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Abstract

Existing GAN inversion and editing methods are well suited for only a target
images that contain aligned objects with a clean background, such as por-
traits and animal faces, but often struggle for more difficult categories with
complex scene layouts and object occlusions, such as cars, animals, and out-
door images. We propose a new method to invert and edit such complex
images in the latent space of GANSs, such as StyleGAN2. Our key idea is to
explore inversion with a collection of layers, spatially adapting the inversion
process to the difficulty of the image. We learn to predict the “invertibility”
of different image segments and project each segment into a latent layer.
Easier regions can be inverted into an earlier layer in the generator’s latent
space, while more challenging regions can be inverted into a later feature
space. Experiments show that our method obtains better inversion results
compared to the recent approaches on complex categories, while maintain-

ing downstream editability.
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Chapter 1

Introduction

The recent advances of Generative Adversarial Networks [19], such as Pro-
GAN [29], the StyleGAN family of models [31-33], and BigGAN [12], have
revived the interest in GAN inversion and editing [13,63]. In GAN editing
pipelines, one first projects an image into the latent space of a pre-trained
GAN, by minimizing the distance between the generated image and an in-
put image. We can subsequently change the latent code according to a user
edit, and synthesize the output accordingly. The latent code can then be
changed, in order to satisfy a user edit. The final output image is synthe-
sized with the updated latent code. Several recent methods have achieved
impressive editing results for real images [2, 8,40, 62] using scribbles, text,
attribute, and object class conditioning. However, existing methods work
well for human portraits and animal faces but are less applicable to more
complex classes such as cars, horses, and cats. Compared to faces, these ob-
jects have more diverse visual appearance and cluttered backgrounds. In
addition, they tend to be less aligned and more often occluded, all of which

make inversion more challenging.



1.1 Contributions

In this work, our goal is address this limitation of existing methods and in-
vert challenging images better. We build our method upon two key obser-

vations.

(1) Spatially-adaptive invertibility: first, the inversion difficulty varies across
different regions within an image. Even if the entire image cannot be in-
verted in the early latent spaces (e.g., W and W space of StyleGAN2 [33]),
if we break the image into multiple segments, the easier regions can still be
inverted in these latent spaces with high fidelity. For example, in Figure 1.1,
while the car and sky regions are well-modeled by the LSUN Car genera-
tor, shrubs and fences are not, as they appear less frequently in the dataset.

Besides, both regions are occluded by the foreground car.

(2) The trade-off between invertibility and editability: as noted by prior work [51,
65], the choice of layer can determine how precisely an image can be recon-
structed and the range of downstream edits that can be performed. Early
latent layers of a generative model (W, W) are often unable to reconstruct
challenging images, but allow meaningful global and local editing. In con-
trast, inversion using later intermediate layers reconstructs the image more
precisely at the cost of reduced editing capability. As invertibility increases
in later layers, the editability decreases. The first two rows in Figure 1.1 show
these trade-offs concretely for a real car image.

Considering the spatially-varying difficulty and the trade-off between
editability and invertibility, we perform spatially-adaptive multilayer (SAM)
inversion by choosing different features or latent spaces to use when invert-
ing each image region. We train a prediction network to infer an invertibility

map for an input image indicating the latent spaces to be used per segment

2



(a) Invertibility Map (b) Inversion (c) Edit color (d) Edit pose

l reconstruction

L | editability

Single
layer
inversion

g T reconstruction

| cditabitity

Spatially-Adaptive | T reconstruction

Multilayer Inversion
(ours)

T cditability

Figure 1.1: Inverting and editing an image with spatially adaptive multi-
layer latent codes. Choosing a single latent layer for GAN inversion leads
to a dilemma between obtaining a faithful reconstruction of the input image
and being able to perform downstream edits (1st and 2nd row). In contrast,
our proposed method automatically selects the latent space tailored for each
region to balance the reconstruction quality and editability (3rd row). Given
an input image, our model predicts an invertibility map (a), which contains
the layer index used for each region. This allows us to precisely reconstruct

the input image (b) while preserving editability (c,d).

as shown in the second column of Figure 1.1. Our approach enables gen-
erating images very close to the target input images while maintaining the

downstream editing ability.

1.2 Results

In order to validate our proposed method, we conduct experiments on mul-
tiple domains such as Faces, Cars, Horsks, and Carts. The results show that

our method can maintain editability while reconstructing even challenging
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images more precisely. We measure reconstruction with standard metrics
such as PSNR and LPIPS. Concretely, we show an improvement of about 2
PSNR and 0.2 LPIPS across all domains.

Next, we evaluate the image quality and the downstream editing ability by
conducting user preference studies. The results show that the images gen-
erated by our method is preferred over competing method by the users. Fi-
nally, we demonstrate the generality of our idea on different generator ar-
chitectures (StyleGAN2 [33], BigGAN-deep [12]), and different paradigms

(optimization based or encoder based).

1.3 Overview

In Chapter 2, we begin with a discussion of prior works that attempt the task
of GAN Inversion, defining different latent spaces in a pretrained GAN, and
finding edit directions. After reviewing the related works, Chapter 3 de-
scribes the different components of proposed inversion algorithm, including
the selection of optimal latent space for each image region, fusing of differ-
ent latent spaces, the objective function optimized during inversion, and the
steps used for subsequent downstream editing. Chapter 4 compares the pro-
posed inversion method with other recent approaches, and shows results of
ablation experiments motivating the importance of each component in the

method.



Chapter 2

Related Works

2.1 GAN Inversion and Editing

Since the introduction of GANs [19], several methods have proposed pro-
jecting an input image into the latent space of GANs for various editing
and synthesis applications [14, 35,42, 63]. This idea of using GANSs as a
strong image prior was later used in image inpainting, deblurring, composit-
ing, denoising, colorization, semantic image editing, and data augmenta-
tion [7,8,15,16,20,54,59]. See a recent survey [57] for more details. The
enormous progress of large-scale GANs [12,28-33,61] allows us to adopt
GAN inversion for high-resolution images [1,2]. One popular application is
portrait editing [3,4,37,50].

Current methods can be categorized into three groups: optimization-
based, encoder-based, and hybrid methods. The optimization-based meth-
ods [1,2,33,36,63] aim to minimize the difference between the optimization
output and the input image. Despite achieving fairly accurate results, the

slow process requires many iterations and may get stuck in local optimum.
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To accelerate the process, several works [14,35,42,43,51,53,63] learn an en-
coder to predict the latent code via a single feed-forward pass. However, the
learned encoder is sometimes limited in reconstruction quality compared to
the optimization-based scheme. Naturally, hybrid approaches that combine
the best of both schemes emerge [5,8,10,24,53,63], but the trade-off between
quality and speed still persists. Existing inversion and editing methods work
well for simple classes like faces but give sub-optimal results for more chal-
lenging images. We propose a solution method that is reliable even for such

images.

2.2 Choosing the Latent Space

Several previous methods [1,2] focus on inverting the input image into the
latent space of StyleGAN models [32,33] that use AdalN layers [23] to con-
trol the “style” of an image. In addition to exploring different projection
schemes, they demonstrate that the choice of latent space is a key factor due
to the unique style-based design of the StyleGAN. Instead of projecting an
image into the latent space [14,63], recent works propose projecting an im-
age into style parameter space [1,2,55] and convolutional feature space [64].
As noted by recent work [51,65], there exists a trade-off between the invert-
ibility and editability, and no layer can maximize both criteria at the same
time.

To handle complex images, recent papers propose using multiple codes
of the same layer [20,26,49], splitting image into segments [18], using con-
secutive images [58], explicitly handling misaligned objects [6,24,27], mod-
ifying the generator architecture for better editing ability [34,39], adopting a
class-conditional GAN [24,38,49], and fine-tuning the generator to an input
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image [8,38,44].

Different from the above methods that operate on a single layer, we take
into account the inversion difficulty across different input image segments
and perform the inversion separately for each segment by using multiple
latent spaces. We show that our method outperforms a concurrent generator

fine-tuning method [44] in our experiments.

2.3 Finding Edit Directions

After inversion, we can edit the inverted code by traversing semantically
meaningful directions computed using supervised [9, 25,47] or unsuper-
vised approaches [17,21,41,48,52]. Most of these methods compute these di-
rections offline [9,25,48] and provide them as pre-canned options for users.
Other works calculate the editing directions during inference time to sup-
port more flexible editing interfaces with scribbles [63] and text inputs [40].

We show that our method can work well with different types of directions.



Chapter 3

Approach

We aim to invert images using a pretrained GAN while maintaining editabil-
ity. We begin by learning to predict an invertibility map that indicates which
latent spaces should be used for each image region. Next, we fuse features
from different latent spaces to generate an image that matches our input and

can be edited in the latent space.

3.1 Predicting Invertibility

As discussed previously, different latent spaces have different inversion ca-
pabilities. We learn a network to predict what parts of the image are invert-
ible using any given latent space. Here we use “invertibility” to indicate how
closely our generated result can match the input image. In Figure 3.1 (left),
we show how we learn invertibility predictor for different latent spaces. We
collect a dataset of image pairs that consists of the input image = € R”*"W>3
and its reconstruction #; € R¥*W>3 into the I'" latent space, following the

optimization-based inversion suggested by Karras et al. [33]. We consider 5
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Figure 3.1: Training the Invertibility Segmenter. On the left we show how
each of the invertibility predictior S; are trained. We invert all images in
the training set using one of the five candidate latent spaces and use the
LPIPS [60] spatial error map e, as supervision. Next (right) we show how
the trained invertibility models are used to generate the final inversion la-
tent map. We first predict how difficult each region of the image is to in-
vert for every latent layer using our aforementioned invertibility network.
Subsequently we refine the predicted map using a pre-trained semantic seg-
mentation network and combine them using the user-specified threshold 7.
This combined invertibility map shown on the right is used to determine the

latent layer to be used for inverting each segment in the image.

different latent spaces ® = {W™, Fy, Fs, F3, Fio}, where the index of F cor-
responds to the feature layer index of the StyleGAN2 generator and W is
the concatenation of different vectors from IV space, in which W space is the
output space of the MLP network of StyleGAN2. We choose W™ instead of
W, as it provides better inversion results and more fine-grained and disen-
tangled control when performing the downstream edits. Next, we compute

the reconstruction loss as follows

e; = Lopps(z, 2y), (3.1)
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where ¢, € R"*W is the LPIPS spatial error map [60] between z and their
inversions #; for each latent space.

The parts that are easy to invert have smaller spatial errors, whereas diffi-
cult regions induce larger errors. We subsequently train a network to predict
the invertibility for each latent space, regressing to the LPIPS spatial error

map via an ¢, loss. The training loss can be formulated as follows:

Sl = arg I%lln 62 (Sl(.%), 61) . (32)

Once trained, this network predicts the invertibility for any input image,
at any layer, in a feed-forward fashion. Our trained invertibility network
shares a common backbone with different prediction heads corresponding
to each individual latent space. Next, we leverage our predicted invertibility
to assign different regions to different latent spaces for the inversion. How-
ever, our prediction can be noisy and may not be consistent within the same
semantic region. This could potentially result in inconsistent inversions and
edits, as different parts of the same region can be assigned to different latent
codes. We refine our prediction using a pretrained segmentation model. For
every segment, we compute the average predicted invertibility in the region
and use the value for the entire segment. As shown in Figure 3.1 (right),
such a refining step helps us align the invertibility map with natural object

boundaries in the image.

3.2 Adaptive Latent Space Selection

We observe that latent spaces have an inherent trade-off between recon-

structing the input image and utility for downstream image editing tasks,
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Figure 3.2: Trade-offs between invertibility and editibility. We show in-
version and editing when the input is inverted using different single latent
layers. As we go down in feature space reconstruction improves but edit-
ing capabilities decreases. The improvement in reconstruction is shown vi-
sually for a single image and quantitatively with PSNR using 1000 images.
Whether the edit was applied successfully is indicated by @ and ®.

as also noted by recent work [51,65]. For example, choosing the latent space
to be W would result in an inverted latent vector that is amenable for edit-
ing, but sub-optimal for obtaining a faithful reconstruction for difficult in-
put images. On the other hand, choosing activation block £y, (close to the
generated pixel space) would have great reconstruction, but limited editing
ability. In Figure 3.2, we show this trade-off for different choices of latent
spaces explicitly. We invert the input image using a single latent layer, and
observe that the reconstruction quality improves monotonically as we use

layers increasingly closer to the output pixels.
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Committing to a single latent layer for the whole image forces us to a sin-
gle operating point on the trade-off between editability and reconstruction,
across the whole image. Instead, we aim to adapt the latent layer selection,
depending on the image content in a region. To do this, for each image seg-
ment, we choose the earliest latent layer, such that the reconstruction still
meets some minimum criteria.

More concretely, for each segment, we choose the most editable latent
space from ® (W being most editable and Fj, being least), with predicted
invertibility above threshold 7 for that segment. We choose this threshold
value empirically such that the inversion is perceptually close to the input
image, without severely sacrificing editability. In Figure 3.3, we show our
final inversion map, with different latent spaces assigned to different seg-
ments in the input image. The simple car region gets assigned to the W~
space, whereas the difficult to generate background regions, which typically
cannot be generated by the native latent space, gets assigned to the later F

and Fj latent spaces.

3.3 Training Objective

We implement our multilayer inversion in two settings: 1) optimization-
based and 2) encoder-based. In the optimization-based approach, we di-
rectly optimize the latent space ¢ for each image. For the encoder-based ap-
proach, we train a separate encoder for each latent space. Our encoder takes
in input image along with invertibility map as input to predict the latent
space. The encoder-based approaches are faster than optimization based
approach but are typically achieve worse reconstruction. The goal of both

paradigms is to find the latent code that reconstructs the input accurately,
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while maintaining editability.

Image formation model. In Figure 3.3, we show how the latent codes are
combined to generate the final image. Our predicted w™ € W is directly
used to modulate the layers of pre-trained StyleGAN2. For feature spaces
F e {F,, Fg, Fg, 10}, we predict the change in values Af for the regions
that are to be inverted in that layer. We predict the change in layer’s feature,
rather than directly predicting the feature itself, as propagating the features
from earlier layers provides a meaningful initialization to adjust from.

The output feature value is a combination of both w* and A f masked by
a binary mask indicating which region should be inverted in that layer. For

example, to produce the feature f, € F;, we have:

fa= gO—>4(Ca w+) +my © Af4, (3.3)

where g;_,; denotes the module from the i-th to the j-th layers in the con-
volutional layers of the StyleGAN2, c is the input constant tensor used in
StyleGAN2, my is the refined, predicted invertibility mask bilinearly down-
sampled to corresponding tensor size, and © denotes the Hadamard prod-
uct. Note that g;_,; is modulated by the corresponding part of the extended
latent code w*. Similarly, we can calculate all the features and the final out-

put image as follows:

fo = gae(fa,w™) +me © Afs
fs = goos(fo,w™) +ms © Afy
fro = gs—10(fs, w™) +mip © Afrg
T = g10-16(f10,w"). (3.4)
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Next, we present our objective functions to optimize the latent code ¢ =
{wt, Afy, Afe, Afs, Afio}. We reconstruct the input image while regulariz-

ing the latent codes, in order to be meaningful for downstream editing tasks.

Reconstruction losses. We use the £, distance between the inverted image
Z and the input image = along with LPIPS difference as our reconstruction
losses.

Lrec = lo(x, Z) + ALpesLopps(z, T), (3.5)

where A ppps is the weight term.

W-space regularization. As noted in [51,56], inverting an image with just
reconstruction losses results in latent codes that are not useful for editing.
For our inversion methods, we use different latent regularization losses for

different latent spaces. For w™, we use the following;:
N

Lw =Y [(n = 0)" S = ) + [ — g |P], (3.6)

n

where w; is the n' component of the w* vector, w,, = LeakyReLU(w;", 5.0), i
and ¥ are the empirical mean and covariance matrix of randomly sampled
and converted w vectors respectively. The first term applies a Mutlivariate
Gaussian prior [56], and the second term minimizes the variation between

the individual style codes and the first style code.

F-space regularization. For the feature space, we enforce our predicted
change A f to be small, so that our final feature value does not deviate much

from the original value.

o= 3 llaf? (37)

Afep\wt
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Final objective. Our full objective is written as follows:

where A\ and Ap control the weights for each term.

3.4 Image Editing

After obtaining the inverted latent codes, we edit the images by applying the
edit direction vector to the inverted w™ latent vector. We use GANSpace [21]
and StyleCLIP [40] for finding an editing direction dw™ in the W latent
space. Segments inverted in W+ space get modulated by the entire code w™+
dw™, whereas segments inverted in intermediate feature spaces { Fy, Fg, Fx, Fio}
get modulated by w* + dw* only for the layers which come after that fea-
ture space layer. For example, segments inverted in F}, space get modulated
by w* for the layers until the 10* layer, and w* + dw* for the layers after-
ward. This is necessary, as our inverted feature would not be compatible

with w' + Jw™.
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Chapter 4

Experiments

In this chapter we perform detailed quantitative and qualitative analysis to

show effectiveness of our inversion method across different datasets.

4.1 Datasets

We test our method on pretrained StyleGAN2 and BigGAN-deep genera-
tors trained on a variety of different challenging domains and follow the
commonly used protocol for the different domains [5,43,44]. For all exper-
iments we use the official released StyleGAN2 [33] trained on LSUN Cars,
LSUN Horses, LSUN Cats, and FFHQ [32] datasets, and the official released
BigGAN-deep [12] trained on ImageNet [45]. We use a subset of 10,000 im-
ages from the dataset for training our invertibility prediction network S and
1000 images for the evaluation. More concrete details about the dataset splits

are mentioned below.

Cars. For the car domain, we train our invertibility networks using the train

split of the Stanford cars dataset and evaluate our method using 1,000 im-
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ages of size 512 x 384 randomly selected from the LSUN Cars dataset. The
StyleGAN2 generator used is trained on the full LSUN Cars dataset. For the
encoder inversion regime, we train our encoders on the full training split of

Starford cars dataset.

Horses. For the horses domain, we use 10,000 images sampled from the
LSUN Horses dataset for training our invertibility networks and a different
set of 1000 images from the same dataset for evaluating. The StyleGAN2
generator used is trained on the full LSUN Horses dataset. For our encoder
training, we use the same set of 10,000 images from the LSUN Horses dataset

used for training the invertibility networks.

Cats. Similarly, we use 10,000 images from the LSUN Cats dataset for train-
ing our invertibility networks and a different set of 1000 images for the eval-
uation. The StyleGAN2 generator used is trained on the full LSUN Cats
dataset. For our encoder training, we use the same set of 10,000 images from

the LSUN Cats dataset used for training the invertibility networks.

Faces. We use 10,000 images from the FFHQ dataset for training our invert-
ibility networks and a 1000 images from the CelebA-HQ dataset for the eval-
uation. The StyleGAN2 generator used is trained on the full FFHQ dataset.

4.2 Evaluation

We evaluate the performance of various inversion methods on two tasks -
reconstruction and editibility. The reconstruction between the inverted im-

age and the input image is measured using PSNR and LPIPS [60]. Note
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that different prior inversion methods use different LPIPS backbones. We
use LPIPS-VGG for all of our experiments and comparisons. As pointed out
by [51], measuring the editing ability of the latent codes is difficult and im-
age quality metrics such as IS [46], FID [22] and KID [11] do not corre-
late with the user preference. Therefore we show qualitative comparisons
and conduct user preference studies to evaluate the quality of inverted and

edited images.

4.3 Reconstruction Comparison

We first compare our inversion method to other state-of-the-art GAN inver-
sions methods in the optimization-based regime. StyleGAN2 Inversion and
StyleGAN?2 Inversion using W invert image in 1 and W™ latent space re-
spectively. [56] applies multi-variant Gaussian prior constraint while doing
the inversion. We also compare against Hybrid W™ Inversion that uses a pre-
trained e4e encoder [51] for initialization. Recently proposed pivotal tuning
inversion (PTI) [44] additionally finetunes the weights of pre-trained Style-
GAN?2 after inverting the image in the W space. Table 4.1 shows that our
method achieves better reconstruction across all the metrics compared to
baselines. Our approach is able to invert difficult regions using intermedi-
ate layers feature space, whereas baselines struggle to invert by just relying
on single W and W space. PTI has the ability to change the StyleGAN2
weights to invert the image, but it uses heavy locality regularization to dis-
courage the deviation from original weights, which limits its inversion capa-
bility. Also, for simpler image parts, we get better inversion as our W latent
code just focuses on parts that it can invert. In contrast, other approaches try

to invert both easy and difficult parts using the same code, resulting in sub-
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Cars Horses Cats Faces

Method
LPIPS (]) PSNR (1) LPIPS (}) PSNR (1) LPIPS(}) PSNR (1) LPIPS(|) PSNR (1)

StyleGAN2 [33] (W) 0.34 14.44 0.45 13.46 0.44 14.47 0.28 18.32
StyleGAN2 [33] (W) 0.24 17.29 0.34 15.74 0.35 17.11 0.20 22.10
Gaussian Prior [56] 0.45 15.92 0.42 17.19 0.49 17.01 0.15 25.18
Hybrid ede [51] 0.36 17.05 0.42 16.68 0.42 17.91 0.15 25.13
PTI [44] 0.38 19.39 0.43 18.73 0.41 20.45 0.26 22.36
SAM - optimization (ours) 0.16 22.81 0.23 21.07 0.22 2291 0.13 26.89
ede [51] 0.47 14.57 0.55 13.98 0.56 14.68 0.34 19.39
ReStyle (pSp) [5] 043 16.44 0.45 16.53 0.48 17.58 0.29 2147
ReStyle (ede) [5] 0.45 15.61 0.52 14.50 0.53 15.64 0.34 19.72
SAM - encoder (ours) 0.28 19.21 0.34 18.61 0.37 18.59 0.29 21.10

Table 4.1: Reconstruction comparison to prior methods. We use PSNR
and the LPIPS-VGG for the evaluating the reconstruction using 1000 im-
ages. For the challenging categories, we achieve a better reconstruction than
all baseline approaches in both the optimization based and encoder based
paradigms. The faces images are simpler and contain fewer challenging re-
gions. Subsequently, our method performs slightly better than prior meth-
ods when inverting with optimization and similar to the best performing

ReStyle (pSp) with encoders.

optimal inversion even for the easier part. We perform similar comparisons
of encoder based methods and show that an encoder trained using our pro-
posed method outperforms the encoder baselines [5,51] on challenging im-
ages. On faces, our encoder obtains a similar reconstruction with just a single
forward pass as the best performing baseline ReStyle (pSp), which requires
tive forward passes. We also compare the runtime of optimization-based
and encoder-based inversion methods using 1000 Car images in Figure 4.1.
In both paradigms, our method obtains a better reconstruction in a shorter

amount of time.
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Figure 4.1: Reconstruction at different runtimes. =~ We compare the re-
construction of different GAN inversion methods in the optimization and
encoder regimes using 1000 car images. Each of the method uses a single
NVIDIA RTX 3090 GPU. Our proposed method achieves a closer reconstruc-
tion to the input in a shorter amount of time for both the optimization and

encoder paradigms.

4.4 Qualitative Results

Next, we show our ability to edit the reconstructed complex images in Fig-
ure 4.2. In the third column, we show our ability to reconstruct difficult

regions using more capable latent layers [, and Fy, whereas the easy-to-
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generate regions use the more editable W*. This separation allows us to
perform challenging edits while faithfully reconstructing the target image.
Figure 4.4 shows inversion and editing results for a class-conditioned Big-
GAN model.

In Figure 4.3, we observe that we get much closer inversion and realistic
edits than baselines approaches. In some cases such as the first image, we
can preserve even fine-grained details like the type of light and car wheels
during editing stage. StyleGAN?2 inversion using W+ generates realistic look-
ing images but does not matches the input images well whereas PTI gen-
erates images that are closer but lack realism, especially after editing. We
hypothesize that this is due to the incompatibility between the finetuned

weights and the edit directions learned before finetuning.

4.5 User Study

We additionally conduct a user preference study to evaluate the realism of
inverted and edited images. Table 4.2 compares our method to three clos-
est baselines methods (PTI [44], StyleGAN?2 Inversion using W+, and Hybrid
W+ Inversion) using 500 different target images from each category. Every
pair is evaluated by 3 randomized and different users, resulting in 1500 com-
parisons per baseline per category. The results show that users prefer our

results over the baselines for all challenging image categories.

4.6 Ablation Studies

In this section we ablate the different components of our method and show

their importance. More concretely we study effects of latent space regular-
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Inversion Editing
Method

Cars Horses Cats Cars Horses Cats

PTI [44] 7.0% 11.6% 11.6% 18.4% 16.4% 38.0%
SAM (OUI‘S) 93.0% 88.4% 88.4% 81.6% 83.6% 62.0%

ede hYbl'ld 23.2(70 21.80/0 22.40/0 36.40/0 38.30/0 44.6(70
SAM (ours) 76.8% 78.2% 77.6% 62.6% 61.7% 55.4%

Table 4.2: User preference comparison with prior methods. We invert and
edit 500 from each of the image categories and ask 3 different users (1500
pairs per comparison). Results show that images generated by our method
are preferred by the users. The spread in the values computed with boot-

strapping is < 2.5%.

ization, refining of the invertibility map, and using the object class labels as

the invertibility map.

Regularizing the latent spaces. The Equation 3.3 regularizes the feature
space to ensure our predicted feature values do not deviate too much from
original feature space distribution. This is necessary to ensure that our edited
direction is compatible with our predicted feature values. In Figure 4.5, we
show two inversion and editing results on the same input image. In the
top row, the inversion is performed without the regularization £y and the
bottom row shows the results when the feature space is regularized. The

images in the right column show the edited images when an edit direction
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corresponding to adding trees is applied with the same magnitude to both
the inverted latent codes. Both the cases achieve a good inversion, the lack

of feature space regularization results in an inversion that is not editable.

Refining the invertibility map. Next, we show the importance of the re-
finement step introduced in Section 3.1 of the main paper. This step ensures
that a semantic class gets assigned to a single latent space. In Figure 4.6, we
show that edited image become inharmonious without such a refinement
step. In particular, the top row in Figure 4.6 shows that different parts of the
car get inverted using different latent spaces without the refinement step.
As a result, we get incoherent size change edits for the car as the edits will
be applied to different layers for different car regions depending on which

latent space it uses.

Class segmentation as invertibility map. The well-performing GAN mod-
els are typically trained using an object specific dataset. Here, we consider an
inversion approach that uses per-pixel class labels instead of our predicted
invertibility map. For a GAN trained on the car images, we invert the car

segment with W* and the rest of the image background is inverted using Fe.
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Invertibility Map Inversion Edited Images

Figure 4.2: Qualitative inversion and editing results. In the first column we
show input images for which we predict the invertibility map shown in the
second column. We are able to obtain inverted images which closely match
the input as shown in third column. In the remaining columns, we show our
edit results. We can apply complex spatial edits like pose and size changes in
seamless fashion even though different segments were inverted in different

latent spaces.
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Inversion

PTI

PTI

SAM
(ours)

Add Trees

Figure 4.3: Comparison with other optimization based inversion meth-
ods. We compare our inversion and editing results with StyleGAN2 W+
inversion and pivotal tuning. We obtain much closer and detailed inversion
to the target image compared to other approaches. Also, we are able to ap-
ply semantic edits while maintaining the realism of the image. We are able
to perform both low level edits like color change as well as high level edits

like size changes.
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Figure 4.4: Inversion and editing using BigGAN-deep. We show that our
spatially-adaptive method of using different latent layers (Z*, F) can be ap-
plied to class-conditional models such as BigGAN-deep [12] trained on Im-
ageNet. In the third column we show that the inversion obtained is very
close to the input image. Subsequent edits can be performed using either

changing the latent code (middle row) or modifying class embedding vec-

tor (bottom row).
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Inversion 7 Edit — add trees

without
Lp

Figure 4.5: Regularization in the features space F. In top row, we show
results without feature space regularization. We can see that edit to add
tree does not work as without regularization, our predicted feature space
may not be close original feature space distribution and edit direct would

not be compatible anymore.
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Figure 4.6: Necessity for refining the invertibility map. In top row, without
refining the car segment get assigned to multiple feature space which results
in inconsistent edit with artifacts. Where as with refining in bottom row, the
entire car region get assigned to W* space which gives us consistent edit of
changing the car size.

Edits
lor wheels '

Invertibility Map Inversion

forced car
segmenter

Our
prediction

Figure 4.7: Using a car segmenter. We first invert a given target image with
the assumption that the car regions of the image should be invertible with
the native W*. This assumption leads to a poor inversion that is not able to
reconstruct the target car image. Whereas our method correctly predicts a
good latent space for the different regions and consequently generated better

inversions and edits which retain the identity of the original car better.
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Chapter 5

Conclusions

Our key idea is that different regions of an image are best inverted using
different latent layers. We use this insight to train networks that predict the
“inversion difficulty” of dif- ferent latent layers for any given input image.
Image regions that are easy to reconstruct can be inverted using early la-
tent layers, whereas difficult image regions should use the more capable fea-
ture space of the intermediate layers. We show inversion and editing results
using our proposed mul- tilayer inversion method on multiple challenging
datasets. A limitation of this approach is that if a given input image is ex-
tremely difficult, our method will predict the use of the later latent layer that

will correspond to being able to edit only limited things.
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