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Abstract

Global positioning system (GPS) interfacing with applications such as

Google Maps has proven very useful for navigation in outdoor open

settings. However in crowded metropolitan environments with high rise

buildings or in indoor settings, GPS quickly becomes unreliable. Using

sensors found on commodity smartphones to perform accurate pedestrian

localization in complex indoor settings remains a challenging problem.

RSSI based methods provide absolute positioning but provide sparse

updates and require a dense network of beacons. Inertial Measurement

Unit (IMU) based methods provide high rate, smooth, relative positioning

but are very sensitive to noise and drift with time. In this thesis we

propose a smartphone based indoor localization system which combines

the absolute positioning from Bluetooth RSSI based localization with

the smooth relative positioning from IMU based inertial odometry and

map information to fix drift. This system reduces the number of beacons

required for accurate localization by a factor of 5 compared to state-

of-the-art RSSI only methods. Compared to state-of-the-art IMU only

methods, our method is 2.4x more accurate and compared to state-of-the-

art inertial map-prior networks it is 19% more accurate. We deployed the

deep models to mobile phones in the form of iOS and Android apps to run

real-time localization thereby facilitating path planning and turn-by-turn

navigation.
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Chapter 1

Introduction

Let us start by defining some terminology that will be used extensively throughout

this document. Localization is the process of determining where a mobile robot is

located with respect to its environment. The map of the environment is known or

provided. Mapping on the other hand is the process of generating the map of the

environment given that the location of the robot is known. Simultaneous Localization

and Mapping (SLAM) is the combination of the two – localization without having a

map of the environment. Navigation1 is the combination of localization with path

planning, i.e. given a starting point (from localization) and one or more destinations

find the “best” path defined by some evaluation metric to compare goodness of two

trajectories.

Smartphone based localization has proven to be highly effective and useful in

outdoor settings in the past decade. Global Positioning System (GPS) started by the

US Department of Defence in the 1970s found widespread use in navigation systems

and became commonplace with the advent of the smartphone. Map services such as

Google maps and Apple maps running on everyday smartphones use GPS modules

built in practically all modern smartphones to provide localization, planning and

turn-by-turn navigation. Such services have proven the usefulness of localization

1Navigation is a poorly defined term and different people mean different things when they say
navigation. This definition of navigation is what we mean throughout this text.
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1. Introduction

technology to everyone. Unfortunately, GPS requires an unobstructed line-of-sight

to four or more GPS satellites. Due to this nature, its use is limited to outdoor

settings with little to no obstruction to the GPS satellites. In large metropolitan

cities which have high rise buildings it fails to localize accurately even outdoors as

the high rises reduce the accurate use of the signal either in the form of not receiving

the signal, or, signal being observed indirectly after bouncing off a tall building

resulting in ”multi-path” measurements. In indoor environments a similar challenge is

experience. Researchers have been looking at multiple different sensors to fill this void

as localization is an important basic requirement for a lot of robotics and automation

tasks.

1.1 Sensors

1.1.1 Camera

Cameras are probably the most common as well as intuitive sensors to use for such a

task as eyes are the primary means of localization and mapping used by humans and

most of the animal kingdom. To that extent, cameras have been used extensively

in SLAM applications be it in unmanned ground vehicles (UGV) or unmanned

aerial vehicles (UAV) commonly known variations of which are self driving cars and

autonomous drones. With the rapid growth of the field of computer vision and image

processing, camera based localization has also seen significant growth both in terms

of accuracy as well as efficiency resulting in fast, accurate, real-time systems. In

combination with the fact that different kinds of cameras have abilities to see in the

dark or combination of multiple cameras can be used to estimate depth, structure,

optical flow etc. cameras are used extensively in a wide range of devices and robotics

is no exception. All modern day smartphones have very high quality cameras that

can and have been leveraged by a lot of smartphone based applications to provide

localization and navigation in places where GPS stop working. Inspite of their great

success in robotics applications, in the context of smartphone based localization

and navigation, camera based approaches have not gained significance due to their

2



1. Introduction

high battery drain and privacy concerns which are only becoming more important

to everyday consumers. While recording in outdoor public environments might be

acceptable, user studies have shown that indoor private environments are far more

concerned about the privacy and security of their environment. Making a lower

power consumption and privacy preserving localization system using cameras that

are recording their surroundings is a challenging problem to solve that we leave for a

different study.

1.1.2 GPS

Global Positioning System (GPS) works by calculating the distance of the receiver

(smartphone or robot) from multiple GPS satellites. Each satellite carries an accurate

record of its position and time, and transmits that data to the receiver. Since the

speed of radio waves is constant and independent of the satellite speed, the time

delay between when the satellite transmits a signal and the receiver receives it is

proportional to the distance from the satellite to the receiver. At a minimum, four

satellites must be in view of the receiver for it to compute four unknown quantities –

three position coordinates and the deviation of the receiver clock from satellite time.

GPS modules in smartphones are capable of achieving upto 5 meters of accuracy.

However this requires unobstructed line of sight to the satellites without which the

accuracy drop drastically very quickly. Thus, being surround with tall buildings

or being in an indoor environment with the walls obstructing a line of sight to the

satellites, localization using GPS is not very useful.

1.1.3 Radar

Radar is a detection system that uses high frequency electromagnetic waves to

determine the distance, angle and radial velocity of objects. The system consists

of a transmitter and a receiver. Radio waves from the transmitter reflect off the

object and return to the receiver, giving information about the object’s location and

speed. It is widely used in the aviation industry and military equipment for air and

terrestrial traffic and flight control systems, air-defense systems, antimissile systems,
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1. Introduction

aircraft anti-collision systems, guided missile target locating systems. Marine radars

are also used in ocean surveillance systems to locate landmarks and other ships.

Some self-driving cars are also using radar combined with other sensors for long

range visibility. While radar sensors are useful in long range applications and might

be helpful to add them to robotics applications with an appropriate power level to

achieve a desired level of range, they are not commonly found on smartphones today.

1.1.4 Sonar

Similar to Radar, sound navigation and ranging or Sonar uses sound waves for ranging

and navigation. It is mostly used in under water equipment for navigation, measuring

distances (ranging), or even communicating with or detecting objects on or under the

surface of the water, such as other vessels. Active sonar, like Radar, has a transmitter

and receiver, which emits a sound and listens for echos thereby measuring distance

using time-of-flight. Passive sonars only has a receiver and is listening for sound

made by other objects thereby detecting presence. Active and passive sonars have

many military, civilian and scientific applications. In naval warfare, passive sonars

are used because of their stealth characteristics to detect presence of other vessels.

They are widely used in both surface ships and submarines. Target motion analysis

(TMA) can be done to determine trajectory. Torpedoes sometimes have sonar built

into them to guide them more accurately to their target. Sonars are used for a lot of

scientific applications for biomass detection, wave and water velocity measurements

and under water gas leak detection. Under water robotics extensively use sonar for

ranging and navigation. In self-driving cars sonar is used for obstacle detection and

collision avoidance systems. However, similar to radar, sonar has not been commonly

found in modern day smartphones. Some work has been done to use the speakers and

microphones in smartphones for doing sound based ranging but many more studies

need to be done on this field which we leave for a different time.
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1. Introduction

1.1.5 LiDAR

Similar to radar and active sonar, LiDAR or light detection and ranging, uses

electromagnetic waves that reflect off of objects to calculate time of flight and thus

estimate the distance and velocity of objects. LiDAR uses lasers to achieve this,

thought the wavelength of the light used depends on the environment – earth’s surface,

terrestrial or the ocean bottom. LiDAR is commonly used to make high-resolution

maps, with applications in surveying, archaeology, geography and every other field

that has some use of 3D maps and models. LiDAR is the most common sensor after

cameras found in a wide range of robotics applications including but not limited to

self-driving cars. A variant of LiDAR – flash LiDAR – are event found on modern

smartphones to help in augmented reality (AR) algorithms and applications. LiDAR

sensors are a key component in many SLAM applications to generate an accurate

map of the environment. However, these kind of sensors are very expensive, consume

a lot of battery power and require very high computational capabilities to make the

best use of the data. While flash LiDARs might be commonplace in smartphones in

a few years, as of this writing they are only found in the most high-end smartphones

to serve a very specific need for AR applications.

1.1.6 IMU

Inertial Measurement Units (IMU) are a combination of accelerometer, gyroscope and

magnetometer. IMU is used in approaches like Pedestrian Dead Reckoning (PDR)

or closed source estimators like the iOS CoreMotion API. IMUs are used for step

detection to detect when the user has taken a step. Making an assumptions about the

size of the user’s stride, when a step is detected, add this stride length in the direction

of the estimated heading to the last estimated position to update the estimate. Such

approaches experience significant drift, and the stride length assumption in particular

is easily broken. More accurate IMU sensors have been developed that do not suffer

the drifting and noise problems that are commonplace in IMU sensors found in

smartphones (MEMS IMUs). The US Dept. of Defense in particular have developed
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1. Introduction

highly accurate IMU units which can directly be integrated to get very accurate

position estimates in GPS deprived or jammed regions. Such IMUs can cost thousands

of dollars and we do not expect such IMUs to become commonplace anytime soon.

IMUs are commonly used along with cameras in a Visual Inertial Odometry (VIO)

system to help algorithms differentiate camera motion from scene object motion

which is a difficult problem in visual only odometry or tracking tasks. IMU sensors

being cheap, low power, privacy protecting and found on practically all smartphones

can be very useful in making a smartphone based localization system.

1.1.7 RSSI

Received signal strength indicator (RSSI) is a measurement of the power present in a

received radio signal. RSSI based techniques using radio signals of different frequencies

have been developed. Bluetooth Low Energy (BLE), WiFi, Radio-frequency identifica-

tion (RFID), Near Field Communication (NFC) and Ultra-wide band (UWB) radios

are all common radio signals that are used in RSSI based approaches. RSSI-based

localization can be categorized into two categories – fingerprinting and trilateration.

Fingerprinting uses a database of RSSI strengths at various known reference points

captured as a data collection step. At inference time, this database is cross-referenced

to estimate the location. Trilateration uses models of RSSI signal attenuation to form

geometric constraints on the receiver with respect to a set of transmitters (or vice

versa). Closed source APIs such as Google Fused Location Provider (FLP) uses WiFi

RSSI in combination with traditional GPS to provide more accurate and battery

efficient geolocation services. They create a map of WiFi access points accross the

world and then use fingerprinting approaches to estimate location. The high accuracy

of RSSI based localization techniques given a dense enough network of sensors are

the primary reason that they have been so commonly used for indoor applications.

WiFi and BLE hardware being commonplace in almost all portable electronic devices

also support the use of such sensors for a smartphone based localization system.
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Chapter 2

Related Work

RSSI only, odometry only, combining RSSI and odometry, combining odometry with

maps, combining RSSI and odometry with maps – all possible groupings have been

studied in some form for indoor agent localization including the different kinds of

aforementioned sensors which are not found in commodity smartphone hardware. In

this thesis, we will limit ourselves to the methods that can, potentially, run on a

smartphone.

2.1 RSSI only methods

Various RSSI based localization techniques using Radio-frequency identification

(RFID) [1] and Ultra-wide band (UWB) radios [2] have been developed as RSSI

information is available ubiquitously and is easy to retrieve using smartphone apps.

RSSI from Bluetooth Low Energy (BLE) or WiFi remain a popular choice [3, 4, 5, 6]

as Bluetooth and WiFi chips are installed on across the board on smartphones unlike

NFC or UWB chips which are often omitted on budget offerings for cost cutting.

Deciding between RSSI from BLE or WiFi is a far more difficult one to make.

On one hand WiFi is already installed and actively maintained in most buildings

for the connectivity requirements. The biggest strength is also its biggest weakness.

WiFi scanning can be easily exploited to locate the user without asking for location
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2. Related Work

permission and due to privacy concerns on iOS WiFi scanning and fingerprinting is

not available to third-party apps. Thus, if iOS is an important target platform, WiFi

scanning is out of question. On the other hand BLE beacons are low power, usually

battery operated devices that require very little configuration and maintenance

to be useful as a proximity detection or localization technique. Multiple simple

communication protocols have been developed for these dumb devices – iBeacon,

Eddystone and Altbeacon. For these reasons and since iOS is by-far the most used

platform in the United States, we went with BLE RSSI. However, the low power of

BLE beacons limit the range of such beacons and a dense network of these beacons

are required for a reasonable level of accuracy.

RSSI-based localization can be categorized into two categories – fingerprinting

and trilateration. Fingerprinting uses a database of RSSI strengths at various known

reference points captured as a data collection step. At inference time, this database

is cross-referenced to estimate the location. Non-parametric methods such as nearest

neighbors, as well as parametric approaches such as neural networks have been used

to achieve this. Trilateration uses parametric models of RSSI signal attenuation

to form geometric constraints on the receiver with respect to a set of transmitters

(or vice versa). Trilateration methods [7, 8] are able to estimate position within 2

meters accuracy. Models such as Gaussian models [3], Monte Carlo [9], Bayesian

[10], Hidden Markov Models [11], and radio propagation models [12] have all been

proposed to achieve this. Ring overlapping approaches have also been proposed

[13, 14], however, these methods tend to require additional calibration, both at the

antenna and the phone level. This calibration process significantly inhibits their

usage and generalization ability across different phone models. Modelling signal

propagation methods for complex indoor environments is extremely difficult [15] and

lead to wrong estimates.

With the advent of machine learning, methods have tried to leverage these para-

metric approximators instead. [16, 17, 18, 19] combine use of robust feature estimates

from deep networks with classical machine learning techniques using algorithms

like probabilistic KNNs and HMMs. [20] proposed a deep network that is trained

end-to-end with WiFi RSSI. [21] tried solving the inverse problem of localizing beacon

8



2. Related Work

scanners, using RSSI strengths received.

All these methods require a very dense network of these low power beacons and do

not generalize well to a wide range of hardware on the receiving end. Using multiple

experiments we show that different phones have very different signal characteristics

of the received RSSI and simple signal processing have to be specifically tuned on a

per-device basis to make them generalize across a range of devices.

2.2 Odometry only methods

Traditional, non-learning based inertial odometry approaches like Pedestrian Dead

Reckoning (PDR) generally begin by estimating device heading via filters like Mag-

wick’s [22] or closed source estimators like the iOS CoreMotion API which utilizes

gyroscope, accelerometer, and magnetometer signals. It is usually followed by a step

detection using the IMU signals to detect when the user has taken a step. PDR

methods make assumptions about the size of the user’s stride and, when a step is

detected, add this stride length in the direction of the estimated heading to the last

estimated position to update the estimate [23]. Such approaches experience significant

drift, and the stride length assumption in particular is easily broken.

Many recent inertial odometry only methods have been using learning based

approaches. [24] uses a deep learning based approach to map IMU measurements

to user polar displacements like PDR but without making any assumptions about

the user stride thereby getting significant improvements in accuracy. [25] explored

residual networks with temporal CNNs and RNNs to find the best architecture for the

task of deep inertial localization. [26] added a Kalman filter to this architecture to

further improve accuracy. This approach improves heading estimation and achieves

even more accurate localization. [27] uses a data driven approach to estimating

accurate orientations thereby further reducing inertial heading errors. [28] combine

transformer-based neural networks with [25] and a large train dataset to impose

stronger constraints on possible walk-able areas in a given environment.

9



2. Related Work

2.3 Odometry + Map information

Odometry only localization methods have gained significant improvements in accuracy

by combining them with map information as it helps detect and fix any drift in the

estimation by detecting infeasible trajectories against the given map information.

Graph based systems build a map of nodes and edges with nodes in all walk-able

areas on the map and connecting every pair of nodes using an edge if that edge is a

feasible transition, i.e. there are no obstacles on that transition. The user’s trajectory

is then constructed as a sequence of such physically feasible transitions (edges) in

the graph. [29] implements a hidden Markov model (HMM) to localize agents with

unstable GPS signals on a graph of outdoor road segments. GPS signals are matched

to road segments, and based on known factors about the maximum travel speed of

the user and other constraints, a series of maximally likely transitions are estimated

via the Viterbi algorithm. [30] uses deep attention networks to outperform HMMs in

some scenarios for matching user travel to road segments.

In indoor environments, the graph typically has much less constraints compared

to the road network. Fewer constraints combined with higher accuracy requirement

leads to a dense graph. Conditional random fields (CRFs) have been traditionally

commonly used with such graph based approaches. [31] uses human step length

as the space between two nodes when setting up the graph and fully covering the

physically accessible space. Inertial odometry is used to transition between the nodes

of the graph. Graph based approaches can never localize more precisely than the

node spacing parameter and to that extent a pedestrian with slower than average

walking speed causes large drifts in estimates. Such approaches are also usually

very computationally heavy as they have to have a large densely connected graph in

memory and then traverse it.

Bayesian filtering approaches improve localization accuracy by combining informa-

tion sources like odometry and map information directly without an underlying set of

possible states to transition between. Extended Kalman filtering (EKF) is an efficient

approach to estimating user state from both odometry and external information.

However, it suffers from only maintaining one estimate of state and assumes Gaussian

10
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uncertainty. Maintaining multiple estimates of state until one is proven most likely

can be very useful, especially in indoor navigation, such as when it is uncertain which

side of a narrow obstacle the user has traveled on.

[32] uses particle filters (PF) as the state distributions are unknown, change over

time, and could be multi-modal. They maintain an estimated state distribution by

storing a set of particles which discretely represent the distribution. Odometry is

used to propagate the estimates (particles). A small amount of noise is artificially

added to the odometry to simulate the uncertainty in measurement. Particles are

then weighted based on external information such as how well their state matches the

output from a LiDAR scan. A resampling process keeps the particles with probability

proportional to their weight, maintaining a discrete distribution which best combines

both odometry and external information. Particle filters are simple and adaptable,

lending themselves well to localization on low compute devices.

Map constraints with particle filters are usually incorporated using heuristics which

heavily downweight the probability of particles with infeasible odometry propagation

according to the map. [23][33][34] have shown the practical effectiveness of particle

filter based approaches, but down-weighting is very sensitive to odometry noise and

can lead to particle weight degeneracy. [35] uses particle filters to calculate overlap

between map obstacles and a computed trajectory found by integrating a few previous

odometry measurements backwards from a particle location. Particles are given more

weight if there are fewer overlaps. This type of multi-step heuristic is less sensitive to

odometry noise than a single-step heuristic but still suffers from high levels of error

in inertial odometry.

[36] tracks a belief tensor containing all possible user states instead of individual

particles to fuse map information with odometry data. States are propagated similar

to a particle filter, and map information is used to downweight the probability of

states which enter obstacles as described before. This method does not noticeably

outperform a particle filter in their experiments and shares the problem of sensitivity

to odometry noise of particle filter methods which use hand-defined map heuristics.
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2.4 RSSI + Odometry + Map information

Multi-modal sensor fusion approaches that combine RSSI based methods with Odom-

etry + Map information methods reduce the number of beacons required in a RSSI

only method while using the global positioning information with the odometry-map

combination to better constrain map information specially in cases of symmetrical

or replicating map structures. [37] use a multi-step optimization technique using a

CNN to combine the trajectory forecast from WiFi RSSI + odometry method with

the map information.

12



Chapter 3

Approaches

We aim to develop an indoor navigation system that uses the different sensors available

on a commodity smartphone while being unobtrusive and privacy preserving. To

achieve this goal we started by developing a Bluetooth Low Energy (BLE) RSSI

based localization module and solve the problem of BLE generalizing to multiple

hardware from different manufacturers with very different signal characteristics. We

then combine the BLE module with the state-of-the-art data driven inertial odometry

method using a Particle Filter (PF) to reduce the number of beacons required to have

high levels of accuracy. The BLE localization module provides global positioning and

drift correction while the inertial module provides high frequency relative positioning

and smooth motion. To further reduce the beacon requirement and improve accuracy

by reducing the effect of drift, we encode floorplan (map) information using CNNs

and use that as the transition model of the Particle Filter (PF). We deploy this

localization system as mobile apps to ensure the efficiency and real-time capabilities

of the system. We built iOS and Android apps that leverage the full array of sensors

and perform real-time on-device localization thereby making it possible to have offline

turn-by-turn navigation in real-time and with all the processing happening on-device

while also having a reasonable battery consumption.
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3.1 BLE Localization

We use RSSI based localization to provide accurate global positioning. Given a dense

network of beacons, RSSI based methods are able to triangulate the user’s location

to decent levels of accuracy. WiFi RSSI scanning is not available to third party

developers on the iOS platform for privacy concerns. To that extent, we decided to

use Bluetooth Low Energy (BLE) beacons instead.

We use the iBeacon protocol developed by Apple for the BLE beacons. This allows

easy scanning on both iOS and Android. We developed the BLE data collection apps

on both iOS and Android to have a similar data collection and processing pipeline on

both platforms.

Figure 3.1: BLE signal comparison on different phones

In spite of our efforts to make the data collection process on both platforms as

close to each other as possible, we still faced many challenges. As shown in figure
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3.1 the BLE signal characteristics are not just different between iOS and Android

but even vary drastically between phones from different manufacturers all running

Android. To solve this problem, we decided to get a wide range of phones and train a

self-supervised network to be able to model the noise introduced by different phones –

even the phones the network has never seen at train time.

3.1.1 Dataset

Model Price OS Processor

Apple iPhone XR $600 iOS 13 A12 Bionic

Apple iPhone 8 $450 iOS 13 A11 Bionic

Apple iPhone 7 $190 iOS 13 A10 Fusion

Samsung Galaxy S10 $700 Android 10 Snapdragon SM8150 SD-855

Samsung Galaxy Note9 $600 Android 9 Snapdragon SDM845 SD-845

Samsung Galaxy A50 $300 Android 9 Exynos 9610

Google Pixel 4XL $900 Android 10 Snapdragon SM8150 SD-855

Google Pixel 3XL $550 Android 10 Snapdragon SDM845 SD-845

Google Pixel 3aXL $400 Android 10 Snapdragon SDM670 SD-670

Xiaomi Mi 9 $435 Android 9 Snapdragon SM8150 SD-855

Xiaomi Mi 9T Pro $360 Android 9 Snapdragon SM8150 SD-855

Xiaomi Redmi Note 8 $180 Android 9 Mediatek Helio G90T

Huawei Mate 20 Pro $550 Android 9 HiSilicon Kirin 980

Huawei Honor 20 Pro $340 Android 9 HiSilicon Kirin 980

Huawei Honor View 20 $290 Android 9 HiSilicon Kirin 980

Table 3.1: Smartphone models used as BLE Receivers.

To the best of our knowledge, [38] is the only publicly available BLE RSSI dataset.

The dataset ([38]) was collected using iPhone6S, receiving BLE RSSI from 13 different

iBeacons deployed in the Waldo Library of Western Michigan University. The dataset

contains two sub-datasets: a labeled dataset (1420 instances) and an unlabeled dataset

(5191 instances). As we try to analyze how varying phone types, change RSSI signals,

the data cannot be used for our analysis.

We collected a large scale BLE dataset with about 54k RSSI fingerprint samples

along with fine-grained location information, for 15 smartphone models. The setup

was deployed across a university floor spanning 2000 sq. m. in area. The dataset
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comprises of RSSI data ranging from BLE beacons for fifteen different phones from 5

major brands which include Apple, Samsung, Pixel, Huawei, and Xiaomi.

Figure 3.2: Data Collection Setup

We designed a rig, as shown in 3.2, which can hold three phones and a Kaarta

Stencil, running LiDAR based localization algorithms, on top to get precise ground

truth locations. Study in [39], suggests BLE data changes significantly with ori-

entations, so having three facing directions helps us in augmenting the BLE data

substantially at every single location. About 50 BLE beacons were installed all across

the first floor of a university, as shown in 3.2.

Typically fingerprinting is performed standing at specific reference locations,

collecting the RSSI and then using the BLE data at these reference locations to

localize. However, as the data collection procedure is static, we cannot expect the

methods to work very well when the robot/person is moving. Stencil by Kaarta is

a stand-alone, lightweight and low-cost system delivering the integrated power of

mapping and real-time position estimation with a precision of ±30mm. The device is
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based on the scientific work [40] and depends on LiDAR, vision and IMU data for

localization. The system uses a Velodyne VLP-16 connected to a low-cost MEMS IMU

and a processing computer running Robotic Operating System (ROS) for real-time six

DoF mapping and localization. A 10-Hz scan frequency is used for the data capture

[41]. For robust estimates, we use the multi-modal localization engine, which gives us

position estimates using data captured via both camera and LiDAR.

3.1.2 BLE RSSI Analysis

(a) w/o Interference (b) w Interference

Figure 3.3: RSSI vs. Time plots for the two experimental setups show that having
multiple beacons in the environment has little impact on the nature of the signal from
iPhone, some impact on the Pixel phone, but major impact in case of the Xiaomi
phone.
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Env. → No Interference W/ Interference

Phone↓ Mean Var SnR Mean Var SnR

iPhone 7 27.61 7.18 3.83 26.80 4.07 6.59

iPhone 8 30.20 1.73 17.49 27.52 8.25 3.34

iPhone XR 29.17 2.26 12.87 27.93 0.37 76.47

Galaxy S10 33.04 8.09 4.09 20.87 14.77 1.41

Galaxy Note 9 30.30 2.86 10.58 22.35 40.92 0.55

Galaxy A50 30.83 17.93 1.72 26.80 19.03 1.41

Pixel 4 XL 24.46 11.47 2.13 11.83 41.93 0.28

Pixel 3 XL 30.35 0.49 62.22 16.41 42.72 0.38

Pixel 3a XL 28.98 3.20 9.07 20.61 50.37 0.41

Mi 9 27.39 45.90 0.60 19.11 41.77 0.46

Mi 9T Pro 30.39 55.79 0.54 19.12 62.34 0.31

Redmi Note 8 32.33 4.35 7.43 22.50 43.95 0.51

Mate 20 Pro 34.67 1.39 24.88 26.33 21.87 1.20

Honor 20 Pro 28.04 11.91 2.35 21.07 35.63 0.59

Honor View 20 26.09 3.99 6.53 25.17 7.06 3.57

Table 3.2: Per phone signal statistics of one beacon in absence (w/o interference) and
in presence (w/ interference) of other beacons. RSSI distribution changes significantly
across phones.

In an isolated environment, we consider one beacon and one smartphone at a time.

The BLE beacon and smartphone are kept at a distance of 1m, and RSSI data is

collected for 60 seconds for each phone sequentially. We calculate the mean and the

variance of the RSSI signal for each phone using the signal strengths registered during

the 1-minute interval (Table 3.2 and Figure 3.1) Although the mean RSSI being

registered across different phones is approximately the same, the variance changes

drastically across phones. For some phones, signal drops are observed.

We repeat a similar experimental setup, with the same beacon, but in the presence

of multiple other beacons to act as sources of interference. According to [15], we know

multi-path fading, and interference due to multiple beacons can lead to a significant

change in RSSI behavior. We observe 3.2 in addition to the variance, in this case, the

mean RSSI changes significantly across phones, contrary to what we observed in the

no interference setting. The variance is also not directly related to what we observed
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Figure 3.4: BLE Localization Model Architecture

in the absence of other sources of interference. For instance, Pixel3XL records a

significant variance in this setup, and iPhone XR shows a remarkably stable reading,

Figure (3.3). Empirically, we conclude, that the behaviour of RSSI distribution can

change significantly across phones in the presence of other sources of interference.

3.1.3 Method

Consider an indoor environment with B beacons and P different smartphone models.

Let the set of beacon indices be B = {1..., B}, and the set of smartphone model

indices be P = {1, ..., P}.
At any time step t, smartphone p ∈ P is at location xp

t ∈ R2. The RSSI received by

smartphone p from beacon b ∈ B at time t is sp,bt ∈ R≥0. The vector of RSSI received

by smartphone p from all B beacons at time t is spt = [sp,1t sp,2t ... sp,Bt ]T ∈ RB
≥0. For a

history of H time steps, the matrix of RSSI received by smartphone p from all beacons

at times {t − (H − 1), t − (H − 2), ..., t} is Sp
t = [spt−(H−1) spt−(H−2) ... spt ] ∈ RB×H

≥0

We would like to learn a mapping from the vector of RSSI received by a smartphone

to the location of the smartphone, i.e., a mapping L : R|B| → R2

Consider the labeled dataset Dl = {⟨Sp
t ,x

p
t ⟩ | p ∈ P , t ∈ Tl}. Each element of

Dl is a tuple, consisting of the matrix of RSSI received by a smartphone p, and its

corresponding location at some time t ∈ Tl.

Consider the unlabeled dataset Du = {Sp
t | p ∈ P , t ∈ Tu}. Each element of Du is
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the matrix of RSSI received by a smartphone p at some time t ∈ Tu.

Let there be an unknown function f : RB×H
≥0 → R2 mapping the matrix of RSSI

received by any smartphone to the location of the smartphone at that time, i.e.

f(S) = x. In the problem of indoor localization, our goal is to approximate this

function.

We have access to limited labeled data from a subset of smartphone models

P ′ ⊂ P, i.e., Dtrain = D′
l. Each model included in the subset P ′ belongs to a brand.

For example, P ′ may include iPhone 7 and iPhone 8 from the Apple brand as well as

Pixel 3 and Pixel 4 from the Google brand. In this example, P ′ does not include any

models from Samsung, Xiaomi or Huawei brands.

If we learn a localization function using only the limited labeled data D′
l, we

will overfit to the smartphone brands included in P ′ since the training data is not

representative of all smartphone brands. In order to avoid overfitting, we propose

the use of a BLE signal translation function which maps RSSI measured by any

smartphone to that of a smartphone brand which is known, i.e., one which was part

of the labeled training dataset.

Consider a brand-specific localization function h : RB×H
≥0 → R2, which maps the

matrix of RSSI measured by smartphone models of a known brand to the smartphone’s

location. Let the set of smartphone models of that known brand be indicated by

J ⊂ P ′.

Now consider a BLE signal translation function g : RB×H
≥0 → RB×H

≥0 , which takes

as input the matrix of RSSI received by any smartphone model p ∈ P and transforms

it to a corresponding matrix of RSSI measured by a model p′ ∈ J from the known

smartphone brand, at the same location. Then, f(S) = h(g(S)) is the true localization

function, where S is the matrix of RSSI received by a smartphone model p ∈ P . Our

goal is to learn an estimate of the localization function f̂ = ĥ(ĝ).

Signal Translation Network (TransNet): Our signal translation function ĝ trans-

forms the matrix of RSSI measured by a phone p ∈ P , to the matrix of RSSI measured

by a model of a known brand in the same location. Intuitively, we expect the difference

in RSSI measured by different phones at the same location to be bounded. Therefore,
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we constrain ĝ to output a correction to its input. Formally, our signal translation

function is a neural network of the form ĝ(S) = ReLU(r̂(S) + S). We call this

network TransNet. The correction r̂(S) is a 6-layered 1-D convolutional autoencoder,

composed of 3 encoder layers and 3 decoder layers with ReLU activations.

Localization Network (LocNet): The fully supervised localization network f̂ is

modeled as a 2 layer LSTM followed by two fully connected layers. We call the

localization network, LocNet. At time t, it takes as input Sp
t , i.e., the beacon readings

received by smartphone p in the last H = 5 seconds, and outputs the location xp
t .

During training, LocNet learns to correctly interpret temporal beacon information,

e.g.: how fast signals are changing, patterns of oscillation in signals, etc., and maps it

to a location x.

This is the standard empirical risk minimization objective for supervised learning,

where we learn the minimizer f̂ over the training data for all phone model P .

We define a new loss function with the following components:

1. Localization loss: Lloc =
∣∣∣∣ĥ(ĝ(St)) − xt

∣∣∣∣2
2
. This quantifies deviation of

estimates of our localization function from ground truth label x and is identical

to the loss function in scenario 1.

2. Position smoothness loss: This quantifies the distance between consecutive

location predictions, Lps =
∣∣∣∣ĥ(ĝ(St)) − ĥ(ĝ(St−1))

∣∣∣∣2
2
. This term acts as a

regularization term to ensure that estimated motion is smooth.

3. Statistic similarity loss (SSL): Intuitively, we know that beacons that are

near each other will often be ‘seen’ together by the smartphone Bluetooth

receiver. This means that beacon RSSI measurements are correlated and that

the outputs of the translation function g should also be correlated. Formally,

consider the subset of models J ⊂ P ′ of the known brand . Labeled data from

models of this brand is given by D′
J = {⟨spt ,x

p
t ⟩ | p ∈ J , t ∈ Tl}. We use the

brand-specific data D′
J to infer brand-specific correlation statistics.

Now, consider a matrix M ∈ RB×B
≥0 of statistics derived from data D′

J . Each
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entry of M is described as:

Mij = E⟨s,x⟩∼D′
J
[sj | si > 0], (3.1)

where Mij is the expected RSSI from the jth beacon when the RSSI from the

ith beacon is detected.

We use the inferred statistics to quantify the deviation of the output of ĝ from

the expected statistics of smartphone models ∈ J . Our proposed statistic

similarity loss (SSL) is defined by:

Lssl =
H∑
t=1

B∑
i=1

B∑
j=1

witdijt (3.2)

where:

wit = exp

(
(Sit −Mii)

τ

)
, and (3.3)

dijt =

|| Mij − ĝ(S)jt ||1 if Mij − ĝ(S)jt < 0

(Mij − ĝ(S)jt)
2 if Mij − ĝ(S)jt ≥ 0

(3.4)

and τ is a hyperparameter. In our experiments, τ = 0.1. Recall that the output

of ĝ is a matrix of translated RSSI and ĝ(S)jt denotes the entry corresponding

to the jth beacon at time index t.

Our function ĝ must map the matrix of RSSI received by any smartphone model

to the corresponding RSSI received by a known smartphone model ∈ J . Our

proposed loss SSL quantifies the deviation of the output of ĝ from the expected

statistics of smartphone models ∈ J . Specifically, Lssl provides an exponential

weighting (wit) to any deviation (dijt) from the expected RSSI of the jth beacon

when the ith beacon is detected, according to pairwise statistics Mij of known

smartphone models ∈ J . When ĝ is learned correctly the statistical deviation

of the translated output signals should be low.

4. Temporal smoothness loss: One of the major problems we observed in
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lower-end smartphone models is lost RSSI information where beacons randomly

measure zero RSSI. In order to address this problem, we introduce a temporal

smoothness loss that ensures that the output of the translation function ĝ does

not randomly drop RSSI,

Lts =
H−1∑
t=1

B∑
i=1

|| ĝ(S)i,t − ĝ(S)i,t+1 ||1. (3.5)

ĝ(S)i,t is the entry corresponding to the ith beacon at time index t.

Optimization: We propose a modified optimization with weights wloc, wps, wssl, wts

on each term respectively:

min
ĥ, ĝ

E⟨S,x⟩∼D′
l

[
wlocLloc + wpsLps + wsslLssl + wtsLts

]
(3.6)

By training ĥ and ĝ to minimize this objective, we expect generalization of

localization performance to unseen smartphones.

3.1.4 Results

Scenario 1: Labeled Data for All Smartphone Models

In our first scenario, we have labeled data from all smartphone models, i.e., Dtrain = Dl.

We train the localization network LocNet, using the Adam optimizer for 50 epochs,

with a learning rate = 10−4 and batch size = 256 samples.

Results: We report mean and standard deviation of absolute localization error over

test data in Table 3.3. Note, we do not have any numbers in bold here, since we

do not compare our proposed method with any other method in this scenario. In

this ideal scenario, since we have labeled data for all phones, performance on all

phones is very good, with an average AE of 1.37 m over all test data. Despite the

high amounts of receiver failure for smartphone models from Huawei and Xiaomi
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Scenario → Scenario 1 Scenario 2 Scenario 3

Proposed Baseline 1 Baseline 2 Proposed
Proposed Proposed
(Huawei) (Xiaomi)

Test Phone Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

iPhone 7 0.95 0.65 0.99 0.83 0.92 0.83 0.91 0.75 0.95 0.88 0.94 0.82
iPhone 8 1.09 0.73 1.13 0.95 1.16 0.99 1.06 0.76 1.11 0.83 1.07 0.83
iPhone XR 0.92 0.60 1.05 0.83 0.95 0.75 0.84 0.60 0.89 0.80 0.86 0.63
Mate 20 Pro 1.96 1.61 4.19 4.25 2.62 2.45 1.76 1.61 1.63 1.32 1.63 1.31
Honor 20 Pro 1.92 1.46 3.14 2.19 2.36 1.77 1.95 1.42 1.99 1.33 1.92 1.34
View 20 1.74 1.40 3.15 3.31 2.20 2.04 1.64 1.59 1.66 1.32 1.64 1.29
Mi 9 1.53 1.20 3.82 5.48 2.39 3.30 1.69 1.57 1.65 1.31 1.58 1.11
Mi 9T Pro 1.77 1.14 3.78 4.98 2.71 3.35 1.78 1.41 1.84 1.45 1.68 1.20
Redmi Note 8 1.50 1.17 2.25 2.01 1.76 1.57 1.62 1.16 1.61 1.09 1.61 1.06
Pixel 3a XL 1.05 0.83 1.51 1.30 1.25 1.12 1.24 1.07 1.22 1.07 1.21 1.06
Pixel 3XL 1.21 0.96 2.04 1.56 1.54 1.29 1.22 0.95 1.17 0.96 1.18 0.94
Pixel 4XL 1.21 0.83 2.13 1.64 1.53 1.28 1.36 1.01 1.39 1.07 1.40 1.08
Samsung S10 1.44 1.15 1.80 1.41 1.58 1.35 1.31 1.05 1.30 1.02 1.23 0.93
Samsung A50 1.49 0.98 2.11 1.68 1.62 1.34 1.42 1.30 1.36 1.22 1.42 1.26
Samsung Note9 1.14 0.87 1.67 1.23 1.27 0.98 1.13 0.82 1.15 0.81 1.15 0.82

Overall Average 1.37 1.11 2.23 2.76 1.67 1.83 1.37 1.20 1.37 1.15 1.34 1.09

Table 3.3: Mean and std. deviation of absolute localization error for all methods and
scenarios. All numbers are in meters(m). Numbers in bold indicate best performance
within each scenario. Numbers in color indicate best performance overall.

brands, AE for each of these models is less than 2 m. However, as noted before,

it is unrealistic to assume that we can performing fingerprinting for all smartphone

models.

Scenario 2: Limited Labelled data

In our second scenario, we have only limited labeled data Dtrain = D′
l from a subset

of smartphone models P ′ ⊂ P. In our experiments with this scenario, P ′ includes

models of the two most popular smartphone brands 1 - Apple and Samsung, i.e.,

{iPhone 7, iPhone 8, iPhone XR, Samsung S10, Samsung A50, Samsung Note 9}. Our

signal translation function ĝ learns to transform RSSI measured by any smartphone

model to that measured by the Apple brand, i.e., J ⊂ P ′ includes smartphone models

1as reported by the IDC - Worldwide Quarterly Mobile Phone Tracker
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Stat. ↓
Scen. 1 Scen. 2 Scen. 3

Prop. Base. 1 Base. 2 Prop.
Prop. Prop.
(Hua.) (Xia.)

Mean 1.37 2.23 1.67 1.37 1.37 1.34
Std. Dev. 1.11 2.76 1.83 1.20 1.15 1.09
Median 1.07 1.47 1.15 1.02 1.06 1.04
90 %ile 2.68 4.55 3.49 2.76 2.76 2.66
Max. 12.28 37.58 29.67 19.72 13.19 11.82

Table 3.4: Various statistics of absolute localization error over all test data for all
methods and scenarios. All numbers are in meters (m). Numbers in bold indicate
best performance over all methods.

Method → KNN Reg Bayesian KRR+KF DL-RNN Proposed(Sup) Proposed (Semi)

Test on ↓ Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

iPhone 1.1917 0.9298 1.5424 1.2267 1.7575 1.0770 1.0205 0.7712 0.9409 0.7163 0.9572 0.7741
Huawei 6.3579 9.595 4.8951 6.3216 3.0021 2.3075 2.2437 2.2014 1.7900 1.5515 1.7370 1.3260
Xiaomi 4.1781 7.2262 3.5959 4.2674 2.7569 1.9125 2.4360 3.0378 1.7014 1.3918 1.6284 1.1280
Pixel 1.9082 1.5561 2.1457 1.7167 1.8955 1.1816 1.4347 1.1638 1.2769 1.0183 1.2687 1.0341

Samsung 2.0139 2.5525 2.0843 2.3115 2.0767 1.2390 1.5282 1.1301 1.2898 1.0808 1.2732 1.0310

Average 3.0157 5.7190 2.7724 3.8090 2.2640 1.6644 1.6826 1.8650 1.3700 1.2080 1.3462 1.0979
Median 1.5230 1.7505 1.8884 1.2067 1.0258 1.0436
90% ile 5.2514 5.5866 4.2660 3.2968 2.7689 2.6601
Max 52.5572 48.3013 17.2977 31.9299 19.7231 11.8294

Table 3.5: Evaluation results for different methods when trained using data from
iPhone and Samsung phones

from the Apple brand {iPhone 7, iPhone8, iPhone XR}. Our localization function in

this scenario is f̂ = ĥ(ĝ), where ĥ is LocNet and ĝ is TransNet. We train f̂ using

the Adam optimizer for 50 epochs, with a learning rate = 10−4 and batch size = 256

samples. Appropriate weights for each loss term are obtained using validation data,

which was a randomly chosen independent run from the training data for each phone.

we use the validation data from only D′
l

Baselines: We compare our method against the following baselines:

1. Baseline 1 : Similar to the first scenario, we consider the situation where our

localization function f̂ is LocNet only. We limit the available labeled data
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to that from smartphone models of the Apple brand only, i.e., P ′ includes

{iPhone7, iPhone8, iPhone XR}. We train LocNet using labeled data from

the Apple brand. We include this baseline to verify our hypothesis that data

augmentation alone is not enough to generalize well to unseen phones. We

expect our proposed method to outperform this method due to the inclusion of

labeled data from an additional smartphone brand.

2. Baseline 2 : Again, we consider the situation where our localization function

f̂ is LocNet only. However, for a stronger baseline, we consider that we have

access to the same data as our proposed method, i.e., P ′ includes models from

the Apple and Samsung brands. We train LocNet using labeled data from

Apple and Samsung brands. We include this baseline to verify our hypothesis

that simply training LocNet using limited labeled data will lead f̂ to overfit

to the known phone brands. We expect our proposed method to outperform

this method due to the inclusion of a signal translation function ĝ. This is

because ĝ explicitly learns to translate RSSI measured by a (possibly unknown)

smartphone to that measured by a known brand, using our novel statistic

similarity loss (SSL). This enables f̂ = ĥ(ĝ) to generalize better to unseen

phones.

Results: From Table 3.3, we see that our proposed method significantly outperforms

baselines in terms of both mean and standard deviation of AE over all test data, as

well as over test data from individual smartphone models. Moreover, our proposed

approach performs as well as the fully supervised approach from the first scenario,

achieving an average AE of 1.37 m, despite having access to only limited labeled data.

Importantly, this demonstrates its ability to generalize well to unseen smartphone

models.

While Baseline 2 performs significantly better than Baseline 1, it performs poorly

on unseen smartphone brands Huawei and Xiaomi. By comparison, our proposed

approach consistently gives mean AE of less than 2 m for models of these brands.

Moreover, from Table 3.4, Baseline 2 shows a high maximum error of ≈ 30m. This
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supports our hypothesis that training with limited data leads LocNet to overfit to

known smartphones. Our proposed approach avoids this problem by training an

explicit signal translation function ĝ using our novel SSL loss.

Baseline 1 performs very well on iPhone models, with mean and standard deviation

of AE within 1 m. However, its performance is significantly worse on other smartphone

brands, especially Huawei and Xiaomi. Moreover, from Table 3.4, the maximum

and 90 percentile errors are the highest in the table. Baseline 1 overfits to a larger

degree than Baseline 2, supporting our hypothesis that data augmentation alone is

not enough to generalize well to unseen phones.

Scenario 3: Limited Labeled and Unlabeled Data

In our third scenario, we have limited labeled data D′
l from a subset of smartphone

models P ′ ⊂ P. Additionally, we have unlabeled data D′
u from other smartphone

models Q′ ⊂ {P \ P ′}. Our training data is thus Dtrain = D′
l ∪ D′

u. Similar to the

previous scenario, in our experiments with this scenario, P ′ includes models of Apple

and Samsung brands. Our signal translation function ĝ learns to transform RSSI

measured by any smartphone model to that measured by the Apple brand. We

consider Q′ to include smartphone models of the Huawei brand or the Xiaomi brand.

Our localization function in this scenario is f̂ = ĥ(ĝ), where ĥ is LocNet and ĝ is

TransNet. In this scenario,

1. We train f̂ using the Adam optimizer for 50 epochs, with a learning rate = 10−4

and batch size = 256 samples. Appropriate weights for each loss term are

obtained using validation data.

2. We then train f̂ for the semi-supervised objective using the Adam optimizer

for 20 epochs, with a learning rate = 10−5 and batch size = 256 samples.

Results: From Table 3.3, we see that our proposed method trained in a semi-

supervised fashion using unlabeled data from the Xiaomi brand leads to better test

performance for Xiaomi and Huawei smartphones, when compared to our proposed

method in scenario 2. Moreover, our proposed method outperforms the fully
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supervised method in scenario 1, with a mean AE of 1.34 m and standard

deviation AE of 1.09 m over all test data. Importantly, this result is achieved despite

only having access to limited labeled data, demonstrating our proposed method’s

ability to generalize well to unseen phones. From Table 3.4, our proposed method

leads to the best (or nearly the best) performance on all metrics over all the test data.
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Figure 3.5: Visualization of Localization Performance comparing proposed approach
to other approaches. Blue denotes ground-truth, red denotes predictions
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3.2 BLE + IMU + Map Prior

In this section, we aim to develop a system which consumes high drift odometry

measurements and uses indoor occupancy map information to reduce drift in the

final estimated user location. Map information is integrated via the sensor model of

a particle filter, but prior methods of doing so are sensitive to high levels of error

in inertial odometry. Instead, we learn a data-driven map prior from odometry and

building maps which we hypothesize will indicate likely user locations with higher

accuracy than traditional heuristic methods. We also combine the output of the BLE

RSSI based localization model in the particle filter to get estimated location in the

absolute world frame and not in the relative inertial frame.

3.2.1 Dataset

IDOL Dataset: The IDOL dataset [27] is an inertial odometry dataset for indoor

pedestrian localization. It consists of 20 hours of 10 minute pedestrian trajectories

collected by users carrying a smartphone in 3 buildings (Figure 3.6a). Smartphone

IMU data and ground truth device pose is available at 100Hz. Odometry measurements

are generated from IMU data by the IDOL method proposed in the same work.

2D occupancy maps are generated from the architectural plans available for the 3

buildings.

BLE + IMU Dataset: We collect a smaller dataset similar to the IDOL dataset but

with the addition of Bluetooth low energy (BLE) beacon measurements, to compare

against bluetooth-based localization. Two floors of a building like those used in

the IDOL dataset are instrumented with BLE beacons emitting a unique identifier

broadcast at 1Hz, which are recorded along with the broadcast signal strength and

IMU data by a smartphone at 60Hz. Ground truth device pose and orientation are

generated with a Stereolabs Zed Mini stereo camera configured as in Figure 3.6b.

30



3. Approaches

(a) IDOL dataset (b) BLE + IMU dataset

Figure 3.6: Data collection setups for sensor fusion.

3.2.2 Method

Our learnable Map Prior Network (MPN) is shown in Figure 3.7. The network aims

to generate the likelihood score that a given series of odometry measurements ends

at a given location x in the map.

The likelihood score can be used directly as the particle filter weight for a particle

at x. We set up this network with two branches to separate map and odometry

processing, whose deep encodings are later combined. This setup is useful because

maps are generally static, so at runtime a specific indoor map only needs to be

processed by the network once to generate its encoding. The stored map encoding

can later be combined with the constantly changing odometry encoding, reducing

computational burden. The inputs to our method are a 2D indoor occupancy map M

and a short history of the agent’s most recent odometry O from time t− n to t. n is

selected experimentally to be 5 seconds for human walking. We utilize a particle filter

to combine the learned map prior with odometry measurements and BLE localization

output. Particle filters have relatively low computational burden but are able to

handle complex distributions of estimated location. A particle filter maintains p

estimates of the user’s state (location) as particles. At each timestep, each particle
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Figure 3.7: System Diagram: Our map prior network takes as input (1) occupancy map
and (2) window of odometry measurements, and outputs a map of likelihood scores.
Scores represent map locations that are likely given input odometry measurements.
Scores used to weigh samples of a particle filter for tracking agent’s trajectory.

has its stored state updated according to the motion model:

xt+1 = xt +∆x+ ηmotion (3.7)

where xt is the user’s state (x, y) at timestep t, and ∆x is the odometry measurement

between times t and t + 1. 2D Gaussian noise ηmotion ∼ N (µ,Σ) is added to each

particle’s motion to capture odometry uncertainty.

Our map network f(M,Θf ) is a small version of U-Net [42, 43] parameterized by

weights Θf which has been modified to output a “Deep Map Tensor” of the same

spatial dimensions as the input map, but with more channels. The number of channels

c = 32 is chosen experimentally, balancing speed of computation with sufficient space

to store relevant environmental details. The odometry network g(O,Θg) is a two-layer

Long-Short-Term Memory (LSTM) network parameterized by weights Θg operating
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on the time dimension of the odometry history. The LSTM hidden state is of size

c, and the last hidden state output is used as the “Deep Trajectory Vector”. A dot

product is taken between the Deep Map Tensor and the Deep Trajectory Vector at

each pixel location x, giving the likelihood score of x given O and M:

S(x|M, O) = f(M,Θf )x · g(O,Θg) (3.8)

Particle weights for the particle filter are computed using the value of the location

likelihood score heatmap at the particle’s location from the last n seconds of odometry

and the localization estimate from the BLE RSSI based localization model following –

wi = N (∥xi − zBLE∥, 0, 3) (3.9)

xt+1 =
∑
i

wixi
t+1 (3.10)

Low variance resampling of the particle cloud is used due to its stability and

consistent particle space coverage [44]. Resampling copies particles from the original

cloud with probability proportional to their weight. The particle closest to the median

(as opposed to the mean) of the new particle cloud is used as the estimated location

of the agent. This guarantees the estimated location is feasible and not inside an

obstacle even with a multi-modal particle distribution.

We also implement a re-initialization method for situations where the particle

filter has diverged from a reasonable estimate. We reinitialize by sampling particles

randomly within a radius rreinit of the last estimated location when more than sreinit

of particles have passed through an obstacle. We experimentally set rreinit = 5 meters

and sreinit = 90%.

Training: To train our model, we window ground truth walking trajectory data into

windows of n timestamps, and subtract the initial position in each window to make

this data look like odometry data. We additionally augment the training data and add

a multiplicative velocity bias drawn from N (1, 0.5) pixel/second and a random noise

drawn from N (0, 0.25) pixels to each input sample to better mimic noisy odometry
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data. These windows are used as odometry branch training input. The map branch

is given small segments of the relevant map at train time to avoid overfitting to the

most commonly feasible areas of the full map.

(a) Example input ground truth trajectory window (in red). (b) Cross correlation
kernel.

(c) Resulting training target obtained by cross-correlating the
kernel with the input map. Higher values are trajectory
end locations that are more feasible.

Figure 3.8: Ground truth generation process for training our map prior network.

We create a target T (Figure 3.8c) defining which areas of the map are feasible

end-locations for a given ground-truth trajectory window. We train our network to

output T, even when the odometry it is given as input is noisy or drifting. A 2D

kernel like in Figure 3.8b is created from the ground truth trajectory segment and is

cross-correlated with the map to form T̄ whose values depend on the input trajectory’s

overlap with obstacles. T = 10−6 ∗ e14∗T̄ is computed to heavily upweight areas where

the trajectory window passes only through free space, i.e. is physically feasible. We

train using Mean Squared Error (MSE) loss: L = MSE(T,S(x|M, O)). In training our
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method we noticed that smaller feasible regions of T were not being predicted well.

We weight feasible regions by the inverse of their pixel area in our loss to improve

small area prediction.

3.2.3 Results

We evaluate our method in five experiment settings. (1) BLE only (dense) where we

consider a dense network of beacons and use the state-of-the-art BLE only localization

model. (2) BLE only (sparse) where we drastically reduce the number of beacons

and use the same BLE localization model trained with the sparse set of beacons and

then evaluated. (3) IMU only where we use the state-of-the-art inertial odometry

models and show the ability of our learned map prior to reduce drift compared to

IMU only odometry and better than other heuristic map priors. (4) BLE (sparse)

+ IMU where we show that a particle filter combining IMU and a sparse network of

BLE beacons can improve the BLE only model with a sparse network of beacons and

bring it close to the accuracy of BLE model with a dense network of beacons. (5)

BLE + IMU + Map prior where we show the ability of the map prior network to

further improve accuracy of the BLE + IMU fusion method by reducing drift from

inertial methods and uncertainty from high variance in BLE RSSI signals.

Metrics: We evaluate localization performance using two main metrics: Absolute

Trajectory Error (ATE) and End Error (EE). ATE is the root mean square error

between points in the estimated and ground truth trajectories. The error at timestamp

i, ei = ∥xi − x̂i∥2. ATE measures global trajectory consistency and tends to increase

with time due to drift. EE is the distance between the final estimated and final

ground truth positions in a trajectory, i.e. e = ∥xT − x̂T∥2. EE is a measure of the

total accumulated drift in the sequence.

Training/Testing: We use Adam optimizer for training with a learning rate of 0.01.

A batch size of 32 is used and the network takes between 50 and 100 full passes

through the data (epochs) to converge, depending on the map.
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At test time the particle filter is initialized with 1000 normally distributed particles

(σ = 0.01m) around the true starting location obtained from the BLE localization

model. The filter runs at 1 Hz. The motion model uses a white Gaussian noise with

Σ = 0.1I2m. A benefit of our formulation is the decomposition of trajectory and map

processing. Once the network is trained, the map only needs to be passed through the

network once to obtain a Deep Map Tensor. This can be reused for all trajectories in

the same map. At test time, only the trajectory LSTM needs to process data. Our

particle filter runs at 4x real-time speed on a desktop processor, suggesting that our

method would be feasible for smartphone or low-compute platforms.

Bldg. 1 Bldg 2. Bldg 3.

Method ↓ ATE EE ATE EE ATE EE

PDR 24.28 24.96 12.66 13.80 21.86 22.18
IDOL 5.65 8.51 6.62 10.61 8.33 9.71
CRF 4.66 6.58 7.56 10.54 8.82 7.38
Heuristic PF 3.11 3.42 11.37 15.36 6.71 9.67
Learned (Ours) 2.87 1.60 2.51 6.08 5.66 9.99

Table 3.6: Quantitative results of our approach compared to baselines on the IDOL[27]
dataset. We report mean trajectory errors over all sequences per building.

Bldg. 1 Bldg 2.

Exp. ↓ ATE EE ATE EE

Dense BLE (#beacons = 22) 1.92 1.43 1.88 1.37
Sparse BLE (#beacons = 4) 3.83 4.23 3.18 3.92
Inertial Odometry 9.92 10.23 4.48 7.43
Sparse BLE + Inertial 2.63 3.13 2.41 2.98
Inertial + Map 2.38 3.23 2.32 3.12
Sparse BLE + Inertial + Map 1.99 1.62 2.04 1.48

Table 3.7: Quantitative results of different sensor fusion approaches on the BLE +
IMU dataset we collected.
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(a) Building 1

(b) Building 2

Figure 3.9: Qualitative comparison of different sensor fusion approaches on BLE +
IMU dataset.
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Chapter 4

System Design

We deploy the localization algorithms as mobile apps on the two most popular

mobile platforms – iOS and Android. We use PyTorch mobile to optimize the deep

learning models and deploy them to run on-device for both the mobile platforms.

The app architecture has been designed to be modular and easily upgradable to the

state-of-the-art localization models.

4.1 App design

The app has been designed to have a clean and modern design that can work well

on both iOS and Android. We considered designing for different color-blindness.

We ended up designing a black and white UI for maximum contrast and legibility

irrespective of the nature of color-blindness. We designed both a light and dark

mode that looks native to both the platforms. UI consistency between the two

platforms was important while maintaining the native feel of the specific platform.

To that extent, we tried to keep the UI consistent only changing elements for the

two platforms when absolutely necessary to give it a native feel. We leverage an

open-source map rendering library – MapLibre1 – to render the maps using hardware

accelerated OpenGL calls.

1https://maplibre.org/
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4.1.1 iOS

Figure 4.1: iOS app UI
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4.1.2 Android

Figure 4.2: Android app UI
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Figure 4.3: App Architecture for both iOS and Android

4.2 App Architecture

The architecture of the app has been designed with consistency and modularity in

mind. The different modules have been designed so that the core can be changed

easily, i.e. the models can be updated or different modules can be added to it without

affecting the rest of the app. This lets us have a common interface Localization

Manager that can have different sensor models and sensor fusion modules while

keeping the rest of the app opaque to the implementation details. The architecture is

also designed so that it is consistent in both iOS and Android thereby helping with

maintaining two versions of the app and allowing easy replication of changes.
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4.3 Privacy and Performance

Privacy and performance have been the key considerations from the very beginning.

While a lot of other methods for indoor localization and navigation use cameras and

visual inertial odometry to have highly accurate estimates, we decided to not use

cameras for privacy and performance reasons. Having an always on camera recording

is good neither for privacy nor performance as it will lead to high computation

requirements and battery drain. Our localization module runs on-device in real-time

on an iPhone 8 which was released 5 years ago. We measured the inference time on

an iPhone 8 to be ≈ 20ms and ≈ 38ms for the BLE and IMU localization models

respectively. We run this inference at 1Hz rate and recorded the battery drain to

be 9-11% per hour of use depending on the battery level of the phone. With the

improvements made in more recently launched phones, we only expect these numbers

to be significantly better on them.
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Chapter 5

Conclusions

In this thesis we propose a smartphone based indoor localization system which

combines the absolute positioning from Bluetooth RSSI based localization with the

smooth relative positioning from IMU based inertial odometry and map information

to fix drift. We deployed the deep models to mobile phones in the form of iOS and

Android apps to run real-time localization thereby facilitating path planning and

turn-by-turn navigation.

5.1 Limitations

The biggest limmitation of our approach is generalizability, i.e. being able to use

a single trained model in different buildings. Due to the nature of magnetometer

data, RSSI data and the use of particle filter to combine them, our models need

to be trained on a per building basis. While non-trivial, making these localization

models generalize to different buildings should be possible and an interesting avenue

to explore.

A key requirement of our system is an accurate map of the indoor space with

correct transformations between real-world and map coordinates. Architectural plans,

like those used in this work, are not necessarily accurate to the built configuration of

a space. Indoor mapping systems based on SLAM using cameras or LiDARs have
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become much easier to use and more accurate, but there is still significant effort

required to generate maps if they are not previously available for a given space. Both

2D architectural and SLAM maps do not necessarily capture all obstacles in a map,

depending on the height of the sensor used to collect the map. For example, tables

are not usually placed in their true locations in architectural plans, and a 2D LiDAR

system held by a human operator performing mapping of a space may be held too

high or low to accurately capture the tables. Obstacle configurations can also change

over time without warning. Since our method relies so heavily on combining obstacle

information with user motion to rule out areas where the motion was infeasible, the

lack of a full understanding of obstacle locations can limit the effectiveness of our

approach.

5.2 Future Work

As mentioned in 5.1, trying to make the localization models generalize to multiple

buildings is the most important direction that needs to be explored. Another direction

to explore is data simulation. Current methods, including ours, require a significant

amount of data per building to be able to learn the motion models. Related works

mostly in image based localization have shown that it is possible to generate synthetic

data from a small amount of actual data and then train localization models to have

high accuracy. However, not much study has been done to model RSSI signals or

IMU signals for augmentation purposes. Lastly, using differentiable modules instead

of the traditional Kalman filter and particle filters we have used in this work would

facilitate training an end-to-end sensor fusion model. Use of such approaches in other

tasks have shown that they have the potential to be faster and more generalizable

while also being more accurate.
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