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Abstract

The stiffness map of a deformable object stores information about that object’s surface

compliance. Thus, through a stiffness map, we gain insight into the physical properties

of that object. Depending on the object, an understanding of stiffness has applications

ranging from localizing tumors for surgery to grasping policies in manipulation. However,

generating a stiffness map or stiffness mapping is challenging as even with information

about the thickness of the underlying material, the object’s physical geometry, and the

composition of the material itself, it can be enormously computationally complex to model

an object’s surface compliance. Therefore it is often necessary to generate the stiffness

map of an object by direct sampling through palpation or applying a force and measuring

the subsequent displacement. Then by densely palpating over every point on an object’s

surface, a time-consuming process task for a very fine sampling, a stiffness map for an

entire object can be generated. Alternatively, it is also possible to only palpate a subset

of points from the surface. Then by applying regression, the sampled stiffness data can

be used to estimate a function between points on a given surface (known as inputs or

predictors) and the stiffness data. Finally, using this function, an object’s entire stiffness

map can be extrapolated.

Previous work on stiffness mapping [1, 2, 3] has specifically been interested in Gaussian

Process Regression (GPR) due to its ability to estimate uncertainty about its predicted

stiffness values. This uncertainty estimate helps direct the sampling of stiffness data,

guiding where to palpate, and ideally leading to a more accurate estimate of an object’s

stiffness map with fewer data points. A key component of GPR is its kernel or covariance

function which measures the similarity among our regression’s predictors. For stiffness

mapping, we assume that our predictor’s covariance or points on the object’s surface are

correlated as a function of geodesic distance; points nearby on the surface of an object

have similar stiffness values. However, GPR requires a smooth kernel function and thereby

a smooth distance function between inputs. Consequently, stiffness mapping through

GPR struggles with surfaces with a non-smooth geodesic distance function. Notably, this

causes difficulty when the surface of our object is modeled using a discrete representation,

for example a mesh, which is a common representation used in many fields, including

robotics. Due to the mesh’s discrete nature, the resulting geodesic distances between

points are non-smooth, leading to an invalid kernel function and thus a poor fit of our

data.

The main contribution of this thesis is a new method of GPR for fitting a function

between predictors sampled from a surface and an associated surface-dependent scalar
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distribution. The main focus of this work is using GPR in tandem with an embedding or

mapping of our predictors into a higher dimensional Euclidean space. By mapping our

predictors into a Euclidean space we can use the smooth, Euclidean distance metric to

measure the similarities between data points, thereby ensuring a smooth kernel function.

Specifically, this thesis presents a supervised learning approach for constructing embed-

dings where the embedded surface is constructed solely based on its observed stiffness

data.

We evaluate our supervised method for embedding by testing its ability to build a map

of an object’s stiffness using a series of synthetic and real-world stiffness data sets. Then

we compare these results against alternative techniques, such as unsupervised embedding

methods, which have been the focus of research to this point. Unsupervised embedding

methods construct an embedding as a function of some predetermined cost function in-

stead of the observed data and is applied to the predictors as a preprocessing step before

regression occurs. We find that our supervised embedding better predicts our underlying

stiffness distributions over existing unsupervised embedding techniques. Although this

work focuses on stiffness mapping, it can be applied to fit any data with an underlying

function mapping between points sampled from a manifold to some scalar value. We

hope to explore other distributions with a similar relationship in our future work, such as

mapping an object’s local thermal or friction information.
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Glossary

Manifolds - a set of points (M) that locally resembles Euclidean space. For example

around every point on a two-dimensional manifolds the local neighborhood is indistin-

guishable from R2. Examples of two-dimensional manifolds (or surfaces) include the

sphere, surface of a mustard bottles or the curved parabolic sheet seen in Fig. 1.

Geodesic Distance - the shortest distance between two points on a surface whose path

is constrained to the surface. For example the shortest path between mi and mj in Fig.

1 has a geodesic distance of dg(mi,mj) and is best represented by the curved line in Fig.

1a.

Embedding - an injective continuous, structure preserving map between topological

spaces. For example Fig. 1 shows a 2 dimensional manifold embedded within 3 dimen-

sional space (R3).

Figure 1: Difference between geodesic (a) and Euclidean (b) distances on a parabolic
sheet, a 2 dimensional surface embedded into R3.

Isometric - having equal measurements i.e. isometric embedding refers to a distance-

preserving map from one space to another.

Data set - A collection of related data points. For example a data set can consist of

variables X and Y where the value xi ∈ X corresponds to yi ∈ Y . Typically X represents

the domain also known as predictors, features or independent variable and Y represents
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the response variable data which are the dependent variables that vary as a function of

X.

Regression - a statistical process for estimating the relationship between an independent

variable and a dependent variable. An example of regression is linear regression, which

fits a line between the independent and dependent variables.

Acquisition Functions - data collection technique that selects what features to sample

in order to best improve the regression’s model. For example, the most naive acquisition

function is random sampling, which randomly acquired data points.

Supervised Learning - algorithms in machine learning for determining a functional

relationship between a set of independent and dependent variables. Supervised learning

methods primarily rely on a training data set to minimize a cost function that corresponds

to the mapping between these two variables. Regression, such as linear regression, is an

example supervised learning.

Unsupervised Learning - algorithms in machine learning used to interpret unlabeled

data. These methods are often applied as a preprocessing step before supervised learning

to uncover patterns in the unlabeled data resulting in a better fit of the underlying

relationship between the independent and dependent variables. One typical example is

Principal Component Analysis (PCA), which finds a lower-dimensional coordinate system

which represents the data.
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Chapter 1

Introduction

Stiffness maps, which relate points on the surface of an object to an associated

value measuring that object’s local compliance, give insight into the physical properties

of deformable objects [5, 1, 2, 3]. For example, in medicine, the stiffness map of a soft

organ can be used to localize tumors [1]. Furthermore, in the field of manipulation,

stiffness maps have been used to inform grasping policies for picking up compliant objects

[5]. However, constructing a stiffness map of a given object can be complicated as even

with complete information about an object’s material properties and geometry, it is often

still computationally complex to generate a model describing how an object might deform

[8].

One approach to generating a stiffness map or stiffness mapping of a real-world

object is through sampling [5, 1, 2, 3]. Current methods for sampling stiffness focus on

palpation or poking a discrete point on the surface of an object to measure the deflection

vs. force, where stiffness is calculated as the proportionality constant between these two

values [1]. Consequently, a stiffness map can be generated by densely palpating across

every point on the surface of an object. However, densely palpating every point on an

object can be quite time-consuming; therefore, a regression can use a subset of stiffness

values to fit a function between the points on the object’s surface (known as the inputs or

the predictors) and the scalar stiffness values. Then, through extrapolation, this regression

model can be used to estimate an understanding of an object’s entire stiffness distribution,

Fig. 1.1, without the need to palpate every point on an object’s surface.

Recent work on generating stiffness maps (or stiffness mapping) has used Gaussian

Process Regression (GPR) for two main reasons [9, 10, 11, 12, 8, 13]. (1) Its nonparametric

approach to regression does not force a structure to the relationship between its predictors,

points on the surface of each object, and their associated scalar stiffness values. Therefore

we do not have to make prior assumptions about how stiffness varies over the surface of

an object. (2) GPR estimates an uncertainty about its predicted stiffness values. This

uncertainty estimate is helpful as a part of the palpation process as it can be used in

acquisition functions: techniques that guide where on the surface of an object to palpate
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Figure 1.1: GPR used to fit a function f mapping from points sampled from a surface
(predictors) to a scalar stiffness value.

and sample an object’s stiffness. A carefully designed acquisition function can therefore

reduce the number of samples or palpations necessary to get a reasonable estimate of an

object’s stiffness distribution [1].

One of the key components of GPR is its covariance or kernel function which

estimates the similarity between its predictors, the points on the surface of an object

[9, 12, 11]. For stiffness mapping, we assume that stiffness correlates with the geodesic

distance function; points nearby on an object’s surface have similar stiffness values. How-

ever, GPR inherently requires a smooth covariance or kernel function to estimate the

similarity between its predictors. [12]. Consequently, it is difficult to map the stiffness of

objects with a non-smooth geodesic distance [12, 11, 14]. For example, a mesh, which is a

commonly used discrete representation of a surface, especially in computer graphics and

robotics, Fig. 1.2b often results in a non-smooth geodesic distance functions. Therefore,

if the surface of the object we are attempting to build the stiffness map for is modeled

using a mesh, the kernel function will often be ill-defined and GPR will fit the data poorly

[12].

To use GPR to map the stiffness of a three-dimensional object, modeled by a discrete

representation, we must find a method of incorporating the predictors that results in a

smooth distance function. This can be accomplished by first embedding or mapping the

points sampled from a manifold into a higher dimensional Euclidean space [12] before

fitting the GPR. Mapping these points into a Euclidean space allows the kernel function

to leverage a smooth Euclidean metric to measure similarity instead of the non-smooth

geodesic metric, creating a well-defined kernel. This thesis will explore different methods

for constructing embeddings for discrete estimates of surfaces using a higher dimensional

Euclidean space. Then it will test how well these embeddings can be used as a part of

GPR by fitting a subset of data sampled from a known stiffness map and comparing how

well the regression can extrapolate an object’s stiffness distribution.

The most recent work on constructing an embedding of points sampled from mani-

folds is based on unsupervised learning [15, 16, 17, 18]. Unsupervised learning strategies

create an embedding by finding a configuration of the predictors whose pairwise Eu-
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Figure 1.2: (a) the original continuous manifold of a mustard bottle, (b) the mesh rep-
resentation of the object’s surface sourced from the YCB data set [4], (c) a Gaussian
projected onto the surface used as testing data and (d) real world stiffness data used for
further validation [5].

clidean distance in the embedded space still respects the manifold’s intrinsic structure.

After this embedding is constructed, the smooth Euclidean distance metric can be used in

the GPR kernel function to measure the similarities between the embedded predictors. In

this thesis, we will evaluate two of the most popular unsupervised embedding strategies,

Multidimensional Scaling (MDS) [16] and Isometric feature mapping (Isomap) [17].

An alternative method to embedding is through a supervised approach. A super-

vised embedding can be constructed using a parametric function to map the points from

the manifold to the embedded space. Then by incorporating the parameters of this func-

tion into the regression, the parameters and therefore the embedding can be optimized to

fit the measured stiffness values. Similar to the unsupervised embedding approach, this

supervised approach to embedding means that a smooth Euclidean distance metric can

be used in the GPR kernel function to measure the similarities between the embedded

predictors. However, unlike the unsupervised approach to embedding, this supervised

approach is a novel method. Therefore, the main contribution of this thesis is the

introduction of a supervised approach to embedding as a part of GPR: a new

method to fitting data with predictors sampled from a discrete representation

of a manifold. To evaluate our new approach to embedding we will compare how well

a supervised embedding in tandem with GPR is able to fit data against more traditional

unsupervised approaches to embedding.

As this work is primarily motivated by stiffness mapping for applications in de-

formable object manipulation [5], we focus on testing our supervised embedding methods

against unsupervised embedding methods using a manifold representation of particular

interest, a mesh, like the one in Fig. 1.2b. Mesh representations have been constructed

for many household objects, including the mustard bottle seen in Fig. 1.2 and the sphere
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seen in Fig. 1.1, both sourced from the YCB data set [4]. The vertices of these meshes

represent points on a manifold and will therefore act as our predictors. To test our su-

pervised methods against alternative unsupervised methods for embedding, we generated

a series of 42 synthetic data sets containing mesh vertices and a scalar, vertex-dependent

attribute, stiffness, Fig. 1c. We also tested the models on a series of 5 real-world stiffness

maps [5], Fig. 1d. These data sets contain mesh vertices and corresponding scalar stiffness

values collected using a robotic gripper to palpate data from real deformable objects.

We evaluate our supervised methods for embedding against the unsupervised method

for embedding through three simple tests. (1) For each of the 42 synthetic data sets, we

randomly sample a subset of data and fit our GPR. Then we compare GPR’s predicted

stiffness values to the original data set. This test demonstrates the first reason GPR is

useful for constructing stiffness maps, its nonparametric nature. (2) We further evalu-

ate the model by comparing GPR in tandem with uncertainty sampling to our baseline

random sampling methods. We find that using the uncertainty estimate to guide data

sampling results in a more efficient stiffness mapping. This result demonstrates the second

reason GPR is useful for constructing stiffness maps, a helpful estimate of uncertainty.

(3) Finally, we demonstrate our models’ real-world capabilities through testing on 5 data

sets containing stiffness distributions sampled from real 3-dimensional objects [5], like the

one seen in Fig. 1.2d. We find that methods for unsupervised embedding result in a dis-

torted representation of the data, stretching the distance between neighboring points to

reduce the global reconstruction error, thus occasionally resulting in a poor fit of the GPR.

Therefore, across these three tests, we consistently find that our supervised methods for

embedding result in a better fit of the underlying stiffness distributions over traditional

unsupervised approaches to embedding.

Furthermore, the method presented in this thesis for supervised embedding as a

part of GPR is not just constrained to stiffness mapping. Our models can be generalized

to data with a similar relationship, predictors sampled from a manifold with an associ-

ated scalar attribute. In our future work, we hope to test our models on data with a

similar relationship, such as mapping an object’s local thermal or friction information, as

these properties are helpful for more context-aware grasping [19]. Furthermore, beyond

mapping the physical properties of 3D objects, this work can potentially generalize to

predictors from higher dimensional manifolds, such as in medical image analysis where

similar algorithms have aided in disease diagnosis [12] for potential future applications to

surgical robotics [20].
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Chapter 2

Background Information

The work presented in this thesis combines three significant concepts: Gaussian

Process Regression (GPR), data with predictors sampled from a manifold, and stiffness

maps. This amalgam provides the foundation for the following report. However, to best

contextualize our findings, we will begin by outlining each idea independently.

2.1 Regression

Figure 2.1: Model of classic regression, f is a map between the independent variables X
and the dependent variable Y .

In classical statistical modeling, regression is a supervized learning method for de-

riving the functional relationship (f) between one or more independent variables (X) and

a dependent variable (Y ) [21], Fig. 2.1:

Y ≈ f(X) (2.1)

One of the simplest models for regression is a linear model:

yi ≈ αxi + β (2.2)

where the value xi is an independent data point (xi ∈ X) and corresponds to the depen-

dent data point yi ∈ Y . Together, the set of all possible corresponding data points xi and
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yi create D ≡ {xi, yi}.
Linear regression fits the parameters α and β by minimizing a cost function. For

example, one of the most common approaches, Ordinary Least Squares [21], minimizes

the mean squared error (MSE) of a set of n training data points S ⊂ D.

α, β = argminα,β

n∑
i=1

(ỹi − fα,β(x̃i))
2/n = argminα,β

n∑
i=1

(ỹi − (αx̃i + β))2/n (2.3)

Where x̃i and ỹi are corresponding independent and dependent points in the set of

training data points {x̃i, ỹi} ∈ S. Due to the parameters α and β, linear regression is a

form of parametric regression. This model sustains one major disadvantage, it assuming

a linear relationship between X and Y .

On the other hand, nonparametric regression does not attempt to force a structure

on the relationship between X and Y . One of the most basic nonparametric regression

models is k-nearest neighbors (k-nn) [21]. K-nn uses the set of training data points (S)

to define the structure of its model. To estimate the value of yj given a value for xj, k-nn

first searches through the set of training data points and finds the closest k dependent

values to xj, then averages their corresponding dependent values. For k = 1, k-nn is

modeled as follows:

yj ≈ ỹî (2.4)

î = argmini(||x̃i − xj||) (2.5)

Where î is the index of whichever value x̃i from the set of training data points,

is closest to xj. Therefore the value for yi is estimated as, ỹî, which is the dependent

term which corresponds to x̃î. Therefore, the relationship between the independent and

dependent values is purely a function of our training data points.

This work will specifically focus on regression through the lens of GPR [9, 12, 10],

a form of nonparametric regression.

2.1.1 Gaussian Process Regression

GPR is a generic supervised learning method with two main advantages [9]:

1. The model is nonparametric: it can fit a function without making assumptions

about the structure of the data. In the context of stiffness mapping, GPR does not

make assumptions about the shape of our stiffness distributions and how they relate

to the object’s surface from which they are sampled.

2. Its prediction is probabilistic: For every independent data point (xi) GPR not

only estimates a value (yi), but also provides an uncertainty of its estimate (σi).
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This uncertainty estimate (σi) allows for the development of sampling schemes that

sample data which the model is most uncertain in its prediction.

A GPR model is fully defined by its mean (m) and covariance or kernel function

(k) [9, 10]:

f ∼ GP (m, k) (2.6)

Where the values predicted by f is modeled by a Gaussian distribution (N ) with an

expected value of µ(xi) and a standard deviation or uncertainty of σ(xi):

p(f(xi)|S, xi) = N (µ(xi), σ
2(xi)) (2.7)

µ(xi) therefore represents the most likely value for f(xi) with an uncertainty in its pre-

diction bounded by σ(xi).

For this work we will use normalized data, therefore the mean of the data, and

thereby the mean function m is 0 (m ≡ 0). This gives the following definitions for GPR’s

expected value µ(xi) [9]:

µ(xi) = KT
i K

−1Ỹ (2.8)

and its uncertainty in its prediction, σ(xi)

σ(xi) = Ki,i −KT
i (K)−1Ki (2.9)

Where K is the kernel matrix such that Ki,j = k(xi, x̃j) with Ki as the ith column of

K and Ỹ is a vector of the training dependent variables such that the ith row of Ỹ is ỹi

[9, 10].

The form of the kernel function k encodes high-level assumptions about the data

being fit. For instance, a periodic kernel assumes GPR is attempting to fit data with

a sinusoidal trend. The only constraint on the kernel function is that it must be semi-

positive definite. This work will consider one of the most common kernel functions, the

squared exponential function, as this choice of kernel assumes data whose dependent

values are close in space must have similar independent values. The squared exponential

kernel can be described in a general form as:

k(xi, xj) = αexp(−d(xi, xj)
2

2β2
) (2.10)

where d is a distance function between two independent data points xi and xj and α

and β are hyperparameters that can be adjusted to effect the accuracy of the GPR.

However the squared exponential kernel commonly uses the Euclidean distance metric as

it is infinitely differentiable and thus smooth. This feature is extremely important, as a

non-differentiable distance function can lead to a kernel which is not semi-positive definite
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and thus an ill-defined GPR [11, 12]. This simplifies Eq. 2.10 as follows:

k(xi, xj) = αexp(−d(xi, xj)
2

2β2
) = αexp(−||xi − xj||

2

2β2
) (2.11)

Figure 2.2: Four examples (left) of non-optimized hyperparameters α and β. By adjusting
these parameters, we can see how α roughly corresponds to scale along the y axis and
β corresponds to the length scale of the function. Using NLML, we can optimize the
hyperparameters α and β (right) to create a reasonable fit for the underlying distribution.

To evaluate how GPR fits a distribution we will start by constructing a ground truth

data. For this experiment our independent variable X consists of real numbers from 0 to

10 (X ∈ (0, 10)) and Y is an arbitrary, single variable function:

yi = sin(xi) + 0.5xi (2.12)

Together, these corresponding values for xi and yi create our ground truth data D. This

ground truth data set can be seen in Fig. 2.2 in black. To evaluate how changing the

hyperparameters α and β will affect GPR we will randomly sample 10 values from D.

These 10 corresponding {x̃i, ỹi} pairs are what we consider our training data set S. By

plugging these values into Eq. 2.8 and 2.9, along with various values for α and β, we can

construct the plots in blue in Fig. 2.2, where the red points represent S, the blue line

represents GPR’s prediction (Eq. 2.8) and the shading is one standard deviation from the

mean (Eq. 2.9). Fig. 2.2 therefore demonstrates how changing these hyperparameters

affects GPR’s fit. In this context, α is a constant scaling value that tunes the GPR

model’s vertical scale, while β similarly tunes its horizontal scale.

A popular approach to setting the hyperparameters of the GPR kernel, α and β, is
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through minimizing their Negative Log Marginal Likelihood (NLML).

NLMLk(α, β) = −log(p(Ỹ |X̃, α, β)) =
1

2
Ỹ TK−1Ỹ +

1

2
log|K| (2.13)

α, β = argminα,βNLMLk(α, β) (2.14)

This approach is often preferred over alternatives, such as a Monte Carlo method or

separating the set of training data points into training and test data as it has a lower

computational requirement [8]. Because NLML is a non-convex function it takes an opti-

mization tool such as L-BFGS [22] with multiple random restarts of its initial parameters

to yield an optimal value. Through this technique we can derive the right-most plot in Fig.

2.2, a minimum solution given 10 randomly sampled points. In conjunction with a simply

defined kernel function (Eq. 2.10), GPR estimates the shape of an underlying ground

truth function without assuming the underlying function’s shape. This demonstrates the

notable benefits of GPR’s nonparametric nature.

2.1.2 Acquisition Functions

An acquisition function is a technique [1, 9] that guides data sampling. Random

sampling, an example of one of the most naive acquisition functions, randomly selects a

data point (xî) from a set of independent data X:

î = random[xi] (2.15)

This method selected the data points in Fig. 2.2. Another, more informed acquisition

function is uncertainty sampling, which samples the independent data point with the

highest predicted uncertainty [9]. Because GPR outputs an uncertainty of its prediction

(Eq. 2.9), we can use it in conjunction with uncertainty sampling for increased average

efficiency.

î = argmaxi[σ(xi)] (2.16)

To explore how these acquisition functions affect sampling, we utilize a simple ex-

perimental method with the known ground truth distribution (D) introduced in Section

2.1.1. using the code outlined in Algorithm 1:
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Algorithm 1: Steps to evaluate GPR

Input: D # D.X, D.Y are lists of all independent and dependent data points

Input: samplingScheme # randomSampling or uncertaintySampling

Input: maxIter # maximum number of sampled data points (10)

Input: K # kernel function

Result: MSE # list of MSE per number of sampled data points

begin

# S.X, S.Y are lists of training independent and dependent data points ;

S.X ←− ∅ ;

S.Y ←− ∅ ;

MSE ←− ∅ ;

while size(S.X) < maxIter do

# Step 1: sample corresponding data points ;

if samplingScheme == uncertaintySampling and size(S.X) ≥ 1 then

î = argmaxi(σ(D.X,K, S, α, β));

else

î = random(D.X);

# Step 2: add points to observed data set ;

S.X.append(D.X [̂i]) ;

S.Y.append(D.Y [̂i]) ;

# Step 3: minimize NLML (fit the GPR) ;

α, β = argminα,β(NLMLk(α, β)) ;

# Step 4: calculate MSE ;

MSPE.append(
∑size(D.X)

i ((µ(D.X[i], S,K, α, β)−D.Y [i])2)/size(D.X)) ;

return MSE ;
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Figure 2.3: A comparison of two acquisition functions, uncertainty sampling and random
sampling, and their regression estimates as the number of sampled data points increases.
In this example, random sampling and uncertainty sampling have a similarly bad esti-
mate for under 5 data points. However, as the number of samples increases, uncertainty
sampling has an astoundingly close estimate of the underlying ground truth distribution

By sampling up to 10 data points and running this experiment once with random

sampling and once with uncertainty sampling, we can create the plots in Fig. 2.3. As the

number of sampled points increases, both random and uncertainty sampling ultimately

yield an increasingly close model of the ground truth distribution. However, uncertainty

sampling converges to the ground truth distribution significantly quicker. We can show

these trends by plotting the mean squared prediction error (MSE) between GPR’s pre-

dicted values (µ(x)) and the testing data as a function of the number of points sampled

(Fig. 2.4):

MSE =
n∑
i=1

(µ(x)− y)2/n (2.17)

Around three points, both random and uncertainty sampling yield comparable results.

After five data points, however, uncertainty sampling has almost half the MSE. By the

time we reach ten data points the effectiveness of these two methods are no longer remotely

close, with uncertainty sampling out performing random sampling by several orders of

magnitude. Therefore, we can conclude, the squared exponential kernel (Eq. 2.10) does

an excellent job at not only estimating the underlying distribution but also understanding

the uncertainty in its prediction. This simple experiment demonstrates the two essential

components of GPR: its nonparametric nature and its probabilistic prediction.
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Figure 2.4: The MSE for the experiment seen in Fig. 2.3 plotted as a function of the
number of data points sampled.

2.2 Meshes

Figure 2.5: A meshed discrete manifold (M) consists of 3 different elements. Vertices
(mi) represent directly sampled points from the underlying continuous manifold. Edges
connect the closest vertices on the surface, and faces represent an interpolated manifold
surface. The sphere mesh on the right is an example of discrete representation of a
two-dimensional continuous manifold embedding in R3.

Manifolds are surfaces that contain a set of points that locally resemble Euclidean

space. Some examples of manifolds are a sphere (the surface of a ball) as well as a more

complex example, the surface of a mustard bottle (Fig. 1.2a). These are both examples

of continuous two-dimensional manifolds with a natural embedding in three-dimensional

space.

A discrete approximation of these surfaces can be generated by sampling a set of

points from the continuous underlying manifold. The discrete representation of these
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surfaces helps construct computer models of real objects whose surfaces cant be modeled

by a simple equation, like the mustard bottle. For example, the meshes in the YCB [4]

data set were constructed by sampling the surface of real 3D objects using depth sensors

[23]. Combining many of these data points allows for a three-dimensional reconstruction

of the object’s surface using algorithms such as Poisson Reconstruction [23]. These types

of algorithms output a variety of data structures, the most common of which is a mesh

which is a discrete representation of a surface consisting of a series of vertices, edges,

and faces, Fig. 2.5. Therefore, the generated mesh is discrete, representing a continuous

two-dimensional surface with a natural embedding within three-dimensional Euclidean

space.

This work focuses on the use of vertices from a meshes as independent data (mi ∈
M) to predict scalar-valued dependent data (yi ∈ R). This updates the regression model

shown in Fig. 2.1 to Fig. 2.6 where the function f maps between M and Y :

yi ≈ f(mi) (2.18)

In Fig. 2.6 the blue and red shading visually depicts regions associated with low and high

scalar yi values, respectively. In stiffness mapping, this represents the soft (blue) and hard

(red) regions.

Figure 2.6: Regression for manifold-valued data, where the independent data is derived
from vertices on a mesh (mi ∈ M) and scalar dependent data (yi ∈ R). The dependent
data can be visualized through a red and blue color map.

2.2.1 Calculating Geodesic Distances

To find correlations between independent data points mi and mj sampled fromM,

it is crucial to know how to calculate distances that respect the manifold’s structure.

The geodesic distance (dg(mi,mj)) measures the shortest distance between two points on

a manifold, whose path is constrained to the surface. For a sphere, we can calculate a

closed-form geodesic distance function, where M is a unit sphere embedded into R3.

dg(mi,mj) = 2arcsin(
||mi −mj||

2
) (2.19)
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It is important to note that this geodesic distance function is non-differentiable around

||mi −mj|| = 1 or points that are on the exact opposite side of the sphere, such as the

north and south pole. Intuitively two points on the opposite side of the sphere contain

an infinite number of shortest paths, causing this geodesic function not to be smooth.

Unfortunately, it is not always possible to derive a closed-form solution to the

geodesic distance function, dg, especially for our discrete representation. One naive ap-

proach to calculating geodesic distances on a mesh is to use Dijkstra’s algorithm, Fig.

2.7a. Classifying a mesh as purely vertices and edges, Dijkstra’s algorithm starts at mi,

and uses a simple graph search to explore the closest ”unvisited” vertices until it reaches

its goal, mj. On a mesh, this allows Dijkstra’s algorithm to derive a naive geodesic dis-

tance between vertices. However, this algorithm ignores a vital element of the mesh, its

faces. To reconcile this naive assumption, one can use continuous Dijkstra’s algorithm

[24], a more exact method for measuring geodesic distances on a mesh.

Figure 2.7: Geodesic paths between mi and mj calculated using discrete Dijkstra’s (a) and
continuous Dijkstra’s algorithm (b). Due to the saddle point ms, continuous Dijkstra’s
algorithm finds two equivalent paths.

Continuous Dijkstra’s algorithm, Fig. 2.7b, calculates a geodesic distance by track-

ing groups of shortest paths [25] that expand out across the edges and faces from a source

vertex. However when Continuous Dijkstra’s encounters saddle points or vertices whose

adjoining faces have a total angle greater than 2π (ms), a wave is split into two waves

representing paths of equivalent distances. These saddle points, while impossible for con-

tinuous 2-dimensional manifolds, are caused by the mesh’s discrete nature approximating

a continuous surface. Thus due to the discrete nature of a mesh, Continuous Dijkstra’s

often results in multiple solutions to the shortest geodesic path between two vertices.

Furthermore, similar to how a sphere’s geodesic distance function, Eq. 2.19, the geodesic

distance function is not smooth when multiple paths exist between vertices so is this

discrete geodesic distance function when it encounter’s a saddle point. Therefore, the

continuous Dijkstra’s algorithm can calculate an exact geodesic distance measurement

between all vertices on a mesh, however its result is not smooth. This is a basic expla-

nation of the difficulties with taking geodesic distances between points sampled from a

manifold, however for more information refer to [14, 26]
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2.2.2 Constructing Testing Data

Figure 2.8: Two Meshes whose vertices represent independent data points.

To test different methods for handling regression with vertices from a mesh as

independent data, we will initially focus on two different meshes: a mustard bottle and a

sphere. These independent test data are shown in Fig. 2.8.

In order to construct these two sets of independent data, we relied on the YCB

data set [4] to source our sphere and mustard bottle meshes. Then, to simplify our data,

Meshlab [27] was used to reduce the number of data points to contain around 1,000

vertices (2,000 faces) and scaled each object to unit size.

To create our synthetic testing distributions for the dependent data (Y ), we rely on

the discrete geodesic distance between vertices calculated using the continuous Dijastra’s

algorithm [24, 25]. Following the steps in Fig. 2.9, we choose a vertex (mmax), project

a three-dimensional Gaussian distribution onto the mesh centered around the selected

vertex then sample the Gaussian distribution at each vertex.

Figure 2.9: 1. Choose a point on the surface of the mesh (mmax) 2,3 Draw a Gaussian
distribution above this point 4. Project Gaussian distribution onto the original surface

This is functionally equivalent to using the geodesic distances calculated using the

continuous Dijkstra’s algorithm [25, 24] as the distance metric in the Gaussian distribu-
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tion:

yi =
1

σ
√

2π
exp(−1

2

dg(mi,mmax)
2

σ2
), σ = 0.2 (2.20)

where mmax is the selected vertex and therefore also the maximum value of the Gaussian

distribution.

By selecting two vertices for each sample mesh, we can create the four sample

evaluation data sets seen in Fig. 2.10. These four distributions will be used as so-called

’ground truth’ data sets (D) when initially comparing the converging rates of different

embedding models.

Figure 2.10: Four synthetic evaluation data set, showing a Gaussian distributions pro-
jected on to the surface of the mesh around different vertices.
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Chapter 3

Related Work

Stiffness, a measurement of how easily an object resists deformation, can be mea-

sured through a process known as palpation, summarized in Fig. 3.1. First, given a

deformable object, a probe can apply a force to the surface. Then measuring both the

depth in which the probe deforms the surface and the amount of force applied, stiffness is

calculated as the proportionality constant relating depth to force. Finally, by repeating

this process over the deformable object’s surface, a stiffness map is constructed. In the

literature, there are two main methods for building these stiffness maps: simulation-based

[28, 29, 6, 30, 31] and through robotic scanning, [5, 1, 7, 32, 2, 3, 33].

Figure 3.1: One example palpation: using a force sensor attached to a probe the stiffness
is measured by a change in force vs palpation depth.

Simulation-based approaches to understanding deformable objects rely on a com-

putational model describing the object and how it might respond to outside forces. For

example, the work in Sin et. al. [6] outlines a series of popular finite element meth-

ods (FEM) for simulating deformable object interactions. The most basic model is the

three dimensional Mass-Spring model, which characterizes an object as nodes connected

by several springs. Then a simulated force can be applied, and the motion computed

numerically for each node. Fig. 3.2 depicts a rectangular deformable object (a beam) and

the resulting deformation as predicted by four comparable computational models.

In the case of stiffness mapping, FEMs could be employed to model palpation,

simulating the probe’s interaction with the object’s surface. Therefore, constructing a
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Figure 3.2: Simulated material behavior under stretching [6]. (A) (B) describe two can-
tilever beam at rest. (C) - (J) show the effects of pulling end of the beams as described
by different simulators.

dense stiffness map is as simple as iteratively simulating forces over a set of points on

the object’s surface. However, in general, FEM and computational-based approaches

require detailed knowledge of an object’s material properties, such as material thickness,

composition, geometry, etc [28, 29]. Therefore these methods struggle to make predictions

about real-world objects. Furthermore, even with the same parameters different models,

such as in Fig. 3.2, can also have varied results. Thus due to the complexities of model

selection and parameter specification, using a computational approach to make predictions

about specific real-world objects can be rather tricky.

An alternative approach to generating stiffness maps is through scanning or phys-

ically measuring the stiffness properties of deformable objects. For example, the work

presented in Pai et al. [7, 32] describes a system for collecting data about the surface

properties of objects, such as texture, reverberation, friction, and local stiffness. Fig. 3.3

shows how this data is collected: using a probe on the tip of a robotic arm, the probe

can scan across the surface of an object collecting, in this image, information about an

object’s texture. However, their setup is designed to be general and is, therefore, identical

to their setup for collecting information about stiffness.

However, this work creates a global map of stiffness, friction, etc., through a brute

force approach. Pai et al. [7, 32] uses a robotic arm to scan across the entire surface of

the object. This methodology can be time-consuming. Furthermore, this work does not

consider how to interpolate between data points; instead, each region around the collected

data is assumed to have the same stiffness value.

More recently, Zevallos et. al. [1] has also developed an approach to stiffness map-

ping. This work, which focuses on stiffness mapping for medical robotics, also generates

a map through palpation, Fig. 3.4. However, instead of relying on a scanning or brute

force-based approach, where every point is directly measured, this work employs GPR to

fit the data and estimate a global stiffness distribution. Then using acquisition functions,

18



Figure 3.3: Robotic System described in Sin et. al. [7] designed to measure physical
properties of objects for a better haptic models. In this example the robotic system (left)
is rubbing the pot to determine local texture/friction which is described (right) as high
(white) and low (grey) coefficients of friction.

such as uncertainty sampling, their methodology determines which location to palpate

next. Zevallos et. al. [1] demonstrates that this approach to stiffness mapping reduces

the number of sampled palpations necessary to locate tumors within organs. A similar

methodology can be applied in general to map the stiffness of any three dimensional

object, which is the primary goal of this thesis. However, Zevallos et. al. [1] assumes

that the organ for which this work attempts to create a stiffness map is approximately

flat or can easily be isometrically mapped to a two dimensional plane. However, this is

impossible for many objects, ie a sphere [34].

Figure 3.4: Robotic System described in Zevallos et. al. [1] designed to measure the
stiffness of tumors of objects for tumor localization.

In this thesis, we will expand on the work presented in Zevallos et. al. [1] similarly

using GPR as our regression model due to its connection to data acquisition methods, such

as uncertainty sampling. In addition, however, we will improve their work through the use

of supervised embedding. Supervised embedding algorithms, the primary contribution of

this paper, allow us to map the stiffness of three dimensional objects more efficiently than

both the work presented in Zevallos et. al. [1] and Pai et al. [7, 32].
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Chapter 4

Intrinsic and Extrinsic Regression

This section will introduce two approaches for handling regression with independent

data sampled from a manifold: intrinsic and extrinsic regression. The main difference

between these two methods is the distance metric used to measure similarity between

predictors. Extrinsic regression relies on a Euclidean distance between predictors embed-

ded into a Euclidean space, while intrinsic regression relies on the geodesic distance. To

compare these two methods, we first examine how an intrinsic K-nn and extrinsic K-nn

algorithm might function in fitting the test distributions presented in Sec. 2.2.2. We use

these results to create a baseline for general trends we should expect. We find that a K-nn

algorithm, which incorporates the intrinsic, geodesic distance metric, fits our test distri-

butions better. Next, we repeat the same experiments using an intrinsic and extrinsic

distance metric as a part of GPR. However, the intrinsic GPR model performs far worse

than the extrinsic GPR model due to discontinuities in the intrinsic distance metric. This

experiment demonstrates the failure of GPR to generalize to non-smooth distance metrics.

In future chapters, we will use the results from extrinsic GPR as a baseline comparison

for our future work with supervised and unsupervised embedding methods.

4.1 Intrinsic and Extrinsic K-Nearest Neighbor Re-

gression

K-nn, similar to GPR, is a supervised, non-parametric regression technique that

relies on a distance function to measure similarities or covariance between data points.

However, unlike GPR, K-nn does not require the distance function to be smooth; therefore,

by experimenting with Intrinsic and Extrinsic K-nn we can uncover the generic trends we

should expect from these two variations of the same method. To develop a comparable

K-nn to GPR, we will start by expanding on the basic algorithm introduced in Sec.

2.1.: Instead of the teach and repeat style of learning presented in this algorithm K-nn

regression, when predicting a given independent value, we can return a weighted average
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of that using the K closest neighbors from a set of observed data points [21]. This more

general version of K-nn regression can be described as follows:

Algorithm 2: K Nearest Neighbor Regression

Input: S # S.X, S.Y are lists of observed data points

Input: X # value for which K-NN is trying to make a prediction for

Input: dist # distance metric ie extrinsic of intrinsic

Input: K # K number of neighbors to consider

begin

ClosestV alues.X ←− ∅ ;

ClosestV alues.Y ←− ∅
# Step 1: Find the closest K number of neighbors from the observed data set ;

while ClosestV alues.size < K do

i = argmini(dist(S.X[i], X)) ;

ClosestV alues.X.append(S.X[i]) ;

ClosestV alues.Y.append(S.Y [i]) ;

S.X = S.X.remove(i) S.Y = S.Y.remove(i)

# Step 2: Return an average weighted by the distance to the original value X;

return
∑k

i ClosestV alues.Y [i] ∗
dist(ClosestV alues.X[i], X)/

∑k
i dist(ClosestV alues.X[i], X);

One crucial function to consider when applying K-nn to our data is the distance

function or d. As described in Algorithm 2 this function affects both which points would

be considered ’closest’ and how they should be weighted. We can use two possible dis-

tance metrics to measure similarity between predictors. First, intrinsic K-nn uses the

exact geodesic distance between data points as calculated using the Continuous Dijka’s

Algorithm outlined in Section 2.2.1. This distance metric considers the inherent geometry

of the manifold from which the data points were sampled. Second, extrinsic K-nn uses

the Euclidean distance between the data points. Because our independent data is already

embedded in R3, this is a natural choice for measuring Euclidean distance.

To evaluate the two different K-nn models, intrinsic K-nn and extrinsic K-nn, we

can repeat a process similar to Algorithm 1 outlined in Sec. 2.1. However, for these

experiments, we will use data sampled from the surface of manifolds M to predict the

ground truth distributions constructed in Fig. 2.10. To simplify our initial experiments,

we will evaluate how these two models fit the ground truth distributions using solely ran-

dom sampling averaging the resulting MSE (Eq. 2.17) over 20 trials. Furthermore, we

will separate 60% of the data as training data set and 40% of the data to use as testing

data. This will ensure that the K-nn regression does not overfit the observed data points.

This experimental procedure can be outlined as:
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Algorithm 3: Steps to evaluate intrinsic and extrinsic K-NN

Input: D # D.M, D.Y are lists of all independent and dependent data points

Result: MSE.train, MSE.test # list of MSE per number of sampled data points

for the training and testing data sets

begin
# Step 1: Divide the data set into testing and training data using a 60/40

split ;

randomIndicies = randInts(0, size(D.M))

# Testing.M, Testing.Y are lists of segmented set of independent and

dependent testing data points from which the observed data points are NOT

sampled ;

Test.M ←− D.M [randomIndicies[: 600]] ;

Test.Y ←− D.Y [randomIndicies[: 600]] ;

# Training.M, Training.Y are lists of segmented set of independent and

dependent training data points from which the observed data points are

sampled ;

Train.M ←− D.M [randomIndicies[600 :]] ;

Train.Y ←− D.Y [randomIndicies[600 :]] ;

# S.M, S.Y are lists of observed independent and dependent data points ;

S.M ←− ∅ ;

S.Y ←− ∅ ;

# MSE.train and MSE.test are the Errors for the training and testing data

sets ;

MSE.test←− ∅ ;

MSE.train←− ∅ ;

while size(S.M) < maxIter do

# Step 2: sample corresponding data points ;

î = random(Train.M);

# Step 3: add points to observed data set ;

S.M.append(Train.M [̂i]) ;

S.Y.append(Train.Y [̂i]) ;

# Step 4: calculate MSEs use the KNN regression;

MSE.train.append(
∑size(Train.M)

i ((KNN(S, Train.M [i])−
Train.Y [i])2)/size(Train.M)) ;

MSE.test.append(
∑size(Test.M)

i ((KNN(S, Test.M [i])−
Test.Y [i])2)/size(Test.M)) ;

return MSE.train, MSE.test ;
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Figure 4.1: Averaged MSE of 4 sample distributions comparing extrinsic (with the original
vertex embeddings) vs instrinic GPR.
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Running this experimental procedure using the four test distributions (and a K=10)

10 times each, we get the following results, seen in Fig. 4.1. These plots show the general

trends that we would expect from comparing our extrinsic and intrinsic methods using

our constructed data sets. Since our original distributions were constructed using the

intrinsic geodesic distance, the regression model which incorporates the same distance

metric performs best. After 500 sampled data points, the intrinsic K-nn regression has a

lower MSE for both the testing and training data sets across all four distributions. On

average, the intrinsic method decreases our training error by 3.7 % and our testing error

by 4.3 % as compared to our extrinsic method, with the most significant change coming

from the distribution titled mustard:top.

4.2 Intrinsic and Extrinsic Gaussian Process Regres-

sion

Similar to the previous section, the intrinsic and extrinsic distance metric can be

incorporated into GPR by altering the distance function it uses to measure similarity

between predictors. In the case of intrinsic GPR this alters its kernel function from Eq.

2.11 to include the geodesic distance function [12, 11] :

kint(mi,mj) = αexp(−dg(mi,mj)
2

2β2
) (4.1)

With hyperpameters calculated using an identical method to Eq. 2.14 in Sec. 2.1.1:

α, β = argminα,βNLMLkint
(α, β) (4.2)

In the case of extrinsic GPR its kernel function is very similar to Eq. 2.10:

kext(mi,mj) = αexp(−||mi −mj||2

2β2
) (4.3)

Again, the hyperpameters are calculated using an identical method to Eq. 2.14 in Sec.

2.1.1:

α, β = argminα,βNLMLkext(α, β) (4.4)

To evaluate the two different GPR models, intrinsic GPR and extrinsic GPR, we

can repeat a process similar to Algorithm 2, the same method used to evaluate intrinsic

and extrinsic K-nn. In this manner, we can compare these two approaches to regression

with relative ease.
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Algorithm 4: Steps to evaluate intrinsic and extrinsic GPR

Input: D # D.M, D.Y are lists of all independent and dependent data points

Input: samplingScheme # randomSampling or uncertaintySampling

Input: K # kernel function (extrinsic or intrinsic)

Result: MSE.train, MSE.test # list of MSE per for the training and testing data

begin
# Step 1: Divide the data set into testing and training data using a 60/40

split ;

randIndicies = randInts(0, size(D.M))

# Testing.M, Testing.Y are lists of segmented set of independent and

dependent testing data points from which the observed data points are NOT

sampled ;

Test.M, Test.Y ←− D.M [randIndicies[: 600]], D.Y [randIndicies[: 600]] ;

# Training.M, Training.Y are lists of segmented set of independent and

dependent training data points from which the observed data points are

sampled ;

Train.M, Train.Y ←− D.M [randIndicies[600 :]], D.Y [randIndicies[600 :]] ;

# S.M, S.Y are lists of observed independent and dependent data points ;

S.M, S.Y ←− ∅, ∅ ;

# MSE.train and MSE.test are the Errors for the training and testing data;

MSE.test,MSE.train←− ∅, ∅ ;

while size(S.M) < maxIter(500) do

# Step 2: sample corresponding data points ;

if samplingScheme == uncertaintySampling and size(S.M) ≥ 1 then

î = argmaxi(σ(Train.M,K, S, α, β));

else

î = random(Train.M);

# Step 3: add points to observed data set ;

S.M.append(Train.M [̂i]) ;

S.Y.append(Train.Y [̂i]) ;

# Step 4: minimize NLML (fit the GPR) ;

α, β = argminα,β(NLMLk(α, β)) ;

# Step 5: calculate MSE ;

MSE.train.append(
∑size(Train.M)

i ((µ(Train.M [i], S,K, α, β)−
Train.Y [i])2)/size(Train.M)) ;

MSE.test.append(
∑size(Test.M)

i ((µ(Test.M [i], S,K, α, β)−
Test.Y [i])2)/size(Test.M)) ;

return MSE.train, MSE.test ;
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Figure 4.2: Averaged MSE of 4 sample distributions comparing extrinsic (with the original
vertex embeddings) vs instrinic GPR.
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As seen in Fig. 4.2, unlike the results for intrinsic and extrinsic K-nn, due to the ill-

defined intrinsic kernel, intrinsic GPR performs significantly worse than extrinsic GPR.

We are driven to this conclusion because intrinsic GPR increases the average training

error by 84 % and the average testing error by 72 %. These results are in line with the

results of Lin et. al. [12], which also demonstrates how fitting data with discontinuities

in the intrinsic distance function leads to worse results. Therefore we can conclude that

using an embedding of the data, even an embedding that ignores much of the manifold’s

structure, allows extrinsic GPR to outperform intrinsic GPR. This judgment leads us to

this thesis’s basic premise: is it possible to improve the embedding of the manifolds? We

will explore this idea in the following chapters using two different methods, supervised and

unsupervised learning. The unsupervised method attempts to improve the embedding

of the manifold to reflect the intrinsic distances between data points. The supervised

method attempts to improve the embedding as a function of the observed stiffness data.

Both supervised and unsupervised methods for embedding then rely on extrinsic GPR to

evaluate how well the embedded data can be used to predict an object’s stiffness map,

attempting to improve upon the results presented in this chapter.
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Chapter 5

Unsupervised Embedding

Figure 5.1: Embedding mesh regression, a form of extrinsic regression where the mesh is
first embedded into some Euclidean space before applying the extrinsic GPR kernel.

In Sec. 4.2 we explored extrinsic GPR using the original mesh embedding M to

represent the independent data. However, this embedding ignores much of the manifold’s

structure. This section will focus on constructing new embeddings which incorporate the

intrinsic geometry of the manifolds by relying on unsupervised algorithms developed for

manifold learning [15]. Two common unsupervised embedding methods are multidimen-

sional scaling (MDS) [16] and isometric feature mapping (Isomap) [17]. Both of these

methods attempt to find an embedding of the independent data that minimizes some

reconstruction error; in our case, the difference between the Euclidean distance between

any two embedded points and their original geodesic distance. This choice of reconstruc-

tion error attempts to find a representation of the data with a smooth distance metric

while still representing the manifold’s structure. After constructing the embedding, a new

representation of the independent data (M′) can then be incorporated into GPR using

the extrinsic kernel outlined in the previous section. This creates a regression model seen

in Fig. 5.1. To test the quality of these methods, we can repeat a similar experiment to

the one outlined in Sec. 4.2. We find that both MDS and Isomap result in a worse fit

of our test distributions. One possible explanation is that MDS and Isomap reduce the

overall reconstruction error at the price or stretching near by points.
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5.1 Multidimentional Scaling

Multidimensional Scaling (MDS) [16, 35] is an unsupervized embedding method that

attempts to place points in a Euclidean space such that the distance between the data

points reflect the manifold’s structure [16, 35]. Modern, metric multidimensional scaling

accomplishes this goal by minimizing what is called the stress or the reconstruction error:

n∑
i,j=1

(d(mi,mj)− ||m′i −m′j||)2 (5.1)

Which is the sum squared error between the a user defined distance function and the

euclidean distances of the embedding. Where mi,mj ∈ M are vertices on the original

mesh and m′i,m
′
j ∈M′ are vertices from the newly embedded mesh. For this work we will

focus on the preservation of the intrisic distance between points, therefore we will define

our reconstruction error using the geodesic distance; the same values calculated using

continuious Dijkstra’s for the construction of the ground truth gaussian distributions in

Eq. 2.20.
n∑

i,j=1

(dg(mi,mj)− ||m′i −m′j||)2 (5.2)

When applying MDS to the meshes from Fig. 2.8 we can embed the vertices into

an arbitrary number of dimensions, M′ ⊂ RN . As MDS [16] is only able to quasi-

isometrically embed the vertices we can plot the reconstruction error to initially quantify

the results. In Tb. 5.1 we can see as the number of dimensions increase, there is generally

a decrease in the reconstruction error, especially compared to the original embedding.

However, for dimensions N > 2, there is no significant difference in the reconstruction

error. Therefore, we will mainly focus on MDS for N = 3. This choice of the number of

dimensions allows us to visualize the shape of this newly embedded mesh M′, Fig. 5.2.

Figure 5.2: Embedded Meshes using MDS for N=3

An essential feature to note in Fig. 5.2 is how these new embedded manifolds lose

a lot of the small detail as compared to the original mesh. For example, the mustard
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Table 5.1: Reconstruction Error (Eq. 5.2) for MDS embedding into RN

Mesh Original N=1 N=2 N=3 N=4 N=5 N=6
mustard 4.62e-03 2.56e-02 4.56e-03 8.51e-04 8.51e-04 8.51e-04 8.51e-04
sphere 2.79e-02 1.83e-01 5.67e-02 7.07e-03 7.07e-03 7.07e-03 7.07e-03

bottle no longer displays small bumps on the side or top. One explanation is that MDS’s

cost function optimizes for points with a considerable geodesic distance at the detriment

to relatively close points. Therefore MDS is primarily interested in reducing the global

reconstruction error.

After the mesh is successfully embedded, incorporating this new representation of

the data into the GPR is quite simple. By modify the extrinsic kernel (Eq. 4.3) our

extrinsic kernel therefore becomes:

kext(m
′
i,m

′
j) = αexp(−

||m′i −m′j||2

2β2
) (5.3)

where M′ = MDS(M, N = 3). Because this method uses the same underlying extrinsic

kernel function, optimizing α and β follows the same steps as Equation 3.3.

5.2 Isometric Feature Mapping

Isometric Feature Mapping (Isomap) is an method that attempts to construct a

new embedding of points sampled from a manifold and place them in an N-dimensional

Euclidean space with the goal of preserving the intrinsic geometry of the manifold [17, 35].

Isomap is therefore very similar to MDS, with one distinct difference: unlike MDS, Isomap
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constructs its own rough estimate of geodesic distance. Isomap calculates its estimate

of the geodesic distances by first constructing a discrete, graphical representation of the

manifold and uses a graph search, such as Disktra’s algorithm, to find the shortest distance

between each vertex. Although this method of calculating the geodesic distances is in-

exact (as discussed in Sec. 2.2.1) it does allow room for an additional parameter that

defines the number of nearest neighbors connecting each vertex in Isomap’s graphical

representation. This additional parameter determines how sensitive Isomap is to local or

global distances. For example, after some experimentation, a value of nearest neighbors

thought to be optimal is 800 vertices for our testing data sets. Thus, Isomap optimizes

for a reconstruction error that attempts to preserve a local region around each vertices’

800 nearest neighbors. Through this additional parameter, Isomap might strike a balance

between global and local optimization.

When applying Isomap to the meshes from Sec. 2.8 we embed the vertices into an

arbitrary number of dimensions, M′ ⊂ RN . Like MDS, we can plot the reconstruction

error to initially quantify the success of these embedding algorithms. As seen in Tb.

5.1 there are slightly different results for our two meshes. The sphere mesh has a mini-

mum reconstruction error around N = 3, while the mustard bottle mesh has a continual

improvement in its reconstruction error in higher dimensions N > 3. However as these

improvements are rather negligible we will focus this work on Isomap in 3 dimensions as it

allows us to visualize our results. It is also important to note that these reconstruction er-

rors are slightly higher than the previously seen for MDS in Tb. 5.1. Considering Isomap

is not optimizing for a global reconstruction error using an exact metric for measuring

geodesic distances, this is not a surprise.

For N=3, the embedded meshes result in Fig. 5.3. An important feature to notice

is how these new, embedded vertices look like a slightly scaled and distorted version of

their original meshes (M). Due to Isomap’s cost function optimizing for points within a

region of 800 vertices local regions of the mesh are preserved.

Figure 5.3: Embedded Meshes for Isomap with N=3

After the mesh is successfully embedded, incorporating this new representation of
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Table 5.2: Reconstruction Error (Eq. 5.2) for Isomap embedding into RN

Original N=1 N=2 N=3 N=4 N=5 N=6
mustard 4.62e-03 3.41e-02 9.46e-03 4.34e-03 4.24e-03 4.14e-03 4.08e-03
sphere 2.79e-02 2.64e-01 9.02e-02 1.09e-02 1.10e-02 1.15e-02 1.24e-02

the data into the GPR follows the exact same procedure as for MDS. By modifying the

extrinsic kernel, Eq. 4.3), to Eq. 5.3 where M′ = Isomap(M,N = 3). Furthermore

optimizing α and β follows the same steps as Equation 3.3.

5.3 Analysis

Using the embeddings produced by MDS and Isomap, we can repeat a process sim-

ilar to the one in Alg. 2, as described in Alg. 5

Generally, we find that the new embeddings result in a worse MSE than our naive

embedding. This conclusion is demonstrated by an increase in MSE between MDS and

the naive embedding method of 16 % for the training data and 18 % for the testing data.

Similarly, Isomap also sees an increase in MSE of 68 % for the training data and 71 % for

the testing data. One potential explanation is that MDS and Isomap result in a worse

representation of the data. Suppose we plot the reconstruction error for each vertex

nearest neighbor, as seen in Tb. 5.3, the original embedding has a significantly lower

local reconstructing error, especially for the sphere. Even though these methods decrease

the global reconstruction error, this disparity between global and regional reconstruction

could be one potential explanation why unsupervised embedding does not consistently
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yield the best results. Therefore an alternative solution to embedding our data might

come from a supervised approach instead.

Original MDS Isomap
Mustard 3.24e-11 2.83e-05 3.30e-07
Sphere 1.62e-34 9.08e-05 2.80e-05

Table 5.3: Local reconstruction error for each vertices’ nearest neighbors.
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Algorithm 5: Steps to evaluate MDS and Isomap as apart of extrinsic GPR

Input: D # D.M, D.Y are lists of all independent and dependent data points
Input: samplingScheme # randomSampling or uncertaintySampling
Input: K # kernel function (extrinsic or intrinsic)
Result: MSE.train, MSE.test # list of MSE per for the training and testing data
begin

# Step 0: Preprcoess independent data using MDS or Isomap ;
D.M’ = MDS(D.M)/Isomap(D.M)
# Step 1: Divide the data set into testing and training data using a 60/40
split ;
randIndicies = randInts(0, size(D.M))
# Testing.M, Testing.Y are lists of segmented set of independent and
dependent testing data points from which the observed data points are NOT
sampled ;
Test.M, Test.Y ←− D.M ′[randIndicies[: 600]], D.Y [randIndicies[: 600]] ;
# Training.M, Training.Y are lists of segmented set of independent and
dependent training data points from which the observed data points are
sampled ;
Train.M, Train.Y ←− D.M ′[randIndicies[600 :]], D.Y [randIndicies[600 :]] ;
# S.M, S.Y are lists of observed independent and dependent data points ;
S.M, S.Y ←− ∅, ∅ ;
# MSE.train and MSE.test are the Errors for the training and testing data;
MSE.test,MSE.train←− ∅, ∅ ;
while size(S.M) < maxIter(500) do

# Step 2: sample corresponding data points ;
if samplingScheme == uncertaintySampling and size(S.M) ≥ 1 then

î = argmaxi(σ(Train.M,K, S, α, β));
else

î = random(Train.M);

# Step 3: add points to observed data set ;

S.M.append(Train.M [̂i]) ;

S.Y.append(Train.Y [̂i]) ;
# Step 4: minimize NLML (fit the GPR) ;
α, β = argminα,β(NLMLk(α, β)) ;
# Step 5: calculate MSE ;

MSE.train.append(
∑size(Train.M)

i ((µ(Train.M [i], S,K, α, β)−
Train.Y [i])2)/size(Train.M)) ;

MSE.test.append(
∑size(Test.M)

i ((µ(Test.M [i], S,K, α, β)−
Test.Y [i])2)/size(Test.M)) ;

return MSE.train, MSE.test ;
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Figure 5.4: Averaged MSE of 4 sample distributions comparing extrinsic GPR using MDS
and Isomap to prepossess the mesh vertices’s embedding.
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Chapter 6

Supervised Embedding

Figure 6.1: Supervised embedding relies on a parametric embedding function g to map
from the points on the manifold (M) to the new embedding (M′). Then applying GPR,
the parameters of g are optimized simultaneously with the extrinsic kernel’s hyperparam-
eters as a function of the observed data.

In this chapter, we will introduce the concept of supervised embedding. In contrast

to MDS or Isomap, which learns a new representation of the inputs as a function of the

dependent data, a supervised approach incorporates observed data into the embedding

process. A key component to supervised embedding is a parametric embedding function

g, which maps betweenM andM′. This parametric embedding function can be incorpo-

rated into GPR by optimizing its parameters simultaneously with the hyperparameters α

and β from our extrinsic kernel (Eq. 2.11), Fig. 6.1. Therefore the embedding of our mesh

(M′) is constructed as a function of the observed stiffness distribution. This supervised

approach can take a few different shapes: manifold Gaussian Process regression (mGPR)

[10] which entirely alters the independent data (M) and appended manifold Gaussian

Process regression (amGPR), which instead appends on a higher dimensional embedding

to fine-tune the embedding. However, both of these methods have one thing in common-

their goal is to alter the independent data’s embedding (M′) based on the dependent

data (Y ). Similar to the previous sections, we will test our methods by repeating similar

experiments to Alg. 2.
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6.1 Manifold Gaussian Process Regression

Figure 6.2: mGPR, a form of supervized embedding.

Manifold Gaussian Process Regression (mGPR) [10], is a supervised approach to

embedding that relies on a parametric function to embed the data. Unlike MDS and

Isomap, which construct this embedding by minimizing some pre-determined function

based on just the predictors, mGPR optimizes its embedding as a function of the observed

dependent data. By forming its embedding, M′, as a function of the dependent data

mGPR ideally results in a better fit of the underlying ground truth distributions.

In order to construct our supervised embedding, first we start by defining a function

g, our embedding function, which maps between M and M′:

m′i = g(mi) (6.1)

The embedding function g must be a deterministic function that maps between R3 to

an embedded space of RN . Therefore there are many different functions that can be

considered, for example g may be considered the identity:

m′i = g(mi) = Imi = mi (6.2)

Where I the identity matrix of R3×3. However, this would result in an extrinsic GPR

identical to Sec. 4.2.

Inspired by the work presented in Caranda et. al. [10] we will consider g instead as

a single layer neural network with a hyper-tangent activation function:

g(mi) = tanh(Wmi +W0) (6.3)

Where the parameters of g are W ∈ R3x3 and W0 ∈ R3x1 therefore, similar to MDS and

Isomap, the resulting embedding is in 3-dimensions,M′ ⊂ R3. This choice of embedding

function is also inspired by previous work in Antonova et. al. [36] where intuitively g can

be thought of as a nonlinear function that warps the shape of the manifold. For example,
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Fig. 6.3 shows what happens when applying the function g to our testing surfaces when

W = I and W0 =
[
0 0 1

]T
.

Figure 6.3: Example embeddings of mGPR using a simple equation for the embedding
function g.

After constructing the parametric embedding function g it can then be incorporate

in GPR by constructing a new kernel, kmGPR, very similar to the original extrinsic kernel

from Eq. 2.11:

kmGPR(mi,mj) = kext(g(mi), g(mj)) = kext(m
′
i,m

′
j)

= α exp(−1

2
β−2||tanh(Wmi +W0)− tanh(Wmj +W0)||)

(6.4)

By incorporating the embedding function g into the squared-exponential kernel, the pa-

rameters W and W0 can now be consider as additional hyperparameters, similar to α and

β. Therefore we can simultaneously optimized these values:

α, β,W,W0 = argminα,β,W,W0(NLMLkmGPR
(α, β,W,W0)) (6.5)

Updating the optimization of the kernel’s hyperparameters to incorporate the parameters

of g will mean our new embedding M′ will be a function of the observed data, S. Thus,

we have constructed the basis for supervised embedding as a part of GPR.

6.2 Appended Manifold Gaussian Process Regression

Appended manifold Gaussian Process regression (amGPR), Fig. 6.4, is a supervised

approach to embedding very similar to mGPR; its embedding is a function of observed

dependent data. However, amGPR varies in how it incorporates the embedding function

g. While mGPR uses its embedding function to redefine its data completely, amGPR,
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Figure 6.4: amGPR, a modification to the original mGPR.

instead appends the resulting values from g to its original embedding. The underlying

assumption of amGPR is that the original embedding of the data, as shown in the previous

sections, creates a pretty good fit of the stiffness distribution. Therefore, by appending

the results of our embedding function to the original data, we can use amGPR to improve

upon our original embedding.

amGPR, similar to mGPR, constructs its embedding through a function g; however

instead of using the parametric function g to completely redefine the embedding, it is

appended to the original data:

m′i =

[
mi

g(mi)

]
(6.6)

where M ⊂ RN , g(mi) ∈ RM and the resulting embedding M′ ⊂ RN+M . Similar to

mGPR we will consider a single layer neural network (Eq. 6.3) with a hyper-tangent

activation function as our parametric function g. This will allow us to make comparisons

between two models that contain the same underlying embedding function, with the same

number of hyper parameters. Furthermore, this embedding can be be incorporate in GPR

by constructing a new kernel, kamGPR very similar to the original extrinsic kernel from

Eq. 2.11:

kamGPR(mi,mj) = kext(

[
mi

g(mi)

]
,

[
mj

g(mj)

]
) = kext(m

′
i,m

′
j)

= α exp(−1

2
β−2||

[
mi

tanh(Wmi +W0)

]
−

[
mj

tanh(Wmj +W0)

]
||)

(6.7)

And whose hyperparamter’s can be optimized as:

α, β,W,W0 = argminα,β,W,W0(NLMLkmGPR
(α, β,W,W0)) (6.8)

Through amGPR, the resulting embedding M′ has the following property when
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setting the parameters of the neural network to 0:

||m′i −m′j||2 = ||

[
mi

g(mi,W = 0,W0 = 0)

]
−

[
mj

g(mj,W = 0,W0 = 0)

]
||2 = ||mi −mj||2

(6.9)

The pairwise Euclidean distance between points sampled from M and M′ are identical.

Intuitively this construction allows amGPR to tweak the embedding instead of altogether

redefining it, as in the case of mGPR. Hopefully, this will enable amGPR to be comparable,

if not better than, the original embedding M.

6.3 Analysis

Similar to our previous experiments, we will compare these models by repeating a

process identical to the one in Alg. 2:
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Algorithm 6: Steps to evaluate mGPR and amGPR

Input: D # D.M, D.Y are lists of all independent and dependent data points

Input: samplingScheme # randomSampling or uncertaintySampling

Input: K # kernel function (extrinsic or intrinsic)

Result: MSE.train, MSE.test # list of MSE per for the training and testing data

begin
# Step 1: Divide the data set into testing and training data using a 60/40

split ;

randIndicies = randInts(0, size(D.M))

# Testing.M, Testing.Y are lists of segmented set of independent and

dependent testing data points from which the observed data points are NOT

sampled ;

Test.M, Test.Y ←− D.M [randIndicies[: 600]], D.Y [randIndicies[: 600]] ;

# Training.M, Training.Y are lists of segmented set of independent and

dependent training data points from which the observed data points are

sampled ;

Train.M, Train.Y ←− D.M [randIndicies[600 :]], D.Y [randIndicies[600 :]] ;

# S.M, S.Y are lists of observed independent and dependent data points ;

S.M, S.Y ←− ∅, ∅ ;

# MSE.train and MSE.test are the Errors for the training and testing data;

MSE.test,MSE.train←− ∅, ∅ ;

while size(S.M) < maxIter(500) do

# Step 2: sample corresponding data points ;

if samplingScheme == uncertaintySampling and size(S.M) ≥ 1 then

î = argmaxi(σ(Train.M,K, S, α, β));

else

î = random(Train.M);

# Step 3: add points to observed data set ;

S.M.append(Train.M [̂i]) ;

S.Y.append(Train.Y [̂i]) ;

# Step 4: minimize NLML (fit the GPR) ;

α, β, W , W0 = argminα,β,W,W0(NLMLk(α, β,W,W0)) ;

# Step 5: calculate MSE ;

MSE.train.append(
∑size(Train.M)

i ((µ(Train.M [i], S,K, α, β)−
Train.Y [i])2)/size(Train.M)) ;

MSE.test.append(
∑size(Test.M)

i ((µ(Test.M [i], S,K, α, β)−
Test.Y [i])2)/size(Test.M)) ;

return MSE.train, MSE.test ;
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Figure 6.5: Averaged MSE of 4 sample distributions comparing mGPR and amGPR.
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Fig. 6.5 summarizes these results. Generally, both supervised learning methods have

significantly lower averaged MSE than the other methods, especially after sampling many

data points. This conclusion is demonstrated by a decrease in MSE between mGPR and

the naive embedding method of 17 % for the training data and 20 % for the testing data.

Similarly, amGPR also sees an increase in MSE of 4 % for the training data and 7 % for the

testing data. Between all methods introduced in this thesis, our supervised approaches to

embedded results in the lowest MSE. Therefore, we can conclude supervised approaches to

embedding are the best method for fitting our synthetic stiffness distributions. However,

to generalize these claims, we will need to evaluate these algorithms further.
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Chapter 7

Results

To fully compare supervised and unsupervised embedding methods, which are sum-

marized in Tb. 7.1, we evaluate these models with three additional experiments. (1) To

assess the generalizability of our results, we expanded the number of ground truth data

sets used to test our models. Instead of the two objects used to initially gauge the differ-

ent algorithms, we increased the number of meshes to 7, each with 6 different dependent

scalar distributions. In total, this constructs 42 different test distributions, which can be

seen in Appendix A. (2) We construct a basic active learning strategy that incorporates

uncertainty sampling (Eq. 2.16). This further validates not only these models’ mean (Eq.

2.8) is well defined, but also their uncertainty (Eq. 2.9). (3) We test these models on 5

stiffness maps sampled from real world object [5] found in Appendix B. Unlike our pre-

vious experiments, this represents testing on real-world data and demonstrates potential

applications beyond our simple evaluation data sets.

7.1 More Test Data

To further test the generalizability of our initial findings, we first test our models

on an additional set of synthetic distributions. Following a similar methodology to Alg.

2 for this experiment we sourced a total of ten meshes from the YCB data set [4] and

simplified each object to around 1000 vertices, or 1000 independent data points. Then,

to construct the dependent data, we continued to use a Gaussian distribution projected

onto each one of these surfaces. Similar to Sec. 2.2.2, by selecting four vertices for each

mesh, we can construct a total of 42 test data sets. Images of all testing distributions are

located in Appendix A.

Similar to our previous experiments, we will evaluate the models for supervised

and unsupervised embedding for each object’s synthetic distribution by splitting the data

randomly with 60 % into a training set and 40 % into a testing data set. Then by

randomly sampling up to 500 data points from the training data set of each object we can

compare how well each model extrapolates their original distribution. However, unlike
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our previous experiments we run only a single trial for each ground truth distribution.

Then, we average our results across a total of 42 trials. Again, to ensure consistency, we

will use the same randomly sampled data points for each trial.

As seen in Fig. 7.1, on average, we find very similar trends to the results in our

previous sections. Our naive implementation of intrinsic GPR has a significantly higher

MSE than the extrinsic approaches to GPR. This demonstrates the continual ill-defined

nature of the intrinsic kernel (Eq. 4.1). Furthermore, after 500 sampled data points

the unsupervised methods for embedding results in very similar MSEs, regardless of the

embedding method, with MDS slightly outperforming Isomap. Finally both supervised

methods, mGPR and amGPR, far outperform the unsupervised methods for embedding

with mGPR resulting in a 25 % decrease in training data and a 48 % decrease in testing

error as compared to the Original Extrinsic GPR while amGPR results in a 23 % decrease

in training data and a 37 % decrease in testing error as compared to the Original Extrinsic

GPR.

7.2 Uncertainty Sampling

Up to this point, our experiments have focused on the non-parametric nature of

GPR by fitting a subset of our test distributions and using its predicted mean in order to

extrapolate the entire distribution. However we can further test our models by incorporat-

ing uncertainty sampling into our experimentation. This is accomplished by altering the

sampling scheme used, replacing the random sampling scheme with uncertainty sampling,

Eq. 2.16. The goal of uncertainty sampling is to improve a model’s fit of a distribution

by only sampling points which best improve the model. In previous work [1, 2, 3] a well-

conditioned estimate of uncertainty leads to a decrease in MSE, as the GPR results in a

good estimate an uncertainty in its prediction.

Similar to our previous experiments, we will evaluate our models on the original four

distributions data by dividing each distribution into training and testing data sets and

sampling up to 500 data points. However, this time, instead of randomly sampling our

independent data points, we will use a variation of uncertainty sampling from Eq. 2.16.

Unlike traditional uncertainty sampling, we will instead only use uncertainty sampling

every 5 sampled data points, otherwise we will continue to use random sampling. After

these experiments, we will then average across these four trials. We will also run an

identical experiment using purely random sampling as a base line for comparing how well

incorporating uncertainty sampling does to improve the results.

Comparing these two sampling schemes, as seen in Fig. 7.2, we find all of our

uncertainty estimates are well-conditioned as demonstrated by the drop in averaged MSE

between the randomly sampling trial and the uncertainty sampling trials. Furthermore

both supervised methods, mGPR and amGPR, far outperform the unsupervised methods
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Figure 7.1: Comparison of the different supervised and unsupervised approaches to em-
bedding in conjunction with GPR averaged across 60 different test distributions.
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Figure 7.2: Random sampling vs Uncertainty Sampling schemes comparing the different
supervised and unsupervised approaches to embedding in conjunction with GPR.
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for embedding with mGPR resulting in a 19 % decrease in training data and a 70 %

decrease in testing error as compared to the Original Extrinsic GPR while amGPR results

in a 19 % decrease in training data and a 61 % decrease in testing error as compared to

the Original Extrinsic GPR. This experiment thereby demonstrates that our supervised

methods for embedding, mGPR and amGPR, contain both a well defined prediction and

a good estimate of the uncertainty on this prediction. Similar to the work presented in

Zevallos et. al. [1] these methods are therefore well suited for efficient stiffness mapping

of an unknown object.

7.3 Real-World Data

Our final test incorporates the ’real-world’ stiffness distributions collected in Jingyi

Xu et. al. [5]. Similar to the work presented in Pai et al. [7, 32], these stiffness maps were

collected using a robotic mechanism, which was used to palpate the surface of 5 example

objects: a shampoo bottle, a w5 bottle, a box, a plastic cup, and a mustard bottle. These

real-world distributions can be seen in Appendix B. We further test our supervised and

unsupervised models by repeating the same experiment in Sec. 7.2 using these real-world

data sets.

As seen in Fig. 7.3, these results follow a very similar trend to the results seen for

the Gaussian distributions. Each uncertainty sampling performs better than their random

sampling counter parts. Furthermore both supervised methods, mGPR and amGPR, far

outperform the unsupervised methods for embedding with mGPR resulting in an 11 %

decrease in training data and a 33 % decrease in testing error as compared to the Original

Extrinsic GPR while amGPR results in a 17 % decrease in training data and a 30 %

decrease in testing error as compared to the Original Extrinsic GPR. Therefore we can

conclude that our supervised methods for embedding along with GPR result in the the

most optimal method for constructing a stiffness map of a deformable object.
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Figure 7.3: Comparison of the different supervised and unsupervised approaches to em-
bedding in conjunction with GPR averaged across 5 real-world stiffness distributions.
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Chapter 8

Conclusion and Future Work

This thesis introduces supervised embedding, a new approach for fitting GPR with

predictors sampled from a compact manifold. By introducing a parametric function map-

ping the data to a new embedding, we can optimize these parameters simultaneously

with the parameters in the GPR kernel. Therefore supervised learning strategies can find

an embedding as a function of the data it is trying to fit. This thesis introduces two ap-

proaches to supervised embedding, mGPR and amGPR. These two methods differ slightly

in how they incorporate their parametric function into the embedding. mGPR utilizes

the functional mapping to redefine the manifold’s embedding completely, while amGPR

appends a higher dimensional embedding to the original data. The development of these

approaches to supervised embedding as a part of GPR is the primary contribution of this

thesis.

As this work is primarily motivated by stiffness mapping, we tested these models

on a series of 42 evaluation distributions consisting of predictors sourced from the YCB

data set. For the dependent data, we projected a Gaussian distribution onto the surface

of these meshes and sampled at each mesh vertex. We demonstrated the generalizability

of our models by testing on these 42 evaluation data sets. We further validated these

models using real-world stiffness maps of three-dimensional objects. We demonstrated

that these supervised methods, mGPR and amGPR, can fit data with predictors sampled

from compact manifolds better than traditional, unsupervised approaches like MDS and

Isomap or a naive embedding method.

The current limitation of these supervised methods for embedding stems from the

boundaries used as a part of their kernel’s optimization. This value is a constraint on the

hyperparameter. Although it did not require a significant amount of time to tune these

boundaries, a single solution did not generalize to all test distributions. In the future, it

will be essential to explore more robust embedding functions that require minor tuning

of their boundary conditions. One possible solution may be to tweak the function (g) to

use a different activation function instead of the hyperbolic tangent; perhaps, a less steep

derivative will help supervised methods generalize.

51



Stiffness maps, like the ones used to validate our models, are helpful in the field

of deformable manipulation [5]. In the future, we would like to see these algorithms

applied to scenarios where sampling schemes are crucial, such as the efficient generation

of stiffness data sets. Understanding the physical properties of three-dimensional objects is

an essential step to making more object-aware grasping policies. Through the development

of algorithms like amGPR, we will hopefully promote these kinds of data sets. In our work,

we have begun to develop the hardware capable of this future goal [37, 38].
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Gaussian Distributions
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Appendix B

Real world Distributions
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Appendix C

MDS Embeddings
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Table C.1: Reconstruction Error for MDS embedding into RN
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