce orthonormal images and generate scene

masks to identify each object and its extent in the image uniquely. In this dataset, we remove

spheres from the list of allowable objects. It was thought they would be indistinct from cylinders

when viewed from above. However, the planning algorithm has proven sensitive to the specular

shading of metallic surfaces and the diffuse shading of rubber. It may also be sensitive to the unique

shading of a spherical object when viewed from above.

With the scene graph and the object mask, the system has complete knowledge of the properties

of every object, which allows us to generate synthetic paths using the following steps.

Figure 8.2 is an example JSON command template for command of family 1. The template
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Object 0
large blue cylinder made of metal
3D Coords: -2.42221355 0.742926836 0.699999988
Pixel Coords: 133 75 13.246380806
Rotation: (deg) 222.084440533

Object 1
large gray sphere made of rubber
3D Coords: -0.901645839 -1.57468926 0.699999988
Pixel Coords: 103 106 10.8944158554
Rotation: (deg) 203.260260775

Object 2
large yellow cube made of metal
3D Coords: 2.51925992 0.255135595 0.699999988
Pixel Coords: 227 127 9.6789894104
Rotation: (deg) 7.52761378672

Relationships
Objects [1, 2, 3, 4, 6, 7] front of: 0
Objects [2, 3, 4] front of: 1
Objects [3] front of: 2
Objects [] front of: 3

Question: What is the shape of the object that is both on the right side of the brown cylinder
and in front of the blue cylinder?

Figure 8.1: Example image, question, and partial scene graph from CLEVR (Johnson et al. [25]).

begins with a ”text” field, which defines the synthesized command’s basic forms, including optional

parameters and words. A later step transforms the text to create a diverse set of commands using

the same underlying program.

The second section of the template identifies the relational and physical properties of the objects

and the path to be generated, which can take the values defined by Table 6.2. We add an affordance

field that describes how a path regards a set of objects by modulating the potential fields used to

generate the cost map. The third section of the template defines how object sets relate to each other.

In this example, we exclude cases where the sets are identical to avoid degenerate or contradictory

cases. The second constraint ensures that object set 2 is never empty. The attributes in the template

are randomly assigned until the constraints are satisfied. Some properties may be null. For example,

the shape, color, and material properties are optional in this example. A small percentage of the

object sets do not exist in the scene.

The final section of the template defines the sequence of operations the script uses to generate

a path. Early efforts to solve the CLEVR dataset, such as IEP ([17]), predict this program and

then construct a modular network to generate an answer to the question and image. We retain the

program as a means to create data but discard all intermediate results except the command and

path.

The process generates random endpoints that do not coincide with any objects in the scene and

constructs a potential field around the objects, as defined by its affordance property. We use A* and

Field D* to generate a path with the cost map and a baseline shortest path that avoids obstacles

using the Open Motion Planning Library (OMPL [131]).
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{"text": ["Go <A>ing [the] (<Z1> <C1> <M1>) <S1> (along with) [the] (<Z2> <C2> <M2>) <S2>",

"<A> [the] (<Z1> <C1> <M1>) <S1> (along with) [the] (<Z2> <C2> <M2>) <S2>"],

"params": [{"type": "Size", "name": "<Z1>"},

{"type": "Color", "name": "<C1>"},

{"type": "Material", "name": "<M1>"},

{"type": "Shape", "name": "<S1>"},

{"type": "Affordance", "name": "<A>"},

{"type": "Size", "name": "<Z2>"},

{"type": "Color", "name": "<C2>"},

{"type": "Material", "name": "<M2>"},

{"type": "Shape", "name": "<S2>"}],

"constraints": [{"params": {"set1": ["<Z1>","<C1>","<M1>","<S1>"],

"set2": ["<Z2>","<C2>","<M2>","<S2>"]}, "type": "NEQ_PARAM"},

{"params": {"set2": ["<Z2>","<C2>","<M2>","<S2>"]}, "type": "NOT_NULL_PARAM"}],

"nodes":[{"inputs": [], "function": "scene"},

{"inputs": ["scene"], "function": "random_endpoints"},

{"inputs": ["scene"], "function": "filter", "name": "set1",

"value_inputs": ["<Z1>", "<C1>", "<M1>", "<S1>"], "rank": 2},

{"inputs": ["scene"], "function": "filter", "name": "set2",

"value_inputs": ["<Z2>", "<C2>", "<M2>", "<S2>"], "rank": 2},

{"inputs": ["set1", "set2"], "function": "union"},

{"inputs": ["union"], "function": "affordance",

"value_inputs": ["<A>"]},

{"inputs": [], "function": "thunk"},

{"inputs": ["affordance", "random_endpoints"], "function": "plan"}

],

"tag": {"family": 0, "major": 0, "minor": 1}}

Figure 8.2: Sample template and program for command family 1.

8.2 Supplementary Results for Meta-Parameter Selection

This section contains the worst 12 examples from the validation set from the run shown in Section 6.1.1

to give some insight into the errors the algorithm makes.

Table 8.1: Statistics for Figure 8.3

Figure Family 90FGT
90FSP

90HGT
90HSP Loss

Figure 8.3a 3 65.14 14.27 33.67 4.87 1.8e-02
Figure 8.3b 0 61.74 22.75 34.00 13.16 1.6e-02
Figure 8.3c 4 53.97 45.94 33.43 33.96 1.8e-02
Figure 8.3d 2 53.33 15.04 33.88 6.00 5.1e-02
Figure 8.3e 4 42.33 38.18 26.16 23.32 1.7e-02
Figure 8.3f 0 32.75 5.11 4.00 2.24 7.0e-02
Figure 8.3g 3 28.63 7.09 6.95 1.52 1.7e-02
Figure 8.3h 4 28.05 29.52 18.56 20.81 1.7e-02
Figure 8.3i 4 27.90 4.85 10.92 3.93 2.4e-02
Figure 8.3j 4 27.69 26.15 15.43 13.55 2.4e-02
Figure 8.3k 2 24.76 5.66 6.90 2.63 1.7e-02
Figure 8.3l 2 21.82 22.31 5.41 4.82 2.1e-02
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(a) Fear the cubes except for big yellow cube.
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(b) Proceed giving wide berth to the tiny green
metallic object.
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(c) Go avoiding the cyan metal thing or the
cyan cylinder.
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(d) Stay away from the tiny yellow objects and
fear yellow metal object.
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(e) Proceed avoiding the small green matte
cylinder or big green cylinders.
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(f) Navigate fearing the small metal object.
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(g) Hide from small things but not gray cylin-
ders.
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(h) Go staying away from tiny rubber cylinders
or the metallic cylinder.

Figure 8.3: Worst examples from sample of validation dataset, 4160 samples. Source image (left),
generated cost map (right), ground truth path (green), generated path (red).

132



8. Appendix

0 25 50 75 100 125
CLEVR val 000338

0

20

40

60

80

100

120

Source Image

Green = GT, 1/1 paths, Norm: log

F(Ii,Λ j;θ)

max |∇L|= 1.448E−04
Loss: 2.384E-02
M = 0, L > 0, ∇L > 0

∇L(Ii,Λ j;θ)

-1.0e-04 -5.0e-05 0.0e+00 5.0e-05 1.0e-04

∇L(Ii,Λ j;θ)

2021 04 21 11 53 06: val map 7
Epoch: 36.00

(i) Stay away from the tiny cubes or green
shiny thing.
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(j) Avoid the brown metallic cylinder or the
large metal cylinder.
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(k) Proceed trusting cyan rubber ball and
trusting the metallic cubes.

0 25 50 75 100 125
CLEVR val 001208

0

20

40

60

80

100

120

Source Image

Green = GT, 1/1 paths, Norm: log

F(Ii,Λ j;θ)

max |∇L|= 1.376E−04
Loss: 2.101E-02
M = 0, L > 0, ∇L > 0

∇L(Ii,Λ j;θ)

-8.0e-05 -4.0e-05 0.0e+00 4.0e-05 8.0e-05

∇L(Ii,Λ j;θ)

2021 04 21 11 53 06: val map 13
Epoch: 36.00

(l) Trust the matte cylinders and trust blocks.

Figure 8.3: Worst examples from sample of validation dataset, 4160 samples. Source image (left),
generated cost map (right), ground truth path (green), generated path (red).
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8.3 Supplementary Figures for Error Analysis

The following plots are worst examples from the analysis in Section 6.2. In all cases, the green path

is the ground truth path and the red path is the path generated from the inferred cost map. These

examples all use the A* path planner.

Table 8.2: Worst examples from each region, testing set. Region 1 paths follow the ground truth
path and match cost. Region 2 paths follow the ground truth path but stray into high-cost regions.
Region 3 paths choose alternative routes that have similar cost to the ground truth path. Region 4
paths deviate from the ground truth path and have substantially higher cost.

Region Figure 90FSP Percent Cost Error

1 Figure 8.4 14.87 8.48
1 Figure 8.5 14.87 9.95
1 Figure 8.6 14.87 0.00
1 Figure 8.7 14.87 0.00
1 Figure 8.8 14.87 0.33

2 Figure 8.9 8.06 1027.53
2 Figure 8.10 4.12 874.94
2 Figure 8.11 5.39 811.46
2 Figure 8.12 2.00 796.84
2 Figure 8.13 2.00 781.00

3 Figure 8.14 97.00 1.21
3 Figure 8.15 95.34 4.78
3 Figure 8.16 89.10 0.42
3 Figure 8.17 88.14 6.42
3 Figure 8.18 88.00 12.95

4 Figure 8.19 100.41 29.19
4 Figure 8.20 100.00 28.34
4 Figure 8.21 97.19 21.88
4 Figure 8.22 94.00 22.24
4 Figure 8.23 90.62 19.12

8.3.1 Region 1
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Figure 8.4: Command: “Give wide berth to the large brown cylinder as well as big blue cylinder.”
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Figure 8.5: Command: “Move keeping away from small green cylinder and the large blue rubber
block.”
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Figure 8.6: Command: “Trust small objects except for the tiny brown thing.”
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Figure 8.7: Command: “Proceed trusting the large rubber thing and trusting purple matte cube.”
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Figure 8.8: Command: “Navigate trusting the red object.”
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8.3.2 Region 2

0 100 200 300 400 500

0

100

200

300

400

500

(a) Aerial image
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Cost map
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) Learned cost map

Figure 8.9: Command: “Trust big rubber things and hide from green things.”
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Figure 8.10: Command: “Move trusting the large cyan cylinders in addition to the yellow cylinder.”
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Figure 8.11: Command: “Navigate trusting objects except for big gray matte thing.”
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Figure 8.12: Command: “Trust the matte objects except matte cylinders.”
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Figure 8.13: Command: “Proceed trusting matte things.”

8.3.3 Region 3
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Figure 8.14: Command: “Stay away from big things and blue thing.”
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Figure 8.15: Command: “Stay away from rubber cubes as well as tiny shiny things.”
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Figure 8.16: Command: “Keep away from matte cylinders.”
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Figure 8.17: Command: “Hide from shiny things including the blocks.”

0 100 200 300 400 500

0

100

200

300

400

500

(a) Aerial image
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Cost map
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) Learned cost map

Figure 8.18: Command: “Navigate hiding from the red matte cylinders along with the cylinders.”

8.3.4 Region 4

0 100 200 300 400 500

0

100

200

300

400

500

(a) Aerial image
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) Cost map
0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) Learned cost map

Figure 8.19: Command: “Stay away from big cyan things as well as brown thing.”
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Figure 8.20: Command: “Proceed avoiding big purple things and hiding from the red metal cube.”
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Figure 8.21: Command: “Move staying away from the big metal object and fearing blocks.”
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Figure 8.22: Command: “Move staying away from the big metal object and fearing blocks.”
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Figure 8.23: Command: “Fear rubber blocks and the tiny rubber things.”
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8.4 Supplementary Histograms for Error Analysis

This section contains by-family histograms for the various command families as part of the investiga-

tion in Section 6.2. Examples of outlier paths for each family and region can be found in Section 8.3.
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(a) Train, family 0, linear-log.
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(b) Test, family 0, linear-log.

Figure 8.24: Error histograms for train and test dataset, command family 0.
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(a) Train, family 1, linear-log.
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(b) Test, family 1, linear-log.

Figure 8.25: Error histograms for train and test dataset, command family 1.
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(a) Train, family 2, linear-log.

10 1 100 101 102 103

Percent Cost Error
2020_05_27_22_51_51

0

20

40

60

80

100

Fr
ec

he
t D

ist
an

ce
 (p

ix
el

s)

100

101

102

103

Test [0 0 2] N=9956 (Log)

Percent Cost Error

F
ré
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(b) Test, family 2, linear-log.

Figure 8.26: Error histograms for train and test dataset, command family 2.
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(a) Train, family 3, linear-log.
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ré
ch
et

D
is
ta
n
ce

(p
ix
el
s)

(b) Test, family 3, linear-log.

Figure 8.27: Error histograms for train and test dataset, command family 3.

8.5 Supplementary Cost Map Modulation Examples

This section contains additional examples of cost map modulation from Section 6.3.1.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.28: Command: “Move trusting the large cylinder and trusting the cubes.” Command
family: 2.
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(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.29: Command: “Keep away from metal cylinders but not the large metal cylinder.”
Command family: 3.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.30: Command: “Navigate trusting the small matte block.” Command family: 0.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.31: Command: “Trust the large shiny object and trust the big purple metal object.”
Command family: 2.
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(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.32: Command: “Go staying away from shiny cubes but not big yellow shiny things.”
Command family: 3.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.33: Command: “Trust big gray things except big gray matte object.” Command family: 3.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.34: Command: “Go trusting big purple metal cylinder.” Command family: 0.

(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.35: Command: “Trust the large brown rubber block and give wide berth to large red metal
cylinder.” Command family: 2.
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(a) Aerial image (b) Inferred cost map (c) Cost map delta

Figure 8.36: Command: “Avoid the small green rubber thing and stay away from the brown thing.”
Command family: 2.
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8.6 Supplementary Results for DOTA/iSAID Experiments

8.6.1 Training Dataset

This section contains the worst examples from a sample (N = 4096) of the training dataset.

Table 8.3: Statistics for Figure 8.37. Worst examples from training set.

Figure Family 90FGT
90FSP

90HGT
90HSP Loss

Figure 8.37a 1 14.20 42.71 2.68 13.30 7.16e-03
Figure 8.37b 3 99.16 23.74 49.01 11.37 7.65e-03
Figure 8.37c 0 14.24 10.51 5.59 3.72 7.34e-03
Figure 8.37d 0 7.20 3.96 1.41 1.00 7.72e-03
Figure 8.37e 2 5.00 137.57 1.36 118.02 8.30e-03
Figure 8.37f 0 24.42 55.61 3.77 38.29 7.42e-03
Figure 8.37g 3 63.29 129.36 17.44 74.65 7.55e-03
Figure 8.37h 3 110.00 53.43 52.84 37.52 9.05e-03
Figure 8.37i 2 10.37 12.17 6.27 2.28 1.07e-02
Figure 8.37j 0 13.76 71.24 2.14 59.68 8.38e-03
Figure 8.37k 2 120.49 30.46 62.65 19.65 1.68e-02
Figure 8.37l 2 58.71 12.99 23.77 2.48 1.27e-02
Figure 8.37m 2 32.11 46.79 2.92 21.64 9.96e-03
Figure 8.37n 2 7.75 17.25 0.79 5.81 8.87e-03
Figure 8.37o 2 55.14 3.71 32.68 1.41 1.07e-02
Figure 8.37p 2 44.94 48.97 4.07 11.00 1.18e-02
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(a) Go fearing the objects in addition to ships.
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(b) Go avoiding the objects except small vehi-
cles.
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(c) Go trusting the small vehicles.
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(d) Trust things.
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(e) Move trusting the harbors and trusting the
things.
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(f) Proceed keeping away from truck.
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(g) Give wide berth to objects except for the
large vehicles.
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(h) Go staying away from things excluding the
large vehicle.

Figure 8.37: Worst examples from sample of training dataset. Source image (left), generated cost
map (right), ground truth path (green), generated path (red).
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(i) Navigate trusting soccer ball field and fear-
ing the baseball diamond.
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(j) Hide from the small vehicles.
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(k) Proceed trusting small vehicles and trust-
ing small vehicles.
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(l) Proceed trusting the truck and giving wide
berth to small vehicles.
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(m) Trust the things and trust the large vehi-
cles.
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(n) Trust small vehicles and trust the things.
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(o) Trust the large vehicles and trust the large
vehicles.
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(p) Go fearing small vehicles and giving wide
berth to small vehicles.

Figure 8.37: Worst examples from sample of training dataset. Source image (left), generated cost
map (right), ground truth path (green), generated path (red).
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8.6.2 Validation Dataset

This section contains the worst examples from a sample (N = 4096) of the validation dataset.

Table 8.4: Supplementary information for Figure 8.38. Worst examples from validation set.

Figure Family 90FGT
90FSP

90HGT
90HSP Loss

Figure 8.38a 0 72.21 19.24 53.78 11.31 1.24e-01
Figure 8.38b 1 82.72 66.76 56.39 30.13 1.27e-01
Figure 8.38c 1 69.00 34.63 53.17 21.93 1.26e-01
Figure 8.38d 2 123.63 68.26 42.82 3.13 1.51e-01
Figure 8.38e 0 130.00 13.69 46.01 8.12 1.40e-01
Figure 8.38f 2 108.52 45.49 58.59 32.14 1.29e-01
Figure 8.38g 0 128.17 231.99 61.01 134.35 1.69e-01
Figure 8.38h 1 132.74 116.04 93.25 85.14 1.51e-01
Figure 8.38i 2 29.10 7.74 25.42 3.21 1.54e-01
Figure 8.38j 0 32.29 5.05 15.67 2.57 2.67e-01
Figure 8.38k 0 143.06 123.47 69.05 55.36 1.41e-01
Figure 8.38l 2 110.99 79.92 52.97 11.75 1.51e-01
Figure 8.38m 1 131.13 116.40 74.27 60.01 1.48e-01
Figure 8.38n 2 202.56 214.56 119.93 156.32 1.70e-01
Figure 8.38o 2 180.69 207.71 90.07 160.86 2.09e-01
Figure 8.38p 2 44.43 14.18 27.15 8.23 1.61e-01
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(a) Navigate giving wide berth to things.
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(b) Proceed giving wide berth to the things
including the small vehicles.
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(c) Proceed avoiding the things as well as small
vehicles.
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(d) Trust storage tanks and trust objects.
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(e) Go trusting the swimming pool.
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(f) Go keeping away from things and giving
wide berth to the car.
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(g) Navigate trusting objects.
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(h) Navigate giving wide berth to objects and
small vehicles.

Figure 8.38: Worst examples from sample of validation dataset. Source image (left), generated cost
map (right), ground truth path (green), generated path (red).
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(i) Proceed giving wide berth to the things
and avoiding the small vehicle.
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(p) Keep away from the things and give wide
berth to small vehicles.

Figure 8.38: Worst examples from sample of validation dataset. Source image (left), generated cost
map (right), ground truth path (green), generated path (red).
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L. E. Navarro-Serment, F. Duvallet, A. Boularias, J. Vinokurov, T. Keegan, R. Dean, C.
Lennon, B. Bodt, M. Childers, J. Shi, K. Daniilidis, N. Roy, C. Lebiere, M. Hebert, and
A. Stentz, “Integrated intelligence for human-robot teams,” in Proceedings of International
Symposium on Experimental Robotics (ISER ’16), Oct. 2016, pp. 309–322.

[4] M. Wigness, J. G. Rogers, L. E. Navarro-Serment, A. Suppé, and B. A. Draper, “Reducing
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