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Abstract
We have witnessed rapid advancement across major computer vision

benchmarks over the past years. However, the top solutions’ hidden compu-
tation cost prevents them from being practically deployable. For example,
training large models until convergence may be prohibitively expensive in
practice, and autonomous driving or augmented reality may require a re-
action time that rivals that of humans, typically 200 milliseconds for visual
stimuli. Clearly, vision algorithms need to be adjusted or redesigned when
meeting resource constraints. This thesis argues that we should embrace
resource constraints into the first principles of algorithm designs. We sup-
port this thesis with principled evaluation frameworks and novel constraint-
aware solutions for both the cases of training and inference of computer vi-
sion tasks.

For evaluation frameworks, we first introduce a formal setting for study-
ing training under the non-asymptotic, resource-constrained regime, i.e.,
budgeted training. Next, we propose streaming accuracy to evaluate latency
and accuracy coherently with a singlemetric for real-time online perception.
More broadly, building upon this metric, we introduce a meta-benchmark
that systematically converts any single-frame task into a streaming percep-
tion task.

For constraint-aware solutions, we propose a budget-aware learning rate
schedule for budgeted training, and dynamic scheduling and asynchronous
forecasting for streaming perception. We also propose task-specific solu-
tions, including foveated image magnification and progressive knowledge
distillation for 2Dobject detection,multi-range pyramids for 3Dobject detec-
tion, and future object detection with backcasting for end-to-end detection,
tracking and forecasting.

We conclude the thesis with discussions on future work. We plan to
extend streaming perception to include long-term forecasting, generalize
our foveated image magnification to arbitrary spatial image understanding
tasks, and explore multi-sensor fusion for long-range 3D detection.
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Chapter 1

Introduction

Computer vision often draws inspiration from biological vision. Through
billions of years of evolution, the animal kingdom witnesses a plethora of
biological vision systems. From an array of nondirectional photoreceptors
to eyes with lenses, corneas and irises that enable high-resolution vision,
the biological vision system is vastly diverse. Yet none of them have an
omnipotent vision system, as such a system must meet resource constraints
necessary for survival, e.g., maintaining a low energy consumption. Studies
have shown that the temporal resolution of biological vision varies greatly
among species, and has close ties to the metabolic rate and the living envi-
ronment [85]. This suggests that biological vision adapts to resource con-
straints.

This thesis argues that the machine vision should also adapt to resource
constraints. First and foremost, meeting resource constraints is the neces-
sary condition for designing a practical visual perception system. A deep
learning model will not run if it exceeds the hardware memory capacity, a
robot will crash if its perception stack is too slow, and a cell phone’s battery
will quickly drain if the camera enhancement algorithm is not energy effi-
cient. Onemay consider resource constraints as a pure engineering concern,
however, when we embrace resource constraints into our first principles, we
might arrive at novel solutions and eventually reaching a higher level of ar-
tificial intelligence. In neural architecture search, one successful strategy is
to first search the most energy-efficient cell structure and then repeat it mul-
tiple times to form the whole architecture [204]. Although energy was the
search criterion, the final model usually ends up with higher overall accu-
racy for various tasks. In fact, “bounded rationality” is recognized as a fun-
damental issue in computer science, economics and philosophy in 1955 by
the Turing Award and Nobel Prize winner Herbert A. Simon [197]. In his
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seminal work, he proposed a model for studying organisms making deci-
sions with limited computational ability. This thesis restricts the scope to
computer vision and presents a series of projects on resource-constrained
learning and inference to demonstrate the importance of considering re-
source constraints and how to design budget-aware and efficient vision al-
gorithms.

1.1 Overview

Resource-
Constrained

Training

Resource-
Constrained 

Inference

Efficient 2D 
Perception

Motion 
Prediction

Efficient 3D 
Perception

Budgeted Training
Streaming 
Perception

Forecasting via 
Future Object 

Detection

Towards Online 
Forecasting (F)

Foveated Image 
Magnification

Learning to Zoom 
and Unzoom (F)

Progressive 
Knowledge 
Distillation

Multi-Range 
Pyramids

Multi-Modal Far-
Field 3D Detection 

(F)

Solution-FocusedEvaluation-Focused

Figure 1.1: Thesis projects grouped by topics. (F) indicates future work.

As shown in Fig 1.1, my work in the space of resource-constrained learn-
ing and inference can be grouped into two parts, in which one is evaluation-
focused and the other is solution-focused. Within each part, I have explored
several different topics, including resource-constrained training, resource-
constrained inference, motion prediction, efficient 2D perception, and ef-
ficient 3D perception. Under each topic, I have accomplished (or plan to
work on) one or multiple projects. In total, this thesis covers the work of six
projects and three future directions. Each project corresponds to a separate
chapter. I list below the publications associated with each project. First, this
list gives credits to all my collaborators. Second, the project websites listed
provide additional multimedia information for supplementary illustrations.
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• Chapter 2: Mengtian Li, Ersin Yumer and Deva Ramanan. Budgeted
Training: Rethinking Deep Neural Network Training Under Resource Con-
straints. In ICLR, 2020. Project website: https://www.cs.cmu.edu/

~mengtial/proj/budgetnn/.

• Chapter 3: Mengtian Li, Yu-Xiong Wang and Deva Ramanan. Towards
Streaming Perception. In ECCV, 2020. Project website: https://www.cs.
cmu.edu/~mengtial/proj/streaming/.

• Chapter 4: Chittesh Thavamani*, Mengtian Li*, Nicolas Cebron and
Deva Ramanan. FOVEA: Foveated Image Magnification for Autonomous
Navigation. In ICCV, 2021. * denotes equal contribution. Project web-
site: https://www.cs.cmu.edu/~mengtial/proj/fovea/.

• Chapter 5: Shengcao Cao, Mengtian Li, James Hays, Deva Ramanan
and Liangyan Gui. Learning Lightweight Object Detectors via Progressive
Knowledge Distillation. Under review.

• Chapter 6: MengtianLi, BenjaminWilson, Yu-XiongWang, JamesHays
and Deva Ramanan. Multi-Range Pyramids for 3D Object Detection. Un-
der review. Projectwebsite: https://www.cs.cmu.edu/~mengtial/proj/
multirange/.

• Chapter 7: Neehar Peri, Jonathon Luiten, Mengtian Li, Aljosa Osep,
Laura Leal-Taixé andDeva Ramanan. Forecasting from LiDAR via Future
Object Detection. In CVPR, Jun 2022. Project website: https://github.
com/neeharperi/FutureDet.

In Chapter 8, I will discuss several extensions to the above projects, ei-
ther to cover additional tasks or to improve the efficiency and generality of
proposed solutions in the above projects.

The following subsections contain summary for each project.

1.1.1 Budgeted Training
Inmost practical settings and theoretical analyses, one assumes that amodel
can be trained until convergence. However, the growing complexity of ma-
chine learning datasets and models may violate such assumptions. Indeed,
current approaches for hyper-parameter tuning andneural architecture search
tend to be limited by practical resource constraints. Therefore, we introduce
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a formal setting for studying training under the non-asymptotic, resource-
constrained regime, i.e., budgeted training. We analyze the following prob-
lem: “given a dataset, algorithm, and fixed resource budget, what is the best
achievable performance?” We focus on the number of optimization itera-
tions as the representative resource. Under such a setting, we show that it
is critical to adjust the learning rate schedule according to the given bud-
get. Among budget-aware learning schedules, we find simple linear decay
to be both robust and high-performing. We support our claim through ex-
tensive experiments with state-of-the-art models on ImageNet (image clas-
sification), Kinetics (video classification), MS COCO (object detection and
instance segmentation), and Cityscapes (semantic segmentation). We also
analyze our results and find that the key to a good schedule is budgeted
convergence, a phenomenon whereby the gradient vanishes at the end of
each allowed budget. We also revisit existing approaches for fast conver-
gence and show that budget-aware learning schedules readily outperform
such approaches under (the practical but under-explored) budgeted train-
ing setting.

1.1.2 Streaming Perception
Embodied perception refers to the ability of an autonomous agent to per-
ceive its environment so that it can (re)act. The responsiveness of the agent
is largely governed by latency of its processing pipeline. While past work
has studied the algorithmic trade-off between latency and accuracy, there
has not been a clear metric to compare different methods along the Pareto
optimal latency-accuracy curve. We point out a discrepancy between stan-
dard offline evaluation and real-time applications: by the time an algorithm
finishes processing a particular frame, the surrounding world has changed.
To these ends, we present an approach that coherently integrates latency
and accuracy into a single metric for real-time online perception, which we
refer to as “streaming accuracy”. The key insight behind this metric is to
jointly evaluate the output of the entire perception stack at every time in-
stant, forcing the stack to consider the amount of streaming data that should
be ignored while computation is occurring. More broadly, building upon
thismetric, we introduce ameta-benchmark that systematically converts any
single-frame task into a streaming perception task. We focus on the illus-
trative tasks of object detection and instance segmentation in urban video
streams, and contribute a novel dataset with high-quality and temporally-
dense annotations. Our proposed solutions and their empirical analysis
demonstrate a number of surprising conclusions: (1) there exists an optimal
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“sweet spot” that maximizes streaming accuracy along the Pareto optimal
latency-accuracy curve, (2) asynchronous tracking and future forecasting
naturally emerge as internal representations that enable streaming percep-
tion, and (3) dynamic scheduling can be used to overcome temporal alias-
ing, yielding the paradoxical result that latency is sometimes minimized by
sitting idle and “doing nothing”.

1.1.3 Foveated Image Magnification

Efficient processing of high-res video streams is safety-critical formany robotics
applications such as autonomous driving. To maintain real-time perfor-
mance, many practical systems downsample the video stream. But this can
hurt downstream tasks such as (small) object detection. Instead, we take in-
spiration from biological vision systems that allocate more foveal ”pixels” to
salient parts of the scene. We introduce FOVEA, an approach for intelligent
downsampling that ensures salient image regions remain ”magnified” in the
downsampled output. Given a high-res image, FOVEA applies a differen-
tiable resampling layer that outputs a small fixed-size image canvas, which
is then processed with a differentiable vision module (e.g., object detection
network), whose output is then differentiably backward mapped onto the
original image size. The key idea is to resample such that background pix-
els canmake room for salient pixels of interest. In order to ensure the overall
pipeline remains efficient, FOVEAmakes use of cheap and readily available
cues for saliency, including dataset-specific spatial priors or temporal priors
computed from object predictions in the recent past. On the autonomous
driving datasets Argoverse-HD andBDD100K, our proposedmethod boosts
the detection AP over standard Faster R-CNN, both with and without fine-
tuning. Without any noticeable increase in compute, we improve accuracy
on small objects by over 2x without degrading performance on large objects.
Finally, FOVEA sets a new record for streaming AP (from 17.8 to 23.0 on a
GTX 1080 Ti GPU), a metric designed to capture both accuracy and latency.

1.1.4 Progressive Knowledge Distillation

Resource-constrainedperception systems such as edge computing andvision-
for-robotics require vision models to be both accurate and lightweight in
computation and memory usage. Knowledge distillation is one effective
strategy to improve the performance of lightweight classification models,
but it is less well-explored for structured outputs such as object detection
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and instance segmentation, where the variable number of outputs and com-
plex internal network modules complicate the distillation. In this paper, we
propose a simple yet surprisingly effective sequential approach to knowl-
edge distillation that progressively transfers the knowledge of a set of teach-
ers to a given lightweight student. Our approach is inspired by curriculum
learning: To distill knowledge from a highly accurate but complex teacher
model, we construct a sequence of teachers to help the student gradually
adapt. We propose a heuristic algorithm to find the near-optimal order of
teachers, and exploit the backbone-neck-head modularity of detection net-
works to distill at the neck level. Extensive experiments show significant
gains brought by our approach. On the MS COCO benchmark, we improve
ResNet-50 based Mask R-CNN’s detection performance by 3.2 AP, and we
improve ResNet-50 based RetinaNet by 3.4 AP.

1.1.5 Multi-Range Pyramids
LiDAR-based 3Ddetection plays a vital role in autonomous navigation. Con-
temporary solutions make use of 3D voxel representations, often encoded
with a bird’s-eye view (BEV) feature map. While quite intuitive, such rep-
resentations scale quadratically with the spatial range of the map, making
them ill-suited for far-field perception. In this paper, we present a multi-
range representation that retains the benefits of BEV while remaining effi-
cient by exploiting the following insight: near-field lidar measurements are
dense and optimally encoded by small voxels, while far-field measurements
are sparse and better encoded with large voxels. We exploit this observa-
tion to build a collection of range experts tuned for near-vs-far field detec-
tion, and show that they can share information with each other via a sin-
gle multi-range feature pyramid. We show how standard convolutions need
to be adjusted for this novel representation and provide local and global
across-range feature sharing mechanisms to work around this problem. We
evaluate our method on the long-range detection dataset Argoverse (up to
±200m), and find that our method achieves significantly higher accuracy
than competitive baselines while being faster in terms of wall-clock runtime.

1.1.6 Future Object Detection
Object detection and forecasting are fundamental components of embodied
perception. These two problems, however, are largely studied in isolation by
the community. In this paper, we propose an end-to-end approach for detec-
tion and motion forecasting based on raw sensor measurement as opposed
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to ground truth tracks. Instead of predicting the current frame locations
and forecasting forward in time, we directly predict future object locations
and backcast to determine where each trajectory began. Our approach not
only improves overall accuracy compared to other modular or end-to-end
baselines, it also prompts us to rethink the role of explicit tracking for em-
bodied perception. Additionally, by linking future and current locations in
a many-to-one manner, our approach is able to reason about multiple fu-
tures, a capability that was previously considered difficult for end-to-end
approaches. We conduct extensive experiments on the popular nuScenes
dataset and demonstrate the empirical effectiveness of our approach. In ad-
dition, we investigate the appropriateness of reusing standard forecasting
metrics for an end-to-end setup, and find a number of limitations which al-
low us to build simple baselines to game these metrics. We address this
issue with a novel set of joint forecasting and detection metrics that extend
the commonly usedAPmetrics from the detection community tomeasuring
forecasting accuracy.
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Chapter 2

Budgeted Training

2.1 Introduction

Deep neural networks have made an undeniable impact in advancing the
state-of-the-art for many machine learning tasks. Improvements have been
particularly transformative in computer vision [82, 97]. Much of these per-
formance improvements were enabled by an ever-increasing amount of la-
beled visual data [119, 185] and innovations in training architectures [84,
118].

However, as training datasets continue to grow in size, we argue that an
additional limiting factor is that of resource constraints for training. Conser-
vative prognostications of dataset sizes – particularly for practical endeavors
such as self-driving cars [16], assistive medical robots [208], and medical
analysis [62] – suggest one will train on datasets orders of magnitude larger
than those that are publicly available today. Such planning efforts will be-
come more and more crucial, because in the limit, it might not even be practical
to visit every training example before running out of resources [18, 173].

Wenote that resource-constrained training already is implicitlywidespread,
as the vast majority of practitioners have access to limited compute. This is
particularly true for those pursuing research directions that require a mas-
sive number of training runs, such as hyper-parameter tuning [128] andneu-
ral architecture search [25,140,262].

Instead of asking “what is the best performance one can achieve given
this data and algorithm?”, which has been the primary focus in the field so
far, we decorate this question with budgeted training constraints as follows:
“what is the best performance one can achieve given this data and algorithm
within the allowed budget?”. Here, the allowed budget refers to a limitation
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Figure 2.1: We formalize the problem of budgeted training, in which onemax-
imizes performance subject to a fixed training budget. We find that a sim-
ple and effective solution is to adjust the learning rate schedule accordingly
and anneal it to 0 at the end of the training budget. This significantly out-
performs off-the-shelf schedules, particularly for small budgets. This plot
shows several training schemes (solid curves) for ResNet-18 on ImageNet.
The vertical axis in the right plot is normalized by the validation accuracy
achieved by the full budget training. The dotted green curve indicates an
efficient way of trading off computation with performance.

on the total time, compute, or cost spent on training. More specifically, we
focus on limiting the number of iterations. This allows us to abstract out the
specific constraint without loss of generality since any one of the aforemen-
tioned constraints could be converted to a finite iteration limit. Wemake the
underlying assumption that the network architecture is constant throughout
training, though it may be interesting to entertain changes in architecture
during training [187,224].

Much of the theoretical analysis of optimization algorithms focuses on
asymptotic convergence andoptimality [19,160,182], which implicitlymakes
use of an infinite compute budget. That said, there exists a wide body of
work [108, 148, 177, 261] that provide performance bounds which depend
on the iteration number, which apply even in the non-asymptotic regime.
Our work differs in its exploration of maximizing performance for a fixed
number of iterations. Importantly, the globally optimal solution may not
even be achievable in our budgeted setting.

Given a limited budget, one obvious strategy might be data subsam-
pling [6, 191]. However, we discover that a much more effective, simpler,
and under-explored strategy is adopting budget-aware learning rate sched-
ules — if we know that we are limited to a single epoch, one should tune
the learning schedule accordingly. Such budget-aware schedules have been
proposed in previous work [64, 133], but often for a fixed learning rate that
depends on dataset statistics. In this paper, we specifically point out linearly
decaying the learning rate to 0 at the end of the budget, may be more robust
than more complicated strategies suggested in prior work. Though we are
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motivated by budget-aware training, we find that a linear schedule is quite
competitive for general learning settings aswell. We verify our findingswith
state-of-the-art models on ImageNet (image classification), Kinetics (video
classification), MS COCO (object detection and instance segmentation), and
Cityscapes (semantic segmentation).

We conduct several diagnostic experiments that analyze learning rate de-
cays under the budgeted setting. We first observe a statistical correlation
between the learning rate and the full gradient magnitude (over the entire
dataset). Decreasing the learning rate empirically results in a decrease in
the full gradient magnitude. Eventually, as the former goes to zero, the lat-
ter vanishes as well, suggesting that the optimization has reached a critical
point, if not a local minimum1. We call this phenomenon budgeted conver-
gence and we find it generalizes across budgets. On one hand, it implies
that one should decay the learning rate to zero at the end of the training,
even given a small budget. On the other hand, it implies one should not
aggressively decay the learning rate early in the optimization (such as the
casewith an exponential schedule) since this may slow down later progress.
Finally, we show that linear budget-aware schedules outperform recently-
proposed fast-converging methods that make use of adaptive learning rates
and restarts.

Our main contributions are as follows:
• We introduce a formal setting for budgeted training based on training

iterations and provide an alternative perspective for existing learning
rate schedules.

• We discover that budget-aware schedules are handy solutions to bud-
geted training. Specifically, our proposed linear schedule is more sim-
ple, robust, and effective than prior approaches, for both budgeted and
general training.

• We provide an empirical justification of the effectiveness of learning
rate decay based on the correlation between the learning rate and the
full gradient norm.

2.2 Related Work
Learning rates. Stochastic gradient descent dates back to [182]. The core is
its update step: wt = wt−1 − αtgt, where t (from 1 to T) is the iteration, w

1Whether such a solution is exactly a local minimum or not is debatable (see Sec 2.2).
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are the parameters to be learned, g is the gradient estimator for the objective
function2 F , and αt is the learning rate, also known as step size. Given base
learning rate α0, we can define the ratio βt = αt/α0. Then the set of {βt}Tt=1 is
called the learning rate schedule, which specifies how the learning rate should
vary over the course of training. Our definition differs slighter from prior art as
it separates the base learning rate and learning rate schedule. Learning rates are
well studied for (strongly) convex cost surfaces.

Learning rate schedule for deep learning. In deep learning, there is no
consensus on the exact role of the learning rate. Most theoretical analysis
makes the assumption of a small and constant learning rate [57, 58, 81]. For
variable rates, one hypothesis is that large rates help move the optimization
over large energy barriers while small rates help converge to a local min-
imum [96, 112, 144]. Such hypothesis is questioned by recent analysis on
mode connectivity, which has revealed that there does exist a descent path
between solutions that were previously thought to be isolated local minima
[55, 69, 75]. Despite a lack of theoretical explanation, the community has
adopted a variety of heuristic schedules for practical purposes, two of which
are particularly common:

• step decay: drop the learning rate by a multiplicative factor γ after
every d epochs. The default for γ is 0.1, but d varies significantly across
tasks.

• exponential: βt = γt. There is no default parameter for γ and it re-
quires manual tuning.

State-of-the-art codebases for standard vision benchmarks tend to employ
step decay [26,82,97,150,222,234,242], whereas exponential decay has been
successfully used to train Inception networks [201–203]. In spite of their
prevalence, these heuristics have not been well studied. Recent work pro-
poses several new schedules [92,144,198], but much of this past work limits
their evaluation to CIFAR and ImageNet. For example, SGDR [144] advo-
cates for learning-rate restarts based on the results on CIFAR, however, we
find the unexplained form of cosine decay in SGDR is more effective than
the restart technique. Notably, [158] demonstrate the effectiveness of linear
rate decay with CaffeNet on downsized ImageNet. In our work, we rigor-
ously evaluate on 5 standard vision benchmarks with state-of-the-art net-
works and under various budgets. [75] also analyze learning rate restarts

2Note that g can be based on a single example, a mini-batch, the full training set, or the
true data distribution. In most practical settings, momentum SGD is used, but we omit the
momentum here for simplicity.
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and in addition, thewarm-up technique, but do not analyze the specific form
of learning rate decay.

Adaptive learning rates. Adaptive learning rate methods [108, 148, 177,
211] adjust the learning rate according to the local statistics of the cost sur-
face. Despite having better theoretical bounds under certain conditions, they
do not generalize as well as momentum SGD for benchmark tasks that are
much larger than CIFAR [230]. We offer new insights by evaluating them
under the budgeted setting. We show fast descent can be trivially achieved
through budget-aware schedules and aggressive early descent is not desir-
able for achieving good performance in the end.

2.3 Learning Rates and Budgets

2.3.1 Budget-Aware Schedules
Learning rate schedules are often defined assuming unlimited resources. As
we argue, resource constraints are an undeniable practical aspect of learning.
One simple approach for modifying an existing learning rate schedule to a
budgeted setting is early-stopping. Fig 2.1 shows that one can dramatically
improve results of early stopping by more than 60% by tuning the learning
rate for the appropriate budget. To do so, we simply reparameterize the
learning rate sequence with a quantity not only dependent on the absolute
iteration t, but also the training budget T :

Definition (Budget-Aware Schedule). Let T be the training budget, t
be the current step, then a training progress p is t/T . A budget-aware learning
rate schedule is

βp : p 7→ f(p), (2.1)

where f(p) is the ratio of learning rate at step t to the base learning rate α0.
At first glance, it might be counter-intuitive for a schedule to not depend

on T . For example, for a task that is usually trainedwith 200 epochs, training
2 epochs will end up at a solution very distant from the global optimal no
matter the schedule. In such cases, conventional wisdom from convex op-
timization suggests that one should employ a large learning rate (constant
schedule) that efficiently descends towards the global optimal. However, in
the non-convex case, we observe empirically that a better strategy is to sys-
tematically decay the learning rate in proportion to the total iteration budget.

Budge-Aware Conversion (BAC). Given a particular rate schedule βt =
f(t), one simple method for making it budget-aware is to rescale it, i.e., βp =

12



f(pT0), where T0 is the budget used for the original schedule. For instance,
a step decay for 90 epochs with two drops at epoch 30 and epoch 60 will
convert to a schedule that drops at 1/3 and 2/3 training progress. Analo-
gously, an exponential schedule 0.99t for 200 epochs will be converted into
(0.99200)p.

It is worth noting that such an adaptation strategy already exists in well-
known codebases [82] for training with limited schedules. Our experiments
confirm the effectiveness of BAC as a general strategy for converting many
standard schedules to be budget-aware (Tab 2.1). For our remaining experi-
ments, we regard BAC as a known technique and apply it to our baselines by default.

Budget 1% 5% 10% 25% 50% 100%
exp .99 .5848 .8030 .8352 .8888 .9072 .9320
BAC .6086 .8560 .8996 .9228 .9272 N/A
step-d1 .5710 .8058 .8422 .8702 .8746 .9434
BAC .5880 .8662 .9066 .9312 .9392 N/A

Table 2.1: Effectiveness of budget-aware conversion (BAC) on CIFAR-10 for
image classification with ResNet-18 [84]. The numbers are classification ac-
curacy on the validation set. The 100% budget refers to training for 200
epochs. “step-d1” denotes step decay dropping once at training progress
50%. Please refer to Sec 2.4.1 for the complete setup.

Recent schedules: Interestingly, several recent learning rate schedules
are implicitly defined as a function of progress p = t

T
, and so are budget-

aware by our definition:
• poly [103]: βp = (1 − p)γ . No parameter other than γ = 0.9 is used in

published work.
• cosine [144]: βp = η + 1

2
(1 − η)(1 + cos(πp)). η specify a lower bound

for the learning rate, which defaults to zero.
• htd [92]: βp = η + 1

2
(1 − η)(1 − tanh(L + (U − L)p)). Here η has the

same representation as in cosine. It is reported that L = −6 and U = 3
performs the best.

The poly schedule is a feature in Caffe [103] and adopted by the semantic
segmentation community [34, 251]. The cosine schedule is a byproduct in
work that promotes learning rate restarts [144]. The htd schedule is recently
proposed [92], which however, contains only limited empirical evaluation.
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Figure 2.2: We normalize various learning rate schedules by training
progress (left). Our solution to budgeted training is simple and universal—
we decrease the learning rate linearly across the entire given budget (right).

None of these analyze their budget-aware property or provides intuition for
such forms of decay. These schedules were treated as “yet another sched-
ule”. However, our definition of budget-aware makes these schedules stand
out as a general family.

2.3.2 Linear Schedule
Inspired by existing budget-aware schedules, we borrow an even simpler
schedule from the simulated annealing literature [111,153,161]3:

linear : βp = 1− p. (2.2)

In Fig 2.2, we compare linear schedule with various existing schedules
under the budget-aware setting. Note that this linear schedule is completely
parameter-free. This property is particularly desirable in budgeted train-
ing, where little budget exists for tuning such a parameter. The excellent
generalization of linear schedule across budgets (shown in the next sec-
tion) might imply that the cost surface of deep learning is to some degree
self-similar. Note that a linear schedule, together with other recent budget-
aware schedules, produces a constant learning rate in the asymptotic limit
i.e., limT→∞(1 − t/T ) = 1. Consequently, such practically high-performing
schedules tend to be ignored in theoretical convergence analysis [19, 182].

3A link between SGD and simulated annealing has been recognized decades ago, where
learning rate plays the role of temperature control [17]. Therefore, cooling schedules in
simulated annealing can be transferred into learning rate schedules for SGD.
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Budget 1% 5% 10% 25% 50% 100%
const .5748 ± .0337 .7989 ± .0093 .8350 ± .0122 .8658 ± .0007 .8723 ± .0044 .8767 ± .0066

exp .95 .4834 ± .0125 .7575 ± .0053 .8567 ± .0027 .9147 ± .0030 .9295 ± .0006 .9468 ± .0021

exp .97 .5467 ± .0202 .8348 ± .0016 .8936 ± .0030 .9294 ± .0024 .9413 ± .0015 .9551 ± .0004

exp .99 .6069 ± .0219 .8557 ± .0037 .9013 ± .0036 .9227 ± .0033 .9268 ± .0026 .9310 ± .0023

step-d1 .5853 ± .0134 .8643 ± .0027 .9063 ± .0023 .9307 ± .0020 .9423 ± .0027 .9426 ± .0031

step-d2 .5487 ± .0156 .8342 ± .0052 .9043 ± .0034 .9319 ± .0037 .9461 ± .0019 .9529 ± .0009

step-d3 .4879 ± .0036 .7929 ± .0061 .8864 ± .0027 .9259 ± .0006 .9437 ± .0001 .9527 ± .0019

htd .6450 ± .0070 .8899 ± .0043 .9219 ± .0014 .9449 ± .0031 .9520 ± .0023 .9554 ± .0013

cosine .6343 ± .0080 .8851 ± .0024 .9223 ± .0024 .9432 ± .0024 .9520 ± .0026 .9552 ± .0021

poly .6595 ± .0086 .8905 ± .0017 .9247 ± .0008 .9421 ± .0019 .9494 ± .0034 .9540 ± .0012

linear .6617 ± .0079 .8915 ± .0011 .9217 ± .0028 .9412 ± .0018 .9537 ± .0020 .9563 ± .0009

Table 2.2: Comparison of learning rate schedules on CIFAR-10. The 1st, 2nd
and the 3rd place under each budget are color coded. The number here is
the classification accuracy and each one is the average of 3 independent runs.
“step-dx” denotes decay x times at even intervals with γ = 0.1. For “exp”
and “step” schedules, BAC (Sec 2.3.1) is applied in place of early stopping.
We can see linear schedule surpasses other schedules under almost all bud-
gets.

2.4 Experiments
In this section, we first compare linear schedule against other existing sched-
ules on the small CIFAR-10 dataset and then on a broad suite of vision bench-
marks. The CIFAR-10 experiment is designed to extensively evaluate each
learning schedule while the vision benchmarks are used to verify the obser-
vation on CIFAR-10. We provide important implementation settings in the
main text while leaving the rest of the details to the Appendix 2.A.12. In
addition, we provide in Appendix 2.A.1 the evaluation with a large number
of random architectures in the setting of neural architecture search.

2.4.1 CIFAR

CIFAR-10 [117] is a dataset that contains 60,000 tiny images (32×32). Given
its small size, it is widely used for validating novel architectures. We fol-
low the standard setup for dataset split [97], which is randomly holding out
5,000 from the 50,000 training images to form the validation set. For each
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budget, we report the best validation accuracy among epochs up till the end
of the budget. We use ResNet-18 [84] as the backbone architecture and uti-
lize SGD with base learning rate 0.1, momentum 0.9, weight decay 0.0005
and a batch size 128.

We study learning schedules in several groups: (a) constant (equivalent
to not using any schedule). (b) & (c) exponential and step decay, both of
which are commonly adopted schedules. (d) htd [92], a quite recent addi-
tion and not yet adopted in practice . We take the parameters with the best-
reported performance (−6, 3). Note that this schedule decays much slower
initially than the linear schedule (Fig 2.2). (e) the smooth-decaying sched-
ules (small curvature), which consists of cosine [144], poly [103] and the
linear schedule.

As shown in Tab 2.2, the group of schedules that are budget-aware by
our definition, outperform other schedules under all budgets. The linear
schedule in particular, performs best most of the time including the typical
full budget case. Noticeably, when exponential schedule is well-tuned for
this task (γ = 0.97), it fails to generalize across budgets. In comparison, the
budget-aware group does not require tuning but generalizes much better.

Within the budget-aware schedules, cosine, poly and linear achieve very
similar results. This is expected due to the fact that their numerical similar-
ity at each step (Fig 2.2). These results might indicate that the key for a ro-
bust budgeted-schedule is to decay smoothly to zero. Based on these observations
and results, we suggest linear schedule should be the “go-to” budget-aware
schedule.

2.4.2 Vision Benchmarks

In the previous section, we showed that linear schedule achieves excellent
performance on CIFAR-10, in a relatively toy setting. In this section, we
study the comparison and its generalization to practical large scale datasets
with various state-of-the-art architectures. In particular, we set up experi-
ments to validate the performance of linear schedule across tasks and bud-
gets.

Ideally, one would like to see the performance of all schedules in Fig 2.2
on vision benchmarks. Due to resource constraints, we include only the off-
the-shelf step decay and the linear schedule. Note our CIFAR-10 experiment
suggests that using cosine and poly will achieve similar performance as lin-
ear, which are already budget-aware schedules given our definition, so we
focus on linear schedule in this section.
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Budget 1% 5% 10% 25% 50% 100%
Image classification on ImageNet with ResNet

step .2039 ± .0029 .5194 ± .0048 .5951 ± .0021 .6558 ± .0018 .6796 ± .0008 .6934 ± .0018

linear .3063 ± .0036 .5726 ± .0024 .6232 ± .0004 .6634 ± .0020 .6818 ± .0013 .6933 ± .0012

Object detection on COCO with Mask-RCNN
step .0486 ± .0024 .2003 ± .0008 .2541 ± .0005 .3149 ± .0015 .3530 ± .0005 .3767 ± .0009

linear .0513 ± .0042 .2090 ± .0016 .2626 ± .0008 .3222 ± .0014 .3572 ± .0003 .3795 ± .0012

Instance segmentation on COCO with Mask-RCNN
step .0487 ± .0029 .1925 ± .0004 .2388 ± .0007 .2907 ± .0003 .3202 ± .0009 .3395 ± .0009

linear .0507 ± .0040 .1986 ± .0012 .2457 ± .0007 .2942 ± .0002 .3242 ± .0005 .3396 ± .0009

Semantic segmentation on Cityscapes with PSPNet
step .4941 ± .0011 .6358 ± .0052 .6800 ± .0010 .7250 ± .0019 .7423 ± .0094 .7651 ± .0032

linear .5424 ± .0034 .6654 ± .0014 .7076 ± .0047 .7399 ± .0005 .7575 ± .0041 .7633 ± .0008

Video classification on Kinetics with I3D
step .2941 ± .0028 .4981 ± .0029 .5674 ± .0013 .6459 ± .0023 .6870 ± .0025 .7134 ± .0021

linear .3286 ± .0042 .5297 ± .0014 .5967 ± .0030 .6634 ± .0020 .6995 ± .0011 .7223 ± .0031

Table 2.3: Robustness of linear schedule across budgets, tasks and architec-
tures. Linear schedule significantly outperforms step decay given limited
budgets. Note that the off-the-shelf decay for each dataset has different pa-
rameters optimized for the specific dataset. For all step decay schedules,
BAC (Sec 2.3.1) is applied to boost their budgeted performance. To reduce
stochastic noise, we report the average and the standard deviation of 3 inde-
pendent runs. See Sec 2.4.2 for the metrics of each task (the higher the better
for all tasks).

We consider the following suite of benchmarks spanning many flagship
vision challenges:

Image classification on ImageNet. ImageNet [185] is a widely adopted
standard for image classification task. We use ResNet-18 [84] and report
the top-1 accuracy on the validation set with the best epoch. We follow the
step decay schedule used in [97,165], which drops twice at uniform interval
(γ = 0.1 at p ∈ {1

3
, 2
3
}). We set the full budget to 100 epochs (10 epochs

longer than typical) for easier computation of the budget.
Object detection and instance segmentation on MS COCO.MS COCO

[139] is a widely recognized benchmark for object detection and instance
segmentation. We use the standard COCO AP (averaged over IoU thresh-
olds) metric for evaluating bounding box output and instance mask output.
TheAP of the finalmodel on the validation set is reported in our experiment.
We use the challenge winner Mask R-CNN [82] with a ResNet-50 backbone
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and follow its setup. For training, we adopt the 1x schedule (90k iterations),
and the off-the-shelf [82] step decay that drops 2 times with γ = 0.1 at
p ∈ {2

3
, 8
9
}.

Semantic segmentation onCityscapes. Cityscapes [42] is a dataset com-
monly used for evaluating semantic segmentation algorithms. It contains
high quality pixel-level annotations of 5k images in urban scenarios. The
default evaluation metric is the mIoU (averaged across class) of the out-
put segmentation map. We use state-of-the-art model PSPNet [251] with a
ResNet-50 backbone and the full budget is 400 epochs as in standard set up.
The mIoU of the best epoch is reported. Interestingly, unlike other tasks in
this series, this model by default uses the poly schedule. For complete eval-
uation, we add step decay that is the same in our ImageNet experiment in
Tab 2.3.

Video classification on Kinetics with I3D.Kinetics [105] is a large-scale
dataset of YouTube videos focusing on human actions. We use the 400-
category version of the dataset and a variant of I3D [26] with training and
data processing code publicly available [222]. The top-1 accuracy of the final
model is used for evaluating the performance. We follow the 4-GPU 300k
iteration schedule [222], which features a step decay that drops 2 times with
γ = 0.1 at p ∈ {1

2
, 5
6
}.

If we factor in the dimension of budgets, Tab 2.3 shows a clear advan-
tage of linear schedule over step decay. For example, on ImageNet, linear
achieves 51.5% improvement at 1% of the budget. Next, we consider the
full budget setting, where we simply swap out the off-the-shelf schedule
with linear schedule. We observe better (video classification) or compara-
ble (other tasks) performance after the swap. This is surprising given the
fact that linear schedule is parameter-free and thus not optimized for the
particular task or network.

In summary, the smoothly decaying linear schedule is a simple and effective
strategy for budgeted training. It significantly outperforms traditional step de-
cay given limited budgets, while achieving comparable performance with
the normal full budget setting.

2.5 Discussion
In this section, we summarize our empirical analysis with a desiderata of
properties for effective budget-aware learning schedules. Wehighlight those
are inconsistentwith conventionalwisdomand follow the experimental setup
in Sec 2.4.1 unless otherwise stated.
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Figure 2.3: Budgeted convergence: full gradient norm ||g∗t || vanishes over
time (color curves) as learning rate αt (black curves) decays. The first row
shows that the dynamics of full gradient norm correlate with the corre-
sponding learning rate schedule while the second row shows that such phe-
nomena generalize across budgets for budget-aware schedules. Such gener-
alization is most obvious in plot (h), which overlays the full gradient norm
across different budgets. If a schedule does not decay to 0, the gradient norm
does not vanish. For example, if we train a budget-unaware exponential
schedule for 50 epochs (c), the full gradient norm at that time is around 1.5,
suggesting this is a schedule with insufficient final decay of learning rate.

Desideratum: budgeted convergence. Convergence of SGD under non-
convex objectives is measured by limt→∞ E[||∇F ||2] = 0 [19]. Intuitively, one
should terminate the optimization when no further local improvement can
be made. What is the natural counterpart for “convergence” within a bud-
get? For a dataset ofN examples {(xi, yi)}Ni=1, let us write the full gradient as
g∗t = 1

N

∑N
i=1∇F (xi, yi). We empirically find that the dynamics of ||g∗t || over

time highly correlates with the learning rate αt (Fig 2.3). As the learning
rate vanishes for budget-aware schedules, so does the gradient magnitude.
We call this “vanishing gradient” phenomenon budgeted convergence. This
correlation suggests that decaying schedules to near-zero rates (and using
BAC) may be more effective than early stopping. As a side note, budgeted
convergence resonates with classic literature that argues that SGD behaves
similar to simulated annealing [17]. Given that αt and ||g∗t || decrease, the
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Schedule Best Progress Schedule Best Progress
const 81.2% ± 16.1% step-d2 90.5% ± 9.0%

linear 98.6% ± 1.6% poly 99.1% ± 1.3%

Table 2.4: Where does one expect to find the model with the highest vali-
dation accuracy within the training progress? Here we show the best check-
point location measured in training progress p and averaged for each sched-
ule across budgets greater or equal than 10% and 3 different runs.

overall update || − αtgt|| also decreases4. In other words, large moves are
more likely given large learning rates in the beginning, while small moves
are more likely given small learning rates in the end. However, the exact
mechanism by which the learning rate influences the gradient magnitude
remains unclear.

Desideratum: don’t waste the budget. Commonmachine learning prac-
tise often produces multiple checkpointed models during a training run,
where a validation set is used to select the best one. Such additional opti-
mization iswasteful in our budgeted setting. Tab 2.4 summarizes the progress
point at which the best model tends to be found. Step decay produces an op-
timalmodel somewhat towards the end of the training, while linear and poly
are almost always optimal at the precise end of the training. This is espe-
cially helpful for state-of-the-art models where evaluation can be expensive.
For example, validation for Kinetics video classification takes several hours.
Budget-aware schedules require validation on only the last few epochs, sav-
ing additional compute.

Aggressive early descent. Guided by asymptotic convergence analysis,
faster descent of the objective might be an apparent desideratum of an opti-
mizer. Many prior optimizationmethods explicitly call for faster decrease of
the objective [40, 108, 177]. In contrast, we find that one should not employ
aggressive early descent because large learning rates can prevent budgeted
convergence. Consider AMSGrad [177], an adaptive learning rate that ad-
dresses a convergence issue with the widely-used Adam optimizer [108].
Fig 4 shows that while AMSGrad does quickly descend over the training ob-
jective, it still underperforms budget-aware linear schedules over any given
training budget. To examine why, we derive the equivalent rate β̃t for AMS-
Grad and show that it is dramatically larger than our defaults, suggesting
the optimizer is too aggressive.

4Note that the momentum in SGD is used, but we assume vanilla SGD to simplify the
discussion, without losing generality.
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Warm restarts. SGDR [144] explores periodic schedules, in which each
period is a cosine scaling. The schedule is intended to escape local minima,
but its effectiveness has been questioned [75]. Fig 5 shows that SDGR has
faster descent but is inferior to budget-aware schedules for any budget (simi-
lar to the adaptive optimizers above). Additional comparisons can be found
in Appendix 2.A.7. Whether there exists a method that achieves promising
anytime performance and budgeted performance at the same time remains
an open question.
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Figure 2.4: Comparing AMSGrad [177]
with linear schedule. (a) while AMS-
Grad makes fast initial descent of the
training loss, it is surpassed at each
given budget by the linear schedule. (b)
budgeted convergence is not observed
for AMSGrad — the full gradient norm
||g∗t || does not vanish (color curves).
Comparing to amomentum SGD,AMS-
Grad recommends magnitudes larger
learning rate β̃t (black curve).
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Figure 2.5: Comparing SGDR [144]
with linear schedules. (a) SGDR makes
slightly faster initial descent of the train-
ing loss, but is surpassed at each given
budget by the linear schedule. (b) for
SGDR, the correlation between full gra-
dient norm ||g∗t || and learning rate αt is
also observed. Warm restart does not
help to achieve better budgeted perfor-
mance.

2.6 Conclusion
This paper introduces a formal setting for budgeted training. Under this
setup,we observe that a simple linear schedule, or any other smooth-decaying
schedules can achievemuch better performance. Moreover, the linear sched-
ule even offers comparable performance on existing visual recognition tasks
for the typical full budget case. In addition, we analyze the intriguing prop-
erties of learning rate schedules under budgeted training. We find that the
learning rate schedule controls the gradient magnitude regardless of train-
ing stage. This further suggests that SGD behaves like simulated annealing
and the purpose of a learning rate schedule is to control the stage of opti-
mization.
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2.A Appendix

2.A.1 Rank Prediction
In the introduction of this chapter, we list neural architecture search as an
application of budgeted training. Due to resource constraint, these methods
usually train models with a small budget (10-25 epochs) to evaluate their
relative performance [23, 25, 175]. Under this setting, the goal is to rank the
performance of different architectures instead of obtaining the best possible ac-
curacy as in the regular case of budgeted training. Then one could ask the
question that whether budgeted training techniques help in better predict-
ing the relative rank. Unfortunately, budgeted training has not been studied
or discussed in the neural architecture search literature, it is unknown how
well models only trained with 10 epochs can tell the relative performance
of the same ones that are trained with 200 epochs. Here we conduct a con-
trolled experiment and show that proper adjustment of learning schedule,
specifically the linear schedule, indeed improves the accuracy of rank pre-
diction.

We adapt the code in [25] to generate 100 random architectures, which
are obtained by random modifications (adding skip connection, removing
layer, changing filter numbers) on top of ResNet-18 [82]. First, we train these
architectures on CIFAR-10 given full budget (200 epochs), following the set-
ting described in Sec 2.4.1. This produces a relative rank between all pairs
of random architectures based on the validation accuracy and this rank is
considered as the target to predict given limited budget. Next, every ran-
dom architecture is trained with various learning schedules under various
small budgets. For each schedule and each budget, this generates a complete
rank. We treat this rank as the prediction and compare it with the target full-
budget rank. The metric we adopt is Kendall’s rank correlation coefficient
(τ), a standard statistics metric for measuring rank similarity. It is based on
counting the inversion pairs in the two ranks and (τ +1)/2 is approximately
the probability of estimating the rank correctly for a pair.

We consider the following schedules: (1) constant, it might be possible
that no learning rate schedule is required if only the relative performance
is considered. (2) step decay (γ = 0.1, decay at p ∈ {1

3
, 2
3
}), a schedule

commonly used both in regular training and neural architecture search [164,
262]. (3) cosine, a schedule often used in neural architecture search [23,
175]. (4) linear, our proposed schedule. The results of their rank prediction
capability can be seen in Tab 2.5.

The results suggest that with more budget, we can better estimate the
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full-budget rank between architectures. And even if only relative perfor-
mance is considered, learning rate decay should be applied. Specifically,
smooth-decaying schedule, such as linear or cosine, are preferred over step
decay.

We list some additional details about the experiment. To reduce stochas-
tic noise, each configuration under both the small and full budget is repeated
3 times and the median accuracy is taken. The full-budget model is trained
with linear schedule, similar results are expected with other schedules as
evidenced by the CIFAR-10 results in the main text (Tab 2.2). Among the
100 random architectures, 21 cannot be trained, the rest of 79 models have
validation accuracy spanning from 0.37 to 0.94, with the distribution mass
centered at 0.91. Such skewed and widespread distribution is the typical
case in neural architecture search. We remove the 21 models that cannot be
trained for our experiments. We take the epoch with the best validation ac-
curacy for each configuration, so the drawback of constant or step decay not
having the best model at the very end does not affect this experiment (see
Sec 2.5).

2.A.2 Budgeted Performance Across Architectures
To reinforce our claim that linear schedule generalizes across different set-
tings, we compare budgeted performance of various schedules on random
architectures generated in the previous section. We present two versions of
the results. The first is to directly average the validation accuracy of different
architecture with each schedule and under each budget (Tab 2.6). The sec-
ond is to normalize by dividing the budgeted accuracy by the full-budget
accuracy of the same architecture and then average across different archi-
tectures (Tab 2.7). The second version assumes all architectures enjoy equal

Epoch (Budget) 1 (0.5%) 2 (1%) 10 (5%) 20 (10%)
const 0.3451 0.4595 0.6720 0.6926
step-d2 0.2746 0.3847 0.6651 0.7279
cosine 0.3211 0.4847 0.7023 0.7563
linear 0.3409 0.4348 0.7398 0.7351

Table 2.5: Small-budget and full-budget model rank correlation measured
in Kendall’s tau. Smooth-decaying schedules like linear and cosine canmore
accurately predict the true rank of different architectures given limited bud-
get.
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Epoch (Budget) 1 (0.5%) 2 (1%) 10 (5%) 20 (10%)
const 0.3892 0.4699 0.6689 0.7061
step-d2 0.4014 0.4780 0.6980 0.7754
cosine 0.4616 0.5498 0.7530 0.8029
linear 0.4759 0.5745 0.7652 0.8192

Table 2.6: Small-budget validation accuracy averaged across random archi-
tectures. Linear schedule is the most robust under small budgets.

Epoch (Budget) 1 (0.5%) 2 (1%) 10 (5%) 20 (10%)
const 0.4419 0.5343 0.7550 0.8015
step-d2 0.4590 0.5455 0.7894 0.8848
cosine 0.5326 0.6265 0.8615 0.9087
linear 0.5431 0.6626 0.8644 0.9305

Table 2.7: Tab 2.6 normalized by the full-budget accuracy and then averaged
across architectures. Linear schedule achieves solutions closer to their full-
budget performance than the rest of schedules under small budgets.

weighting. Under both cases, linear schedule is the most robust schedule
across architectures under various budgets.

2.A.3 Equivalent Learning Rate For AMSGrad

In the discussion section, we use equivalent learning rate to compare AMS-
Grad [177] with momentum SGD. Here we present the derivation for the
equivalent learning rate β̃t.

Let η1, η2 and ϵ be hyper-parameters, then the momentum SGD update
rule is:

mt = η1mt−1 + (1− η1)gt, (2.3)
wt = wt−1 − α

(1)
0 βtmt, (2.4)
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Budget 1% 5% 10% 25% 50% 100%
Subset .3834 .6446 .7848 .8586 .9234 N/A
Full .5544 .8328 .9042 .9338 .9464 .9534

Table 2.8: Comparison with offline data subsampling. “Subset” meets the
budget constraint by randomly subsample the dataset prior to training,
while “full” uses all the data, but restricting the number of iterations. Note
that budget-aware schedule is used for “full”.

while the AMSGrad update rule is:

mt = η1mt−1 + (1− η1)gt, (2.5)
vt = η2vt−1 + (1− η2)g

2
t , (2.6)

m̂t =
mt

1− ηt1
, (2.7)

v̂t =
vt

1− ηt2
, (2.8)

v̂max
t = max(v̂max

t , v̂t) (2.9)

wt = wt−1 − α
(2)
0

m̂t√
v̂max
t + ϵ

. (2.10)

Comparing equation 2.4 with 2.10, we obtain the equivalent learning rate:

β̃t =
α
(2)
0

α
(1)
0

1

(1− ηt1)(
√

v̂max
t + ϵ)

, (2.11)

Note that the above equation holds per each weight. For Fig 2.4a, we take
the median across all dimensions as a scalar summary since it is a skewed
distribution. The mean appears to be even larger and shares the same trend
as the median. In our experiments, we use the default hyper-parameters
(which also turn out to have the best validation accuracy): α(1)

0 = 0.1, α(2)
0 =

0.001, η1 = 0.9, η2 = 0.99 and ϵ = 10−8.

2.A.4 Data Subsampling
Data subsampling is a straight-forward strategy for budgeted training and
can be realized in several different ways. In our work, we limit the num-
ber of iterations to meet the budget constraint and this effectively limits the
number of data points seen during the training process. An alternative is to
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construct a subsampled dataset offline, but keep the same number of train-
ing iterations. Such construction can be done by random sampling, which
might be themost effective strategy for i.i.d (independent and identically dis-
tributed) dataset. We show in Tab 2.8 that even our baseline budge-aware
step decay, together with a limitation on the iterations, can significantly out-
perform this offline strategy. For the subset setting, we use the off-the-shelf
step decay (step-d2)while for the full set setting, we use the same step decay
but with BAC applied (Sec 2.3.1). For detailed setup, we follow Sec 2.4.1.

Of course, more complicated subset construction methods exist, such as
core-set construction [6]. However, such methods usually requires a fea-
ture summary of each data point and the computation of pairwise distance,
making such methods unsuitable for extremely large dataset. In addition,
note that our subsampling experiment is conducted on CIFAR-10, a well-
constructed and balanced dataset, making smarter subsampling methods
less advantageous. Consequently, the result in Tab 2.8 can as well provides
a reasonable estimate for other complicated subsampling methods.

2.A.5 Additional Experiments onCityscapes (Semantic Seg-
mentation)

In the main text, we compare linear schedule against step decay for vari-
ous tasks. However, the off-the-shelf schedule for PSPNet [251] is poly in-
stead of step decay. Therefore, we include the evaluation of poly schedule
on Cityscapes [42] in Tab 2.9. Given the similarity of poly and linear (Fig
2.2), and the opposite results on CIFAR-10 and Cityscapes, it is inconclusive
that one is strictly better than the other within the smooth-decaying fam-
ily. However, these smooth-decaying methods both outperform step decay
given limited budgets.

Budget 1% 5% 10% 25% 50% 100%
poly .5476 ± .0023 .6755 ± .0012 .7093 ± .0058 .7416 ± .0028 .7562 ± .0045 .7593 ± .0043

linear .5424 ± .0034 .6654 ± .0014 .7076 ± .0047 .7399 ± .0005 .7575 ± .0041 .7633 ± .0008

Table 2.9: Comparison with off-the-shelf poly schedule on Cityscapes [42]
using PSPNet [251]. Poly and linear are similar smooth-decaying schedules
(Fig 2.2) and thus have similar performance. The exact rank differs from
task to task.
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2.A.6 AdditionalComparisonwithAdaptive LearningRates
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Figure 2.6: Comparison between budget-aware linear schedule and adaptive
learning rate methods on CIFAR-10. We see while adaptive learning rate
methods appear to descent faster than full budget linear schedule, at each
given budget, they are surpassed by the corresponding linear schedule.

In the main text we compare linear schedule with AMSGrad [177] (the
improved version overAdam[108]), we further include the classicalmethod
RMSprop [211] and the more recent AdaBound [148]. We tune these adap-
tive methods for CIFAR-10 and summarize the results in Fig 2.6. We observe
the similar conclusion that budget-aware linear schedule outperforms adap-
tive methods for all given budgets.

Like SGD, those adaptive learning rate methods also takes input a pa-
rameter of base learning rate, which can also be annealed using an existing
schedule. Although it is unclear why one needs to anneal an adaptive meth-
ods, we find that it in facts boosts the performance (“AMSGrad + Linear” in
Fig 2.6).

2.A.7 Additional Comparison with SGDR
This section provides additional evaluation to show that learning rate restart
producesworse results than our proposed budgeted training techniques un-
der budgeted setting. In [144], both a new form of decay (cosine) and the
technique of learning rate restart are proposed. To avoid confusion, we use
“cosine schedule”, or just “cosine”, to refer to the form of decay and SGDR to
a schedule of periodical cosine decays. The comparisonwith cosine schedule
is already included in themain text. Herewe focus on evaluating the period-
ical schedule. SGDR requires two parameters to specify the periods: T0, the
length of the first period; Tmult, where i-th period has length Ti = T0T

i−1
mult.

In Fig 2.7, we plot the off-the-shelf SGDR schedule with T0 = 10 (epoch),
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Figure 2.7: One issue with off-the-shelf SGDR (T0 = 10, Tmult = 2) is that
it is not budget-aware and might end at a poor solution. We convert it to a
budget aware schedule by setting it to restart n times at even intervals across
the budget and n = 2 is shown here (SGDR-r2).

Epoch 30 50 150
SGDR .9320 .9458 .9510
linear .9350 .9506 .9532

Table 2.10: Comparison with off-the-shelf SGDR at the end of each period
after the first restart.

Tmult = 2. The validation accuracy plot (on the right) shows that it might
end at a very poor solution (0.8460) since it is not budget-aware. Therefore,
we consider two settings to compare linear schedule with SGDR. The first is
to compare only at the end of each period of SGDR, where budgeted con-
vergence is observed. The second is to convert SGDR into a budget-aware
schedule by setting the schedule to restart n times at even intervals across the
budget. The results under the first and second setting is shown in Tab 2.10
and Tab 2.11 respectively. Under both budget-aware and budget-unaware
setting, linear schedule outperforms SGDR. For detailed setup, we follow
Sec 2.4.1, of the main text and take the median of 3 runs.

2.A.8 Additional Illustrations

In the discussion section (Sec 2.5), we refer to validation accuracy curve for
training on CIFAR-10, which we provide here in Fig 2.8.
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Budget 1% 5% 10% 25% 50% 100%
SGDR-r1 .5002 .7908 .8794 .9250 .9380 .9488
SGDR-r2 .4710 .7888 .8738 .9216 .9412 .9502
linear .6654 .8920 .9218 .9412 .9546 .9562

Table 2.11: Comparison with SGDR under budget-aware setting. “SGDR-
r1” refers to restarting learning rate once at midpoint of the training
progress, and “SGDR-r2” refers to restarting twice at even interval.
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Figure 2.8: Training loss and validation accuracy for training ResNet-18 on
CIFAR-10 using step decay and linear schedule. No generalization gap is
observed when we only modify learning rate schedule. This figure provides
details for the discussion of “don’t waste budget”.

2.A.9 Learning Rates in Convex Optimization

For convex cost surfaces, constant learning rates are guaranteed to converge
when less or equal than 1/L, where L is the Lipschitz constant for the gradi-
ent of the cost function∇F [19]. Anotherwell-known result ensures conver-
gence for sequences that decay neither too fast nor too slow [182]: ∑∞

t=1 αt =
∞,

∑∞
t=1 α

2
t <∞.One common such instance in convex optimization is αt =

α0/t. For non-convex problems, similar results hold for convergence to a lo-
cal minimum [19]. Unfortunately, there does not exist a theory for learning
rate schedules in the context of general non-convex optimization.

2.A.10 Full Gradient Norm and the Weight Norm

In Sec 2.5, we plot the full gradient norm of the cross-entropy loss, excluding
the regularization part. In fact, we use an L2-regularization (weight decay)
of 0.0004 for these experiments. For completeness, we plot the weight norm
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Figure 2.9: The corresponding weight norm plots for Fig 2.3 and Fig 5. We
find that the weight norm exhibits a similar trend as the gradient norm.

Batch Size Schedule 20% 50% 100%
64 step-d2 .9436 ± .0037 .9505 ± .0009 .9519 ± .0009

64 linear .9473 ± .0021 .9511 ± .0008 .9526 ± .0020

256 step-d2 .8939 ± .0027 .9291 ± .0021 .9431 ± .0008

256 linear .9143 ± .0018 .9415 ± .0038 .9484 ± .0013

1024 step-d2 .5851 ± .0460 .7703 ± .0121 .8805 ± .0007

1024 linear .7415 ± .0141 .8553 ± .0023 .8992 ± .0042

Table 2.12: Comparison between linear and step decay with different batch
sizes. We can see that even when we vary the batch size, linear schedule
outperforms step decay.

in Fig 2.9.

2.A.11 Additional ablation studies

Here we explore variations of batch size (Tab 2.12) and initial learning rate
(Tab 2.13). Our definition of budget is the number of examples seen dur-
ing training. So when the batch size increases, the number of iterations de-
creases. For example, onCIFAR-10, the full budget is trainingwith batch size
128 for 200 epochs. If we train with batch size 1024 for 20% of the budget,
that means training for 5 epochs.
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Initial LR 0.001 0.1 1 10
step-d2 .9152 ± .0024 .9529 ± .0009 .8869 ± .0065 N/A
linear .9167 ± .0023 .9563 ± .0009 .8967 ± .0034 N/A

Table 2.13: Comparison between linear and step decay with different initial
learning rate under full budget setting. On one hand, we see that linear
schedule outperforms step decay under various initial learning rate. On the
other hand, we see that initial learning rate is still a very important hyper-
parameter that needs to be tuned evenwith budget-aware, smooth-decaying
schedules.

2.A.12 Additional Implementation Details

Image classification on ImageNet. We adapt both the network architecture
(ResNet-18) and the data loader from the open source PyTorch ImageNet
example5. The base learning rate used is 0.1 and weight decay 5× 10−4. We
train using 4 GPUs with asynchronous batch normalization and batch size
128.

Video classification on Kinetics with I3D. The 400-category version of
the dataset is used in the evaluation. We use an open source codebase6
that has training and data processing code publicly available. Note that the
codebase implements a variant of standard I3D [26] that has ResNet as the
backbone. We follow the configuration of run i3d baseline 300k 4gpu.sh,
which specifies a base learning rate 0.005 and a weight decay 10−4. Only
learning rate schedule is modified in our experiments. We train using 4
GPUs with asynchronous batch normalization and batch size 32.

Object detection and instance segmentation on MS COCO. We use
the open source implementation of Mask R-CNN7, which is a PyTorch re-
implementation of the official codebase Detectron in the Caffe 2 framework.
We only modify the part of the code for learning rate schedule. The code-
base sets base learning rate to 0.02 and weight decay 10−4. We train with 8
GPUs (batch size 16) and keep the built-in learning rate warm up mecha-
nism, which is an implementation technique that increases learning rate for
0.5k iterations and is intended for stabilizing the initial phase of multi-GPU
training [76]. The 0.5k iterations are kept fixed for all budgets and learning

5https://github.com/pytorch/examples/tree/master/imagenet. PyTorch version
0.4.1.

6https://github.com/facebookresearch/video-nonlocal-net. Caffe 2 version 0.8.1.
7https://github.com/roytseng-tw/Detectron.pytorch. PyTorch version 0.4.1.
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rate decay is applied to the rest of the training progress.
Semantic segmentation on Cityscapes. We adapt a PyTorch codebase

obtained from correspondence with the authors of PSPNet. The base learn-
ing rate is set to 0.01 with weight decay 10−4. The training time augmen-
tation includes random resize, crop, rotation, horizontal flip and Gaussian
blur. We use patch-based testing time augmentation, which cuts the input
image to patches of 713 × 713 and processes each patch independently and
then tiles the patches to form a single output. For overlapped regions, the
average logits of two patches are taken. We train using 4 GPUs with syn-
chronous batch normalization and batch size 12.
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Chapter 3

Streaming Perception

3.1 Introduction
Embodied perception refers to the ability of an autonomous agent to per-
ceive its environment so that it can (re)act. A crucial quantity governing the
responsiveness of the agent is its reaction time. Practical applications, such
as self-driving vehicles or augmented reality and virtual reality (AR/VR),
may require reaction time that rivals that of humans, which is typically 200
milliseconds (ms) for visual stimuli [115]. In such settings, low-latency al-
gorithms are imperative to ensure safe operation or enable a truly immersive
experience.

Historically, the computer vision community has not particularly focused
on algorithmic latency. This is one reason why a disparate set of techniques
(and conference venues) have been developed for robotic vision. Interest-
ingly, latency has been well studied recently (e.g., fast but not necessarily
state-of-the-art accurate detectors such as [138, 142, 178]). But it has still
been primarily explored in an offline setting. Vision-for-online-perception
imposes quite different latency demands as shown in Fig. 3.1, because by
the time an algorithm finishes processing a particular frame — say, after
200ms — the surrounding world has changed! This forces perception to be
ultimately predictive of the future. In fact, such predictive forecasting is a
fundamental property of human vision (e.g., as required whenever a base-
ball player strikes a fast ball [154]). So we argue that streaming perception
should be of interest to general computer vision researchers.

Contribution (meta-benchmark) To help explore embodied vision in a
truly online streaming context, we introduce a general meta-benchmark that
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Figure 3.1: Latency is inevitable in a real-world perception system. The sys-
tem takes a snapshot of the world at t1 (the car is at location A), and when
the algorithm finishes processing this observation, the surrounding world
has already changed at t2 (the car is now at location B, and thus there is a
mismatch between prediction A and ground truth B). If we define stream-
ing perception as a task of continuously reporting back the current state of
the world, then how should one evaluate vision algorithms under such a
setting? We invite the readers to watch a video on the project website that
compares a standard frame-aligned visualization with our latency-aware vi-
sualization [Link].

systematically converts any single-frame task into a streaming perception
task. Our key insight is that streaming perception requires understanding
the state of theworld at all time instants—when a new frame arrives, streaming
algorithms must report the state of the world even if they have not done processing
the previous frame. Within thismeta-benchmark, we introduce an approach to
measure the real-time performance of perception systems. The approach is
as simple as querying the state of the world at all time instants, and the qual-
ity of the response is measured by the original taskmetric. Such an approach
naturally merges latency and accuracy into a single metric. Therefore, the
trade-off between accuracy versus latency can now be measured quantita-
tively. Interestingly, our meta-benchmark naturally evaluates the perception
stack as a whole. For example, a stack may include detection, tracking, and
forecasting modules. Our meta-benchmark can be used to directly compare
such modular stacks to end-to-end black-box algorithms [145]. In addition,
our approach addresses the issue that overall latency of concurrent systems
is hard to evaluate (e.g., latency cannot be simply characterized by the run-
time of a single module).
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Contribution (analysis) Motivated by perception for autonomous vehi-
cles, we instantiate our meta-benchmark on the illustrative tasks of object
detection and instance segmentation in urban video streams. Accompanied
with our streaming evaluation is a novel dataset with high-quality, high-
frame-rate, and temporally-dense annotations of urban videos. Our evalu-
ation on these tasks demonstrates a number of surprising conclusions. (1)
Streaming perception is significantly more challenging than offline percep-
tion. Standardmetrics like object-detection average precision (AP) dramati-
cally drop (from 38.0 to 6.2), indicating the need for the community to focus
on such problems. (2) Decision-theoretic scheduling, asynchronous track-
ing, and future forecasting naturally emerge as internal representations that
enable accurate streaming perception, recovering much of the performance
drop (boosting performance to 17.8). With simulation, we can verify that
infinite compute resources modestly improves performance to 20.3, imply-
ing that our conclusions are fundamental to streaming processing, nomatter
the hardware. (3) It is well known that perception algorithms can be tuned
to trade off accuracy versus latency. Our analysis shows that there exists
an optimal “sweet spot” that uniquely maximizes streaming accuracy. This
provides a different perspective on such well-explored trade-offs. (4) Fi-
nally, we demonstrate the effectiveness of decision-theoretic reasoning that
dynamically schedules which frame to process at what time. Our analysis
reveals the paradox that latency is minimized by sometimes sitting idle and
“doing nothing”! Intuitively, it is sometimes better to wait for a fresh frame
rather than to begin processing one that will soon become “stale”.

3.2 Related Work
Latency evaluation Latency is a well-studied subject in computer vision.
One school of research focuses on reducing the FLOPS of backbone net-
works [91, 249], while another school focuses on reducing the runtime of
testing time algorithms [138, 142, 178]. We follow suit and create a latency-
accuracy plot under our experiment setting (Fig. 3.2). While such a plot is
suggestive of the trade-off for offline data processing (e.g., archived video
footage), it fails to capture the fact that when the algorithm finishes processing,
the surrounding world has already changed. Therefore, we believe that existing
plots do not reveal the streaming performance of these algorithms. Aside
from computational latency, prior work has also investigated algorithmic la-
tency [151], evaluated by running algorithms on a video in the offline fashion
andmeasuring howmany frames are required to detect an object after it ap-
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pears. In comparison, our evaluation is done in the more realistic online
real-time setting, and applies to any single-frame task, instead of just object
detection.
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Figure 3.2: Prior art routinely ex-
plores the trade-off between de-
tection accuracy versus runtime.
We generate the above plot by
varying the input resolution of
each detection network. We ar-
gue that such plots are exclusive to
offline processing and fail to cap-
ture latency-accuracy trade-offs in
streaming perception. AP stands
for average precision, and is a
standard metric for object detec-
tion [139].

Real-time evaluation There has not
been much prior effort to evaluate vi-
sion algorithms in the real-time fash-
ion in the research community. No-
table exceptions include work on real-
time tracking and real-time simultane-
ous localization and mapping (SLAM).
First, the VOT2017 tracking benchmark
specifically included a real-time chal-
lenge [116]. Its benchmark toolkit sends
out frames at 20 FPS to participants’
trackers and asks them to report back
results before the next frame arrives.
If the tracker fails to respond in time,
the last reported result is used. This is
equivalent to applying zero-order hold
to trackers’ outputs. In our benchmarks,
we adopt a similar zero-order hold strat-
egy, but extend it to a broader context
of arbitrary single-frame tasks and al-
low for a more delicate interplay be-
tween detection, tracking, and forecast-
ing. Second, the literature on real-time
SLAM also considers benchmark evalu-
ation under a “hard-enforced” real-time
requirement [21, 59]. Our analysis suggests that hard-enforcement is too
stringent of a formulation; algorithms should be allowed to run longer than
the frame rate, but should still be scored on their ability to report the state
of the world (e.g., localized map) at frame rate.

Progressive and anytime algorithms There exists a body of work on pro-
gressive and anytime algorithms that can generate outputs with lower la-
tency. Such work can be traced back to classic research on intelligent plan-
ning under resource constraints [15] and flexible computation [90], studied
in the context of AI with bounded rationality [186]. Progressive process-
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Figure 3.3: Our proposed streaming perception evaluation. A streaming al-
gorithm f is providedwith (timestamped) observations up until the current
time t and refreshes an output buffer with its latest prediction of the current
state of the world. At the same time, the benchmark constantly queries the
output buffer for estimates of world states. Crucially, f must consider the
amount of streaming observations that should be ignored while computa-
tion is occurring.

ing [260] is a paradigm that splits up an algorithm into sequential modules
that can be dynamically scheduled. Often, scheduling is formulated as a
decision-theoretic problem under resource constraints, which can be solved
in some cases with Markov decision processes (MDPs) [259,260]. Anytime
algorithms are capable of returning a solution at any point in time [259]. Our
work revisits these classic computation paradigms in the context of stream-
ingperception, specifically demonstrating that classic visual tasks (like track-
ing and forecasting) naturally emerge in such bounded resource settings.

3.3 Proposed Evaluation

In the previous section, we have shown that existing latency evaluation fails
to capture the streaming performance. To address this issue, here we pro-
pose a new method of evaluation. Intuitively, a streaming benchmark no
longer evaluates a function, but a piece of executable code over a continu-
ous time frame. The code has access to a sensor input buffer that stores the
most recent image frame. The code is responsible for maintaining an output
buffer that represents the up-to-date estimate of the state of the world (e.g., a
list of bounding boxes of objects in the scene). The benchmark examines this
output buffer, comparing it with a ground truth stream of the actual world
state (Fig. 3.3).
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3.3.1 Formal definition
Wemodel a data stream as a set of sensor observations, ground-truth world
states, and timestamps, denoted respectively as {(xi, yi, ti)}Ti=1. Let f be a
streaming algorithm to be evaluated. At any continuous time t, the algorithm
f is providedwith observations (and timestamps) that have appeared so far:

{(xi, ti)|ti ≤ t} [accessible input at time t] (3.1)

We allow the algorithm f to generate an output prediction at any time. Let sj
be the timestamp that indicates when a particular prediction ŷj is produced.
The subscript j indexes over the N outputs generated by f over the entire
stream:

{(ŷj, sj)}Nj=1 [all outputs by f] (3.2)

Note that this output stream is not synchronized with the input stream, and
N has no direct relationship with T . Generally speaking, we expect algo-
rithms to run slower than the frame rate (N < T).

We benchmark the algorithm f by comparing its most recent output at
time ti to the ground-truth yi. We first compute the index of the most recent
output:

φ(t) = argmax
j

sj < t [real-time constraint] (3.3)

This is equivalent to the benchmark applying a zero-order hold for the algo-
rithm’s outputs to produce continuous estimation of the world states. Given
an arbitrary single-frame loss L, the benchmark formally evaluates:

Lstreaming = L({(yi, ŷφ(ti))}Ti=1) [evaluation] (3.4)

By construction, the streaming loss above can be applied to any single-frame
task that computes a loss over a set of ground truth and prediction pairs.

3.3.2 Emergent tracking and forecasting
At first glance, “instant” evaluationmay seem unreasonable: the benchmark
at time t queries the state at time t. Although xt is made available to the algo-
rithm, any finite-time algorithm cannot make use of it to generate its predic-
tion. For example, if the algorithm takes time∆t to perform its computation,
then to make a prediction at time t, it can only use data before time t −∆t.
We argue that this is the realistic setting for streaming perception, both in
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biological and robotic systems. Humans and autonomous vehicles must re-
act to the instantaneous state of the world when interacting with dynamic
scenes. Such requirements strongly suggest that perception should be inher-
ently predictive of the future. Our benchmark similarly “forces” algorithms
to reason and forecast into the future, to compensate for the mismatch be-
tween the last processed observation and the present.

Onemay alsowish to take into account the inference time of downstream
actuationmodules (that say, need to optimize amotion plan that will be exe-
cuted given the perceived state of the world). It is straightforward to extend
our benchmark to require algorithms to generate a forecast of theworld state
when the downstream module finishes its processing. For example, at time
t the benchmark queries the state of the world at time t + η, where η > 0
represents the inference time of the downstream actuation module.

In order to forecast, the algorithms need to reason temporally through
tracking (in the case of object detection). For example, constant velocity
forecasting requires the tracks of each object over time in order to compute
the velocity. Generally, there are two categories of trackers — post-hoc as-
sociation [12] and template-based visual tracking [146]. In this paper, we
refer them in short as “association” and “tracking”, respectively. Associa-
tion of previously computed detections can be made extremely lightweight
with simple linking of bounding boxes (e.g., based on the overlap). How-
ever, association does not make use of the image itself as done in (visual)
tracking. We posit that trackers may produce better streaming accuracy for
scenes with highly unpredictable motion. As part of emergent solutions to
our streaming perception problem, we include both association and tracking
in our experiments in the next section.

Finally, it is natural to seek out an end-to-end system that directly opti-
mizes streaming perception accuracy. We include one such method in Ap-
pendix 3.C.2 to show that tracking and forecasting-based representations
may also emerge from gradient-based learning.

3.3.3 Computational Constraints
Because our metric is runtime dependent, we need to specify the computa-
tional constraints to enable a fair comparison between algorithms. We first
investigate a single GPUmodel (Fig. 3.4a), which is used for existing latency
analysis in prior art. In the single GPU model, only a single GPU job (e.g.,
detection or visual tracking) can run at a time. Such a restriction avoids
multi-job interference and memory capacity issues. Note that a reasonable
number of CPU jobs are allowed to run concurrently with the GPU job. For
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Figure 3.4: Two computation models considered in our evaluation. Each
block represents an algorithm running on a device and its length indicates
its runtime.

example, we allow bounding box association and forecastingmodules to run
on the CPU in Fig. 3.7.

Nowadays, it is common to have multiple GPUs in a single system. We
investigate an infiniteGPUmodel (Fig. 3.4b), with no restriction on the num-
ber of GPU jobs that can run concurrently. We implement this infinite com-
putation model with simulation, described in the next subsection.

3.3.4 Challenges for practical implementation
While our benchmark is conceptually simple, there are several practical hur-
dles. First, we require high-frame-rate ground truth annotations. However,
due to high annotation cost, most existing video datasets are annotated at
rather sparse frame rates. For example, YouTube-VIS is annotated at 6 FPS,
while the video data rate is 30 FPS [238]. Second, our evaluation is hardware
dependent — the same algorithm on different hardware may yield different
streaming performance. Such hardware-in-the-loop testing is commonplace
in control systems [7] and arguably vital for embodied perception (which
should by definition, depend on the agent’s body!). Third, stochasticity in
actual runtimes yields stochasticity in the streaming performance. Note that
the last two issues are also prevalent in existing offline runtime analyses.
Here we present high-level ideas for the solutions and leave additional de-
tails to Appendix 3.A.2 & 3.A.3.

Pseudo ground truth We explore the use of pseudo ground truth labels as
a surrogate to manual high-frame-rate annotations. The pseudo labels are
obtained by running state-of-the-art, arbitrarily expensive offline algorithms
on each frame of a benchmark video. While the absolute performance num-
bers (when benchmarked on ground truth and pseudo ground truth labels)
differ, we find that the rankings of algorithms are remarkably stable. The
Pearson correlation coefficient of the scores of the two ground truth sets
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is 0.9925, suggesting that the real score is literally a linear function of the
pseudo score. Moreover, we find that offline pseudo ground truth could
also be used to self-supervise the training of streaming algorithms.

Simulation While streamingperformance is hardware dependent, wenow
demonstrate that the benchmark can be evaluated on simulated hardware.
In simulation, the benchmark assigns a runtime to each module of the algo-
rithm, instead ofmeasuring thewall-clock time. Then based on the assigned
runtime, the simulator generates the corresponding output timestamps. The
assigned runtime to eachmodule provides a layer of abstraction on the hard-
ware.

The benefit of simulation is to allow us to assess the algorithm perfor-
mance on non-existent hardware, e.g., a future GPU that is 20% faster or
infinite GPUs in a single system. Simulation also allows our benchmark to
inform practitioners about the design of future hardware platforms, e.g., one
can verify with simulation that 4 GPUs may be “optimal” (producing the
same streaming accuracy as infinite GPUs).

Runtime-inducedvariance Due to algorithmic choice and system schedul-
ing, different runs of the same algorithm may end up with different run-
times. This variation across runs also affects the overall streaming perfor-
mance. Fortunately, we empirically find that such variance causes a stan-
dard deviation of up to 0.5% under our experiment setting. Therefore, we
omit variance report in our experiments.

3.4 Solutions and Analysis

In this section, we instantiate our meta-benchmark on the illustrative task of
object detection. While we show results on streaming detection, several key
ideas also generalize to other tasks. An instantiation on instance segmenta-
tion can be found in Appendix 3.A.6. We first explain the setup and present
the solutions and analysis. For the solutions, we first consider single-frame
detectors, and then add forecasting and tracking one by one into the dis-
cussion. We focus on the most effective combination of detectors, trackers,
and forecasters which we have evaluated, but include additional methods in
Appendix 3.C.
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Dataset AP APL APM APS AP50 AP75

MS COCO 37.6 50.3 41.4 20.7 59.8 40.5
Argoverse-HD (Ours) 30.6 52.4 33.1 12.2 52.3 31.2

Figure 3.5: Comparison between our dataset and MS COCO [139]. Top
shows an example image from Argoverse 1.1 [29], overlaid with our dense
2D annotation (at 30 FPS). Bottom presents results of Mask R-CNN [82]
(ResNet 50) evaluated on the two datasets. APL, APM and APS denote AP
for large, medium and small objects respectively. AP50, AP75 denote APwith
IoU (Intersection over Union) thresholds at 0.5 and 0.75 respectively. We
first observe that the APs are roughly comparable, showing that our anno-
tation is reasonable in evaluating object detection performance. Second, we
see a significant drop in APS from COCO to ours, suggesting that the de-
tection of small objects is more challenging in our setting. For self-driving
vehicle applications, those small objects are important to identify when the
ego-vehicle is traveling at a high speed or making unprotected turns.

3.4.1 Setup
We extend the publicly available video dataset Argoverse 1.1 [29] with our
own annotations for streaming evaluation, which we name Argoverse-HD
(High-frame-rate Detection). It contains diverse urban outdoor scenes from
two US cities. We select Argoverse for its embodied setting (autonomous
driving) and its high-frame-rate sensor data (30 FPS). We focus on the task
of 2D object detection for our streaming evaluation. Under this setting, the
state of theworld yt is a list of bounding boxes of the objects of interest. While
Argoverse has multiple sensors, we only use the center RGB camera for sim-
plicity. We collect our own annotations since the dataset does not provide
dense 2D annotations1. For the annotations, we followMSCOCO [139] class
definitions and format. For example, we include the “iscrowd” attribute for

1It is possible to derive 2D annotations from the provided 3D annotations, but we find
that such derived annotations are highly imprecise.
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ambiguous cases where each instance cannot be identified, and therefore
the algorithms will not be wrongfully penalized. We use only a subset of 8
classes (from 80MS COCO classes) that are directly relevant to autonomous
driving: person, bicycle, car, motorcycle, bus, truck, traffic light, and stop
sign. This definition allows us to evaluate off-the-shelf models trained on
MS COCO. No training is involved in the following experiments unless oth-
erwise specified. All numbers are computed on the validation set, which
contains 24 videos ranging from 15–30 seconds each (the total number of
frames is 15k). Figure 3.5 shows a comparison of our annotationwith that of
MS COCO. Additional comparison with other related datasets can be found
in Appendix 3.A.4. All output timing is measured on a single Geforce GTX
1080 Ti GPU (a Tesla V100 counterpart is provided in Appendix 3.A.7).

3.4.2 Detection-Only
Table 3.1 includes the main results of using just detectors for streaming per-
ception. We first examine the case of running a state-of-the-art detector —
Hybrid Task Cascade (HTC) [32], both in the offline and the streaming set-
tings. The AP drops significantly in the streaming setting. Such a result
is not entirely surprising due to its high runtime (700ms). A commonly
adopted strategy for real-time applications is to run a detector that is within
the frame rate. We point out that this strategy may be problematic, since
such a hard-constrained time budget results in poor accuracy for challenging
tasks (Table 3.1 row 3–4). In addition, we find that many existing network
implementations are optimized for throughput rather than latency, reflect-
ing the bias of the community for offline versus online processing! For ex-
ample, image pre-processing (e.g., resizing and normalizing) is often done
on CPU, where it can be pipelined with data pre-fetching. By moving it to
GPU, we save 21ms in latency (for an input of size 960× 600).

Our benchmarks allow streaming algorithms to choose which frames to
process/ignore. Figure 3.6 compares a straight-forward schedule with our
dynamic schedule (Alg. 1), which attempts to address temporal aliasing
of the former. While spatial aliasing and quantization has been studied in
computer vision [82], temporal quantization in the streaming setting has
not been well explored. Noteably, it is difficult to pre-compute the opti-
mal schedule because of the stochasticity of actual runtimes. Our proposed
scheduling policy (Alg. 1) tries to minimize the expected temporal mis-
match of the output stream and the data stream, thus increasing the overall
streaming performance. Empirically, we find that it raises the AP for the de-
tector (Table 3.1 row 7). We provide a theoretical analysis of the algorithm
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ID Method Detector AP APL APM APS AP50 AP75 Runtime
1 Accurate (Offline) HTC @ s1.0 38.0 64.3 40.4 17.0 60.5 38.5 700.5
2 Accurate HTC @ s1.0 6.2 9.3 3.6 0.9 11.1 5.9 700.5
3 Fast RetinaNet R50 @ s0.2 5.5 14.9 0.4 0.0 9.9 5.6 36.4
4 Fast* RetinaNet R50 @ s0.2 6.0 18.1 0.5 0.0 10.3 6.3 31.2
5 Optimized Mask R-CNN R50 @ s0.5 10.6 21.2 6.3 0.9 22.5 8.8 77.9
6 Optimized* Mask R-CNN R50 @ s0.5 12.0 24.3 7.9 1.0 25.1 10.1 56.7
7 + Scheduling (Alg. 1) Mask R-CNN R50 @ s0.5 13.0 26.6 9.2 1.1 26.8 11.1 56.7
8 + Infinite GPUs Mask R-CNN R50 @ s0.75 14.4 24.3 11.3 2.8 30.6 12.1 92.7

Table 3.1: Performance of existing detectors for streaming perception. The
number after @ is the input scale (the full resolution is 1920×1200). * means
using GPU for image pre-processing as opposed to using CPU in the off-the-
shelf setting. The last column is themean runtime of the detector for a single
frame in milliseconds (mask branch disabled if applicable). The first base-
line is to run an accurate detector (row 1), andwe observe a significant drop
of AP in the online real-time setting (row 2). Another commonly adopted
baseline for embodied perception is to run a fast detector (row 3–4), whose
runtime is smaller than the frame interval (33ms for 30 FPS streams). Nei-
ther of these baselines achieves good performance. Searching over a wide
suite of detectors and input scales, we find that the optimal solution is Mask
R-CNN (ResNet 50) operating at 0.5 input scale (row 5–6). In addition,
our scheduling algorithm (Alg. 1) boosts the performance by 1.0/2.3 for
AP/APL (row 7). In the hypothetical infinite GPU setting, a more expen-
sive detector yields better trade-off (input scale switching from 0.5 to 0.75,
almost doubling the runtime), and it further boosts the performance to 14.4
(row 8), which is the optimal solution achieved by just running the detector.
Simulation suggests that 4 GPUs suffice to maximize streaming accuracy for
this solution.

Algorithm 1: Shrinking-tail policy
1: Given finishing time s and algorithm runtime r in the unit of frames

(assuming r > 1), this policy returns whether the algorithm should
wait for the next frame

2: Define tail function τ(t) = t− ⌊t⌋
3: return [τ(s+ r) < τ(s)] (Iverson bracket)

and additional empirical results for a wide suite of detectors in Appendix
3.B.1. Note that Alg. 1 is by construction task agnostic (not specific to object
detection).
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Figure 3.6: Algorithm scheduling for streaming perception with a single
GPU. (a) A fast detector finishes processing the current frame before the
next frame arrives. An accurate (but slow) detector cannot process every
frame due to high latency. In this example, frame 1 is skipped. Note that
the goal of streaming perception is not to process every frame but to pro-
duce accurate state estimates in a timely manner. (b) One straight-forward
schedule is to simply process the latest available frame upon the completion
of the previous processing (idle-free). However, if latest available framewill
soon become stale, it might be better to idle and wait for a fresh frame (our
dynamic schedule, Alg. 1). In this illustration, Alg. 1 determines that frame
2 will soon become stale and decides to wait (visualized in red) for frame 3
by comparing the tails τ2 and τ3.

3.4.3 Forecasting
Now we expand our solution space to include forecasting methods. We ex-
perimented with both constant velocity models and first-order Kalman fil-
ters. We find good performancewith the latter, given a small modification to
handle asynchronous sensor measurements (Fig. 3.7). The classic Kalman
filter [104] operates on uniform time steps, coupling prediction and correc-
tion updates at each step. In our case, we perform correction updates only
when a sensor measurement is available, but predict at every step. Second,
due to frame-skipping, the Kalman filter should be time-varying (the transi-
tion and the process noise depend on the length of the time interval, details
can be found in Appendix 3.B.2). Association for bounding boxes across
frames is required to update the Kalman filter, and we apply IoU-based
greedy matching. For association and forecasting, the computation involves
only bounding box coordinates and therefore is very lightweight (< 2ms on
CPU). We find that such overhead has little influence on the overall AP. The
results are summarized in Table 3.2.

Streamer (meta-detector) Note that our dynamic scheduler (Alg. 1) and
asynchronous Kalman forecaster can be applied to any off-the-shelf detec-
tor, regardless of its underlying latency (or accuracy). This means that we
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Figure 3.7: Scheduling for association and forecasting. Association takes
place immediately after a new detection result becomes available, and it
links the bounding boxes in two consecutive detection results. Forecast-
ing takes place right before the next time step and it uses an asynchronous
Kalman filter to produce an output as the estimation of the current world
state. By default, the prediction step also updates internal states in the
Kalman filter and is always called before the update step. In our case, we
perform multiple update-free predictions (green blocks) until we receive a
frame result.

ID Method AP APL APM APS AP50 AP75

1 Detection + Scheduling + Association + Forecasting 16.7 39.9 14.9 1.2 31.2 16.0
2 + Re-optimize Detection (s0.5→ s0.75) 17.8 33.3 16.3 3.2 35.2 16.5
3 + Infinite GPUs 20.3 38.5 19.9 4.0 39.1 18.9

Table 3.2: Streaming perception with joint detection, association, and fore-
casting. Association is done by IoU-based greedy matching, while forecast-
ing is done by an asynchronous Kalman filter. First, we observe that fore-
casting greatly boosts the performance (fromTable 3.1 row 7’s 13.0 to row 1’s
16.7). Also, with forecasting compensating for algorithm latency, it is now
desirable to run a more expensive detector (row 2). Searching again over
a large suite of detectors after adding forecasting, we find that the optimal
detector is still Mask R-CNN (ResNet 50), but at input scale 0.75 instead of
0.5 (runtime 93ms and 57ms)

can assemble these modules into a meta-detector – which we call Streamer
– that converts any detector into a streaming detection system that reports
real-time detections at an arbitrary framerate. Appendix 3.B.4 evaluates the
improvement in streaming AP across 80 different settings (8 detectors × 5
image scales × 2 compute models), which vary from 4% to 80% with an
average improvement of 33%.
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ID Method AP APL APM APS AP50 AP75

1 Detection + Visual Tracking 12.0 29.7 11.2 0.5 23.3 11.3
2 + Forecasting 13.7 38.2 14.2 0.5 24.6 13.6
3 + Re-optimize Detection (s0.5→ s0.75) 16.5 31.0 14.5 2.8 33.4 14.8
4 + Infinite GPUs w/o Forecasting 14.4 24.2 11.2 2.8 30.6 12.0
5 + Forecasting 20.1 38.3 19.7 3.9 38.9 18.7
6 Detection + Simulated Fast Tracker (2x) + Forecasting + Single GPU 19.8 39.2 20.2 3.4 38.6 18.1

Table 3.3: Streaming perception with joint detection, visual tracking, and
forecasting. We see that initially visual trackers do not outperform simple as-
sociation (Table 3.2) with the corresponding setting in the single GPU case.
But that is reversed if the tracker can be optimized to run faster (2x) while
maintaining the same accuracy (row 6). Such an assumption is not unrea-
sonable given the fact that the tracker’s job is as simple as updating locations
of previously detected objects.

3.4.4 Visual tracking
Visual tracking is an alternative for low-latency inference, due to its faster
speed than a detector. For our experiments, we adopt the state-of-the-art
multi-object tracker [11] (which is second place in the MOT’19 challenge
[50] and is open sourced), and modify it to only track previously identified
objects to make it faster than the base detector (see Appendix 3.B.3). This
tracker is built upon a two-stage detector and for our experiment, we try
out the configurations of Mask R-CNN with different backbones and with
different input scales. Also, we need a scheduling scheme for this detection
plus tracking setting. For simplicity, we only explored running detection at
fixed strides of 2, 5, 15, and 30. For example, stride 30 means that we run the
detector once and then run the tracker 29 times, with the tracker getting reset
after each newdetection. Table 3.3 row 1 contains the best configuration over
backbone, input scale, and detection stride.

3.5 Discussion
Streamingperception remains a challenge Our analysis suggests that stream-
ing perception involves careful integration of detection, tracking, forecast-
ing, and dynamic scheduling. While we present several strong solutions for
streaming perception, the gap between the streaming performance and the
offline performance remains significant (20.3 versus 38.0 in AP). This sug-
gests that there is considerable room for improvement by building a better
detector, tracker, forecaster, or even an end-to-end model that blurs bound-

47



ary of these modules.

Formulations of real-time computation Common folk wisdom for real-
time applications like online detection requires that detectors run within
the sensor frame rate. Indeed, classic formulations of anytime processing re-
quire algorithms to satisfy a “contract” that theywill finish under a compute
budget [259]. Our analysis suggests that this view of computation might be
too myopic as evidenced by contemporary robotic systems [170]. Instead,
we argue that the sensor rate and compute budget should be seen as design
choices that can be tuned to optimize a downstream task. Our streaming
benchmark allows for such a global perspective.

a) Offline vs Real-Time

Offline

Real-Time

Offline

Real-Time

b) Det Fast vs Det Opt

Det Fast

Det Opt

Det Fast

Det Opt

c) ± Alg 1 & Forecasting d) ± Infinite GPUs

Det Opt 

+ Alg 1 & Forecasting

Det Opt

+ A1 & Forecast Det + Forecast

+ Infinite GPUs

Det + Forecast

+ Infinite GPUs

Figure 3.8: Qualitative results. Video results can be found on the project
website [Link].

Generalization to other tasks By construction, our meta-benchmark and
dynamic scheduler (Alg. 1) are not restricted to object detection. We illus-
trate such generalization with an additional task of instance segmentation
(Fig. 3.9). However, there are several practical concerns that need to be ad-
dressed. Densely annotating video frames for instance segmentation is al-
most prohibitively expensive. Therefore, we adopt offline pseudo ground
truth (Section 3.3.4) to evaluate streaming performance. Another concern is
that the forecasting module is task-specific. In the case of instance segmen-
tation, we implement it as forecasting the bounding boxes and then warp-
ing the masks accordingly. Please refer to Appendix 3.A.6 for the complete
streaming instance segmentation benchmark.
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a) Pseudo ground truth b) Real-time latency c) Instance mask forecasting

Figure 3.9: Generalization to instance segmentation. (a) The offline pseudo
ground truthwe adopt for evaluation is of high quality. (b)A similar latency
pattern can be observed for instance segmentation as in object detection. (c)
Forecasting for instance segmentation can be implemented as forecasting the
bounding boxes and then warping the masks accordingly.

3.6 Conclusion and Future Work
We introduce a meta-benchmark for systematically converting any single-
frame task into a streaming perception task that naturally trades off com-
putation between multiple modules (e.g., detection versus tracking). We
instantiate this meta-benchmark on tasks of object detection and instance
segmentation. In general, we find online perception to be dramatically more
challenging than its offline counterpart, though significant performance can
be recovered by incorporating forecasting. We use our analysis to develop a
simple meta-detector that converts any detector (with any internal latency)
into a streaming perception system that can operate at any frame rate dic-
tated by a downstream task (such as a motion planner). We hope that our
analysis will lead to future endeavor in this under-explored but crucial as-
pect of real-time embodied perception. For example, streaming benchmarks
can be used to motivate attentional processing; by spending more compute
only on spatially [68] or temporally [159] challenging regions, onemay achieve
even better efficiency-accuracy tradeoffs.
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3.A Appendix A: Benchmark Details

3.A.1 Additional Discussion on the Benchmark Definition

In Section 3.3.1, we defined our benchmark as evaluation over a discrete set
of frames. One might point out that a continuous definition is more con-
sistent with the notion of estimating the state of the world at all time in-
stants for streaming perception. First, we note that it is possible to define a
continuous-time counterpart, where the ground truth can be obtained via
polynomial interpolation and the algorithm prediction can be represented
as a function of time (e.g., simply derived from extrapolating the discrete
output). Also in Eq 3.4, the aggregation function (implicit in L) could be
integration. However, our choice of a discrete definition is mainly for two
reasons: (1) we believe a high-frame-rate data stream is able to approximate
the continuous evaluation; (2) most existing single-frame metrics (L, e.g.,
average-precision) is defined with a discrete set of input and we prefer that
our streaming metric is compatible with these existing metrics.

3.A.2 Pseudo Ground Truth

We use manually obtained ground-truth for bounding-box-based object de-
tection. As we point out in the main text, one could make use of pseudo
ground truth by simply running an (expensive but accurate) off-line detec-
tor to generate detections that could be used to evaluate on-line streaming
detectors.

Here, we analyze the effectiveness of pseudo ground truth detection as
a proxy for ground-truth. We adopt the state-of-the-art detector — Hybrid
Task Cascade (HTC) [32] for computing the offline pseudo ground truth.
As shown in Table 3.1, this offline detector dramatically outperforms all
real-time streaming methods by a large margin. As shown in the main text,
pseudo-streamingAP correlates extraordinarilywellwith ground-truth-streaming
AP, with a normalized correlation coefficient of 0.9925. This suggests that
pseudo ground truth can be used to rank streaming perception algorithms.

We emphasize that since we have constructed Argoverse-HD by delib-
erately annotating high frame rate bounding boxes, we use real ground truth
for evaluating detection performance. However, obtaining such high-frame-rate
annotations for instance segmentation is expensive. Hence we make use
of pseudo ground-truth instance masks (provided by HTC) to benchmark
streaming instance segmentation (Section 3.A.6).
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3.A.3 Simulation
In true hardware-in-the-loop benchmarking, the output timestamp sj is sim-
ply thewall-clock time at which an algorithm produces an output. While we
hold this as the gold-standard, one can dramatically simplify benchmarking
by making use of simulation, where sj is computed using runtimes of dif-
ferent modules. For example, sj for a single-frame detector on a single GPU
can be simulated by adding its runtime to the time when it starts process-
ing a frame. Complicated perception stacks require considering runtimes of
all modules (we model those that contribute > 1 ms) in order to accurately
simulate timestamps.

Modeling runtime distribution Existing latency analysis [138, 142, 178]
usually reports only the mean runtime of an algorithm. However, empiri-
cal runtimes are in fact stochastic (Fig. 3.10), due to the underlying operating
system scheduling and even due to the algorithm itself (e.g., proposal-based
detectors often take longer when processing a scene withmany objects). Be-
cause scene-complexity is often correlated across time, runtimes will also
be correlated (a long runtime for a given frame may also hold for the next
frame).

We performed a statistical analysis of runtimes, and found that amarginal
empirical distribution to work well. We first run the algorithm over the en-
tire dataset to get the empirical distribution of runtimes. At test time, we
randomly sample a runtime when needed from the empirical distribution,
without considering the correlation across time. Empirically, we found that
the results (streaming AP) from a simulated run is within the variance of a
real run.

Simulation for non-existent hardware/algorithm Through simulation, our
evaluation protocol does not directly depend on hardware, but on a collec-
tion of runtime distributions for different modules (known as a runtime pro-
file). One thus has the freedom to alter the distributions. For example, we
can simulate a faster algorithm simply by scaling down the runtime pro-
file. Table 3.3, uses simulation to evaluate the streaming performance of a
non-existent tracker that runs twice as fast as the actual implementation on-
hand. The reduced runtime could have arisen from better hardware; one
can run the benchmark on a Geforce GTX 1080 Ti GPU and simulate the
performance on a Tesla V100 GPU. We find that Tesla V100 makes our de-
tectors run 16% faster, implying we can scale runtime profiles accordingly.
For example, Mask R-CNN R50 @ s0.5 produces a simulated-streaming AP
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Figure 3.10: Runtime distribution for an object detector. Note that runtime
is not constant, and this variance needs to be modeled in a simulation. This
plot is obtained by running RetinaNet (ResNet 50) [138] on Argoverse 1.1
[29] with input scale 0.5.

of 12.652 while the real-streaming AP (on a V100) is 12.645, suggesting that
effectivness of simulated benchmarking.

Infinite GPUs In simulation, we are not restricted by the number of phys-
ical GPUs present in a system. Therefore, we are able to perform analysis
in the infinite GPU setting. In this setting, each detector or visual tracker
runs on a different device without any interference with each other. Equiv-
alently, we run a new GPU job on an existing device as long as it is idle.
As a result, the simulation also provides information on how many GPUs
are required for a particular infinite GPU experiment in practice (i.e., the
maximum number of concurrent jobs). We summarize the number of GPUs
required for the experiments in the main text in Table 3.4. This implies that
our streaming benchmark can be used to inform hardware design of future
robotic platforms.

Runtime-induced variance Asmentioned in the previous section, runtime
is stochastic and has a variance up to 11.1% (standard deviation normalized
by mean). Fortunately, such a variance does not transfer to the variance of
our streaming metric. Empirically, we found that the variance of streaming
AP of different runs (by varying the random seed) is around 0.5% for the
same algorithm. In comparison, independent training runs of Mask R-CNN
[82] on MS COCO [139] with the same random seed yield a variance of 0.3%
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Table 3.4: Summary of the experiments in the infinite GPU settings (in the
main text) and the number of GPUs needed in practice to achieve this per-
formance (i.e., the maximum number of concurrent jobs). This suggest that
our simulation can also identify the optimal hardware configuration

Method # of GPUs
Det (Table 3.1, row 8) 4
Det + Associate + Forecast (Table 3.2, row 3) 4
Det + Visual Track (Table 3.3, row 4) 9
Det + Visual Track + Forecast (Table 3.3, row 5) 9

on theAP (cudnn back-propagation is stochastic by default) [130]. Since the
stochastic noise of streaming evaluation is at the same scale as CNN training,
we ignore runtime-induced variance for our evaluation.

3.A.4 Dataset Annotation and Comparison
Based on the publicly available video dataset Argoverse 1.1 [29], we build
our dataset with high-frame-rate annotations for streaming evaluation —
Argoverse-HD (High-frame-rate Detection). One key feature is that the an-
notation followsMS COCO [139] standards, thus allowing direct evaluation
of COCO pre-trained models on this self-driving vehicle dataset. The anno-
tation is done at 30 FPS without any interpolation used. Unlike some self-
driving vehicle datasets where only cars on the road are annotated [215], we
also annotate background objects since they can potentially enter the driv-
able area. Of course, objects that are too small are omitted and ourminimum
size is 5×15 or 15×5 (based on the aspect ratio of the object). We outsourced
the annotation job to Scale AI. In Table 3.5, we compare our annotation with
existing datasets: DETRAC [225], KITTI-MOTS [215], MOTS [215], UAVDT
[56], Waymo [199], and Youtube-VIS [238].

3.A.5 Experiment Settings
Platforms The CPU used in our experiments is Xeon Gold 5120, and the
GPU is Geforce GTX 1080 Ti. The software environment is PyTorch 1.1 with
CUDA 10.0.

Timing The setup which we time single-frame algorithms mimics the sce-
nario in real-world applications. The offline pipeline involves several steps:
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Table 3.5: Comparison of 2D video object detection datasets. For surveil-
lance camera setups, the cameras are either stationary or have limited mo-
tion. For ego-vehicle setups, the scene dynamics evolve quickly, as (1) the
ego-vehicle is traveling fast, and (2) other objects aremuch closer to the cam-
era and thus have a higher speed in the image space. Our contributeddataset
(annotation) is a high-frame-rate and high-resolution multi-class one com-
pared to existing datasets

Name Camera Setup Image Res Image FPS Annot FPS Classes Boxes
DETRAC Survelliance 960× 540 30 6 4 1.21M
KITTI-MOTS Ego-Vehicle 1242× 375 10 10 2 46K
MOTS Generic 1920× 1080 30 30 2 30K
UAVDT UAV Survelliance 1080× 540 30 30 1 842K
Waymo Ego-Vehicle 1920× 1280 10 10 4 11.8M
Youtube-VIS Generic 1280× 720 30 6 40 131K
Argoverse-HD (Ours) Ego-Vehicle 1920× 1200 30 30 8 1.26M

loading data from the disk, image pre-processing, neural network forward
pass, and result post-processing. Our timing excludes the first step of load-
ing data from the disk. This step is mainly for dataset-based evaluation. In
actual embodied applications, data come from sensors instead of disks. This
is implemented by loading the entire video to the main memory before the
evaluation starts. In summary, our timing (e.g., the last column of Table 3.1)
starts at the time when the algorithm receives the image in the main mem-
ory, and ends at the time when the results are available in the main memory
(instead of in the GPU memory).

3.A.6 Alternate Task: Instance Segmentation
In the main text, we propose a meta-benchmark and mention that it can be
instantiated with different tasks. In this section, we include full benchmark
evaluation for streaming instance segmentation.

Instance segmentation is a more fine-grained task than object detection.
This creates challenges for streaming evaluation as annotation becomesmore
expensive and forecasting is not straight-forward. We address these two is-
sues by leveraging pseudo ground truth and warping masks according to
the forecasted bounding boxes.

Another issue which we observed is that off-the-shelf pipelines are usu-
ally designed for benchmark evaluation or visualization. First, similar to
object detection, we adopt GPU image pre-processing by default. Second,
we found that more than 90% of the time within the mask head of Mask R-
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Table 3.6: Instance segmentation overhead compared with object detection.
This table lists runtimes of severalmethodswith andwithout themask head,
and their differences are the extra cost which one has to pay for instance
segmentation. All numbers are milliseconds except the scale column and
the last column. The average overhead is 17ms or 13%

Method Scale w/o Mask w/ Mask Overhead Overhead
0.2 34.3 41.4 7.1 21%
0.25 36.1 44.3 8.2 23%

Mask R-CNN ResNet 50 0.5 56.7 65.6 8.8 16%
0.75 92.7 101.0 8.3 9%
1.0 139.6 147.7 8.1 6%
0.2 38.4 46.4 7.9 21%
0.25 40.9 48.7 7.8 19%

Mask R-CNN ResNet 101 0.5 68.8 76.4 7.6 11%
0.75 119.7 127.1 7.5 6%
1.0 183.8 190.8 7.0 4%
0.2 60.9 66.0 5.1 8%
0.25 59.2 69.1 9.9 17%

Cascade MRCNN ResNet 50 0.5 80.0 95.4 15.3 19%
0.75 118.1 133.8 15.7 13%
1.0 164.6 181.9 17.3 10%
0.2 66.4 71.0 4.6 7%
0.25 65.4 75.2 9.7 15%

Cascade MRCNN ResNet 101 0.5 92.2 106.6 14.4 16%
0.75 143.4 159.2 15.8 11%
1.0 208.2 225.1 16.9 8%

CNN is spent on transforming masks from the RoI space to the image space
and compressing them in a format to be recognized by the COCO evaluation
toolkit. Clearly, compression can be disabled for streaming perception. We
point out that mask transformation can also be disabled. In practice, masks
are used to tell if a specific point or region contains the object. Instead of
transforming the mask (which involves object-specific image resizing oper-
ations), we can transform the query points or regions, which is simply a
linear transformation over points or control points. Therefore, our timing
does not include RoI-to-image transformation or mask compression. Fur-
thermore, this also implies that we do not pay an additional cost for masks
in forecasting, since only the box coordinates are updated but the masks re-
main in the RoI space.

For the instance segmentation benchmark, we use the same dataset and
the samemethodHTC [32] for the pseudo ground truth as for detection, and

55



Table 3.7: Streaming evaluation for instance segmentation. We find that
many of our observations for object detection still hold for instance segmentation:
(1) AP drops significantly when moving from offline to real time, (2) the
optimal “sweet spot” is not the fastest algorithm but the algorithmwith run-
time more than the unit frame interval, and (3) both our dynamic schedul-
ing and infinite GPUs further boost the performance. Note that the absolute
numbers might appear higher than the tables in the main text since we use
pseudo ground truth here
ID Method Detector AP APL APM APS AP50 AP75 Runtime
1 Accurate (Offline) Cascade MRCNN R50 @ s1.0 63.1 63.0 60.9 47.9 81.6 69.4 225.1
2 Accurate Cascade MRCNN R50 @ s1.0 11.8 11.5 8.1 5.4 20.4 11.1 225.1
3 Fast Mask R-CNN R50 @ s0.2 8.3 16.5 2.1 0.0 13.6 8.3 41.4
4 Optimized Mask R-CNN R50 @ s0.5 17.2 19.9 13.8 5.2 31.8 15.1 65.6
5 + Scheduling (Alg. 1) Mask R-CNN R50 @ s0.5 18.3 21.4 14.9 5.8 33.5 16.4 65.5
6 + Infinite GPUs Mask R-CNN R50 @ s0.75 20.6 20.0 19.0 9.1 38.4 18.2 100.8

Table 3.8: Streaming evaluation for instance segmentation with forecasting.
Despite that we only forecast boxes andwarpmasks accordingly, we still ob-
serve significant improvement from forecasting for mask AP. The optimized
algorithm for row 1 is Mask R-CNN ResNet 50 @ s0.5, and for row 2 is Mask
R-CNN ResNet 50 @ s0.75

ID Method AP APL APM APS AP50 AP75

1 Detection + Scheduling + Association + Forecasting 24.1 32.4 23.0 6.0 43.7 22.0
2 + Infinite GPUs 29.2 30.7 30.2 11.4 53.0 26.7

we include 4 methods: Mask R-CNN [82] and Cascade Mask R-CNN [24]
with ResNet 50 and ResNet 101 backbones. Since these are hybrid methods
that produce both instance boxes and masks, we can measure the overhead
of including masks as the difference between runtime with and without the
mask head in Table 3.6. We find that the average overhead is around 13%.
We include the streaming evaluation in Tables 3.7 and 3.8 (with forecasting).

3.A.7 Alternate Hardware: Tesla V100
In the main text, we propose a meta-benchmark and mention that it can be
instantiated with different hardware platforms. In this section, we include
full benchmark evaluation for streaming detection with Tesla V100 (a faster
GPU than GTX 1080 Ti used in the main text).

While our benchmark is hardware dependent, the method of evaluation
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Table 3.9: Performance of detectors for streaming perception on Tesla V100
(a faster GPU than the Geforce GTX 1080 Ti used in the main text). By com-
paring with Table 3.1 in the main text, we see that runtime is shortened and
the AP is increased due to the boost of hardware performance. Different
from Table 3.1, we only consider GPU image pre-processing here for sim-
plicity. Interestingly, with additional computation power, TeslaV100 enables
more expensive models like input scale 0.75 (row 4) and Cascade Mask R-
CNN (row 5) to be the optimal configurations (detector and scale) under
their corresponding settings. Note that the improvement from our dynamic
scheduler is orthogonal to the boost from hardware performance
ID Method Detector AP APL APM APS AP50 AP75 Runtime
1 Accurate (Offline) HTC @ s1.0 38.0 64.3 40.4 17.0 60.5 38.5 338.0
2 Accurate HTC @ s1.0 8.2 12.3 5.1 1.6 15.3 7.6 338.0
3 Fast RetinaNet R50 @ s0.25 6.4 17.3 0.6 0.0 11.9 6.0 43.3
4 Optimized Mask R-CNN R50 @ s0.75 13.0 22.2 9.5 2.3 27.6 10.9 72.1
5 + Scheduling (Alg. 1) Cascade MRCNN R50 @ s0.5 14.0 28.8 9.9 1.0 26.8 12.2 60.2
6 + Infinite GPUs Mask R-CNN R50 @ s1.0 15.9 24.1 13.2 4.9 34.2 13.3 98.8

Table 3.10: Streaming perception with joint detection, association, and fore-
casting on Tesla V100 (corresponding to Table 3.2 in the main text). We
observe similar boost as in the detection only setting (Table 3.9). The “re-
optimize detection” step finds that Mask R-CNN R50 @ s1.0 outperforms
Cascade Mask R-CNN R50 @ s0.5 with forecasting (row2), and it also hap-
pens to be the optimal detector with infinite GPUs (row 3)

ID Method AP APL APM APS AP50 AP75

1 Detection + Scheduling + Association + Forecasting 18.2 42.7 16.1 1.1 30.9 17.7
2 + Re-optimize Detection 19.6 33.0 19.2 5.3 38.5 17.9

3 + Infinite GPUs 22.9 38.7 23.1 6.9 43.8 21.2

generalizes across hardware platforms, and our conclusions largely hold
when the hardware environment changes. We follow the same setup as in
the experiments in the main text, except that we use Tesla V100 from Ama-
zonWeb Services (EC2 instance of type p3.2xlarge). We provide the results
for detection, forecasting, and tracking in Tables 3.9, 3.10, and 3.11, respec-
tively. We see that the improvement due to better hardware is largely orthogonal
to the algorithmic improvement proposed in the main text.
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Table 3.11: Streaming perception with joint detection, visual tracking, and
forecasting on Tesla V100 (corresponding to Table 3.3 in the main text). We
find the similar conclusions that visual tracking with forecasting does not
outperform associationwith forecasting in the single GPU case and achieves
comparable performance in the infinite GPU case

ID Method AP APL APM APS AP50 AP75

1 Detection + Visual Tracking 12.6 21.5 9.0 2.2 27.1 10.5
2 + Forecasting 18.0 34.7 16.8 3.2 36.0 16.4

3 + Infinite GPUs w/o Forecasting 14.4 24.2 11.2 2.8 30.6 12.0
4 + Forecasting 22.8 38.6 23.0 6.9 43.7 21.0
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3.B Appendix B: Solution Details

3.B.1 Dynamic Scheduling
In the main text, we propose the dynamic scheduling algorithm (Alg. 1) to
reduce temporal aliasing. Such an algorithm is counter-intuitive in that it
minimizes latency by sometimes sitting idle. In this subsection, we provide
additional theoretical analysis and empirical results for algorithm schedul-
ing. We first introduce the framework to study algorithm scheduling for
streamingperception. Next, we show theoretically that our dynamic schedul-
ing outperforms naive idle-free scheduling for any constant runtime larger
than the frame interval and any long-enough sequence length. Lastly, we
verify empirically the superiority of our dynamic scheduling.

To study algorithm scheduling, we assume no concurrency (i.e., a single
job at a time) and that jobs are not interruptible. For notational simplicity,
we assume a fixed input frame rate where frame xi is the frame available at
time i ∈ {0, . . . , T − 1} (i.e., zero-based indexing), and therefore i can be
used to denote both frame index and time. We assume that time (time axis,
runtime, and latency) is represented in the units of the number of frames. We also
assume g to be a single-frame algorithm, and the streaming algorithm f is thus
composed of g and a scheduling policy. No tracking or forecasting is used
in the discussion below. Let kj be the input frame index that was processed
to generate output oj = (ŷj, sj): if ŷj = g(xi), then kj = i. We denote the
runtime of g as r.
Definition (TemporalMismatch)When the benchmark queries for the state
of the world at frame i, the temporal mismatch is δi := i − kj , where j =
argmaxj′ sj′ < i. If there is no output available, δi := 0. We denote the
average temporal mismatch over the entire sequence as δ̄.

Intuitively, the temporal mismatch measures the latency of a streaming
algorithm f in the unit of the number of frames (Fig. 3.11). This latency
is typically higher than the runtime of the single-frame algorithm g itself
due to the blocking effect of consecutive execution blocks. For example, in
Figure 3.11, although runtime r < 2, the average mismatch δ̄ = 15/7 > 2
for T = 7. Note that we define δi := 0 if there is no output available. To
avoid the degenerate case where an algorithm processes nothing and yields
a zero cumulative temporal mismatch, we assume that all schedules start
processing the first frame immediately at t = 0.

MDP Naive idle-free scheduling processes the next available frame imme-
diately after the previous execution is finished. However, a scheduler can
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choose when and which frames to process. Selection among such choices
over the data sequence can be modeled as a decision policy under aMarkov
decision process (MDP). An MDP formulation allows one to compute the ex-
pected future cumulative mismatch for a given policy under stochastic run-
times r. In theory, one may also be able to compute the optimal schedule
(that minimizes expected cumulative mismatches) through policy search
algorithms. However, Figure 3.10 shows that practical runtime profiles have
low variance and are unimodal. If one assumes that runtimes are determin-
istic and fixed at a constant value, we will now show that our shrinking-tail
policy outperforms idle-free over a range of runtimes r and sequence lengths
T . We believe that constant runtime is a reasonable assumption for our set-
ting, and empirically verify so after our theoretical analysis.

Pattern analysis Crucially, constant runtimes ensure that all transitions are
deterministic, allowing for a global view of the sequence. Our key observa-
tion is that the global sequence will contain repeating mismatch patterns. Analy-
sis of one such pattern sheds light on the cumulative mismatch of the entire
sequence. For example, r = 1.5 under idle-free repeats itself every 2 pro-
cessing blocks. However, different patterns emerge for different values of r
and for different policies. We assume that r > 1 to avoid the trivial schedule
where an algorithm consistently finishes before the next frame arrives. We
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Figure 3.11: Temporal mismatch for single-frame algorithms. Take t = 3
(query index i = 3) as an example (highlighted in orange): when the bench-
mark queries for y3, the latest prediction is g(x0), whose input index is 0, thus
leading to a temporal mismatch of 3 (frames).
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write δ̄if and δ̄st for the average temporal mismatch δ̄ for the idle-free and
shrinking-tail policies, respectively. Our analysis is based on the concept of
tail: τ(t) := t−⌊t⌋. We denote τ(r) as τr for short. Note that the integral part
of runtime does not contribute to the temporal quantization effect, and we
thus focus on the discussion of 1 < r ≤ 2 for simplicity. We split our analysis
into 3 different cases: r = 2, 1.5 ≤ r < 2, and 1 < r < 1.5.

Case 1 The first is a special case where τr = 0. It can be easily verified that
idle-free is equivalent to shrinking-tail, and thus δ̄st = δ̄if.

Case 2 Nowwe inspect the case with 1.5 ≤ r < 2. Since τ(2r) < 0.5 ≤ τ(r),
the shrinking-tail policy will output true (waiting) after processing the first
frame. The waiting aligns the execution again with the integral time step,
and thus for the subsequent processing blocks, it also outputs true (waiting).
In summary, shrinking-tail always outputs true in this case, and its pattern in
mismatch is agnostic to the specific runtime r (Fig. 3.12). Let δ̄r denote δ̄with
runtime r, then we can draw the conclusion that δ̄r1st = δ̄r2st for ⌊r1⌋ = ⌊r2⌋,
τ(r1) ≥ 0.5, and τ(r2) ≥ 0.5.

We then focus on a particular case of r = 1.5. As shown in Figure 3.13,
idle-free repeats itself in a period of 3 frames, and shrinking-tail repeats it-
self in a period of 2 frames. Together, they form a joint pattern that repeats
itself in a period of 6 frames (their least common multiple). The diagram
shows that within each common period, the difference of cumulative mis-
match between idle-free and shrinking-tail is increased by 1. And it is the
same for all common periods. Therefore, if T = 6n + 1 for some positive
integer n (intuitively, the entire sequence is a multiple of several common

𝑡𝑡
0 1 2 3 4 5 6 7 8 9 10 11 12

Shrinking-Tail
𝑟𝑟2

Mismatch

0 2 4 6 8 10

Input Index ∅ ∅ 0 0 2 2 4 4 6 6 8 8 10

0 0 2 3 3 4 3 4 3 4 3 2 3

Shrinking-Tail
𝑟𝑟1

2 4 6 8 100

1.5

Figure 3.12: Mismatch is the same for the shrinking-tail policywith different
runtime r1 and r2 as long as ⌊r1⌋ = ⌊r2⌋, τ(r1) ≥ 0.5, and τ(r2) ≥ 0.5.
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periods), δ̄1.5st < δ̄1.5if . Additionally, Figure 3.13 enumerates all possible cases,
where the sequence ends before a common period is over or in the middle
of a common period. All these cases have δ̄1.5st ≤ δ̄1.5if .

Next, it is straightforward to see thatthe cumulative mismatch will not
decrease if one increases the runtime r of g: δ̄r1 ≤ δ̄r2 if r1 ≤ r2. Therefore,
for 1.5 ≤ r < 2, we have

δ̄rst = δ̄1.5st ≤ δ̄1.5if ≤ δ̄rif (3.5)

Case 3 The last case with 1 < r < 1.5 (i.e., τr < 0.5) is more complicated
than previous cases because the underlying repeating pattern never exactly
repeats itself. To address this issue, wemust introduce several new concepts
to characterize such near-repeating patterns. We first observe a special type
of execution block:
Definition (Shrinking-Tail Block) Denoting the start and the end time of
an execution block as t1 and t2, a shrinking-tail block is an execution block such
that τ(t1) > τ(t2). As shown in Figure 3.14, a shrinking-tail block increases
temporal mismatch.

𝑡𝑡
0 1 2 3 4 5 6 7 8 9 10 11 12

Shrinking-Tail

Idle-Free 0 1 3 4 6 7 9 10

0 2 4 6 8 10

Common Period

Mismatch

Input Index ∅ ∅ 0 0 1 3 3 4 6 6 7 9 9

0 0 2 3 3 2 3 3 2 3 3 2 3

Difference in 
Cumulative 
Mismatch

0 0 0 0 1 0 1 1 1 1 2 1 2

Mismatch

Input Index ∅ ∅ 0 0 2 2 4 4 6 6 8 8 10

0 0 2 3 2 3 2 3 2 3 2 3 2

Period

Period

Figure 3.13: For r = 1.5, shrinking-tail achieves less cumulative mismatch
than idle-free. Note that each policy has its own repeating period and
shrinking-tail always achieves 1 less cumulative mismatch within each com-
mon period.
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Figure 3.14: A shrinking-tail execution block (orange) increases temporal
mismatch.

Definition (Shrinking-Tail Cycle) A sequence of execution blocks can be
divided into segments by a shrinking-tail block or an idle gap. A shrinking-
tail cycle is a set of queries covered by the segment between these dividers.
Specifically, the cycle starts from the 0-th query, the last query of a shrinking-
tail block, or the query at the end of an idle gap. The cycle ends either when
the sequence ends or the next cycle starts. The length of a cycle is the number
of queries it covers.

As shown in Figure 3.15, shrinking-tail cycles are small segments of the
entire sequence and they may have different lengths. Note that the defini-
tions of both shrinking-tail block and cycle are agnostic to r, but we only
refer to them during our discussion for 1 < r < 1.5. Instead of comparing
δ̄ for idle-free and shrinking-tail directly, we compare them for each cycle
(denoted as δ̄(c)if and δ̄

(c)
st respectively). First, we observe that a shrinking-tail

cycle starts with either a shrinking-tail block or an idle gap and ends with
consecutive tail-increasing blocks. Second, we observe that most queries
have a mismatch of 2 for both policies (e.g., Cycle 2’s queries 20 to 21 and
Cycle 4’s queries 18 to 19 in Fig. 3.15), and that the second query in a cycle
is always 3 due to having a shrinking-tail block or an idle-gap before it. This
is the rounding effect when adding multiple fractional numbers. The differ-
ence between the two policies is thus the mismatch of the first query. For
1 < r < 1.5, the first query of idle-free has a mismatch of 3, while shrinking-
tail has a mismatch of 2. Intuitively, given that the majority of queries are
with mismatch 2, the number of queries with mismatch 3 determines the
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Figure 3.15: Shrinking-tail cycle. Intuitively, blocks within each shrinking-
tail cycle has tails increasing (τ1 < τ2 < τ3 and τ5 < τ6 < τ7). It ends when
the tail decreases or there is an idle gap, and thus the tail “shrinks”.

relationship between δ̄(c): δ̄(c)st < δ̄
(c)
if . Therefore, when the sequence length is

long enough, the policy with a smaller δ̄(c) leads to a smaller overall cumu-
lative mismatch.

Now, we present a more formal analysis on the above statement. To
quantify the cycle patterns, we first quantify the number of consecutive tail-
increasing blocks. Let the number of consecutive tail-increasing blocks be
a and the tail of the first block covered by the cycle be b (in the case where
the first block starts after an idle gap, we define b to be 0). We first observe
that a = max{a′|a′τr + b ≤ 1, a′ ∈ N} = ⌊1−b

τr
⌋. Also, b has its own range for

each policy. For idle-free, 0 ≤ b < τr, and for shrinking-tail, b = 0. Taking
Figure 3.15 for example (τr = 0.3), Cycle 1 has a = 3 and b = 0, Cycle 2 has
a = 2 and b = τ4, and Cycle 4 has a = 3 and b = 0.

Since amight vary from cycle to cycle, we introduce a reference quantity
that is constant and can be used to measure the length of cycles. Let a0 be
the a when b = 0, i.e., a0 = ⌊ 1

τr
⌋, and c be the length of a cycle. For idle-free

policy, c = a0 + 2 or a0 + 1. The variable length in cycles is due to variable
b between cycles. When b ≤ 1 − a0τr, we have the first type of cycle with
length a0 + 2 (denoted as c1); when b > 1 − a0τr, we have the second type
of cycle of length a0 + 1 (denoted as c2). The starting cycle in a sequence
is always the first type, while the ensuing cycles can be either the first or
second type. Note that it is possible that all cycles are the first type. For
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example, when r = 1.25, each cycle resets itself and b = 0 for all cycles. For
shrinking-tail policy, each cycle resets itself (whose length denoted as c3).
Note that c1, c2, c3 denotes the length of the 3 types of cycles and Cycle 1, 2,
3, ... in the figures denote specific cycle instances. From the above analysis,
we can see

c1 = a0 + 2, c2 = a0 + 1, c3 = a0 + 1. (3.6)
δ̄
(c1)
if =

2

a0 + 2
+ 2, δ̄

(c2)
if =

2

a0 + 1
+ 2, δ̄

(c3)
st =

1

a0 + 1
+ 2. (3.7)

Therefore,

δ̄
(c3)
st < δ̄

(c1)
if < δ̄

(c2)
if (3.8)

Next, we explain how to infer the relationship between δ̄ from that be-
tween δ̄(c). To analyze the mismatch of the whole sequence, we need to in-
spect the boundary cases at the start and the end of the sequence, where
the cycle-based analysis might not hold. As shown in Figure 3.16, the first
cycles for both policies have different mismatch patterns due to empty de-
tection at the first two queries. Compared to regular cycles in Figure 3.15,
the first cycle has 6 and 5 less total mismatch for idle-free and shrinking-tail
policy respectively. Letm1,m2, andm3 be the number of complete cycles of
type c1, c2, and c3 in a sequence, respectively, d be the number of residual
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Figure 3.16: The first cycles for both policies have different mismatch pat-
terns.
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queries at the end of the sequence that do not complete a cycle, and e be the
total mismatch of these d queries, then we have

T = m1c1 +m2c2 + dif (3.9)
T = m3c3 + dst (3.10)
δ̄if = (m1c1δ̄

(c1)
if +m2c2δ̄

(c2)
if − 6 + eif)/T (3.11)

δ̄st = (m3c3δ̄
(c3)
st − 5 + est)/T (3.12)

Note that the above holds only whenm1 ≥ 1 andm3 ≥ 1 (the sequence is at
least one cycle long for both policies). If T is smaller or equal to one cycle, the
two policies are equivalent and δif = δst. When T is large enough (e.g., T →
∞), the δ̄(c) terms dominate Eq 3.11 and Eq 3.12, and due to Eq 3.7, we have
δ̄st < δ̄if, which shows that the shrinking-tail policy is superior. Formally,
when T > C(r), where C(r) is some constant depending on r, δ̄st < δ̄if.

Summary of the theoretical analysis Considering all 3 cases, we can draw
the conclusion that δ̄st ≤ δ̄if when T is large enough (greater thanC(r) if τr <
0.5, and no requirement otherwise). By achieving less average mismatch,
shrinking-tail outperforms idle-free.

Practical Performance of Dynamic Scheduling

We apply our dynamic schedule (Alg. 1) to a wide suite of detectors under
the same settings as our main experiments and summarize the results in
Table 3.12. In practice, runtime is stochastic due to complicated software and
hardware scheduling or running an input adaptive model, but we find the
theoretical results obtained under constant runtime assumption generalizes
to most of the practical cases under our experiment setting.

3.B.2 Additional Details for Forecasting
We use an asynchronous Kalman filter for our forecastingmodule. The state
representation which we choose is [x, y, w, h, ẋ, ẏ, ẇ, ḣ], where [x, y, w, h] are
the top-left coordinates, and width and height of the bounding box, and
the remaining four are their derivatives. The state transition is assumed to
be linear. We also test with the representation used in SORT [12], which as-
sumes that the area (the product of the width and the height) varies linearly
instead of that each of the width and the height varies linearly. We find that
such a representation produces lower numbers in AP.
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Table 3.12: Empirical performance comparison before and after using Alg.
1. We see that our shrinking-tail policy consistently boosts the streaming
performance for different detectors and for different input scales. We also
observe some failure cases (last two rows), where runtime is close to one
frame duration. This is because our theoretical analysis assumes constant
runtime, while it is dynamic in practice. Hence, the variance in runtime
when it is a boundary value can make a noticeable difference on the perfor-
mance

Method AP (Before) AP (After) Runtime (ms) Runtime (frames)
SSD @ s0.5 9.7 9.7 66.7 2.0
RetinaNet R50 @ s0.5 10.9 11.6 54.5 1.6
RetinaNet R101 @ s0.5 9.9 9.9 66.8 2.0
Mask R-CNN R101 @ s0.5 11.0 11.1 68.8 2.1
Cascade MRCNN R50 @ s0.5 11.3 11.7 80.0 2.4
Cascade MRCNN R101 @ s0.5 10.3 11.1 92.2 2.8
HTC @ s0.5 7.9 8.0 240.8 7.2
Mask R-CNN R50 @ s0.25 7.7 7.8 36.1 1.1
Mask R-CNN R50 @ s0.5 12.0 13.0 56.7 1.7
Mask R-CNN R50 @ s0.75 11.5 12.6 92.7 2.8
Mask R-CNN R50 @ s1.0 10.6 10.7 139.6 4.2
RetinaNet R50 @ s0.25 6.9 6.8 33.4 1.0
Mask R-CNN R50 @ s0.2 6.5 6.3 34.3 1.0

As explained in the main text, Kalman filter needs to be asynchronous
and time-varying for streaming perception. Let ∆tk be the time-varying in-
tervals between updates or prediction steps, we pick the transition matrix to
be:

Fk =

[
I4×4 ∆tkI4×4

I4×4

]
(3.13)

and the process noise to be

Qk = ∆t2kI8×8 (3.14)

Intuitively, the process noise is larger the longer between the updates.
All forecasting modules are implemented on the CPU and thus can be

parallelized while the detector runs on the GPU. Our batched (over multi-
ple objects) implementation of the asynchronous Kalman filter takes 0.98±
0.39ms for the update step and 0.22± 0.07ms for the prediction step, which
are relatively very small overheads compared to detector runtimes. For scal-
able evaluation, we assume zero runtime for the association and forecasting
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Figure 3.17: Multi-object visual tracker. The advantage of a visual tracker is
that it runs faster than a detector and thus yields lower latency for streaming
perception. The multi-object tracker used here is modified from [11]. It is
mostly the same as a two-stage detector, except that its box head uses the last
known object location as input in place of region proposals. Therefore, we
get a computation saving by not running the RPN head. Runtime is mea-
sured for Mask R-CNN (ResNet 50) with input scale 0.5.

module, and implement forecasting as post-processing of the detection out-
puts. Onemight wonder that a simulated post-processing run and an actual
real-time parallel executionmight have different final APs. We have also im-
plemented the latter for verification purposes. For most settings the differ-
ences are within 1%. Although for some settings the difference can reach
3%, we find such fluctuation does not affect the relative rankings.

3.B.3 Additional Details for Visual Tracking
For our tracking experiments (Section 3.4.4), we adapt andmodify the state-
of-the-art multi-object tracker [11]. A component breakdown in Fig. 3.17
explains how this trackerworks andwhy it has the potential to achieve better
performance under the streaming setting.

3.B.4 Evaluation of Our Meta-Detector Streamer
Streamer is introduced in Section 3.4.3 in themain text. Given a detector and
an input scale, Streamer automatically schedules the detector and employs
forecasting to compensate for some of its latency. In the single GPU case,
our dynamic schedule (Alg. 1) is used and in the infinite GPU case, idle-
free scheduling (Fig. 3.4c) is used. Proper scheduling requires the knowl-
edge of runtime of the algorithm, which is known in the case of benchmark
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Table 3.13: Performance boost after applying Streamer. “(B)” standards for
“Before”, and “(A)” standards for “After”. The evaluation setting is the
same as Table 3.1 in the main text. This table assumes a single GPU, and
an infinite GPU counterpart can be found in Table 3.14. Under this setting,
we observe significant improvement in AP, ranging from 5% to 78%, and av-
eraging at 34%

Method Scale AP(B) AP(A) Boost APL(B) APL(A) Boost
0.2 9.5 10.4 9% 23.5 28.6 21%
0.25 9.3 10.6 14% 23.9 31.5 32%

SSD 0.5 9.7 13.5 40% 20.0 32.4 62%
0.75 6.0 10.7 78% 11.5 19.8 72%
1.0 4.2 7.3 76% 7.3 12.5 72%
0.2 6.0 6.3 5% 18.1 21.3 17%
0.25 6.9 7.5 9% 19.8 26.2 33%

RetinaNet R50 0.5 10.9 14.2 30% 24.1 38.3 59%
0.75 10.8 16.1 50% 20.2 32.9 63%
1.0 9.9 14.1 42% 16.7 24.7 48%
0.2 5.4 5.9 9% 14.7 19.8 35%
0.25 6.5 7.4 14% 18.2 25.8 42%

RetinaNet R101 0.5 9.9 13.0 31% 21.5 33.6 56%
0.75 9.9 14.5 47% 18.1 27.7 53%
1.0 8.9 12.7 42% 14.7 22.0 50%
0.2 6.5 7.2 11% 18.0 25.1 40%
0.25 7.7 9.1 19% 20.1 29.9 49%

Mask R-CNN R50 0.5 12.0 16.7 39% 24.3 39.9 64%
0.75 11.5 17.8 54% 19.5 33.3 71%
1.0 10.6 15.0 42% 16.6 25.0 50%
0.2 6.3 7.2 14% 16.7 24.1 45%
0.25 7.6 9.0 17% 19.3 28.5 48%

Mask R-CNN R101 0.5 11.0 15.2 39% 21.6 35.4 64%
0.75 10.0 15.3 52% 16.8 28.0 67%
1.0 8.8 12.4 42% 13.7 21.2 55%
0.2 6.2 7.8 25% 15.4 25.5 66%
0.25 7.5 9.6 28% 18.4 30.1 63%

Cascade MRCNN R50 0.5 11.3 16.4 45% 22.6 37.5 66%
0.75 10.9 16.7 54% 18.6 29.8 60%
1.0 10.1 15.7 55% 15.4 25.3 64%
0.2 6.1 7.3 20% 15.2 23.1 52%
0.25 7.4 9.5 28% 17.6 29.6 69%

Cascade MRCNN R101 0.5 10.3 15.4 49% 20.5 34.1 66%
0.75 9.5 14.7 54% 16.1 26.1 62%
1.0 8.8 12.9 46% 13.7 21.8 59%
0.2 5.6 6.8 22% 12.0 17.0 42%
0.25 6.3 8.3 31% 13.0 19.8 53%

HTC 0.5 7.9 10.8 38% 13.3 19.9 49%
0.75 7.1 8.6 22% 11.4 14.8 30%
1.0 6.4 7.2 12% 9.6 11.4 18%
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Table 3.14: Performance boost after applying Streamer. “(B)” standards for
“Before”, and “(A)” standards for “After”. The evaluation setting is the
same as Table 3.1 in the main text. This table assumes infinite GPUs, and
a single GPU counterpart can be found in Table 3.13. Under this setting, we
observe significant improvement in AP, ranging from 4% to 80%, and aver-
aging at 32%

Method Scale AP(B) AP(A) Boost APL(B) APL(A) Boost
0.2 9.9 10.6 7% 25.5 29.4 15%
0.25 9.6 10.7 12% 24.9 31.7 27%

SSD 0.5 11.3 14.7 30% 24.1 35.4 47%
0.75 8.0 13.3 66% 14.6 25.6 76%
1.0 5.5 9.8 80% 10.0 16.5 65%
0.2 6.1 6.3 4% 18.6 21.3 15%
0.25 7.1 7.6 8% 21.4 27.1 26%

RetinaNet R50 0.5 12.3 14.7 20% 28.1 40.1 42%
0.75 13.1 18.0 37% 24.3 37.8 56%
1.0 11.7 17.3 48% 19.5 31.3 60%
0.2 5.5 6.0 9% 15.3 20.1 32%
0.25 6.7 7.5 12% 18.8 26.1 38%

RetinaNet R101 0.5 11.3 14.0 24% 25.3 38.1 50%
0.75 11.8 17.0 44% 21.3 34.3 61%
1.0 10.8 16.3 51% 18.2 28.2 55%
0.2 6.7 7.4 10% 20.0 26.2 31%
0.25 7.8 9.2 17% 20.8 30.1 45%

Mask R-CNN R50 0.5 13.9 17.4 26% 29.0 42.6 47%
0.75 14.4 20.3 40% 24.3 38.5 59%
1.0 12.4 18.7 51% 19.4 31.4 62%
0.2 6.5 7.3 13% 17.4 24.3 40%
0.25 7.9 9.1 15% 20.5 28.9 41%

Mask R-CNN R101 0.5 11.9 16.2 36% 23.7 38.4 62%
0.75 12.4 18.5 49% 20.3 35.3 74%
1.0 10.6 16.2 53% 16.9 27.7 64%
0.2 7.0 7.9 13% 18.9 26.5 40%
0.25 8.5 9.9 16% 22.3 31.7 42%

Cascade MRCNN R50 0.5 12.9 17.6 37% 26.0 41.2 58%
0.75 13.2 19.9 51% 22.1 36.5 65%
1.0 12.6 19.8 57% 19.0 31.8 67%
0.2 6.8 7.9 17% 17.8 26.6 49%
0.25 8.3 9.8 18% 21.0 31.7 50%

Cascade MRCNN R101 0.5 12.6 17.0 35% 25.0 38.5 54%
0.75 11.4 17.7 56% 19.0 32.7 72%
1.0 10.5 16.6 59% 16.7 27.6 65%
0.2 6.3 8.0 27% 14.0 21.8 55%
0.25 7.3 9.8 34% 15.7 25.5 62%

HTC 0.5 9.2 13.7 50% 16.3 26.9 65%
0.75 8.2 11.4 39% 13.2 20.5 55%
1.0 7.4 9.3 25% 11.1 15.8 43%
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evaluation. When applied in the wild, we can optionally track runtime of
the algorithm on unseen data and adjust the scheduling accordingly. The
forecasting module is implemented with asynchronous Kalman filter (Sec-
tion 3.B.2).

Streamer has several key features. First, it enables synchronous process-
ing for an asynchronous problem. Under the commonly studied settings
(both offline and online), computation is synchronous in that the outputs
and the inputs have a natural one-to-one correspondence. Therefore, many
existing temporal reasoning models assume that the inputs are at a uniform
rate and each input corresponds to an output [54, 63, 72]. In the real-time
setting, however, such a relationship does not exist due to the latency of the
algorithm, i.e., the number of outputs can be arbitrary. Streamer converts de-
tectorswith arbitrary runtimes into systems that output at a designated fixed
rate. In short, it abstracts away the asynchronous nature of the problem and
therefore allows downstream synchronous processing. Second, by adopt-
ing forecasting, Streamer significantly boosts the performance of streaming
perception. In Tables 3.13 and 3.14, we evaluate the detection AP before and
after applying ourmeta-detector. We observe relative improvement from 4%
to 80%with an average of 33% in detection AP under 80 different settings (8
detectors × 5 image scales × 2 compute models). Note that the difference
of this evaluation and benchmark evaluation in the main text is that we fix
the detector and input scale here, while benchmark evaluation searches over
the best configuration of detectors and input scales. For the infinite GPU set-
tings, we discount the boost from additional compute itself.

3.B.5 Implementation Details

Detectors We experiment with a large suite of object detectors: SSD [142],
RetinaNet [138], Mask R-CNN [82], Cascade Mask R-CNN [24], and HTC
[32]. The “optimized” and “re-optimized” rows in all tables represent the
optimal configuration over all detectors and all input scales of 0.2, 0.25, 0.5,
0.75, and 1.0. We adopt mmdetection codebase [33] (one of the fastest open-
source implementation for Mask R-CNN) for object detectors. Note that for
all detectors, the implementation has reproduced both the accuracy and run-
time reported in the original papers.

Potentially better implementation We acknowledge that there are addi-
tional bells and whistles to reduce runtime of object detectors, which might
further improve the results on our benchmark. We focus on general tech-
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niques instead of device- or application-specific ones. For example, we have
explored GPU image pre-processing, which is applicable to all GPUs. An-
other implementation technique is to use half-precision floating-point num-
bers (FP16), whichwe have not explored, since it will only pay off for certain
GPUs that have been optimized for FP16 computation (it is reported that
FP16 yields only marginal testing time speed boost on 1080 Ti [37]).

3.C Appendix C: Additional Baselines

3.C.1 Forecasting Baselines
Wehave also tested linear extrapolation (i.e., constant velocity) andquadratic
extrapolation for forecasting detection results. We include an illustration of
linear forecasting in Fig. 3.18, and the quadratic counterpart is a straight-
forward extension that involves three latest detection results. Though they
produce inferior results than Kalman filter, we include the results in Ta-
ble 3.15 for completeness.

𝑡

frame 0Detection (GPU)

Association (CPU)

Forecasting (CPU)

frame 1 frame 3

0 1 2 3 4

𝑣1 = (𝑏1 − 𝑏0)/(1 − 0)

𝑏4 = 𝑏1 + 𝑣1(4 − 1)

Figure 3.18: Scheduling for linear forecasting. The scheduling is similar as
with the Kalman filter case in that both are asynchronous. The difference is
that linear forecasting does not explicitly maintain a state representation but
only stores two latest detection results. Association takes place immediately
after a new detection result becomes available, and it links the bounding
boxes in two consecutive detection results and computes a velocity estimate.
Forecasting takes place right before the next time step, and it uses linear ex-
trapolation to produce an output as the estimation of the current world state.
The equations represent the computation for reporting to benchmark query
at t = 4. b is a simplified representation for object location. At this time, only
detection results for frame 0 and 1 are available, but through association and
forecasting, the algorithm canmake a better prediction for the current world
state.
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Table 3.15: Comparison of different forecasting methods for streaming per-
ception. We see that both linear and Kalman filter forecasting methods sig-
nificantly improve the streaming performance. Kalman filter further out-
performs the linear forecasting. The quadratic forecasting decreases the AP,
suggesting that high-order extrapolation is not suitable for this task. The de-
tection used here isMask R-CNNResNet 50 @ s0.5with dynamic scheduling
(Alg. 1)

ID Method AP APL APM APS AP50 AP75

1 No Forecasting 13.0 26.6 9.2 1.1 26.8 11.1
2 Linear (constant velocity) 15.7 38.1 13.8 1.1 30.2 14.8
3 Quadratic 9.7 23.8 6.6 0.4 21.4 7.9
4 Kalman filter 16.7 39.8 14.9 1.2 31.2 16.0

Table 3.16: Standard offline forecasting evaluation for the end-to-end
method F2F [145]. The goal is to forecast 3 frames into the future. Sur-
prisingly, the more expensive F2F method performs worse than the simpler
Kalman filter in terms of the overall AP

ID Method AP APL APM APS AP50 AP75

1 None (copy last) 13.4 24.3 10.9 1.9 27.9 11.3
2 Linear 16.3 34.8 16.8 1.8 32.9 14.3
3 Kalman filter 19.1 40.3 19.8 2.6 35.8 17.7
4 F2F 18.3 41.0 20.0 2.5 33.9 17.1

3.C.2 An End-to-End Baseline

In the main text, we break down the streaming detection task into detection,
tracking, and forecasting for modular analysis. Alternatively, it is also pos-
sible to train a model that directly outputs detection results in the future.
F2F [145] is one such model. Building upon Mask R-CNN, it does tempo-
ral reasoning and forecasting at the level of FPN feature maps. Note that
no explicit tracking is performed. In this section, we compare against this
end-to-end baseline in both offline and streaming settings.

In the offline setting, the algorithm is given s frames as input history, and
outputs detection results for t frames ahead. This is the same as the evalu-
ation in [145]. We set both s and t to be 3, as the optimal detector in our
forecasting experiments (Table 3.2) has runtime of 2.78 frames. Since F2F
forecasts at the FPN feature level, it is agnostic to second stage tasks. In our

73



Table 3.17: Streaming evaluation for the end-to-end method F2F [145]. The
setting is the same as the experiments in the main text. Rows 1 and 2 are the
optimized detector and the Kalman filter forecasting solution from the main
text. The underlying detectors used are Mask R-CNN ResNet 50 at scale 0.5
and scale 0.75 respectively. Row 3 suggests that F2F has a low streaming AP,
due to its forecasting module being very expensive (last column, runtime in
milliseconds). For diagnostics purpose, we assume F2F to run as fast as our
optimized detector (row 4), and arm it with our scheduling algorithm (row
5). But even so, F2F still under-performs the simple Kalman filter solution

ID Method AP APL APM APS AP50 AP75 Runtime
1 Detection 12.0 24.3 7.9 1.0 25.1 10.1 56.7
2 + Scheduling (Alg. 1) + KF 17.8 33.3 16.3 3.2 35.2 16.5 92.7
3 F2F 6.2 11.1 3.4 0.8 13.1 5.2 321.6
4 F2F (Simulated Fast) 14.1 29.1 12.7 1.9 28.9 12.0 92.7
5 + Scheduling (Alg. 1) 15.6 33.0 15.2 2.1 30.7 13.9 92.7

evaluation, we focus on the bounding box detection task instead of instance
segmentation. Also, we conduct experiments on Argoverse-HD, consistent
with the setting in our other experiments. Due to a lack of annotation, we
adopt pseudo ground truth (Section 3.A.2) for training (data from the orig-
inal training set of Argoverse 1.1 [29]). We implement our own version of
F2F based onmmdetection (instead of Detectron as done in [145]). We train
the model for 12 epochs end-to-end (a 50% longer schedule than combined
stages in [145]). For a fair comparison, we also finetuned the detectors on
Argoverse with the same pseudo ground truth. For Mask R-CNN ResNet
50 at scale 0.5, it boosts the offline box AP from 19.4 to 22.9. We use this
finetuned detector in our method to compare against F2F. The results are
summarized in Table 3.16. We see that an end-to-end solution does not im-
mediately boost the performance. We believe that it is still an open problem
on how to effectively replace tracking and forecasting with an end-to-end
solution.

In the streaming setting, F2F can be viewed as a detector that compen-
sates its own latency. The results are summarized in Table 3.17. We see that
F2F is too expensive comparedwith other streaming solutions, showing that
forecasting can help only if it is fast under our evaluation. Note that the de-
tectors (row 1–2) are not finetuned as in the offline case, which means that
they can be further improved.
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Chapter 4

Foveated Image Magnification

4.1 Introduction

Safety-critical robotic agents such as self-driving cars make use of an enor-
mous suite of high-resolution perceptual sensors, with the goal of minimiz-
ing blind spots, maximizingperception range, and ensuring redundancy [22,
29,199]. We argue that “over-sensed” perception platforms provide unique
challenges for vision algorithms since those visual sensorsmust rapidly con-
sume sensor streamswhile continuously reporting back the state of theworld.
While numerous techniques exist to make a particular model run fast, such
as quantization [213], model compression [38], and inference optimization
[171], at the end of the day, simple approaches that subsample sensor data
(both spatially by frame downsampling and temporally by frame dropping)
are still most effective for meeting latency constraints [129]. However, sub-
sampling clearly throws away information, negating the goals of high-reso-
lution sensing in the first place! This status quo calls for novel vision algo-
rithms.

To address this challenge, we take inspiration from the human visual
system; biological vision makes fundamental use of attentional processing.
While current sensing stacks make use of regular grid sampling, the human
vision system in the periphery has amuch lower resolution than in the center
(fovea), due to the pooling of information from retinal receptors by retinal
ganglion cells. Such variable resolution is commonly known as foveal vision
[122].

In this paper, we propose FOVEAted image magnification (FOVEA) for
object detection, which retains high resolution for objects of interest while
maintaining a small canvas size. We exploit the sparsity of detection datasets
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Figure 4.1: Standard image downsampling (top right) limits the capability
of the object detector to find small objects. In this paper, we propose an at-
tentional warping method (bottom right) that enlarges salient objects in the
image while maintaining a small input resolution. Challenges arise when
warping also alters the output labels (e.g., bounding boxes).

– objects of interest usually only cover a portion of the image. The key idea
is to resample such that background pixels can make room for salient pixels of in-
terest. The input images are downsampled and warped such that salient
areas in the warped image have higher resolutions. While image warping
has been explored for image classification [102, 176] and regression [176],
major challenges remain when applying such methods to detailed spatial
prediction tasks such as object detection. First, processing warped images
will produce warped spatial predictions (bounding box coordinates). We
make use of differentiable backward maps to unwarp spatial predictions
back to the original space. Second, it is hard to efficiently identify salient
regions; in the worst case, a saliency network tuned for object detection may
be as expensive as the downstream detection network itself, thereby elimi-
nating any win from downsampling. In our case, we make use of cheap and
readily available saliency cues, either in the form of dataset-specific spatial
priors (i.e., small objects tend to exist near a fixed horizon) or temporal pri-
ors (small objects tend to lie nearby small object predictions from previous
frames). Third, previous image warps (tuned for image classification tasks)
can produce cropped image outputs. Since objects can appear near the im-
age boundary, we introduce anti-cropping constraints on the warping.

We validate our approach on two self-driving datasets for 2D object de-
tection: Argoverse-HD[129] andBDD100K [244]. First, we show that FOVEA
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can improve the performance of off-the-shelf detectors (Faster R-CNN[180]).
Next, we finetune detectors with differentiable image warping and back-
ward label mapping, further boosting performance. In both cases, small
objects improve by more than 2x in average precision (AP). Finally, we eval-
uate FOVEA under streaming perception metrics designed to capture both
accuracy and latency [129], producing state-of-the-art results.

4.2 Related Work
Object detection Object detection is one of the most fundamental prob-
lems in computer vision. Many methods have pushed the state-of-the-art in
detection accuracy [32, 73, 137, 169, 180], and many others aim for improv-
ing the efficiency of the detectors [14, 142, 179, 205]. The introduction of
fully convolution processing [192] and spatial pyramid pooling [83] have
allowed us to process the input image in its original size and shape. How-
ever, it is still a common practice to downsample the input image for effi-
ciency purposes. Efficiency becomes a more prominent issue when people
move to the video domain. In video object detection, the focus has been on
how to make use of temporal information to reduce the number of detectors
invoked [147, 255, 257]. These methods work well on simple datasets like
ImageNet VID [185], but might be unsuitable for the self-driving car senar-
ios, where multiple new objects appear at almost every frame. Furthermore,
thosemethods are usually designed towork in the offline fashion, i.e., allow-
ing access to future frames. Detectionmethods are the building blocks of our
framework, and our proposed approach is largely agnostic to any particular
detector.

Online/streaming perception In the online setting, the algorithm must
work without future knowledge. [136] proposes the Temporal Shift Module
that enables video understanding through channel shifting and in the on-
line setting, the shifting is restricted to be uni-directional. [11] proposes a
multi-object tracking method that takes input previous frame detection as
addition proposals for the current frame. Our method also takes previous
frame detection as input, but we use that to guide image warping. Stream-
ing accuracy [129] is a recently proposedmetric that evaluates the output of
a perception algorithm at all time instants, forcing the algorithm to consider
the amount of streaming data that must be ignored while computation is
occuring. [129] demonstrates that streaming object detection accuracy can
be significantly improved by tuning the input frame resolution and framer-
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Figure 4.2: Our proposed method for object detection. Given bounding box
predictions from the previous frame (if the input are videos) or a collec-
tion of all the ground truth bounding boxes in the training set, the saliency
generator creates a saliency map and that is fed into the spatial transformer
(adapted from [102, 176]) to downsample the high-resolution input frame
while magnifying salient regions. Then we feed the downsampled input
into a regular object detector, and it produces bounding box output in the
warped space, which is then converted back to the original image space as
the final output.

ate. In this work, we demonstrate that adaptive attentional processing is an
orthogonal dimension for improving streaming performance.

Adaptive visual attention Attentional processing has been well studied in
the vision community, and it appears in different forms [45,95,110,132,141,
214]. Specially in this paper, we focus on dynamic resolutions. For image
classification, [212] designs an algorithm to select high-resolution patches,
assuming each patch is associated with a data acquisition cost. [152] ap-
plies non-uniform downsampling to semantic segmentation and relies on
the network to learn both the forward and backward mapping, whose con-
sistency is not guaranteed. For object detection, a dynamic zoom-in algo-
rithm is proposed that processes high-resolution patches sequentially [68].
However, sequential executionmight notmeet latency requirements for real-
time applications. Most similar to our work, [176] proposes an adaptive im-
age sampling strategy that allocates more pixels for salient areas, allowing
a better downstream task performance. But the method only works for im-
age classification and regression, where the output is agnostic to the input
transformation.
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4.3 Approach
Assume we are given a training set of image-label pairs (I, L). We wish to
learn a nonlinear deep predictor f that produces a low loss L(f(I), L). In-
spired by past work [102,176], we observe that certain labeling tasks can be
performed more effectively by warping/resampling the input image. How-
ever, when the label L itself is spatially defined (e.g., bounding box coordi-
nates or semantic pixel labels), the label itself may need to be warped, or al-
ternatively, the output of the deep predictor may need to be inverse-warped.

In this section, we first introduce the saliency-guided spatial transform
from related work as the foundation of our method. Next, we introduce our
solutions to address the challenges in image warping for object detection.
An overview of FOVEA, our method, is shown in Fig 4.2.

4.3.1 Background: Saliency-Guided Spatial Transform
The seminal work of spatial transformer networks (STN) introduces a differ-
entiable warping layer for input images and feature maps [102]. It was later
extended to incorporate a saliency map to guide the warping [176]. Here
we provide implementation details that are crucial to our method. Please
refer to the original papers [102,176] for more details.

A 2D transformation can be written as:
T : (x, y)→ (x′, y′), (4.1)

where (x, y) and (x′, y′) are the input and output coordinates. Since image
pixels are usually discrete, interpolation is required to sample values at non-
integral coordinates. An image warp WT takes input an image I , samples
the pixel values according to the given transformation T , and outputs the
warped image I ′:

I ′(T (x, y)) = I(x, y) (4.2)
Naive forward warping of discrete pixel locations from input I can result in
non-integral target pixel positions that need to be “splatted” onto the pixel
grid of I , which can produce artifacts such as holes. Instead, image warps
are routinely implemented via a backward map [9]: iterate over each output
pixel grid location, compute its inverse mapping T −1 to find its corresponding
input coordinates (whichmay be non-integral), and bilinearly interpolate its
color from neighboring input pixel grid points:

I ′(x, y) = I(T −1(x, y)) (4.3)
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2.           for coordinates
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3.     for images
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Figure 4.3: Image warps WT are commonly implemented via a backward
map T −1 followed by (bilinear) interpolation of nearby source pixel grid
values, since forward mapping T can result in target pixel positions that do
not lie on the pixel grid (not shown). Though image warping is an exten-
sively studied topic (notably by [102, 176] in the context of differentiable
neural warps), its effect on labels is less explored because much prior art
focuses on global labels invariant to warps (e.g. an image class label). We
explore warping for spatial prediction tasks whose output must be trans-
formed back into the original image space to generate consistent output.
Interestingly, transforming pixel-level labels with warp WT −1 requires in-
verting T −1, which can be difficult depending on its parameterization [9].
In this paper, we focus on transforming pixel coordinates of bounding boxes,
which requires only the already-computed backward map T −1 (the red ar-
row).
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In other words, the implementation ofWT only requires the knowledge of the inverse
transformation T −1. The pixel iteration can be replacedwith a batch operation
by using a grid generator and apply the transformation T −1 over the entire
grid.

STN uses a differentiable formulation of T −1
θ (parameterized by θ) and

an ensuing bilinear grid sampler, which is differentiable and parameter-
free. [176] proposes a special form of T −1 parameterized by a saliency map
S: T −1

θ = T −1
S . This transform has a convolution form and is therefore fast,

using the intuition that each input pixel (x, y) attracts samples from the orig-
inal image with a force S(x, y), leading to more sampling at salient regions.
We point out that both [102] and [176] ignore the effect of warping on the output
label space and skip the modeling of the forward transform T , which (we will show)
is required for unwarping certain label types.

4.3.2 Image Warping for Object Detection

In this section, wefirst explain our high-level inference formulation, then our
specific form of the warping, and in the end some adjustments for training
the task network.

Inference formulation We visually lay out the space of image and label
warps in Fig 4.3. Recent methods for differentiable image warping assume
labels are invariant under the warping (the first pathway in Fig 4.3). For ob-
ject detection, however, imagewarping clearlywarps bounding box outputs.
To produce consistent outputs (e.g., for computing bounding box losses dur-
ing learning), thesewarped outputs need to transformed back into the origi-
nal space (the second pathway in Fig 4.3). Quite conveniently, because stan-
dard image warping is implemented via the backward map T −1, the back-
ward map is already computed in-network and so can be directly applied to
the pixel coordinates of the predicted bounding box. The complete proce-
dure for our approach f̂ can be written as f̂(I, T ) = T −1(f(WT (I))). where
f(·) is the nonlinear function that returns bounding box coordinates of pre-
dicted detections. Importantly, this convenience doesn’t exist whenwarping
pixel-level values; e.g., when warping a segmentation mask back to the orig-
inal image input space (the third pathway in Fig 4.3). Here, one needs to
invert T −1 to explicitly compute the forward warp T .
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Warping formulation We adopt the saliency-guidedwarping formulation
from [176]:

T −1
x (x, y) =

∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))x′∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))
, (4.4)

T −1
y (x, y) =

∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))y′∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))
, (4.5)

where k is a distance kernel (we use a Gaussian kernel in our experiments).
However, in this general form, axis-aligned bounding boxes might have dif-
ferent connotations in the original and warped space. To ensure axis align-
ment is preserved during the mapping, we restrict the warping to be sepa-
rable along the two dimensions, i.e., T −1(x, y) = (T −1

x (x), T −1
y (y)). For each

dimension, we adapt the previous formulation to 1D:

T −1
x (x) =

∫
x′ Sx(x

′)k(x′, x)x′∫
x′ Sx(x′)k(x, x′)

, (4.6)

T −1
y (y) =

∫
y′
Sy(y

′)k(y′, y)y′∫
y′
Sy(y′)k(y, y′)

. (4.7)

We call this formulation separable and the general form nonseparable. Note
that the nonseparable formulation has a 2D saliencymapparameter, whereas
the separable formulation has two 1D saliencymaps, one for each axis. Fig 4.4
shows an example of each type of warp.

One nice property of T −1 is that it is differentiable and thus can be trained
with backpropagation. One limitation though is that its inverse T doesn’t
have a closed-form solution, nor does its derivative. The absence of T is not
ideal, and we propose some workaround as shown in the following subsec-
tion.

Anti-CroppingConstraint Wefind the convolution formof saliency-guided
spatial transform tends to crop the images, whichmight be acceptable for im-
age classification where a large margin exists around the border. However,
any cropping in object detection creates a chance to miss objects. We solve
this by using reflect padding on the saliency map while applying the attrac-
tion kernel in Eq 4.6. This introduces symmetries about each of the edges
of the saliency map, eliminating all horizontal offsets along vertical image
edges and vice versa. Thus cropping is impossible under this formulation.
A 1D illustration is shown in Fig 4.5 to explain the problem and the solution.
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Figure 4.4: By restricting the general class of warps (left) to be separable
(right), we ensure that bounding boxes in thewarped image (examples out-
lined in red) remain axis-aligned. We demonstrate that such regularization
(surprisingly) improves performance, even though doing so theoretically
restricts the range of expressible warps (details in Sec 4.4.1).

Training formulation Once we have the inference formulation, training is
also straightforward as we require the loss L to be computed in the origi-
nal space: L(Q(f(WT (I)), L), where Q is the label-type-specific backward
mapping as shown in Fig 4.3, and in our case, Q = T −1. Note that WT , f
and T −1 are all differentiable. While inference itself does not require the
knowledge of T , it is not the case for training detectors with region proposal
networks (RPN) [180]. When training RPNs [180], the regression targets
are the deltas between the anchors and the ground truth, and the deltas are
later used in RoI Pooling/Align [82,83]. The former should be computed in
the original space (the ground truth is in the original space), while the latter
is in the warped space (RoI Pooling/Align is over the warped image). This
implies that the deltas need first to be learned in the original space, applied
to the bounding box, and then mapped to the warped space using T for RoI
Pooling/Align. But as discussed before, T cannot be easily computed. As a
workaround, we omit the delta encoding and adoptGeneralized IoU (GIoU)
loss [181] to account for the lost stability. The main idea of GIoU is to better
reflect the similarity of predicted and ground truth bounding boxes in cases
of zero intersection; this has been shown to improve results.

4.3.3 KDE Saliency Generator
Prior work [102, 176] trains a saliency network to generate saliency maps,
which we explore as a baseline in Sec 4.4.1. Because saliency maps for object
detection appear hard to learn, we explore cheap alternatives for saliency
map construction: dataset-level priors over object locations or temporal pri-
ors extracted from previous frame’s predictions. Both priors can be opera-
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(a) Default, σ ≈ 5.5 (b) Anti-crop, σ ≈ 5.5 (c) Anti-crop, σ ≈ 1.7

Figure 4.5: Saliency-guided transform illustrated in 1D. The red curve is
a saliency map S. The bottom row of dots are the output points (at uni-
form intervals), and the top row of dots are the locations where we’ve sam-
pled each output point from the original “image”, as computed by applying
T −1
S to the output points. (a) The default transform can be understood as a

weighted average over the output points and thus ignores points with near
zero weights such as those at the boundaries. (b) Note the effects of intro-
ducing anti-crop reflect padding, and (c) how decreasing the std dev σ of
the attraction kernel k results in more local warping around each peak (bet-
ter for multimodal saliency distributions).

tionalizedwith an approach that converts bounding boxes to a saliencymap.
Intuitively, we build a saliency map by “overlaying” boxes on top of one

another via non-parametric kernel density estimation (KDE).More precisely,
given a set of bounding boxes B with centers ci, heights hi and widths wi,
we model the saliency map SB as a sum of normal distributions:

Sa,b
B =

1

K2
+ a

∑
(ci,wi,hi)∈B

N
(
ci, b

[
wi 0
0 hi

])
(4.8)

where a and b are hyperparameters for amplitude and bandwidth, respec-
tively, and K is the size of the attraction kernel k in Eq 4.6. Adding the
small constant is done to prevent extreme warps. We then normalize the 2D
saliency map such that it sums to 1 and marginalize along the two axes if
using the separable formulation1. As laid out in the previous section, this
is then used to generate the image transformation T −1

S according to Eq 4.6.
Ensuring that each kernel is locally normalized produces our desired behav-
ior; we’ll have high saliency for pixels covered by objects, and even higher

1When using the separable formulation, we could instead skip the intermediate 2D
saliency map representation. However, we opt not to, because the intermediate 2D saliency
map producesmore interpretable visualizations, and the difference in runtime is negligible.
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saliency for pixels covered by small objects (that have their Gaussian mass
focused on a smaller object size).

We can apply SB to the set of all bounding boxes in the training set to ob-
tain a dataset-wide prior (denoted as SD), or apply it to the previous frame’s
predictions to obtain a image-specific temporal prior (denoted as SI). The
former encodes dataset-level spatial priors such as small objects appearing
near the horizon (Fig 4.7). The latter encodes a form of temporal contextual
priming, allocating pixel samples to previously seen objects (with a default
of uniform saliency for the first frame). We also experiment with a weighted
combination of both: SC = α · SI + (1 − α) · SD. All of the above saliency
generators are differentiable, so the final task loss can be used to learn hy-
perparameters a, b, α.

4.4 Experiments
We first compare FOVEA to naive downsampling on autonomous driving
datasets such as Argoverse-HD. Next, we use streaming perception metrics
to show that the accuracy gain is worth the additional cost in latency. Finally,
we present results on BDD100K, showing the generalization of our method.
We include additional results, diagnostic experiments, and implementation
details in the appendix.

4.4.1 Object Detection for Autonomous Navigation

Argoverse-HD [129] is an object detection dataset for autonomous vehicles.
Noteably, it contains high framerate (30 FPS) data and annotations. As is
standard practice, we adopt AP for evaluation. We also report end-to-end
latency (including image preprocessing, network inference, and bounding
box postprocessing) measured on a single GTX 1080 Ti GPU. The image res-
olution for this dataset is 1920 × 1200, much larger than COCO’s, which is
capped at 640. Since all models used in this paper are fully convolutional,
we run them with different input scales, denoted by ratios to the native res-
olution, e.g., 0.5x means an input resolution of 960× 600.

Baseline and Setup

The baseline we compare to throughout our experiments is Faster RCNN
[180] with a ResNet-50 backbone [84] plus FPN [137]. The default input
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scale for both the baseline and our method is 0.5x. For the baseline, how-
ever, we additionally train and test at 0.75x and 1x scales, to derive a sense
of the latency-accuracy tradeoff using this model. Our contribution is or-
thogonal to the choice of the baseline detector and we obtain similar results
with other detectors including RetinaNet [138] and YOLOF [35] (shown in
Appendix 4.A.2). Additionally, we compare against other zoom-based ap-
proaches [68,176] in Appendix 4.A.3.

Notably, Argoverse-HD’s training set only contains pseudo ground truth
(at the time of paper submission) generated by running high-performingde-
tector HTC [32] in the offline setting. For all experiments, unless otherwise
stated, we train on the train split with pseudo ground truth annotations,
and evaluate on the val split with real annotations. Additional measures
are taken to prevent overfitting to biased annotations. We finetune COCO
pretrained models on Argoverse-HD for only 3 epochs (i.e., early stopping).
We use momentum SGD with a batch size of 8, a learning rate of 0.02, 0.9
momentum, 10−4 weight decay, and a step-wise linear learning rate decay
for this short schedule [130]. Also, when training detectors with warped in-
put, we apply our modifications to RPN and the loss function as discussed
in Sec 4.3.2.

Learned Saliency

Our first control experiment does not make use of bounding box KDE pri-
ors, but rather directly learns a global, dataset-wide saliency map S(x, y) via
backprop. We directly learn both separable and nonseparable saliencymaps
in Tab 4.1. Training configuration and implementation details are given in
Appendix 4.A.6.

We find that both separable and nonseparable warps significantly im-
prove overall AP over the baseline, owing to the boosted performance on
small objects. However, there is also a small decrease in AP on large ob-
jects. Interestingly, even though nonseparable warps are more flexible, the
learned solutions look nearly separable (Fig 4.6) but perform worse, indi-
cating overfitting. Therefore, going forward, we focus on separable warps
in our experiments.

Following [176], we also learn a “saliency network” thatmaps each input
image to its saliency map via a ResNet-18 backbone [84]. In this sense, the
learned saliencymapwould adapt to each image. However, we find that this
approach very unstable for object detection. From our experiments, even
with a small learning rate of 10−5 on the saliency network, the model learns
a degeneracy inwhich an extremewarp leads to no proposals beingmatched
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Figure 4.6: The learned direct separable (left) and nonseparable (right)
dataset-wide warps. Despite the vastly greater flexibility of nonseparable
warps, the learned warp is almost separable anyway.

with ground truth bounding boxes in the RoI bounding box head, leading
to a regression loss of 0.

KDE Saliency Generator

This sectionmakes use of theKDE construction in Sec 4.3.3 to generate saliency
maps. We first manually tune the amplitude a and bandwidth b to obtain
desired magnifications. We find that an amplitude a = 1 and a bandwidth
b = 64 works the best, paired with an attraction kernel of std. dev. of about
17.8% the image height, which allows for more local warps as illustrated in
Fig 4.5. We finetune our models using the same configuration as the base-
line, the only difference being the added bounding box and saliency-guided
spatial transformation layer. We learn SD using all bounding boxes from
the training set and for simplicity, learn SI with jittered ground-truth boxes
from the current frame (though at test-time it always uses predictions from
the previous frame). We set α = 0.5 for SC .

We then learn hyperparameters a and b through backpropagation, since
our KDE formulation is differentiable. We initialize parameters a′ and b′ to
0, under the construction that a = |1 + a′| + 0.1, b = 64 · |1 + b′| + 0.1. The
learning rate of a′ and b′ is set to 10−4 with zero weight decay. Other than
this, we train the learned KDE (LKDE) model with the same configuration
as the baseline. We implement the SI formulation.

All results are shown in Table 4.1. Even without finetuning our detec-
tor, using a simple fixed dataset-wide warp SD, we find significant improve-
ments in AP. As we migrate to temporal priors with finetuning, we see even
more improvement. As in the learned saliency case, these improvements in
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overall AP are due to large boosts in APS , outweighing the small decreases
in APL. Combining our saliency signals (SC) doesn’t help, because in our
case, it seems that the temporal signal is strictly stronger than the dataset-
wide signal. Perhaps if we had an alternate source of saliency like a map
overlay, combining saliencies could help. Our best method overall is LKDE,
which learned optimal values a = 1.07, b = 71.6. Learning a nonseparable
saliency performs better than our hand-constructed dataset-wide warp SD;
however, they’re both outperformed by SI . Importantly, our LKDE not only
significantly improves APS , but also improves all other accuracy measures,
suggesting that our method does not need to tradeoff accuracy of large ob-
jects for that of small objects. Finally, we note that our increased performance
comes at the cost of only about 2ms in latency.

Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)
Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2 49.4 ± 1.0
KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5 52.0 ± 1.0
KDE (SI) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4 51.2 ± 0.7
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9 52.0 ± 1.2
Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7 86.9 ± 1.6
Upp. Bound (1.0x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6 133.9 ± 2.2

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)
Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6 50.9 ± 0.9
Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8 51.5 ± 1.0
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1 50.0 ± 0.8
KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3 50.8 ± 1.2
KDE (SI) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4 52.2 ± 0.9
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5 52.1 ± 0.9
LKDE (SI) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7 50.5 ± 0.8
Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1 87.0 ± 1.4
Upper Bound (1.0x) 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7 135.0 ± 1.6

Table 4.1: Results before and after finetuning on Argoverse-HD. Without
retraining, processing warped images (KDE SI , top table) improves overall
AP by 2.6 points and triples APS . Even larger gains can be observed after
finetuning, making our final solution (LKDE SI) performing close to the
0.75x upper bound. Please refer to the text for a more detailed discussion.

4.4.2 Streaming Accuracy for Cost-Performance Evaluation
Streaming accuracy is a metric that coherently integrates latency into stan-
dard accuracy evaluation and therefore is able to quantitatively measure the
accuracy-latency tradeoff for embodiedperception [129]. Such a setup is achieved
by having the benchmark stream the data to the algorithm in real-time and
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Baseline - 0.5x Baseline - 1x

KDE (SD) - 0.5x

KDE (SI) - 0.5x

KDE (SC) - 0.5x

KDE (SD) - 0.5x - Saliency Map

KDE (SI) - 0.5x - Saliency Map

KDE (SC) - 0.5x - Saliency Map

Figure 4.7: Qualitative results for our methods after finetuning on
Argoverse-HD. The cars in the distance (in the dotted boxes), undetected
at 0.5x scale, are detected at 1x scale, and partially detected by our methods.
Different rows show the variations within our method based on the source
of attention.
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ID Method AP APS APM APL

1 Prior art [129] 17.8 3.2 16.3 33.3
2 + Better implementation 19.3 4.1 18.3 34.9
3 + Train with pseudo GT 21.2 3.7 23.9 43.8
4 2 + Ours (SI) 19.3 5.2 18.5 39.0
5 3 + Ours (SI) 23.0 7.0 23.7 44.9

Table 4.2: Streaming evaluation in the full-stack (with forecasting) setting
on Argoverse-HD. We show that our proposed method significantly im-
proves previous state-of-the-art by 5.2, in which 1.5 is from better imple-
mentation, 1.9 is from making use of pseudo ground truth and 1.8 is from
our proposed KDE warping.

query for the state of the world at all time instants. One of their key obser-
vations is that by the algorithm finishes processing, the world has around
changed and therefore proper temporal scheduling and forecasting meth-
ods should be used to compensate for this latency. Here we adopt their
evaluation protocol for our cost-performance analysis. In our case of stream-
ing object detection, the streaming accuracy refers to streaming AP. We use
the same GPU (GTX 1080 Ti) and their public available codebase for a fair
comparison with their proposed solution. Their proposed solution includes
a scale-tuned detector (Faster R-CNN), dynamic scheduler (shrinking-tail)
and Kalman Filter forecastor. Our experiments focus on improving the de-
tector and we keep the scheduler and forecastor fixed.

Tab 4.2 presents our evaluation under the full-stack setting (a table for
the detection-only setting is included inAppendix 4.A.5. We see that FOVEA
greatly improves the previous state-of-the-art. The improvement first comes
froma faster and slightlymore accurate implementation of the baseline (please
refer to Appendix 4.A.6 for the implementation details). Note that under
streaming perception, a faster algorithm while maintaining the same offline
accuracy translates to an algorithmwith higher streaming accuracy. The sec-
ond improvement is due to training on pseudo ground truth (discussed in
Sec 4.4.1). Importantly, our KDE image warping further boosts the stream-
ing accuracy significantly on top of these improvements. Overall, these re-
sults suggest that image warping is a cost-efficient way to improve accuracy.
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ID Method AP APS APM APL

1 Baseline (0.5x) 15.1 1.0 10.6 39.0
2 Ours SD (0.5x) 13.7 1.3 10.0 34.7
3 Ours SI (0.5x) 16.4 2.1 12.8 38.6
4 Baseline (0.75x) 19.7 3.0 16.1 44.2
5 Ours SD (0.75x) 18.2 3.4 15.4 40.0
6 Ours SI (0.75x) 20.1 5.2 17.0 42.5
7 Upper bound (1.0x) 22.6 5.7 20.1 45.7

Table 4.3: Cross-dataset generalization to BDD100K [244]. Rows 2 & 5 are
saliency computed on the Argoverse-HD training set, as expected, they fail
to generalize to a novel dataset. Despite operating at a larger temporal stride
(5 FPS vs 30 FPS), our proposed image-adaptive KDE warping generalizes
to a novel dataset (row 3 & 6). Note that here the image native resolution is
smaller at 1280× 720.

4.4.3 Cross-Dataset Generalization
Our experiments so far are all conducted on the Argoverse-HD dataset. In
this section, we cross-validate our proposedmethodon another autonomous
driving dataset BDD100K [244]. Note that BDD100K andArgoverse-HD are
collected in different cities. For simplicity, we only test out off-the-shelf gen-
eralization without any finetuning. We experiment on the validation split
of the MOT2020 subset, which contains 200 videos with 2D bounding boxes
annotated at 5 FPS (40K frames in total). Also, we only evaluate on common
classes between BDD100K andArgoverse-HD: person, bicycle, car, motorcy-
cle, bus, and truck. The results are summarized in Tab 4.3, which demon-
strate the generalization capability of our proposed method.

4.5 Conclusion
Wepropose FOVEA, a highly efficient attentional model for object detection.
Our model magnifies regions likely to contain objects, making use of top-
down saliency priors learned from a dataset or from temporal context. To do
so, we make use of differentiable image warping that ensures bounding box
predictions can be mapped back to the original image space. The proposed
approach significantly improves over the baselines on Argoverse-HD and
BDD100K. For future work, it would be natural to make use of trajectory
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forecasting models to provide even more accurate saliency maps for online
processing.

92



4.A Appendix

4.A.1 Additional Diagnostic Experiments

The Role of Explicit Backward Label Mapping

Related work either focus on tasks with labels invariant to warping like im-
age classification or gaze estimation [102, 176] (discussed in Sec 4.3.1), or
expect an implicit backward mapping to be learned through black-box end-
to-end training [152] (discussed in Sec 4.2). In this section, we suggest that
the implicit backward label mapping approach is not feasible for object de-
tection. To this end, we train and test ourKDEmethodsminus any bounding
box unwarping. Specifically, we no longer unwarp bounding boxes when
computing loss during training and when outputting final detections dur-
ing testing. Instead, we expect the model to output detections in the original
image space.

Due to instability, additional measures are taken to make it end-to-end
trainable. First, we train with a decreased learning rate of 1e-4. Second, we
train with and without adding ground truth bounding boxes to RoI propos-
als. The main KDE experiments do not add ground truth to RoI proposals,
because there is no way of warping bounding boxes into the warped image
space (the implementation of T does not exist). We additionally try setting
this option here, because it would help the RoI head converge quicker, under
the expectation that the RPN should output proposals in the original space.
All other training settings are identical to the baseline setup (Sec 4.4.1).

Results are shown in Tab 4.4. The overall AP is single-digit under all
of these configurations, demonstrating the difficulty of implicitly learning
the backward label mapping. This is likely due to the fact that our model is
pretrained onCOCO [139], so it has learned to localize objects based on their
exact locations in the image, and finetuning on Argoverse-HD is not enough
to “unlearn” this behavior and learn the backward label mapping. Another
factor is that in theSI andSC cases, each image iswarped differently, making
the task of learning the backwards label mapping even more challenging.
We suspect that training from scratch with a larger dataset like COCO and
using the warp parameters (e.g. the saliency map) as input may produce
better results. However, this only reinforces the appeal of our method due
to ease of implementation and cross-warp generalizability (we can avoid
having to train a new model for each warping mechanism).
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Sensitivity to Quality of Previous-Frame Detections

Twoof ourmethods, SI andSC are dependent on the accuracy of the previous-
frame detections. In this section, we analyze the sensitivity of such a depen-
dency through a soft upper bound on SI and SC , which is generated using
the current frame’s ground truth annotations in place of detections from the
previous frame. This soft upper bound is a perfect saliency map, up to the
amplitude and bandwidth hyperparameters. Note that this is only a change
in the testing configuration.

We report results in Tab 4.4. We see a significant boost in accuracy in all
cases. Notably, the finetuned KDE SI model at 0.5x scale achieves an AP of
29.6, outperforming the baseline’s accuracy of 29.2 at 0.75x scale.

Sensitivity to Inter-Frame Motion

Having noted that the SI and SC formulations are sensitive to the accuracy of
the previous-frame detections, in this section, we further test its robustness
to motion between frames. We use ground truth bounding boxes (rather
than detections) from the previous frame in order to isolate the effect of mo-
tion on accuracy. We introduce a jitter parameter j and translate each of the
ground truth bounding boxes in the x and y directions by values sampled
from U(−j, j). The translation values are in pixels in reference to the origi-
nal image size of 1920 × 1200. As in Sec 4.A.1, this is a purely testing-time
change. Also note that the upper bound experiments in Sec 4.A.1 follows by
setting j = 0. We test only on SI and report the full results in Tab 4.4. We
also plot summarized results and discuss observations in 4.8.

4.A.2 FOVEA Beyond Faster R-CNN
In the main text and other sections of the appendix, we conduct our experi-
ment based onFaster R-CNN.However, our proposedwarping-for-detection
framework is agnostic to specific detectors. To show this, we test our meth-
ods onRetinaNet [138], a popular single-stage object detector, and onYOLOF
[35], a recent YOLO variant that avoids bells and whistles and long training
schedules (up to 8x for ImageNet and 11x for COCO compared to standard
schedules for YOLOv4 [14]).

For both these detectors, we test baselines at 0.5x and 0.75x scales both
before and after finetuning. We then compare these results against our KDE
SI method at 0.5x scale. We use a learning rate of 0.01 for the RetinaNet KDE
SI model and 0.005 for the RetinaNet baselines. All other training settings
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Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck
Main Results (copied from the main text for comparison)
Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2
KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5
KDE (SI) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9
Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7
Upp. Bound (1x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6

Without an Explicit Backward Label Mapping (Sec 4.A.1)
KDE (SD) 5.4 14.2 3.7 0.0 0.9 20.7 3.2 0.4 1.2 0.8 27.9 0.0 5.3 4.2
KDE (SI) 6.1 15.6 4.0 0.2 0.8 20.3 2.3 0.6 0.7 1.8 30.8 0.0 7.0 5.4
KDE (SC) 6.0 15.9 3.8 0.1 0.9 21.9 3.0 0.6 0.9 1.5 30.2 0.0 6.7 5.2

Upper Bound with Ground Truth Saliency (Sec 4.A.1)
KDE (SI) 25.4 42.6 25.6 9.1 26.2 49.5 25.3 17.4 16.8 10.1 49.4 23.4 41.7 19.4
KDE (SC) 24.5 41.7 24.6 7.5 26.8 48.8 23.6 14.5 15.2 9.7 49.7 22.6 41.3 19.8

Sensitivity to Inter-Frame Motion (Sec 4.A.1)
KDE (SI), j = 10 25.3 42.9 25.3 8.4 26.7 49.1 25.0 16.4 16.2 10.1 48.8 25.0 41.8 19.5
KDE (SI), j = 25 24.1 41.0 24.5 6.4 26.1 49.0 24.0 12.6 15.2 9.0 48.5 22.9 41.1 19.6
KDE (SI), j = 50 22.5 38.3 22.9 4.2 24.1 49.1 21.9 9.9 14.4 8.2 48.4 18.5 39.0 19.7
KDE (SI), j = 100 20.9 35.1 21.6 2.8 21.9 48.0 20.1 7.1 14.0 6.8 47.8 15.3 36.7 19.1
KDE (SI), j = 200 20.0 33.5 20.6 2.5 20.5 46.7 19.2 6.0 13.4 6.2 46.7 14.3 35.5 18.5

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck
Main Results (copied from the main text for comparison)
Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6
Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1
KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3
KDE (SI) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5
LKDE (SI) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7
Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1
Upp. Bound (1x) 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7

Without an Explicit Backward Label Mapping (Sec 4.A.1)
KDE (SD), no RoI GT 2.1 2.6 2.5 0.0 0.0 4.0 0.6 0.0 0.0 0.6 14.8 0.0 0.0 0.9
KDE (SD) 1.8 2.7 1.9 0.0 0.0 3.2 0.6 0.0 0.0 0.0 13.3 0.0 0.1 0.6
KDE (SI), no RoI GT 2.5 3.0 2.9 0.0 0.1 4.3 0.7 0.0 0.0 0.6 17.0 0.9 0.0 0.9
KDE (SI) 2.0 2.8 2.4 0.0 0.0 3.7 0.6 0.0 0.0 0.0 14.8 0.0 0.3 0.5

Upper Bound with Ground Truth Saliency (Sec 4.A.1)
KDE (SI) 29.6 48.7 30.7 12.0 32.8 54.4 28.3 16.3 27.7 9.9 43.9 30.6 50.9 28.8
KDE (SC) 27.8 45.5 28.8 9.6 31.7 53.4 27.5 13.9 24.7 6.5 44.5 25.1 50.2 29.6

Sensitivity to Inter-Frame Motion (Sec 4.A.1)
KDE (SI), j = 10 29.4 48.3 30.7 11.5 32.8 54.6 27.9 15.9 27.2 9.7 43.7 31.1 50.6 28.7
KDE (SI), j = 25 28.0 46.1 29.2 9.2 32.1 55.3 26.4 13.9 25.9 9.3 43.9 26.8 49.2 28.7
KDE (SI), j = 50 26.2 42.9 27.7 6.6 30.5 54.9 24.1 12.1 24.9 8.6 44.1 21.8 46.2 27.9
KDE (SI), j = 100 24.5 39.9 25.8 4.8 28.6 53.5 22.3 10.2 23.5 7.6 43.5 17.7 43.9 27.1
KDE (SI), j = 200 23.6 38.3 25.2 4.2 27.8 53.0 21.4 8.6 22.8 7.4 42.9 16.6 42.7 26.6

Table 4.4: Additional diagnostics experiments on Argoverse-HD. Please re-
fer to Sec 4.A.1 for a detailed discussion.

for RetinaNet are identical to the Faster-RCNN baseline. For YOLOF, we use
a learning rate of 0.012 and keep all other settings true to the original paper.
Results are presented in Tab 4.5.
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Figure 4.8: Plots showing the effect ofmotion (jitter) onAPusing theKDESI

formulation. Results have been normalized according to theAP at 0 jitter. As
is intuitive, motion affects APS the most and APL the least. After finetuning
(with an artificial jitter of 50), we see that the model reacts less adversely to
jitter, indicating that our regularization has helped.

4.A.3 Comparison Against Additional Baselines

There are other approaches that make use of image warping or patch-wise
zoom for visual understanding. The first noticeable work [176], explained
extensively in the main text, warps the input image for tasks that have labels
invariant to warping. The second noticeable work [68] employs reinforce-
ment learning (RL) to decide which patches to zoom in for high-resolution
processing. In this section, we attempt to compare our FOVEA with these
two approaches.

Our method builds upon spatial transformer networks [102,176] and we
have already compared against [176] sporadically in the main text. Here
provides a summary of all the differences (see Tab 4.6). A naive approach
might directly penalize the discrepancy between the output of the (warped)
network and the unwarped ground-truth in an attempt to implicitly learn
the inverse mapping, but this results in abysmal performance (dropping
28.1 to 2.5 AP, discussed in Sec 4.A.1). To solve this issue, in Sec 4.3.1, we
note that [102,176] actually learn a backward map T −1 instead of a forward
one T . This allows us to add a backward-map layer that transforms bound-
ing box coordinates back to the original space via T −1, dramatically improv-
ing accuracy. A second significant difference with [102,176] is our focus on
attention-for-efficiency. If the effort required to determine where to attend
is more than the effort to run the raw detector, attentional processing can be
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Method AP AP50 AP75 APS APM APL

RetinaNet, Before Finetuning on Argoverse-HD
Baseline (0.5x) 18.5 29.7 18.6 1.3 17.2 48.8
KDE (SI) 18.5 31.2 17.9 4.5 16.8 44.9
Upp. Bound (0.75x) 24.8 38.8 25.5 4.5 28.7 52.0
RetinaNet, After Finetuning on Argoverse-HD
Baseline (0.5x) 22.6 38.9 21.4 4.0 22.0 53.1
KDE (SI) 24.9 40.3 25.3 7.1 27.7 50.6
Upp. Bound (0.75x) 29.9 48.6 30.1 9.7 32.5 54.2
YOLOF, Before Finetuning on Argoverse-HD
Baseline (0.5x) 15.0 25.4 14.3 0.6 11.0 46.0
KDE (SI) 16.8 29.0 16.0 0.9 14.0 46.4
Upp. Bound (0.75x) 21.6 35.5 22.3 2.3 22.2 52.7
YOLOF, After Finetuning on Argoverse-HD
Baseline (0.5x) 18.4 30.5 18.3 1.4 16.5 47.9
KDE (SI) 21.3 36.7 20.2 3.5 21.8 49.7
Upp. Bound (0.75x) 25.1 41.3 25.3 4.7 27.6 54.1

Table 4.5: Experiments with RetinaNet [138] and YOLOF [35]. We fol-
low the same setup as the experiment with Faster R-CNN. The top quarter
suggests that unlike Faster R-CNN, RetinaNet does not work off-the-shelf
with our KDE warping. However, the second quarter suggests similar per-
formance boosts as with Faster R-CNN can be gained after finetuning on
Argoverse-HD. Interestingly, for YOLOF, our method boosts AP in all cate-
gories – small, medium, and large – even with off-the-shelf weights.

inefficient (see the next paragraph). [176] introduces a lightweight saliency
network to produce a heatmap forwhere to attend; however, thismodel does
not extend to object detection, perhaps because it requires the larger capacity
of a detection network (see Sec 4.4.1). Instead, we replace this feedforward
network with an essentially zero-cost saliency map constructed via a sim-
ple but effective global spatial prior (computed offline) or temporal prior
(computed from previous frame’s detections). Next, we propose a tech-
nique to prevent cropping duringwarping (via reflection padding, as shown
in Fig 4.5), which also boosts performance by a noticeable amount. Finally,
as stated in the training formulation in Sec 4.3.2, it doesn’t even make sense
to train a standard RPN-based detector with warped input due to choice of
delta encoding (which normally helps stabilize training). We must remove
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this standard encoding and use GIoU to compensate for the lost stability
during training.

Method AP
FOVEA (Ours full) 28.1
w/o Explicit backward mapping 2.5
w/o KDE saliency (using saliency net as in [176]) Doesn’t train
w/o Anti-crop regularization 26.9
w/o direct RPN box encoding N/A

Table 4.6: Summary of key modifications in FOVEA.

Next, we attempt to compare against this RL-based zoom method [68]
using our baseline detector (public implementation frommmdetection [33])
on their Caltech Pedestrian Dataset [53]. However, while their full-scale
800 × 600 Faster R-CNN detector reportedly takes 304ms, our implemen-
tation is dramatically faster (44ms), consistent with the literature for mod-
ern implementations and GPUs. This changes the conclusions of that work
because full-scale processing is now faster than coarse plus zoomed-in pro-
cessing (taking 28ms and 25ms respectively), even assuming a zero-runtime
RL module (44ms < 28ms + 25ms).

4.A.4 Additional Visualizations

Please refer to Fig 4.9 and 4.10 for additional qualitative results of ourmethod.

4.A.5 Detection-Only Streaming Evaluation

In Sec 4.4.2 of the main text, we provide the full-stack evaluation for stream-
ing detection. Here we provide the detection-only evaluation for complete-
ness in Tab 4.7. This setting only allows detection and scheduling, and thus
isolating the contribution of tracking and forecasting. We observe similar
trend as in the full-stack setting in Tab 4.2.

4.A.6 Additional Implementation Details

In this section, we provide additional details necessary to reproduce the re-
sults in the main text.
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Figure 4.9: Additional examples of the SI KDE warping method. Bounding
boxes on the saliency map denote previous frame detections, and bounding
boxes on the warped image denote current frame detections. The magni-
fication heatmap depicts the amount of magnification at different regions
of the warped image. (a) is an example of SI correctly adapting to an off-
center horizon. (b) shows a multimodal saliency distribution, leading to a
multimodal magnification in the x direction. (c) is another example of SI

correctly magnifying small objects in the horizon. (d) is a failure case in
which duplicate detections of the traffic lights in the previous frame leads to
moremagnification than desired along that horizontal strip. One solution to
this could be to weight our KDE kernels by the confidence of the detection.
(e) is another failure case of SI , in which a small clipped detection along the
right edge leads to extreme magnification in that region. One general issue
we observe is that the regions immediately adjacent tomagnified regions are
often contracted. This is visible in the magnification heatmaps as the blue
shadows around magnified regions. This is a byproduct of the dropoff in
attraction effect of the local attraction kernel. Perhaps using non-Gaussian
kernels can mitigate this issue.
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Figure 4.10: Examples of KDE warp computed from bounding boxes, ex-
tracted from a training dataset (SD) or the previous frame’s detections
(SI , SC). We visualize predicted bounding boxes in the warped image. Re-
call that large objects won’t be visible in the saliency due to their large vari-
ance from Eq 4.8. (a) SD magnifies the horizon (b) SI magnifies the center
of the image, similar to SD (c) SI adapts to magnify themid-right region (d)
SC ’s saliency combines the temporal and spatial biases.
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ID Method AP APS APM APL

1 Prior art [129] 13.0 1.1 9.2 26.6
2 + Better implementation 14.4 1.9 11.5 27.9
3 + Train with pseudo GT 15.7 3.0 14.8 27.1
4 2 + Ours (SI) 15.7 4.7 12.8 26.8
5 3 + Ours (SI) 17.1 5.5 15.1 27.6

Table 4.7: Streaming evaluation in the detection-only setting. First, we are
able to improve over previous state-of-the-art through better implementa-
tion (row 2) and training with pseudo ground truth (row 3). Second, our
proposed KDE warping further boosts the streaming accuracy (row 4-5).

For the learned separable model from Sec 4.4.1, we use two arrays of
length 31 to model saliency along the x and y dimensions, and during train-
ing, we blur the image with a 47×47Gaussian filter in the first epoch, a trick
introduced in [176] to force the model to zoom. For the learned nonsepa-
rable model, we use an 11× 11 saliency grid, and we blur the image with a
31×31 filter in the first epoch. We use an attraction kernel kwith a standard
deviation of 5.5 for both versions. Additionally, we multiply the learning
rate and weight decay of saliency parameters by 0.5 in the first epoch and
0.2 in the last two epochs, for stability. We find that we don’t need anti-crop
regularization here, because learning a fixed warp tends to behave nicely.

For each of our KDEmethods, we use arrays of length 31 and 51 to model
saliency in the vertical and horizontal directions, respectively. This is chosen
to match the aspect ratio of the original input image and thereby preserve
the vertical and horizontal “forces” exerted by the attraction kernel.

For the baseline detector, we adopt the Faster R-CNN implementation of
mmdetection 2.7 [33]. All our experiments are conducted in an environment
with PyTorch 1.6, CUDA 10.2 and cuDNN 7.6.5. For streaming evaluation,
we mention a performance boost due to better implementation in Tab 4.7
& Tab 4.2, and the changes are mainly adopting newer versions of mmde-
tection and cuDNN compared to the solution in [129] (switching from a
smooth L1 loss to L1 loss for the regression part and code optimization).
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Chapter 5

Progressive Knowledge
Distillation

5.1 Introduction

The success of recent deep neural network models generally depends on an
elaborate design of architectures with tens or hundreds of millions of model
parameters. However, their huge computational complexity and massive
memory/storage requirements make them challenging to be deployed in
safety-critical real-time applications, especially on devices with limited re-
sources, such as self-driving cars or virtual/augmented realitymodels. Such
concerns have spawned a wide body of literature on compression and accel-
eration techniques. Many approaches focus on reducing computation de-
mands by sparsifying/pruning networks [80, 124], quantization [174, 232],
or neural architecture search [140, 262], but reduced computation does not
always translate to lower latency because of subtle issues with memory ac-
cess and caching on GPUs [52,204].

Distillation: Rather than searching over new architectures, we seek to
better train existing lightweight architectures that have already been care-
fully engineered for efficient memory access. Instead of relying on addi-
tional data or human supervision, we follow the large body of work on
knowledge distillation [88,246], first proposed by Buciluǎ et al. for compress-
ing the information from a large ensemble ofmodels into a smallmodel [20].
Whilemost recent efforts in knowledge distillation focus on image classifica-
tion, relatively less work exists for distilling object detectors. It is nontrivial
to extend classification distillation methods to object detection and instance
segmentation due to the complicated outputs of the tasks. Most detectors
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Figure 5.1: Progressive knowledge distillation onMSCOCO [139]. We show
the accuracy-efficiency trade-off for state-of-the-art lightweight detectors ob-
tained by varying input image resolutions, focusing on improving off-the-
shelf (‘OTS’) Mask R-CNN with ResNet-18 (black) and ResNet-50 (beige)
backbones. Sequential distillation with more accurate but slower teachers
(first the purple and then the green) strictly improves student performance
without any increase in inference time. Distillation is particularly effective
for lightweight networks, improving accuracy of ResNet-18 based Mask R-
CNN by 3.7% overall AP and 6.3% large-AP (the latter of which is particu-
larly relevant for finding nearby/large objects in an autonomous navigation
context).

operate with multi-task heads (for region proposal generation, bounding
box regression, and classification) that can generate variable-length outputs.
Many distillation methods make use of internal features for distillation, but
detection networks typically have complex modules that are hard to align
across different architectures. Moreover, teacher architectures that are sig-
nificantly larger than a student may serve as poor targets for distillation be-
cause of the capacity gap between the two models [39, 157].

Our approach: To address these challenges, we propose a method to
learn lightweight detectors through progressive modular knowledge distillation.
Specifically, we focus on two problems: First, what knowledge should be
transferred from the teacher to the student? Second, how can we resolve the
capacity gap between a large teacher and a small student? Typical knowl-
edge distillation uses the logits of a teacher network as targets for learning
by the student network [88]. Activations of intermediate layers can also be
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used as targets [1, 99, 184, 246]. We follow this line of work, and use inter-
mediate activations of the teacher to supervise the student, making use of
modular backbone-neck-head structures to align student and teacher features.
This enables us to distill a student using teachers with different backbone
architectures or even different input resolutions. For the second question,
although networks with more advanced architectures tend to have better
performance, empirical results show that a larger model may not serve as a
better teacher because large capacity gaps between the teacher and student
can degrade knowledge transfer [39]. On the other hand, the architectural
similarity between the teacher and student can significantly influence the
effectiveness of distillation [157]. Because different teachers may provide
complementary knowledge to a student, several multi-teacher distillation
methods have recently been proposed [190, 216, 245]. One rather straight-
forward approachmight be using the average response (of logits or features)
across all teachers as the supervision signal [88]. We find that sequential dis-
tillation of multiple teachers arranged into a curriculum significantly improves
progressive knowledge transfer. Given a student, we design a heuristic algo-
rithm to determine the order of teachers to use. Furthermore, by analyzing
the training loss dynamics of the student model, we find the improvement is
not due to minimizing the training loss better. Rather, the knowledge trans-
ferred from multiple teachers can lead the student to a flat minimum, and
thus help the student generalize better.

To summarize, we use the feature-based knowledge frommultiple teach-
ers to progressively distill a student. Our main contributions include:
• We propose a framework for learning lightweight detectors through pro-

gressive knowledge distillation. Our approach is simple, straightforward,
yet effective.

• We develop a principled way to automatically design a sequence of teach-
ers appropriate for a specific student and progressively distill the student.

• We perform comprehensive empirical evaluation on the challenging MS
COCOdataset [139]. We have observed consistent gains (> 3%AP), sum-
marized in Figure 5.1 and Table 5.3&5.4.

• Weshow that the performance gain comes frombetter generalization rather
than better optimization.

5.2 Related Work
KnowledgeDistillation: Knowledge distillation or transfer, an idea of train-
ing a shallow student network with supervision from a deep teacher, was
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originally proposed in [20], and later formally popularized by [88]. Differ-
ent categories of knowledge can be used, such as response-based knowl-
edge [88], feature-based knowledge [87, 184], and relation-based knowl-
edge [240]. Several multi-teacher knowledge distillation methods have re-
cently been proposed [190, 216], which usually use the average of logits
and feature representations as the knowledge [243], or randomly select one
teacher from the pool of teacher networks at each iteration [66]. Mirzadeh et
al. [157] find that an intermediate teacher assistant (which is decided based
on architectural similarities) can bridge the gap between the student and
the teacher. We find it more effective to use a sequence of teachers instead
of their ensemble, and extend [157] to a more general case where teacher
models have diverse architectures and their relative ordering is unknown.
Object Detection and Instance Segmentation: The past several years have
seen remarkable progress in object detection and instance segmentation. A
variety of convolutional neural network (CNN)based object detection frame-
works have been proposed and could be generally divided into two cate-
gories: single-stage methods and two-stage methods. Typical single-stage
methods include YOLO [178, 179] and RetinaNet [138], and typical two-
stagemethods include Faster R-CNN[180], R-FCN[44], andMaskR-CNN[82].
Recently, severalmulti-stage frameworks are proposed and achieve the state-
of-the art performance, such as HTC [32] and DetectoRS [169]. These de-
tection frameworks achieve better detection accuracy with better backbone
networks as feature extractors and with more complicated heads, which are
more computationally expensive.
Knowledge Distillation for Detection and Segmentation: To reduce the
computational cost, knowledge distillation has beenused to develop efficient
detectors [30, 43, 51, 100, 143, 196, 221]. Li et al. [131] mimic ROI-pooled fea-
ture responses between a student and teacher to learn an efficient detector.
Shmelkov et al. [196] mimic the logit responses from ROI-pooled features
between a student and teacher to combat catastrophic forgetting during in-
cremental learning. Chen et al. [31] use mimic learning between the CNN
backbones of a teacher and student Faster R-CNN. Mehta and Ozturk [155]
propose objectness scaled distillationwhichweighs the loss incurred by each
teacher predicted object using its confidence score. Wang et al. [219] ap-
ply mimic learning to imitate the responses of a teacher on regions near the
ground-truth boxes. Zhang et al. [248] use attention and non-local mod-
ules to guide distillation, enabling the student to focus on foreground ob-
jects and learn relation between objects. Guo et al. [78] decouple features
from object and background regions and assign different importance for the
student to learn. Dai et al. [46] make use of general instance patches, and
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design feature-based and relation-based distillation losses. Different from
these methods that distill a single teacher, we study distillation from multi-
ple teachers where a proper sequence of teachers is required. Also, we find a
very simple feature matching loss is adequate to significantly boost student
performance, and thus our training pipeline is more efficient than previous
methods.

5.3 Approach
Wepropose to progressively distill a studentmodel Swith a pool ofN teach-
ers P = {Ti}Ni=1. Both the student and teacher models are composed of
four modules: (1) backbone architecture, which is used for feature extrac-
tion, such as ResNet [84] and ResNeXt [233]; (2) neck, which is used to ex-
tract multi-level feature maps from different stages of the backbone, such as
FPN [137] and Bi-FPN [205]; (3) optional region proposal network (RPN),
which is used in two-stage detectors for sparse prediction; and (4) head,
which generates final predictions for object detection and segmentation. We
denote the output feature maps of the neck as FNet, where Net can be either
the student model S or one of the teachers Ti ∈ P . With neck modules like
FPN, the feature maps can be multiple-level. We first introduce how to dis-
till with a single teacher Ti in Section 5.3.2 and then introduce how to distill
with multiple teachers in Section 5.3.3.

5.3.1 Models
To test the versatility of our progressive knowledge distillation strategy, we
consider a diverse set of object detectors, namely, RetinaNet [138], Mask R-
CNN [82], FCOS [210], HTC [32], and DetectoRS [169]. These networks
have a wide range of runtime and detection performance.

RetinaNet andFCOSare single-stage detectors, consisting of ResNet back-
bone, FPN neck, and a detection head. RetinaNet produces dense predic-
tions based on anchors, while FCOS is an anchor-free method producing
multi-level, per-pixel predictions.

Mask R-CNN, HTC, and DetectoRS are two/multi-stage detectors, con-
sisting of ResNet backbone, FPN neck, region proposal networks (RPN),
and prediction heads. In Mask R-CNN, the prediction heads predict cat-
egories, refine the bounding box, and generate a pixel mask of the object
based on the first stage proposal. HTC is a cascading framework interweav-
ing detection and segmentation for a jointmulti-stage processing. DetectoRS
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Figure 5.2: Progressive knowledge distillation for object detectors. Left:
For each teacher-student pair, the training target is composed of two parts:
Ldistill minimizes the discrepancy between the neck feature maps of the stu-
dent and the current teacher, and Ldetect is the original detection loss based
on the ground truth. Right: We use a sequence of teacher models to distill
the lightweight student detector. The sequence of teachers forms a curricu-
lum. Using a proper sequence of teachers can significantly boost the stu-
dent model’s performance. The example performance curve illustrates our
method improves the COCO validation AP of ResNet-50 backboned Reti-
naNet student first from 36.5% to 37.9% using HTC (Teacher 1), and then
from 37.9% to 39.9% using DetectoRS (Teacher 2).

extends HTC with the switchable atrous convolution (SAC) and the recur-
sive feature pyramid (RFP).

We select RetinaNet and Mask R-CNN as the student models, due to
their low latency, simple structure, and wide application, for single-stage
and two-stage object detection respectively. More advanced models such as
DetectoRS have better detection performance, but require much more train-
ing/inference time, so we use them as teachers. We aim to achieve a higher
performance without changing the student model’s architecture, with the
help of a sequence of teacher models from the pool.

5.3.2 Single Teacher Distillation
In order to learn a fast yet accurate student detector S through distillation,
we encourage the feature representation of a student network to be similar
to that of the teacher network [31, 237]. To this end, we minimize the dis-
crepancy between the feature representations of the teacher and the student.
Without bells andwhistles, we simplyminimize the L2 distance betweenF Ti

and F S :
Ldistill =

∥∥F Ti − r(F S)
∥∥2

2
, (5.1)

where r(·) is a function used to match the feature map dimensions of the
teacher and the student.
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We define r(·) as follows:
• (Homogeneous) If the numbers of channels C and the spatial resolutions

H,W are both the same between Ti and S, i.e., CTi = CS , HTi = HS ,
W Ti = W S , r(·) is an identity function.

• (Heterogeneous, different channels) If the numbers of channels C are
different and the spatial resolutions H,W are the same, i.e., CTi ̸= CS ,
HTi = HS , W Ti = W S , we use 1× 1 convolutional filters as r(·).

• (Heterogeneous, different resolutions) If the spatial resolutionsH,W are
different and the numbers of channels C are the same, i.e., CTi = CS ,
HTi ̸= HS , W Ti ̸= W S , we use an upsampling layer as r(·).

Note that the mapping r(·) is only required at training time and thus not
adding any overhead to the inference.

Our overall loss function can be written as:
L = λLdistill + Ldetect, (5.2)

where λ is a balancing hyper-parameter andLdetect is the detection loss based
on the ground truth labels. Compared to state-of-the-art detection distilla-
tion approaches [31,78,219,248], which introduce more complex designs of
the distillation loss, our method is simpler and does not require running the
heads of the teacher model. Our distillation loss is illustrated in Figure 5.2-
Left.

5.3.3 Progressive Distillation with Multiple Teachers
The overall aimof knowledgedistillation is tomake a studentmimic a teacher’s
output, so that the student is able to obtain similar performance to that of
the teacher. However, the capacity of the student model is limited, making it
hard for the student to learn from a highly complex teacher [39]. To address
this issue, multiple teacher networks are used to provide more supervision
to a student [190, 243]. Unlike previous methods [120, 162, 207, 231, 247]
which distill knowledge from the ensemble of logits or feature information
simultaneously, we propose to distill feature-based knowledge from multi-
ple teachers sequentially. Our key insight is that instead of mimicking the en-
semble of all feature information together, the student can be distilled more
effectively by the knowledge provided by one proper teacher each time. This
progressive knowledge distillation approach can be considered as designing
a curriculum [10] offered by a sequence of teachers, as illustrated in Fig-
ure 5.2-Right.

The crucial question is: What is the proper order O of the teachers when dis-
tilling the student? A brute-force approach might search over all orders and
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pick the best (that produces a distilled student with the highest validation
accuracy). However, the space of permutation orders grows exponentially
with the number of teachers, making this impractical to scale. Therefore, we
propose a principled and efficient approach based on a correlation analysis
of each model’s learned feature representation.

First, we quantify the dissimilarity between each pair of models’ repre-
sentations, as a proxy for the capacity gap between the two models. Rep-
resentation (dis)similarity [113, 172, 218] has been studied to understand
the learning capacity of neural models. In our setting, we find a linear re-
gression model is adequate for measuring the representation dissimilarity.
Given two pre-trained detector models A and B, we can freeze the twomod-
els’ parameters, thus fixing the feature representations. Then we can learn
a linear mapping r(·), implemented by a 1 × 1 convolutional layer at each
feature level, as specified in the heterogeneous case in Section 5.3.2. r(·) is
trained to minimize Ldistill, so it can transform A’s features to approximate
B’s features. After training r(·), we evaluate it by Ldistill on the validation set,
and denote the validation loss as the adaptation cost C(A,B). Thismetric can
be a proxy of the capacity gap between a pair of models: When C(A,B) is
zero, a linearmapping can transformA’s features to B’s, and there is no addi-
tional knowledge from B. When C(A,B) is large, it is more difficult to adapt
A’s representation to B’s. Note that the adaptation cost is non-symmetric –
it is relatively easier to adapt a high-capacity model’s representations to a
low-capacity model’s representations, than the other way around.

We design a heuristic algorithm to acquire a proper distillation order O
automatically, as shown in Algorithm 2. Suppose the maximum number
of teachers to be selected is limited by k (which can be arbitrarily decided
according to desired training time), and we aim to find a teacher index se-
quence α no longer than k. We construct the teacher order backwards: The
best performing teacher is set as the final target Tαk

; before the final teacher,
we use another teacher, which has the smallest adaptation cost C(·, Tαk

) to
that final teacher, as the penultimate teacher Tαk−1

. We repeat this procedure
to find preceding teachers, until: (1) when trying to select Tαj

, we find the
transfer costs from remaining teachers to the next teacher C(·, Tαj+1

) are all
larger than the transfer cost from the student to the next teacher C(S, Tαj+1

);
or (2) we reach the given maximum step limit k. Intuitively, the resulting
sequence of teachers bridges the gap between the student model and the
teacher, with an increasingly difficult curriculum.
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Algorithm 2: Determining the Teacher Order
Input: Student model S

Pool of teacher models P = {Ti}Ni=1

Teacher models’ performance {Q(Ti)}Ni=1

Maximum number of selected teachers k
Output: Sequence of teachers O, len(O) ≤ k
Pick the best performing teacher: Tαk

← argmaxTu∈P Q(Tu),
O ← [Tαk

]
Exclude from pool: P ← P \ {Tαk

}
for j ← k − 1 to 1 do

Get candidate sub-pool:
Pj = {Tu | Tu ∈ P , C(Tu, Tαj+1

) < C(S, Tαj+1
)}

if Pj ̸= ∅ then
Pick the teacher closest to Tαj+1

:
Tαj
← argminTu∈Pj

C(Tu, Tαj+1
)

Prepend Tαj
to O

Exclude from pool: P ← P \ {Tαj
}

else
Break

end
end
return O

Our algorithm for designing teacher orders is lightweight. In fact, the
main computation overhead of our algorithm is to train a set of tiny linear
mappings (R256 7→ R256 for FPN-based [137] detectors). It takes about 3
GPU hours for each student model, which is negligible compared to the dis-
tillation process that takes hundreds of GPU hours.

5.4 Experiments
We experiment with a variety of student-teacher pairs on object detection
and instance segmentation tasks. We mainly focus on distilling the vanilla
RetinaNet [138] andMaskR-CNN[82]models to approach the performance
of slower, more sophisticated architectures. We investigate the impacts of
different teachers and their orders. We show the generality and robustness
of our framework on different datasets. We evaluate the improved accuracy-
efficiency trade-off not only in the standard offline setting, but also in the
recently proposed streaming perception scenario [129].
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Model Input Backbone Neck Head AP Runtime
Res. Box Mask (ms)

Teachers
I 1× R50 FPN Mask R-CNN 38.2 34.7 51
II 1× R50 FPN FCOS 38.7 - 36
III 1× R50 FPN HTC 42.3 37.4 181
IV 1× R50+SAC RFP HTC (DetectoRS) 49.1 42.6 223
V 1× R50+SAC RFP Mask R-CNN 45.1 40.1 142
Students
I 1× R50 FPN RetinaNet 36.5 - 43
II 1× R50 FPN Mask R-CNN 38.2 34.7 51
III 1× R18 FPN Mask R-CNN 33.3 30.5 29
IV 0.25× R50 FPN Mask R-CNN 25.8 23.0 17

Table 5.1: Configurations of the stu-
dent and teacher detectors, and their
performance on the COCO bench-
mark. We investigate a variety of
models with heterogeneous input
resolutions, backbones, necks, and
head structures. ‘1×’ input resolu-
tion refers to the standard 1333 ×
800 resolution, and ‘0.25×’ means
333× 200 resolution. ‘R-’ backbones
are ResNets with different number
of layers.

S : RetinaNet
TI : Mask R-CNN
TII : FCOS
TIII : HTC
TIV : DetectoRS

S

TI

TII

TIII TIV
0.060

0.939

1.181 0.070

0.934

1.94

0.89

0.963

1.401

Figure 5.3: Adaptation costs among
models. The number on each di-
rected edge is the adaptation cost
metric described in Section 5.3.3.
Some edges are not shown for visual
clarity. The red path is suggested
by our proposed Algorithm 2 when
k = 3 teachers are selected: (1) use
the best performing Teacher IV as
the final teacher in the sequence, (2)
use the teacher closest to Teacher IV,
which is Teacher III, as the second
teacher, and (3) use the teacher clos-
est to Teacher III, which is Teacher I,
as the first teacher.

Datasets: We evaluate on two challenging object detection datasets: MS
COCO 2017 [139] (licensed under CC BY 4.0) and Argoverse-HD [129] (li-
censed under CC BY-NC-SA 4.0). The gold-standard COCO dataset con-
tains bounding boxes and instance segmentations for 80 common object cat-
egories. We train our models on the split of train2017 (118k images) and
report results on val2017 (5k images). Due to space limit, we discuss details
and experiment results of Argoverse-HD in the supplementary materials.
Evaluation Metrics: We report the standard COCO-style Average Precision
(AP)metricwhich averagesAP across Intersection overUnion (IoU) thresh-
olds from0.5 to 0.95with an interval of 0.05. We reportAP for large,medium,
and small objects, and with IoU thresholds at 0.5 and 0.75. We report end-
to-end latency (from an unprocessed image to the final bounding boxes and
masks) as the runtime, andmeasure it on a singleNVIDIATeslaV100Graph-
ics Card. We report streaming AP for accuracy-latency trade-off evaluation,
which is explained in the supplementary materials.
Student and Teacher Models: To investigate the impact of different teacher
models and their combinations, as shown in Table 5.1, we construct a variety
of student-teacher pairs from a set of state-of-the-art object detection and in-
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stance segmentation networks, includingMaskR-CNN[82], RetinaNet [138],
FCOS [210], HTC [32], and DetectoRS [169].
Baselines: We compare with three most recent state-of-the-art approaches
to detector distillation [46,78,248]. We directly use the best reported results
from their paper for comparison, even though each previous work uses a
different teacher model that best fits the method. Our main contribution is
orthogonal to previous methods: We leverage a sequence of teachers to distill
the student, instead of designing a sophisticated distillation loss to better
transfer knowledge from one single teacher. Since we are studying a new
setting where multiple teachers are available, which is missing in previous
literature, we mainly focus on the absolute improvements – the performance
of our distilled student models compared with the original student models
and with the performance upper-bound of the teacher models. Meanwhile,
the combination of these two orthogonal directions can lead to further im-
provement. We demonstrate this by combining the attention-guided and
non-local distillation from [248] (which includes public code and results for
both of our student models) with our sequential distillation. We find using
a sequence of teachers, instead of their ensemble, is more effective. Due to
space limit we leave this comparison in the supplementary material.
Implementation Details: We implement detectors using the MMDetection
codebase [33]. We train on 8 GPUs for 12 epochs for each distillation. For
MS COCO, we use the standard input resolution of 1, 333 × 800, with each
GPU hosting 2 images. We use an initial learning rate of 0.01 (for RetinaNet
students) or 0.02 (for Mask R-CNN students). We use stochastic gradient
descent and a momentum of 0.9. We perform a grid search over the hyper-
parameter λ. While the optimal values are dependent on the architectures
of the teacher and student models, we find the performance is not very sen-
sitive to λ between 0.3 and 0.8. We set λ = 0.5 for RetinaNet students and
λ = 0.8 for Mask R-CNN students.

5.4.1 Searching for the Near-Optimal Teacher Order
As we have discussed in Section 5.3.3, finding the optimal order of teachers
for the progressive knowledge distillation takes factorial time complexity. To
acquire a near-optimal teacher order, we propose the heuristic Algorithm 2.
In this section, we will validate that this algorithm can provide highly com-
petitive teacher orders.

To achieve this comprehensive comparison, we distill Student I with all
orders of teachers from the pool Teacher I-IV.We use a reduced training bud-
get: For each teacher, we only train the student for 3 epochs on MS COCO.
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k
Suggested Student All student Ranking in

teacher order AP AP range all orders
1 IV 36.7 [36.2, 36.8] 2 / 4
2 III→IV 37.6 [36.2, 37.6] 1 / 16
3 I→III→IV 37.9 [36.2, 38.0] 2 / 40
4 I→III→IV 37.9 [36.2, 38.2] 7 / 64 0 1 2 3 4

k

36.0
36.4
36.8
37.2
37.6
38.0
38.4

St
ud

en
t A

P

Our teacher orders
All teacher orders

Table 5.2: Comparison of teacher order suggested by Algorithm 2 with all
other orders under limited training budgets [130]. k denotes the maximum
number of used teachers. Left: We show some statistics of possible student
AP performance and the ranking of the student using our distillation order.
Right: We visualize the comparative advantage of our teacher orders (red
dots) over all other orders (black dots). Some black scatter points overlap
due to the same student AP. Our proposedAlgorithm 2 can consistently pro-
duce highly competitive distillation orders of teachers.

We use the linear learning rate schedule, which has been shown comparably
effective in a limited budget setting by [130].

We first measure the adaptation costs among the student and teacher
models. A visualization of the cost graph is shown in Figure 5.3. Follow-
ing Algorithm 2, we can construct a sequence of teachers. We compare
the teacher orders given by our proposed algorithm against all other orders,
via the performance of the distilled student’s performance. As shown in
Table 5.2, teacher orders suggested by Algorithm 2 are consistently near-
optimal in this setting. In the following sections, we will use order provided
by Algorithm 2, without brute-force iterating over all possible orders. One
may question that the greedy path selection shown in Figure 5.3 is be infe-
rior to a global optimization algorithm. However, we find the later teachers
impact the student performance more profoundly, so we need to greedily
select teachers from the sequence tail. More details and comparison with
other heuristics are provided in the supplementary material.

5.4.2 Distillation with Homogeneous Teachers

We start by distilling RetinaNet and Mask R-CNN with a ResNet-50 back-
bone (Student I & II). Here we consider homogeneous teachers where the
numbers of channels and the spatial resolutions of feature maps are con-
sistent between the student and teacher. For the RetinaNet student, we still
consider the pool of Teacher I-IV, the same as Section 5.4.1. To control the
total training time, we limit the number of teachers to be 2. Thus, we initial-
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ize from an off-the-shelf (‘OTS’) student, and sequentially distill it with 2
teachers, in total 24 epochs (equivalent to a 2× training schedule). We also
compare with student models trained with a longer 3× training schedule.
For the Mask R-CNN student, we should no longer use Teacher I (the stu-
dentmodel itself) or Teacher II (the single-stage teacher does not outperform
the student by a large margin). To compensate for that, we include Teacher
V, which can be considered as a hybrid model of DetectoRS backbone/neck
and Mask R-CNN head. Thus, the teacher pool for Mask R-CNN includes
Teacher III-V. More architectural details are listed in Table 5.1.

Following Section 5.4.1, we use Algorithm 2 to determine the sequence
of teachers to use for each student. For the RetinaNet student, our algo-
rithm suggests teacher sequence III→IV. For the Mask R-CNN student, our
algorithm suggests teacher sequence V→IV. Table 5.3 shows the results on
COCO. Additional results, analysis, and ablation studies of Mask R-CNN
distillation can be found in the supplementary materials.

Overall performance: Our distilled student models (row 3&10) signifi-
cantly improves over the ‘OTS’ students (row1&8). The boxAPofRetinaNet
is improved from 36.5% to 39.9% (+3.4%). The box AP of Mask R-CNN is
improved from 38.2% to 41.4% (+3.2%) and the mask AP of Mask R-CNN is
improved from 34.7% to 37.3% (+2.6%). After progressive distillation, our
resulting Mask R-CNN detector has comparable performance with HTC teacher,
but much less runtime (51ms vs. 181ms).

Comparison with baselines: First, the performance gain is not merely
from a longer training schedule. Our distilled student models (row 3&10)
consistently outperform original students trained with a 3× schedule (row
2&9). Moreover, our approach itself has outperformed previous methods in
row 4, 5, 6, 11. This comparison shows that a very simple distillation loss can
already outperform all previous complicated designs, if a sequence of teach-
ers is properly used. Meanwhile, our training pipeline is more efficient than
other distillation-based methods. For example, with the same student and
teacher pair and the same number of epochs, our method requires about
20% less training time than [248] because we directly distill feature maps
without computing attention and non-local modules. It is worth noting that
our detection performance for large objects receives themost gain (about 6%
APL improvement for both models). The reason why we emphasize APL is
that, in an efficiency-centric real-world application (e.g. autonomous driv-
ing, robot navigation), detecting nearby larger objects is more critical than
others. From a realistic perspective, better APL shows better applicability of
our approach. When further augmenting an advanced distillation mecha-
nism [248] with sequential distillation (row 7&12), we achieve the best stu-
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ID Model Method Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1

RetinaNet
(Student I)

OTS 36.5 55.4 39.1 20.4 40.3 48.1 - - - - - -
2 Longer 3× training schedule 39.5 58.8 42.2 23.8 43.2 50.3 - - - - - -
3 Ours, distilled by Teachers III→IV 39.9 59.2 42.7 21.7 43.3 54.1 - - - - - -
4 Guo et al., CVPR 2021 [78] 39.7 59.6 42.9 23.4 43.6 52.9 - - - - - -
5 Dai et al., CVPR 2021 [46] 39.1 59.0 42.3 22.8 43.1 52.3 - - - - - -
6 Zhang et al., ICLR 2021 [248] 39.6 58.8 42.1 22.7 43.3 52.5 - - - - - -
7 Our sequential distillation + [248]’s loss 40.2 59.4 43.1 21.7 43.5 55.6 - - - - - -
8 Mask

R-CNN
(Student
II)

OTS 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2
9 Longer 3× training schedule 40.9 61.3 44.8 24.4 44.6 52.3 37.1 58.3 39.9 18.4 39.8 51.9
10 Ours, distilled by Teachers V→IV 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1

11 Zhang et al., ICLR 2021 [248] † 41.3 61.9 45.1 23.3 44.8 55.3 37.2 58.6 40.1 17.3 40.0 55.1
12 Our sequential distillation + [248]’s loss 41.6 62.0 45.4 23.3 44.7 55.9 37.4 59.0 40.4 17.5 40.0 56.2

† Reproduced using the code by the authors to acquire complete results including AP50, AP75.

Table 5.3: Homogeneous distillation of COCO detectors, where students
with ResNet-50 backbones are distilled with teachers with ResNet-50 back-
bones. We report the detection (‘Box’) and segmentation (‘Mask’) APs, and
we compare our distilled student with off-the-shelf (‘OTS’) student, longer
trained student, and the state-of-the-art distillation baselines. Our distilled
student significantly improves the detection AP over the ‘OTS’ student by
3.4% for RetinaNet and 3.2% for Mask R-CNN, and outperforms the base-
lines. A combination of our sequential distillation with an advanced distil-
lation loss design can lead to even further improvement.

dent performance. This fact revealsmore potential in detector distillation: In
parallel to developing better distillation mechanisms, a teacher curriculum
sequence may further boost the student performance for free.

5.4.3 Distillation with Heterogeneous Teachers
We now consider a more challenging heterogeneous scenario, where stu-
dents and teachers have different backbones or input resolutions. Specifi-
cally, Student III, a ResNet-18MaskR-CNN, is distilledwithResNet-50 teach-
ers; Student IV, a model with reduced input resolution, is distilled with
teachers trained with larger input resolutions. The results are summarized
in Table 5.4, and additional results and ablation studies are included in the
supplementary material.

Heterogeneous backbones: Student III has a ResNet-18 backbone and
about half runtime as its ResNet-50 counterpart (Teacher I). We find the
proper distillation scheme for Student III is to use the sequence of Teacher
I→V→IV, which significantly improves Student III over the ‘OTS’ model.
The box AP of Student III is improved from 33.3% to 37.0% (+3.7%), and
especially for large objects, APL is improved from 43.6% to 50.0% (+6.4%).
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ID Model Backbone Resolution AP Runtime
Box Mask (ms)

1 Teacher I R50 1× 38.2 34.7 51
2 Teacher IV R50 1× 49.1 42.6 223
3 Teacher V R50 1× 45.1 40.1 142
4 Student III, OTS R18 1× 33.3 30.5 29
5 Student III, Our distilled R18 1× 37.0 33.7 29
6 Student IV, OTS R50 0.25× 25.8 23.0 17
7 Student IV, Our distilled R50 0.25× 31.5 28.2 17

Table 5.4: Heterogeneous distillation of COCO detectors, where students
with smaller backbones (ResNet-18 vs. ResNet-50) or input resolutions
(333× 200 vs. 1333× 800) are distilled with heterogeneous teachers, requir-
ing additional transfer logic (Sec. 5.3.2). We report the detection (‘Box’),
segmentation (‘Mask’) APs and runtime, and compare our distilled student
with its teachers and off-the-shelf (‘OTS’) student. Our distilled students
significantly improves the APs over the ‘OTS’ students by over 3%.

Heterogeneous input resolutions: Although inputs with varying res-
olutions can be fed into most object detectors without changing the archi-
tecture, the performance often degenerates when there is a resolution mis-
match between training and evaluation [129, 205]. If ultimately we want
to apply a detector to low-resolution inputs for fast inference, it is better to
use low-resolution inputs during training. On the other hand, we conjecture
that teachers with high-resolution inputs may provide finer details that can
assist the student. With our progressive distillation approach, we investi-
gate the improvement of a low-resolution student distilled by a sequence of
teachers with high-resolution inputs. We denote the standard input reso-
lution 1333 × 800 as 1×, and a reduced resolution 333 × 200 as 0.25×. We
distill Student IV (with 0.25× resolution) by a sequence of Teacher I variants
(0.5× → 0.75× → 1×). From Table 5.4, we can see substantial improvement
brought by progressive knowledge distillation: the boxAP is improved from
25.8% to 31.5% (+5.7%) and the mask AP is improved from 23.0% to 28.2%
(+5.2%).
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5.4.4 Unpacking the Performance Gain: Generalization or
Optimization?

We have shown that our distilled student significantly improves the final
accuracy on the validation data over the off-the-shelf student. As further
demonstrated in Figure 5.4a, the detection validation accuracy of the dis-
tilled student is gradually increasing during the distillation process, and
achieving a higher value compared with the student trained without teach-
ers. A natural question then arises – why is distillation helping? There are
two possible hypotheses: (1) improved optimization: distillation facilitates the
optimization procedure, leading to a local minimum with a lower loss, and
(2) improved generalization: the distillation process helps the student gener-
alize to unseen data.

Improved optimization is typically manifested through a better model, a
lower training loss and a higher validation accuracy, which is exactly the case
for Mask R-CNN, HTC and DetectoRS. As a consequence, one might think
that distillation works in the same way. However, our investigation suggests
the opposite — our progressive distillation increases both the validation ac-
curacy and the training loss, and therefore effectively reduces the general-
ization gap. In Figure 5.4, we compare the original RetinaNet model and the
distilled student, which have the same architecture, the same latency and are
trained on the same data, but with different supervision (only ground-truth
labels vs. additional knowledge distillation). To eliminate the influence of
learning rate changes, we train the original student with a 3× schedule and
restart the learning rate at the same time with the distilled student. Inter-
estingly, although distillation can improve the student’s validation perfor-
mance, the training detection loss of the distilled student is higher than the
original student. This suggests that distillation does not help the optimiza-
tion process to find a local minimum with a lower training loss, but rather
strengthen the generalizability of the student model.

To further support this observation, we also visualize the local loss land-
scape, following the technique proposed by Li et al. [127]. The distilled stu-
dent has a flatter loss landscape (Figure 5.4d) compared to the original one
(Figure 5.4c). As widely believed in the machine learning literature, flat
minima lead to better generalization [89, 106]. The observation shown in
Figure 5.4 is illustrated for RetinaNet, butwe also have similar observation in
other student/teacher pairs. As a conclusion, knowledge distillation, which
enforces the student to mimic the teachers’ features, can be considered as an
implicit regularization, and helps the student combat overfitting and achieve
better generalization.
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Figure 5.4: Comparisons of student models trained with and without teach-
ers. We train a ResNet-50 backboned RetinaNet (Student I) with: (A) a
prolonged 3× training schedule (curves in blue); (B) progressive knowl-
edge distillation from HTC (Teacher III) and then DetectoRS (Teacher IV)
(curves in orange-green-red). We compare the validation AP (Figure 5.4a)
and the training detection loss Ldetect (Figure 5.4b) of the two students dur-
ing the training process. Despite its worse training loss, the distilled student
can generalize better on the validation set. We also compare the loss land-
scapes [127] of the original student (Figure 5.4c) and the distilled student
(Figure 5.4d). Distillation can guide the student to converge to a flatter lo-
cal minimum. These observations suggest distillation helps generalization
rather than optimization.
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5.5 Conclusion
We present a simple sequential approach to knowledge distillation, which
progressively transfers the knowledge of a sequence of high-capacity teach-
ers to learn a lightweight object detection and instance segmentation model.
Our approach leveragesmodular structures to align student and teacher fea-
tures and arranges multiple teachers into a curriculum, thus effectively mit-
igating the representation gap between the teacher and student. Extensive
experiments demonstrate our state-of-the-art accuracy-latency trade-off on
the challenging COCO dataset. We also conduct analysis to examine why
distillation helps given the samemodel and dataset and find that distillation,
via the implicit regularization imposed by teachers’ supervision, improves
generalization rather than optimization.
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5.A Appendix

5.A.1 MoreResults onSearching for theNear-OptimalTeacher
Order

In this section, we show more detailed results about searching a proper
teacher order for progressive knowledge distillation, and validate the ap-
proach we propose in the main paper. As described in Section 3.3, we first
quantify the adaptation cost C(·, ·) between every pair of models in our pool,
and then use a heuristic method (Algorithm 1) to construct a sequence of
teachers. We have shown that the teacher order suggested by our algorithm
is highly competitive in Table 2. One might think there should be better
choices than a greedy algorithm on a directed graph, such as a shortest-path
algorithm. To validate our algorithm design, we compare our Algorithm 1
against several other algorithms.

To beginwith, we include the detailed adaptation costs C(·, ·) amongReti-
naNet (Student I) and its teachers (Teacher I-IV) in Table 5.5. As described
in Section 4.1, we have distilled Student I with all possible teacher orders in
the pool, using a reduced training budget of 3 epochs for each teacher. The
results of these mini-budget distillation are summarized in Table 5.6.

Table 5.5: Adaptation costs among Student I (RetinaNet) and Teacher I-IV
(Mask R-CNN, FCOS, HTC, DetectoRS). The adaptation cost is computed
pair-wise as described in Section 3.3 of the main paper. Using this metric we
can construct a directed graph, as illustrated in Figure 3.

From
To Student I Teacher I Teacher II Teacher III Teacher IV

Student I - 0.939 0.060 1.568 1.254
Teacher I 0.183 - 0.070 0.934 0.963
Teacher II 0.339 1.181 - 1.940 1.401
Teacher III 0.191 0.484 0.082 - 0.890
Teacher IV 0.232 0.767 0.077 1.248 -

Given the adaptation costs in Table 5.5, we can construct a directed graph,
part of which has been illustrated in Figure 3. On the directed graph, we can
run several algorithms to select a path. Besides our Algorithm 1, one may
also propose these algorithms:
• Shortest-path (sum): Set the student as the source node, and set the best
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Table 5.6: Performance of Student I (RetinaNet) distilled with different
teacher sequences, under reduced training budgets. For each teacher in the
sequence, the student is trained for 3 epochs on COCO. After progressive
knowledge distillation, the student is evaluated on the COCO validation set.
The teacher orders suggested by Algorithm 1 are marked bold.

Length Teacher Student Length Teacher Student Length Teacher Student
Sequence AP Sequence AP Sequence AP

1
III 36.8

3

III→II→IV 38.0

4

III→II→I→IV 38.2
IV 36.7 I→III→IV 37.9 III→I→II→IV 38.1
I 36.4 III→IV→II 37.9 I→III→II→IV 38.1
II 36.2 II→III→IV 37.9 II→III→I→IV 38.0

III→I→IV 37.8 I→III→IV→II 38.0

2

III→IV 37.6 I→II→IV 37.7 II→I→III→IV 37.9
IV→II 37.3 I→IV→II 37.6 III→I→IV→II 37.9
III→II 37.3 IV→II→III 37.5 I→II→III→IV 37.9
I→IV 37.3 IV→III→II 37.5 IV→I→III→II 37.7
IV→III 37.2 II→I→IV 37.5 II→I→IV→III 37.7
I→III 37.1 I→III→II 37.5 I→II→IV→III 37.7
IV→I 37.0 IV→I→III 37.4 IV→III→I→II 37.6
II→IV 37.0 II→IV→III 37.4 IV→I→II→III 37.6
III→I 37.0 III→IV→I 37.4 III→IV→II→I 37.6
II→I 36.9 III→I→II 37.4 III→IV→I→II 37.6
II→III 36.8 I→IV→III 37.4 III→II→IV→I 37.6
I→II 36.8 IV→II→I 37.3 I→IV→III→II 37.6

IV→III→I 37.3 IV→II→I→III 37.5
IV→I→II 37.3 IV→III→II→I 37.5
I→II→III 37.3 II→IV→I→III 37.5
II→IV→I 37.2 II→III→IV→I 37.5
II→I→III 37.2 I→IV→II→III 37.5
III→II→I 37.2 II→IV→III→I 37.4
II→III→I 37.1 IV→II→III→I 37.3

Table 5.7: Comparison of four algorithms for teacher order selection, in the
mini-budget distillation setting. Our Algorithm 1 can consistently produce
a better teacher order than other algorithms.

k Algorithm Suggested Student Ranking in
k Algorithm Suggested Student Ranking in

teacher order AP all orders teacher order AP all orders

1
Shortest-path (sum) IV 36.7 2 / 4

3
Shortest-path (sum) II→I→IV 37.5 9 / 40

Shortest-path (max) IV 36.7 2 / 4 Shortest-path (max) I→III→IV 37.9 2 / 40
Forward construction II 36.2 4 / 4 Forward construction II→I→III 37.2 25 / 40
Our Algorithm 1 IV 36.7 2 / 4 Our Algorithm 1 I→III→IV 37.9 2 / 40

2
Shortest-path (sum) II→IV 37.0 7 / 16

4
Shortest-path (sum) II→I→III→IV 37.9 7 / 64

Shortest-path (max) I→IV 37.3 2 / 16 Shortest-path (max) II→I→III→IV 37.9 7 / 64
Forward construction II→I 36.9 10 / 16 Forward construction II→I→III→IV 37.9 7 / 64
Our Algorithm 1 III→IV 37.6 1 / 16 Our Algorithm 1 I→III→IV 37.9 7 / 64

performing teacher as the target node Tλk
. Find a path S → Tλ1 → · · · →
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Tλk
that minimizes the sum of adaptation costs along the path:

minTλ1
,...,Tλk−1

C(S, Tλ1) +
∑k−1

j=1 C(Tλj
, Tλj+1

).
• Shortest-path (max): Set the student as the source node, and set the

best performing teacher as the target node Tλk
. Find a path S → Tλ1 →

· · · → Tλk
that minimizes themaximum of adaptation costs along the path:

minTλ1
,...,Tλk−1

max{C(S, Tλ1), C(Tλ1 , Tλ2), . . . , C(Tλk−1
, Tλk

)}.
• Forward construction: Contrary to Algorithm 1, we may start from the

student and choose the nearest teacher from the current one, to construct
the sequence:
Tλ1 ← argminTu∈P C(S, Tu), Tλj+1

← argminTu∈P C(Tλj
, Tu).

The output teacher sequences and corresponding student performance
of these three algorithms are summarized in Table 5.7. In this setting, ourAl-
gorithm 1 can consistently produce a competitive teacher order that leads to
a good performance of the distilled student. Compared to our Algorithm 1,
shortest-path (max) can achieve a similar performance, and it is only worse
than ours when k = 2. Forward construction performs worst among the
four algorithms.

In summary, a greedy backward construction like Algorithm 1works the
best in our setting, rather than globally optimized shortest-path algorithms.
The final target teacher has the most profound impact on the distilled stu-
dent’s performance. In order to fully assist the final teacher, we need to use
another teacher with the minimal adaptation cost to the final teacher before
it, which is exactly the behavior of Algorithm 1.

5.A.2 AblationStudyonDistillationwithHomogeneousTeach-
ers

In this section, we providemore details about distillationwith homogeneous
teachers (Section 4.2). We investigate (1) the impact of each individual
teacher; and (2) distillation with teachers simultaneously vs. sequentially.
Impact of individual teachers: We first distill Student II with each of the
three teachers individually: Teacher III has the same backbone and neck but
a more advanced head; Teacher IV has more advanced backbone, neck, and
head; Teacher V has the same head but more advanced backbone and neck.
Table 5.8 provides the performance of the three teachers, where Teacher IV
achieves the best performance (row 1-3). From Table 5.9, we can see that
our distilled students (row 2-7) significantly and consistently outperform the
off-the-shelf student (row 1), demonstrating the effectiveness of our distilla-
tion strategy irrespective of the types of teachers. Moreover, the improvement of
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Table 5.8: Homogeneous distillation of COCO detectors, where students
with ResNet-50 backbones are distilled with teachers with ResNet-50 back-
bones. We report the detection (‘Box’) and segmentation (‘Mask’) APs and
runtime, andwe compare our distilled studentwith its teachers, off-the-shelf
(‘OTS’) student. Our distilled student significantly improves the APs over
the ‘OTS’ student by around 3%.

ID Model Box Mask Runtime
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher III 42.3 61.1 45.8 23.7 45.6 56.3 37.4 58.4 40.2 19.6 40.4 51.7 181
2 Teacher IV 49.1 67.7 53.4 29.9 53.0 65.2 42.6 65.1 46.0 24.1 46.4 58.6 223
3 Teacher V 45.1 66.3 49.3 27.8 49.0 59.3 40.1 63.1 42.8 22.9 43.8 54.8 142
4 Student II (OTS) 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 51
5 Student II (distilled) 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1 49

Table 5.9: Ablation study of homogeneous distillation of COCO detectors
(models in Table 5.8). Our distillation strategy is consistently effective irre-
spective of teacher type. Moreover, sequential distillation with two teachers
outperforms both distillation with a single teacher and simultaneous distil-
lation with two teachers. Our best distilled student is obtained by progres-
sive distillation, where Student II is first distilled with Teacher V (a weaker,
more similar teacher with the same head as Student II) and then distilled
with Teacher IV (a stronger teacher whose architecture is completely differ-
ent from Student II).

ID Student II Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1 OTS 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2
2 Distilled by Teacher III 40.2 60.7 43.8 22.5 43.8 53.4 36.3 57.3 38.7 18.9 39.3 50.3
3 Distilled by Teacher IV 40.8 61.5 44.6 23.0 44.3 54.2 36.8 58.3 39.4 19.2 39.9 51.0
4 Distilled by Teacher V 40.8 61.4 44.5 22.9 44.3 54.2 36.6 58.1 39.1 19.2 39.6 51.0
5 Distilled by Teachers IV+V 39.8 60.3 43.4 22.1 43.3 52.9 35.9 57.1 38.1 18.3 39.0 49.8
6 Distilled by Teachers IV→V 41.0 61.7 44. 8 23.0 44.3 54.9 36.8 58.3 39.2 19.5 39.9 51.3
7 Distilled by Teachers V→IV 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1

the student distilled with Teacher V (row 2) over that with Teacher III (row
3) shows that a more powerful teacher generally leads to a better distilled
student. Interestingly, although Teacher IV is more powerful than Teacher
V, Table 5.9 shows that their distilled students achieve quite similar AP (row
2 vs. row 4). This indicates that an even more powerful teacher does not
necessarily further improve the distilled student; too large a capacity and
structure gap between the teacher and student will limit the effectiveness of
distillation. Also, it is easier to distill from teachers with the same head.
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Simultaneous vs. progressive distillation: We now distill Student II with
the combined teachers, and we choose the top-performing Teacher IV and
Teacher V. We investigate two types of combination – simultaneous distilla-
tionwith a featurematching loss between each teacher and the student (row
5), and sequential distillation with teachers one by one (row 6-7). First, we
find that using both teachers simultaneously (row 5) is even worse than our
method using a single teacher (row 2-4). This shows that integrating differ-
ent types of knowledge frommultiple teachers is not a trivial task – simulta-
neously using the features from multiple teachers might provide conflicting
supervisions to the student model and thus hinder its distillation process. By
contrast, our sequential distillation overcomes this issue and improves the
performance irrespective of the order of the teachers (row 6-7 vs. row 1-4). Sec-
ond, the sequential order of the teachers makes a difference. A curriculum-
like progression (row 7), where the teacher with a smaller adaptation cost is
used first and that with a larger adaptation cost & a higher performance is
used later, leads to the best performance.
Overall performance: Our best distillation performance is achieved when
we first distill Student II with a curriculum of teachers (Teacher V→IV).
Overall, the box AP is improved from 38.2% to 41.4% and the mask AP is
improved from 34.7% to 37.3%. Our resulting Mask R-CNN detector has
comparable performance with HTC, but much smaller runtime.

5.A.3 AblationStudyonDistillationwithHeterogeneousTeach-
ers

In this section, we provide more details about distillation with heteroge-
neous teachers (Section 4.3). We investigate the heterogeneous cases where
the backbones or input resolutions are different between the teachers and
student.
Overall performance: Again, Tables 5.10 and 5.11 show that our distillation
strategy is consistently effective with respect to all the teachers and their
combinations, e.g., the box AP improves from 33.3% to 37.0% and the mask
AP improves from 30.5% to 33.7%.
Two signature findings in heterogeneous distillation: Compared to the ho-
mogeneous case, we find the capacity gap between models is a more impor-
tant factor, and to bridge this gap a proper teacher order plays amore critical
role. Details are explained as follows.
The student-teacher capacity gap is more pronounced in heterogeneous distillation.
Among the four teachers, Teacher I shares exactly the same neck and head
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Table 5.10: Heterogenous distillation of COCO detectors, where students
with ResNet-18 backbones are distilled with teachers with ResNet-50 back-
bone, requiring additional transfer logic (Section 3.2). We report the detec-
tion (‘Box’) and segmentation (‘Mask’) APs and runtime, and we compare
our distilled studentwith its teachers, and off-the-shelf (‘OTS’) student. Our
distilled student significantly improves the APs over the ‘OTS’ student by
over 3%.

ID Model Box Mask Runtime
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher I 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 51
2 Teacher III 42.3 61.1 45.8 23.7 45.6 56.3 37.4 58.4 40.2 19.6 40.4 51.7 181
3 Teacher IV 49.1 67.7 53.4 29.9 53.0 65.2 42.6 65.1 46.0 24.1 46.4 58.6 223
4 Teacher V 45.1 66.3 49.3 27.8 49.0 59.3 40.1 63.1 42.8 22.9 43.8 54.8 142
5 Student III (OTS) 33.3 52.9 35.9 18.2 35.9 43.6 30.5 50.0 32.1 15.5 32.9 41.8 29
6 Student III (Distilled) 37.0 56.8 39.9 20.2 39.8 50.0 33.7 53.6 36.0 17.2 36.0 47.3 29

structure with the student, and has a similar but larger backbone; Teacher V
has the same headwith the student as well, but has a different backbone and
neck; Teacher III has similar backbone andneck, but has a different head; and
Teacher IV is the most powerful one with completely different architecture.
Table 5.11 (rows 3-6) summarizes the distillation results with single teach-
ers. First, directly distilling from the strongest teacher (Teacher IV) does
not yield the largest improvement. Second, a relatively less powerful but
more similar teacher (Teacher I) leads to the best distillation performance,
improving the APs by 2%, although teachers V, III, and IV are all stronger
than Teacher I. One possible reason is that Teacher I has the same neck and
head as Student III as well as similar but deeper backbone, so the capac-
ity gap between Student III and Teacher I is the smallest. Finally, we find
that Teacher III is a strong but not particularly helpful teacher, achieving the
worst distillation results. One possible reason is that Teacher III has a very
different head from Student III, while not as stand-alone accurate as Teacher
IV, making it unable to provide enough guidance to Student III. These ob-
servations suggest that a smaller capacity gap between the student and the
teacher may facilities knowledge transfer.
The sequential order of the teachers plays a more critical role in the heterogeneous
setting. Table 5.11 (row 7-12) presents representative results with different
orders or combinations of the teachers. Again, a proper progressive distil-
lation (row 12) outperforms simultaneous distillation (row 7-9). Notably,
it is necessary to start with Teacher I, since the capacity gap between Stu-
dent III and Teacher I is minimal, with difference only on the depth of their
ResNet backbones. These results confirm the importance of our curriculum-
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Table 5.11: Ablation study for heterogeneous COCO detector distillation
(models in Table 5.10). Student III (Mask R-CNN with a ResNet-18 back-
bone) is distilled with teachers with different and larger ResNet-50 back-
bones. Training Student III for more epochs improves its performance, but
not as much as progressive distillation with teachers. Note that for each
distillation we train 12 epochs. Our distillation strategy is consistently effec-
tive irrespective of the types of teachers. Moreover, our sequential distillation
with multiple teachers outperforms simultaneous distillation with multiple
teachers. Our best distilled student is obtained by progressive distillation,
where Student III is first distilled with Teacher I (a most similar teacher with
the same head and neck as Student III and a deeper backbone), then distilled
with Teacher V (a stronger teacher with the same head as Student III), and
finally distilled with Teacher IV (a strongest teacher whose architecture is
completely different from Student III).

ID Model Box Mask
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1 Student III (OTS) 33.3 52.9 35.9 18.2 35.9 43.6 30.5 50.0 32.1 15.5 32.9 41.8
2 +12 epochs 34.6 54.5 37.2 18.8 36.9 46.1 31.6 51.5 33.6 15.8 33.7 44.0
3 +24 epochs 34.5 54.2 37.2 18.8 36.5 45.8 31.5 51.2 33.8 16.0 33.4 43.7
4 +36 epochs 34.6 54.2 37.4 18.6 36.9 46.7 31.6 51.1 33.8 15.7 33.6 44.3
3 Distilled by Teacher I 35.8 55.8 38.8 19.3 38.8 47.9 32.6 52.7 34.8 16.0 35.3 45.5
4 Distilled by Teacher III 35.2 55.2 37.8 19.1 37.8 47.4 32.1 52.0 34.0 16.1 34.5 45.2
5 Distilled by Teacher IV 35.5 55.2 38.2 19.0 37.9 48.0 32.4 51.9 34.5 15.9 34.8 45.6
6 Distilled by Teacher V 35.4 55.2 38.3 19.4 37.9 48.4 32.2 52.2 34.3 15.4 34.4 45.8
7 Distilled by Teachers IV+V 34.8 54.9 37.2 19.0 37.2 47.0 31.6 51.7 33.9 15.7 33.8 44.2
8 Distilled by Teachers I+IV+V 36.0 55.4 39.1 18.2 38.1 48.3 32.1 53.0 34.7 15.8 34.7 46.1
9 Distilled by Teachers I+III+IV+V 36.1 55.2 39.0 18.4 38.2 48.0 31.7 52.9 34.3 15.1 34.2 46.3
10 Distilled by Teachers I→V 36.5 56.3 39.3 19.5 38.8 49.4 33.2 53.2 35.3 16.4 35.4 46.8
11 Distilled by Teachers V→IV 35.2 55.2 37.8 19.1 37.8 47.4 32.1 52.0 34.0 16.1 34.5 45.2
12 Distilled by Teachers I→V→IV 37.0 56.8 39.9 20.2 39.8 50.0 33.7 53.6 36.0 17.2 36.0 47.3

like progression to best benefit from multiple teachers.
Training a student longer vs. distilling a student: As another sanity check,
Table 5.11 includes results of training Student III with more epochs without
distillation (row 2-4). We can see that the first 12 additional epochs improve
APs by 1%, but there are no significant improvements even if we train for a
longer period. This shows the effectiveness of detector distillation.
Distillation with different model resolutions: In Table 5.11, we have per-
formed distillation where the student and teacher models operated on the
same input image resolution (e.g., the standard resolution 1, 333 × 800 on
MS COCO). In practice, one way to further reduce the latency/runtime of
the student is to operate on lower-resolution images. However, this poses
additional challenges – with a teacher of high input resolution and a stu-
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dent of low input resolution, they become even more heterogeneous. More-
over, image resolution substantially affects object detection performance [4].
Here, we are interested in performing distillation with models trained with
images of different resolutions to further investigate the generalizability of
our approach. More specifically, we use high-resolution models as teachers
and low-resolution models as students, as shown in Table 5.12 (row 1-4).

Table 5.12: Detectors trained with different input resolutions on the COCO
dataset. We use a series of Teacher I variants: Teacher I-1 is trained with
the standard input resolution of 1, 333 × 800; Teacher I-2 is trained with
1, 000×600 input; Teacher I-3 is trainedwith 666×400 input; and the student
is trained with 333×200 input. We report the detection (‘Box’) and segmen-
tation (‘Mask’) APs and runtime. We compare our distilled student with
its teachers, and off-the-shelf (‘OTS’) student. Our approach is effective with
even more heterogeneous teacher and student models of different input resolutions.

ID Model Input Box Mask Runtime
Resolution AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL (ms)

1 Teacher I-1 1333× 800 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2 31.5
2 Teacher I-2 1000× 600 37.2 57.7 40.5 19.1 40.9 50.4 33.6 54.3 35.9 15.6 37.0 47.7 24.9
3 Teacher I-3 666× 400 34.7 54.0 37.2 15.6 38.1 50.4 31.2 50.5 33.2 12.2 34.4 47.0 19.7
4 Student (OTS) 333× 200 25.8 41.9 27.1 7.0 27.8 44.3 23.0 38.7 23.7 5.0 23.7 41.3 16.9
5 Student (distilled) 333× 200 31.5 49.8 33.3 12.3 34.3 48.9 28.2 46.5 29.0 9.3 30.3 45.4 16.9

In these experiments, the teacher and student feature maps have differ-
ent spatial resolution. To tackle this, we simply upsample the spatial maps
of the student and supervise the student with the teachers’ features. Again,
Table 5.12 shows that our approach is effective in this more challenging sce-
nario. Our best performance is achieved by progressively distilling the stu-
dent with its Teacher I-3, I-2, and I-1.

5.A.4 Generalizability: CombinationwithOtherDistillation
Methods

Our main contribution is a general and flexible distillation framework – pro-
gressive knowledge distillation via a sequence of teachers. In principle, this
framework is agnostic to specific distillation methods and loss designs when
distilling the student with a specific teacher during the intermediate stage.
In the main paper, we showed that under this progressive distillation frame-
work, a simple distillation method that matches the feature maps from the
neckmodulewithout anymodification or augmentation has already achieved
the state-of-the-art performance. A natural question then arises – if using a
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more sophisticated distillation method, will the student performance fur-
ther improve? Our investigation in this section shows that this is indeed the
case.

Table 5.13: Our progressive knowledge distillation via a sequence of teach-
ers is a general and flexible distillation framework: a recent, powerful de-
tector distillation method by Zhang et al. [248] can be incorporated into our
framework to further improve the distilled student performance. By replac-
ing our original distillation method (which simply matches feature maps)
with themore sophisticated distillationmethod from [248] and by using our
proposed progressive teacher sequence (V→IV), the student can achieve the
best performance. From a different perspective, our progressive framework
enables the use of a simple feature matching distillation method, which to
some extent diminishes the benefit of designing more sophisticated distilla-
tion methods. For fair comparison, the total distillation training epochs are
set to 24. If two teachers are used, the student is distilled with each teacher
for 12 epochs.

ID Model Distillation Teacher(s) Box Mask
Loss AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

1 Teacher IV - - 49.1 67.7 53.4 29.9 53.0 65.2 42.6 65.1 46.0 24.1 46.4 58.6
2 Teacher V - - 45.1 66.3 49.3 27.8 49.0 59.3 40.1 63.1 42.8 22.9 43.8 54.8
3 Teacher VI - - 47.3 66.3 51.7 28.2 51.7 62.7 41.1 63.5 44.4 22.9 44.9 56.3
4 Student II (OTS) - - 38.2 58.8 41.4 21.9 40.9 49.5 34.7 55.7 37.2 18.3 37.4 47.2
5

Student II
[248] VI 41.3 61.9 45.1 23.3 44.8 55.3 37.2 58.6 40.1 17.3 40.0 55.1

6 Ours Ours (V→IV) 41.4 61.9 45.1 23.3 45.0 55.4 37.3 58.8 39.8 19.4 40.4 52.1
7 [248] Ours (V→IV) 41.6 62.0 45.4 23.3 44.7 55.9 37.4 59.0 40.4 17.5 40.0 56.2

Table 5.14: Generalizability on Argoverse-HD. On the left, we report stan-
dard detection accuracy. ‘OTS’ and distilled students are trained on COCO.
We observe 2% AP gains through distillation, even on novel testsets. On
the right, we report streaming detection accuracy as defined in [129], in
the detection-only setting on a Tesla V100 GPU. The second column denotes
the optimal input resolution (that maximizes streaming accuracy). First, we
discover that a lighter model and full-resolution input is much more help-
ful than having an accurate but complex model that needs to downsize in-
put resolution. Second, our proposed distillation approach further improves
over the lightweight model.

Model box AP AP50 AP75 APS APM APL

Stud. II OTS 32.7 52 34.5 14.7 35.8 52.8
Distilled 34.4 54.2 35.9 15.0 36.8 57.7

Stud. III OTS 28.9 48.8 30.0 12.8 31.3 49.2
Distilled 30.6 49.7 31.8 12.9 32.6 51.9

Detector Input AP AP50 AP75 APS APM APL

Cas. MRCNN50 [129] 0.5× 14.0 26.8 12.2 1.0 9.9 28.8
MRCNN18 (Ours) 1.0× 23.7 44.8 22.6 10.4 23.1 37.8
MRCNN18 (+ Distill) 1.0× 25.0 45.8 24.2 10.5 24.1 39.3
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Specifically, we incorporate a recent, powerful detector distillationmethod
byZhang et al. [248] into our progressive distillation framework. Thismethod
uses attention and non-local modules to transform the feature maps and
guide distillation, and thus the student can focus on foreground objects and
learn relation between objects. They only use one teacher model for all two-
stage detector students. The teacher is Cascade Mask R-CNN [24] with
ResNeXt-101 [233] backbone and deformable convolutions [256], and we
denote it as Teacher VI. After adding it to the teacher pool for Student II
(MaskR-CNN), the teacher sequence suggested by our heuristic is still Teacher
V→IV. We then use this sequence of teachers to distill the student, and we
replace our original feature map matching with that in their method.

We summarize the performance of the teachers and distilled Student II
in Table 5.13. We have several interesting observations. First, as expected,
when incorporating an elaborate distillation method/loss into our progres-
sive knowledgedistillation framework, we can further improve [248] by 0.3%
overall AP and 1.1%maskAPLarge. Second, our progressive framework en-
ables the use of a simple featurematchingdistillationmethod,which to some
extent diminishes the benefit of designing more sophisticated distillation
methods. Third, while they both improve the student performance, our orig-
inal approach and the approach combined with [248] seem to “teach” the
student slightly different knowledge – for example, our original approach
significantly improves the mask AP of small objects from 18.3% to 19.4%,
while our approach combined with [248] significantly improves the mask
AP of large objects from 47.2% to 56.2%. Also, we point out that [248] may
decrease themask performance for small objects after distillation from 18.3%
to 17.3% (contrasting row 4 & 5) and there is a trade-off between mask AP
Large and mask AP Small of their approach.

5.A.5 Generalizability toOtherDatasets andEvaluationPro-
tocols

In this section, we study the generalizability of our approach. As an ex-
tension from the gold-standard COCO benchmark, we evaluate our distilled
student (trained onCOCO) on another dataset, Argoverse-HD, andwith an-
other metric, streaming accuracy, and perform distillation on Argoverse-HD
directly.
Argoverse-HD is amore challenging dataset than COCOdue to higher reso-
lution images and significantlymore small objects. Constructed from the au-
tonomous driving dataset Argoverse 1.1 [29], Argoverse-HD contains RGB
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video sequences and dense 2D bounding box annotations (1,260k boxes in
total). It consists of 8 object categories, which are a subset of 80COCOclasses
and are directly relevant to autonomous driving: person, bicycle, car, mo-
torcycle, bus, truck, traffic light, and stop sign. There are 38k training im-
ages and 15k validation images. We report results on the validation images.
We test the distilled models trained on COCO on Argoverse-HD without re-
training. Table 5.14-left shows the generalizability of our approach.
Streaming accuracy is a recently proposed metric that simultaneously eval-
uates both the accuracy and latency of algorithms in an online real-time
setting [129]. The evaluator queries the state of the world at all time in-
stants, forcing algorithms to consider the amount of streaming data that
must be ignored while processing the last frame. Following the setup pro-
posed in [129], we evaluate streaming AP in the context of real-time ob-
ject detection for autonomous vehicles. Table 5.14-right shows our approach
outperforming the prior results from [129] by a dramatic margin. We find
significant wins by using an exceedingly lightweight network (ResNet-18
based Mask R-CNN) that can process full-resolution images without sacri-
ficing latency. Due tomuch higher quantities of small objects, high-reslution
processing is more effective than deeper network structures. In addition,
progressive distillation further improves performance.
Table 5.15: Heterogenous distillation of Argoverse-HD detectors, where a
student with ResNet-18 backbone is distilled with teachers with ResNet-50
backbones. We report the detection (‘Box’) APs and runtime. We compare
our distilled studentwith its teachers, and off-the-shelf (‘OTS’) student. Our
distilled student significantly improves the APs over the ‘OTS’ student by
over 2%. Notably, our distilled student achieves detection accuracy that is
comparable with Teacher A but with only around third of the runtime.

ID Model Backbone Neck Method (Head) Box Runtime
AP AP50 AP75 APS APM APL (ms)

1 Teacher A ResNet-50 FPN Faster R-CNN 29.6 48.2 30.5 16.4 33.1 45.1 79.2
2 Teacher B ResNet-50 FPN Cascade 32.3 50.4 35.0 16.4 37.1 47.7 89.0
3 Teacher C ResNet-50 + SAC RFP Faster R-CNN 32.9 51.0 35.5 17.6 33.7 52.9 230.8
4 Teacher D ResNet-50 + SAC RFP Cascade 34.5 52.0 37.7 17.9 37.0 52.8 241.2
5 Student (OTS) ResNet-18 FPN Faster R-CNN 27.1 48.1 27.5 14.4 31.2 40.0 29.3
6 Student (distilled) ResNet-18 FPN Faster R-CNN 29.2 49 30.9 15 31.7 45.6 29.5

Direct distillation onArgoverse-HD:After testing the distilledmodelwhich
is trained on COCO, on the Argoverse-HDdataset [129] without re-training,
we have shown the generalizability of the already-distilled models. Here
we directly distill the student model on Argoverse-HD, using Faster R-CNN
with a ResNet-18 backbone as the student model. As shown in Table 5.15,
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we use four teachers with ResNet-50 backbones (row 1-4), including Faster
R-CNN [180] (Teacher A), Cascade R-CNN [24] (Teacher B), and Detec-
toRS [169] (Teachers C & D).

The results are summarized in Table 5.15. Our best distillation perfor-
mance is achieved when we first distill the student with a similar teacher
(Teacher A), and then progressively distill with more powerful teachers
(Teachers B, then C, and finally D). Overall, the bboxmAP is improved from
27.1% to 29.2%.

In addition, comparing with Table 5.14-left, the absolute performance of
the teachers and students in Table 5.15 is lower. This is because here we use
weaker teachers and student models (Faster R-CNN for fast experiments)
than themodels used in Table 5.14-left (Mask R-CNN). However, the relative
improvement (between the distilled and OTS students) of box AP (2.1%) is
larger than that in Table 5.14-left (1.7%), indicating that learning distillation
directly on Argoverse-HD further improves the performance.
Implementation Details: Consistent with the previous implementation de-
tails, herewe implement the detectors using theMMDetection codebase. We
train on 8 NVIDIA Tesla V100 Graphics Card for 12 epochs for each distilla-
tion. We use the input resolution of 1, 920× 1, 200, with each GPU hosting 1
image. We use an initial learning rate of 0.02 and a linear learning rate decay.
We use SGD and a momentum of 0.9. We use 0.8 as the hyper-parameter λ.
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Chapter 6

Multi-Range Pyramids

6.1 Introduction

3D object detection plays a vital role in autonomous navigation. Despite the
maturity of methods in the existing literature, most treat detection range as
a constant instead of an adjustable hyperparameter [121,236,241]. However,
we argue that detection range is application dependent. For example, small
indoor robotsmaydetect only up to a fewmeterswhile autonomous delivery
trucks may require hundreds of meters of detection range to meet the safety
requirement due to higher traveling speed and longer braking distance.

In this paper, we first study the effect of tuning detection range for the
dominant paradigm of bird’s-eye view (BEV) based 3D detection. BEV-
based detectors operate on a dense 2D BEV feature map whose spatial di-
mensions are directly determined by the processing range and the voxel size
(grid density). Interestingly, the existing literature on 2D detection has con-
verged on image resolution (and backbone depth) as the handy “knobs” for
trading off accuracy-vs-latency [129, 205, 217]. We revisit these questions
in the context of 3D, and find somewhat surprisingly that range is an even
more effective parameter for trading off these quantities. For example, we
show that even if the sensor (dataset) includes objects up to 200m, opti-
mal accuracy-vs-latency tradeoffsmaybe achieved by artificially limiting the
range of the model to 100m, essentially “giving up” on far-field detections
and re-allocating the additional compute to smaller (higher resolution) vox-
els in the near-field. More importantly, this analysis reveals that models can
be tuned for particular ranges by adjusting other hyperparameters such as
voxel resolution. We denote models optimized for specific ranges as range
experts.
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Multi-range pyramid represented 
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Figure 6.1: (a) Given a far-range LiDAR input (e.g., 400m×400m), most ex-
isting 3D detectors will either run into memory issues or spend hundreds
of milleseconds to process the input. (b) We explore several ways to reduce
compute: downsample the point cloud, adopt a coarser grid, and limit the
processing range. We find that different tradeoffs are optimal for different
ranges; near-range voxels can exploit finer cell sizes, while far-range voxels
benefit from larger voxels that reduce sparsity while remaining efficient. (c)
We propose a novel BEV feature pyramid that allocates more voxel resolu-
tion to nearby measurements. (d) Note that each range is voxelized using
the same grid density and therefore resulting in feature maps of the same
size. This allows us to stack the featuremaps together for efficient batch pro-
cessing and multi-range feature sharing within a single network.

Given a collection of experts tuned for various ranges, one approach for
combining their output is simply ensembling their detections; e.g., combine
0-100m detections from the 100m expert with 100-200m detections from the
200m expert. We find such an ensemble greatly boosts detection accuracy.
While perhaps unsurprising, such an architecture is performant because it
exploits the well-known but under-emphasized property of LiDAR: farther
range implies more sparsity.

However, naive ensembling is prohibitively expensive, since compute
scales linearly with the number of range experts. This leads to the natural
question: can we achieve multi-range performance without paying the com-
pute cost? In this paper, we show that one can perform even better while re-
maining efficient by sharing features across range experts via a multi-range
feature pyramid (Fig. 6.1). We begin by noting that the natural internal rep-
resentations of properly-aligned range experts (that differ by ranges in pow-
ers of 2) themselves naturally align across adjacent layers of a neural back-
bone. This allows feature maps across the range experts (with varying grid
resolutions and ranges) to be stack-able into a singlemodel for efficient batch
processing and multi-range feature sharing. We call this representation a
multi-range pyramid (MRP), analogous to image feature pyramids common
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to 2D detection [137].
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Figure 6.2: To reduce latency, should
one increase voxel size or limit range?
One can rerun a 100m-trained model
(the orange dot) on different ranges
(the green curve) by exploiting fully-
convolutional processing. Retrain-
ing the model with 2X-larger voxels
(yellow triangle) does reduce com-
pute, but dramatically reduces accu-
racy. Additionally, not shown above,
we have explored point cloud sub-
sampling, but find this negligibly re-
duces latency.

One might wonder that if long
range is the bottleneck, why not
adopt other alternative representa-
tions, such as range view? 3D BEV
models are attractive because they
are orthographic and translation-
equivariant; one need not worry
about perspective distortions aris-
ing from far-away objects (that
would have a smaller footprint in a
range image). As a result, there ex-
ist more mature methods for data
augmentation [61] and temporal fu-
sion, either at the sensor level [121,
236, 241] or at the feature level [98,
149]. Because of the strong em-
pirical performance of 3D BEV de-
tectors [241], we argue that mak-
ing them range-efficient will be in-
creasingly important as LiDAR sen-
sors themselves increase in range
and density.

To work with MRP in 3D de-
tectors, one needs to address sev-
eral technical challenges. The first
challenge is how to efficiently create
such a pyramid. Most BEV feature extractors begin by sparesly computing
point features and then scattering them onto a dense BEV grid. We share the
initial sparse point cloud features across all ranges by introducing a novel
multi-range scattering operation. The next challenge is how to share fea-
tures across ranges that may or may not be spatially aligned. We address
this with two approaches; assuming unaligned features, we first disentan-
gle range processing through group convolution and then share features
globally with a squeeze & excitation (SE) layer [93]. If features are aligned,
we replace the standard convolution operation in the BEV backbone with a
multi-range convolution.

Onedifficultywith evaluation is the lack of long-range 3Ddetectiondatasets.
Arguably the most popular 3D detection benchmark is NuScenes [22], but
it annotates objects only up to 50m. As such, we validate our approach on
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Argoverse [29], which includes annotations for objects up to 200m. We plan
to evaluate on other long range datasets as they are released. Our evalua-
tions compare to strong baselines for efficient 3D detection, such as PointPil-
lars [121].

We summarize our contributions as follows:
1. We study the impact of range as a tunable parameter for 3D object de-

tection. We draw analogy to image resolution and find the surprising
conclusion that sometimes, the best solution is to limit the detection
range.

2. Wepropose a novelmultiple-range representation for BEV featuremaps.
We show how to build a full detector based on this novel representa-
tion.

3. We conduct extensive experiments on Argoverse dataset, showing the
superior efficiency of our proposed method.

6.2 Related Work
3D detection models can be roughly categorized as: bird’s-eye view, voxel-
grid, graph, and range-view representationmodels. Unlike 2D images, point
clouds are amenable to a number of different representations — each with
distinct advantages and disadvantages.

Bird’s-eye viewRepresentations. 3D perception using 2D convolution en-
ables fast, efficient feature aggregation due to mature, highly optimized ker-
nels available in open-source libraries; however, thesemethodsmust be care-
fully designed to encode geometric information in the gravity-aligned axis.
[121] encode a point cloud as a “pseudo-image” — applying a PointNet
[167] encoding to a set of sparse pillars in the BEV. [36] explore a multi-
sensor fusion model which consists of a bird’s-eye and range view of lidar
sensor data, and RGB imagery. However, ego-centric point clouds are not
dense in the BEV which consequently wastes both memory and computa-
tion. Specialized sparse operators may address the issues of density, but are
often not as tuned for gpu-based computation.

Voxel-grid Representations. 3D convolution provides rich, expressive ge-
ometric features at the cost of a cubic run-time w.r.t. the quantized grid di-
mensions — leading to considerable compute challenges. [253] introduced
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the first end-to-end learning approach for 3D object detection by augment-
ing point features with positional encodings within a voxel-grid. [236] ex-
ploited the sparsity of a point cloud through 3D sparse convolution—greatly
improving run-time to speeds suitable for exploring real-time applications.
[206] combine voxel and point level processing to exploit the efficiency of
a regular grid and the geometric richness of fine-grained points. Similar to
our work, [250, 258] emphasize that point clouds become sparse at range —
leading to an imbalanced spatial distribution of points. The authors address
this observation by representing point cloudswith polar and cylindrical rep-
resentations, respectively; however, this can lead to spatial distortions and
break the translation equivariance assumed by convolutional filters.

GraphRepresentations. Graph representations of point clouds encode dy-
namic neighborhoods between points while also permitting a sparse repre-
sentation in the form of a sparse matrix or adjacency list [168, 223]. [194]
operate directly on point clouds, without voxelization, using point-wise fea-
ture vectors for bottom up proposal generation. [94] propose using random
sampling to process large point clouds to circumvent costly processing from
farthest point sampling and inverse density sampling. Graph representa-
tions oftentimes require costly neighborhood computation using methods
such as: k-nearest or fixed-radius nearest neighbors. Despite their flexible
representation, 3Ddetectionmodels on state-of-the-art leaderboards are still
dominated by voxel-grid and BEV based methods [22,199].

Range-view Representations. The range-view refers to the projection of
an unordered set of three-dimensional coordinates onto a two-dimensional
grid which contains the distance from a visible point to the sensor. Unlike
the voxel-grid or graph representations, the range-view is not information-
preserving for 3D data, i.e., each sensor return must have a clear line-of-
sight between itself and the vantage point. [156] combine a range-view rep-
resentation with probabilistic cuboid encoding for 3D detection. [28] ex-
plore applying different kernels to the range-view image to counteract per-
spective distortions and large depth gradients w.r.t. to inclination and az-
imuth. [200] construct a two-stage approach: first performing foreground
segmentation in the range-view, then applying sparse convolutions on the
remaining points.

136



6.3 Approach
In this section, we first introduce our proposed MRP representation, and
then show how we build a detector using this representation. Lastly, we
discuss options for sharing features across different range representations.

6.3.1 Multi-Range Pyramid

Without loss of generality, we assume a square processing range with an
equal distance along the x and y axes in this paper. Let R be the intended
processing range in the BEV, and V to be the base voxel size1. Given sparse
point cloud features (C channels) as input, we construct a P -level multi-
range pyramid (MRP) through voxelization and scattering with different
range and voxel size settings. Specifically, at level i of the pyramid, it covers
a range of ri = R

2i−1 and uses a voxel size of vi = V
2i−1 for i ∈ 1, ..., P . Note that

the spatial dimension of the feature map at each level remains a constant
throughout the pyramid: wi = ri/vi = R/V := W . Also, voxelization and
scatter operations do not alter the number of channels, and therefore, the
feature map at level i contains C channels. Finally, the entire MRP is created
by stacking each level-i feature map along the channel, resulting in a single
feature map of size PC ×W ×W .

To facilitate a fair and simple comparison with the baseline model, we
restrict theMRP size to match exactly with the baseline: if the baseline back-
bone takesCb×Wb×Wb as input, we construct anMRPwith the size of each
level to be Cb

P
×Wb ×Wb. The reduction in channels is achieved via a linear

layer placed at the end of the point processing pipeline. When the model ar-
chitecture is fixed, the dominating factors for the size of model are the range
and the voxel size. Therefore, we introduce a notation r/s to represent the
complexity of the model (or the base size of the feature map), where r is
the range and s is the reciprocal of the voxel size, since voxel sizes are usu-
ally smaller than 1. For example, 100/4 represents a model with detection
range 100m and a voxel size 0.25m. An equal size MRP with 2 levels can be
represented by 100/4 + 50/8.

Next, we explain how we construct MRP in practise. To share computa-
tion, we can first perform voxelization and scattering once to create a huge

1More precisely, we use the term “voxel size” to denote the voxel dimension in the x
dimension. In general, a voxel size is a 3D dimension. In this paper, we do not change the
voxel size along the z (height) axis, and we assume a symmetric voxel is used along the x
and y axes.
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Figure 6.3: Our proposed multi-range pyramid (MRP) for 3D object detec-
tion. Building upon existing BEV frameworks (e.g., PointPillars [121]), we
replace multiple range-specific 2D BEV backbones with a single MRP that
enables across-range feature sharing. MRPs are constructed by first com-
puting sparse voxel-based point features at the finest resolution of interest
and the largest range of interest. These sparse features are then multi-range
scattered to multiple feature maps, tuned for different ranges and voxel
grid sizes. MRPs then share features across range-specific feature maps,
both through global pooling (Fig. 6.4) and local multi-range convolutions
(Fig. 6.5). Finally, the output from range-specific neck layers are resampled
into a single high-resolution, long-range feature map that is processed by a
detection head.

dense feature map of size R/V × 2P−1, then we duplicate the crop the fea-
ture maps to form the pyramid. Finally, we resize and stack them together.
This procedure is depicted in the bottom left of Fig. 6.3. The benefit is that
the point processing pipeline gets shared and it can be implemented trivially
with existing set of operations. However, the explicit creation of such a large
featuremap is prohibitively expensive inGPUmemory for large ranges (e.g.,
6400 × 6400). To workaround this issue, we introduce a new operator that
we call multi-range scatter. It takes fine-grained voxels (at size R

2P−1 ) as input
and directly construct a MRP with all levels stacked together. Compared
with standard scattering operation, the multi-range version handles clashes
of voxels mapped to the same cell due to the conceptual resizing operation.
The implementation is fast and introduces overhead of only 2ms.

6.3.2 MRP-Based 3D Detectors
Once we have MRP defined, we show how to incorporate it into 3D detec-
tors. First, we assume the detector make use of BEV representation at some
stages, which usually correspond to the backbone and the neck. As show
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Figure 6.4: Global feature sharing in MRP. (a) If we apply the standard con-
volution module on unaligned multirange feature maps, range information
may be mixed in suboptimal ways. (b) Therefore, we use group convolu-
tions to restrict the information flow across backbone layers to be range-
specific. (c) To allow some feature sharing across ranges, we introduce a
squeeze & excitation (SE) that computes global features that do not require
spatial alignment. (d) We inject SE layers at the end of each stage in the
backbone.

in Fig. 6.3, we inject MRP construction and inversion layers to before and
after the BEV processing stages within the base 3D detector. We modify the
BEV processing part itself to make it compatible with MRP (discussed in
the next subsection), but keep everything else (e.g., point feature extraction,
and detection head) the same as our base model. The construction process
is based on the multi-range scatter introduced in the previous section. The
inversion process is a simple chain of split, resize andmerge operations. Spe-
cially, given an MRP of size PC ×W ×W , we first split along the channel
dimension to get P levels of feature maps and then resize level i by a fac-
tor of 21−i. Intuitively, this is aligning the spatial representation according
to the bottom level of the pyramid. Then we take the finest information for
each range intervals from the respective level (e.g., the center region feature
is always from the top level) to form a single feature map of sizeC×W ×W .
To be exactly consistent with the base model pipeline, one could upsample
the channels to PC, but we find such an operation makes little difference in
practise.

6.3.3 Multi-Range Feature Sharing
After adopting the MRP representation, if we simply use the original back-
bone and neck, the model may produce suboptimal predictions due spatial
alignment. As shown in Fig. 6.1, each level of the stacked MRP feature map
correspond to a different range of the input point cloud. If we apply stan-
dard convolution that mixes the channels together, we are forcing the net-
work to resolve the spatial alignment by itself, which may not be the most
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efficient way to make use of channels. The next immediate solution might
be processing different level separately with P different backbone and necks
so that the spatial alignment can be avoided. However, running multiple
models introduces unnecessary overhead in function calls and GPU kernel
calls. Taking both factors into consideration, we replace each standard con-
volution with group convolution with group equal to the number of levels
P (Fig. 6.4ab). Note that the normalization and activation layers in a convo-
lution module do not mix channel together by default and there is no need
of group normalization. With such a replacement, we are able to “run”mul-
tiple range models within a single model. Note that this design is agnostic
to specific choice of the backbone and the neck as long as they are convolu-
tional. Since we are using group convolutions, the theoretical FLOPs of an
MRP-based model is smaller than the baseline model with the same feature
size. More precisely, the FLOPs ofMRP is 1/P of the original model for each
convolution module.

While the range representations are now disentangled during convolu-
tion, processing each range map separately may not be efficient usage of
available channels. We propose two ways of feature sharing across different
levels of the pyramid.

Global feature sharing. The spatial alignment is not an issue if the spatial
resolution is 1 × 1. This suggests that we can first pool globally and then
convolve the features across range groups. Fortunately, the community has
already found a way to effectively incorporate the globally pooled features
into downstream layers, and that is through a squeeze & excitation (SE)
layer [93]. We illustrate an SE layer in Fig. 6.4c and where we place them in
the network in Fig. 6.4d. Once we insert SE layers into the network, sharing
takes place automatically, at a global level. We add an SE layer at the end of
each backbone stage, and add an residual connection if it is not present. No
SE layer is added inside the neck. Note that SE layers are cheap to compute
and adds only negligible overhead to the overall runtime.

Local feature sharing. We offer an alternative fine-grained sharing strat-
egy at a larger computation cost (Fig. 6.5). The key idea is we first make
use of slicing and resizing operations to align the features maps and per-
form convolutions over aligned features in a cascade fashion from the top to
the bottom of the pyramid. We observe that level i in an MRP corresponds
to the center region of level (i − 1), but with a different spatial resolution.
We define a new operation multi-range convolution (MRConv) in this way:
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Figure 6.5: Local feature sharing in MRP. We explore an alternative feature
sharing strategy that replaces each standard convolution in the backbone
and neckwith amulti-range convolution (MRConv). The key idea is to align
featuremaps spatially and then perform convolution on the aligned portion.
A detailed description can be found in Section 6.3.3.

we first take the center slice and of level i, upsample it by 2x and then con-
catenate with level (i− 1) for convolution. Then we split the results by half
along the channel dimension. One half becomes the new level i featuremap,
and another half is downsampled and added back to the center region of the
original level (i−1) featuremap. We apply another convolution just for level
(i−1) to propagate the fine-grained information from the center to the outer
region. We repeat this process for all levels of the pyramid (i ∈ P, ..., 2).

6.4 Experiments
In this section, wefirst showhowdetection range affects the accuracy-latency
tradeoff for 3D detectors. Thenwe evaluateMRP on an autonomous driving
dataset Argoverse [29]. We include additional ablation and generalization
experiments in Appendix 6.A.1.

6.4.1 Dataset and Setup
We conduct our experiments on the publicly available Argoverse dataset. It
is an autonomous driving dataset with data collected in two US cities. It
considers 3 semantic classes for the 3D detection task: vehicle, pedestrian
and bus. The visual sensor suite include two top mounted LiDARs, 360 de-
gree ring cameras, and high-resolution stereo camera pairs. Notably, their
setup produces long-range LiDAR point clouds and object annotations (up
to±200m). In comparison, the detection ranges for other datasets are much
smaller: KITTI [70] (+70m, only the front-facing portion), nuScenes [22]
(±50m), andWaymo [199] (±75m). The LiDAR operates at 10 Hz, and thus
we adopt a 5-frame aggregation (for densification) so that the inputs are
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captured within the time window of 0.5 second, which matches the setup
on nuScenes.

We evaluate our model with the official 3D detection metrics for Argo-
verse 1.1: average precision (AP), average translation error (ATE), average
scale error (ASE), average orientation error (AOE), and the composite de-
tection score (CDS). AP is computed as an average of four different true-
positive thresholds: 0.5, 1.0, 2.0, and 4.0 meters. CDS, the overall summary
metric, is the product of AP and the sum of the complement of the normal-
ized true positive errors:

ATM = 1−ATEnorm, (6.1)
ASM = 1−ASEnorm, (6.2)
AOM = 1−AOEnorm, (6.3)
CDS = AP× (ATM+ASM+AOM). (6.4)

6.4.2 Baseline and Implementation Details
We adopt PointPillars [121] as our baseline detector since it is one of the
state-of-the-art among efficient 3D detectors. The model first distributes
points into a pillar-based representation and refines it with PointNet. Then
it scatters the sparse representation to form a dense feature map. Next the
dense map is processed by the SECOND backbone, a simple feed-forward
network without branches. Outputs from three stages of the backbone are
extracted and fed into the neck (SECONDFPN), which unifies the dimen-
sions of the three stage features and simply concatenate them together. The
concatenated feature is processed by a minimal SSD-like detection head,
which contains the classification branch for object labels and a regression
branch for bounding box location, size, and orientation. We mostly adopt
the standard configuration for the baseline except for tuning the range, voxel
size and the base learning rate and adapting the anchor configuration to Ar-
goverse. Detailed description of the architectures can be found in the Ap-
pendix 6.A.2.

For our MRP adaption, we use a pyramid of 2 levels unless otherwise
stated. We use the same set of hyperparameters and data augmentations
as our baseline. Regarding the SE layers we insert to both the baseline and
our models, we use the default reduction ratio of 16 during the bottleneck
convolution. Furthermore, when combining MRP with SECONDFPN, the
default order is to first concatenate the features and then apply MRP merge
down since MRP merge down is designed to be performed outside of the
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Table 6.1: Detection range is a tunable parameter. This table showswhat can
be achieved by simply tuning the range parameter and sometimes together
with the voxel size. Please see Section 6.4.3 for a detailed discussion. We
present the results of our proposed approaches in the next table (Table 6.2).
ID Method 0-25m 25-50m 50-100m 100-200m 0-50m 0-100m 0-200m Runtime (ms)
1 100/4 → 25 41.5 20.5 13.0 11.7 21.0 ± 3.0
2 100/4 → 50 42.2 35.8 38.7 25.1 22.7 23.0 ± 2.3
3 100/4 → 100 41.8 36.0 22.8 38.8 33.1 29.9 44.8 ± 2.3
4 100/4 → 200 6.4 30.0 194.0 ± 3.0
5 25/16 → 25 48.4 23.6 15.3 13.9 43.5 ± 2.6
6 50/8 → 50 46.6 36.5 41.1 26.9 24.4 48.2 ± 3.0
8 200/2 → 200 34.7 27.7 18.6 5.7 31.3 26.6 24.1 42.4 ± 2.1
9 Range ensemble (4,5,6) 48.4 36.5 22.8 6.4 41.7 35.3 32.5 285.7 ± 8.6

neck. However, the concatenation step causes the spatial alignment issue.
Therefore, we simply swap the order of these two operations, i.e., we first
perform MRP merge down, and then concatenate the features to feed into
the detection head.

We use the open source implementation from mmdetection3d [41]. We
adopt a basic set of data augmentations, which include global 3D tranfor-
mations, flip in BEV, and point shuffling. We follow the standard 2x sched-
ule to train the model, which implies training the model for 24 epochs with
AdamW optimizer and step decay schedule (decay the learning rate by one
magnitude at epoch 20 and 23). We use a base learning rate of 0.005 and
weight decay 0.01. We train our model with 8 RTX 3090 GPUs and a batch
size of 2 per GPU. Under this setting, themax range/voxel size configuration
we can fit is 100/4, or equivalently 200/2. In other words, we have to use a
very coarse voxel size of 0.5m if we want to train a model with±200m input
range (200/4 does not fit into the GPUmemory even with a batch size of 1).
The training noise (from random seed and system scheduling) is around 1%
of the accuracy (standard deviation normalized by the mean), which is at
an acceptable low rate, and also we report the medium of 3 runs for key ex-
periments. For all the runtime reported in this paper, we evaluate the batch
size 1 inference time on a Tesla V100 GPU, as this is the common setting for
efficiency benchmarking [129,205,209].

6.4.3 Range is a Tunable Parameter

Aswe havementioned earlier, detection range is largely considered as a con-
stant in the literature. However, we point out that many can be achieved if
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Figure 6.6: Efficiency comparison between the baselines and our methods.
On the left is 0-200m evaluation while on the right it is 0-100m evaluation.
In both cases, we notice that our methods achieve similar or better accuracy
as the expensive range ensemble baseline with much less computation cost.

we properly tune the detection range together with the voxel size. The re-
sults are summarized in Table 6.1.

From a given baseline model (PointPillars [121]), we derive families of
models based on the range parameter. We evaluate the accuracy across dif-
ferent range intervals and the latency of these models. Since the baseline
detector is fully-convolutional (as in many other detectors), we can run in-
ference at a different range from training. Taking this into consideration,
we introduce a new notation of r1/s→ r2, where r1 represents the range the
model is trained at, v represents the reciprocal of the voxel size and s2 rep-
resents the inference range. Note the voxel size needs to remain the same
during training and testing.

First from row 1-4, we show that by limiting the range at inference time,
we can derive a family of models with increasing accuracy (0-200m) and
latency. However, these derived models may be sub-optimal at their respec-
tive range. When the range is limited, one can afford to train the model at a
finer voxel resolution (with a fixed model size at training time, the product
of r and v remains a constant). Therefore, we further optimize the voxel size
for different ranges at rows 5-8 and we can these models range experts. Inter-
estingly, as shown in row 8, the range expert for the 200m performs worse
than row 4, where we run a 100m-trained model at 200m range. Lastly, we
create a multi-range ensemble (row 9) by taking the outputs from the best
model at a specific range (shown in bold). Unsurprisingly, this ensemble
outperforms all other methods at the cost of a huge latency.
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Table 6.2: Main results on Argoverse. All measures except the last column
are accuracymeasures, which are the higher the better. “Veh” and “Ped” are
short for “Vehicle” and “Pedestrian” respectively. A corresponding range-
based breakdown is provided in Table 6.3. The first three rows are the base-
line while the latter four are our methods. We construct our MRPs on top
of the well-tuned baseline (row 1). We start with an MRP adoption without
the modified backbone and neck (row 4), this yields worse performance
than the baseline due to spatial alignment issues. The alignment issue can
be resolved by using group convolution as described in Section 6.3.3 (row
5). We can further add either global (row 6) or local (row 7) featuring shar-
ing to our MRP-based methods, both improving the accuracy. Notably, the
global sharing (row 6) improves the accuracy while running faster than the
baseline (row 1 & 2). However, we do acknowledge that our method per-
forms worse than the baseline in terms of orientation estimation.

ID Method CDS AP ATM ASM AOM Veh Ped Bus Runtime (ms)
1 Tuned baseline (100/4 → 100) 29.9 38.8 70.4 76.1 77.4 54.1 29.3 6.3 44.8 ± 2.3

2 + Squeeze & excitation 31.0 40.4 71.8 75.9 77.3 54.7 32.6 5.6 45.8 ± 2.2

3 Range ensemble 32.5 43.1 73.9 74.5 65.5 54.8 36.7 5.9 285.7 ± 8.6

4 MRP - modified bkbn & neck 29.7 40.0 72.2 74.8 68.4 48.4 33.0 7.6 48.3 ± 3.1

5 MRP 30.7 40.5 70.0 76.4 73.5 52.4 33.3 6.5 40.1 ± 2.9

6 MRP + global sharing 32.4 42.5 74.5 74.3 70.5 54.2 34.4 8.5 41.3 ± 3.1

7 MRP + local sharing 33.1 43.4 75.6 76.1 74.4 53.4 37.3 8.6 59.0 ± 3.2

The results in this table are plotted in Fig. 6.2 as well. From both the table
and the figure, it’s clear that the configuration 100/4→ 100 is the sweet spot
for accuracy and latency tradeoff.

6.4.4 Evaluation for Multi-Range Pyramid
We first plot the performance of our MRP models in accuracy vs runtime
plots in Fig. 6.6. The plots show how the baseline model is trading off accu-
racy and latency under different range settings and how our final methods
perform compared to the baselines. We find that our proposed MRP mod-
els are above the pareto-optimal curve of the baselinemodel, suggesting that
they have achieved a better computation tradeoff.

Next, we provide detailed evaluation of these methods in Table 6.2 &
6.3, with the first showing metric breakdown under typical setup (breaking
down according to translation, scale and orientation, and also according to
semantic classes), and the second showing the breakdown under each range
interval. For the baselines, we first include PointPillars with optimal tuned
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range (row 1). Then we include a variant with squeeze and excitation layers
(row 2). This aims at providing a fair comparison with our global sharing
variant (row 6). To match the feature size of the 100/4 baseline, we use an
MRP of size 100/4 + 50/8. Comparing row 4 against row 1, we see a drop
with naiveMRP adaption. We argue that the culprit lies in the spatial feature
alignment in the backbone and the neck. The accuracy improves after the
backbone and the neck is properly modified (row 5). Next, we find adding
feature sharing significantly increases the accuracy. One might argue that
the boost may come from the mechanism of SE layer itself, since they are
considered plug-and-play modules that usually boost models’ accuracy. By
comparing row 2 to row 1, we see the boost of SE layer itself is around 1
point in CDS. By comparing row 6 and row 5, we see a much larger boost of
1.7 in CDS, and this demonstrates that the global feature sharing is boost-
ing the accuracy of the model. At the same time, we notice that this sharing
strategy introduces negligible overhead (around 1ms). If one can afford to
have slightly more latency in their system, the local sharing variant becomes
a good candidate as it further boosts the performance upon the global shar-
ing variant, Surprisingly, it achieves better CDS compared to the expensive
range ensemble baseline. Table 6.3 shows a sizeable improvement in close by
CDS of our methods compared to the baselines, under the context of long-
range processing. This can be safety-critical to autonomous driving since the
closer the object is, the shorter time-to-contact is. Note that despite we show
zero accuracy for the 100-200m range, our models are still capable of run-
ning at 200m at test time since it is also fully-convolutional. We choose not
to since it will produce a suboptimal point in the accuracy-latency tradeoff.

Finally, weprovided adetailed component-wise runtime analysis for these
models in Table 6.4. All these models benchmarked share the same sizes of
feature maps at the corresponding layers. We perform CUDA synchroniza-
tion every time before we record the values from the timers, this ensures
accurate timings for each component. We first note that the backbone is the
most time-consuming component within a backbone. Our MRP models are
able to bring down the latency of this part by using group convolutions.
MRP also introduces additional overhead to the point processing pipeline
and the BEV construction step. The former is due to the need to process at a
finer voxel level, and the latter is due to the fact that there are bin-collisions
within the multi-range scattering operation. The last row shows that the
multi-range convolution used for local feature sharing introduces much la-
tency for the backbone. Note that for all these models, post-processing is
taking up a large chunk of time. This is a result of us using research-level
code, and it can be further optimized, but it is beyond the scope of this work.
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Table 6.3: Range interval evaluation for the main results. This table con-
tains the same set of methods as in Table 6.2, but offers accuracy breaking
down according to range intervals. The summary metric CDS is used here.
We notice that due to we process a finer-grained voxel grid for close range,
our methods (row 4-7) achieve much better short range accuracy compared
to the baselines (row 1-2). Armed with feature sharing, our local sharing
model (row 7) even outperforms the expensive ensemble baseline (row 3)
for short ranges.

ID Method 0-25m 25-50m 50-100m 100-200m 0-50m 0-100m 0-200m
1 Tuned baseline (100/4 → 100) 41.8 36.0 22.8 38.8 33.1 29.9
2 + Squeeze & excitation 43.4 36.8 24.7 39.8 34.3 31.0
3 Range ensemble 48.4 36.5 22.8 6.4 41.7 35.3 32.5
4 MRP - modified bkbn & neck 45.7 34.9 19.1 40.1 32.7 29.7
5 MRP 45.1 37.2 20.8 41.0 33.9 30.7
6 MRP + global sharing 48.1 39.0 21.3 43.2 35.7 32.4
7 MRP + local sharing 49.3 39.1 22.0 44.1 36.5 33.1

Table 6.4: Runtime breakdown for the baseline and our MRP models. The
units for the runtime is milliseconds (ms). “Point Proc” is short for the
“point processing pipeline“, which include voxelization and PointNet fea-
ture extraction. This table shows that our MRPmodels (row 2-3) are overall
faster due to the backbone stage is much faster with MRP.
ID Method Point Proc MRP/BEV Constr Backbone Neck MRP Merge Head Post Proc
1 Baseline (100/4→ 100) 7.1 1.7 16.1 4.8 N/A 1.9 13.2
2 MRP 10.7 3.9 8.0 2.6 1.1 1.1 13.8
3 MRP + global sharing 10.8 3.7 9.4 2.5 1.1 1.1 13.0
4 MRP + local sharing 10.7 3.8 26.5 2.6 1.1 1.1 13.6

6.4.5 Ablation Study

In this subsection, we provide ablation study for the location of SE layers in
Table 6.5. We have explored inserting it at various stages of the backbone.
However, we find these design choices have little effect on accuracy and la-
tency. Therefore, we adopt the first setting where we insert SE to every stage
of the backbone, since we find this setting the simplest conceptually. We
include additional ablation study in the Appendix 6.A.1.
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Table 6.5: Ablation study for global feature sharing. This table explores the
different impact of where to inject SE layers into the backbone (as shown in
Fig. 6.3).

ID SE Stages CDS AP ATM ASM AOM Runtime (ms)
1 [1, 2, 3] 32.4 42.5 74.5 74.3 70.5 41.2 ± 3.2

2 [2, 3] 32.4 42.7 72.5 75.5 73.1 40.6 ± 3.1

3 [3] 32.3 42.3 70.8 75.1 72.7 40.3 ± 2.9

6.5 Conclusion
We provide analysis on the effect of detection range for 3D object detectors,
showing that range can be used to tradeoff accuracy and latency. We use
our analysis to build a simple ensemble of range experts that exploits a fun-
damental property of lidar; namely that measurements become sparser at
range, allowing for coarser voxel binning. While performant, an ensemble
of range experts can be slow. We then propose to share features across range
experts with a multi-range pyramid. To do so, we introduce multi-range
scatter operations that enable a single set of sparse point features to pop-
ulate multiple range- and resolution-specific feature maps. These feature
maps are arranged into a multi-range backbone that supports both global
and local convolutional feature sharing across ranges. In future work, it
might be useful to process different ranges asynchronously at different times-
tamps. For example, close range feature mapsmight need to be visitedmore
frequently than far range ones for autonomous navigation, suggestive of a
near-far network analogous to asynchronous slow-fast networks for video
processing [63].
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6.A Appendix

6.A.1 Additional Generalization and Ablation Experiments
In the main text, we mentioned additional generalization and ablation ex-
periments in Section 4. In this section, we first present an analysis on across-
dataset generalization, showing our conclusions generalizes to nuScenes in
the long-range setting. Next, we show our methods are generalizable to ar-
chitectural variations.

Analysis on Across-Dataset Generalization
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Figure 6.7: Comparison of Argoverse 1.1 and nuScenes based on the ground
truth object distribution over the distance. The horizontal axis is the distance
of the object to the ego vehicle and the vertical axis is the probability density.
This plot shows that nuScenes is a relatively short-ranged dataset compared
to Argoverse 1.1.

In the introduction section of the main text, we mentioned the need a
of long-range dataset for evaluation and nuScenes is not fit for this reason.
We further clarify this statement in subsection. We compare the object dis-
tribution according to distance for both Argoverse and nuScenes in Fig. 6.7.
The plots show significantly different distributions among two datasets in
terms of object-ego-vehicle distance. We see Argoverse 1.1 contain much
more far away objects relatively. We point out that the object distribution in
nuScenes may be an artifact of the sensor setup and may not reflect the true ob-
ject distribution. Note that for the plotting the nuScenes distribution, we fil-
ter out zero-LiDAR-point annotations (consistent with the standard training
and evaluation protocol), which are mostly interpolated boxes for occluded
objects.
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Table 6.6: Long-range evaluation (100m)onnuScenes. In this table, we com-
pare our methods against the baselines with ground truths and predictions
in the 0-100m range. The columns are standard nuScenes metrics and the
per class breakdown is regarding to themAP. Some classes have the spelling
names abbreviated to fit the space, and the full class names are (in order
from left to right) car, truck, trailer, bus, construction vehicle, bicycle, mo-
torcycle, pedestrian, traffic cone, and barrier. We note that our proposed
MRP with or without the global sharing outperform their baseline counter-
parts. Also, the much larger runtime (compared to that on Argoverse) is
due to longer post-processing time.

Method NDS mAP car trck trail bus cstr bic motc ped cone barr Runtime (ms)
Baseline (100/4→ 100) 41.5 23.4 67.9 27.1 12.4 33.5 1.3 0.2 11.9 48.5 9.0 22.2 72.8 ± 3.2

+ Squeeze & excitation 42.4 24.6 68.4 27.0 16.8 36.2 1.3 0.5 12.2 49.5 8.1 26.2 73.0 ± 2.9

MRP 42.0 23.0 66.0 25.0 6.5 27.6 1.4 0.7 14.5 54.3 7.4 26.5 67.7 ± 3.8

MRP + global sharing 43.0 24.8 67.5 27.1 9.8 32.4 1.4 0.3 14.6 56.3 10.5 28.4 68.5 ± 3.8

In addition, we notice that despite the official nuScenes evaluation goes
to 50m, there are 13.9% objects being farther away than 50m. Based on this
observation, we construct a new experiment setting where the training and
testing goes to 100m for all classes on nuScenes, and then we run the same
baseline and our methods. The results for this long-range setting is summa-
rized in Table 6.6. We observe similar conclusions as the casewithArgoverse
1.1 where our proposed methods outperform the baselines. Therefore, the
improvement of our methods is not just limited to a single dataset. We plan
to evaluate on more long-range datasets in the future as they become avail-
able, to reinforce the claim that our method generalizes across datasets.

Generalization to Architectural Variations

The neck used in our baseline is SECONDFPN [236], which simply concate-
nates multi-stage backbone outputs and produces only a single-level feature
map for the detection head. In contrast, in 2D detection literature, a feature
pyramid network (FPN) neck [137] is widely adopted for its efficient top-
down reasoning pipeline and its multi-level outputs [205]. In this section,
we conduct experiments with FPN and present the results in Table 6.7. Note
that when using MRP with a neck that produces multiple feature maps, we
perform individual MRP merge down operations on each feature map sep-
arately. The results suggest the same set of conclusions where our MRP,
without or without sharing, outperforms the corresponding baseline.
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Table 6.7: Generalization to another architecture setting. Our experiments
default to SECONDFPN as the neck. In this table, we adopt FPN for both
the baseline and our models. We observe that the previous conclusions still
hold under this new architectural setting.

ID Method CDS AP ATM ASM AOM Runtime (ms)
1 Baseline (100/4→ 100) 30.6 40.1 70.3 76.4 74.7 65.6 ± 2.6

2 + Squeeze & excitation 31.6 41.1 72.5 75.7 72.8 66.5 ± 2.9

3 MRP 31.4 41.6 70.7 76.5 71.4 59.7 ± 3.4

4 MRP + global sharing 33.5 43.2 69.7 75.0 78.4 61.3 ± 3.3

Range-Averaged Evaluation

Our final methods in the main text do not process the point clouds in the
range from 100m to 200m. Such a conclusion is a combined results of the
skewed data distribution and the all-in-one-pool evaluation metrics. Since
the data distribution cannot be easily altered, we adopt an alternative eval-
uation protocol in this section, with an additional focus on long-range de-
tection. Specifically, we first compute the per range interval accuracy and
then compute an average of these accuracies. Such a metric is also referred
to as macro average performance in the classification literature [239]. By
averaging across range intervals, the weight of each range interval is the
same regardless of the data distribution (as long as it has non-zero density).
Therefore, the 100-200m range accuracy is valued more under this alterna-
tive metric. Accordingly, we also run the baseline and our methods on 200m
input. The results are shown in Table 6.8 where the added methods are at
the bottom of this table. We observe that in terms of macro average accu-
racy (CDS), range ensemble (row 3) is the highest performing method, but
it has a huge runtime cost. The second is our local sharing method (row 8)
running with 200m input. It reduces the runtime cost of range ensemble by
38% while achieves similar accuracy. At the same time, it is faster and more
accurate than simply running the baseline at 200m (row 8). Our methods
(row 6-7) running at 100m still remain the most competitive for balancing
runtime and accuracy.

Ablation Study on MRPMerge Down

When we perform the MRP merge down operation that converts the MRP
into a single feature map (see Fig. 2), we use overwrite as the merging op-
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Table 6.8: Range-averaged (macro-accuracy) evaluation. In this table we
average the CDS computed from 0-100m and 100-200m in the second col-
umn as an alternativeway of evaluation, which places higherweight to long-
range detection given skewed data distribution. Please refer to Section 6.A.1
for a detailed discussion.

ID Method 0-100m 100-200m Average Runtime (ms)
1 Tuned baseline (100/4→ 100) 33.1 16.6 44.8 ± 2.3

2 + Squeeze & excitation 34.3 17.2 45.8 ± 2.2

3 Range ensemble 35.3 6.4 20.9 285.7 ± 8.6

4 MRP - modified bkbn & neck 32.7 16.4 48.3 ± 3.1

5 MRP 33.9 17.0 40.1 ± 2.9

6 MRP + global sharing 35.7 17.9 41.3 ± 3.1

7 MRP + local sharing 36.5 18.3 59.0 ± 3.2

8 1 + (→ 200m) 33.0 6.4 19.7 198.7 ± 3.5

9 7 + (→ 200m) 35.2 6.0 20.6 175.9 ± 4.0

eration. In other words, during the merging of each two consecutive layers,
we directly take the resized top layer and pasted it to the center region of
the bottom layer. In this section, we explore other merging operations. The
first one is sum, where the new center region of the bottom layer is the sumof
the old center region and the resized top layer. The second one is convolution,
where we first concatenate the old center region and the top layer along the
channel dimension, and then perform a standard convolution with channel
reduced by half in the output. Note that for all three operations, including
the original overwrite, the size of the featuremap remains the same and thus
they are compatible with the overall MRPmerge down procedure. All oper-
ations are tested using the MRP plus global sharing as the base model. We
summarize the results of this ablation study in Table 6.9. We observe that
a simple overwrite operation outperform other more complicated operations
and thus we adopt overwrite as the default merge down operation.

6.A.2 Additional Model and Implementation Details

In this subsection, we include additional architectural and implementation
details on both the baseline and our method.
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Table 6.9: Ablation study onMRPmerge down operations. We observe that
overwrite performs the best among all tested operations. For detailed defi-
nition of each operation, please refer to Section 6.A.1.

ID MRP Merge Operation CDS AP ATM ASM AOM Runtime (ms)
1 Overwrite 32.4 42.5 74.5 74.3 70.5 41.2 ± 3.2

2 Sum 31.8 41.7 69.7 75.2 77.0 41.5 ± 2.9

3 Convolution 31.7 41.4 72.7 74.8 76.2 44.4 ± 3.1

6.A.3 Additional Details about the Baseline

As mentioned in the main text, we adopt PointPillars [121] as our base-
line, which includes a pillar-based point processing pipeline, 2D backbone,
concatenation-based neck and a standard anchor-based detection head. The
model uses a voxel (pillar) size of 0.25m × 0.25m × 8m, with a input point
cloud range of [−100, 100]m× [−100, 100]m× [−5, 3]m(taking the 100/4 pro-
file here as an example). For the voxelization step, we set points per voxel to
be 20, and max voxel to 60,000. Importantly, we use non-deterministic voxeliza-
tion, which drastically speeds up training by 8x. After voxelization, we adopt
a one-layer PointNet as point feature encoder, which split out features of
64 dimensions. The features are then passed through a pillar scatter layer to
form a dense feature map. We adopt standard SECOND backbone and SEC-
ONDFPN neck. For the detection head, the anchors sizes and ranges are ad-
justed for Argoverse while other settings are kept the unchanged. We train
all our models from scratch without pretraining. We use the public mmde-
tection3d [41] on Github for our implementation and the version we use
is e5a87f3 (commit id). For the environment, we use CUDA 11.1, cuDNN
8.0.5, and PyTorch 1.9.0.

6.A.4 Additional Details about Our Methods

Most of proposed modifications are straightforward to implement given the
descriptions in the main text, with two exceptions: the first is the local shar-
ing MRConv module and the second is an equivalent fast implementation
for group convolutions. To further clarify how local sharing is done. We
include a simplified PyTorch code for a 2-level pyramid in mr conv.py. To
enable global sharing, we simply replace each regular convolution in the
backbone with a MRConv described in the file.

Next, we explain how we implement group convolutions in a faster and
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yet equivalent way. Both our MRP and its global sharing variant make use
of group convolutions to prevent unaligned feature fusion within the pyra-
mid. Group convolutions in theory have much lower FLOPs than regular
convolutions (1/P in our case). However, when we implement the group
convolution by setting the groups argument in PyTorch’s Conv2d, we find it
runs much slower (around 4x) than a regular convolution for certain input
and convolution configurations. We posit that modern deep learning prim-
itives are not optimized for group convolutions due to their less frequent
usage. We present a way here to optimize this operation at the PyTorch
level. Running a group convolution with group g is theoretically equivalent
to running g standard convolutions in parallel. Therefore, we create another
convolution layer called ConvFork that implements group convolution us-
ing multiple parallel convolutions, and we only replace group convolutions
that are slower than standard convolution with ConvFork module. This im-
plementation results in around 10ms (20%) reduction in overall runtime, which
allows us to show off the efficiency of our approach in wall-clock time.
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Chapter 7

Future Object Detection

7.1 Introduction

Object detection and forecasting are fundamental components of embodied
perception that are often studied independently. In this paper we rethink
the methods and metrics for trajectory forecasting from LiDAR sensor data.
Trajectory forecasting is a critical perception task for autonomous robot nav-
igation, thus building meaningful evaluation metrics and robust methods is
of utmost importance.

Traditional trajectory forecasting methods [22, 29, 199] detect [193–195]
and track [107,226,228] objects in 3D LiDAR scans to obtain past trajectories
(Fig. 7.1a). These can be used in conjunction with auto-regressive forecast-
ing methods [2, 79, 101, 189] to estimate the future actions of surrounding
agents. Recent efforts [135, 149, 229] streamline such multi-stage percep-
tion stacks and train multi-task neural networks to jointly detect, track and
forecast object positions directly from raw sensor data (Fig. 7.1b). However,
such end-to-end approaches tend to predict only a single future trajectory
for each object, not accounting for future uncertainty. This is not surpris-
ing as estimating multiple futures is a significant challenge in forecasting,
requiring machinery such as multiple-choice-loss [13] or generative mod-
els [3, 47, 48, 79, 101, 114, 125,188].

We rethink the forecasting task and propose FutureDet, an approach that
reframes forecasting as the task of future object detection (Fig. 7.1c). Impor-
tantly, existing detectors [121, 241, 253] already learn to predict heatmaps
that capture distributions over possible object locations. We re-purpose this
machinery to represent possible future object states. To this end, we en-
code an accumulated sequence of past raw LiDAR scans using standard
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Figure 7.1: (a)Current stage-wisemethods independently address the prob-
lems of detection, tracking, and forecasting, allowing for compounding er-
rors in the full pipeline. Each sub-module incorrectly assumes that its input
will be perfect, leading to further integration errors. In contrast to current
forecasting methods that use object tracks as input, end-to-end forecasting
directly from LiDAR sensory data (b) streamlines forecasting pipelines. To
this end, we propose FutureDet (c), an end-to-endmodel capable of forecast-
ing multiple-future trajectories directly from LiDAR via future object detec-
tion. We show that our end-to-end pipeline improves upon state-of-the-art
three-stage and end-to-end methods.

backbones for 3D LiDAR-based object detection and train our network to
(i) detect objects multiple timesteps into the future and (ii) estimate tra-
jectories for these future detections back in time (i.e., back-cast) to the cur-
rent frame. By matching back-casted future detections to current detections
in a many-to-one manner, our approach can represent a distribution over
multiple plausible future states. Our extensive evaluation on the large-scale
nuScenes [22] dataset for trajectory forecasting reveals that our proposed Fu-
tureDet outperforms state-of-the-art methods, without requiring object tracks
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or HD-maps as inputs to the model. We posit that tracking may emerge from
our network (since tracking objects from accumulated past LiDAR scans
may make them easier to forecast), similar to the emergence of tracking and
forecasting in streaming perception [129].

Furthermore, we investigate the utility of current metrics [135, 227] for
evaluating forecasting directly from raw LiDAR data. We find that existing
metrics are not well suited for the task of joint detection and forecasting,
allowing them to be gamed by trivial forecasters. Current metrics for end-
to-end LiDAR forecasting adapt trajectory-based forecastingmetrics, such as
average/final displacement error (ADE/FDE). These metrics were designed
for evaluating forecasting in a settingwhere perfect tracks are given as input,
and objects don’t have to be detected. However, these metrics don’t adapt
well to the end-to-end setting. We demonstrate that such metrics can be
gamed by baselines that simply rank all stationary objects (which are triv-
ially easy to forecast) with high confidence, dramatically outperforming all
prior art. Moreover, these evaluation metrics detach two inherently inter-
connected tasks of detection and forecasting. Consequentially, they do not
penalize false forecasts, i.e., forecasts that do not actually belong to any objects.
In this sense, the end-to-end setup and evaluation is more realistic.

To address these short-comings, we rethink the evaluation procedure for
joint object detection and forecasting directly from sensor data. Our key
insight is that the versatile average precision (AP) metric, a gold standard
for assessing object detection performance, can be generalized to the task
of joint detection and forecasting. The key feature of our novel forecasting
mAP is that a forecast is correct only if the object is both correctly detected
and forecasted. Our forecasting mAP is then calculated by simply using the
machinery of AP, but using this joint detection and forecasting definition of
a true positive. Furthermore, our forecasting mAP can be extended to eval-
uating multiple-future forecasts for each object by simply evaluating w.r.t.
the top-K most confident forecasts per-detection. Our metric appropriately
adapts forecasting metrics for end-to-end evaluation: forecasting mAP jointly
assesses forecasting and detection, penalizing both missed forecasts as well
as false forecasts. It assesses forecasting performance on the full set of object
detections and embraces the inherent multi-future nature of forecasting.

Contributions: We (i) repurpose object detectors for the task of end-
to-end trajectory forecasting and propose a model that can predict multiple
forecasts for each current detection, (ii) rethink trajectory forecasting eval-
uation and show that detection and forecasting can be jointly evaluated us-
ing a generalization of well-accepted object detection metrics, and (iii) thor-
oughly analyze the performance of our model on the challenging nuScenes
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dataset [22], showing that it outperforms both previous end-to-end train-
able methods and more traditional multi-stage approaches.

7.2 Related Work

Object Detection and Tracking. Due to recent advances in supervised
deep learning [118] and community efforts in dataset collection and bench-
marking [8,22,49,70,199], the research community has witnessed rapid im-
provement in LiDAR-based 3D object detection [121, 166, 193, 194], track-
ing [226, 241], and segmentation [5, 8, 250]. Several methods [193, 194] fol-
low a well-established two-stage object detection pipeline using point-cloud
encoder backbones and a 3D variant of a region proposal network [180],
or detect objects as points, followed by classification and bounding box re-
gression [241]. Due to the sparsity of LiDAR point clouds, recent methods
accumulate multiple scans over time to improve object detection [121, 241]
and LiDAR panoptic segmentation performance [5]. To understand how
trajectories of detected objects evolve over time, multi-object tracking meth-
ods associate detections using Kalman filters [226], learned object descrip-
tors [65,228] or regress frame-to-frame offsets [241,252], typically followed
by greedy or combinatorial optimization to resolve ambiguous data associ-
ation. The latter approach can be interpreted as a single frame forecast for
track association. However, autonomous vehicles must account for likely fu-
ture positions of surrounding agents at longer temporal horizons to safely
navigate and avoid collisions in dynamic environments.
Trajectory Forecasting. Vision-based trajectory forecasting has been posed
as the task of predicting future trajectories of agents, given perfect past tra-
jectories and a top-down image (recorded e.g. using drones) as input [126,
163,183]. Early physics-basedmodels [86] explicitly model agent-agent and
agent-environment interactions and have been successfully used to enhance
object trackers [123, 235]. Recent methods use auto-regressive data-driven
models that leverage recurrent neural networks (RNNs) and encoder-decoder-
based architectures to encode the past trajectory and estimate its evolution
in future frames [2]. To deal with the inherent multi-modal nature of the
problem, several methods leverage generative models [74, 109] to learn a
distribution over future trajectories [3, 47, 48, 79, 101, 114, 125, 188]. How-
ever, these methods and benchmarks tackle forecasting in idealized scenar-
ios, in which the entire visual scene is directly observed, and perfect input
trajectories are provided. Both are unrealistic assumptions in automotive

158



and robotics applications. Due to the importance of forecasting for automo-
tive path planning, recent large-scale automotive benchmarks [22, 29, 199]
explicitly focus on the trajectory forecasting task. Similar to vision-based
methods, these benchmarks pose the forecasting problem as trajectory es-
timation given past trajectories and a high-definition map of the environ-
ment. These benchmarks have facillitated a wide suite of HD-map-based
forecasting methods, which either represent the HD-map as rasterized im-
ages [27, 71], graphs or vectors [67, 77, 134]. However, both algorithms and
the evaluation protocol make the unrealistic assumption that detection and
tracking outputs are perfect.
Forecasting from Sensor Data. Prior methods [135, 149, 229] tackle ob-
ject detection, tracking, and forecasting jointly by training a single convo-
lutional neural network in a multi-task fashion from accumulated stacks of
LiDAR sweeps. Alternatively, [227] directly forecasts future LiDAR scans
and leverages off-the-shelf LiDAR object detectors to detect objects in these
forecasted scans. We believe that this approach of end-to-end joint detec-
tion and forecasting is a step in the right direction. However, none of the
aforementioned end-to-end methods are able to reason about multiple fu-
ture trajectories. To embrace the inherently uncertain future, we present an
end-to-end forecasting model (Sec. 7.4) that simultaneously detects objects
in the current and future timesteps given a history of LiDAR scans, anchor-
ing multiple possible future detections to current scan detections. This ap-
proach not only outperforms the aforementioned methods w.r.t. forecasting
accuracy but also allows for multiple future interpretations. Finally, we ob-
serve that ad-hoc adaptations of forecasting metrics [135, 149, 229] do not
appropriately characterize certain types of forecasting errors. As a remedy,
we propose a generalization of the average precision (AP) [60] metric for
joint detection and forecasting in Sec. 7.3. Note that our adoption of AP is
also inspired by the work of streaming perception [129], where AP is used
tomeasure the joint performance of 2D object detection, tracking, and short-
term forecasting without considering multiple futures.

7.3 Rethinking Forecasting Evaluation
Since we are tackling the task of forecasting future positions of cars directly
from LiDAR scans, we assume an observed sequence of past LiDAR sensor
data, up to the most recent observation Stobs at time tobs, as input. We pose
joint object detection and forecasting as the task of estimating a set of ob-
ject locations (parametrized as 3D cuboids) in the current scan Stobs as well
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as their future trajectory continuations in the future, unobserved scans i.e.,
{St, t ∈ [tobs + 1, . . . , T ]}.

7.3.1 Preliminaries
Prior work [2, 79, 101, 126, 163, 183, 189] presents forecasting as the task of
estimating the “correct” continuation of a given ground-truth track. In par-
ticular, given past trajectory observationsXi = {(xt

i, y
t
i) ∈ R2, t = 1, . . . , tobs},

the task is to estimate future positions Yi = {(xt
i, y

t
i) ∈ R2, t = tobs+1, . . . , tT}

for all agents present in the scene. This formalization is also adopted by re-
cent automotive forecasting benchmarks [22, 29, 199]. However, as the ego-
vehicle is moving, methods are given high-definition (HD) maps of the sur-
rounding environment and ego-vehicle positions to account for the geom-
etry of the surroundings. First, we discuss existing metrics for forecasting
evaluation.
ADE and FDE. Average displacement error (ADE) and final displacement
error (FDE) are commonly used evaluation metrics for assessing trajectory
prediction. Both are measured as the L2 distance between model predic-
tions {Yi} and ground truth trajectories {Gi}. To account for the inherent
uncertainty in trajectory continuation, methods are evaluated over the set of
top-K model predictions (w.r.t. the confidence score of each predicted fore-
cast). These metrics assume that the set of true positives are the same for
all methods. This assumption does not hold when comparing end-to-end
methods, which can produce different sets of true positives, making com-
parison unreliable.
Miss Rate. If the final displacement error between a ground-truth trajectory
and a prediction is above a center distance threshold, we count the forecast
as amiss (similarly evaluatedw.r.t. the set of top-K predictions). Thismetric
evaluates the proportion of misses over all forecasts in a scene.
ADE/FDE w.r.t. Recall. The standard forecasting setup allows us to build
models in isolation from other factors and has sparked rapid progress in this
field of research [2, 47, 48, 79, 101, 189]. However, the standard assumption
of having perfect input trajectories is not feasible in practice as it critically
depends on perfect object tracks as inputs, which are nearly impossible to
obtain in practice. To this end, [135, 149, 229] study end-to-end trajectory
forecasting directly from raw sensor data, and propose an evaluation setup
for end-to-end forecasting models using the aforementioned ADE and FDE
at fixed recall thresholds, i.e., ADE/FDE at 60% or 90%. This evaluation set-
ting has two major short-comings:

160



Evaluated only on a subset of matched detections. A large number of agents are
not moving and prediction of their future positions is trivial. Models that
rank stationary objects higher than moving objects can obtain higher fore-
casting performance by specializing on trivial predictions. We provide em-
pirical evidence for this in Sec. 7.5.1 and show that such recall-basedmetrics
can be “gamed” using a simple constant position prediction model.
No penalty for false positives. The current evaluation protocol detaches the
inter-linked tasks of detection and forecasting. As a consequence, models
can predict an arbitrary number of forecasts that are not anchored to any de-
tections. In other words, this approach does not penalize false forecasts, i.e.,
forecasts not anchored to any detection, and missed forecasts as commonly
characterized by the miss rate.

7.3.2 Average Precision is All You Need

Average Precision (AP). AP is defined as the area under the precision-
recall curve [60], commonly averaged over multiple spatial overlap thresh-
olds [139]. To compute AP we first determine the set of true positives (TP)
and false positives (FP) to evaluate precision and recall. In standard object
detection, TPs are considered to be successful matches between model pre-
dictions andground-truth, typically determined based on 2D/3D intersection-
over-union (IoU) [60] or distance from the object center [22] in the refer-
ence image or LiDAR point cloud, respectively. We can extend AP for joint
detection and forecasting by (a) evaluating detection accuracy on the cur-
rent frame or (b) evaluating detection accuracy T seconds into the future.
However, (a) completely ignores forecasts and (b) doesn’t ensure that future
trajectories are correctly associated to the right current detection.
Forecasting Average Precision (APf). For the task of joint detection and
forecasting, all future forecasts need to be anchored to objects, present (and
detected) in Stobs . A robust metric must correctly penalize trajectories with
correct first frame detections and incorrect forecasts (false forecasts), and
trajectories with incorrect first frame detections (missed forecasts).

To characterize both types of errors, we define a true positive with refer-
ence to the current frame tobs if there is a positive match in both the current
timestamp (tobs) and the future (final) timestep tobs + T . Otherwise, a fore-
cast is considered to be a false positive. A successful match in the current
frame is determined based on the distance from the center, averaged over
distance thresholds of {0.5, 1, 2, 4}m [22]. Similarly, a successful match in
the final timestep is determined based on the distance from object center,
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averaged over distance thresholds of {1, 2, 4, 8}m respectively. In contrast to
ADE @ Recall % and FDE @ Recall %, this evaluation setting (i) takes all
detections (not just true positives) into account, and (ii) penalizes missed
forecasts (typically characterized by the miss-rate).
Forecasting Mean Average Precision (mAPf). Forecasting AP is evaluated
on the full set of detections and cannot be “gamed” by a simple constant
position model. However, we note that the data itself is imbalanced: over
60% of cars in the nuScenes dataset are parked, and are therefore stationary.
To this end, we define three sub-classes: static car, linearly moving car and
non-linearly moving car. Computing sub-class APf can be difficult; we do not
require forecasts to output sub-class labels, but assume all ground-truth ob-
jects have sub-class labels. We follow the protocol for large-vs-small object
subclass evaluation from COCO [139], described further in the appendix.
We then evaluatemAPf as 1

3
(AP stat.

f +AP lin.
f +AP non-lin.

f ) to ensure our met-
ric cannot be “gamed” by trivial forecasters, as well as discuss fine-grained
analysis on the three cases separately. Similarly, mAPdet is evaluated as the
average APdet over the three sub-classes.
Metrics: EmbracingMultiple Futures. As described,mAPf would be suit-
able for evaluating forecasting for scenes with multiple future ground truth
trajectories. However, this is not feasible in the practice when forecasting
directly from historical sensor data. To this end, we adopt a top-K based
forecasting evaluation [126, 163, 183], that does not penalize models for hy-
pothesizing possible future trajectories anchored from a single detection. In
particular, we first match predictions to ground-truth detections in tobs and
take the top-K highest ranked forecasts for each detection. Based on this set,
we determine the best-matching forecast in terms of FDE and evaluate APf

as explained above.

7.4 Forecasting as Future Object Detection

FutureDet addresses the forecasting problem by predicting the future loca-
tions of objects observed at tobs. We can repurpose existing LiDAR detectors
to predict object locations for T future (unobserved) LiDAR scans, for which
ground truth supervision is given. We first describe ourmethod and discuss
our implementation based on the recently proposed CenterPoint LiDAR de-
tector. [241].

Future object detection and forecasting are related tasks. Forecasting re-
quires predicting consistent trajectories in every frame between the current
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Figure 7.2: FutureDet. Based on an accumulated LiDAR sequence, Future-
Det detects objects in the current frame t and in a future frames up to t+T . We
then cast these future detections back-in-time (i.e., back-cast) to the current-
frame where they are matched to current frame object detections. Such
matching ofmultiple future detections to current-frame detections is a a nat-
ural mechanism for a multi-future interpretation of the observed evidence.
frame and T future frames. To estimate forecasts from future detections we
train our network to additionally estimate velocity offset vectors for every
future detection. We do so for all frames between the current timestep and
the final future timestep where the future detection occurs.
Backcasting vs. Forecasting. Fast and Furious [149] proposes a similar ar-
chitecture that forecasts position offsets into the future directly from current-
frame detections. Our method considers the inverse setup where we detect
in both the current and future frames and predict offsets back in time. We
posit that future object detection requires the network to learn forecasted fea-
ture representations [145], directly optimizing for future object positions.
Our experimental evaluation and visual inspection confirm this intuition
(Sec. 7.3).
Method: EmbracingMultiple Futures. The task of forecasting is inherently
ambiguous: while there are many plausible outcomes given an input tra-
jectory, only one future is realized for training supervision and evaluation.
Traditional forecasting methods and benchmarks facilitate multiple future
predictions via top-K based evaluation, leveragingmultiple-choice-loss [13]
and generative models [3, 47, 48, 79, 101, 114, 125, 188] to learn a (possibly
multi-modal [47, 48]) distribution over future trajectories. FutureDet allows
for natural multi-future forecasting to emerge. We first point out that detec-
tion networks can be easily repurposed for future detection by giving target
bounding boxes T seconds into the future. Since future objects are detected
independently from current-frame detections, we posit that the networkwill
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produce multiple future detections for every object in the scene, effectively
placing “multiple bets” where the objects may end up in the future. As all
future detections are modeled by Gaussian heat maps, we implicitly obtain
a multi-modal distribution over possible future locations (see Fig. 7.2).
Matching Multiple Forecasts. The task of forecasting requires all trajecto-
ries to be anchored to the set of object detections in the current (observed)
LiDAR scan. For every future detection i, we backcast and compute the dis-
tance to each detection j from the previous timestep. For each i, we pick the
best j (allowing for many-to-one matching). This framework naturally al-
lows potentially multiple future forecasts to belong to each current timestep
detection.
Ranking Multiple Forecasts. For all forecasts anchored at a single detec-
tion, we rank trajectories according to their forecasting score, derived using
the detection confidence score of the last detection in a predicted trajectory.
As shown in Table 7.2, we find there is a slight increase in performance be-
tweenK = 1 andK = 5, indicating that better ranking strategies can further
improve FutureDet.
Implementation. We train CenterPoint to detect objects in future scans. The
underlying detection network simply thinks it’s finding T times as many ob-
ject classes (e.g., cars and future-cars) with additional regression offsets
(analogous to existing velocity regressors). In addition, we repurpose the
ground truth sampling (a.k.a. copy-paste) augmentation [254] to increase
the diversity of training trajectories. This provides considerable improve-
ment in linear and non-linear forecasting performance. We use the PyTorch
toolbox to train all models for 20 epochs with the Adam optimizer and a
one-cycle learning rate scheduler.
CenterPoint is already a one-frame forecaster. It detects objects and predicts one-
frame future velocity vectors that are used as cues for tracking. It does this by
accumulating T previous LiDAR scans and encodes the accumulated point
cloud sequences using a VoxelNet [253] backbone. Such a tracker could be
used as input to auto-regressive forecasting methods, e.g., [189], however,
we argue that we can use such a spatiotemporal representation to directly
forecast.
CenterPoint models object locations as Gaussians. It does so by producing a 2D
bird’s-eye-view (BEV) heatmap, which models the continuous likelihood of
detections at each point in the BEV space. Detections are obtained by find-
ing local maxima in these heatmaps via non-maximum suppression (NMS).
By reusing this representation for future detection, our detection heatmaps
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are effectively a forecast of a continuous likelihood field for the locations of
objects. This continuous field naturally encodes the uncertainty of future
detections, accounts for multi-modality, and provides a continuous repre-
sentation for forecasting.

7.5 Experimental Evaluation
We conduct our experimental analysis on the nuScenes [22] dataset. As we
are tackling end-to-end forecasting from sensor data, we do not follow the
established evaluation protocol that provides ground-truth trajectories and
HDmaps as input (as explained in Sec. 7.3.1). First, we perform breakdown
analysis of evaluation metrics proposed in [135] and our forecasting mAP by
analyzing the performance of a simple constant position model (Sec. 7.5.1).
After verifying that our proposed evaluation setting is not easily “gamable”,
as discussed in Sec. 7.3.1, we thoroughly ablate our model and compare its
performance to other state-of-the-art methods (Sec. 7.5.2).
Repurposing NuScenes Tracking Dataset. nuScenes [22] recently intro-
duced a large-scale multi-modal dataset recorded in Boston and Singapore.
It provides 1000 twenty-second logs that are fully annotatedwith 3D bound-
ing boxes. This work explicitly focuses on forecasting based on LiDAR data,
obtained with a 32 beam LiDAR sensor recorded at 20 Hz, covering 360-
degree view. We follow the official protocol and evaluate forecasting on the
car class up to 3 seconds in the future. We evaluate forecasting performance
on the pedestrian class in the appendix. As the test set is hidden, we fol-
low [135] and conduct our analysis on the official validation split.

7.5.1 Metric Breakdown Analysis

In this section, we analyze different evaluationmetrics by comparing a trivial
constant positionmodel to several state-of-the-art forecastingmethods [135,
149,189]. For the task of end-to-end forecasting from raw data, methods re-
port both detection and forecasting confidence scores. For the simple con-
stant positionmodel, we threshold trajectories such thatwe only report those
where the final position overlapswith the initial position (i.e the object is sta-
tionary) with high confidence. A good forecasting evaluation metric should
indicate that the trivial constant position baseline is not a good predictor, as
it only correctly predicts future locations of stationary objects and explicitly
assumes a stationary world. Do existing metrics reveal this?
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ADE@60 (↓)FDE@60 (↓)ADE@90 (↓)FDE@90 (↓)ADE avg. (↓)FDE avg. (↓)AP stat.
f (↑)AP lin.

f (↑)AP non−lin.
f (↑)mAPf (↑)

Constant Position (CP) 0.38 0.63 0.48 0.76 0.37 0.64 66.3 0 0 22.1
PnPNet [135] 0.58 0.93 0.68 1.04 - - - - - -
PnPNet w/o Tracker [135] 0.69 1.09 0.75 1.14 - - - - - -
Trajectron++ [189] 1.13 2.54 1.25 2.71 1.08 2.42 59.2 8.1 2.8 23.4
SPF2 [227] - - - - 1.04 1.04 - - - -
Fast and Furious∗ (FaF) [149] 0.74 1.59 0.83 1.69 0.73 1.56 64.8 22.2 7.5 31.5

Table 7.1: Metric Breakdown Analysis: We compare our simple constant
position model to state-of-the-art prediction models, highlighting differ-
ences among various proposed metrics. ADE/FDE based metrics mea-
sured at different recall rates favor our trivial constant position baseline over
state-of-the-art methods [135, 149, 189]. Only our proposed forecasting mAP
(mAPf) favors state-of-the-art models over the constant position baseline.
We report numbers for PnPNet [135] and SPF2 [227] from their respective
papers. Note: Lower ADE/FDE is better and higher APf is better.

To answer this question, we report the results of our analysis in Table 7.1.
We analyze the results using average andfinal displacement (ADEandFDE)
errors at {60, 90}% recall [135], and a variant that averages results over all
recall thresholds [227] (see Sec. 7.3.1 for a discussion of these metrics). Our
trivial constant position baseline yields state-of-the-art results under the afore-
mentioned evaluation settings. Current metrics are “gameable” by this triv-
ial forecaster.

What about our forecasting mAP (Sec. 7.3.2)? We analyze these methods
both through the lens of each motion class (AP stat.

f , AP lin.
f and AP non−lin.

f ),
and as an aggregate. First, we observe that the constant position model APf

evaluated over static cars performs better than FaF*, a state-of-the-art end-
to-end forecaster. However, when we evaluate on the subset of cars that
are in motion, AP lin.

f and AP non−lin.
f confirms that our metric behaves as ex-

pected: we obtain 0AP with the constant position model, indicating that it
fails to predict the motion of moving cars. On the other hand, FaF∗ obtains
7.5 AP non−lin.

f , indicating that motion forecasting from the raw sensory data
is a very challenging problem. We observe that Trajectron++ outperforms
the constant position model for moving objects (8.1 AP lin.

f ), but does not
reach the performance of the constant position model or FaF∗ on stationary
objects.

A goodmetric should summarize the performance on the full set of cars,
i.e., in addition to predicting themotion ofmoving cars, a goodmodel should
correctly predict that parked cars are unlikely to move in the near future.
This is achieved by our forecasting mAP that averages AP stat.

f , AP lin.
f and

APnon−lin.. Our mAPf ranks state-of-the-art FaF∗ (31.5 mAPf) favourably
over the constant position baseline (22.1mAPf), as expected. Based on this
analysis, we are confident we have the right tools to analyze FutureDet thor-
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oughly!

7.5.2 Ablation and Comparison to State-of-the-Art

K=1 K=5
AP stat. AP lin. AP non−lin. mAP AP stat. AP lin.. AP non−lin. mAP

APdet. APf APdet. APf APdet. APf mAPdet. mAPf APdet. APf APdet. APf APdet. APf mAPdet. mAPf

Detection + Constant Velocity 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.2 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.2
Detection + Forecast (c.f . [149]) 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5
Trajectron++ [189] 70.3 59.2 65.8 8.1 90.0 2.8 75.4 23.4 70.3 61.7 65.8 9.8 90.0 4.3 75.4 25.3
FutureDet 70.1 65.5 62.9 24.9 91.8 10.1 74.9 33.5 70.1 67.3 62.9 27.7 91.7 11.7 74.9 35.6
FutureDet-PointPillars 70.1 64.1 63.4 24.8 92.4 9.6 75.4 32.8 70.7 67.5 63.4 28.8 92.0 11.9 75.4 36.1
FutureDet +Map 70.2 65.5 62.7 24.3 91.7 9.4 74.9 33.1 70.2 67.5 62.7 27.1 91.7 11.0 74.9 35.2

Table 7.2: Joint car detection and forecasting evaluation on nuScenes. We
adopt top-K evaluation for forecasting and evaluate under two settings of
K = 1 and K = 5 (for forecasting only). We further breakdown the perfor-
mance of eachmodel by examining the detectionAP (APdet.) and forecasting
AP (APf) on static, linear, and non-linearlymoving sub-categories. First, we
find that methods that are trained to detect objects in the current frame have
higher overall APdet. (Detection + Constant Velocity, row 1), while methods
that are trained to detect objects in future frames have higher overall APf

(c.f. FutureDet, row 4), which is expected by design. For forecasting, sur-
prisingly, Trajectron++ (row 3) is outperformed by constant velocity pre-
dictions (row 1), suggesting that this is indeed a challenging problem and
constant velocity is a strong baseline. FutureDet consistently outperforms
other baselines on non-linear trajectories. Notably, for K = 5, we improve
the non-linear object forecasting accuracy by 4%over FaF*. FutureDet trained
with a PointPillars backbone provides modest improvement across metrics,
and performs best overall.

After confirming that our proposed forecasting mAP is a suitable metric
for joint object detection and forecasting, we compare FutureDet to a number
of baselines and two state-of-the-art methods.
Detection + Constant Velocity. We begin with an surprisingly simple, yet
strong baselinewhich is often overlooked in forecasting literature. This base-
line takes the detections, as well as the estimated velocity from our Center-
Point detector [241], and simply extrapolated forecasts as if objects are mov-
ing with constant velocity. Since CenterPoint is such a strong detector, this
baseline produces strong results. Most of the ground-truth objects are ap-
proximatelymovingwith a constant velocity, eithermoving directly forward
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or are stationary. We expect this model to under-perform on non-linear tra-
jectories.
Detection + Forecast (FaF∗, c.f. [149]). This variant predicts a different veloc-
ity offset at every time step into the future for each detection, and derives tra-
jectories by integrating velocities in the forward direction. This is precisely
what Fast and Furious (FaF) does [149]. For an apples-to-apples compar-
ison, we re-implement FaF using a CenterPoint-backbone and denote this
model as FaF∗. This method predicts a single trajectory per detection.
Trajectron++. We compare all of the aforementioned variants and ablations
of our method to the state-of-the-art auto-regressive trajectory prediction
model, Trajectron++ [189]. This model is indicative of current state-of-
the-art approaches for the traditional forecasting task where ground truth
tracks are given. With this comparison, wewish to outline how the standard
three-stage detection-tracking-forecasting approach compareswith our end-
to-end forecasting method. To construct this baseline, we begin with off-
the-shelf detection and tracking results fromCenterPoint [241]. CenterPoint
performs tracking using the velocity offset estimates to match detections in
each frame using a greedy matching between the current frame detections
and previous frame detections. Trajectron++ then takes these predicted tra-
jectories as input for forecasting.
FutureDet. . We detect objects directly in future frames and backcast these
future detections to the reference frame. Intuitively, the advantage of this
variant over simple forecasting (FaF) is in that it encourages the network
to learn a better feature representation for forecasting by placing ”multiple
bets” on the future position of objects in the current frame. As shown in
Figure 7.2, this method naturally allows for a multiple-future interpretation
of the observed sensory data (as discussed in Sec. 7.4). In Figure 7.3, we
show qualitatively that our method can represent multiple futures. We note
that the highest confidence future trajectories looks like constant velocity
predictions as the training data is biased towards static and linearly moving
objects. FutureDet is able to learn road geometries withoutmap information,
as indicated by the curved trajectories.
Discussion. We compare the results of the aforementioned variants to Fu-
tureDet as well as Trajectron++ [189] in Table 7.2. First, we notice that mov-
ing object forecasting under our end-to-end setting is a challenging prob-
lem — none of the methods we study have high APf , suggesting the need
for the community to focus on this problem. Second, despite the constant
velocity model being conceptually simple, it performs on par with our FaF
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Figure 7.3: We qualitatively evaluate forecasts from FutureDet. We denote
ground-truth trajectories with green and multiple future predictions with
blue for the highest confidence forecast and cyan for the remainingmultiple-
future predictions. Since we repurpose CenterPoint, a state-of-the-art de-
tector, current frame detection performs well. Often, our model predicts
that moving objects may be moving with constant velocity with high confi-
dence. Given the data bias, where most objects are either stationary or are
moving with constant velocity, this is a reasonable output. We highlight the
multiple-future detection output in the top left.

re-implementation and improves on Trajectron++ by +7.8 mAPf . Unfortu-
nately, this constant velocity baseline is usually under-emphasized in the lit-
erature. We argue here that it still serves as an important baseline. The poor
performance of Trajectron++might also hint that performing direct end-to-
end forecasting is advantageous over a three-stage approach of detection-
tracking-forecasting, where errors can easily compound. FutureDet takes a
different approach compared to existing methods. Our method improves
upon all other baselines in termsnon-linear objectAPf and themotion category-
averaged mAPf (our primary metric). In addition, this multi-future inter-
pretation also allows the performance to be improved in the K = 5 evalua-
tion, where the forecast with minimum FDE from the top 5 ranked forecasts
for each detection is evaluated. Note that for FutureDet AP static

f , K = 1 re-
sults slightly decrease because bundling multiple trajectory estimates into
one multi-future prediction for a single object reduces recall. However this
is more than made up for in the increase in performance for detection and
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forecasting moving objects at K = 5. We train a version of our model with
road masks as an additional input channel into the BEV feature representa-
tion (after the sparse-voxel backbone). This brings very little change to the
results. We hypothesize that adding the map information does not provide
additional information as it can be easily be learnt from the raw LiDAR in-
put. However, further exploration is required to evaluate how to best fuse
map information.

7.6 Conclusion
This paper presents a new end-to-end method for trajectory forecasting di-
rectly fromLiDAR sensor data. Our proposed FutureDet is a natural forecasting-
by-detection framework that allows for a multi-future interpretation of the
observed evidence and establishes a new state-of-the-art. We provide thor-
ough analysis of existing evaluation metrics for end-to-end forecasting and
reveal that they can be gamed by a simple constant position model. To this
end, we propose a new set of evaluation metrics based on the average pre-
cision metric that comprehensively evaluates joint detection and forecasting
performance. This allows us to conduct a thorough analysis that reveals
that a constant velocity model is a surprisingly strong baseline that should
be considered in future forecasting work.
Limitations. As we do not explicitly enforce diverse trajectory generation,
many of ourmultiple-futures are closely clustered. While FutureDet presents
the first method for end-to-end forecasting from raw sensory data, capable
of multi-future predictions, generation of diverse, multi-modal predictions
remains an open challenge.
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7.A Appendix

7.A.1 Examining FutureDet’s Predictions

Figure 7.4: The raw output of FutureDet includes many false positive detec-
tions and forecasts (shown in red). Further post-processing is required to
leverage the output of our end-to-end model in further downstream tasks.

One of the challenges of forecasting from raw sensor data is appropri-
ately handling false positive detections and forecasts. The standard forecast-
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ing setup allows us to buildmodels in isolation from other factors. However,
the standard assumption of having perfect input trajectories is not feasible in
practice as it critically depends on perfect object tracks (and by extension per-
fect detections) as inputs, which are nearly impossible to obtain in practice.
As seen in Figure 7.4, the raw output of FutureDetmakes it challenging to use
in practice. Intuitively, training a model to make “multiple bets” about the
position of objects may induce more false positives. Further post-processing
is required to leverage the output of our end-to-end model in further down-
stream tasks.

7.A.2 Evaluating Pedestrian Forecasting
In this section, we evaluate pedestrian forecasting on the nuScenes dataset.
Forecasting pedestrianmovement can be considerablymore challenging than
car forecasting because pedestrians are more dynamic. Given our 3 second
forecasting horizon, pedestrians typically do not move very far from their
initial position. As a result, we define tighter match thresholds for pedes-
trian forecasting. A successful match in the current frame is determined
based on the distance from the center, averaged over distance thresholds
of {0.125, 0.25, 0.5, 1}m. A successful match in the final timestep is deter-
mined based on the distance from center, averaged over distance thresholds
of {0.25, 0.5, 1, 2}m respectively. We highlight the results of pedestrian fore-
casting in Table 7.3.

We see that FutureDet performs the best overall, with 26.9 mAPf . Look-
ing to Figure 7.5, it is clear that pedestrian detections are tightly clustered
together, making back-casting less effective overall. We also find that many
of the predicted multiple-futures are very similar to one another, indicating
that the model is not able to model dynamic pedestrian futures. However,
FutureDet still consistently improves over FaF* by 1% on APf metrics.

We train a version of our model with road masks as an additional input
channel into the BEV feature representation (after the sparse-voxel back-
bone). This brings very little change to the results. We hypothesize that
adding themap information does not provide additional information. How-
ever, further exploration is required to evaluate how to best fuse LiDAR and
map information.

7.A.3 FutureDet Architecture
In this section, we further describe the implementation details of FutureDet.
Specifically, we focus on the detector head architecture, and the sampling

172



K=1 K=5
AP stat. AP lin. AP non−lin. mAP AP stat. AP lin.. AP non−lin. mAP

APdet. APf APdet. APf APdet. APf mAPdet. mAPf APdet. APf APdet. APf APdet. APf mAPdet. mAPf

Detection + Constant Velocity 55.1 33.3 73.5 27.8 96.9 12.4 75.2 24.5 55.1 33.3 73.5 27.8 96.9 12.4 75.2 24.5
Detection + Forecast (c.f . [149]) 53.7 35.0 73.9 30.8 97.2 13.3 74.9 26.4 53.7 35.0 73.9 30.8 97.2 13.3 74.9 26.4
Trajectron++ [189] 55.1 16.4 73.5 7.8 96.9 5.2 75.2 9.8 55.1 18.1 73.5 9.0 96.9 6.9 75.2 11.3
FutureDet 53.1 33.3 72.4 32.6 95.3 14.7 73.6 26.9 53.1 35.1 72.4 34.0 95.2 15.0 73.6 28.0
FutureDet-PointPillars 41.0 20.7 69.1 29.8 93.3 13.3 67.8 21.3 41.0 22.9 69.2 31.0 93.1 13.5 67.7 22.5
FutureDet +Map 52.4 33.0 71.8 32.0 95.3 14.4 73.2 26.5 52.4 34.8 71.8 33.4 95.2 14.8 73.2 27.7

Table 7.3: Joint pedestrian detection and forecasting evaluation on
nuScenes. We adopt top-K evaluation for forecasting and evaluate under
two settings of K = 1 and K = 5 (for forecasting only). We further
breakdown the performance of each model by examining the detection AP
(APdet.) and forecasting AP (APf) on static, linear, and non-linearly mov-
ing sub-categories. Note that since pedestrians have smaller displacement
over a 3 second forecasting horizon, we tighten the match thresholds as
described above. FutureDet performs the best, improving over FaF* by 0.5
mAPf . As with car forecasting, FaF* and the constant velocity baseline beat
Trajectron++ by 14.4 % and 16.6 % mAPf respectively. Notably, training
with a PointPillars backbone dramatically reduces FutureDet performance
on all metrics. In addition, we find that using a road mask does not signifi-
cantly change the performance of FutureDet, indicating that themodelmight
already be reasoning about spatial context.

strategy used to improve nonlinear trajectory forecasting.
Recurrent Features. We re-purpose CenterPoint for our implementation

of FutureDet. However, CenterPoint is designed to detect objects in the cur-
rent frame. It uses a shared feature representation for all classes. Although
this effectively captures object spatial location, it does not allow for a robust
representation of forecasted features. Specifically, since FutureDet detects
cars and future-cars, we expect that the features required to detect these
temporally offset classes should be different. To this end, we allow themodel
to learn a shallow network that transforms current features into future fea-
tures as shown in Figure 7.6.

Trajectory Sampler. The distribution of static, linear, and non-linear tra-
jectories in the nuScenes dataset is unbalanced. Since most cars are parked,
we find that 60% of the trajectories are static. In order to address this data
imbalance, we leverage copy-paste augmentation proposed by [254] to over-
sample linear and nonlinear trajectories during training. Importantly, we
ensure that our copy-paste augmentation samples at the trajectory level, in-
stead of at the class level, allowing consistent augmented trajectories across
all detection heads (i.e. classes).
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Figure 7.5: We qualitatively evaluate pedestrian forecasts from FutureDet
(we denote the ground-truth trajectories with green and multiple future
predictionswith blue for the highest confidence forecast and cyan for the re-
maining future predictions). Pedestrian forecasting ismore difficult than car
forecasting due to the dynamic movement of pedestrians. FutureDet strug-
gles to accurately forecast pedestrians because they often travel in crowds.
Thismakes it difficult to accurately detect and forecast individual pedestrian
motion. Often, the predicted multiple futures are all linearly moving, and
are often similar to each other.
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Figure 7.6: FutureDet’s detector head architecture adapts CenterPoint’s ar-
chitecture for the task of forecasting. Importantly, CenterPoint shares one
set of features for all classes (i.e. cars, trucks, pedestrians, etc.). Since we
adapt the architecture to forecast cars and future-cars, the single shared
feature may not be able to effectively model long-term forecasting. To this
end, we allow the model to learn a shallow network that transforms current
features into future features.

7.A.4 Computing Motion Subclass AP

Computing subclass average precision is straightforward in principle if both
predictions and ground-truth have subclass labels; one can simply treat the
sub-class as a class and apply standard precision-recall metrics. In our case,
predictions do not comewith a subclass label. Instead, wematch predictions
to ground-truth at a class-level, and assign the ground-truth sub-class to the
true positive matched predictions. However, this will not produce any sub-
class labels for false positive predictions (that are unmatched). Instead, the
metric evaluation code derives sub-class labels for false positive predictions,
by applying the same logic used to derive sub-class labels for the ground-
truth. We follow this procedure as it is also used to produce small-vs-large
sub-class precision-recall metrics for standard detection toolkits [139]. Fi-
nally, although we use the language of sub-classes, our formalism can apply
to any attributes associated with a detection.

We derive the subclass label as a function of the (ground truth or pre-
dicted) trajectory. For each trajectory, we first compute the IoU between
bounding boxes at the first and last timestep. If the IoU is greater than 0,
this trajectory is considered to be static. Next, using the velocity of the first
timestep bounding box, we apply a constant velocity forecast to the initial
position to compute a target box. If the IoU between the last timestep box
and target box is greater than 0, this trajectory is considered to be linear.
All trajectories that are not classified as static or linear as considered to be
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non-linear trajectories.

7.A.5 Broader Impact
Autonomous agents will play an important role in the automation of tasks
that can be considered unsafe (e.g., due to a high number of traffic acci-
dents). Forecasting is at the heart of autonomous vehicle navigation: safe
navigation necessitates motion prediction of surrounding agents to ensure
driving safety. By leveraging LiDAR sensory data to accomplish this task, we
can better understand world geometry and dynamics. Moreover, establish-
ing the proper metrics, particularly considering the performance of moving
and static car trajectories, is essential for building safe embodied robotics
systems.
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Chapter 8

Conclusion and Future Work

This thesis provides principled evaluation frameworks and novel constraint-
aware solutions for various computer vision problems under resource con-
straints. By fully embracing resource constraints into design principles, we
revisitwell-establishedproblems throughnovel perspectives, and comewith
up with creative algorithms for efficient visual understanding.

For evaluation frameworks, we introduce budgeted training, a formal
setting to study training strategies that optimize for a given computation
budget. Next, we propose streaming accuracy to evaluate latency and accu-
racy coherently with a single metric for real-time online perception. More
broadly, building upon this metric, we introduce the streaming perception
meta-benchmark that is applicable to any single-frame understanding tasks.
Lastly, we propose forecasting AP to evaluate end-to-end detection, tracking
and forecasting, eliminating the gameability in existing true-positive-only
metrics.

For constraint-aware solutions, we propose a budget-aware learning rate
schedule to effectively optimize training for a given budget. We propose
dynamic scheduling and asynchronous forecasting for streaming percep-
tion. Additionally, we propose biologically-inspired attentional warping for
2D object detection, and discusses its future extension to arbitrary image-
based tasks. We also propose a progressive distillation approach for learn-
ing lightweight detectors from a sequence of teacher models. To complete
the perception stack, we propose future object detection with backcasting
for end-to-end detection, tracking, and forecasting.

In the following subsections, I discuss several future directions based
on the above thesis projects. These directions include online and stream-
ing forecasting as an extension to streaming perception, task-agnostic atten-
tional warping as an extension to the detection-specific foveated imagemag-
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nification, and multi-model 3D detection as alternative approach to far-field
3D detection.

8.1 Online and Streaming Forecasting

𝑡 +1𝑡𝑡 − 1

Agent #1

Agent #2

Agent #3

Offline Forecasting

Timestamps

Query pointers

𝑡 +1𝑡𝑡 − 1
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Agent #3

Online Forecasting (Ours)

Timestamps

Query pointers

(a) Online & Offline Settings

Ego
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𝑡 − 1 𝑡 𝑡 + ∆𝑇

………

………

A

Ego
Ego

B

A

B

(b) Unique Challenges for Online Forecasting
A is occluded by B. A just re-appears from occlusion.

Occlusion Shot History Prediction

(c) Demo & Forecasting for All Agents

Ego

Figure 8.1: Overview of our proposed online forecasting project. (a) Set-
ting comparison. Embodied perception operates under an online setting,
where motion forecasting module needs to concern every agent on contin-
uous timestamps. However, current benchmarks are mainly offline as they
concentrate on a small subset of agents on a set of temporally discontinuous
timestamps. The contrast motivates us to set up a benchmark for “online
forecasting”. (b)Unique questions for online forecasting. Online forecast-
ing reveals additional challenges. For example, agent A experiences occlu-
sion (frame t) and de-occlusion (frame t+∆T) during its lifetime and raises
the challenge of forecasting for occluded agents (frame t) and forecasting
with short history observation (frame t + ∆T). (c) A demo showing what
the expected predictions are for all agents in the scene. For clarity, we only
show the top-3 predictions (blue) for moving agents.

In streaming perception, we build ameta-benchmark by simply querying
the state of the world at the current time for every timestamps. If we query
a future time instead of the current time, we arrive at a streaming forecast-
ing benchmark, which evaluates the performance of full-stack algorithms
with a focus on long-term motion forecasting. Since full-stack perception
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may be complex, we also consider a simplified version where we remove
the real-time constraint, and this resulting version is equivalent to online
motion forecasting.

Motion forecasting has been largely studied in an offline and snapshot-
based setting. While such a setup promotes the field through simplification
and standardization, it also sweeps many problems under the rug. In an on-
line world, a forecasting algorithm needs to make not only correct, but also
temporally coherent predictions. Since objects frequently appear and dis-
appear, occlusion reasoning emerges as a new challenge for forecasting algo-
rithms. As shown in Fig 8.1, we plan to construct the a benchmark for online
forecasting: we require algorithms to continuously output fixed-horizon fu-
ture trajectories for every agent given the perception results till the current
time. Such a requirement for continuous and complete understanding aligns
well with the nature of the problem, and is necessary for practical deploy-
ment. Implementation-wise, we can create the benchmark by re-purposing
the publicly available Argoverse tracking dataset for online forecasting [29].
We hope to provide a platform and inspiration for future research into this
under-explored yet crucial problem.

8.2 Learning to Zoom and Unzoom

While the thesis have shown that attentional warping improves algorithms
efficiency, the specific form of warping prevents us to apply our warping
construction to tasks with dense spatial outputs such as semantic segmen-
tation (see Fig 4.3 for more details on the original warping formulation).
We plan to design a novel invertible and differentiable warping. As long as
the base model architecture contains some intermediate stage with spatially
aligned features, we can “unwarp” at that point to revert any spatial defor-
mations, and this is the case with most modern convolutional backbones.
Therefore, the proposed warp is largely model- and task-agnostic, and also
does not require any changes to the original loss formulation. We plan to
demonstrate the versatility on a variety of tasks: 2D object detection with
RetinaNet [138] and Faster-RCNN [180] on Argoverse-HD [29], semantic
segmentation with PSPNet [251] on Cityscapes [42], and monocular 3D de-
tection with FCOS3D [220] on nuScenes [22].
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8.3 Fusion-Based Far-Field 3D Detection
Chapter 6 introduces a novel representation for far-field 3D detection based
on LiDAR input. We observe that most autonomous vehicles also have RGB
cameras equipped and their dense signal may be provide additional infor-
mation to objects at a distance. Therefore, we plan to explore multi-modal
3D detection, which takes both LiDAR and RGB images as input. For this
problem, we notice there are several issues in existing evaluation frame-
work. Contemporary AV benchmarks such as nuScenes underemphasize
this problem because they evaluate performance only up to a certain dis-
tance (50m). One reason behind this limitation is that obtaining far-field
3D annotations is difficult, particularly for LiDAR sensors that produce very
few point returns for far-away objects. Lack of a good benchmark impov-
erishes the exploration of far-field detection methods, and even leaves the
conventional wisdom unjustified that high-resolution RGB is more effective
when one looks far enough “out”. Towards a far-field detection benchmark,
we plan to develop a method to find well-annotated scenes, and a better
distance-aware metric for reliable far-field evaluation. We also plan to pro-
pose novel fusion-based solutions for far-field 3D object detection.
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points. In ECCV, 2020. 158

[253] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In CVPR, pages 4490–4499, 2018. 135, 155, 164

[254] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-
balanced grouping and sampling for point cloud 3d object detection. arXiv
preprint arXiv:1908.09492, 2019. 164, 173

[255] XizhouZhu, JifengDai, LuYuan, andYichenWei. Towards high performance
video object detection. In CVPR, pages 7210–7218, 2018. 77

[256] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2:
More deformable, better results. In CVPR, 2019. 129

[257] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided
feature aggregation for video object detection. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 408–417, 2017. 77

199



[258] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma, Wei Li, Hong-
sheng Li, and Dahua Lin. Cylindrical and asymmetrical 3d convolution net-
works for lidar segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9939–9948, 2021. 136

[259] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI
magazine, 1996. 37, 48

[260] Shlomo Zilberstein and Abdel-Illah Mouaddib. Optimal scheduling of pro-
gressive processing tasks. International Journal of Approximate Reasoning, 2000.
37

[261] Martin Zinkevich. Online convex programming and generalized infinitesi-
mal gradient ascent. In ICML, pages 928–936, 2003. 9

[262] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement
learning. ICLR, 2017. 8, 22, 102

200


