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Abstract

Neural architecture search (NAS) is recently proposed to automate the process
of designing network architectures. Instead of manually designing network archi-
tectures, NAS automatically finds the optimal architecture in a data-driven way.
Despite its impressive progress, NAS is still far from being widely adopted as a
common paradigm for architecture design in practice. This thesis aims to develop
principled NAS methods that can automate the design of neural networks and re-
duce human efforts in architecture tuning as much as possible. To achieve this goal,
we focus on developing better search algorithms and search spaces, both of which
are important for the performance of NAS.

For search algorithms, we first present an efficient NAS framework based on
Bayesian optimization (BO). Specifically, we propose a method to learn an embed-
ding space over the domain of network architectures, which makes it possible to
define a kernel function for the architecture domain, a necessary component to ap-
plying BO to NAS. Then, we propose a neighborhood-aware NAS formulation to
improve the generalization of architectures found by NAS. The proposed formula-
tion is general enough to be applied to various search algorithms, including both
sampling-based algorithms and gradient-based algorithms.

For search spaces, we first extend NAS beyond discovering convolutional cells
to attention cells. We propose a search space for spatiotemporal attention cells that
use attention operations as the primary building block. Our discovered attention
cells not only outperform manually designed ones, but also demonstrate strong
generalization across different modalities, backbones, or datasets. Then, we show
that committee-based models (ensembles or cascades) are an overlooked design
space for efficient models. We find that simply building committees from off-the-
shelf pre-trained models can match or exceed the accuracy of state-of-the-art models
while being drastically more efficient. Finally, we point out the importance of con-
trolling the cost in the comparison of different LiDAR-based 3D object detectors.
We show that, SECOND, a simple baseline which is generally believed to have been
significantly surpassed, can almost match the performance of the state-of-the-art
method on the Waymo Open Dataset, if allowed to use a similar latency.
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Chapter 1

Introduction

Neural networks are almost ubiquitous in modern learning-based methods for com-
puter vision. Equipped with large-scale datasets and appropriate training tech-
niques, neural networks can approximate sophisticated high-dimensional functions
and learn about the non-trivial relationships between input and expected output,
e.g., images and object labels or segmentation masks. One major contributing factor
to the power of neural networks is the novel design of network architectures.

Traditionally, network architectures are manually designed by humans through
trial and error based on their knowledge and experience, which can be tedious and
is sometimes regarded as more of an art than a science. Towards a more principled
approach for designing network architectures, neural architecture search (NAS) is
recently proposed to automate the process of network architecture design.

Instead of manually designing network architectures, NAS automatically finds
the optimal architecture in a data-driven way, where the design process of architec-
tures is formulated as an optimization problem. For a specific task, NAS first defines
a search space containing all the possible architectures to be explored, which repre-
sents the domain of the optimization problem. Then a search algorithm is applied to
solve the optimization problem, i.e., finding the architecture with the highest per-
formance on the given task in the search space.

While NAS has demonstrated impressive progress and discovered architectures
outperforming human-designed ones for a wide range of tasks [46,119,189,190], it
is still far from being widely adopted as a common paradigm for architecture design
in practice. We highlight the following two challenges that need to be addressed to
make NAS more widely used.

• Develop efficient and reliable search algorithms. State-of-the-art NAS meth-
ods usually require significant computational resources. For example, it took
2,000 GPU days to discover NASNet [190], and as estimated by Strubell et
al. [135], it took ∼1,300 TPUv2 days to find the Evolved Transformer [131].
Such computational cost is prohibitive and also raises concerns on the huge
carbon footprint of NAS [135].
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To speed up the search, weight sharing across architectures is proposed to
amortize the training cost of candidate architectures [8,107]. Weight-sharing
NAS, a.k.a., one-shot NAS, can reduce the search time by orders of magni-
tude, e.g., DARTS [91] only needs 0.4 GPU days to find a high-performing
architecture. However, weight-sharing methods still suffer from several weak-
nesses, such as being prone to overfitting [181], failing when the search space
changes [181], and yielding unstable search performance among multiple
runs [164].

Therefore, we need to develope efficient and reliable search algorithms that
can find satisfying architectures with an affordable computational cost, pro-
duce stable search results, and work robustly for new search spaces and tasks.

• Design flexible and generic search spaces. Currently, the majority of NAS
research focuses on image classification, where the most widely used search
spaces are the cell-based search space [89, 91, 190] and the MobileNet-based
search space [16, 139, 162]. While these spaces contain a diverse range of
high-performing architectures, recent work show that they are still not flexible
enough. For example, the cell-based search space is shown to have a narrow
performance range [171] and even random search can find competitive ar-
chitectures [171, 179]. Architectures in the MobileNet-based space resemble
MobileNetV2 [120] by design, therefore the lower bound of accuracy is still
high [164]. As pointed by Yang et al. [171], although such constraints of the
search space design can avoid the exploration of bad architectures and guar-
antee good performance, they also limit the possibility for NAS to discover
truly innovative solutions. Therefore, we need more flexible search spaces for
NAS to find significantly better architectures.

Other than image classification, NAS has also been successfully applied to
many other tasks, e.g., object detection [46], semantic segmentation [23, 88],
and video classification [119, 153]. When applying NAS to a new task, it is
common to propose a new search space customized for this task. Customizing
the search space allows us to maximally leverage human insight on the task
and data, but also introduces additional complexity in practice when applying
NAS to new tasks or data. This calls for generic search spaces that can work for
a wide range of tasks and real-world data without heavy modification [164].

The ultimate goal of this thesis is to develop principled NAS methods that can
automate the design of neural networks and reduce human efforts in architecture
tuning as much as possible. Both the search algorithm and search space are impor-
tant for the performance of NAS, so we focus on both of them.
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1.1 Overview

Below is an overview of the thesis.

Part I: Search Algorithms

Chapter 2: Efficient NAS with Bayesian Optimization

One significant bottleneck of NAS is the need to constantly evaluate different net-
work architectures, as each evaluation is extremely costly (e.g., backpropagation
to learn the parameters of a single deep network can take days on a single GPU).
This means that any efficient search algorithm must be judicious when selecting
architectures to evaluate. We explore the usage of Bayesian optimization (BO) for
NAS. BO has been proven to be a highly useful algorithm for solving optimization
problems where the objective function is a black box and expensive to evaluate, e.g.,
hyperparameter optimization.

We propose a method to learn an embedding space over the domain of net-
work architectures, which makes it possible to define a kernel function for the ar-
chitecture domain, a necessary component to applying BO to NAS. Based on the
proposed embedding space, we present an efficient architecture search framework
using BO. Extensive experiments demonstrate that our algorithm can significantly
outperform other search algorithms, e.g., random search and reinforcement learn-
ing [3], and manually designed compact architecture ShuffleNet [183]. We describe
further details of this work in Chapter 2.

Chapter 3: Neighborhood-Aware NAS

NAS is typically formulated as an optimization problem that tries to find the archi-
tecture with the highest performance in the search space. However, directly opti-
mizing architecture performance may cause the search algorithm to overfit to the
search setting, i.e., selecting an architecture performing well during search but gen-
eralizing poorly under the test setting, due to the inevitable differences between the
search setting and test setting, such as the number of training epochs, the usage of
weight sharing, or proxy datasets during search.

Motivated by the understanding in neural network training that flat minima
generalize better than sharp minima [57], we propose a neighborhood-aware NAS
formulation to encourage the selection of flat minima architectures in the search
space, i.e., architectures with strong generalization capability. The proposed formu-
lation is general enough to be applied to various search algorithms, such as random
search, reinforcement learning, and differentiable NAS methods [91]. By simply
augmenting DARTS [91] with our formulation, we find architectures that perform
better or on par with those found by state-of-the-art NAS methods on established
benchmarks. Further details of this work are included in Chapter 3.
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Part II: Search Spaces

Chapter 4: AttentionNAS: Spatiotemporal Attention Cell Search

Most work in computer vision [88,89,91,189,190] uses the convolutional operation
as the primary building block to construct the network. While being successful, con-
volutional operations still have their limitations and NAS should not be limited to
only convolutional operations. It has been shown that attention is complementary
to convolutional operations, and they can be combined to further improve perfor-
mance on vision tasks [6, 154, 161]. However, many design choices still remain to
be determined to use attention, especially when applying attention to videos.

We propose a search space for spatiotemporal attention cells that use attention
operations as the primary building block. We also develop a differentiable formu-
lation of the search space, allowing us to efficiently search for the optimal attention
cell design. The discovered attention cell can be seamlessly inserted into a wide
range of backbone networks, e.g., I3D [19] or S3D [167], to improve the performance
on video understanding tasks. The discovered attention cells not only outperform
manually designed ones, but also demonstrate strong generalization across differ-
ent modalities, backbones, or datasets. We include more details of this work in
Chapter 4.

Chapter 5: Wisdom of Committees: An Overlooked Approach to Faster and More
Accurate Models

Committee-based models (ensembles or cascades) construct models by combin-
ing existing pre-trained ones. While ensembles and cascades are well-known tech-
niques that were proposed before deep learning, they are not considered a core
building block of deep model architectures and are rarely compared to in recent
literature on developing efficient models. In this work, we go back to basics and
conduct a comprehensive analysis of the efficiency of committee-based models.

We find that even the most simplistic method for building committees from ex-
isting, independently pre-trained models can match or exceed the accuracy of state-
of-the-art models while being drastically more efficient. These simple committee-
based models also outperform sophisticated neural architecture search methods.
These findings hold true for several tasks, including image classification, video clas-
sification, and semantic segmentation, and various architecture families, such as
ViT [37], EfficientNet [140], ResNet [54], MobileNetV2 [120], and X3D [41]. Our
results show that an EfficientNet cascade can achieve a 5.4x speedup over B7 and a
ViT cascade can achieve a 2.3x speedup over ViT-L-384 while being equally accurate.
We provide more details of this work in Chapter 5.
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Chapter 6: Cost-Aware Evaluation and Model Scaling for LiDAR-Based 3D Ob-
ject Detection

Considerable research efforts have been devoted to LiDAR-based 3D object detec-
tion and its empirical performance has been significantly improved. While progress
has been encouraging, we notice an issue about the current state of 3D detection
research: it is not yet common practice to compare different detectors under the
same cost, e.g., inference latency. This can cause unfair comparison and makes it is
difficult to quantify the true performance gain brought by recently proposed archi-
tecture designs.

To address this issue, we take a step forward by analyzing the performance of a
simple grid-based one-stage detector, i.e., SECOND [170], under different costs by
scaling its original architecture. We compare the family of scaled SECOND against
recent 3D detection methods. The results are surprising. We find that, SECOND
can easily outperform a number of recent methods after being scaled up. Notably,
scaled SECOND can nearly match the performance of PV-RCNN++, the current
state-of-the-art on the Waymo Open Dataset, if allowed to use a similar inference
latency. Our results indicate that the gain brought by the architectural innovation
in some recent methods is not as significant as what was shown in their papers. We
recommend future research control the inference cost in their empirical comparison
and include the family of scaled SECOND as baselines when presenting novel 3D
object detectors. More details of this work are included in Chapter 6.

1.2 Bibliographical Remarks

Chapter 2 is based on joint work with Shengcao Cao and Kris Kitani [17]. Chap-
ter 3 is based on joint work with Shengcao Cao, Mengtian Li, and Kris Kitani [150].
Chapter 4 is based on joint work with Xuehan Xiong, Maxim Neumann, AJ Piergio-
vanni, Michael Ryoo, Anelia Angelova, Kris Kitani, and Wei Hua [153]. Chapter 5
is based on joint work with Dan Kondratyuk, Eric Christiansenm, Kris Kitani, Yair
Alon (prev. Movshovitz-Attias), and Elad Eban [152]. Chapter 6 is based on joint
work with Kris Kitani [151].
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Part I

Search Algorithms
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Chapter 2

Efficient NAS with Bayesian
Optimization

2.1 Introduction

In many application domains, it is common practice to make use of well-known
deep network architectures (e.g., VGG [129], GoogleNet [138], ResNet [54]) and to
adapt them to a new task without optimizing the architecture for that task. While
this process of transfer learning is surprisingly successful, it often results in over-
sized networks which have many redundant or unused parameters. Inefficient net-
work architectures can waste computational resources and over-sized networks can
prevent them from being used on embedded systems. There is a pressing need to
develop algorithms that can take large networks with high accuracy as input and
compress their size while maintaining similar performance. In this paper, we focus
on the task of compressed architecture search – the automatic discovery of com-
pressed network architectures based on a given large network.

One significant bottleneck of compressed architecture search is the need to re-
peatedly evaluate different compressed network architectures, as each evaluation
is extremely costly (e.g., back-propagation to learn the parameters of a single deep
network can take several days on a single GPU). This means that any efficient search
algorithm must be judicious when selecting architectures to evaluate. Learning a
good embedding space over the domain of compressed network architectures is
important because it can be used to define a distribution on the architecture space
that can be used to generate a priority ordering of architectures for evaluation. To
enable the careful selection of architectures for evaluation, we propose a method to
incrementally learn an embedding space over the domain of network architectures.

In the network compression paradigm, we are given a teacher network and we
aim to search for a compressed network architecture, a student network that con-
tains as few parameters as possible while maintaining similar performance to the
teacher network. We address the task of compressed architecture search by using
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Bayesian Optimization (BO) with a kernel function defined over our proposed em-
bedding space to select architectures for evaluation. As modern neural architec-
tures can have multiple layers, multiple branches and multiple skip connections,
defining an embedding space over all architectures is non-trivial. In this work, we
propose a method for mapping a diverse range of discrete architectures to a contin-
uous embedding space through the use of recurrent neural networks. The learned
embedding space allows us to perform BO to efficiently search for compressed stu-
dent architectures that are also expected to have high accuracy.

We demonstrate that our search algorithm can significantly outperform various
baseline methods, such as random search and reinforcement learning [3]. For ex-
ample, our search algorithm can compress VGG-19 [129] by 8× on CIFAR-100 [72]
while maintaining accuracy on par with the teacher network. The automatically
found compressed architectures can also achieve higher accuracy than the state-
of-the-art manually-designed compact architecture ShuffleNet [183] with a similar
size. We also demonstrate that the learned embedding space can be transferred to
new settings for architecture search, such as a larger teacher network or a teacher
network in a different architecture family, without any training.

Contributions. (1) We propose a novel method to incrementally learn an em-
bedding space over the domain of network architectures. Based on the learnable
embedding space, we present a framework of searching for compressed network
architectures with BO. The learned embedding provides a feature space over which
the kernel function of BO is defined. (2) We propose a set of architecture operators
for generating architectures for search. Operators for modifying the teacher net-
work are: layer removal, layer shrinkage and skip connection addition. (3) We pro-
pose a multiple kernel strategy to prevent the premature convergence of the search
and encourage the search algorithm to explore more diverse architectures during
the search process.

2.2 Related Work

Computationally Efficient Architecture. There has been great progress in design-
ing computationally efficient network architectures. Representative examples in-
clude SqueezeNet [67], MobileNet [59], MobileNetV2 [120], CondenseNet [63] and
ShuffleNet [183]. Different from them, we aim to develop an algorithm that can au-
tomatically search for an efficient network architecture with minimal human efforts
involved in the architecture design.

Neural Architecture Search (NAS). NAS has recently been an active research
topic [89–91, 96, 107, 115, 189, 190]. Some existing works in NAS are focused on
searching for architectures that not only can achieve high performance but also re-
spect some resource or computation constraints [3, 35, 38, 60, 139, 186]. NAO [96]
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and our work share the idea of mapping network architectures into a latent con-
tinuous embedding space. But NAO and our work have fundamentally different
motivations, which further lead to different architecture search frameworks. NAO
maps network architectures to a continuous space such that they can perform gra-
dient based optimization to find better architectures. However, our motivation for
learning the embedding space is to find a principled way to define a kernel function
between architectures with complex skip connections and multiple branches.

Our work is also closely related to N2N [3], which searches for a compressed
architecture based on a given teacher network using reinforcement learning. Our
search algorithm is developed based on Bayesian Optimization (BO), which is dif-
ferent from N2N and many other existing works. We will compare our approach to
other BO based NAS methods in the next paragraph. Readers can refer to [39] for
a more complete literature review of NAS.

Bayesian Optimization (BO). BO is a popular method for hyper-parameter opti-
mization in machine learning. BO has been used to tune the number of layers and
the size of hidden layers [10, 137], the width of a network [130] or the size of the
filter bank [9], along with other hyper-parameters, such as the learning rate, num-
ber of iterations. [99], [68] and [182] also fall into this category. Our work is also
related to [55], which presents a Bayesian method for identifying the Pareto set of
multi-objective optimization problems and applies the method to searching for a
fast and accurate neural network.

However, most existing works on BO for NAS only show results on tuning net-
work architectures where the connections between network layers are fixed, i.e.,
most of them do not optimize how the layers are connected to each other. [69] pro-
poses a distance metric OTMANN to compare network architectures with complex
skip connections and branch layers, based on which NASBOT is developed, a BO
based NAS framework, which can tune how the layers are connected. Although
the OTMANN distance is designed with thoughtful choices, it is defined based on
some empirically identified factors that can influence the performance of a network,
rather than the actual performance of networks. Different from OTMANN, the dis-
tance metric (or the embedding) for network architectures in our algorithm is au-
tomatically learned according to the actual performance of network architectures
instead of manually designed.

Our work can also be viewed as carrying out optimization in the latent space of a
high dimensional and structured space, which shares a similar idea with previous
literature [47, 95]. For example, [95] presents a new variational auto-encoder to
map kernel combinations produced by a context-free grammar into a continuous
latent space.

Deep Kernel Learning. Our work is also related to recent work on deep kernel
learning [159, 160]. They aim to learn more expressive kernels by representing the
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kernel function as a neural network to incorporate the expressive power of deep
networks. The follow-up work [2] extends the kernel representation to recurrent
networks to model sequential data. Our work shares a similar motivation with them
and tries to learn a kernel function for the neural architecture domain by leveraging
the expressive power of deep networks.

2.3 Approach

In this work, we focus on searching for a compressed network architecture based
on a given teacher network and our goal is to find a network architecture which
contains as few parameters as possible but still can obtain a similar performance to
the teacher network. Formally, we aim to solve the following optimization problem:

x∗ = arg max
x∈X

f(x), (2.1)

whereX denotes the domain of neural architectures and the function f(x) : X 7→ R
evaluates how well the architecture x meets our requirement.

We aim to find a network architecture which contains as few parameters as pos-
sible but still can obtain a similar performance to the teacher network. Usually com-
pressing a network leads to the decrease in the performance. So the function f needs
to provide a balance between the compression ratio and the performance. In par-
ticular, we hope the function f favors architectures of high performance but low
compression ratio more than architectures of low performance but high compres-
sion ratio. So we adopt the reward function design in N2N [3] for the function f .
Formally, f is defined as:

f(x) = C(x) (2− C(x)) · A(x)

A(xteacher)
, (2.2)

whereC(x) is the compression ratio of the architecture x,A(x) is the validation per-
formance of x and A(xteacher) is the validation performance of the teacher network.
The compression ratio C(x) is defined as C(x) = 1− #params(x)

#params(xteacher)
.

Note that for any x, to evaluate f(x) we need to train the architecture x on the
training data and test on the validation data. Therefore, evaluating f(x) for a spe-
cific architecture x is extremely costly. This requires that the algorithm must judi-
ciously select the architectures to evaluate. To enable the careful selection of archi-
tectures for evaluation, we propose a method to incrementally learn an embedding
space over the domain of network architecture that can be used to generate a priority
ordering of architectures for evaluation. In particular, we develop the search algo-
rithm based on BO with a kernel function defined over our proposed embedding
space. In the following text, we will first introduce the sketch of the BO algorithm
and then explain how the proposed embedding space is used in the loop of BO.
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We adopt the Gaussian process (GP) based BO algorithms to maximize the func-
tion f(x), which is one of the most popular algorithms in BO. A GP prior is placed
on the function f , parameterized by a mean function µ(·) : X 7→ R and a covari-
ance function or kernel k(·, ·) : X × X 7→ R. To search for the solution, we start
from an arbitrarily selected architecture x1. At step t, we evaluate the architecture
xt, i.e., obtaining the value of f(xt). Using the t evaluated architectures up to now,
we compute the posterior distribution on the function f :

p (f(x) | f(x1:t)) ∼ N (µt(x), σ2t (x)), (2.3)

where f(x1:t) = [f(x1), . . . , f(xt)] and µt(x) and σ2t (x) can be computed analyti-
cally based on the GP prior [158]. We then use the posterior distribution to de-
cide the next architecture to evaluate. In particular, we obtain xt+1 by maximiz-
ing the expected improvement acquisition function EIt(x) : X 7→ R, i.e., xt+1 =
arg maxx∈X EIt(x). The expected improvement function EIt(x) [101] measures the
expected improvement over the current maximum value according to the posterior
distribution:

EIt(x) = Et[max(0, f(x)− f∗t )], (2.4)

whereEt indicates the expectation is taken with respect to the posterior distribution
at step t p (f(x) | f(x1:t)) and f∗t is the maximum value among {f(x1), . . . , f(xt)}.
Once obtaining xt+1, we repeat the above described process until we reach the max-
imum number of steps. Finally, we return the best evaluated architecture as the
solution.

The main difficulty in realizing the above optimization procedure is the design
of the kernel function k(·, ·) for X and the maximization of the acquisition function
EIt(x) over X , since the neural architecture domain X is discrete and highly com-
plex. To overcome these difficulties, we propose to learn an embedding space for the
neural architecture domain and define the kernel function based on the learned em-
bedding space. We also propose a search space, a subset of the neural architecture
domain, over which maximizing the acquisition function is feasible and sufficient.

2.3.1 Learnable Embedding Space and Kernel Function

The kernel function, which measures the similarity between network architectures,
is fundamental for selecting the architectures to evaluate during the search process.
As modern neural architectures can have multiple layers, multiple branches and
multiple skip connections, comparing two architectures is non-trivial. Therefore,
we propose to map a diverse range of discrete architectures to a continuous embed-
ding space through the use of recurrent neural networks and then define the kernel
function based on the learned embedding space.

We use h(·; θ) to denote the architecture embedding function that generates an
embedding for a network architecture according to its configuration parameters. θ
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represents the weights to be learned in the architecture embedding function. With
h(·; θ), we define the kernel function k(x, x′; θ) based on the RBF kernel:

k(x, x′; θ) = exp

(
−||h(x; θ)− h(x′; θ)||2

2σ2

)
, (2.5)

where σ is a hyper-parameter. h(·; θ) represents the proposed learnable embedding
space and k(x, x′; θ) is the learnable kernel function. They are parameterized by
the same weights θ. In the following text, we will first introduce the architecture
embedding function h(·; θ) and then describe how we learn the weights θ during
the search process.

The architecture embedding function needs to be flexible enough to handle a
diverse range of architectures that may have multiple layers, multiple branches and
multiple skip connections. Therefore we adopt a Bidirectional LSTM to represent
the architecture embedding function, motivated by the layer removal policy net-
work in N2N [3]. The input to the Bi-LSTM is the configuration information of
each layer in the network, including the layer type, how this layer connects to other
layers, and other attributes. After passing the configuration of each layer to the Bi-
LSTM, we gather all the hidden states, apply average pooling to these hidden states
and then apply L2 normalization to the pooled vector to obtain the architecture
embedding.

We would like to emphasize that our representation for layer configuration en-
codes the skip connections between layers. Skip connections have been proven ef-
fective in both human designed network architectures, such as ResNet [54] and
DenseNet [64], and automatically found network architectures [189]. N2N only
supports the kind of skip connections used in ResNet [54] and does not general-
ize to more complex connections between layers, where our representation is still
applicable. We give the details about our representation for layer configuration in
Section 2.3.1.1.

The weights of the Bi-LSTM, i.e., θ, are learned during the search process. The
weights θ determine the architecture embedding function h(·; θ) and the kernel
k(·, ·; θ). Further, θ controls the GP prior and the posterior distribution of the func-
tion value conditioned on the observed data points. The posterior distribution
guides the search process and is essential to the performance of our search algo-
rithm. Our goal is to learn a θ such that the function f is consistent with the GP
prior, which will result in a posterior distribution that accurately characterizes the
statistical structure of the function f .

Let D denote the set of evaluated architectures. In step t, D = {x1, . . . , xt}. For
any architecture xi in D, we can compute p (f(xi) | f(D \ xi); θ) based on the GP
prior, where \ refers to the set difference operation, f(xi) is the value obtained by
evaluating the architecture xi and f(D\xi) = [f(x1), . . . , f(xi−1), f(xi+1) . . . , f(xt)].
p (f(xi) | f(D \ xi); θ) is the posterior probability of f(xi) conditioned on the other
evaluated architectures in D. The higher the value of p (f(xi) | f(D \ xi); θ) is, the
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more accurately the posterior distribution characterizes the statistical structure of
the function f and the more the function f is consistent with the GP prior. There-
fore, we learn θ by minimizing the negative log posterior probability:

L(θ) = − 1

|D|
∑
i:xi∈D

log p (f(xi) | f(D \ xi); θ) . (2.6)

p (f(xi) | f(D \ xi); θ) is a Gaussian distribution and its mean and covariance matrix
can be computed analytically based on k(·, ·; θ). ThusL is differentiable with respect
to θ and we can learn the weights θ using backpropagation.

2.3.1.1 Representation for Layer Configuration

We represent the configuration of one layer by a vector of length (m+2n+6), where
m is the number of types of layers we consider and n is the maximum number of
layers in the network. The first m dimensions of the vector are a one-hot vector,
indicating the type of the layer. Then the following 6 numbers indicate the value
of different attributes of the layer, including the kernel size, stride, padding, group,
input channels and output channels of the layer. If one layer does not have any
specific attribute, the value of that attribute is simply set to zero.

The following 2n dimensions encode the edge information of the network, if we
view the network as a directed acyclic graph with each layer as a node in the graph.
In particular, the 2n dimensions are composed of two n-dim vectors, where one
represents the edges incoming to the code and the other one represents the edges
outgoing from the node. The nodes in the directed acyclic graph can be topologi-
cally sorted, which will give each layer an index. For an edge from node i to j, the
(j− i)th element in the outgoing vector of node i and the incoming vector of node j
will be 1. We are sure that j is larger than i because all the nodes are topologically
sorted. With this representation, we can describe the connection information in a
complex network architecture.

2.3.2 Acquisition Function and Search Space

In each optimization step, we obtain the next architecture to evaluate by maximizing
the acquisition function EIt(·) over the neural architecture domainX . On one hand,
maximizing EIt(·) over all the network architectures in X is unnecessary. Since our
goal is to search for a compressed architecture based on the given teacher network,
we only need to consider those architectures that are smaller than the teacher net-
work. On the other hand, maximizing EIt(·) over X is non-trivial. Gradient-based
optimization algorithms cannot be directly applied to optimize EIt(·) as X is dis-
crete. Also, exhaustive exploration of the whole domain is infeasible. This calls
for a search space that covers the compressed architectures of our interest and easy
to explore. Motivated by N2N [3], we propose a search space for maximizing the
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acquisition function, which is constrained by the teacher network, and provides a
practical method to explore the search space.

We define the search space based on the teacher network. The search space
is constructed by all the architectures that can be obtained by manipulating the
teacher network with the following three operations: (1) layer removal, (2) layer
shrinkage and (3) adding skip connections.

Layer removal and shrinkage. The two operations ensure that we only consider
architectures that are smaller than the given big network. Layer removal refers to
removing one or more layers from the network. Layer shrinkage refers to shrinking
the size of layers, in particular, the number of filters in convolutional layers, as we
focus on convolutional networks in this work. Different from N2N, we do not con-
sider shrinking the kernel size, padding or other configurable variables and we find
that only shrinking the number of filters already yields satisfactory performance.

Adding skip connections. The operation of adding skip connections is em-
ployed to increase the network complexity. N2N [3], which uses reinforcement
learning to search for compressed network architectures, does not support forming
skip connections in their action space. We believe when searching for compressed
architectures, adding skip connections to the compressed network is crucial for it
to achieve similar performance to the teacher network and we will show ablation
study results to verify this.

The way we define the search space naturally allows us to explore it by sampling
the operations to manipulate the architecture of the teacher network. To optimize
the acquisition function over the search space, we randomly sample architectures
in the search space by randomly sampling the operations. We then evaluate EIt(·)
over the sampled architectures and return the best one as the solution. We also have
tried using evolutionary algorithm to maximize EIt(·) but it yields similar results
with random sampling. So for the sake of simplicity, we use random sampling to
maximize EIt(·). We attribute the good performance of random sampling to the
thoughtful design of the operations to manipulate the teacher network architecture.
These operations already favor the compressed architectures of our interest.

2.3.3 Multiple Kernel Strategy

We implement the search algorithm with the proposed learnable kernel function
but notice that the highest function value among evaluated architectures stops in-
creasing after a few steps. We conjecture this is due to that the learned kernel is
overfitted to the training samples since we only evaluate hundreds of architectures
in the whole search process. An overfitted kernel may bias the following sampled
architectures for evaluation.

To encourage the search algorithm to explore more diverse architectures, we
propose a multiple kernel strategy, motivated by the bagging algorithm, which is
usually employed to avoid overfitting. In bagging, instead of training one single
model on the whole dataset, multiple models are trained on different subsets of
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the whole dataset. Likewise, in each step of the search process, we train multiple
kernel functions on uniformly sampled subsets ofD, the set of all the available eval-
uated architectures. Technically, learning multiple kernels refers to learning mul-
tiple architecture embedding spaces, i.e., multiple sets of weights θ. After training
the kernels, each kernel is used separately to compute one posterior distribution
and determine one architecture to evaluate in the next step. That is to say, if we
train K kernels in the current step, we will obtain K architectures to evaluate in
the next step. The proposed multiple kernel strategy encourages the search process
to explore more diverse architectures and can help find better architectures than
training one single kernel only.

When training kernels, we randomly initialize their weights and train from the
scratch on subsets of evaluated architectures. We do not learn the weights of the
kernel based on the weights learned in the last step, i.e., fine-tuning the Bi-LSTM
from the last step. The training of the Bi-LSTM is fast since we usually only evaluate
hundreds of architectures during the whole search process. A formal sketch of our
search algorithm in shown Algorithm 1.

Algorithm 1 Neural Architecture Search with Bayesian Optimization
Input: Number of steps T . Number of kernels K. Teacher network xteacher.
Randomly sample K architectures x11, . . . , x

K
1 from the search space defined

based on xteacher.
Initialize the set of evaluated architectures D = ∅.
for t = 1, . . . , T do

Evaluate the K architectures x1t , . . . , xKt .
D = D ∪ {x1t , . . . , xKt }.
for k = 1, . . . ,K do

Randomly initialize the weights of kernel k, denoted as θk.
Randomly sample a subset of D, denoted as Dk.
Learn θk on Dk using the objective function in Eq. 2.6.
Compute the posterior distribution conditioned on the architectures in Dk

with kernel k.
Maximize the acquisition function and denote the solution as xkt+1.

end for
end for
Return the best architecture in D as the solution.
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2.4 Experiments

2.4.1 Compression Experiments

We evaluate our algorithm with different teacher architectures and datasets. We
use two datasets: CIFAR-10 and CIFAR-100 [72]. CIFAR-10 contains 60K images in
10 classes, with 6K images per class. CIFAR-100 also contains 60K images but in 100
classes, with 600 images per class. Both CIFAR-10 and CIFAR-100 are divided into a
training set with 50K images and a test set with 10K images. We sample 5K training
images as the validation set. We consider four networks as the teacher architecture:
VGG-19 [129], ResNet-18, ResNet-34 [54] and ShuffleNet [183].

We consider two baselines algorithms for comparison: random search (RS) and
a reinforcement learning based approach, N2N [3]. Here we use RS to directly
maximize the compression objective f(x). To be more specific, RS randomly sam-
ples architectures in the search space, then evaluates all of them and returns the best
architecture as the optimal solution. In the following experiments, RS evaluates 160
architectures. For our proposed method, we run 20 architecture search steps, where
each step generatesK = 8 architectures for evaluation based on the theK different
kernels. This means our proposed method also evaluates 160 (20×8) architectures
in total during the search process.

When evaluating an architecture during the search process, we only train it for
10 epochs to reduce computation time. We also employ the Knowledge Distillation
(KD) strategy [56] for faster training as we are given a teacher network. But when
we fully train the architecture x to see its true performance, we fine tune it from
the weights obtained by early stopping with cross entropy loss without using KD.
For both RS and our method, we fully train the top 4 architectures among the 160
evaluated architectures and choose the best one as the solution.

When learning the kernel function parameters, we randomly sample from the
set of the evaluated architectures with a probability of 0.5 to form the training set
for one kernel. The results of N2N are from the original paper [3].

The compression results on are summarized in Table 2.1& 2.2. For a compressed
network x, ‘Ratio’ refers to the compression ratio of the network x, which is defined
as
(

1− #params(x)
#params(xteacher)

)
. ‘Times’ refers to the ratio between the size of the teacher

network and the size of the compressed network, i.e., #params(xteacher)
#params(x) . We also show

the value of f(x) as an indication of how well each architecture xmeets our require-
ment in terms of both the accuracy and the compression ratio. For ‘Random Search’
and ’Ours’, we run the experiments for three times and report the average results
as well as the standard deviation.

We first apply our algorithm to compress three popular network architectures:
VGG-19, ResNet-18 and ResNet-34, and use them as the teacher network. We can
see that on both CIFAR-10 and CIFAR-100, our proposed method consistently finds
architectures that can achieve higher value of f(x) than all baselines. For VGG-19
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Table 2.1: Compression Results on CIFAR-100.

CIFAR-100 Accuracy #Params Ratio Times f(x)

VGG-19 Teacher 73.71% 20.09M - - -
Random Search 68.17% 2.83M 0.8593 8.04× 0.9046

±1.28% ±1.05M ±0.0525 ±3.78× ±0.0074
Ours 71.41% 2.61M 0.8699 7.99× 0.9518

±0.75% ±0.61M ±0.0306 ±1.99× ±0.0158

ResNet-18 Teacher 78.68% 11.22M - - -
Random Search 69.86% 1.26M 0.8878 10.10× 0.8752

±1.90% ±0.54M ±0.0477 ±4.33× ±0.0137
N2N 68.01% 2.42M 0.7845 4.64× 0.8242
Ours 73.83% 1.87M 0.8335 6.01× 0.9123

±1.11% ±0.08M ±0.0073 ±0.26× ±0.0151

ResNet-34 Teacher 78.71% 21.33M - - -
Random Search 72.33% 3.61M 0.8308 5.95× 0.8924

±1.53% ±0.35M ±0.0162 ±0.60× ±0.0154
N2N - removal 70.11% 4.25M 0.8008 5.02× 0.8554
Ours - removal 74.05% 3.18M 0.8508 6.88× 0.9192

±0.52% ±0.65M ±0.0307 ±1.31× ±0.0033
Ours 73.68% 2.36M 0.8895 9.08× 0.9246

±0.57% ±0.15M ±0.0069 ±0.59× ±0.0076

ShuffleNet Teacher 71.14% 1.06M - - -
Random Search 64.75% 0.18M 0.8264 6.37× 0.8803

±2.15% ±0.06M ±0.0588 ±2.68× ±0.0152
Ours 68.45% 0.23M 0.7855 4.74× 0.9171

±1.38% ±0.04M ±0.0337 ±0.78× ±0.0088

on CIFAR-100, the architecture found by our algorithm is 8 times smaller than the
original teacher network while the accuracy only drops by 2.3%. For ResNet-18 on
CIFAR-100, the architecture found by our algorithm has a little bit more parame-
ters than that found by RS but has higher accuracy by about 4%. For ResNet-34 on
CIFAR-100, the architecture found by our proposed method has a higher accuracy
as the architecture discovered by RS but only uses about 65% of the number of pa-
rameters. Also for ResNet-34 on CIFAR-100, N2N only provides the results of layer
removal, denoted as ‘N2N - removal’. ‘Ours - removal’ refers to only considering
the layer removal operation in the search space for fair comparison. We can see that
‘Ours - removal’ also significantly outperforms ‘N2N - removal’ in terms of both the
accuracy and the compression ratio. We visualize architectures compressed from
VGG-19 and ResNet-18 in Figure 2.1&2.2.
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Table 2.2: Compression Results on CIFAR-10.

CIFAR-10 Accuracy #Params Ratio Times f(x)

VGG-19 Teacher 93.91% 20.04M - - -
Random Search 91.76% 2.27M 0.8865 10.54× 0.9628

±0.88% ±1.03M ±0.0515 ±5.83× ±0.0149
N2N 91.64% 0.98M 0.9513 20.53× 0.9735
Ours 92.27% 0.81M 0.9595 25.39× 0.9809

±0.49 % ±0.17M ±0.0084 ±4.85× ±0.0050

ResNet-18 Teacher 95.24% 11.17M - - -
Random Search 92.29% 0.79M 0.9293 14.42× 0.9641

±0.83% ±0.14M ±0.012 ±2.39× ±0.0093
N2N 91.81% 1.00M 0.9099 11.10× 0.9562
Ours 92.99% 0.85M 0.9239 14.44× 0.9701

±1.03% ±0.34M ±0.0302 ±5.05× ±0.0070

ResNet-34 Teacher 95.57% 21.28M - - -
Random Search 92.87% 1.70M 0.9199 12.59× 0.9655

±0.40% ±0.18M ±0.0084 ±1.38× ±0.0046
N2N 92.35% 2.07M 0.9020 10.20× 0.9570
Ours 92.70% 1.32M 0.9379 17.00× 0.9660

±0.74% ±0.35M ±0.0163 ±5.11× ±0.0072

ShuffleNet Teacher 90.87% 0.99M - - -
Random Search 88.25% 0.15M 0.8490 7.38× 0.9471

±0.51% ±0.05M ±0.0529 ±3.24× ±0.0095
Ours 89.36% 0.10M 0.8995 10.43× 0.9729

±1.05% ±0.03M ±0.0284 ±2.54× ±0.0055

ShuffleNet is an extremely computation-efficient human-designed CNN archi-
tecture [183]. We also have tried to use ShuffleNet as the teacher network and see
if we can further optimize this architecture. As shown in Table 2.1& 2.2, our search
algorithm successfully compresses ‘ShuffleNet 1× (g = 2)’ by 10.43× and 4.74× on
CIFAR-10 and CIFAR-100 respectively and the compressed architectures can still
achieve similar accuracy to the original teacher network. Here ‘1×’ indicates the
width multiplier in the teacher ShuffleNet and ‘(g = 2)’ indicates that the number
of groups is 2. Readers can refer to Zhang et al. [183] for more details.

2.4.2 Comparison with ShuffleNet

We now compare the compressed architectures found by our algorithm with the
state-of-the-art manually-designed compact network architecture ShuffleNet [183].
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#Params: 20.09M

CIFAR-10: 93.91%

CIFAR-100: 73.71%

#Params: 0.99M

Accuracy: 91.35%

20.3× Smaller

#Params: 3.07M

Accuracy: 71.64%

6.5× Smaller

Teacher: VGG-19

CONV
BN
RELU
OTHRES
IDENTITY
(REMOVED)

Compressed on CIFAR-10 Compressed on CIFAR-100

Figure 2.1: Visualization of architectures compressed from VGG-19.

We vary the number of channels and the number of groups in ShuffleNet and com-
pare the compressed architectures found by our proposed method against these
different configurations of ShuffleNet. We conduct experiments on CIFAR-100 and
the results are summarized in Table 2.3. For ’Ours’ in Table 2.3, we use the mean
results of 3 runs of our method. In Table 2.3, VGG-19, ResNet-18, ResNet-34 and
ShuffleNet refer to the compressed architectures found by our algorithm based on
the corresponding teacher network and do not refer to the original architecture in-
dicated by the name. The teacher ShuffleNet used in the experiments is ‘ShuffleNet
1 × (g = 2)’ as mentioned above. ‘0.5 × (g = 1)’ and so on in Table 2.3 refer to
different configurations of ShuffleNet and we show the accuracy of these original
ShuffleNet in the table. The compressed architectures found based on ResNet-18
and ResNet-34 have a similar number of parameters with ShuffleNet 1.5× but they
can all achieve much higher accuracy than ShuffleNet 1.5×. The compressed ar-
chitecture found based on ShuffleNet 1 × (g = 2) can obtain higher accuracy than
ShuffleNet 0.5×while using a similar number of parameters.
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Teacher: ResNet-18

#Params: 11.22M

CIFAR-10: 95.24%

CIFAR-100: 78.68%

#Params: 0.54M

Accuracy: 92.64%

20.8× Smaller

#Params: 1.26M

Accuracy: 71.91%

8.9× Smaller

Compressed on CIFAR-10 Compressed on CIFAR-100
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Figure 2.2: Visualization of architectures compressed from ResNet-18.

2.4.3 Comparison with TPE

Neural architecture search can be viewed as an optimization problem in a high-
dimensional and discrete space. There are existing optimization methods such as
TPE [10] and SMAC [66] that are proposed to handle such input spaces. To fur-
ther justify our idea to learn a latent embedding space for the neural architecture
domain, we now compare our method with directly using TPE to search for com-
pressed architectures in the original hyperparameter value domain.

TPE [10] is a hyperparameter optimization algorithm based on a tree of Parzen
estimator. In TPE, they use Gaussian mixture models (GMM) to fit the probability
density of the hyperparameter values, which indicates that they determine the sim-
ilarity between two architecture configurations based on the Euclidean distance in
the original hyperparameter value domain. However, instead of comparing archi-
tecture configurations in the original hyperparameter value domain, our method
transforms architecture configurations into a learned latent embedding space and
compares them in the learned embedding space.

We first do not consider adding skip connections between layers and focus on
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Table 2.3: Comparison with ShuffleNet on CIFAR-100.

Teacher Accuracy #Params Teacher Accuracy #Params
Ours VGG-19 71.41% 2.61M ResNet-18 73.83% 1.87M

ShuffleNet 68.45% 0.23M ResNet-34 73.68% 2.36M
Configuration Accuracy #Params Configuration Accuracy #Params

ShuffleNet 0.5× (g = 1) 67.71% 0.26M 1.5× (g = 1) 72.43% 2.09M
0.5× (g = 2) 67.54% 0.27M 1.5× (g = 2) 71.41% 2.07M
0.5× (g = 3) 67.23% 0.27M 1.5× (g = 3) 71.05% 2.03M
0.5× (g = 4) 66.83% 0.27M 1.5× (g = 4) 71.86% 1.99M
0.5× (g = 8) 66.74% 0.31M 1.5× (g = 8) 71.04% 2.08M

Table 2.4: Comparison with TPE on CIFAR-100.

CIFAR-100 Accuracy #Params Ratio Times f(x)

ResNet-18 TPE - removal + shrink 70.60% 1.30M 0.8843 8.99x 0.8849
±0.69% ±0.28M ±0.0249 ±2.16x ±0.0111

TPE 65.17% 1.54M 0.8625 11.82x 0.8041
±3.14% ±1.42M ±0.1267 ±7.69x ±0.0595

Ours - removal + shrink 72.57% 1.42M 0.8733 8.85x 0.9062
±0.58% ±0.52M ±0.0461 ±3.97x ±0.0081

Ours 73.83% 1.87M 0.8335 6.01x 0.9123
±1.11% ±0.08M ±0.0073 ±0.26x ±0.0151

ResNet-34 TPE - removal + shrink 72.26% 2.36M 0.8893 9.24x 0.9065
±0.83% ±0.45M ±0.0211 ±1.59x ±0.0072

Ours - removal + shrink 73.72% 2.75M 0.8711 8.01x 0.9205
±1.33% ±0.55M ±0.0257 ±1.70x ±0.0117

Ours 73.68% 2.36M 0.8895 9.08x 0.9246
±0.57% ±0.15M ±0.0069 ±0.59x ±0.0076

layer removal and layer shrinkage only, i.e., we search for a compressed architecture
by removing and shrinking layers from the given teacher network. Therefore, the
hyperparameters we need to tune include for each layer whether we should keep it
or not and the shrinkage ratio for each layer. This results in 64 hyperparameters for
ResNet-18 and 112 hyperparameters for ResNet-34. We conduct the experiments
on CIFAR-100 and the results are summarized in the Table 2.4. Comparing ‘TPE
- removal + shrink’ and ‘Ours - removal + shrink’, we can see that our method
outperforms TPE and can achieve higher accuracy with a similar size.

Now, we conduct experiments with adding skip connections. Besides the hyper-
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Table 2.5: Summary of Kernel Transfer Results.

Method Accuracy Ratio f(x) Method Accuracy Ratio f(x)

(a)→ (b) K = 1 93.13% 0.8717 0.9584 N2N on (b) 92.35% 0.9020 0.9570
K = 8 92.80% 0.9627 0.9697 Ours on (b) 92.70% 0.9379 0.9660

(a)→ (c) K = 1 89.92% 0.9793 0.9571 N2N on (c) 91.64% 0.9513 0.9735
K = 8 92.79% 0.9671 0.9870 Ours on (c) 92.27% 0.9595 0.9809

(a)→ (d) K = 1 68.77% 0.9393 0.8708 N2N on (d) 68.01% 0.7845 0.8242
K = 8 70.93% 0.8586 0.8835 Ours on (d) 73.83% 0.8335 0.9123

parameters mentioned above, for each pair of layers where the output dimension
of one layer is the same as the input dimension of another layer, we tune a hyperpa-
rameter representing whether to add a skip connection between them. The results
in 529 and 1717 hyperparameters for ResNet-18 and ResNet-34 respectively. In this
representation, the original hyperparameter space is extremely high-dimensional
and we think it would be difficult to directly optimize in this space. We can see
from the table that for ResNet-18, the ‘TPE’ results are worse than ‘TPE - removal +
shrink’. We do not show the ‘TPE’ results for ResNet-34 here because the networks
found by TPE have too many skip connections, which makes it very hard to train.
The loss of those networks gets diverged easily and do not generate any meaningful
results. Based on the results on ‘layer removal + layer shrink’ only and the results
on the full search space, we can see that our method is better than optimizing in the
original space especially when the original space is very high-dimensional.

We would like to point out that TPE [10] and SMAC [66] focus on improving
Sequential Model-Based Optimization (SMBO) methods while our novelty is not
in the use of Bayesian optimization methods. Our main contribution is the incre-
mentally learning of an embedding to represent the configuration of network archi-
tectures such that we can carry out the optimization over the learned space instead
of the original domain of the value of configuration parameters. Our method is
complementary to TPE [10] and SMAC [66] and can be combined with them when
being applied to NAS.

2.4.4 Kernel Transfer

We now study the transferability of the learned embedding space or the learned
kernel. We would like to know to what extent a kernel learned in one setting can
be generalized to a new setting. To be more specific about the kernel transfer, we
first learn one kernel or multiple kernels in the source setting. Then we maximize
the acquisition function within the search space in the target setting and the acqui-
sition function is computed based on the kernel learned in the source setting. The
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maximizer of the acquisition function is a compressed architecture for the target
setting. We evaluate this architecture in the target setting and compare it with the
architecture found by applying algorithms directly to the target setting.

We consider the following settings: (a) ResNet-18 on CIFAR-10, (b) ResNet-34
on CIFAR-10, (c) VGG-19 on CIFAR-10, and (d) ResNet-18 on CIFAR-100. ‘ResNet-
18 on CIFAR-10’ refers to searching for a compressed architecture with ResNet-18
as the teacher network for the dataset CIFAR-10 and so on. We first run our search
algorithm in setting (a) and transfer the learned kernel to setting (b), (c) and (d)
respectively to see how much the learned kernel can transfer to a larger teacher net-
work in the same architecture family (this means a larger search space), a different
architecture family (this means a totally different search space) or a harder dataset.

We learn K kernels in the source setting (a) and we transfer all the K kernels
to the target setting, which will result in K compressed architectures for the target
setting. We report the best one among theK architectures. We have triedK = 1 and
K = 8 and the results are shown in Table 2.5. In all the three transfer scenarios, the
learned kernel in the source setting (a) can help find reasonably good architectures
in the target setting without actually training the kernel in the target setting, whose
performance is better than the architecture found by applying N2N directly to the
target setting. These results proves that the learned architecture embedding space
or the learned kernel is able to generalize to new settings for architecture search
without any additional training.

2.4.5 Choice of the Objective Function

We discuss the possible choices of the objective function for learning the embed-
ding space in this section. In our experiments, we learn the LSTM weights θ by
maximizing the predictive posterior probability, i.e., minimizing the negative log
posterior probability as defined in Eq. 2.6. There are two other alternative choices
for the objective function as suggested by the reviewers. We discuss the two choices
and compare them with our choice in the following text.

Intuitively, a meaningful embedding space should be predictive of the function
value, i.e, the performance of the architecture. Therefore, a reasonable choice of
the objective function is to train the LSTM by regressing the function value with a
Euclidean loss. Technically, this is done by adding a fully connected layer FC(·; θ′)
after the embedding, whose output is the predicted performance of the input archi-
tecture. However, directly training the LSTM by regressing the function value does
not let us directly evaluate how accurate the posterior distribution characterizes the
statistical structure of the function. As mentioned before, the posterior distribution
guides the search process by influencing the choice of architectures for evaluation
at each step. Therefore, we believe maximizing the predictive posterior probability
is a more suitable training objective for our search algorithm than regressing the
function value. To validate this, we have tried changing the objective function from
Eq. 2.6 to the squared Euclidean distance between the predicted function value and
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Table 2.6: Comparison of different objective functions. ‘Euclidean’ refers to regress-
ing the function value with a Euclidean loss. ‘Marginal’ refers to maximizing the
log marginal likelihood. ‘Posterior’ is our choice and refers to maximizing the pre-
dictive posterior probability.

CIFAR-100 Accuracy #Params Ratio Times f(x)

VGG-19 Euclidean 70.95% 2.47M 0.8771 9.62× 0.9453
±1.07% ±1.26M ±0.0627 ±4.55× ±0.0092

Marginal 69.90% 1.50M 0.9254 16.14× 0.9422
±0.69% ±0.68M ±0.3382 ±9.22× ±0.0071

Posterior 71.41% 2.61M 0.8699 7.99× 0.9518
±0.75% ±0.61M ±0.0306 ±1.99× ±0.0158

ResNet-18 Euclidean 71.67% 1.62M 0.856 7.07× 0.8917
±0.67% ±0.27M ±0.0243 ±1.09× ±0.0137

Marginal 72.80% 1.72M 0.8467 6.57× 0.9033
±1.11% ±0.18M ±0.0160 ±0.67× ±0.0094

Posterior 73.83% 1.87M 0.8335 6.01× 0.9123
±1.11% ±0.08M ±0.0073 ±0.26× ±0.0151

ResNet-34 Euclidean 72.87% 2.49M 0.8834 8.90× 0.9127
±1.11% ±0.60M ±0.2814 ±2.04× ±0.0103

Marginal 73.11% 3.34M 0.8435 6.47× 0.9059
±0.57% ±0.48M ±0.0224 ±0.89× ±0.0134

Posterior 73.68% 2.36M 0.8895 9.08× 0.9246
±0.57% ±0.15M ±0.0069 ±0.59× ±0.0076

the true function value: 1
|D|
∑

i:xi∈D(FC(h(xi; θ); θ
′)− f(xi))

2. The results are sum-
marized in Table 2.6. We observe that maximizing the predictive posterior proba-
bility consistently yields better results than the Euclidean loss.

Another possible choice of the objective function is to maximize the log marginal
likelihood log p (f(D) | D; θ), which is the conventional objective function for kernel
learning [159,160]. We do not choose to maximize log marginal likelihood because
we empirically find that maximizing the log marginal likelihood yields worse re-
sults than maximizing the predictive GP posterior as shown in Table 2.6. When
using the log marginal likelihood, we observe that the loss is numerically unstable
due to the log determinant of the covariance matrix in the log marginal likelihood.
The training objective usually goes to infinity when the dimension of the covari-
ance matrix is larger than 50, even with smaller learning rates, which may harm the
search performance. Therefore, we learn the embedding space by maximizing the
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Table 2.7: Ablation study of the number of kernels K.

CIFAR-100 Accuracy #Params Ratio Times f(x)

K = 1 73.42% 2.68M 0.8745 7.97x 0.9181
K = 2 72.51% 2.14M 0.8996 9.96x 0.9119
K = 4 73.70% 2.47M 0.8842 8.64x 0.9238
K = 8 73.45% 2.12M 0.9006 10.06x 0.9240
K = 16 73.38% 1.81M 0.9153 11.80x 0.9256

predictive GP posterior instead of the log marginal likelihood.

2.4.6 Ablation Study

Impact of number of kernelsK. We study the impact of the number of kernelsK.
We conduct experiments on CIFAR-100 and use ResNet-34 as the teacher network.
We vary the value of K and fix the number of evaluated architectures to 160. The
results are summarized in Table 2.7. We can see that K = 4, 8, 16 yield much better
results than K = 1. Also the performance is not sensitive to K as K = 4, 8, 16 yield
similar results. In our main experiments, we fix K = 8.

Impact of adding skip connections. Our search space is defined based on three
operations: layer removal, layer shrinkage and adding skip connections. A key
difference between our search space and N2N [3] is that they only support layer
removal and shrinkage do not support adding skip connections. To validate the ef-
fectiveness of adding skip connections, we conduct experiments on CIFAR-100 and
on three architectures. In Table 2.8, ’Ours - removal + shrink’ refers to the search
space without considering adding skip connections and ’Ours’ refers to using the
full search space. We can see that ’Ours’ consistently outperforms ’Ours - removal
+ shrink’ across different teacher networks, proving the effectiveness of adding skip
connections.

Impact of the maximization of the acquisition function. As mentioned in Sec-
tion 2.3.2, we have two choices to maximize the acquisition function EIt(x): ran-
domly sampling (RS) and evolutionary algorithm (EA). We conduct the experi-
ments to compare RS and ES to compress ResNet-34 on CIFAR-100. We find that al-
though EA is empirically better than RS in terms of maximizing EIt(x), EA is slightly
worse than RS in terms of the final search performance as shown in Table 2.9. For
any EIt(x), the solution found by EA xEA may be better than the solution found by
RS xRS, i.e., EIt(xEA) > EIt(xRS). However, we observe that f(xEA) and f(xRS) are
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Table 2.8: Ablation study of adding skip connections.

CIFAR-100 Accuracy #Params Ratio Times f(x)

ResNet-18 Ours - removal + shrink 72.57% 1.42M 0.8733 8.85× 0.9062
±0.58% ±0.52M ±0.0461 ±3.97× ±0.0081

Ours 73.83% 1.87M 0.8335 6.01× 0.9123
±1.11% ±0.08M ±0.0073 ±0.26× ±0.0151

ResNet-34 Ours - removal + shrink 73.72% 2.75M 0.8711 8.01× 0.9205
±1.33% ±0.55M ±0.0257 ±1.70× ±0.0117

Ours 73.68% 2.36M 0.8895 9.08× 0.9246
±0.57% ±0.15M ±0.0069 ±0.59× ±0.0076

Table 2.9: Ablation study of the maximization of the acquisition function.

CIFAR-100 Accuracy #Params Ratio Times f(x)

RS, K = 1 73.42% 2.68M 0.8745 7.97x 0.9181
RS, K = 8 73.45% 2.12M 0.9006 10.06x 0.9240
EA, K = 1 71.52% 1.24M 0.9420 17.23x 0.9056
EA, K = 8 72.40% 2.15M 0.8990 9.90x 0.9104

usually similar. We also plot the values of f(x) for the evaluated architectures when
using RS and EA to maximize the acquisition function respectively in Figure 2.3. We
can see that the function value of the evaluated architectures grows slightly more
stable when using RS to maximize the acquisition function then using EA. There-
fore, we choose RS in the following experiments for the sake of simplicity.

2.4.7 Analysis of Random Search Baseline

We observe that the random search (RS) baseline which maximizes f(x) with ran-
dom sampling can achieve very good performance. To analyze RS in more detail,
we show the value of f(x) for the 160 architectures evaluated in the search process
in Figure 2.4. The specific setting we choose is ResNet-34 on CIFAR-100. We can see
that although RS can sometimes sample good architectures with high f(x) value,
it is much more unstable than our method. The function value of the evaluated
architectures selected by our method has a strong tendency to grow as we search
more steps while RS does not show such trend. Also, from the histogram of values
of f(x), we can see that RS has a much lower chance to get architectures with high
function values than our method. This is expected since our method leverages the
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Figure 2.3: Comparison between random sampling (RS) and evolutionary algo-
rithm (EA) for maximizing the acquisition function. Left: Value of f(x) vs. Index
of evaluated architecture. Right: Histogram of values of f(x).
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Figure 2.4: Comparison between our method and random search (RS) baseline.
Left: Value of f(x) vs. Index of evaluated architecture. Right: Histogram of values
of f(x).

learned architecture embedding or the kernel function to carefully select the archi-
tecture for evaluation while RS just randomly samples from the search space. We
can conclude that our method is much more efficient than RS.

2.4.8 Implementation Details

We need to randomly sample architectures from the search space when optimizing
the acquisition function. As mentioned in Section 2.3.2, we sample the architectures
by sampling the operations to manipulate the architecture of the teacher network.
During the process, we need to make sure the layers in the network are still com-
patible with each other in terms of the dimension of the feature map. Therefore, We
impose some conditions when we sample the operations in order to maintain the
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consistency between between layers.
For layer removal, only layers whose input dimension and output dimension

are the same are allowed to be removed. For layer shrinkage, we divide layers
into groups and for layers in the same group, the number of channels are always
shrunken with the same ratio. The layers are grouped according to their input and
output dimension. For adding skip connections, only when the output dimension
of one layer is the same as the input dimension of another layer, the two layers can
be connected. When there are multiple incoming edges for one layer, the outputs
of source layers are added up to form the input for that layer.

When compressing ShuffleNet, we also slightly modify the original architec-
ture before compression. We insert a 1× 1 convolutional layer before each average
pooling layer. This modification increases parameters by about 10% and does not
significantly influence the performance of ShuffleNet. Note that the modification
only happens when we need to compress ShuffleNet and does not influence the
performance of the original ShuffleNet shown in Table 2.3.

2.5 Conclusion

We address the task of searching for a compressed network architecture by using
BO. Our proposed method can find more efficient architectures than all the base-
lines on CIFAR-10 and CIFAR-100. Our key contribution is the proposed method
to learn an embedding space over the domain of network architectures. We also
demonstrate that the learned embedding space can be transferred to new settings
for architecture search without any training. Possible future directions include ex-
tending our method to the general NAS problem to search for desired architectures
from the scratch and combining our proposed embedding space with [55] to iden-
tify the Pareto set of the architectures that are both small and accurate.
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Chapter 3

Neighborhood-Aware NAS

3.1 Introduction

The process of automatic neural architecture design, also called neural architecture
search (NAS), is a promising technology to improve performance and efficiency for
deep learning applications [91,189,190]. NAS methods typically minimize the val-
idation loss to find the optimal architecture. However, directly optimizing such an
objective may cause the search algorithm to overfit to the search setting, i.e., find-
ing a solution architecture with good search performance but generalizes poorly
to the test setting. This type of overfitting is a result of the differences between
the search and test settings, such as the length of training schedules [189, 190],
cross-architecture weight sharing [91,107], and the usage of proxy datasets during
search [91,189,190].

To achieve better generalization, we propose a novel NAS formulation that aims
to find “flat-minima architectures”, which we define as architectures that perform
well under small perturbations of the architecture (Figure 3.1). One example of
architectural perturbations is to replace a convolutional operator with a skip con-
nection (identity mapping). Our work takes inspiration from prior work on neural
network training, which shows that flat minima of the loss function correspond to
network weights with better generalization than sharp ones [57]. We show that flat
minima in the architecture space also generalize better to a new data distribution
than sharp minima (Section 3.3.3).

Unlike the standard NAS formulation that directly optimizes single architecture
performance, i.e., α∗ = arg minα∈A f(α), we optimize the aggregated performance
over the neighborhood of an architecture:

α∗ = arg min
α∈A

g (f(N (α))) , (3.1)

where f(·) is a task-specific error metric, α denotes an architecture in the search
space A, N (α) denotes the neighborhood of architecture α, and g(·) is an aggrega-
tion function (e.g., the mean function). Note that we overload the notation of the
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(b) Neighborhood-aware formulation

Figure 3.1: Loss landscape visualization of the found architecture. We project ar-
chitectures (instead of the network weights) onto a 2D plane. The architectures are
sampled along two prominent directions (the two axes, λ0 and λ1), with (0, 0) de-
notes the found architecture. We see that our found architecture (right) is a much
flatter minimum than that found with the standard formulation (left). We provide
visualization details in Section 3.5.4.

error metric f(·) and define f(·) to return a set of errors when the input is a set of ar-
chitectures in the neighborhood: f(N (α)) = {f(α′) | α′ ∈ N (α)}. Common choices
for f(·) are validation loss and negative validation accuracy. We will discuss more
details of neighborhood N (α) and aggregation function g(·) in the following text.

To implement our formulation, one must define the neighborhood N (α) and
specify an aggregation function g(·). How to define the neighborhood of an ar-
chitecture is an open question. One possible method to obtain neighboring archi-
tectures is to perturb one or more operations in the architecture and the degree
of perturbation defines the scope of the neighborhood. This method can be ap-
plied to sampling-based search algorithms, e.g., random search and reinforcement
learning. However, it cannot be directly used to generate neighboring architectures
for gradient-based search algorithms (a.k.a, differentiable NAS), where the neigh-
boring architectures themselves also need to be differentiable with respect to the
architecture being learned. To address this issue, we propose a differentiable rep-
resentation for the neighborhood of architectures, which makes the objective func-
tion differentiable and allows us to apply our formulation to gradient-based algo-
rithms, e.g., DARTS [91]. Properly choosing the aggregation function g(·) can help
the search algorithm identify flat minima in the search space. Our choice of g(·)
(e.g., mean) is inspired by the definition of the flatness/sharpness of local minima
in previous work [21,33, 70].

We summarize our contributions as follows:

1. We propose a neighborhood-aware NAS formulation based on the flat minima
assumption, and demonstrate a principled way to apply our formulation to ex-
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isting search algorithms, including sampling-based algorithms and gradient-
based algorithms. We empirically validate our assumption and show that flat-
minima architectures generalize better than sharp ones.

2. We propose a neighborhood-aware random search (NA-RS) algorithm and
demonstrate its superiority over the standard random search. On NAS-Bench-
201 [36], NA-RS outperforms the standard random search by 1.48% on CIFAR-
100 and 1.58% on ImageNet-16-120.

3. We propose a differentiable neighborhood representation so that we can apply
our formulation to gradient-based NAS methods. We augment DARTS [91]
with our formulation and name the proposed method NA-DARTS. Our NA-
DARTS outperforms DARTS by 1.18% on CIFAR-100 and 1.2% on ImageNet,
and also performs better than or on par with state-of-the-art NAS methods.

3.2 Related Work

Flat Minima. Hochreiter and Schmidhube [57] shows that flat minima of the loss
function of neural networks generalize better than sharp minima. Flat minima are
used to explain the poor generalization of large-batch methods [70, 176], where
large-batch methods are shown to be more likely to converge to sharp minima.
Chaudhari et al. [21] propose an objective function for training neural networks
so that flat minima are preferred during optimization. Their objective can be inter-
preted as a weighted average of the (transformed) function values of data points
around the local minima, which inspires us to consider mean as one of the aggrega-
tion functions. Previous work mentioned above focus on flat minima in the network
weight space. However, we study flat minima in the architecture space, which is dis-
crete and fundamentally different from the continuous weights studied in previous
work. This makes it non-trivial to apply the flat minima idea to NAS.

Zela et al. [181] observes a strong correlation between the generalization error
of the architecture found by DARTS [91] and the flatness of the loss function at
the found architecture. They propose several regularization strategies to improve
DARTS, such as early stopping before the loss curvature becomes too high. Our
flat minima assumption is motivated by their observation and our method can be
combined with their regularization strategies.

NAS - Search Algorithm. Various search algorithms have been applied to solve
NAS, including sampling-based and gradient-based algorithms. Representative
sampling-based algorithms include random search [81], reinforcement learning [4,
184,189,190], Bayesian optimization [17,69], evolutionary algorithms [115,117,165],
and sequential model-based optimization [89]. To make NAS more computation-
ally efficient, weight sharing across architectures is proposed to amortize the train-
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ing cost of candidate architectures [8, 107]. Based on weight sharing, gradient-
based algorithms are proposed to directly learn the architecture with gradient de-
scent [91, 168]. Our focus is not proposing novel search algorithms but revisiting
the standard NAS formulation. Our proposed formulation can be applied to both
sampling-based algorithms and gradient-based algorithms.

NAS - Search Space. Search space is crucial for the performance of NAS. One of
the most widely used search spaces is the cell search space [190], which searches for
a cell that can be stacked multiple times to form the entire network. Our proposed
neighborhood-aware formulation is agnostic to the search space, and we specifically
showcase our formulation on the cell search space.

3.3 Neighborhood-Aware Formulation

We propose a neighborhood-aware NAS formulation (Eq. 3.1) to identify flat min-
ima in the search space. Our formulation builds upon the assumption that flat-
minima architectures usually generalize better than sharp ones. In this formula-
tion, the optimal architecture is selected according to the aggregated performance
g (f(N (α))) of neighbors of an architecture, instead of the standard criterion, i.e.,
single architecture performance f(α) only. We now introduce the neighborhood
definition of an architecture N (α) and the aggregation function g(·).

3.3.1 Neighborhood Definition and Cell Search Space

Formally defining the neighborhood requires a distance metric between architec-
tures, which largely depends on how an architecture is represented and how the
search space is constructed. We adopt the cell search space [190] as it has been
widely used in recent NAS methods [89, 91]. Instead of the entire architecture, we
search for a cell that can be stacked multiple times to form the entire architecture.
The number of times the cell is stacked and the output layer are manually defined
prior to the search.

A cell is defined as a directed acyclic graph (DAG) consisting of n nodes. Each
node represents a feature map. Each directed edge (i, j)(1 ≤ i < j ≤ n) is associated
with an operation used to transform the feature map at node i, and passes the trans-
formed feature map to node j. The feature map at one node is the sum of all the fea-
ture maps on the incoming edges to this node: x(j) =

∑
(i,j)∈E

∑m
k=1 α

(i,j)
k ok(x

(i)),
where E denotes the set of edges in the cell, x(i) is the feature map at node i, and
ok is the kth operation among the m available operations. α(i,j) is a m-dim one-hot
vector, indicating the operation choice for edge (i, j). A cell is then represented by
a set of variables α = {α(i,j)}. Note that α(i,j) being a one-hot vector means that
only one operation is chosen for edge (i, j). On a side note, the one-hot constraint
on α(i,j) can be relaxed in differentiable NAS methods [91,168].
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We define the distance between two cells α and α′ as:

dist(α, α′) =
∑

(i,j)∈E

δ(α(i,j), α′(i,j)), (3.2)

where δ(·, ·) is the total variation distance between two probability distributions:
δ(p, q) = 1

2 ||p − q||1 = 1
2

∑m
k=1 |pk − qk|. Here p and q are both m-dim probability

distributions. The total variation distance is symmetric and bounded between 0 and
1. It also offers the following property: δ(α(i,j), α′(i,j)) = 0 implies that the two cells
have the same operation at edge (i, j) and δ(α(i,j), α′(i,j)) = 1 implies that they have
different operations at edge (i, j). Note that instead of directly counting the edge
differences, we adopt total variation distance to accommodate relaxed α that is later
used in differentiable NAS methods [91,168].

The neighborhood of a cell α is defined as:

N (α) = {α′ | dist(α, α′) ≤ d}, (3.3)

where d is a distance threshold. Due to the property of the total variation distance,
when d is an integer, the neighborhood contains all the cells that have at most d
edges associated with different operations from α. For clarification, our definition
of neighborhood includes the reference architecture α itself.

3.3.2 Aggregation Function

Our formulation aims to identify flat minima in the search space based on the aggre-
gated performance g (f(N (α))) over the neighborhood. The aggregation function
g(·) needs to be properly set such that minimzing g (f(N (α))) results in an archi-
tecture α that is a local minimum and at the same time has a flat neighborhood.

Given an architecture α, the flatness of its neighborhood is determined by how
much the performance (e.g., validation loss) of its neighboring architectures varies
compared to α itself. Intuitively, when α is a flat minimum, its neighboring ar-
chitectures should perform similarly to α. However, when α is a sharp minimum,
the loss of architectures around α increases drastically compared to α. Previous
work [21,33, 57, 70, 176] all shares this intuition.

Based on this intuition, we discuss possible choices for g(·):

• mean, median or max.
The architectures around a sharp minimum tend to high much higher loss
compared to this minimum. Therefore, the mean validation loss of architec-
tures around a flat minimum is expected to be lower than those around a
sharp minimum. Minimizing mean (f(N (α))) encourages the convergence to
an architecture α whose neighbors inN (α) all have a low loss, which implies
that α is a flat minima. This makes mean a valid choice. For a similar rea-
son, median and max are also valid choices for g(·) to differentiate between
flat minima and sharp minima.
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Setting g(·) as mean or max also aligns well with previous work on flat min-
ima. Chaudhari et al. [21] propose an objective function for training neural
networks so that flat minima are preferred during optimization. Their objec-
tive can be interpreted as a weighted average of the (transformed) function
values of data points around the local minima, which inspires us to consider
mean as one of the choices for g(·). Keskar et al. [70] use the largest function
value that can be attained in the neighborhood of a local minimum to charac-
terize how sharp the minimum is, which leads us to set g(·) as max.

• Variance.
For an architecture α, we can measure its flatness with the variance (stan-
dard deviation) of the performance of its neighbors inN (α). Let σ(f(N (α)))
denote the standard deviation of the performance (e.g., validation loss) of ar-
chitectures in N (α). But simply minimizing σ(f(N (α))) can only result in
an α with a flat neighborhood, but cannot guarantee that α is a local mini-
mum (e.g., have a low validation loss). So we propose the following variance-
based aggregation function g (f(N (α))) = f(α) + λσ(f(N (α))) that takes
both the performance of α and the flatness of its neighborhood into account,
where λ is a hyper-parameter to balance the performance f(α) and the flatness
σ(f(N (α))).

3.3.3 Justification of Flat Minima Assumption

3.3.3.1 Flat Minima Generalize Better

Flat minima in the network weight space are shown to generalize better than sharp
ones [57]. However, we focus on flat minima in the architecture space, which is
discrete and fundamentally different from the continuous weights studied in pre-
vious work. So we conduct experiments on NAS-Bench-201 [36] to verify that flat
minima in the architecture space also generalize better.

NAS-Bench-201 provides a simulated environment for NAS experiments. Us-
ing NAS-Bench-201, we search on CIFAR-10 and evaluate the found architectures
not only on CIFAR-10, but also on CIFAR-100 and ImageNet-16-120 to better assess
the generalization performance of architectures. We select 100 architectures from
NAS-Bench-201 that have the lowest validation error on CIFAR-10 to represent local
minima in the search space. Next, we show that among these local-minima architec-
tures, flat minima outperform sharp ones, especially on CIFAR-100 and ImageNet-
16-120. We include the detailed experimental setup at the end of this subsection.

We measure the flatness of each local-minimum architecture with its neighbor-
hood variance: the variance of the search-time validation error of its neighboring ar-
chitectures on CIFAR-10. Based on their neighborhood variance, we divide the 100
architectures into 2 groups: (1) flat minima, which are the 50 architectures with
a flat neighborhood (low neighborhood variance), and (2) sharp minima, which
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Table 3.1: Average error of flat-minima architectures and sharp-minima architec-
tures. The validation error (f(α)) is defined as the CIFAR-10 validation error af-
ter the 90th epoch. “CIFAR-10 Validation” refers to the average validation error on
CIFAR-10 used in search. CIFAR-10, CIFAR-100 and ImageNet-16-120 refer to the
average test error on each dataset. Flat minima and sharp minima obtain a similar
validation error on CIFAR-10. However, flat minima consistently achieves lower test
error than sharp minima on all three datasets.

CIFAR-10 Validation CIFAR-10 CIFAR-100 ImageNet-16-120
Flat minima 14.55 6.23 28.90 55.17
Sharp minima 14.57 6.66 30.00 56.41

are the other 50 architectures with a sharp neighborhood (high neighborhood vari-
ance).

We observe that the average search-time validation error of flat minima and
sharp minima are almost the same (14.55% and 14.57%). But, as shown in Table 3.1,
the average test error of flat minima is lower than sharp minima on all three datasets,
especially on CIFAR-100 (1.10%) and ImageNet-16-120 (1.24%). This verifies that
flat minima generalize better.

In the above results, we define f(α), i.e., the search-time validation error, as the
CIFAR-10 validation error after the 90th epoch. Table 3.2 provides results where
f(α) is defined as the validation error after other epochs (e.g., 30th, 60th, 120th). We
conduct the same experiments as Table 3.1 with the CIFAR-10 validation error after
the 30th, 60th or 120th epoch. Results for all epochs (30th, 60th, 90th, 120th) demon-
strate the same pattern: the average validation error on CIFAR-10 of flat minima
and sharp minima are similar; however, the average test error of flat minima is con-
sistently lower than sharp minima on all three datasets, especially on CIFAR-100
and ImageNet-16-120.

3.3.3.2 Aggregated Performance Gives a Better Ranking of Architectures

Based on the flat minima assumption, our neighborhood-aware formulation sug-
gests using the aggregated performance g (f(N (α))) as the criterion to select op-
timal architectures, instead of the standard criterion f(α). The selection criterion
determines whether we can obtain an accurate ranking of candidate architectures
during search, and further determines the performance of found architectures. We
show that our criterion g (f(N (α))) ranks architectures more accurately than f(α).

We evaluate the ranking estimated by our criterion g (f(N (α))) or the standard
criterion f(α) on NAS-Bench-201, where f(·) is the validation error on CIFAR-10.
Specifically, we randomly sample 100 architectures from NAS-Bench-201 and rank
these architectures according to g (f(N (α))) or f(α). Then following Yu et al. [179],
we evaluate the estimated ranking with the Kendall’s Tau metric (the higher the bet-
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Table 3.2: Additional results for average error of flat-minima architectures and
sharp-minima architectures. Please refer to the caption of Table 3.1 for the meaning
of each column.

(a) f(α) = CIFAR-10 validation error after the 30th epoch.

CIFAR-10 Validation CIFAR-10 CIFAR-100 ImageNet-16-120
Flat minima 18.39 6.33 29.15 55.52
Sharp minima 18.45 6.67 30.10 56.18

(b) f(α) = CIFAR-10 validation error after the 60th epoch.

CIFAR-10 Validation CIFAR-10 CIFAR-100 ImageNet-16-120
Flat minima 16.15 6.28 29.15 55.51
Sharp minima 16.43 6.91 30.56 57.31

(c) f(α) = CIFAR-10 validation error after the 120th epoch.

CIFAR-10 Validation CIFAR-10 CIFAR-100 ImageNet-16-120
Flat minima 12.67 6.13 28.59 55.11
Sharp minima 12.81 6.33 29.28 55.53

Table 3.3: Kendall’s Tau (rank correlation) obtained by the standard criterion f(α)
(baseline) and our criterion g (f(N (α))) with different choices of g(·).

CIFAR-10 CIFAR-100 ImageNet-16-120
Baseline 0.66± 0.03 0.66± 0.02 0.64± 0.03

Ours - mean 0.76± 0.03 0.77± 0.03 0.74± 0.03
Ours - median 0.72± 0.03 0.72± 0.03 0.69± 0.03
Ours - max 0.53± 0.05 0.54± 0.05 0.56± 0.05
Ours - Variance 0.72± 0.02 0.73± 0.03 0.71± 0.02

ter), which measures the correlation between the estimated ranking and ground
truth ranking of architectures. The ground truth is obtained by sorting these archi-
tectures based on their test error. As the ground truth ranking is specific to each
dataset, we evaluate the estimated ranking on the three datasets separately.

We repeat the experiments for 10 times and report the mean and standard devia-
tion of the Kendall’s Tau value. Table 3.3 shows the ranking estimation results when
using different aggregation functions. For the variance-based aggregation function,
we set λ to 1.0. As shown in Table 3.3, our criterion g (f(N (α))) (g(·) = mean) ranks
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Table 3.4: Average neighborhood variance and test error of architectures found by
the standard criterion f(α) (baseline) and our criterion g (f(N (α))) with different
choices of g(·). ‘Neighbor-Var’ is the average neighborhood variance. Architectures
found by the mean validation error (‘Ours - mean’) have a much smaller neighbor-
hood variance than those found by the baseline criterion, and also achieve lower
classification error on all three datasets.

Neighbor-Var CIFAR-10 CIFAR-100 ImageNet-16-120
Baseline 5.58 6.45 29.45 55.79

Ours - mean 2.71 6.09 28.32 54.75
Ours - median 4.05 6.21 28.74 55.08
Ours - max 1.83 6.66 29.82 56.31
Ours - Variance 2.47 6.35 29.06 55.52

architectures much more accurately than the standard criterion f(α). Other aggre-
gation functions except max also result in an more accurate ranking estimation of
architectures than f(α).

3.3.3.3 Aggregated Performance Finds Flat Minima

We conduct quantitative analysis to show that optimizing the proposed criterion,
i.e., the aggregated performance over the neighborhood, finds flat minima. We se-
lect 100 architectures from NAS-Bench-201 with the lowest validation error (base-
line criterion) on CIFAR-10, and another 100 architectures with the lowest aggre-
gated validation error (proposed criterion).

We measure the flatness of an architecture using neighborhood variance, where
smaller variance indicates flatter neighborhood. We summarize the average neigh-
borhood variance and test error of the found architectures in Table 3.4. We observe
that optimizing the mean validation error (‘Ours - mean’) can successfully help us
find flat minima, as the found architectures have a much smaller neighborhood vari-
ance than those found by the baseline criterion, and also achieve lower classification
error on all three datasets.

We also notice that when g(·) = max, the found architectures are not flat min-
ima. Although these architectures have a flat neighborhood (low neighborhood
variance), their classification performance is worse than those found by the base-
line criterion. We think this is because when using max, the objective g (f(N (α)))
only considers the flatness of the neighborhood, but fails to characterize how well
the architecture α performs.
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3.3.3.4 Experimental Setup

NAS-Bench-201 [36] provides a simulated environment for NAS experiments by
conducting a thorough evaluation of all the candidate architectures (cells) in a pre-
defined cell search space on three datasets: CIFAR-10 [72], CIFAR-100 [72], and
ImageNet-16-120 [36]. It contains the validation error (accuracy) of all the candi-
date architectures on CIFAR-10 after every training epoch, and the final test error
on CIFAR-10, CIFAR-100, and ImageNet-16-120. ImageNet-16-120 is a subset and
downsampled version of ImageNet [118] and contains about 158K images divided
into 120 classes.

In our experiments, we set the distance threshold d to 1, so each architecture
in the NAS-Bench-201 search space has 25 neighbors including itself. We search
on CIFAR-10 and evaluate the found architectures on all three datasets, i.e., f(α)
is defined as the validation error on CIFAR-10. It is common in NAS to use early
stopping or budgeted training during search [39,83]. So, we use the CIFAR-10 val-
idation error after the 90th epoch in the experiments unless otherwise stated.

3.4 Neighborhood-Aware Search Algorithms

We propose neighborhood-aware random search and neighborhood-aware DARTS
by applying our proposed formulation to random search (sampling-based) and
DARTS (gradient-based), respectively.

3.4.1 Neighborhood-Aware Random Search

When applying our formulation to random search, we only need to change the cri-
terion of selecting optimal architectures from f(α) to the aggregated performance
g (f(N (α))). At each step, we randomly sample an architecture α and compute
its aggregated performance g (f(N (α))), and choose the one with the best aggre-
gated performance as our solution. We provide a detailed algorithm sketch of
neighborhood-aware random search (NA-RS) in Algorithm 2.

In practice, the entire neighborhood may be large. Instead of using all the neigh-
bors, we sample a subset of nnbr neighboring architectures from the neighborhood.
In our implementation, we always include the reference architecture itself in the
sampled subset.

Note that since NA-RS evaluates a neighborhood of architectures at each step,
for fair comparison, we allow the standard random search (baseline) to run for
more steps such that the two methods evaluate the same number of architectures
during search. Specifically, if our NA-RS searches for T steps, the standard random
searches for T · nnbr steps.

While we only present the application of our formulation to random search, the
formulation is also applicable to other sampling-based search algorithms, such as
reinforcement learning (RL) and Bayesian optimization (BO). Similar to NA-RS,
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Algorithm 2 Neighborhood-Aware Random Search
Input: Number of steps T . Number of neighbors nnbr.
for t = 1, 2, . . . , T do

Randomly sample an architecture from A: α.
Sample nnbr neighboring architectures of α: N (α).
Train the nnbr architectures and compute g (f(N (α))).
Let α∗ = α if g (f(N (α))) < g (f(N (α∗))).

end for
Return the optimal architecture α∗.

when applying our formulation to RL or BO, we only need to define the reward sig-
nal in RL or the objective function in BO as the aggregated performance g (f(N (α))).
Other components in RL or BO remain unchanged.

3.4.2 Neighborhood-Aware Differentiable Search

We now present how to apply our formulation to differentiable NAS methods. The
key in these methods [27, 91, 168] is to make the objective f(α) differentiable with
respect to the architecture α such that one can optimize α with gradient descent.

Similar to the case of random search, our formulation changes the objective
from f(α) to g (f(N (α))). With this change, the differentiability of g (f(N (α))) is
not guaranteed. Therefore, we propose a differentiable neighborhood represen-
tation for N (α) and set the aggregation function g(·) to be mean (g can also be
other differentiable functions). This makes g (f(N (α))) differentiable and allows
us to simply adopt prior gradient estimation techniques, e.g., the continuous relax-
ation in DARTS [91] or Gumbel-Softmax in SNAS [168], to derive the gradient of
g (f(N (α))). Other parts in the original diffferentiable NAS methods remain the
same.

Specifically, we augment DARTS [91] with our formulation and adopt the con-
tinuous relaxation in DARTS to estimate the gradient. Therefore, we name our
method neighborhood-aware DARTS (NA-DARTS). Note that our formulation is
also applicable to other differentiable NAS methods, such as SNAS [168] and P-
DARTS [27].

3.4.2.1 Neighborhood-Aware DARTS

We first briefly review DARTS and then introduce the formulation of our proposed
NA-DARTS.

DARTS. DARTS relaxes the discrete search space to be continuous so that the gra-
dient of the validation loss with respect to the architectureα can be estimated, allow-
ing optimizing α with gradient descent. Concretely, α(i,j) is relaxed from a discrete
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one-hot vector to a continuous distribution, and is parameterized as the output of
the softmax function: α(i,j)

k =
exp(β

(i,j)
k )∑m

k=1 exp(β
(i,j)
k )

, where m is the number of available

operations and β = {β(i,j)k } is the set of continuous logits to be learned. DARTS
formulates NAS as the following bilevel optimization problem:

min
α
Lval(w

∗(α), α)

s.t. w∗(α) = arg min
w
Ltrain(w,α),

(3.4)

wherew denotes network weights,w∗(α) denotes the weights minimizing the train-
ing loss of architecture α. Ltrain(w,α) and Lval(w,α) are the training loss and vali-
dation loss of architecture α with weights w, respectively.

We write the probability distributions α as the variables to be optimized in
Eq. 3.4 instead of the logits β. In practice, we still follow DARTS and learn the logits
β with gradient descent instead of directly learning α. We write DARTS formula-
tion as Eq. 3.4 to make it easier to illustrate our neighborhood-aware formulation
for DARTS, as the neighborhood N (α) is defined in the domain of α.

NA-DARTS. We augment DARTS with our neighborhood-aware formulation:

min
α
g({Lval(w

∗(α′), α′) | α′ ∈ N (α)})

s.t. w∗(α′) = arg min
w
Ltrain(w,α′),

(3.5)

where N (α) is the neighborhood of architecture α and g(·) is an aggregation func-
tion.

To preserve differentiablity of the new objective (aggregated validation loss) in
Eq. 3.5, both the neighboring architecture α′ and aggregation function g(·) need to
be differentiable with respect to α. Next, we first describe how to represent the
neighboring architecture α′ as a differentiable function of α and, then discuss the
gradient estimation for specific choices of g(·). An outline of the proposed NA-
DARTS algorithm can be found in Algorithm 3.

3.4.2.2 Differentiable Neighborhood Representation

When the one-hot constraint on α is relaxed, the neighborhood contains an infinite
number of neighboring architectures. We propose a piratical method to sample a
finite number of architectures from the neighborhood. Importantly, our method
allows each sampled neighbor α′ to be differentiable with respect to the reference
architecture α.

We generate neighboring architectures of α by perturbing the operations asso-
ciated with the edges in α. We randomly sample d edges to be perturbed from the
edge set E of α and leave the operation choice for the remaining edges unchanged.
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This implies that the distance between α and the neighboring architecture α′ is at
most d, thus as defined in Eq. 3.3, α′ falls into the neighborhood of α. Next, we
describe two ways to sample and represent α′ as a differentiable function of α.

Additive. Let edge (i, j) be an edge to be perturbed. Let q(i,j) be a m-dim real-
valued noise vector satisfying the following condition: |q(i,j)k | ≤ ε(0 < ε < 1) and
α
(i,j)
k + q

(i,j)
k ≥ 0 for all k(1 ≤ k ≤ m). ε is the threshold of the noise. We randomly

sample a noise vector q(i,j) and α′(i,j) is computed as:

α
′(i,j)
k =

α
(i,j)
k + q

(i,j)
k∑m

k=1(α
(i,j)
k + q

(i,j)
k )

. (3.6)

Repeating the process for each edge to be perturbed will result in a neighboring
architecture α′, which is differentiable with respect to α. Different noise vectors
are sampled for different edges to be perturbed. We term Eq. 3.6 as the additive
representation of neighboring architectures.

Multiplicative. Let edge (i, j) be an edge to be perturbed and r(i,j) be a m-dim
one-hot vector with r(i,j)l = 1 and r

(i,j)
k = 0(1 ≤ k ≤ m, k 6= l). We restrict l to be

either the index of the zero operation or skip connection. With the one-hot vector
r(i,j), α′(i,j) is computed as:

α
′(i,j)
k =

r
(i,j)
k α

(i,j)
k∑

r
(i,j)
k α

(i,j)
k

. (3.7)

Under the multiplicative representation, α′(i,j) has the same value as r(i,j), which
indicates that the edge (i, j) after perturbation chooses either the zero operation or
skip connection. We term Eq. 3.6 as the multiplicative representation of neighboring
architectures. We specifically develop this representation for when the aggregation
function is max (see Section 3.4.2.3 for more details).

With the proposed additive and multiplicative representation, we can sample
a set of neighboring architectures of α and the sampled architectures are differen-
tiable with respect to α. In practice, we uniformly sample nnbr neighboring archi-
tectures from the neighborhood and always include α itself in the sampled set.

3.4.2.3 Gradient Estimation

After sampling a finite set of neighboring architectures, we compute the validation
loss of each individual architecture α′, where we use the current network weights
w as an approximation of w∗(α′). Then we pass the set of the validation losses to
the aggregation function g(·).
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Algorithm 3 Neighborhood-Aware DARTS
Input: Number of steps T . Number of neighbors nnbr. Initial architecture α and
weights w.
for t = 1, 2, . . . , T do

Sample a batch of training data Xtrain and a batch of validation data Xval.
Sample nnbr neighboring architectures of α: N (α).
if g(·) == max then

Compute ᾱ = arg maxα′∈N (α) Lval(w,α
′) on Xval.

Compute∇αLval(w, ᾱ) on Xval
Update α by descending ∇αLval(w, ᾱ).

else if g(·) == mean then
Compute∇α

∑
α′∈N (α) Lval(w,α

′)

|N (α)| on Xval

Update α by descending ∇α
∑
α′∈N (α) Lval(w,α

′)

|N (α)| .
end if
Compute∇wLtrain(w,α) on Xtrain
Update w by descending ∇wLtrain(w,α).

end for
Derive the final architecture based on the learned α.

Our default choice of the aggregation function g(·) is mean. As discussed before,
g(·) needs to be differentiable, which immediately rules out median. Both mean and
the variance-based aggregation function are differentiable. We prefer mean because
it requires fewer GPU memory. Theoretically, when computing∇αg (f(N (α))), we
need to keep all architectures in N (α) in GPU. But when g(·) = mean, we can
compute ∇αf(α′) separately for each neighbor α′ ∈ N (α). Since PyTorch [105]
automatically accumulates the gradient in multiple backward passes, computing
∇αf(α′) separately is equivalent as computing∇α mean (f(N (α))). Therefore, when
using mean, we only need to keep one architecture in GPU. This requires much
fewer GPU memory than the variance-based aggregation function and makes the
algorithm more practical.

We choose mean over max due to its superior empirical performance. When
using max, Eq. 3.5 becomes a minimax optimization problem and one can approxi-
mate the gradient of the objective using Danskin’s Theorem [30]. For completeness,
we include the details of using max in NA-DARTS here.

Using max in NA-DARTS. According to Danskin’s Theorem [30], we approxi-
mate the gradient∇α maxα′∈N (α) Lval(w

∗(α′), α′) with∇αLval(w
∗(ᾱ), ᾱ), where ᾱ is

the maximizer of the inner maximization problem maxα′∈N (α) Lval(w
∗(α′), α′). In

practice, w∗(α′) is approximated by the current network weights w. To compute the
maximizer ᾱ, we simply compute the validation loss of each sampled neighboring
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Table 3.5: Test error of NA-RS and the standard random search (RS). NA-RS consis-
tently outperforms RS on all three datasets under the same computational budget.

CIFAR-10 CIFAR-100 ImageNet-16-120
Random Search (RS) 6.39± 0.32 29.81± 0.44 56.30± 1.08
NA-RS (Ours) 6.20± 0.35 28.33± 1.22 54.72± 0.96

architecture and choose the maximum one. As can seen from Algorithm 3, when
using max, we only need to keep one architecture (ᾱ) in GPU during the gradient
computation.

Solving the inner maximization problem maxα′∈N (α) Lval(w
∗(α′), α′) is the pro-

cess of finding the worst-performing neighbor of α in its neighborhood. Sampling
neighbors with the additive representation of neighbors Eq. 3.6 might not always
result in a neighbor α′ that performs worse than α. So, we specifically develop the
multiplicative representation in Eq. 3.7. The multiplicative representation allows us
to sample α′ by changing a subset of operations in α to the zero operation or skip
connection such that α′ has a higher probability to perform worse than α.

3.5 Experiments

3.5.1 Neighborhood-Aware Random Search

Experimental setup. We validate our NA-RS on NAS-Bench-201 [36]. Same as
the experimental setup in Section 3.3.3, we search on CIFAR-10 and evaluate on
CIFAR-10 [72], CIFAR-100 [72], and ImageNet-16-120 [36]. The number of search
steps T in NA-RS is set to 100. For fair comparison, the standard random search
(baseline; denoted as ‘RS’) is run for T · nnbr steps, so that RS and NA-RS train and
evaluate the same number of architectures. We set the distance threshold d to 1,
so the neighborhood contains 25 architectures including the reference architecture
itself. We set nnbr to 10 and use mean as the aggregation function unless otherwise
stated.

Results. As shown in Table 3.5, NA-RS consistently outperform RS on all three
datasets, which validates our neighborhood-aware formulation. Notably, NA-RS
outperforms RS by 1.48% on CIFAR-100 and 1.58% ImageNet-16-120. Note that the
cell search space typically has a narrow performance range [171], so the improve-
ment brought by our NA-RS is non-trivial.

Ablation study. We provide an ablation study of the aggregation function in NA-
RS in Table 3.6 and an ablation study of nnbr in Table 3.7. We see from Table 3.6
that mean and median achieve the best performance among all the choices for g(·).
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Table 3.6: Ablation study on the aggregation function in NA-RS. mean and median
yield the lower test error among all the choices for g(·).

CIFAR-10 CIFAR-100 ImageNet-16-120
NA-RS - mean 6.39± 0.71 28.68± 1.75 55.02± 1.71
NA-RS - median 6.20± 0.35 28.33± 1.22 54.72± 0.96
NA-RS - max 6.73± 0.71 29.70± 1.61 56.96± 2.09
NA-RS - Variance 6.65± 0.97 29.06± 1.97 55.48± 2.41

Table 3.7: Ablation study on nnbr in NA-RS. Sampling a subset of neighbors (nnbr =
10) is a good approximation for the entire neighborhood (nnbr = 25).

CIFAR-10 CIFAR-100 ImageNet-16-120
NA-RS - mean nnbr = 10 6.39± 0.71 28.68± 1.75 55.02± 1.71

nnbr = 25 6.24± 0.39 28.24± 1.25 54.74± 1.73

NA-RS - median nnbr = 10 6.20± 0.35 28.33± 1.22 54.72± 0.96
nnbr = 25 6.18± 0.38 28.20± 1.27 54.40± 0.98

max performs the worst, which is consistent with the conclusion in Table 3.3. As
shown in Table 3.7, performance obtained by nnbr = 10 is close to nnbr = 25, which
indicates that sampling a subset of neighbors is a good approximation for the entire
neighborhood.

3.5.2 Neighborhood-Aware DARTS

Following the experimental setup in DARTS [91], we search on CIFAR-10 [72] and
evaluate on three datasets: CIFAR-10 [72], CIFAR-100 [72] and ImageNet [118].
The performance on CIFAR-100 and ImageNet are more important, which reflects
how well the found architecture can generalize to new datasets. For our NA-DARTS,
we sample 10 neighboring architectures at each step, i.e., nnbr = 10. Complete ex-
perimental details and ablation results are included at then end of this subsection.

We first compare our NA-DARTS with DARTS. This comparison directly verifies
the effectiveness of our neighborhood-aware formulation. As shown in Table 3.8,
NA-DARTS consistently outperforms DARTS on all three datasets. Notably, NA-
DARTS outperforms DARTS by 1.18% on CIFAR-100 and 1.2% on ImageNet. Note
that the cell search space used in DARTS has a narrow performance range [171]. For
example, the top-1 error on CIFAR-100 mostly fall around 17%. So the performance
gap between our NA-DARTS and DARTS is non-trivial.

NA-DARTS also outperforms or performs on par with other state-of-the-art NAS
methods (Table 3.9 & 3.10). NA-DARTS obtains the lowest test error on CIFAR-100
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Table 3.8: Test error of NA-DARTS and DARTS on CIFAR-10, CIFAR-100 and Ima-
geNet. Our NA-DARTS consistently outperforms DARTS on all three datasets.

Top-1 Test Error (%) Params (M)
Method CIFAR-10 CIFAR-100 ImageNet CIFAR ImageNet
DARTS 1st [91] 2.90± 0.25 17.66± 0.83 - 2.9 -
DARTS 2nd [91] 2.70± 0.08 17.72± 0.61 26.7 2.9 4.7
NA-DARTS (Ours) 2.63± 0.12 16.48± 0.13 25.5 3.2 4.8

Table 3.9: Comparison with state-of-the-art NAS methods on CIFAR-10 and CIFAR-
100. Our NA-DARTS achieves the lowest test error on CIFAR-100. As all the ar-
chitectures are searched on CIFAR-10, this shows that architectures found by NA-
DARTS generalize better.

Test Error (%) Params Search Cost Search
Method CIFAR-10 CIFAR-100 (M) (GPU days) Method
NASNet-A [190] 2.65 17.10* 3.3 1800 RL
AmoebaNet-A [115] 2.84* 17.16* 3.2 3150 Evolution
PNAS [89] 2.95* 17.29* 3.2 225 SMBO
ENAS [107] 2.54* 17.18* 3.9 0.5 RL
SNAS [168] 2.85± 0.02 18.25* 2.8 1.5 Gradient
P-DARTS [27] 2.50 16.55 3.4 0.3 Gradient
PC-DARTS [169] 2.57± 0.07 16.74* 3.6 0.1 Gradient
DARTS+ [85] 2.72* 16.85* 4.3 0.6 Gradient
DARTS 1st [91] 2.90± 0.25 17.66± 0.83 2.9 0.3 Gradient
DARTS 2nd [91] 2.70± 0.08 17.72± 0.61 2.9 1.0 Gradient
NA-DARTS (Ours) 2.63± 0.12 16.48± 0.13 3.2 1.1 Gradient
* We train the reported architecture following the training setup in DARTS [91].

and the second lowest on ImageNet among state-of-the-art NAS methods. Note that
P-DARTS, PC-DARTS and DARTS+ are all extensions of DARTS and the proposed
neighborhood-aware formulation is also applicable to them. Their ideas to improve
DARTS, e.g., gradually increasing search depth in P-DARTS and the partial-channel
connection idea in PC-DARTS, can all be combined with our method for better per-
formance. Therefore, our improvement is complementary to theirs in reference to
DARTS.

3.5.2.1 Experimental Setup

Following DARTS [91], we search on CIFAR-10 [72] and evaluate on CIFAR-10 [72],
CIFAR-100 [72] and ImageNet [118]. We use exactly the same setup as DARTS [91],
including the cell search space, hyper-parameters, such as the learning rate and
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Table 3.10: Comparison with state-of-the-art NAS methods on ImageNet. Our NA-
DARTS obtains the second lowest test error on ImageNet. We expect further im-
provement since our contribution is orthogonal to other extensions of DARTS (e.g.,
P-DARTS, PC-DARTS and DARTS+).

Test Error (%) Params +× Test Error (%) Params +×
Method Top-1 Top-5 (M) (M) Method Top-1 Top-5 (M) (M)
DARTS [91] 26.7 8.7 4.7 574 AmoebaNet-A [115]* 27.0 8.9 5.0 584
P-DARTS [27]* 25.3 8.1 4.9 557 NASNet-A [190] 26.0 8.4 5.3 564
PC-DARTS [169]* 25.7 8.3 5.3 586 ENAS [107]* 26.1 8.6 5.2 576
DARTS+ [85]* 26.4 8.5 5.0 586 PNAS [89] 25.8 8.1 5.1 588
NA-DARTS (Ours) 25.5 8.2 4.8 557 SNAS [168] 27.3 9.2 4.3 522

* We train the reported architecture following the training setup in DARTS [91].

weight decay factor, and other experimental details. We split the training images in
CIFAR-10 into two subsets of equal size, which are used as the training and valida-
tion images during search. We construct a network of 8 cells with an initial channel
number as 16 and train the network for 50 epochs to learn α.

After the search is done, we derive the final architecture from the learned α
using exactly the same procedure as DARTS. When evaluating the found architec-
ture on CIFAR-10 and CIFAR-100, we build a network of 20 cells and train it for
600 epochs with batch size 96 and cutout [32]. For our NA-DARTS, We set the ini-
tial number of channels of the network such that it has a similar network size with
DRATS and contains around 3M parameters.

When evaluating on ImageNet, we build a network of 14 cells. Same as DARTS,
the network is trained for 250 epochs with batch size 128. We set the initial number
of channels such that the number of multiply-add operations in the network is fewer
than 600M when the input is 224 × 224. Some NAS methods use a different train-
ing setup to train the found architecture on ImageNet. For example, DARTS+ [85]
trains for 800 epochs and P-DARTS [27] uses a large batch size 1024 (need 8 V100
GPUs, infeasible to us). For fair comparison, we retrain the found architecture re-
ported by the authors in their paper using the same training setup as DARTS.

For our NA-DARTS, we sample a subset of 10 neighbors in each step, i.e., nnbr =
10. The distance threshold d for neighborhood can be interpreted as the number
of edges to be perturbed. As each cell in the DARTS search space has 14 edges,
we set d to 6. The noise threshold ε in the additive representation is set to 0.1. All
experiments are performed on a NVIDIA GeForce RTX 2080 Ti GPU.

3.5.2.2 Ablation Study

Aggregation function. We report the performance of NA-DARTS when the aggre-
gation function is mean or max in Table 3.11a. We observe that mean outperforms
max, which is consistent with the conclusion in Table 3.3. We also notice that mean
consumes a longer search time than max. This is because when using mean, we
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Table 3.11: Ablation study of NA-DARTS.

(a) Impact of aggregation function.

Test Error (%) Param Search Cost
CIFAR-10 CIFAR-100 (M) (GPU days)

max 2.80± 0.10 16.89± 0.31 3.1 0.5
mean 2.63± 0.12 16.48± 0.13 3.2 1.1

(b) Impact of d.

Test Error (%) Param
CIFAR-10 CIFAR-100 (M)

d = 2 2.62± 0.08 16.90± 0.45 3.2
d = 4 2.65± 0.19 16.56± 0.36 3.1
d = 6 2.63± 0.12 16.48± 0.13 3.2

need to back-propagate through every sampled neighboring architecture α′, while
we only need to back-propagate through one neighboring architecture ᾱ when us-
ing max.

Distance threshold. We study the impact of the distance threshold of d in Ta-
ble 3.11b, where we observe d = 6 achieves the best performance and d = 4 per-
forms similarly with d = 6. Recall that the distance threshold d can be interpreted
as the number of edges to be perturbed and the cell in the DARTS search space has
14 edges. We empirically find that when d becomes larger that 6, the neighborhood
becomes too large and the performance drops.

3.5.3 Generalization Test on A New Search Space

Zela et al. [181] finds that on a wide range of search spaces, while DARTS [91] can
successfully minimizes the validation loss during search, the found architectures
are usually degenerated and generalize poorly to the test setting. To further validate
our NA-DARTS, we conduct experiments on the search space suggested by [181]
and show that in this new search space, NA-DARTS can still find architectures that
generalize much better than DARTS.

The new search space is a subset of the original DARTS search space. The new
search space is similar to the original search space, except that it only considers
three candidate operations, including 3× 3 separable convolution, skip connection,
and the zero operation. Following [181], we refer to the new search space as ‘S3
search space’.
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Table 3.12: Test error of architectures found from the S3 search space on CIFAR-
10 and CIFAR-100. Top: Our NA-DARTS outperforms both DARTS and DARTS-
ES. Also, our NA-DARTS-ES easily outperform DARTS-ES, which shows that our
formulation is applicable to DARTS-ES and yields further improvement. Bottom:
Applying our formulation to PC-DARTS also yields further improvement. Our NA-
PC-DARTS outperforms PC-DARTS by 0.72% on CIFAR-100.

CIFAR-10 CIFAR-100
DARTS [91] 4.13± 0.98 22.49± 2.62
DARTS-ES [181] 3.71± 1.14 19.21± 0.65
NA-DARTS (Ours) 2.97± 0.18 18.86± 0.49
NA-DARTS-ES (Ours) 2.49± 0.02 17.03± 0.41

PC-DARTS [169] 2.66± 0.14 17.38± 0.45
NA-PC-DARTS (Ours) 2.69± 0.08 16.66± 0.39

We search architectures from the S3 search space on CIFAR-10 using DARTS,
DARTS-ES [181] or our NA-DARTS, and then evaluate the found architecture on
both CIFAR-10 and CIFAR-100. DARTS-ES is DARTS with an early stopping crite-
rion based on the dominant eigenvalue of the Hessian of the validation loss. We
summarize the performance in the top half in Table 3.12. We see that our NA-
DARTS easily outperforms both DARTS and DARTS-ES on CIFAR-10 and CIFAR-
100. Notably, NA-DARTS outperforms DARTS by 3.63% on CIFAR-100.

In the above, we mention that our contribution is orthogonal to other exten-
sions of DARTS and we expect better performance after applying our formulation
to them. To empirically verify this claim, we propose NA-DARTS-ES and NA-PC-
DARTS by applying our neighborhood-aware formulation to DARTS-ES [181] and
PC-DARTS [169], respectively. As shown in Table 3.12, NA-DARTS-ES outperforms
DARTS-ES by 1.22% on CIFAR-10 and 2.18% on CIFAR-100. The improvement on
CIFAR-100 demonstrates that architectures found by our NA-DARTS-ES generalize
much better than those found by DARTS-ES.

We notice that NA-PC-DARTS performs similarly to PC-DARTS on CIFAR-10.
We would like to emphasize that the DARTS search space (a superset of the S3
search space) has a narrow performance range [171] and the test error of most NAS
methods on CIFAR-10 are within [2.5%, 3.0%]. So we focus more on the performance
on CIFAR-100. Our NA-PC-DARTS outperforms PC-DARTS by 0.72% on CIFAR-
100. As all the architectures are searched on CIFAR-10, this shows that architectures
found by our NA-PC-DARTS generalize better than those found by PC-DARTS. We
obtain further improvement after applying our formulation to PC-DARTS.

3.5.4 Loss Landscape Visualization

To qualitatively examine whether our NA-DARTS has found a flat minima, we plot
the loss landscape of DARTS and NA-DARTS with the visualization strategy from
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(a) DARTS (standard formulation min f(α)).
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(b) NA-DARTS (neighborhood-aware formulation min g (f(N (α)))).

Figure 3.2: Loss landscape visualization of the found architecture (more runs). The
two plots in Figure 3.2a (Figure 3.2b) are generated from two independent runs
of DARTS (NA-DARTS). The left plot in Figure 3.2a and Figure 3.2b are the same
as the plots in Figure 3.1 in the main text. For the architecture found by DARTS
(Figure 3.2a), we observe that the loss of its neighbors increase drastically as the
magnitude of λ0 or λ1 increases. However, for the architecture found by our NA-
DARTS (Figure 3.2b), the loss of its neighbors increases much slower. This shows
that the architecture found by our NA-DARTS is a much flatter minimum than that
found by DARTS.

[78]. Let α denote the architecture found by DARTS or NA-DARTS. We compute
the Hessian of the validation loss with respect to α, and v0 and v1, which are the
eigenvectors corresponding to the two largest eigenvalues of the Hessian matrix.
Then we visualize the validation loss of the neighbors of α over the plane spanned
by v0 and v1. Specifically, we compute the validation loss of the architecture α +
λ0v0+λ1v0, where λ0 and λ1 are uniformly sampled from [−1.0, 1.0]. The loss values
are visualized by the contour plots in Figure 3.2. We observe that the curvature of
NA-DARTS at (0, 0) (the found architecture α) is much flatter than that of DARTS.

We provide details of the neighboring architectureα′ = α+λ0v0+λ1v0. Here, we
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Figure 3.3: Cell Visualization.

overload the plus sign (+) with the additive representation. Recall that α contains
a set of variables representing the operation choice for each edge (i, j): α = {α(i,j)}.
The eigenvectors v0 and v1 have the same dimension as α and then can be repre-
sented as v0 = {v(i,j)0 } and v1 = {v(i,j)1 }. Let q(i,j) = λ0v

(i,j)
0 + λ1v

(i,j)
1 . α′(i,j) is then

computed using the additive representation in Eq. 3.6 (α′(i,j)k =
α
(i,j)
k +q

(i,j)
k∑n

k=1(α
(i,j)
k +q

(i,j)
k )

).

The eigenvectors v0 and v1 are normalized so that the scale of the noise vector q(i,j)
is controlled only by λ0 and λ1. We use the weights of α obtained in the search as
an approximation for the weights of the neighbors α′.

3.5.5 Cell Visualization

We visualize the normal cell and reduction cell found by DARTS and our NA-
DARTS in Figure 3.3. We observe that the normal cell found by our method NA-
DARTS tend to be deeper than that found by DARTS. Normal cells found by our
NA-DARTS from different runs have a depth of 3 at most of the time, while nor-
mal cells found by DARTS mostly have a depth of 1 or 2. We also observe that the
normal cell found by NA-DARTS contains more 5× 5 convolution operations. Both
of the reduction cells found by DARTS and NA-DARTS contain very few convolu-
tion operations. Most operations in the reduction cell do not have parameters, e.g.,
pooling and skip-connection.
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3.6 Conclusion

To achieve better generalization, we propose a novel neighborhood-aware NAS for-
mulation, based on the assumption that flat-minima architectures generalize better
than sharp ones. Our formulation provides a new perspective for NAS that one
should use the aggregated performance over the neighboorhood as the criterion to
select optimal architectures. We also demonstrate a principled way to apply our for-
mulation to existing search algorithms and propose two practical search algorithms
NA-RS and NA-DARTS. Extensive experiments on CIFAR-10, CIFAR-100 and Ima-
geNet validate the flat minima assumption, and demonstrate the significance of our
formulation and algorithms.
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Part II

Search Spaces
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Chapter 4

AttentionNAS: Spatiotemporal
Attention Cell Search

4.1 Introduction

One major contributing factor to the success of neural networks in computer vi-
sion is the novel design of network architectures. In early work, most network ar-
chitectures [54, 73, 138] were manually designed by human experts based on their
knowledge and intuition of specific tasks. Recent work on neural architecture search
(NAS) [89, 91, 115, 189, 190] propose to directly learn the architecture for a spe-
cific task from data and discovered architectures have been shown to outperform
human-designed ones.

Convolutional Neural Networks (CNNs) have been the de facto choice for net-
work architectures. Most work in computer vision uses convolutional operations
as the primary building block to construct the network. However, convolutional
operations still have their limitations. It has been shown that attention is comple-
mentary to convolutional operations, and they can be combined to further improve
performance on vision tasks [6, 154, 161].

While being complementary to convolution, many design choices remain to be
determined to use attention. The design becomes more complex when applying
attention to videos, where the following questions arise: What is the right dimension
to apply an attention operation to videos? Should an operation be applied to the temporal,
spatial, or spatiotemporal dimension? How to compose multiple attention operations applied
to different dimensions?

Towards a principled way of applying attention to videos, we address the task
of spatiotemporal attention cell search, i.e., the automatic discovery of cells that use
attention operations as the primary building block. The discovered attention cells
can be seamlessly inserted into a wide range of backbone networks, e.g., I3D [19]
or S3D [167], to improve the performance on video understanding tasks.

Specifically, we propose a search space for spatiotemporal attention cells, which
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allows the search algorithm to flexibly explore all of the aforementioned design
choices in the cell. The attention cell is constrcuted by composing several primitive
attention operations. Importantly, we consider two types of primitive attention op-
erations: (1) map-based attention [104, 161] and (2) dot-product attention (a.k.a.,
self-attention) [6,145,154]. Map-based attention explicitly models where to focus in
videos, compensating for the fact that convolutional operations apply the same filter
to all the positions in videos. Dot-product attention enables the explicit modeling of
long-range dependencies between distant positions in videos, accommodating the
fact that convolutional operations only operate on a small and local neighborhood.

We aim to find an attention cell from the proposed search space such that the
video classification accuracy is maximized when adding that attention cell into the
backbone network. But the search process can be extremely costly. One significant
bottleneck of the search is the need to constantly evaluate different attention cells.
Evaluating the performance of an attention cell typically requires training the se-
lected attention cell as well as the backbone network from scratch, which can take
days on large-scale video datasets, e.g., Kinetics-600 [18].

To alleviate this bottleneck, we consider two search algorithms: (1) Gaussian
Process Bandit (GPB) [130,132], which judiciously selects the next attention cell for
evaluation based on the attention cells having been evaluated so far, allowing us to
find high-performing attention cells within a limited number of trials; (2) differen-
tiable architecture search [91], where we develop a differentiable formulation of the
proposed search space, making it possible to jointly learn the attention cell design
and network weights through back-propagation, without explicitly sampling and
evaluating different cells. The entire differentiable search process only consumes
a computational cost similar to fully training one network on the training videos.
This formulation also allows us to learn position-specific attention cell designs with
zero extra computational cost (see Section 4.4.2 for details).

We conduct extensive experiments on two datasets: Kinetics-600 [18] and Mo-
ments in Time (MiT) [102]. Our discovered attention cells can improve the perfor-
mance of two backbone networks I3D [19] and S3D [167] by more than 2% on both
datasets, and also outperforms non-local blocks – the state-of-the-art manually de-
signed attention cells for videos. Inserting our attention cells into I3D-R50 [154]
yields state-of-the-art performance on both datasets. Notably, our discovered at-
tention cells can also generalize well across modalities (RGB to optical flow), back-
bones (e.g., I3D to S3D or I3D to I3D-R50), and datasets (MiT to Kinetics-600 or
Kinetics-600 to MiT).

Contributions. (1) This is the first attempt to extend NAS beyond discover-
ing convolutional cells to attention cells. (2) We propose a novel search space for
spatiotemporal attention cells that use attention operations as the primary building
block, which can be seamlessly inserted into existing backbone networks to improve
their performance on video classification. (3) We develop a differentiable formula-
tion of the proposed search space, making it possible to learn the attention cell de-
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Figure 4.1: Illustration of the operation-level search space (left) and cell-level search
space (right). The example attention operations use temporal as the attention di-
mension and the tuple under each feature map denotes its shape.

sign with back-propagation and learn position-specific attention cell designs with
zero extra cost. (4) Our discovered attention cells outperform non-local blocks, on
both the Kinetics-600 and MiT dataset. We achieve state-of-the-art performance on
both datasets by inserting our discovered attention cells into I3D-R50. Our atten-
tion cells also demonstrate strong generalization capability when being applied to
different modalities, backbones, or datasets.

4.2 Related Work

Video Classification. Early work on video classification extends image classifica-
tion CNNs with recurrent networks [34, 180] or two-stream architectures [43, 128]
that take both RGB frames and optical flow frames as inputs. Recent work on video
classification are mainly based on 3D convolution [144] or its variants to directly
learn video representations from RGB frames. I3D [19] proposes to inflate the filters
and pooling kernels of a 2D CNN into 3D to leverage successful 2D CNN architec-
ture designs and their ImageNet pretrained weights. S3D [167] improves upon I3D
by decomposing a 3D convolution into a 2D spatial convolution and a 1D temporal
convolution. A similar idea is also explored in P3D [113]. CPNet [92] learns video
representations by aggregating information from potential correspondences. Slow-
Fast [42] proposes an architecture operating at two different frame rates, where spa-
tial semantics are learned on low frame rates, and temporal dynamics are learned on
high frame rates. Different from them, we do not focus on proposing novel CNN
architecture designs for video classification. Instead, we focus on discovering at-
tention cells using attention operations as the primary building block, which are
complementary to CNNs.

55



Attention in Vision. Both map-based attention and dot-product attention are use-
ful for computer vision tasks. Map-based attention [104, 161] has been used to im-
prove the performance of CNNs on image recognition, where spatial attention maps
are learned to scale the features given by convolutional layers. Dot-product atten-
tion [145] is successfully used in sequence modeling and transduction tasks, e.g.,
machine translation, and is recently used to augment CNNs and enhances their per-
formance on image recognition [6]. Non-local blocks [154] are proposed to capture
long-range dependencies in videos and can significantly improve the video classi-
fication accuracy of CNNs. Non-local blocks can be viewed as applying one single
dot-product attention operation to the spatiotemporal dimension. In contrast, our
attention cells can contain multiple attention operations applied to different dimen-
sions of videos. Non-local blocks are a particular case in our proposed search space,
and our attention cells are discovered automatically in a data-driven way instead of
being manually designed.

NAS - Search Space. Search space is crucial for NAS. Randwire [166] shows that
one random architecture from a carefully designed search space can achieve com-
petitive performance on image recognition. NASNet [190] proposes to search for
convolutional cells that can be stacked multiple times to form the entire architecture.
Auto-DeepLab [88] proposes a two-level hierarchical architecture search space for
semantic image segmentation. AssembleNet [119] proposes to search for the con-
nectivity between multi-stream convolutional blocks for video classification. They
all focus on finding convolutional cells or networks for the end task. Different from
them, our proposed search space uses attention as the primary building component
instead of convolution.

NAS - Search Algorithm. Various search algorithms have been explored in NAS,
such as random search [81, 179], reinforcement learning [4, 184, 189, 190], evolu-
tionary algorithms [115, 117, 165], Bayesian optimization (BO) [17, 69], and differ-
entiable methods [91]. We have tried using GPB (belonging to the category of BO)
to search for desired attention cells. We also develop a differentiable formulation
of our proposed search space. This makes it possible to conduct the search using
differentiable methods and greatly improves the search speed.

4.3 Attention Cell Search Space

We aim to search for spatiotemporal attention cells, which can be seamlessly in-
serted into a wide range of backbone networks, e.g., I3D [19] or S3D [167], to im-
prove the performance on video understanding tasks.

Formally, an attention cell takes a 4D feature map of shape (T,H,W,C) as input
and outputs a feature map of the same shape. T,H , andW are the temporal dimen-
sion, height, and width of the feature map, respectively. C denotes the number of
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channels. The output of an attention cell is enforced to have the same shape as its
input by design, so that the discovered attention cells can be easily inserted after
any layers in any existing backbone networks.

An attention cell is composed of K primitive attention operations. The pro-
posed attention cell search space consists of an operation level search space and a
cell level search space (see Fig. 4.1). The operation level search space contains dif-
ferent choices to instantiate an individual attention operation. The cell level search
space consists of different choices to compose the K operations to form a cell, i.e.,
the connectivity between the K operations within a cell. We first introduce the op-
eration level search space and then the cell level search space.

4.3.1 Operation Level Search Space

An attention operation takes a feature map of shape (T,H,W,Cin) as input and out-
puts an attended featured map of shape (T,H,W,Cout). For an attention operation,
Cin and Cout can be different. To construct an attention operation, we need to make
two fundamental choices: the dimension to compute the attention weights and the
type of the attention operation.

4.3.1.1 Attention Dimension

For brevity, we term the dimension to compute the attention weights as attention
dimension. In CNNs for video classification, previous work [42,113,167] has studied
when to use temporal convolution (e.g., 3×1×1), spatial convolution (e.g., 1×3×3),
and spatiotemporal convolution (e.g., 3 × 3 × 3). It is also a valid question to ask
for attention what is the right dimension to apply an attention operation to videos:
temporal, spatial or spatiotemporal (temporal and spatial together). The choice of
the attention dimension is important as computing attention weights for different
dimensions represents focusing on different aspects of the video.

4.3.1.2 Attention Operation Type

We consider two types of attention operations, each of which helps address a spe-
cific limitation of convolutional operations, as mentioned in the introduction:

• Map-based attention [104,161]: Map-based attention learns a weighting fac-
tor for each position in the attention dimension and scales the feature map
with the learned attention weights. Map-based attention explicitly models
what positions in the attention dimension to attend to in videos.

• Dot-product attention [6, 145, 154]: A dot-product attention operation com-
putes the feature response at a position as a weighted sum of features of all the
positions in the attention dimension, where the weights are determined by a
similarity function between features of all the positions [6,154]. Dot-product
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attention explicitly models the long-range interactions among distant posi-
tions in the attention dimension.

We now describe the details of the two types of attention operations. Let fin
denote the input feature map to an attention operation and denote its shape as
(T,H,W,Cin). Applying an attention operation consists of three steps, including
reshaping the input feature map fin, computing the attention weights, and apply-
ing the attention weights.

Reshape fin. We reshape fin into a 2D feature map f ′in before computing the at-
tention weights. The first dimension of f ′in is the attention dimension and the sec-
ond dimension contains the remaining dimensions. For example, f ′in has the shape
of (T,HWCin) when temporal is the attention dimension and has the shape of
(THW,Cin) when spatiotemporal is the attention dimension. We denote this pro-
cedure as a function ReshapeTo2D, i.e., f ′in = ReshapeTo2D(fin).

Spatial attention requires extra handling. As video content changes over time,
when applying attention to the spatial dimension, each frame f tin should have its
own spatial attention weights, where f tin is the tth frame in fin and has the shape of
(H,W,Cin). Therefore, when spatial is the attention dimension, instead of reshap-
ing the entire 4D feature map fin, we reshape f tin into a 2D feature map f ′tin of shape
(HW,Cin) for every t, i.e., f ′tin = ReshapeTo2D(f tin)(1 ≤ t ≤ T ).

Map-based attention. Assuming temporal is the attention dimension, map-based
attention generates T attention weights to scale the feature map of each temporal
frame. The attention weights are computed as follows:

Wmap = Diag(φ(G2(AvgPool(G1(f
′
in))))). (4.1)

G1 is a 1D convolutional layer with kernel size as 1, which reduces the dimension of
the feature response of each temporal frame from HWCin to C ′ and gives a feature
map of shape (T,C ′). AvgPool denotes an average pooling operation applied to
each temporal dimension and outputs a T -dim vector. The multilayer perceptron
G2 and the activation function φ (e.g., the sigmoid function) further transform the
T -dim vector to T attention weights. More details about the activation function are
discussed later. Diag rearranges the T attention weights into a T ×T matrix, where
the T attention weights are placed on the diagonal of the matrix. The obtained
attention weight matrix W is a diagonal matrix.

Similarly, when spatiotemporal is the attention dimension, map-based attention
gives a THW × THW diagonal matrix containing the attention weights. When
spatial is the attention dimension, we generate oneHW ×HW diagonal matrix for
every f ′tin (1 ≤ t ≤ T ) separately, using the above described procedure. Note that
while different frames have separate spatial attention weights,G1 andG2 are shared
among different frames when computing attention weights.
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Dot-product attention. When applying dot-product attention to the temporal di-
mension, a T × T attention weight matrix is generated as follows:

Wdot-prod = φ(G1(f
′
in)G2(f

′
in)T ). (4.2)

Here, G1 and G2 are both a 1D convolutional layer with kernel size as 1 and they
both output a feature map of shape (T,C ′). Let Q = G1(f

′
in) and K = G2(f

′
in).

QKT computes an similarity matrix between the features of all the temporal frames.
We then use φ, an activation function of our choice, e.g., the softmax function, to
convert the similarity matrix into attention weights. Note that different fromWmap,
Wdot-prod is a full matrix instead of a diagonal matrix.

When being applied to the spatiotemporal dimension, dot-product attention
generates a THW × THW attention weight matrix. When applying dot-product
attention to the spatial dimension, each frame has its own attention weights (a
HW ×HW matrix), where G1 and G2 are shared among different frames.

Apply the attention weights. We apply the attention weight matrix to the input
feature map through matrix multiplication to obtain the attended feature map:

fout = ReshapeTo2D−1(WReshapeTo2D(G3(fin))). (4.3)

W is the weight matrix generated by map-based attention (Wmap) or dot-product at-
tention (Wdot-prod). G3 is a 1×1×1 convolutional layer to reduce the number of chan-
nels of fin from Cin to Cout. If temporal is the attention dimension,W has the shape
of (T, T ) and ReshapeTo2D(G3(fin)) has the shape (T,HWCout). ReshapeTo2D−1 is
the inverse function of ReshapeTo2D, reshaping the attended feature map back to
the shape of (T,H,W,Cout).

For spatial attention, the attention weights are applied to each frame indepen-
dently, i.e., f tout = ReshapeTo2D−1(W tReshapeTo2D(G3(f

t
in))), where W t is the spa-

tial attention weights for frame t and f tout has the shape of (H,W,Cout). We stack
{f tout | 1 ≤ t ≤ T} along the temporal dimension to form the attended feature map
fout of shape (T,H,W,Cout). Similar to G1 and G2 used for computing attention
weights, G3 is also shared among different frames.

Note that by design G3 only changes number of channels, i.e., transforms the
features at each spatiotemporal position. The spatiotemporal structure of the input
fin is preserved. This ensures that after the application of attention weights, fout
still follows the original spatiotemporal structure of the input fin.

Activation function. We empirically find that the activation functionφ (see Eq. 4.1
and Eq. 4.2) used in the attention operation can influence the performance. So, we
also include the choice of the activation function in the operation level search space
and rely on the search algorithm to choose the right one for each attention operation.
We consider the following four choices for the activation function: (1) no activation
function, (2) ReLU, (3) sigmoid, and (4) softmax.
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Channel attention. While our search space mainly focuses on spatiotemporal at-
tention, we include channel attention as an additional choice in the search space.
Concretely, when building an attention operation, the search algorithm can choose
whether to apply a feature gating layer [167] to the attended feature map fout. The
feature gating layer is a typical channel attention mechanism. It first applies av-
erage pooling to a 4D feature map across space and time, then learns a weighting
factor for each channel, and finally multiplies features at each channel of the origi-
nal feature map with the learned weighting factor. Note that channel attention does
not replace the attention operation described above and is only an additional layer
choice within the attention operation.

Keys and values in dot-product attention. We introduce an additional design
choice in dot-product attention. In the above, a dot-product attention operation
is defined as:

f ′in = ReshapeTo2D(fin),

Wdot-prod = φ(G1(f
′
in)G2(f

′
in)T ),

fout = ReshapeTo2D−1(WReshapeTo2D(G3(fin))),

(4.4)

where fin and fout are the input and output feature map of the attention operation
respectively, Wdot-prod is the attention weight matrix, and G1, G2 and G3 are all 1×
1× 1 convolutional layers.

Let Q = G1(f
′
in), K = G2(f

′
in) and V = ReshapeTo2D(G3(fin)). Q, K and V

are termed as query, keys and values in dot-product attention [145]. In Eq 4.4,
the query, keys and values are computed based on the same feature map, i.e., the
operation input fin. It is also common practice in dot-product attention to compute
the keys and values based on feature maps other than fin. For example, dot-product
attention has been used in Transformer [145] in the following way: the query comes
from the decoder while the keys and values come from the encoder, so that every
position in the decoded sequence can attend to positions in the input sequence.

In our search space, for a dot-product attention operation, we also allow com-
puting its keys and values based on the cell input f0. This allows positions in the
operation input fin to attend to positions in the cell input f0. When computing keys
and values based on f0, the dot-product attention becomes:

f ′0 = ReshapeTo2D(f0),

Wdot-prod = φ(G1(f
′
in)G2(f

′
0)T ),

fout = ReshapeTo2D−1(WReshapeTo2D(G3(f0))).

(4.5)

The differences between Eq. 4.4 and Eq. 4.5 are highlighted in boldface and red.
In summary, for dot-product attention operations in the attention cell, we can

choose to compute its keys and values based on the operation input fin or the cell

60



input f0. We enforce all the dot-product attention operations in a cell to make the
same choice, either computing the keys and values based on their own operation
input or the cell input f0.

4.3.2 Cell Level Search Space

We define an attention cell as a cell composed of K attention operations. Let f0
denote the input feature map to the entire attention cell and (T,H,W,C) be the
shape of f0. f0 is usually the output of a stack of convolutional layers. An attention
cell takes f0 as input and outputs a feature map of the same shape.

The connectivity between convolutional layers is essential to the performance
of CNNs, no matter if the network is manually designed, e.g., ResNet [54] and In-
ception [138], or automatically discovered [166, 189, 190]. Similarly, to build an
attention cell, another critical design choice is how the K attention operations are
connected inside the cell, apart from the design of these attention operations.

As shown in Fig. 4.1, in an attention cell, the first attention operation always
takes f0 as input and outputs feature map f1. The kth(2 ≤ k ≤ K) attention op-
eration chooses its input from {f0, f1, . . . , fk−1} and gives feature map fk based on
the selected input. We allow the kth operation to choose multiple feature maps from
{f0, f1, . . . , fk−1} and compute a weighted sum of selected feature maps as its input,
where the weights are learnable parameters. This process is repeated for all k and
allows us to explore all possible connectivities between the K attention operations
in the cell.

We combine {f1, f2, . . . , fK} to obtain the output feature map of the entire at-
tention cell. For all attention operations inside the cell, we set their output shape to
be (T,H,W,Cop), i.e., fk has the shape of (T,H,W,Cop) for all k(1 ≤ k ≤ K). Cop
is usually smaller than C to limit the computation in an attention cell with multiple
attention operations. We concatenate {f1, f2, . . . , fK} along the channel dimension
and then employ a 1×1×1 convolution to transform the concatenated feature map
back to the same shape as the input f0. We denote the feature map after transfor-
mation as fcomb. Similar to non-local blocks [154], we add a residual connection
between the input and output of the attention cell. So the final output of the atten-
tion cell is the sum of f0 and fcomb. The combination procedure is the same for all
attention cells.

4.4 Attention Cell Search Algorithm

4.4.1 Gaussian Process Bandit (GPB)

Given K, i.e., the number of attention operations inside the attention cell, the at-
tention cell design can be parameterized by a fixed number of hyper-parameters,
including the attention dimension, the type and the activation function of each at-
tention operation, and the input to each attention operation.
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Figure 4.2: Illustration of the supergraph used by the differentiable method.

We employ GPB [130,132], a popular hyper-parameter optimization algorithm,
to optimize all the hyper-parameters for the attention cell design jointly. Intuitively,
GPB can predict the performance of an attention cell at a modest computational
cost without actually training the entire network, based on those already evalu-
ated attention cells. Such prediction helps GPB to select promising attention cells
to evaluate in the following step and makes it possible to discover high-performing
attention cells within a limited number of search steps.

Concretely, in GPB, the performance of an attention cell is modeled as a sample
from a Gaussian process. At each search step, GPB selects the attention cell for
evaluation by optimizing the Gaussian process upper confidence conditioned on
those already evaluated attention cells.

4.4.2 Differentiable Architecture Search

Inspired by recent progress on differentiable architecture search [91], we develop
a differentiable formulation of our proposed search space. The formulation makes
it possible to jointly learn the attention cell design and network weights with back-
propagation, without explicitly sampling and evaluating different cells.

4.4.2.1 Differentiable Formulation of Search Space

We propose to represent the attention cell search space as a supergraph, where all
the possible attention cells are different subgraphs of this supergraph. The super-
graph representation allows us to parameterize the design of an attention cell with
a set of continuous and differentiable connection weights between the nodes in the
supergraph.

To be more specific, we define the supergraph to havem levels, where each level
has n nodes. Each node is an attention operation of a pre-defined type (map-based
or dot-product attention) and a pre-defined attention dimension. Fig. 4.2 shows an
example supergraph with 2 levels, where each level has 4 nodes. The input feature
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map to the entire attention cell is passed to all the nodes at the first level. Starting
from the second level, the input feature map to a node is a weighted sum of the
output feature maps of all the nodes at its previous level:

f in
i,j =

n∑
k=1

wlevel
i,j,k · fout

i−1,k, (4.6)

where 2 ≤ i ≤ m, 1 ≤ j ≤ n, f in
i,j is the input to the jth node at ith level, fout

i−1,k is
the output of the kth node at (i − 1)th level, and wlevel

i,j are the connection weights
between the jth node at ith level and all the nodes at (i−1)th level. In practice, wlevel

i,j

is a probability distribution obtained by softmax.
For each node in the supergraph, we also learn a probability distribution over

the possible choices of activation functions. The output of a node is a weighted sum
of the attended feature map under different activation functions:

fout
i,j =

|A|∑
k=1

wactivation
i,j,k · fout,φk

i,j , (4.7)

where A is the set of available activation functions, φk is the kth activation func-
tion in A, wactivation

i,j,k is the weighting factor to be learned for φk, and fout,φk
i,j is the

attended feature map under the activation function φk. The only difference among
these attended feature maps {fout,φk

i,j } is the activation function φ used in Eq. 4.1 or
Eq. 4.2. The layersG1,G2 andG3 are shared by different activation functions within
one node. We also learn a 2-dim probability distribution wgating

i,j for each node, in-
dicating whether to include a feature gating layer [167] in the attention operation
represented by the node.

The supergraph has a sink node, receiving the output feature maps of all the
nodes. The sink node is defined as follows:

fout
sink =

∑
1≤i≤m,1≤j≤n

wsink
i,j ·Gi,j(fout

i,j ), (4.8)

where fout
sink is the output of the sink node, fout

i,j is the output of the jth node at ith
level,Gi,j is a 1×1×1 convolutional layer changing the number of channels in fout

i,j to
C, and wsink

i,j is the weighting factor to be learned. We enforce fout
sink to have the same

shape as the input to the supergraph, so that the supergraph can be inserted into
any position of the backbone network. Same as attention cells, a residual connection
is added between the input and output of the supergraph.

4.4.2.2 Attention Cell Design Learning

Both the network weights, e.g., weights of convolutional layers in the network, and
the connection weights in the supergraph ({wlevel, wsink, wactivation, wgating}) are dif-
ferentiable. During the search, we insert supergraphs into the backbone network
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and jointly optimize the network weights and connection weights by minimizing
the training loss using gradient descent. The entire search process only consumes
a computational cost similar to fully training one network on the training videos.
Once the training is completed, we can derive the attention cell design from the
learned connection weights.

Note that we insert the supergraphs at positions where the final attention cells
will be inserted. In practice, usually multiple supergraphs or attention cells (e.g.,
5) are inserted into the backbone network. If we enforce the inserted supergraphs
to share the same set of connection weights, we will obtain one single attention cell
design, dubbed as the position-agnostic attention cell.

One significant advantage of the differentiable method is that we can also learn
separate connection weights for supergraphs inserted at different positions, which
will give position-specific attention cells (see Table 4.2). Searching for separate atten-
tion cells for different positions results in an exponentially larger search space than
searching for one single attention cell. But thanks to the differentiable method, we
can learn position-specific attention cells with zero extra cost compared to learning
one position-agnostic attention cell.

4.4.2.3 Attention Cell Design Derivation

We derive the attention cell design from the learned continuous connection weights.
We first choose the top α nodes with the highest weights in wsink and add them to
the set S. Then for each node in S, we add its top β predecessors in its previous
level to S, based on the corresponding connection weights in wlevel. This process is
conducted recursively for every node in S until we reach the first level. α and β are
two hyper-parameters.

Recall that each node is an attention operation of a pre-defined type and atten-
tion dimension. So, S contains a set of selected attention operations. The construc-
tion process of S also determines how these attention operations are connected.
For all the selected attention operations, we decide its activation function based on
the corresponding weighting factors in wactivation, and whether to include a feature
gating layer in the operation based on wgating.

4.5 Experiments

4.5.1 Experimental Setup

Datasets. We conduct experiments on two benchmark datasets: Kinetics-600 [18]
and Moments in Time (MiT) [102]. Top-1 and top-5 classification accuracy are used
as the evaluation metric for both datasets.

Backbones. We conduct the attention cell search on two backbones: I3D [19] and
S3D [167]. Both I3D and S3D are constructed based on the Inception [138] net-
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work. When examining the generalization of the found cells, we also consider the
backbone I3D-R50 [154], which is constructed based on ResNet-50 [54].

Baselines. Non-local blocks [154] are the state-of-the-art manually designed at-
tention cell for video classification and are the most direct competitor of our au-
tomatically searched attention cells. We mainly focus on the relative improvement
brought by our attention cells after being inserted into backbones. Besides non-local
blocks, we also compare with other state-of-the-art methods for video classification,
such as TSN [149], TRN [185], and SlowFast [42].

4.5.2 Search Results

Table 4.1: Search results on Kinetics-600 and MiT using GPB. Our attention cells
improve the classification accuracy for both backbones and on both datasets.

Kinetics MiT
Model Top-1 Top-5 ∆Top-1 Top-1 Top-5 ∆Top-1

I3D Backbone [19] 75.58 92.93 - 27.38 54.29 -
Non-local [154] 76.87 93.44 1.29 28.54 55.35 1.16
Ours - GPB 77.39 93.63 1.81 28.41 55.49 1.03

S3D Backbone [167] 76.15 93.22 - 27.69 54.68 -
Non-local [154] 77.56 93.68 1.41 29.52 56.91 1.83
Ours - GPB 78.28 94.04 2.13 29.23 56.22 1.54

Table 4.2: Search results on Kinetics-600 and MiT using the differentiable method.
Our attention cells consistently outperform non-local blocks on all the combinations
of backbones and datasets. Position-specific attention cells (‘Pos-Specific’) consis-
tently outperform position-agnostic attention cells (‘Pos-Agnostic’).

Kinetics MiT
Model Top-1 Top-5 ∆Top-1 Top-1 Top-5 ∆Top-1

I3D Backbone [19] 75.58 92.93 - 27.38 54.29 -
Non-local [154] 76.87 93.44 1.29 28.54 55.35 1.16
Ours - Pos-Agnostic 77.56 93.63 1.98 28.18 55.01 0.80
Ours - Pos-Specific 77.86 93.75 2.28 29.58 56.62 2.20

S3D Backbone [167] 76.15 93.22 - 27.69 54.68 -
Non-local [154] 77.56 93.68 1.41 29.52 56.91 1.83
Ours - Pos-Agnostic 77.82 93.72 1.67 29.19 55.96 1.50
Ours - Pos-Specific 78.51 93.88 2.36 29.82 57.02 2.13

Table 4.1 shows the search results of GPB and Table 4.2 summarizes the search
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results using the differentiable method. Notably, attention cells found by the differ-
entiable method can improve the accuracy of both backbones by more than 2% on
both datasets, and consistently outperform non-local blocks on all the combinations
of backbones and datasets.

In Table 4.2, ‘Pos-Agnostic’ refers to that one attention design is learned for all
the positions where the cells are inserted. ‘Pos-Specific’ means that we learn a sep-
arate attention cell design for each position where a cell is inserted, i.e., the cells
inserted at different positions can be different. We observe that position-specific
attention cells consistently outperform position-agnostic attention cells.

4.5.3 Generalization of Discovered Cells

We examine how well the discovered attention cells can generalize to new settings.
We do not perform any search in the following experiments, but directly apply at-
tention cells searched for one setting to a different setting and see if the attention
cells can improve the classification performance. Concretely, we evaluate whether
our discovered attentions can generalize across different modalities, different back-
bones, and different datasets.

Modality. We insert the attention cells discovered on RGB frames into the back-
bone and train the network on optical flow only. The results are summarized in
Table 4.3. ‘GPB’ refers to cells discovered by GPB and ‘Differentiable’ refers to cells
discovered by the differentiable method. Our attention cells significantly improve
the classification accuracy when being applied on optical flow and consistently out-
perform non-local blocks for both backbones and on both datasets. For example, our
attention cells improve the accuracy of I3D by 5.67% on Kinetics-600. Note that the
cells are discovered by maximizing its performance on RGB frames and no optical
flow is involved during search. This demonstrates that our cells discovered on RGB
frames can generalize well to optical flow.

Backbone. Table 4.4 summarizes the results of inserting cells discovered for one
backbone to another backbone. The second row shows that cells discovered for S3D
can still improve the classification accuracy of I3D by about 2% on both datasets,
even though these cells are never optimized to improve the performance of I3D.
We observe similar improvement when inserting cells found for I3D to S3D (third
row), or cells found for I3D/S3D to I3D-R50 (last row). Notably, our attention cells
can still outperform non-local blocks even after being inserted into a different back-
bone. For example, cells found for S3D achieve 77.81% accuracy on Kinetics-600
after being inserted to I3D, which outperforms non-local blocks (76.87%) and per-
forms similar to cells specifically discovered for I3D (77.86%).
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Table 4.3: Generalization across different modalities (RGB to Optical flow).

Kinetics MiT
Model Top-1 Top-5 ∆Top-1 Top-1 Top-5 ∆Top-1

I3D Backbone [19] 61.14 82.77 - 20.01 42.42 -
Non-local [154] 64.88 85.77 3.74 21.86 46.59 1.85
Ours - GPB 65.81 87.04 4.67 21.83 45.45 1.82
Ours - Differentiable 66.81 87.85 5.67 21.94 45.57 1.93

S3D Backbone [167] 62.46 84.59 - 20.50 42.86 -
Non-local [154] 65.79 86.85 3.33 22.13 46.48 1.63
Ours - GPB 67.02 87.72 4.56 22.29 46.16 1.79
Ours - Differentiable 66.29 86.97 3.83 22.52 46.30 2.02

Table 4.4: Generalization across different backbones.

Kinetics MiT
Model Top-1 Top-5 ∆Top-1 Top-1 Top-5 ∆Top-1

I3D Backbone [19] 75.58 92.93 - 27.38 54.29 -
S3D - GPB 77.47 93.67 1.89 28.92 56.09 1.54
S3D - Differentiable 77.81 93.74 2.23 29.26 56.61 1.88

S3D Backbone [167] 76.15 93.22 - 27.69 54.68 -
I3D - GPB 78.23 94.07 2.08 29.45 56.50 1.76
I3D - Differentiable 78.46 94.05 2.31 29.67 57.05 1.98

I3D-R50 Backbone [154] 78.10 93.79 - 30.63 58.15 -
I3D - Differentiable 79.83 94.37 1.73 32.48 60.31 1.85
S3D - Differentiable 79.71 94.28 1.61 31.91 59.87 1.28

Table 4.5: Generalization across different datasets.

MiT to Kinetics Kinetics to MiT
Model Top-1 Top-5 ∆Top-1 Top-1 Top-5 ∆Top-1

I3D Backbone [19] 75.58 92.93 - 27.38 54.29 -
GPB 77.34 93.47 1.76 27.62 56.70 0.24
Differentiable 77.85 93.89 2.27 29.45 56.83 2.07

S3D Backbone [167] 76.15 93.22 - 27.69 54.68 -
GPB 77.54 93.62 1.39 28.80 56.16 1.11
Differentiable 78.19 93.98 2.04 29.33 56.33 1.64

Dataset. We insert attention cells discovered on MiT to the corresponding back-
bone, fully train the network on Kinetics-600 and report its accuracy on Kinetics-
600 in the middle column (‘MiT to Kinetics’) of Table 4.5. We observe that cells
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Table 4.6: Comparison with the state-of-the-art methods. Our method (‘I3D-
R50+Cell’) obtains similar or higher performance with the state-of-the-art methods
on both Kinetics-600 and MiT.

(a) Kinetics-600.

Model Top-1 Top-5 GFLOPs
I3D [19] 75.58 92.93 1136
S3D [167] 76.15 93.22 656
I3D-R50 [154] 78.10 93.79 938
D3D [134] 77.90 - -
I3D+NL [154] 76.87 93.44 1305
S3D+NL [154] 77.56 93.68 825
TSN-IRv2 [149] 76.22 - 411
StNet-IRv2 [53] 78.99 - 440
SlowFast-R50 [42] 79.9 94.5 1971
I3D-R50+Cell 79.83 94.37 1034

(b) MiT.

Model Top-1 Top-5 Modality
I3D [19] 27.38 54.29 RGB
S3D [167] 27.69 54.68 RGB
I3D+NL [154] 28.54 55.35 RGB
S3D+NL [154] 29.52 56.91 RGB
R50-ImageNet [102] 27.16 51.68 RGB
TSN-Spatial [149] 24.11 49.10 RGB
I3D-R50 [154] 30.63 58.15 RGB
I3D-R50+Cell 32.48 60.31 RGB
TSN-2stream [149] 25.32 50.10 R+F
TRN-Multiscale [185] 28.27 53.87 R+F
AssembleNet-50 [119] 31.41 58.33 R+F

discovered on MiT can improve the accuracy on Kinetics-600 by more than 2%, al-
though they are never optimized to improve the Kinetics-600 performance during
the search. Similarly, the right column (‘Kinetics to MiT’) demonstrates that the
cells searched on Kinetics-600 can also generalize gracefully to MiT. We conclude
that our attention cells generalize well across datasets.
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Table 4.7: Comparison between different supergraph designs.

Model Top-1 Top-5
I3D [19] 75.58 92.93
I3D+NL [154] 76.87 93.44
I3D+SG-1 Cell 77.86 93.75
I3D+SG-2 Cell 77.82 93.75
I3D+SG-3 Cell 77.71 93.87

4.5.4 Comparison with State-of-the-art

We insert our attention cells found on I3D into I3D-R50 (‘I3D-R50+Cell’) and com-
pare with the state-of-the-art methods in Table 4.6. On Kinetics-600, we obtain
similar performance with SlowFast-R50 [42] with fewer inference FLOPs. On MiT,
we achieve 32.48% top-1 accuracy and 60.31% top-5 accuracy only using the RGB
frames. This significantly outperforms the previous state-of-the-art method on MiT,
AssembleNet-50 [119], which uses both RGB frames and optical flow.

4.5.5 Ablation Study of Supergraph Designs

In the differentiable method, we represent the attention cell search space as a super-
graph. Using different supergraph designs allows us to analyze what desgin choice
is important for the performance of the discovered attention cells. Specifically, we
compare the following three supergraph designs:

SG-1. SG-1 is our default choice as described in Section 4.5.7.3. It contains 2
levels, where each level has 6 nodes. SG-1 only contains dot-product attention and
the 6 nodes at each level are 2 temporal dot-product, 2 spatial dot-product, and 2
spatiotemporal dot-product attention operations. In SG-1, the keys and values of
dot-product attention are computed based on the cell input (see Eq. 4.5).

SG-2. Same SG-1, SG-2 also contains 2 levels and each level has 6 nodes. SG-
2 include both map-based attention and dot-product attention. The 6 nodes at
each level are 1 temporal dot-product, 1 spatial dot-product, 1 spatiotemporal dot-
product, 1 temporal map-based, 1 spatial map-based, and 1 spatiotemporal map-
based attention operation. In SG-2, the keys and values of dot-product attention
are also computed based on the cell input (see Eq. 4.5).

SG-3. SG-3 is the same as SG-1 except that the keys and values of dot-product
attention are computed based on the input to each attention operation (see Eq. 4.4),
instead of the cell input.

Comparing SG-1 and SG-2 tells us which attention type (map-based or dot-
product) is more important. As shown in Table 4.7, SG-1 and SG-2 achieve a very
close top-1 accuracy and the same top-5 accuracy on Kinetics-600. However, we
observe that most operations (20 of out 28) in the 5 position-specific cells discov-

69



ered from SG-2 are dot-product attention. This shows that dot-product attention is
more important than map-based attention, and explains why SG-1 can achieve high
accuracy with only dot-product attention.

SG-3 achieves similar performance with SG-1 and also outperforms non-local
blocks. This shows that our search space is not sensitive to whether to compute the
keys and values based on the input to each dot-product operation or based on the
cell input.

4.5.6 Attention Cell Visualization

We visualize the position-agnostic attention cell found by GPB and the differen-
tiable method in Fig. 4.3. The position-specific cells found by the differentiable
method are shown in Fig. 4.4. These cells are found for I3D and on Kinetics-600.
We show the attention dimension and type of each operation, as well as the connec-
tivity between the operations.

The cell found by GPB contains both map-based attention and dot-product at-
tention and contains one path that first applies spatial attention and then temporal
attention. Cells found by the differentiable method only contain dot-product atten-
tion as we only include dot-product attention in the supergraph (SG-1). We observe
that all the cells found by the differentiable method prefer decomposing spatiotem-
poral attention into temporal and spatial attention, as they all contain paths that
first apply temporal attention and then spatial attention. This shares a similar spirit
to S3D [167] that decomposes a 3D convolution into a 2D spatial convolution and
a 1D temporal convolution. As a side note, our cells choose to first apply tempo-
ral and then spatial attention, while S3D first applies spatial convolution and then
temporal convolution.

4.5.7 Experimental Details

4.5.7.1 Training and Inference

We conduct experiments on two benchmark datasets: Kinetics-600 [18] and Mo-
ments in Time (MiT) [102]. Kinetics-600 contains about 392K training videos and
30K validation videos from 600 classes. MiT consists of about 800K training videos
and 34K validation videos from 339 classes.

After obtaining the attention cells found by our method, we fully train the back-
bone networks and cells on training videos and report their performance on valida-
tion videos. Following non-local blocks [154], we insert 5 cells or non-local blocks
into the backbone. For I3D or S3D, they are inserted 5 inception modules (4a to 4e,
see Table 1 in [138]). For I3D-R50, we insert them after 5 residual blocks, where
2 cells are inserted after every other residual block in res3 and 3 cells are inserted
after every other residual block in res4.
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Figure 4.3: Visualization of the position-agnostic cell discovered by GPB and the
differentiable method for I3D and on Kinetics-600. ‘Spa-Temp’ stands for the spa-
tiotemporal attention dimension.
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Figure 4.4: Visualization of the position-specific cells discovered by the differen-
tiable method for I3D and on Kinetics-600. ‘Spa-Temp’ stands for the spatiotemporal
attention dimension. The text under each cell indicates the inception module after
which the cell is inserted (4a to 4e, see Table 1 in [138]) in the Inception network.
The learned attention cell for 4a and 4d are the same.

During training, we resize the spatial resolution of videos to 256× 256 and ran-
domly crop 224 × 224 pixels or its horizontal flip from videos, for both Kinetics-
600 [18] and MiT [102]. For I3D or S3D, we randomly crop 64 consecutive frames
from the full-length video as the input clip during training. For I3D-R50, we ran-
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domly crop 16 frames with stride 4 from the full-length video.
During inference, we perform fully-convolutional inference both spatially and

temporally. We resize the spatial resolution to 256×256, pass the full-length video to
the network, and predict the class based on the softmax scores. Our inference pro-
cedure does not require the sampling of multiple temporal clips and spatial crops
in previous works [42]. The input clip to I3D or I3D has 250 frames for Kinetics-600
and has 75 frames for MiT. The input clip to I3D-50 has 64 frames for Kinetics-600
and has 18 frames for MiT, which is obtained by temporally downsampling the full-
length video with stride 4.

We initialize the backbone in all the models (backbone, backbone + non-local
blocks or our attention cells) with its ImageNet pre-trained weights. I3D or S3D
based models are trained for 135 epochs, and I3D-R50 based models are trained for
150 epochs on Kinetics-600. All the models are trained for 45 epochs on MiT. We
adopt a cosine learning rate schedule with a linear warm-up. The initial learning
rate is 0.1 for I3D or S3D and 0.4 for I3D-R50. All the models are trained on 50 GPUs
with synchronized SGD. The momentum is 0.9. The batch size per GPU is 6 for I3D
or S3D and 4 for I3D-R50.

4.5.7.2 Attention Cell Implementation

We have three pre-processing steps for the input to the entire attention cell: (1)
channel reduction, (2) spatial resize, and (3) temporal grouping. These steps can
not only reduce the computation consumed by the cell, but also allow the cell to
process feature maps of different temporal and spatial resolutions.

Let (B, T,H,W,C) be the shape of the input to the entire cell. We explicitly
write out the batch size dimension B for better explanation. We first reduce the
number of channels from C to Creduction with a 1 × 1 × 1 convolutional layer. Af-
ter channel reduction, the shape becomes (B, T,H,W,Creduction). Then, we resize
the spatial resolution of the feature map with bilinear interpolation from (H,W )
to (Hresize,Wresize), so the shape becomes (B, T,Hresize,Wresize, Creduction). Finally,
we divide the feature map into multiple groups of Tgroup frames and obtain a fea-
ture map of shape (nB, Tgroup, Hresize,Wresize, Creduction), where T = n · Tgroup and
zero padding frames are added when necessary. After temporal grouping, the fea-
ture map of shape (nB, Tgroup, Hresize,Wresize, Creduction) is then passed to attention
operations in the cell. During the combination procedure, we resize the spatial res-
olution back to (H,W ) and merge temporal groups back to T frames.

It is not difficult to see that these steps can reduce the computation. We elab-
orate on the second advantage. Note that the temporal and spatial resolution of
test videos can vary (e.g., 250× 256× 256) and be different from sampled training
clips (e.g., 64 × 224 × 224). This causes the shape of the feature map output by
each layer to be different between training and test. However, temporal attention
requires the spatial resolution of the feature map to be fixed and spatial attention
requires the number of frames to be fixed. To address this issue, we adopt these pre-
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processing steps so that the input to attention operations always has a fixed shape
of (Tgroup, Hresize,Wresize, Creduction).

4.5.7.3 Search Algorithm

GPB. We sample training videos from the original dataset as the search-train and
search-validation split. No validation videos are used during the search. We maxi-
mize the validation performance using GPB. We set the number of trails of GPB to
50, i.e., 50 attention cells are sampled by GPB and evaluated on the search-validation
split after trained on the search-train split. Both the search-train split for Kinetics-
600 and MiT contain about 360K videos. We train for 60 epochs for Kinetics-600
and 20 epochs for MiT during the search on their corresponding search-train split.
We set K = 4 and search for an attention cell consisting of 4 attention operations.
We use GPB to find one position-agnostic attention cell and insert the same cell ar-
chitecture at different positions in the backbone network. To simplify the search
space explored by GPB, we restrict the kth operation to select only one feature from
{f0, f1, . . . , fk−1} as its input.

Differentiable Method. When using the differentiable search method, we con-
sider a supergraph consisting of 2 levels. Each level in the supergraph has 6 nodes.
We do not include more nodes in one level due to the GPU memory constraint. At
eacl level, we repeat each attention dimension twice and only include dot-product
attention. So the 6 nodes are 2 temporal dot-product, 2 spatial dot-product, and
2 spatiotemporal dot-product attention operations. We also fix that the keys and
values of dot-product attention are computed based on the attention cell input (see
Eq. 4.5). This is the default supergraph design. We compare different supergraph
designs in Section 4.5.5.

The connection weights and the network weights are learned jointly on training
videos. The entire search process of the differentiable method consumes a com-
putational cost similar to fully training one network on the training videos. For
example, training I3D with the found attention cells on Kinetics-600 takes about 2.5
days. Searching attention cells for I3D, i.e., training I3D with supergraphs, takes
about 3.5 days on Kinetics-600. The increase in the time is due to that supergraphs
consume more computation than the final attention cells.

When deriving the attention cell design from the learned connection weights,
the hyper-parameters α and β are set to α = 3, β = 2. Attention cells found by the
differentiable method do not have a fixed number of operations, which are deter-
mined by the connection weights and α and β. Each operation may receive up to
β feature maps and computes a weighted sum of these feature maps as its input.
We slightly revisit the combination procedure for cells found by the differentiable
method. Instead of combining all the operation output feature maps, we only com-
bine the output of the top α nodes (operations) with the highest weights in wsink.
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Table 4.8: Inference FLOPs on Kinetics-600.

Model Top-1 Top-5 GFLOPs
I3D [19] 75.58 92.93 1136
I3D+NL [154] 76.87 93.44 1305
I3D+Cell 77.86 93.75 1170
S3D [167] 76.15 93.22 656
S3D+NL [154] 77.56 93.68 825
S3D+Cell 78.51 93.88 692
I3D-R50 [154] 78.10 93.79 938
I3D-R50+Cell 79.83 94.37 1034

4.5.7.4 Comparison of FLOPs

We compare the inference FLOPs of all the models on Kinetics-600 in Table 4.8.
Note that although our cells contain multiple operations, the aforementioned pre-
processing applied on the cell input can effectively reduce the FLOPs consumed by
attention operations. As shown in Table 4.8, our cells only add a small amount of
computation to the backbone network and use fewer FLOPs than non-local blocks.
The FLOPs are computed when the input clip has 250 frames with spatial resolution
256× 256.

4.6 Conclusion

We propose a novel search space for spatiotemporal attention cells for the appli-
cation of video classification. We also propose a differentiable formulation of the
search space, allowing us to learn position-specific attention cell designs with zero
extra cost compared to learning a single position-agnostic attention cell. We show
the significance of our discovered attention cells on two large-scale video classifica-
tions benchmarks. The discovered attention cells also outperform non-local blocks
and demonstrate strong generalization performance when being applied to differ-
ent modalities, backbones, or datasets.
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Chapter 5

Wisdom of Committees: An
Overlooked Approach to Faster
and More Accurate Models

5.1 Introduction

Optimizing the efficiency of neural networks is important for real-world applica-
tions as they can only use limited computational resources and often have require-
ments on response time. There has been considerable work in this direction [59,
140, 183], but they mostly focus on designing novel network architectures that can
achieve a favorable speed-accuracy trade-off. Here, we do not present any novel
method or architecture design. Instead, we focus on analyzing the accuracy and
efficiency of a simple paradigm: committee-based models. We use the term “com-
mittee” to refer to model ensembles or cascades, which indicates that they are built
using multiple independent models.

Committee-based models have been extensively studied and used before deep
learning [14,45,121,147]. However, when comparing the efficiency of deep models,
committee-based models are rarely considered in recent work [59, 140, 183]. There
still lacks a systematic understanding of their efficiency in comparison with single
models – models that only use one network. Such an understanding is informative
for both researchers to push the frontier of efficient models and practitioners to
select model designs in real-world applications.

To fill this knowledge gap, we conduct a comprehensive analysis of the efficiency
of committee-based models. To highlight the practical benefit of committee-based
models, we intentionally choose the simplest possible method, which directly uses
off-the-shelf, independently pre-trained models to build ensembles or cascades. We
ensemble multiple pre-trained models via a simple average over their predictions
(Sec. 5.3). For cascades, we sequentially apply each model and use a simple heuris-
tic (e.g., maximum probability in the prediction) to determine when to exit from
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Figure 5.1: Committee-based models achieve a higher accuracy than single mod-
els on ImageNet while using fewer FLOPs. For example, although Inception-v4
(‘Incep-v4’) outperforms all single ResNet models, a ResNet cascade can still out-
perform Incep-v4 with fewer FLOPs.

the cascade (Sec. 5.4).
We show that even this method already outperforms state-of-the-art architec-

tures found by costly neural architecture search (NAS) methods. Note that this
method works with off-the-shelf models and does not use specialized techniques.
For example, it differs from Boosting [121] where each new model is conditioned
on previous ones, and does not require the weight generation mechanism in previ-
ous efficient ensemble methods [156]. This method does not require the training of
an early exit policy [13, 49] or the specially designed multi-scale architecture [61]
in previous work on building cascades.

To be clear, the contribution of this paper is not in the invention of model en-
sembles and cascades, as they have been known for decades, and is not in a new
proposed method to build them. Instead, it is in the thorough evaluation and com-
parison of committee-based models with commonly used model architectures. Our
analysis shows that committee-based models provide a simple complementary paradigm
to achieve superior efficiency without tuning the architecture. One can often im-
prove accuracy while reducing inference and training cost by building committees
out of existing networks.

Our findings generalize to a wide variety of tasks, including image classification,
video classification, and semantic segmentation, and hold true for various architec-
ture families: ViT [37], EfficientNet [140], ResNet [54], MobileNetV2 [120], and
X3D [41]. We summarize our findings as follows:

• Ensembles are more cost-effective than a single model in the large compu-
tation regime (Sec. 5.3). For example, an ensemble of two separately trained
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EfficientNet-B5 models matches B7 accuracy, a state-of-the-art ImageNet model,
while having almost 50% less FLOPs (20.5B vs. 37B).

• Cascades outperform single models in all computation regimes (Sec. 5.4&5.5).
Our cascade matches B7 accuracy while using on average 5.4x fewer FLOPs.
Cascades can also achieve a 2.3x speedup over ViT-L-384, a Transformer ar-
chitecture, while matching its accuracy on ImageNet.

• We further show that (1) the efficiency of cascades is evident in both FLOPs
and on-device latency and throughput (Sec. 5.5.1); (2) cascades can provide
a guarantee on worst-case FLOPs (Sec. 5.5.2); (3) one can build self-cascades
using a single model with multiple inference resolutions to achieve a signifi-
cant speedup (Sec. 5.7).

• Committee-based models are applicable beyond image classification (Sec. 5.8)
and outperform single models on the task of video classification and semantic
segmentation. Our cascade outperforms X3D-XL by 1.2% on Kinetics-600 [18]
while using fewer FLOPs.

5.2 Related Work

Efficient Neural Networks. There has been significant progress in designing effi-
cient neural networks. In early work, most efficient networks, such as MobileNet [59,
120] and ShuffleNet [58], were manually designed. Recent work started to use neu-
ral architectures search (NAS) to automatically learn efficient network designs [17,
22,139,140,190]. They mostly fcous on improving the efficiency of single models by
designing better architectures, while we explore committee-based models without
tuning the architecture.

Ensembles. Ensemble learning has been well studied in machine learning and
there have been many seminal works, such as Bagging [14], Boosting [121], and
AdaBoost [45]. Ensembles of neural networks have been used for many tasks, such
as image classification [62,138], machine translation [156], active learning [7], and
out-of-distribution robustness [44, 75, 157]. But the efficiency of model ensembles
has rarely been systematically investigated. Recent work indicated that ensembles
can be more efficient than single models for image classification [71,94]. Our work
further substantiates this claim through the analysis of modern architectures on
large-scale benchmarks.

Cascades. A large family of works have explored using cascades to speed up cer-
tain tasks. For example, the seminal work from [147] built a cascade of increasingly
complex classifiers to speed up face detection. Cascades have also been explored
in the context of deep neural networks. [13] reduced the average test-time cost by
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learning a policy to allow easy examples to early exit from a network. A similar idea
was also explored by [49]. [61] proposed a specially designed architecture Multi-
Scale DenseNet to better incorporate early exits into neural networks. Given a pool
of models, [133] presented an approximation algorithm to produce a cascade that
can preserve accuracy while reducing FLOPs and demonstrated improvement over
state-of-the-art NAS-based models on ImageNet. Different from previous work that
primarily focuses on developing new methods to build cascades, we show that even
the most straightforward method can already provide a significant speedup with-
out training an early exit policy [13, 49] or designing a specialized multi-scale ar-
chitecture [61].

Dynamic Neural Networks. Dynamic neural networks allocate computational re-
sources based on the input example, i.e., spending more computation on hard ex-
amples and less on easy ones [52]. For example, [122] trained a gating network to
determine what parts in a high-capacity model should be used for each example.
Recent work [146, 155, 163] explored learning a policy to dynamically select layers
or blocks to execute in ResNet based on the input image. Our analysis shows that
cascades of pre-trained models are actually a strong baseline for dynamic neural
networks.

5.3 Ensembles are Accurate, Efficient, and Fast to Train

Model ensembles are useful for improving accuracy, but the usage of multiple mod-
els also introduces extra computational cost. When the total computation is fixed,
which one will give a higher accuracy: single models or ensembles? The answer is
important for real-world applications but this question has rarely been systemati-
cally studied on modern architectures and large-scale benchmarks.

We investigate this question on ImageNet [118] with three architecture families:
EfficientNet [140], ResNet [54], and MobileNetV2 [120]. Each architecture family
contains a series of networks with different levels of accuracy and computational
cost. Within each family, we train a pool of models, compute the ensemble of differ-
ent combinations of models, and compare these ensembles with the single models
in the family.

For EfficientNet, we consider ensembles of two to four models of either the same
or different architectures. Note that we only try different combinations of architec-
tures used in the ensemble, but not the combinations of models. For example, when
an ensemble contains an EfficientNet-B5, while we have multiple B5 models avail-
able, we just randomly pick one but do not try all possible choices. The FLOPs range
of ResNet or MobileNetV2 models is relatively narrow compared with EfficientNet,
so we only consider ensembles of two models for ResNet and MobileNetV2.

We denote an ensemble ofn image classification models by {M1, . . . ,Mn}, where
Mi is the ith model. Given an image x, αi = Mi(x) is a vector representing the
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Figure 5.2: Ensembles work well in the large computation regime and cascades show
benefits in all computation regimes. These cascades are directly converted from en-
sembles without optimizing the choice of models (see Sec. 5.4). Black dots repre-
sent single models. Ensembles: Ensembles are more cost-effective than large sin-
gle models, e.g., EfficientNet-B5/B6/B7 and ResNet-152/200. Cascades: Converting
ensembles to cascades significantly reduces the FLOPs without hurting the full en-
semble accuracy (each star is on the left of a square).

logits for each class. To ensemble the n models, we compute the mean of logits1

αens = 1
n

∑
i αi and predicts the class for image x by applying argmax to αens. The

total computation of the ensemble is FLOPsens =
∑

i FLOPs(Mi), where FLOPs(·)
gives the FLOPs of a model.

We show the top-1 accuracy on ImageNet and FLOPs of single models and en-
sembles in Figure 5.2. Since there are many possible combinations of models to
ensemble, we only show those Pareto optimal ensembles in the figure.

We see that ensembles are more cost-effective than large single models, e.g.,
EfficientNet-B5/B6/B7 and ResNet-152/200. But in the small computation regime,
single models outperform ensembles. For example, the ensemble of 2 B5 matches B7
accuracy while using about 50% less FLOPs. However, ensembles use more FLOPs
than MobileNetV2 when they have a similar accuracy.

A possible explanation of why model ensembles are more powerful at large com-
putation than at small computation comes from the perspective of bias-variance
tradeoff. Large models usually have small bias but large variance, where the vari-
ance term dominates the test error. Therefore, ensembles are beneficial at large
computation as they can reduce the variance in prediction [14]. For small mod-
els, the bias term dominates the test error. Ensembles can reduce the variance, but
this cannot compensate the fact that the bias of small models is large. Therefore,
ensembles are less powerful at small computation.

Our analysis indicates that instead of using a large model, one should use an

1We note that the mean of probabilities is a more general choice since logits can be arbitrarily
scaled. In our experiments, we observe that they yield similar performance with the mean of logits
being marginally better. The findings in our work hold true no matter which choice is used.
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Table 5.1: Training time (TPUv3 days) of EfficientNet.

B0 B1 B2 B3 B4 B5 B6 B7
9 12 15 24 32 48 128 160

Table 5.2: Training time (TPU v3 days) of ensembles. We use the ‘+’ notation to
indicate the models in enmsebles. Ensembles are faster than single models in both
training and inference while achieve a similar accuracy.

Top-1 (%) FLOPs (B) Training
B6 83.7 19.1 128
B3+B4+B4 83.6 10.6 88
B7 84.1 37 160
B5+B5 84.1 20.5 96
B5+B5+B5 84.3 30.8 144

ensemble of multiple relatively smaller models, which would give similar perfor-
mance but with fewer FLOPs. In practice, model ensembles can be easily paral-
lelized (e.g., using multiple accelerators), which may provide further speedup for
inference. Moreover, often the total training cost of an ensemble is much lower than
that of an equally accurate single model as shown below.

5.3.1 Training Time of Ensembles

We now show that the total training cost of an ensemble if often lower than an
equally accurate single model. We show the training time of single EfficinetNet
models in Table 5.1. We use 32 TPUv3 cores to train B0 to B5, and 128 TPUv3 cores
to train B6 or B7. All the models are trained with the public official implementation
of EfficientNet. We choose the ensemble that matches the accuracy of B6 or B7 and
compute the total training time of the ensemble based on Table 5.1. As shown in
Table 5.2, the ensemble of 2 B5 can match the accuracy of B7 while being faster in
both training and inference.

5.4 From Ensembles to Cascades

In the above we have identified the scenarios where ensembles outperform or un-
derperform single models. Specifically, ensembles are not an ideal choice when only
a small amount of computation is allowed. In this section, we show that by simply
converting an ensemble to a cascade, one can significantly reduce the computation
and outperform single models in all computation regimes.
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Algorithm 4 Cascades
Input: Models {Mi}. Thresholds {ti}. Test image x.
for k = 1, 2, . . . , n do
αcas = 1

k

∑k
i=1 αi = 1

k

∑k
i=1Mi(x)

FLOPscas =
∑k

i=1 FLOPs(Mi)
Early exit if confidence score g(αcas) ≥ tk

end for
Return αcas and FLOPscas

Applying an ensemble is wasteful for easy examples where a subset of models
will give the correct answer. Cascades save computation via early exit - potentially
stopping and outputting an answer before all models are used. The total compu-
tation can be substantially reduced if we accurately determine when to exit from
cascades. For this purpose, we need a function to measure how likely a prediction
is correct. This function is termed confidence (more details in Sec. 5.4.1). A formal
procedure of cascades is provided in Algorithm 4. Note that our cascades also av-
erage the predictions of the models having been used so far. So for examples where
all models are used, the cascade effectively becomes an ensemble.

5.4.1 Confidence Function

Let g(·) : RN → R be the confidence function, which maps maps predicted log-
its α to a confidence score. The higher g(α) is, the more likely the prediction α is
correct. Previous work [64, 133] tried several simple metrics to indicate the predic-
tion confidence, such as the the maximum probability in the predicted distribution,
the gap between the top-2 logits or probabilities, and the (negative) entropy of the
distribution. As shown in Figure 5.3, all the metrics demonstrate reasonably good
performance on measuring the confidence of a prediction, i.e., estimating how likely
a prediction is correct. In the following experiments, we adopt the maximum prob-
ability metric, i.e., g(α) = max(softmax(α))2.

For a cascade of nmodels {Mi}, we also need (n−1) thresholds {ti} on the con-
fidence score, where we use ti to decide whether a prediction is confident enough to
exit after applying modelMi (see Algorithm 4). As we define g(·) as the maximum
probability, ti is in [0, 1]. A smaller ti indicates more images will be passed to the
next model Mi+1. A cascade will reduce to an ensemble if all the thresholds {ti}
are set to 1. tn is unneeded, since the cascade will stop after applying the last model
Mn, no matter how confident the prediction is.

We can flexibly control the trade-off between the computation and accuracy of

2As a side observation, when analyzing the confidence function, we notice that models in our
experiments are often slightly underconfident. This contradicts the common belief that deep neural
networks tend to be overconfident [51].
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Figure 5.3: Different metrics for the confidence function. For a EfficientNet-B0
model, we select the top-k% validation images with highest confidence scores and
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Figure 5.4: Cascades with different confidence thresholds. Each black dot is a sin-
gle model and each square is an ensemble of models. Each colored dot represents
a cascade with a specific t1(0 ≤ t1 ≤ 1). As t1 increases from 0 to 1, the cascade
uses more and more computation and changes from a single model (first model
in the cascade; t1 = 0) to the ensemble (t1 = 1). The plateau in each curve indi-
cates that the cascade can achieve a similar accuracy to the ensemble with much
less computation.

a cascade through thresholds {ti}. To understand how the thresholds influence a
cascade, we visualize several 2-model cascades in Figure 5.4. For each cascade, we
sweep t1 from 0 and 1 and plot the results. Note that all the curves in Figure 5.4
have a plateau, indicating that we can significantly reduce the average FLOPs with-
out hurting the accuracy if t1 is properly chosen. We select the thresholds {ti} on

82



held-out validation images according to the target FLOPs or validation accuracy. In
practice, we find such thresholds via grid search. Note that the thresholds are de-
termined after all models are trained. We only need the logits of validation images
to determine {ti}, so computing the cascade performance for a specific choice of
thresholds is fast, which makes grid search computationally possible.

5.4.2 Converting Ensembles to Cascades

For each ensemble in Figure 5.2, we convert it to a cascade that uses the same set
of models. During conversion, we set the confidence thresholds such that the cas-
cade performs similar to the ensemble while the FLOPs are minimized. By design
in cascades some inputs incur more FLOPs than others. So we report the average
FLOPs computed over all images in the test set.

We see that cascades consistently use less computation than the original ensem-
bles and outperform single models in all computation regimes and for all architec-
ture families. Taking 2 EfficientNet-B2 as an example (see Figure 5.2a), the ensem-
ble initially obtains a similar accuracy to B3 but uses more FLOPs. After converting
this ensemble to a cascade, we successfully reduce the average FLOPs to 1.3B (1.4x
speedup over B3) and still achieve B3 accuracy. Cascades also outperform small
MobileNetV2 models in Figure 5.2c.

5.5 Model Selection for Building Cascades

The cascades in Figure 5.2 do not optimize the choice of models and directly use
the set of models in the original ensembles. For best performance, we show that
one can design cascades to match a specific target FLOPs or accuracy by selecting
models to be used in the cascade.

Let M be the set of available models, e.g., models in the EfficientNet family.
Given a target FLOPs β, we select nmodelsM = {Mi ∈M} and confidence thresh-
olds T = {ti} by solving the following problem:

max
{Mi∈M},{ti}

Accuracy (C (M,T ))

s.t. FLOPs (C (M,T )) ≤ β,
(5.1)

where C (M,T ) is the cascade of models {Mi} with thresholds {ti}, Accuracy(·)
gives the validation accuracy of a cascade, and FLOPs(·) gives the average FLOPs.
Similarly, we can also build a cascade to match a target validation accuracy γ by
minimizing FLOPs (C (M,T )) with the constraint Accuracy (C (M,T )) ≥ γ.

Note that this optimization is done after all models inM were independently
trained. The optimization complexity is exponential in |M| and n, and the problem
will be challenging if |M| and n are large. In our experiments, |M| and n are not
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prohibitive. Therefore, we solve the optimization problem with exhaustive search.
One can also use more efficient procedures such as the algorithm described in [133].

Same as our analysis of ensembles, we do not search over different models of
the same architecture, but only search combination of architectures. Therefore, for
EfficientNet, |M| = 8 and n ≤ 4 and we have in total 4672 = (84 + 83 + 82) possible
combinations of models. Note that the search is cheap to do as it is conducted after
all the models are independently trained. No GPU training is involved in the search.
We pre-compute the predictions of each model on a held-out validation set before
search. During the search, we try possible models combinations by loading their
predictions. We can usually find optimal model combinations within a few CPU
hours.

In practice, we first train each EfficientNet model separately for 4 times and
pre-compute their predicted logits. Then for each possible combination of models,
we load the logits of models and determine the thresholds according to the target
FLOPs or accuracy. Finally, we choose the best cascade among all possible combi-
nations. Similar as above, we choose models and thresholds on held-out training
images for ImageNet experiments. No images from the ImageNet validation set are
used when we select models for a cascade.

For ResNet and MobileNetV2, we only tried 2-model cascades due to their rela-
tively narrow FLOPs range. Therefore, the number of possible model combinations
is very small (< 20). For ViT, we only tried 2 cascades: ViT-B-224 + ViT-L-224 and
ViT-B-384 + ViT-L-384.

5.5.1 Targeting for a Specific FLOPs or Accuracy

For each single EfficientNet, ResNet or MobileNetV2, we search for a cascade to
match its FLOPs (red squares in Figure 5.5a-5.5d) or its accuracy (green squares in
Figure 5.5a-5.5d). Notably, in addition to convolutional networks, we also consider
a Transformer architecture – ViT [37]. We build a cascade of ViT-Base and ViT-Large
to match the cost or accuracy of ViT-Large (Figure 5.5e). For ViT, we measure the
speedup in throughput (more details on throughput below).

When building cascades, we consider all networks in the same family as the set
of available models. The same model type is allowed to be used for multiple times
in a cascade but they will be different models trained separately. For ImageNet
experiments, the search is conducted on a small set of held-out training images and
cascades are evaluated on the original validation set.

Results in Figure 5.5 further substantiate our finding that cascades are more
efficient than single models in all computation regimes. For small models, we can
outperform MobileNetV2-1.0@224 by 1.4% using equivalent FLOPs. For large mod-
els, we can obtain 2.3x speedup over ViT-L-384 and 5.4x over EfficientNet-B7 while
matching their accuracy.

84



Accuracy
+1.1%

1.7x Speedup

B1

B2

B3

1.5x

1.3x

+1.2%

+1.0%

(a) EfficientNet (small computation)

Accuracy
+0.7%

5.4x Speedup

B5

B6

B7

4.7x

3.0x

+0.9%

+1.1%

(b) EfficientNet (large computation)

Accuracy
+1.3%2.1x Speedup

ResNet101

ResNet152
ResNet200

+1.3%

+1.4%

1.8x

1.5x

(c) ResNet

Accuracy
+1.1%

1.4x Speedup MobileNetV2
1.4@224

MobileNetV2
1.0@224

+1.4%

1.4x

(d) MobileNetV2

Accuracy
+1.1%

2.1x Speedup

ViT-L-224

ViT-L-384

2.3x

+1.0%

(e) ViT

Figure 5.5: Cascades of EfficientNet, ResNet, MobileNetV2 or ViT models on Ima-
geNet. Compared with single models, cascades can obtain a higher accuracy with
similar cost (red squares) or achieve a significant speedup while being equally accu-
rate (green squares; e.g., 5.4x speedup for B7). The benefit of cascades generalizes
to all four architecture families and all computation regimes. Numerical results
are also available in Table 5.3&5.4.

5.5.1.1 On-device Latency and Throughput

In the above, we mostly use average FLOPs to measure the computational cost. We
now report the latency and throughput of cascades on TPUv3 in Table 5.5&5.6 to

85



Table 5.3: Cascades of EfficientNet, ResNet or MobileNetV2 models on ImageNet.
This table contains the numerical results for Figure 5.5a-5.5d. Middle: Cascades ob-
tain a higher accuracy than single models when using similar FLOPs. Right: Cas-
cades achieve a similar accuracy to single models with significantly fewer FLOPs
(e.g., 5.4x fewer for B7). The benefit of cascades generalizes to all three convolu-
tional architecture families and all computation regimes.

Single Models Cascades - Similar FLOPs Cascades - Similar Accuracy

Top-1 (%) FLOPs (B) Top-1 (%) FLOPs (B) ∆Top-1 Top-1 (%) FLOPs (B) Speedup
EfficientNet

B1 79.1 0.69 80.1 0.67 1.0 79.3 0.54 1.3x
B2 80.0 1.0 81.2 1.0 1.2 80.1 0.67 1.5x
B3 81.3 1.8 82.4 1.8 1.1 81.4 1.1 1.7x
B4 82.5 4.4 83.7 4.1 1.2 82.6 2.0 2.2x
B5 83.3 10.3 84.4 10.2 1.1 83.4 3.4 3.0x
B6 83.7 19.1 84.6 17.5 0.9 83.7 4.1 4.7x
B7 84.1 37 84.8 39.0 0.7 84.2 6.9 5.4x

ResNet
R101 77.9 7.2 79.3 7.3 1.4 78.2 4.9 1.5x
R152 78.8 10.9 80.1 10.8 1.3 78.9 6.2 1.8x
R200 79.0 14.4 80.4 14.2 1.3 79.2 6.8 2.1x

MobileNetV2
1.0@160 68.8 0.154 69.5 0.153 0.6 69.1 0.146 1.1x
1.0@192 70.7 0.22 71.8 0.22 1.1 70.8 0.18 1.2x
1.0@224 71.8 0.30 73.2 0.30 1.4 71.8 0.22 1.4x
1.4@224 75.0 0.58 76.1 0.56 1.1 75.1 0.43 1.4x

Table 5.4: Cascades of ViT models on ImageNet. This table contains the numerical
results for Figure 5.5e. 224 or 384 indicates the image resolution the model is trained
on. Throughput is measured on NVIDIA RTX 3090. Our cascades can achieve a
1.0% higher accuracy than ViT-L-384 with a similar throughput or achieve a 2.3x
speedup over it while matching its accuracy. The benefit of cascades generalizes
to Transformer architectures.

Single Models Cascades - Similar Throughput Cascades - Similar Accuracy

Top-1 (%) Throughput (/s) Top-1 (%) Throughput (/s) ∆Top-1 Top-1 (%) Throughput (/s) Speedup
ViT-L-224 82.0 192 83.1 221 1.1 82.3 409 2.1x
ViT-L-384 85.0 54 86.0 69 1.0 85.2 125 2.3x

confirm that the reduction in FLOPs can translate to the real speedup on hardware.
The latency or throughput of a model is highly dependent on the batch size. So we
consider two scenarios: (1) online processing, where we use a fixed batch size 1,
and (2) offline processing, where we can batch the examples.

Online Processing. Cascades are useful for online processing with a fixed batch
size 1. Using batch size 1 is sub-optimal for the utilization of accelerators like GPU
or TPU, but it still happens in some real-world applications, e.g., mobile phone cam-
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Table 5.5: Average latency on TPUv3 for the case of online processing with batch
size 1. Cascades are much faster than single models in terms of the average latency
while being similarly accurate.

Top-1 (%) Latency (ms) Speedup
B1 79.1 3.7
Cascade* 79.3 3.0 1.2x

B2 80.0 5.2
Cascade* 80.1 3.7 1.4x

B3 81.3 9.7
Cascade* 81.4 5.9 1.7x

B4 82.5 16.6
Cascade* 82.6 9.6 1.7x

B5 83.3 27.2
Cascade* 83.4 14.3 1.9x

B6 83.7 57.1
Cascade* 83.7 15.1 3.8x

B7 84.1 126.6
Cascade* 84.2 23.2 5.5x
* The cascade that matches the accuracy of EfficientNet-B1 to

B7 in Figure 5.5 or the right column of Table 5.3.

eras processing a single image [148] or servers that need to rapidly return the result
without waiting for enough queries to form a batch. We report the average latency
of cascades on TPUv3 with batch size 1 in Table 5.5. Cascades are up to 5.5x faster
than single models with comparable accuracy.

Offline Processing. Cascades are also useful for offline processing of large-scale
data. For example, when processing all frames in a large video dataset, we can first
apply the first model in the cascade to all frames, and then select a subset of frames
based on the prediction confidence to apply following models in the cascade. In this
way all the processing can be batched to fully utilize the accelerators. We report the
throughput of cascades on TPUv3 in Table 5.6, which is measured as the number
of images processed per second. We use batch size 16 when running models on
TPUv3 for the case of offline processing. As shown in Table 5.6, cascades achieve
a much higher throughput than single models while being equally accurate. For
clarification, only the throughput of ViT in Table 5.4 is measured on RTX 3090 while
the throughput for other models is measured on TPUv3.

87



Table 5.6: Throughput on TPUv3 for the case of offline processing. Throughput is
measured as the number of images processed per second. Cascades achieve a much
larger throughput than single models while being equally accurate.

Top-1 (%) Throughput (/s) Speedup
B1 79.1 1436
Cascade* 79.3 1798 1.3x

B2 80.0 1156
Cascade* 80.1 1509 1.3x

B3 81.3 767
Cascade* 81.4 1111 1.4x

B4 82.5 408
Cascade* 82.6 656 1.6x

B5 83.3 220
Cascade* 83.4 453 2.1x

B6 83.7 138
Cascade* 83.7 415 3.0x

B7 84.1 81
Cascade* 84.2 280 3.5x
* The cascade that matches the accuracy of EfficientNet-B1 to B7

in Figure 5.5 or the right column of Table 5.3.

Table 5.7: Comparison with SOTA NAS methods. Cascades outperform novel ar-
chitectures found by costly NAS methods.

Top-1 (%) FLOPs (B)
BigNASModel-L [178] 79.5 0.59
OFALarge [15] 80.0 0.60
Cream-L [106] 80.0 0.60
Cascade* 80.1 0.67
BigNASModel-XL [178] 80.9 1.0
Cascade* 81.2 1.0
* The cascade that matches B1 or B2 FLOPs in Figure 5.5a.

5.5.1.2 Comparison with NAS

We also compare with state-of-the-art NAS methods, e.g., BigNAS [178], OFA [15]
and Cream [106], which can find architectures better than EfficientNet. But as
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Table 5.8: Cascades can be built with a guarantee on worst-case FLOPs. We use
‘with’ or ‘w/o’ to indicate whether a cascade can provide such a guarantee or not.
Cascades with such a guarantee are assured to use fewer FLOPs than single models
in the worst-case scenario, and also achieve a considerable speedup in average-case
FLOPs.

Average-case Worst-case Average-case Average-case Worst-case Average-case
Top-1 (%) FLOPs (B) FLOPs (B) Speedup Top-1 (%) FLOPs (B) FLOPs (B) Speedup

B5 83.3 10.3 10.3 B6 83.7 19.1 19.1
w/o* 83.4 3.4 14.2 3.0x w/o* 83.7 4.1 25.9 4.7x
with 83.3 3.6 9.8 2.9x with 83.7 4.2 15.0 4.5x
* Cascades from Figure 5.5b.

shown in Table 5.7, a simple cascade of EfficientNet without tuning the architecture
already outperforms these sophisticated NAS methods. The strong performance
and simplicity of cascades should motivate future research to include them as a
strong baseline when proposing novel architectures.

5.5.2 Guarantee on Worst-case FLOPs

Up until now we have been measuring the computation of a cascade using the aver-
age FLOPs across all images. But for some images, it is possible that all the models
in the cascade need to be applied. In this case, the average FLOPs cannot fully indi-
cate the computational cost of a cascade. For example, the cascade that matches B5
or B6 accuracy in Figure 5.5b has higher worst-case FLOPs than the comparable sin-
gle models (see ‘w/o’ in Table 5.8). Therefore, we now consider worst-case FLOPs
of a cascade, the sum of FLOPs of all models in the cascade.

We can easily find cascades with a guarantee on worst-case FLOPs by adding
one more constraint:

∑
i FLOPs(Mi) ≤ βworst, where βworst is the upper bound on

the worst-case FLOPs of the cascade. With the new condition, we re-select models
in the cascades to match of accuracy of B5 or B6. As shown in Table 5.8, compared
with single models, the new cascades achieve a significant speedup in average-case
FLOPs and also ensure its worst-case FLOPs are smaller. The new cascades with the
guarantee on worst-case FLOPs are useful for applications with strict requirement
on response time.

5.5.3 Exit Ratios

To better understand how a cascade works, we compute the exit ratio of the cascade,
i.e., the percentage of images that exit from the cascade at each stage. Specifically,
we choose the cascades in Table 5.3&5.8 that match the accuracy of B1 to B7 and
report their exit ratios in Table 5.9. For all the cascades in Table 5.9, most images
only consume the cost of the first model in the cascade and only a few images have
to use all the models. For example, the cascade above that matches B7 accuracy
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Table 5.9: Exit ratios of cascades. We use the ‘+’ notation to indicate the models in
cascades.

Exit Ratio (%) at Each Stage

Top-1 (%) FLOPs (B) Model 1 Model 2 Model 3 Model 4
B1 79.1 0.69
B0+B1 79.3 0.54 78.7 21.3
B2 80.0 1.0
B0+B1+B3 80.1 0.67 73.2 21.4 5.4
B3 81.3 1.8
B0+B3+B3 81.4 1.1 68.0 26.4 5.7
B4 82.5 4.4
B1+B3+B4 82.6 2.0 67.9 15.3 16.8
B5 83.3 10.3
B2+B4+B4+B4 83.4 3.4 67.6 21.2 0.0 11.2
B2+B4+B4* 83.3 3.6 57.7 26.0 16.3
B6 83.7 19.1
B2+B4+B5+B5 83.7 4.1 67.6 21.2 5.9 5.3
B3+B4+B4+B4* 83.7 4.2 67.3 16.2 10.9 5.6
B7 84.1 37
B3+B5+B5+B5 84.2 6.9 67.3 21.6 5.6 5.5
* Cascades from Table 5.8 with a guarantee on worst-case FLOPs.

contains four models: [B3, B5, B5, B5]. In this cascade, 67.3% images only consume
the cost of B3 and only 5.5% images use all four models. This saves a large amount of
computation compared with using B7 for all the images. This shows that cascades
are able to allocate fewer resources to easy images and explains the speedup of
cascades over single models.

5.5.4 Cascades can be Scaled Up

One appealing property of single models is that they can be easily scaled up or
down based on the available computational resources one has. We show that such
property is also applicable to cascades, i.e., we can scale up a base cascade to re-
spect different FLOPs constraints. This avoids the model selection procedure when
designing cascades for different FLOPs, which is required for cascades in Table 5.3.

Specifically, we build a 3-model cascade to match the FLOPs of EfficientNet-B0.
We call this cascade C0 (see below for details of building C0). Then, simply by
scaling up the architectures in C0, we obtain a family of cascades C0 to C7 that have
increasing FLOPs and accuracy. The models in C0 are from the EfficientNet family.
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Table 5.10: A Family of Cascades C0 to C7. C0 to C7 significantly outperform sin-
gle EfficientNet models in all computation regimes. C1 and C2 also compare fa-
vorably with state-of-the-art NAS methods, such as BigNAS [178], OFA [15] and
Cream [106]. This shows that the cascades can also be scaled up or down to respect
different FLOPs constraints as single models do. This is helpful for avoiding the
model selection procedure when designing cascades for different FLOPs.

Model Top-1 (%) FLOPs (B) ∆Top-1 Model Top-1 (%) FLOPs (B) ∆Top-1
C0 78.1 0.41 C3 82.2 1.8
EfficientNet-B0 77.1 0.39 1.0 EfficientNet-B3 81.3 1.8 0.9
C1 80.3 0.71 C4 83.7 4.2
EfficientNet-B1 79.1 0.69 1.2 EfficientNet-B4 82.5 4.4 1.2
BigNASModel-L 79.5 0.59 0.8 C5 84.3 10.2
OFALarge 80.0 0.60 0.3 EfficientNet-B5 83.3 10.3 1.0
Cream-L 80.0 0.60 0.3 C6 84.6 18.7
C2 81.2 1.0 EfficientNet-B6 83.7 19.1 0.9
EfficientNet-B2 80.0 1.0 1.2 C7 84.8 32.6
BigNASModel-XL 80.9 1.0 0.3 EfficientNet-B7 84.1 37 0.7

The results of C0 to C7 in Table 5.10 show that simply scaling up C0 gives us a family
of cascades that consistently outperform single models in all computation regimes.
This finding enhances the practical usefulness of cascades as one can select cascades
from this family based on available resources, without worrying about what models
should be used in the cascade.

Details of building C0. The networks in EfficientNet family are obtained by scal-
ing up the depth, width and resolution of B0. The scaling factors for depth, width
and resolution are defined as d = αφ, w = βφ and r = γφ, respectively, where
α = 1.2, β = 1.1 and γ = 1.15, as suggested in Tan et al. [140]. One can control the
network size by changing φ. For example, φ = 0 gives B0, φ = 1 gives B2, and φ = 7
gives B7.

We build a 3-model cascade C0 to match the FLOPs of EfficientNet-B0 by solving
Eq. 5.1 on held-out training images from ImageNet. When building C0, we consider
13 networks from EfficientNet family. As we want C0 to use similar FLOPs to B0,
we make sure the 13 networks include both networks smaller than B0 and networks
larger than B0. Their φ are set to -4.0, -3.0, -2.0, -1.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.50,
1.75, 2.0, respectively.

The φ of the three models in C0 are -2.0, 0.0 and 0.75. Then simply scaling up
the architectures in C0, i.e., increasing the φ of each model in C0, gives us a family
of cascades C0 to C7 that have increasing FLOPs and accuracy. The thresholds in
C0 to C7 are determined such that their FLOPs are similar to B0 to B7.

91



5.6 Model Pool Details and Analysis

5.6.1 Details of ImageNet Models

In the previous analysis of the efficiency of ensembles or cascades on ImageNet, we
consider four architecture families: EfficientNet [140], ResNet [54], MobileNetV2 [120],
and ViT [37]. All the single models are independently trained with their original
training procedure. We do not change the training schedule or any other hyper-
parameters.

• The EfficientNet family contains 8 architectures (EfficientNet-B0 to B7). We
train each architecture separately for 4 times with the official open-source im-
plementation3 provided by the authors. So, in total there are 32 EfficientNet
models.

• For ResNet, we consider 4 architectures (ResNet-50/101/152/200) and train
each architecture for 2 times using an open-source TPU implementation4. There
are 8 ResNet models in total.

• For MobileNetV2, we directly download the pre-trained checkpoints from its
official open-source implementation5. We use 5 MobileNetV2 models: MobileNetV2-
0.75@160, 1.0@160, 1.0@192, 1.0@224, and 1.4@224. Each model is represented
in the form of w@r, where w is the width multiplier and r is the image reso-
lution.

• For ViT, we directly use the pre-trained checkpoints provided by the Hugging
Face Team6. We use 4 ViT models: ViT-B-224, ViT-L-224, ViT-B-384, and ViT-
L-384.

Training each EfficientNet architecture for 4 times (in total 32 models) may sound
computationally expensive. We note that it is unnecessary to train each architecture
for 4 times to find a well-performing ensemble or cascade. We train a large pool of
EfficientNet models mainly for the purpose of analysis so that we can try a diverse
range of model combinations, e.g., the cascade of 4 EfficientNet-B5. We analyze the
influence of the size and diversity of the model pool in the following text.

5.6.2 Number of Models in Cascades

We study the influence of the number of models in cascades on the performance.
Concretely, we sweep the target FLOPs from 1 to 40 and find cascades of 2, 3 or 4
models from the EfficientNet family. As shown in Figure 5.6, the performance of

3https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
4https://github.com/tensorflow/tpu/tree/master/models/official/resnet
5https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
6For example, ViT-B-224: https://huggingface.co/google/vit-base-patch16-224
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Figure 5.6: Impact of the number of models in cascades.

cascades keeps improving as the number of models increases. We see a big gap be-
tween 2-model cascades and 3-model cascades, but increasing the number of mod-
els from 3 to 4 demonstrates a diminishing return.

As mentioned above, for EfficientNet cascades, we tried in total 4672 = (84 +
83 + 82) possible combinations of models. Since 3-model cascades can obtain very
close performance to 4-model cascades, one could try much fewer combinations to
obtain similar results.

5.6.3 Size of the Model Pool

As mentioned above, we train each EfficientNet architecture for 4 times so that we
can try a diverse range of model combinations. We now empirically show that
naively adding more models of the same architecture to the pool only has a small
influence on the performance of ensembles or cascades.

We train 8 EfficientNet-B5 models separately and build 2-B5 ensembles or cas-
cades using any two of these models. The FLOPs of these 2-B5 ensembles are the
same (20.5B). For each cascade, we tune the confidence threshold such that the cas-
cade achieves a similar accuracy to the full ensemble. We show the max, min, mean,
and standard deviation of the performance of these different ensembles or cascades
in Table 5.11 and observe that the performance variation is small. Therefore, we con-
clude that adding more models of the same architecture only has modest influence
on the performance.

5.6.4 Diversity of the Model Pool

We study the influence of the diversity of architectures in the model pool on the
performance. We compare cascades of models of same architectures and cascades
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Table 5.11: Max, min, mean, and standard deviation of the performance of 8 single
B5 models, 28 possible 2-B5 ensembles, and 56 possible 2-B5 cascades.

max min mean std
Single Model
Accuracy (%) 83.40 83.29 83.34 0.04
2-B5 Ensembles
Accuracy (%) 84.18 83.97 84.10 0.05
2-B5 Cascades
Accuracy (%) 84.17 83.96 84.09 0.05
FLOPs (B) 13.35 12.32 12.62 0.29

Table 5.12: Cascades of models of same architectures vs. Cascades of models of
different architectures. The ‘+’ notation indicates the models used in cascades.

Top-1 (%) FLOPs (B) Speedup
B4 82.5 4.4
B3+B3+B3 82.6 2.7 1.6x
B1+B3+B4 82.6 2.0 2.2x

B5 83.3 10.3
B4+B4 83.3 5.1 2.1x
B2+B4+B4+B4 83.4 3.4 3.0x

B6 83.7 19.1
B4+B4+B4 83.8 6.0 3.2x
B2+B4+B5+B5 83.7 4.1 4.7x

B7 84.1 37
B5+B5 84.1 13.1 2.8x
B3+B5+B5+B5 84.2 6.9 5.4x

of models of different architectures in Tables 5.12. As shown in Table 5.12, while
cascades of same-architecture models can already significantly reduce the FLOPs
compared with a similarly accurate single model, adding more variations in the
architecture can significantly improve the performance of cascades.

5.7 Self-cascades

Cascades typically contain multiple models. This requires training multiple models
and combining them after training. What about when only one model is available?
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Table 5.13: Self-cascades. In the column of self-cascades, the two numbers represent
the two resolutions r1 and r2 used in the cascade. Self-cascades use fewer FLOPs
than comparable single models.

EfficientNet Top-1 (%) FLOPs (B) Self-cascades Top-1 (%) FLOPs (B) Speedup
B2 80.0 1.0 B1-240-300 80.1 0.85 1.2x
B3 81.3 1.8 B2-260-380 81.3 1.6 1.2x
B4 82.5 4.4 B3-300-456 82.5 2.7 1.7x
B5 83.3 10.3 B4-380-600 83.4 6.0 1.7x
B6 83.7 19.1 B5-456-600 83.8 12.0 1.6x
B7 84.1 37 B6-528-600 84.1 22.8 1.6x

We demonstrate that one can convert a single model into a cascade by passing the
same input image at different resolutions to the model. Here, we leverage the fact
that resizing an image to a higher resolution than the model is trained on often
yields a higher accuracy [143] at the cost of more computation. We call such cas-
cades as “self-cascades” since these cascade only contain the model itself.

Given a model M , we build a 2-model cascade, where the first model is apply-
ing M at resolution r1 and the second model is applying M at a higher resolution
r2(r2 > r1). We build self-cascades using EfficientNet models. Since each Efficient-
Net is defined with a specific resolution (e.g., 240 for B1), we set r1 to its original
resolution and set r2 to a higher resolution. We set the confidence threshold such
that the self-cascade matches the accuracy of a single model.

Table 5.13 shows that self-cascades easily outperform single models, i.e., obtain-
ing a similar accuracy with fewer FLOPs. Table 5.13 also suggests that if we want
to obtain B7 accuracy, we can train a B6 model and then build a self-cascade, which
not only uses much fewer FLOPs during inference, but also takes much shorter time
to train.

Self-cascades provide a way to convert one single model to a cascade which will
be more efficient than the original single model. The conversion is almost free and
does not require training any additional models. They are useful when one does not
have resources to train additional models or the training data is unavailable (e.g.,
the model is downloaded).

5.8 Applicability beyond Image Classification

We now demonstrate that the benefit of cascades generalizes beyond image classi-
fication.
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Table 5.14: Cascades of X3D models on Kinetics-600. We outperform X3D-XL by
1.2%.

Single Models Cascades - Similar FLOPs Cascades - Similar Accuracy

Top-1 (%) FLOPs (B) Top-1 (%) FLOPs (B) ∆Top-1 Top-1 (%) FLOPs (B) Speedup
X3D-M 78.8 6.2 × 30 80.3 5.7 × 30 1.5 79.1 3.8 × 30 1.6x
X3D-L 80.6 24.8 × 30 82.7 24.6 × 30 2.1 80.8 7.9 × 30 3.2x
X3D-XL 81.9 48.4 × 30 83.1 38.1 × 30 1.2 81.9 13.0 × 30 3.7x

Table 5.15: Cascades of DeepLabv3 models on Cityscapes.

mIoU FLOPs (B) Speedup
ResNet-50 77.1 348 -
ResNet-101 78.1 507 -
Cascade - full 78.4 568 0.9x
Cascade - s = 512 78.1 439 1.2x
Cascade - s = 128 78.2 398 1.3x

5.8.1 Video Classification

Similar to image classification, a video classification model outputs a vector of logits
over possible classes. We use the same procedure as above to build cascades of
video classification models.

We consider the X3D [41] architecture family for video classification, which is
the state-of-the-art in terms of both the accuracy and efficiency. The X3D family
contains a series of models of different sizes. Specifically, we build cascades of X3D
models to match the FLOPs or accuracy of X3D-M, X3D-L or X3D-XL on Kinetics-
600 [18].

The results are summarized in Table 5.14, where cascades significantly outper-
form the original X3D models. Following X3D [41], we sample 30 clips from each
input video when evaluating X3D models on Kinetics-600. The 30 clips are the com-
bination of 10 uniformly sampled temporal crops and 3 spatial crops. The final pre-
diction is the mean of all individual predictions. Therefore, we include ‘×30’ in
Table 5.14. Our cascade outperforms X3D-XL, a state-of-the-art video classification
model, by 1.2% while using fewer average FLOPs. Our cascade can also match the
accuracy of X3D-XL with 3.7x fewer average FLOPs.

5.8.2 Semantic Segmentation

In semantic segmentation, models predict a vector of logits for each pixel in the
image. This differs from image classification, where the model makes a single pre-
diction for the entire image. We therefore revisit the confidence function definition
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to handle such dense prediction tasks.
Similar to before, we use the maximum probability to measure the confidence

of the prediction for a single pixel p, i.e., g(αp) = max(softmax(αp)), where αp is the
predicted logits for pixel p. Next, we need a function gdense(·) to rate the confidence
of the dense prediction for an image, so that we can decide whether to apply the
next model to this image based on this confidence score. For this purpose, we define
gdense(·) as the average confidence score of all the pixels in the image: gdense(R) =
1
|R|
∑

p∈R g(αp), where R represents the input image.
In a cascade of segmentation models, we decide whether to pass an image R

to the next model based on gdense(·). Since the difficulty to label different parts in
one image varies significantly, e.g., roads are easier to segment than traffic lights,
making a single decision for the entire image can be inaccurate and leads to a waste
of computation. Therefore, in practice, we divide an image into grids and decide
whether to pass each grid to the next model separately.

We conduct experiments on Cityscapes [29] and use mean IoU (mIoU) as the
metric. We build a cascade of DeepLabv3-ResNet-50 and DeepLabv3-ResNet-101 [25]
and report the reults in Table 5.15. s is the size of the grid. The full image resolution
is 1024×2048, so s = 512 means the image is divided into 8 grids. If we operate on
the full image level (‘full’), the cascade will use more FLOPs than ResNet-101. But
if operating on the grid level, the cascade can successfully reduce the computation
without hurting the performance. For example, the smaller grid size (‘s = 128’)
yields 1.3x reduction in FLOPs while matching the mIoU of ResNet-101.

5.9 Conclusion

We show that committee-based models, i.e., model ensembles or cascades, provide
a simple complementary paradigm to obtain efficient models without tuning the
architecture. Notably, cascades can match or exceed the accuracy of state-of-the-art
models on a variety of tasks while being drastically more efficient. Moreover, the
speedup of model cascades is evident in both FLOPs and on-device latency and
throughput. The fact that these simple committee-based models outperform so-
phisticated NAS methods, as well as manually designed architectures, should mo-
tivate future research to include them as strong baselines whenever presenting a
new architecture. For practitioners, committee-based models outline a simple pro-
cedure to improve accuracy while maintaining efficiency that only needs off-the-
shelf models.
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Chapter 6

Cost-Aware Evaluation and Model
Scaling for LiDAR-Based 3D
Object Detection

6.1 Introduction

LiDAR-based 3D object detection is essential for autonomous driving. Existing re-
search efforts have proposed a diverse range of 3D detectors, where point clouds
are organized in various formats (e.g., point-based [110, 125], grid-based [76, 170,
177], range view [12, 40], or hybrid [31, 123, 124] representation) and processed
by different architecture components (e.g., PointNet [111, 112], 3D sparse convo-
lution [48], or 2D convolution). We observe a significant boost in the detection
performance. For example, the Average precision (AP) for vehicle detection on the
Waymo Open Dataset [1] has been improved from 56.62% (PointPillars [76]) to
79.25% (PV-RCNN++ [124]) in just three years!

However, despite the promising empirical performance, we make a somewhat
worrisome observation on the current state of 3D detection research: the computa-
tional cost (e.g., inference latency) is usually not controlled during the comparison
of different detectors. Recent 3D detection methods tend to emphasize and attribute
the performance gain to their novel architecture design. But it is unclear whether
the proposed detectors are faster or slower than the baselines they are comparing
to.

Why are we worried about this observation? We note that when developing ar-
chitectures on ImageNet [118], it is common practice to compare them under the
same cost [91, 93, 114, 140, 150, 152]. But this has yet to be the case for 3D object de-
tection. Since simply scaling up an architecture can already significantly boost the
accuracy [5,140], it is unfair to compare different architectures without controlling
the cost. Such an unfair comparison makes it unclear whether the performance gain
in recent 3D detection methods is actually brought by their proposed architectural

98



changes or simply due to the usage of more computation. This can cause misleading
conclusions on the contribution of different architecture components.

Addressing the unfair comparison issue is the basis for us to know the true con-
tribution of the diverse architecture components used in existing methods. This is
also important for future research to further push the frontier of 3D detection. Fully
addressing this issue surely requires a community-wide effort. We take a step for-
ward by analyzing the performance of a simple grid-based one-stage detector, i.e.,
SECOND [170], under different costs by scaling its original architecture.

We choose SECOND for the following reasons: (1) SECOND is a widely-used
baseline and generally believed to have been significantly outperformed; (2) SEC-
OND has nice open-source implementation1 available; and (3) most importantly,
SECOND is the common part of several high-performing two-stage detectors (e.g.,
PV-RCNN++ [124] and Voxel R-CNN [31]), where SECOND is adopted as their
first stage to generate region proposals. Studying the performance of SECOND can
immediately inform us about whether these sophisticated second stage detectors
are necessary to achieve competitive detection performance.

In order to analyze the performance of SECOND under different costs, we study
different choices to scale its backbone. We show that increasing the pre-head reso-
lution, i.e., the spatial dimension of the feature map being passed to the detection
head, is usually better than just increasing the network depth or width.

Then we compare the family of scaled SECOND against recent 3D detection
methods. The results are surprising. We find that, SECOND can easily outper-
form most recent 3D detection methods after being scaled up. Notably, scaled SEC-
OND can match the performance of PV-RCNN++, the current state-of-the-art on
the Waymo Open Dataset, if allowed to use a similar inference latency. Scaled SEC-
OND also easily outperforms many recent 3D detection methods published during
the past year. Our results indicate that the gain brought by the architectural in-
novation in many recent methods is not as significant as what was shown in their
papers.

We summarize our contributions as follows: (1) We point out the vast impor-
tance of comparing different 3D detectors under the same cost, which may sound
obvious but was overlooked in the recent literature. (2) We provide an extensive
analysis on how to scale up the backbone of grid-based 3D detectors, e.g., SECOND,
and find that increasing the pre-head resolution is a reliable source for better perfor-
mance. (3) We introduce the family of scaled SECOND by scaling up the original
backbone of SECOND and conduct a cost-aware comparison of scaled SECOND
against recent 3D detection methods. Our comparison leads to a surprising obser-
vation: simply scaling the backbone in SECOND can already match the state-of-the-
art performance on the Waymo Open Dataset.

1We refer to the open-source implementation in OpenPCDet [142].
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6.2 Related Work

6.2.1 LiDAR-Based 3D Object Detection

Point clouds captured by LiDAR sensor are irregular. This makes it difficult to di-
rectly apply traditional convolutional architectures to point clouds, which have been
successful for images and videos but require the input data to be organized in the
format of regular grids [84]. Several different ways have been proposed to address
this issue. Following the categorization of 3D detectors in PV-RCNN++ [124], we
briefly review existing 3D detection methods based on how they represent and pro-
cess the point cloud.

Point-based Representation. This line of work treats point clouds as unordered
point sets and directly process the raw point cloud. Most of them [108–110, 125,
173, 174] adopted PointNet or its variant [111, 112] as the backbone. For exam-
ple, PointRCNN [125] proposed to first generate 3D proposals based on the fore-
ground point segmentation given by a PointNet++ [112] network, and then further
refine the 3D bounding boxes via point cloud region pooling. STD [174] also used
PointNet++ to extract point features to generate proposals in a bottom-up fashion.
LiDAR R-CNN [84] assumed that a set of 3D proposals had been generated and
proposed a second-stage detector based on PointNet to refine the proposals. Point-
GNN [127] explored using graph neural networks to encode the point cloud by
constructing a fixed radius near-neighbors graph. Pan et al. [103] proposed Point-
Former, a Transformer architecture for 3D point clouds, to serve as the backbone in
point-based detectors. Point-based representation can fully reserve the 3D structure
and fine details of the point cloud. But the nearest neighbor search operation used
in PointNet or PointNet++ variant is computationally prohibitive as the number
of points increases. While the efficiency issue can be partially mitigated by down-
sampling the point cloud (e.g., only keeping 16384 points [125]), the downsam-
pling inevitably brings a significant performance drop. This limits the application
of point-based detectors to large-scale scenes [84].

Grid-based Representation. To deal with the irregularity of point clouds, previ-
ous work proposed to divide point clouds into regular grids, e.g., voxels, pillars, and
bird’s-eye view (BEV), to make it possible to apply convolutional operations. Voxel-
Net [188] partitioned the space into equally spaced voxels, applied PointNet [111]
in each voxel to generate voxel features, and then used dense 3D convolution to
further aggregate the spatial context. SECOND [170] improved upon VoxleNet by
using 3D sparse convolution [48] and removing the PointNet. PointPillars [76] pro-
posed to organize the point cloud as pillars (vertical columns) to improve the voxel
backbone efficiency. Voxel features or pillar features are often projected onto the
ground plane, i.e., BEV, before being passed to the detection head, where 2D convo-
lution can be readily applied. PIXOR [172] directly represented the input as a set of
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2D BEV maps without using 3D voxel grids and used 2D convolutional networks as
the backbone. Given BEV feature maps, CenterPoint [177] proposed a center-based
detection head for 3D object detection without pre-defining axis-aligned anchors.
The grid-based representation makes it easy to apply convolutional operations, but
suffers from the quantization error caused by dividing the space into regular grids,
which can limit the detection performance, especially for distant objects with a few
points.

Range View Representation. Range view is the native representation of LiDAR
data and can be efficiently processed by existing 2D convolutional architectures [100].
VeloFCN [77] is the pioneering work in this line, where they designed a fully convo-
lutional network to detect 3D objects from range images. LaserNet [100] also used
a fully convolutional network as the backbone. RCD [12] proposed a novel range-
conditioned dilation layer to account for the scale variation of objects in range im-
ages. RangeDet [40] proposed several strategies to improve pure rage-view-based
object detection and achieved comparable performance with state-of-the-art meth-
ods. Challenges of using range view representation include dealing with scale vari-
ation and occlusion [100].

Hybrid Representation. Since different representations have their own pros and
cons, previous methods [26, 50, 74, 86, 123, 124, 136, 187] also explored combining
multiple representations of the point cloud. For example, MVF [26] proposed a
novel multi-view fusion algorithm to effectively use BEV and range view. M3DETR [50]
explored fusing multi-representation features from points, voxels and BEV with
Transformer. Shi et al. [123] proposed PV-RCNN, a two-stage detection framework
that takes the advantage of both the voxel-based and point-based methods. Its ex-
tension PV-RCNN++ [124] achieved state-of-the-art performance on the Waymo
Open Dataset.

6.2.2 Characterizing Architectures

Pursing the ImageNet [118] challenge probably motivated the most amount of ef-
forts on designing novel architectures [37,54,59,73,138,140,183] in computer vision.
ImageNet classification architectures also generalized well to other tasks, such as
detection [65] and segmentation [24]. We note that when intending to show a novel
architecture is more accurate than previous ones on ImageNet, the common prac-
tice is to ensure that the proposed architecture use similar computational cost with
the baselines2 [91, 93, 114, 140, 150, 152]. For example, RegNet [114] considered a
wide range of computation regimes and conducted the comparison of architectures
within each regime, e.g., the mobile regime where all the architectures are at about

2Equivalently, it is also common in practice to show the proposed architecture can achieve compa-
rable accuracy with less cost.
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(CNN)
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Point Cloud Predicted Objects

Figure 6.1: Main components in a LiDAR-based 3D object detector. We list examples
choices for a component in the bracket but there could be other choices.

Table 6.1: Component Overview of Relevant Detectors.
3D Backbone Detection Head Second Stage

†SECOND-Anchor [170] Voxel Anchor 7
‡SECOND-Center Voxel Center 7

PointPillars [76] Pillar Anchor 7

CenterPoint [177] Pillar / Voxel Center 3

PV-RCNN [123] Voxel Anchor / Center 3

PV-RCNN++ [124] Voxel Anchor / Center 3

† SECOND-Anchor is the original SECOND method that uses the anchor head.
‡ SECOND-Center is equivalent to the first stage of CenterPoint.

600M FLOPs. The very recent Swin Transformer [93] reported model parameters,
FLOPs, and throughput in their empirical evaluation.

Previous results [5,140] have demonstrated that scaling up an architecture, e.g.,
increasing the number of layers or channels, can significantly improve the accuracy.
Therefore, comparing architectures of different costs is unfair and cannot justify
that the performance gain is due to the novel architecture design. Unfortunately,
the aforementioned good practice has not yet been ubiquitously adopted in 3D ob-
ject detection. Our work is inspired by this good practice and aims to quantify how
much performance gain in state-of-the-art 3D detection methods is due to the ar-
chitectural innovation.

6.3 Architecture Overview

This section reviews architecture details of relevant detection methods to provide
background for our analysis. We illustrate a detector as the combination of a back-
bone, a detection head, and optionally a second stage in Fig. 6.1. The backbone is
further divided into a 3D one and a 2D one. Table 6.1 gives a component overview
of relevant detectors and we describe more details as follows.
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Figure 6.2: Backbone Architecture of SECOND (A0 in Table 6.2). Assuming the
input point cloud is initially grouped intoX×Y ×Z voxels, the pre-head resolution
of the shown A0 backbone, i.e., the spatial dimension of the obtained pre-head BEV
features, will be (X8 ,

Y
8 ).

Table 6.2: List of architectures used in our analysis. A0 is the original backbone of
SECOND implemented in OpenPCDet.

3D Depth 3D Width 2D Depth 2D Width Pre-Head
A0 2, 3, 3, 3 16, 32, 64, 64 6, 6 128, 256 (X/8, Y/8)
A0-deep 8, 12, 12, 12 16, 32, 64, 64 24, 24 128, 256 (X/8, Y/8)
A0-wide 2, 3, 3, 3 32, 64, 128, 128 6, 6 256, 512 (X/8, Y/8)
A0-d&w 3, 5, 5, 5 28, 56, 112, 112 9, 9 224, 448 (X/8, Y/8)

A1 2, 4 ,4 32, 64, 64 6, 6 128, 256 (X/4, Y/4)
A2 3, 6, 6 48, 96, 144 12, 12 128, 256 (X/4, Y/4)

6.3.1 SECOND, PointPillars & CenterPoint

SECOND. Most of our analysis focuses on SECOND [170], one of the earliest
3D detection methods and a widely-used baseline in the literature. SECOND first
groups the point cloud into voxels and then extracts 3D voxel-wise features using
the 3D backbone. The sparse 3D voxel-wise features are then projected onto the
ground plane (x and y-axis) to obtain dense 2D BEV features, which is done by
channel concatenation across the height dimension (z-axis). The obtained BEV fea-
tures are then processed by the 2D backbone and passed to the detection head to
generate a set of region proposals, including their location, size, orientation and
class. Finally, non-maximum suppression (NMS) is applied on the region propos-
als to remove redundant object predictions.

Fig. 6.2 shows the original backbone architecture of SECOND implemented in
OpenPCDet [142] (A0 in Table 6.2). The 3D backbone is formed by stacking 3D
sparse convolutional layers [48] and consists of four stages. The first layer at each
stage, except the first stage, has a stride of 2 to reduce the spatial dimension in 3D.
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The 2D backbone consists of 2D convolution layers and has two stages. All the lay-
ers have a stride of 1 except that the first layer at the second stage has a stride of
2. The output of each stage is transformed or upsampled via transposed convolu-
tion and then concatenated across the channel dimension to obtain the final BEV
features, which we will refer to as “pre-head features” since the features will be
directly passed to the detection head to predict region proposals. Relatedly, the
spatial dimension of the pre-head features given by A0 will be (X8 ,

Y
8 ), assuming

the input point cloud is initially grouped into X × Y × Z voxels. We discuss the
details of detection head after PointPillars.

PointPillars. For completeness we also include PointPillars [76] in our analysis,
another popular baseline for 3D detection. PointPillars [76] is similar to SECOND
except for the 3D backbone, where the point cloud is organized as pillars (vertical
columns) instead of voxels. They obtain pillar features by aggregating point fea-
tures inside each pillar and then convert pillar features into a pseudo-image, i.e.,
BEV features, which are later passed to the 2D backbone and detection head.

Detection Head. As listed in Table 6.1, the original SECOND and PointPillars
method use an anchor-based detection head, which pre-defines axis-aligned an-
chors of different classes on each location. We refer to the original SECOND method
using anchor head as SECOND-Anchor. The anchor head takes BEV features as in-
put and uses a convolutional layer to regress the residuals between the ground truth
object boxes and pre-defined anchors, as well as predicting the class probabilities
of each anchor.

CenterPoint [177] proposed a center-based detection head, which dose not re-
quire pre-defining anchors and achieves superior performance over the anchor head.
This center head first detects object centers using a keypoint detector and then re-
gresses other attributes, e.g., object size and orientation, for each detected center.
The center head is generic and can be used as a drop-in replacement for anchor
head. Therefore, our analysis also considers the center head and uses it within SEC-
OND by replacing the anchor head in SECOND-Anchor as center head, which we
list as SECOND-Center in Table 6.1. For clarification, the full method of CenterPoint
is a two-stage detector and SECOND-Center is exactly the same as the first stage of
CenterPoint.

6.3.2 Part-A2-Net, PV-RCNN, PV-RCNN++ & Voxel R-CNN

Part-A2-Net [126], PV-RCNN [123], PV-RCNN++ [124], and Voxel R-CNN [31] are
all two-stage 3D detectors achieving competitive performance. They all use SEC-
OND as their first stage to generate initial region proposals, which are then further
refined in the second stage. Similar to SECOND, both anchor head and center head
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can be used in these two-stage detectors. Notably, PV-RCNN++ achieves the state-
of-the-art performance on the Waymo Open Dataset.

6.4 Experimental Setup

We conduct experiments with OpenPCDet, an open-source code base for LiDAR-
based 3D object detection. OpenPCDet is the official code release of Part-A2-Net [126],
PV-RCNN [123], PV-RCNN++ [124], and Voxel R-CNN [31], and also supports
many other methods, including SECOND [170] and PointPillars [76].

Dataset and Metrics. We use the Waymo Open Dataset [1], the largest public
benchmark for LiDAR-based 3D object detection, in our experiments. It contains
798 train sequences (∼158k frames) and 202 validation sequences (∼40k frames).
Following the standard protocol, we adopt average precision (AP) and average pre-
cision weighted by heading (APH) as the metrics and evaluate in two difficulty lev-
els (LEVEL 1 and LEVEL 2). Among all the metrics, the LEVEL 2 APH is the most
important according to the official Waymo evaluation server.

Training Setup. By default, we train on all the train sequences and evaluate on
all the validation sequences (100% training setup). To save training time for the
analysis in Sec. 6.5, we adopt the 20% training setup provided in OpenPCDet [142].
Under this setup, we train on 20% frames uniformly sampled from the train se-
quences but still evaluate on all the validation sequences. Since LiDAR frames in
one sequence are highly correlated, 20% of data is usually representative enough.

Inference Latency. We use batch size 1 when measuring the latency of a detector,
following the convention in detection [141]. The latency is measured on a Nvidia
GeForce RTX 3090 GPU and a AMD EPYC 7402 24-Core CPU.

6.5 Scaling Depth, Width, and Pre-Head Resolution

Scaling the depth (number of layers), width (number of channels), or input im-
age resolution have been widely used to improve the performance of a model [5,
54, 59, 140]. But it is still an open question about what the optimal scaling strategy
is. There can be a large performance variation among different scaling configura-
tionseven when then the amount of cost is controlled, especially in the large com-
putation regime [5]. For example, EfficientNet [140] demonstrated that compound
scaling, i.e., scaling all three dimensions including depth, width, and resolution, is
better than scaling only one of the dimensions. Bello et al. [5] observed diminish-
ing returns in very large image resolutions in EfficientNet and suggested that one
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Table 6.3: Performance of SECOND-Anchor with different backbones on the Waymo
validation set (20% training). Scaling the pre-head resolution from (X8 ,

Y
8 ) to (X4 ,

Y
4 )

significantly improve the performance on all classes. But further increasing the res-
olution does not help.

Anchor Head LEVEL 2 3D APH Latency Params Memory Pre-Head
Vehicle Pedestrian Cyclist mAPH (ms) (M) (GB) Resolution

A0 62.02 47.49 53.53 54.35 27 5.33 5.8 (X/8, Y/8)
A0+Upsample 64.61 51.92 59.81 58.78 38 5.69 9.0 (X/4, Y/4)
A0+Upsample×2 64.51 50.50 59.82 58.28 52 5.69 20.0 (X/2, Y/2)
A1 65.65 59.20 64.33 63.06 65 5.56 14.4 (X/4, Y/4)

Table 6.4: Performance of SECOND-Center with different backbones on the Waymo
validation set (20% training). The advantage of scaling pre-head resolution gener-
alizes to the center-based detection head.

Center Head LEVEL 2 3D APH Latency Params Memory Pre-Head
Vehicle Pedestrian Cyclist mAPH (ms) (M) (GB) Resolution

A0 62.65 58.23 64.87 61.92 28 5.78 5.6 (X/8, Y/8)
A0+Upsample 64.86 61.26 65.79 63.98 43 6.14 10.0 (X/4, Y/4)
A1 64.92 65.35 67.96 66.08 67 6.01 14.7 (X/4, Y/4)

should increase the resolution slowly. To form the basis of our analysis, this section
analyzes different ways to scale the backbone of SECOND.

6.5.1 Pre-Head Resolution

Unlike images, there is no notion of resolution for raw point clouds. Therefore, we
consider the pre-head resolution, i.e., the spatial dimension of the pre-head BEV
features, as an alternative choice to scale the backbone.

We note that previous work on 2D object detection [46, 87, 141] explored using
multi-scale feature maps, whose main motivation is to handle the scale variation
of objects in images, i.e., using a higher-resolution feature map for larger anchors,
since the size of the same object could vastly vary depending on its distance to the
camera. But this is not the case for LiDAR point clouds as the size of a specific object
in point clouds is fixed no matter its distance to the sensor.

The advantage of a larger pre-head resolution for LiDAR-based detection is in
the denser sampling of anchors or keypoints. The anchor head places pre-defined
anchors on every location of the BEV features. Therefore, a larger pre-head feature
map resolution means more anchors are used. For center head [177], which detects
object centers via keypoint estimation, a larger resolution means more keypoints
are classified.
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Now we empirically investigate whether scaling the pre-head resolution leads
to performance improvement. Starting from A0, the original backbone in SECOND
with a pre-head resolution of (X8 ,

Y
8 ), we consider the following backbones to in-

crease the pre-head resolution:

• A0+Upsample: we change the stride of the transposed convolution at the end
of first stage in the 2D backbone to 2, and add another transposed convolu-
tional layer of a stride 2 at the end of the second stage. This yields a pre-head
resolution of (X4 ,

Y
4 ).

• A0+Upsample×2: we further upsamples the pre-head feature map given by
‘A0+Upsample’ by 2x with Bilinear interpolation. We do not use an trans-
posed convolution here due to its large memory footprint. This yields a pre-
head resolution of (X2 ,

Y
2 ).

• A1: we remove the last stage in the 3D backbone of A0 to perform less down-
sampling in the network. The number of layers and channels are slightly ad-
justed so that A1 has a similar number of parameters to A0. A1 has a pre-head
resolution of (X4 ,

Y
4 ).

We show the performance of different backbones in Table 6.3. We also report
the inference latency, number of parameters, and memory footprint at batch size
2 during training for completeness. Here we focus on analyzing whether increas-
ing the pre-head resolution can improve the performance, so we do not control the
latency of different backbones to be the same.

As shown in Table 6.3, scaling the resolution to (X4 ,
Y
4 ) is beneficial as A1 and

‘A0+Upsample’ outperform A0 by a large margin on all classes. Table 6.4 provides
the results of SECOND-Center with different backbones and we see the benefit of
a larger pre-head resolution generalizes to center-based head. But we also notice
that further increasing the pre-head resolution does not bring any additional gain
(‘A0+Upsample’ vs. ‘A0+Upsample×2’). Therefore, we conclude that scaling the
pre-head resolution is a reliable source for better performance but one should re-
frain from increasing the resolution aggressively.

6.5.2 Depth vs. Width vs. Pre-Head Resolution

We now compare the following ways to scale the backbone in SECOND: (1) depth
only (A0-deep), (2) width only (A0-wide), (3) depth and width at the same time
(A0-d&w), and (4) pre-head resolution only (A1). The architecture details are
available in Table 6.2 and the results are shown in Table 6.5. We control the in-
ference latency of of different backbones are to be similar for fair comparison.

While other backbones can easily improve the performance, we notice that A0-
deep underperforms the original A0 backbone. We conjecture this is due to the
lack of residual connections. A0-deep is significantly deeper that other networks
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Table 6.5: Depth vs. Width vs. Pre-Head Resolution. We compare the performance
of SECOND-Anchor with different scaled backbones under the same latency on the
Waymo validation set (20% training). Scaling the pre-head resolution provides the
highest overall mAPH with the fewest parameters.

Anchor Head LEVEL 2 3D APH Latency Params Memory
Vehicle Pedestrian Cyclist mAPH (ms) (M) (GB)

A0 62.02 47.49 53.53 54.35 27 5.33 5.8
Without Residual Connections
A0-deep 59.98 35.53 43.15 46.22 55 20.92 13.5
A0-wide 65.10 53.01 59.61 59.24 61 19.96 8.0
A0-d&w 65.50 51.94 59.46 58.97 68 23.76 9.9
A1 65.65 59.20 64.33 63.06 65 5.56 14.4
With Residual Connections
A0-deepres 66.98 54.80 60.35 60.71 59 21.23 15.4
A0-wideres 65.82 55.17 60.41 60.47 64 20.19 8.0
A0-d&wres 66.69 56.00 61.70 61.46 66 21.66 10.4
A1res 65.78 59.82 64.27 63.29 67 5.65 13.7

and thus much harder to train. Therefore, we add residual connections to all the
backbones (subscripted by ‘res’ in Table 6.5).

All the backbones benefit from adding residual connections and significantly
outperform A0. Among the different choices, the compound scaling of depth and
width is better than scaling one dimension only, echoing Tan et al. [140]. Scaling
the pre-head resolution achieves the best overall performance, while scaling depth
is the best for vehicle detection. Scaling the pre-head resolution also significantly
saves the number of parameters compared with other choices.

6.6 Comparing Scaled SECOND Against Recent Methods

6.6.1 Family of Scaled SECOND

Based on the above analysis on how to scale the backbone in SECOND, we introduce
the family of scaled SECOND. In addition to the A0 and A1res backbone, we design a
larger backbone A2res to cover the high latency regime. A2res is obtained by adding
residual connections in A2, where A2 is obtained by increasing the depth and width
of A1 (see Table 6.2 for architecture details).

Then the family of scaled SECOND includes three backbones: A0, A1res, and
A2res. As mentioned in Sec. 6.3, both the anchor head and center head can be used
within SECOND. So we have both SECOND-Anchor and SECOND-Center with
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the three backbones. To be clear, SECOND-Anchor is the original method of SEC-
OND [170] and SECOND-Center replaces the anchor head in the original SECOND
with the center head proposed in CenterPoint [177].

Next, we will compare the family of scaled SECOND against recent LiDAR-
based 3D object detection methods. We first compare scaled SECOND against sev-
eral two-stage detectors in Sec. 6.6.2. These two-stage detectors are specifically se-
lected as they use SECOND as their first stage, including Part-A2-Net [126], PV-
RCNN [123], PV-RCNN++ [124], and Voxel R-CNN [31]. Then we extend the
comparison to more methods in Sec. 6.6.3.

6.6.2 Comparison Against Selected Two-Stage Detectors

We compare the family of scaled SECOND against the following two-stage detectors
in Fig 6.3: Part-A2-Net [126], PV-RCNN [123], PV-RCNN++ [124], and Voxel R-
CNN [31]. As mentioned above, we select them as they all use SECOND as their
first stage. We summarize the results in Figure 6.3. All the results in Figure 6.3 are
obtained using OpenPCDet [142], the official implementation of the selected two-
stage detectors, to ensure reproducibility and fair comparison. Since the detection
head can have a big influence on the performance, we consider both the anchor
head and center head for PV-RCNN, PV-RCNN++ and Voxel R-CNN in Figure 6.3
to provide a more complete comparison.

Overall Comparison. We observe from Figure 6.3a that scaled SECOND sig-
nificantly outperforms Part-A2-Net and PV-RCNN after controlling the latency in
the comparison. Only Voxel R-CNN and PV-RCNN++ can pass the test of scaled
SECOND, i.e., more accurate than scaled SECOND when using a similar or smaller
latency. But this only happens if they use the center head. Voxel R-CNN (Anchor)
and PV-RCNN++ (Anchor) do not pass the test of scaled SECOND either.

PV-RCNN++. We take a closer look at PV-RCNN++ as it is the current state-
of-the-art on the Waymo Open Dataset. The original SECOND method (SECOND-
Anchor-A0) significantly underperforms PV-RCNN++ (Anchor). But simply scal-
ing up its original backbone (A0) to A1res can easily achieve a similar mAPH with
PV-RCNN++ (Anchor) while being twice faster during inference. The highest-
performing method PV-RCNN++ (Center) is only slightly better than SECOND-
Anchor-A2res if SECOND is allowed to use a similar latency. The performance gain
brought by PV-RCNN++ is much smaller than what was originally shown in their
paper.

Voxel R-CNN. Voxel R-CNN (Center) achieves a higher mAPH than SECOND-
Center-A1res with a smaller latency. The strong performance and efficiency of Voxel
R-CNN is mainly due to their proposed Voxel RoI pooling [31] in the second stage,
which does not use the expensive ball query to find nearest neighbors in the 3D
space but rather uses an efficient voxel query operation.

109



PV-RCNN++
(Center)

PV-RCNN++
(Anchor)

Voxel R-CNN
(Center) PV-RCNN

(Center)

PV-RCNN
(Anchor)

Part-A2-Net 
(Anchor)

A0

A0

A1res

A2res

PP-S

PP-M

PP-L

A1res

A2res

Voxel
R-CNN

(Anchor)

(a) Overall mAPH

PV-RCNN++
(Center)

PV-RCNN++
(Anchor)

Voxel R-CNN
(Center)

Part-A2-Net 
(Anchor)

PV-RCNN
(Center)

PV-RCNN
(Anchor)

A0

A1res

A0

A1res

A2res

A2res

PP-S

PP-M

PP-LVoxel
R-CNN

(Anchor)

(b) Vehicle APH

PV-RCNN++
(Center)

PV-RCNN++
(Anchor)

Voxel
R-CNN

(Center)

PV-RCNN
(Center)

PV-RCNN
(Anchor)

Part-A2-Net 
(Anchor)

A0

A0

A1res

A1res

A2res

A2res

PP-S

PP-M

PP-L

Voxel
R-CNN

(Anchor)

(c) Pedestrian APH

PV-RCNN++
(Center)

PV-RCNN++
(Anchor)

Voxel R-CNN
(Center / Anchor)

PV-RCNN
(Center)

PV-RCNN
(Anchor)

Part-A2-Net 
(Anchor)

A2res

A2resA0

A0

A1res

PP-S

PP-M

PP-L

A1res

(d) Cyclist APH

Figure 6.3: Scaled SECOND vs. Selected Two-Stage Detectors. In terms of the over-
all mAPH, only Voxel-RCNN (Center) and PV-RCNN++ (Center) can outperform
scaled SECOND with a similar or smaller latency. See Table 6.6a for numerical re-
sults.

6.6.3 Full Comparison Against Recent Methods

We now extend the comparison to other recent 3D object detection methods in
Table 6.6b. While all these methods are proposed after SECOND [170], we ob-
serve that most methods fail to outperform SECOND-Anchor-A1res, which is exactly
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Table 6.6: Scaled SECOND vs. Recent 3D Object Detection Methods. LEVEL 2 AP
and APH on Waymo validation set are shown. Only PV-RCNN++ (Center) and
Voxel-RCNN (Center) can outperform scaled SECOND when using a similar or
smaller latency.

(a) Scaled SECOND vs. Selected Two-Stage Detectors. See Figure 6.3 to visually compare
the performance and latency of the listed methods at the same time.

Latency Vehicle Pedestrian Cyclist Overall
Venue (ms) AP APH AP APH AP APH mAPH

Selected Two-Stage Detectors
Part-A2-Net (Anchor) TPAMI 2020 118 68.47 67.97 66.18 58.62 66.13 64.93 63.84
PV-RCNN (Anchor) CVPR 2020 333 68.98 68.41 66.04 57.61 65.39 63.98 63.33
PV-RCNN (Center) CVPR 2020 328 69.43 68.98 70.42 64.72 68.95 67.79 67.16
Voxel R-CNN (Anchor) AAAI 2021 55 68.86 68.35 67.15 59.39 69.78 68.61 65.45
Voxel R-CNN (Center) AAAI 2021 50 69.42 68.99 71.26 65.98 70.03 69.00 67.99
PV-RCNN++ (Anchor) Arxiv 2021 133 70.45 69.95 68.85 60.94 69.42 68.22 66.37
PV-RCNN++ (Center) Arxiv 2021 130 70.61 70.18 73.17 68.00 71.21 70.19 69.46

Family of Scaled SECOND
SECOND-Anchor-A0 Sensors 2018 27 63.85 63.33 60.72 51.31 58.34 57.05 57.23
SECOND-Anchor-A1res 67 68.13 67.65 71.57 63.54 68.53 67.47 66.22
SECOND-Anchor-A2res 124 70.06 69.60 73.98 66.65 71.22 70.21 68.82
SECOND-Center-A0 28 65.23 64.72 66.83 60.88 68.36 67.25 64.28
SECOND-Center-A1res 71 67.23 66.78 72.98 67.06 68.29 67.20 67.01
SECOND-Center-A2res 128 69.26 68.81 73.87 68.28 67.90 66.88 67.99

(b) Scaled SECOND vs. Other Methods.

Latency Vehicle Pedestrian Cyclist Overall
Venue (ms) AP APH AP APH AP APH mAPH

PPBA [28] ECCV 2020 - - 53.4 - 53.9 - - -
LiDAR R-CNN [84] CVPR 2021 - 64.7 64.2 63.1 51.7 66.1 64.4 60.10
3D-MAN [175] CVPR 2021 - 67.61 67.14 62.58 59.04 - - -
PPC [20] CVPR 2021 - - 56.7 - 61.5 - - -
MGAF-3DSSD [79] ACM MM 2021 †∼ 60 65.35 - - - - - -
RangeDet [40] ICCV 2021 ‡∼ 58 64.03 63.57 67.60 63.89 63.33 62.08 63.18
VoTr-TSD [98] ICCV 2021 ]> 300 65.91 65.29 - - - - -
Pyramid-PV [97] ICCV 2021 ]> 300 67.23 66.68 - - - - -
SECOND-Anchor-A1res 67 68.13 67.65 71.57 63.54 68.53 67.47 66.22

Voxel-to-Point [80] ACM MM 2021 - 69.77 - - - - - -
SECOND-Anchor-A2res 124 70.06 69.60 73.98 66.65 71.22 70.21 68.82
† We estimate its latency to be ∼ 60 ms on Waymo as it is about twice faster than Part-A2-Net on KITTI [79]
‡ Measured as 12 fps on a single 2080Ti GPU [40]. We estimate its latency to be 58 ms on RTX 3090 based on [82].
] We estimate its latency to be larger than 300 ms as it is slightly slower than PV-RCNN on KITTI [97,98].

the same as the originally proposed SECOND except for using a larger backbone.
SECOND-Anchor-A1res is both faster and more accurate than some recent methods,
such as VoTR-TSD [98] and Pyramid-PV [97].
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The strong performance and simplicity of the family of scaled SECOND should
motivate future research to include them as baselines whenever proposing novel
3D object detectors.

6.6.4 Comparison Under Multiple Latencies

In the above, we only consider one specific latency when comparing two methods.
The family of SECOND contains backbones of different sizes and allows us to have
a more complete comparison between methods under multiple latencies. We will
show that the conclusion under one latency may not generalize to another and the
ranking of two methods could flip.

Anchor Head vs. Center Head. The center head was originally proposed in
CeterPoint [177] and demonstrated impressive performance gain over the anchor
head. But CenterPoint only experimented with a small backbone (similar size to
A0). We observe that the benefit of center head shrinks as the backbone size grows.

As shown in Figure 6.3a, the anchor head considerably underperforms the cen-
ter head when A0 is used in terms of the overall mAPH. But after scaling up A0
to A2res, the anchor head obtains a higher mAPH than the center head. We ob-
serve a similar trend for vehicle or pedestrian detection. For vehicle detection in
Figure 6.3b, the ranking of anchor head and center head flips after the backbone is
scaled up to A1res. For pedestrian detection in Figure 6.3c, the center head outper-
forms the anchor head by ∼ 10% in terms of APH under the low latency regime
(A0), but the gap decreases to ∼ 1.6% after switching to the high latency regime
(A2res).

We notice in Figure 6.3d that the cyclist performance of SECOND-Center drops
as the backbone becomes larger. We conjecture that this is due to overfitting as
the cyclist boxes are very rare (< 1%) in the Waymo Open Dataset. We verify the
conjecture with the results in Table 6.7. But the overfitting does not happen for
SECOND-Anchor.

SECOND-Anchor vs. PointPillars. We include PointPillars in our compari-
son in Figure 6.3 as PointPillars is also a widely-used baseline for 3D object detec-
tion. PointPillars-S is the original PointPillars implementation provided in Open-
PCDet. The results of PointPillars-M&L are obtained by scaling up the 2D backbone
in PointPillars-S. All the PointPillars models use the anchor head.

We observe that the ranking of SECOND-Anchor and PointPillars changes un-
der different latencies. For example, PointPillars outperforms SECOND by ∼ 2%
on vehicle detection under the low latency regime (PointPillars-S vs. SECOND-
Anchor-A0 in Figure 6.3b). The low latency regime is where the PointPillars focused
on when it was proposed. However, as the backbone size grows, PointPillars-M un-
derperforms SECOND-Anchor-A1res on vehicle detection.
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Table 6.7: The performance of SECOND-Center on cyclist detection drops as the
backbone size grows under 100% training, but steadily increases under 20% train-
ing. This indicates that overfitting happens under the 100% training setup.

(a) 100% Training.

LEVEL 2 3D APH
Vehicle Pedestrian Cyclist mAPH

A0 64.72 60.88 67.25 64.28
A1res 66.78 67.06 67.20 67.01
A2res 68.81 68.28 66.88 67.99

(b) 20% Training.

LEVEL 2 3D APH
Vehicle Pedestrian Cyclist mAPH

A0 62.65 58.23 64.87 61.92
A1res 65.30 66.09 68.50 66.63
A2res 67.74 67.83 69.92 68.50

6.7 Conclusion

To correctly evaluate the architecture design space of 3D detectors, we point out
that it is important to compare different architectures under the same cost. Fol-
lowing this philosophy, we conduct an analysis of how to scale the backbone of
SECOND, a simple baseline which is generally believed to have been significantly
surpassed, and then introduce the family of scaled SECOND. Scaled SECOND sets
a strong baseline for future research on 3D object detection: it outperforms most
recent methods and can match the performance of the state-of-the-art method PV-
RCNN++ on the Waymo Open Dataset, if allowed to use a similar latency. We hope
our analysis can encourage future research to adopt the good practice of cost-aware
evaluation and include the family of scaled SECOND as a strong baseline when pre-
senting novel 3D detection methods. We also show that the ranking of two methods
can flip under different latencies and suggests that one should conduct the compar-
ison under multiple latencies if possible.
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Chapter 7

Conclusion & Discussion

This thesis has made progress on both search algorithms and search spaces, the two
critical components in NAS. First, we have proposed search algorithms to improve
the search efficiency (Chapter 2) and to improve the generalization of found archi-
tectures (Chapter 3). Second, we have proposed a novel attention cell search space
to extend NAS beyond discovering convolutional cells to attention cells (Chapter 4),
identified an overlooked design space for efficient models (Chapter 5), and pointed
out the vast importance of controlling the cost when comparing different 3D detec-
tor architectures (Chapter 6). Next, we first discuss the potential future directions
and then give a concluding summary of this thesis.

7.1 Future Work

Hybrid Search Algorithms. Existing search algorithms can be categorized into
sampling-based algorithms and gradient-based algorithms. Sampling-based algo-
rithms explicitly sample candidate architectures from the search space and select
the optimal one. Gradient-based algorithms, a.k.a., differentiable search, do not ex-
plicitly sample architectures but use gradient descent to find the optimal solution.

We have explored and used both types of search algorithms in Chapter 2& 3,
but we only used them separately. Gradient-based algorithms are efficient but they
require the search space to be differentiable or can be made differentiable. Sample-
based algorithms are flexible enough to handle different search spaces but may re-
quire significant computational resources to find satisfying architectures.

So, one future direction is to propose hybrid search algorithms that can combine
the advantages of both types of algorithms. Such hybrid algorithms will be useful
for scenarios where part of the search space is differentiable while the other part
is non-differentiable or difficult to be made differentiable, e.g., the joint search of
hyper-parameters and architectures or the joint search of data augmentation poli-
cies and architectures.
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Interplay between the architecture design and compression techniques. We have
shown in Chapter 2 that NAS can successfully compress various types of architec-
tures . In practice, post-training pruning and quantization are also widely used to
further compress neural networks. But one question is still unanswered: what types
of architectures are easier to compress, prune, or quantize?

We conjecture that architectures with a large number of skip connections are dif-
ficult to compress since the skip connections enforce many dependencies between
different layers. A principled answer to the above question will be informative for us
to develop better efficient network architectures or better compression techniques.

NAS for Transformer. We have demonstrated in Chapter 4 that inserting the at-
tention cells found by NAS into existing convolution networks can successfully im-
prove the video classification accuracy. But, as suggested by the recent success of
Transformer architectures in computer vision [11, 37, 93], only using self-attention
without convolution can also achieve impressive performance on various tasks,
such as image or video classification. So, one future direction is to apply NAS to
find better Transformer architectures, instead of only attention cells.

At the macro level, we can use NAS to find better ways to stack attention opera-
tions to form the entire Transformer architecture. For example, when stacking con-
volution operations, people have explored various design choices, such as adding
skip connections between layers, gradually downsampling the spatial resolution,
and combining multi-scale feature maps. We can use NAS to determine whether
these design choices are helpful when stack self-attention operations.

At the micro level, we can design the architecture for a single attention opera-
tion with NAS. For example, Vaswani et al. [145] applied softmax as the activation
function to obtain weights on the value features. But our NAS method in Chapter 4
found that removing this activation function would actually give a higher perfor-
mance. NAS can also be used to determine the dimension of the hidden layers and
the normalization function used in an attention operation.

NAS for Dynamic Neural Networks. The model cascades we studied in Chapter 5
fall into the category of dynamic neural networks. Different from static neural net-
works whose computational graph is fixed for different input examples, dynamic
neural networks activate different parts in the network based on the input exam-
ple [52], where they try to spend more computation on hard examples and less on
easy ones.

Our model cascades in Chapter 5 only use pre-trained models and these models
are separate and arranged as a simple chain. Our model cascades can be improved
in the following three aspects: (1) We can use NAS to search the architectures for
each model in a cascade instead of using pre-trained models; (2) We can arrange
models in a complex structure, e.g., a multi-branched tree, instead of a simple chain;
(3) Models in a cascade do not have to be separate and they can share layers or
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branches and have more complex interactions. All these design choices can be ex-
plored via NAS.

NAS for LiDAR-based 3D Object Detecion. We have shown in Chapter 6 that
scaled SECOND is a strong baseline for LiDAR-based 3D object detection and can
almost match the performance of PV-RCNN++ [124], the state-of-the-art method
on Waymo Open Dataset, if allowed to use a similar latency. But this is still not the
full potential of SECOND as we only manually scaled up the backbones of SEC-
OND. So, one future direction is to use NAS to search the backbone for SECOND
under different latencies. We can also include high-performing second-stage detec-
tors, e.g., Voxel R-CNN [31], in the search space, which should let the algorithm to
find better 3D detectors.

7.2 Concluding Summary

We summarize the lessons we have learned about NAS, and more broadly about
designing architectures, to conclude this thesis.

Always control the cost when comparing architectures. This is the basis for us to
correctly evaluate different architectures and is necessary no matter we manually
design the architecture or use NAS to find one. This might sound obvious but was
overlooked in some recent literature. As shown in our analysis of LiDAR-based 3D
detectors in Chapter 6, not controlling the cost would cause unfair comparison and
misleading conclusions on different architecture components.

Strengths of NAS. NAS is good at optimizing the following attributes of an archi-
tecture: type of each layer, connections between layers, depth (number of layers),
and width (number of channels). For example, if one invents a new type of layer
but is unsure about how to stack this layer to form the entire architecture or how to
combine this new layer with existing types of layer, NAS can be used here to figure
out the various design choices.

NAS is also useful for practical applications that need a set of architectures to
satisfy difference resource constraints or run on different hardware platforms, e.g.,
different mobile devices. Instead of manually tuning the architecture for each sce-
nario, we can apply NAS here to find those architectures.

NAS is not as expensive as one may have thought if the search space can be
made differentiable. The aforementioned attributes (layer type, connections, depth,
width) can all be made differentiable, which allows us to efficiently search for the
optimal architecture via differentiable search methods. The cost of differentiable
search usually equals to training a single big network.
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Limitations of NAS. The main limitation of NAS is that current NAS methods
still rely on humans to define the search space. An ideal search space needs to be
flexible enough to contain a sufficient number of high-performing architectures, but
cannot be too flexible as this will make satisfying architectures sparse in the space
and make search cost unaffordable. This subtle trade-off sometimes makes it non-
trivial to define a good search space and makes NAS not as “autonomous” as people
hope it to be.

For example, as the reader may have noticed, Chapter 5&6 focus more on ana-
lyzing the architecture design space rather than inventing new NAS methods. This
is because when we tried to apply NAS to find better dynamic neural networks
(Chapter 5) or 3D detectors (Chapter 6), we realized that the search space is cru-
cial to the performance of the found architectures. So we switched to analyzing the
architecture design space in Chapter 5&6.

A common criticism on NAS is that NAS cannot discover fundamentally novel
architectures. Real et al. [116] has shown preliminary success to evolve machine
learning algorithms, e.g., two-layer neural networks trained by backpropagation,
from a search space that only uses simple mathematical operations as building
blocks. This search space is flexible enough and can contain architectures funda-
mentally better than existing ones. But it still remains a open problem to actually
find those architectures since the sheer size of this search space makes it unafforad-
ble to fully explore it. To solve this problem, we will need flexible search spaces with
a reasonable size, more intelligent search algorithms that can quickly find good ar-
chitectures from a large search space, and maybe also more powerful hardware.

Manually Designing Architectures vs. NAS. When manually designing archi-
tectures, we directly translate our ideas into the final architecture design. In NAS,
since the current form of NAS is still not autonomous enough, we need to formal-
ize our insight and intuition into the search space design. In this sense, NAS and
manual design are similar as they all rely on the knowledge humans to design good
basic building blocks.

But the design process of an architecture is often complicated by the fact that
the empirical performance of an architecture is also influenced by many other de-
sign choices in addition to the basic blocks. Sometimes it still takes many efforts to
figure out the right number of layers, the right number of channels for each layer,
or other design choices, especially when we need to respect certain resource con-
straints. Formulating these design choices into a search space can allow humans to
focus on the creative work and leave the “dirty work” to NAS algorithms.

Architecture is not the only thing. While this thesis focuses on NAS, it is impor-
tant to remember that architecture design is just one part in the machine learning
pipeline. The training techniques, e.g., learning rate schedule, regularization strate-
gies, and data augmentation strategies, are also very important and sometimes may
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have a bigger impact on the performance than the architecture design. In practice,
we need to make sure we have a reasonably good training pipeline when devel-
oping architectures and make sure we use the training pipeline when comparing
different architectures.
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