
Autonomous Exploration Development Environment
and the Planning Algorithms

Chao Cao, Hongbiao Zhu, Fan Yang, Yukun Xia, Howie Choset, Jean Oh, and Ji Zhang

Abstract— Autonomous Exploration Development Environ-
ment is an open-source repository released to facilitate develop-
ment of high-level planning algorithms and integration of com-
plete autonomous navigation systems. The repository contains
representative simulation environment models, fundamental
navigation modules, e.g., local planner, terrain traversability
analysis, waypoint following, and visualization tools. Together
with two of our high-level planner releases – TARE planner
for exploration and FAR planner for route planning, we
detail usage of the three open-source repositories and share
experiences in integration of autonomous navigation systems.
We use DARPA Subterranean Challenge as a use case where
the repositories together form the main navigation system of
the CMU-OSU Team. In the end, we discuss a few potential
use cases in extended applications.

I. INTRODUCTION

Our Autonomous Exploration Development Environment1,
exploration planner, namely TARE planner2 [1], and route
planner, namely FAR planner3 [2], form a full stack of
geometry-based algorithms for navigation planning. Com-
bining the three repositories, we provide a generic set of
3D Lidar-based navigation algorithms for ground vehicles.
The software stack is beneficial to the research society as
a platform for developing and deploying advanced naviga-
tion systems, and further meant to support state-of-the-art
research in vision-based navigation.

The development environment is made to facilitate de-
velopment of high-level planning algorithms. We provide
a set of environment models for users to start algorithm
development conveniently. The development environment is
further compatible with photorealistic house models from
Matterport3D [3]. We provide a set of fundamental naviga-
tion modules, e.g., local planner for collision avoidance, ter-
rain traversability analysis, waypoint following. In a standard
three-tier autonomous navigation system, the development
environment functions as the mid-layer, interfacing with the
state estimation and motion control on the bottom layer,
and the high-level planner on the top layer. For providing
state estimation to the system, we made available a list of
compatible open-source state estimation methods.

Our navigation algorithms are created with favoring real-
system deployment kept in mind. We do not rely on any
unrealistic information which can be made available only in

All authors are with the Robotics Institute at Carnegie Mellon University,
Pittsburgh PA. Emails: {ccao1, hongbiaz, fanyang2, yukunx,
choset, jeanoh, zhangji}@cmu.edu

1Development Environment: www.cmu-exploration.com
2TARE Planner: github.com/caochao39/tare_planner
3FAR Planner: github.com/MichaelFYang/far_planner

Fig. 1. Our repositories form the mid-layer and top layer in a three-tier
navigation system. Users can integrate the repositories in real systems using
the interface to bottom layer, i.e., state estimation and motion control, or
run the repositories in simulation using the environment models.

simulation, e.g. semantic and terrain segmentation ground-
truth. In particular, our terrain traversability is computed
by a dedicated module that processes range data as in a
real system. The basic concept is allowing users to develop
high-level planning algorithms and conveniently migrate the
repositories to the vehicle computer for deployment.

The repositories of the development environment, TARE
planner, and FAR planner together form the main navigation
system that the CMU-OSU Team uses to attend the DARPA
Subterranean Challenge. In the final competition, the team
received a “Most Sectors Explored Award” by conducting
the most complete exploration (26 out of 28 sectors) among
all teams. This paper uses the system as an example to
detail usage of the repositories in autonomous exploration
and navigation. We further discuss potential use cases in
extended applications in simulated and real systems.

II. RELATED WORK

Autonomous navigation systems have been studied from
multiple angles. The work described in this paper is based
on key results in datasets, simulation environments, and
navigation systems briefly discussed in this section.

Datasets: For outdoor settings, the most well-known
dataset is KITTI Vision Benchmark Dataset [4] collected
from a self-driving suite in road driving scenarios. The
dataset contains sensor data from stereo cameras, 3D Lidar,
and GPS/INS ground truth for benchmarking depth recon-
struction, odometry estimation, object segmentation, etc. For
localization purposes, the long-term localization benchmark
[5], [6] includes a comprehensive list of datasets such as
Aachen Day-Night dataset, Extended CMU Seasons dataset,
RobotCar Seasons dataset, and SILDa Weather and Time
of Day dataset. For indoor scenes, datasets such as NYU-
Depth dataset [7], TUM SLAM dataset [8], inLoc dataset
[9], MIT Stata center dataset [10], and KTH-INDOL dataset
[11], [12] are available. Datasets are useful in developing and

www.cmu-exploration.com
github.com/caochao39/tare_planner
github.com/MichaelFYang/far_planner


benchmarking perception and planning algorithms providing
users real sensor readings especially for those who don’t have
access to integrated sensor suites.

Simulation environments: Carla [13] and AirSim [14] are
two representative simulation environments for autonomous
driving and flying. These simulators support various condi-
tions such as lighting and weather changes, moving objects
such as pedestrians, and incident scenes. For indoor naviga-
tion, iGibson [15], [16], Sapien [17], AI2Thor [18], Virtual
Home [19], ThreeDWorld [20], MINOS [21], House3D [22]
and CHALET [23] use synthetic scenes, while reconstructed
scenes are also available in iGibson, AI Habitat [24], [25] and
MINOS [21]. Compared to datasets, simulation environments
have the advantage of providing access to ground truth data,
e.g. vehicle pose and semantic segmentation to simplify the
algorithm development and allowing full navigation system
tests in closed control loop.

Navigation systems: While countless algorithms have been
developed for autonomous navigation, we only list the
system-level efforts providing a comprehensive set of open-
source perception and planning modules to be integrated
as a navigation system. ROS (Robot Operating System)
Navigation Stack [26] is an entry-level mobile robot naviga-
tion solution. The stack consists of packages including state
estimation and planning modules to conduct navigation in 2D
known/unknown environments. The open-source repositories
from ETH Autonomous System Lab [27] and HKUST Aerial
Robotics Group [28] provide packages ranging from sensor
drivers to state estimation [29] [30], planning [31], [32], and
exploration [33], [34] methods. Users can use these packages
to integrate aerial navigation systems.

Our navigation system: Our system follows the three-tier
architecture. Our development environment servers as the
mid-layer in the system providing generic interfaces to state
estimation and motion control modules as well as high-level
planning algorithms. The development environment provides
a set of fundamental navigation modules such as local plan-
ner for collision avoidance, terrain traversability analysis,
and waypoint following, and supports common differential-
drive platforms. The purpose is using the development en-
vironment to facilitate users to develop high-level planning
algorithms and then port the entire repositories to the vehicle
computer for deployment. Our environment models are both
indoor and outdoor containing complex topology to stress
exploration and navigation algorithms. In addition to our
environment models, we support the photorealistic house
models from Matterport3D [3] and provide interface to AI
Habitat [24], [25]. Both are widely used by the robotics and
computation vision societies. We aim at making our system
useful to support research in those societies.

III. DEVELOPMENT ENVIRONMENT

The development environment functions as a platform for
developing and benchmarking high-level planning algorithms
for ground vehicle navigation. In the development envi-
ronment, we provide five environment models, fundamental
navigation modules, and visualization and debugging tools.

(a) Campus (b) Indoor

(c) Garage (d) Tunnel

(e) Forest

Fig. 2. Five environment models. The characteristics of the environment
models are listed in Table I.

A. Environment Models

The environment models resemble real-world settings
where robotic systems are commonly deployed. Each of the
environment models is distinctive with unique features and
challenges. Fig. 2 gives an overview of the environment
models and Table I summarizes their characteristics.

• Campus (340m × 340m): A large-scale environment
as part of the Carnegie Mellon University campus,
containing undulating terrains and convoluted layout.

• Indoor (130m × 100m): Consists of long and narrow
corridors connected with lobby areas. Obstacles such as
tables and columns are present.

• Garage (140m × 130m, 5 floors): An environment with
multiple floors and sloping terrains to test autonomous
navigation in a 3D environment.

• Tunnel (330m × 250m): A large-scale environment
containing tunnels that form a network, provided by the
Autonomous Robots Lab at University of Nevada, Reno.

• Forest (150m × 150m): Containing mostly trees and a
couple of houses in a cluttered setting.

Our system also supports the photorealistic house models
from Matterport3D [3]. Users are provided with scan data
and RGB, depth, and semantic images rendered by AI Habi-
tat [24], [25]. Users have the option of running AI Habitat
side by side with our system or in post-processing. Detailed
instructions on configuring our system to use Matterport3D
house models and AI Habitat is available on our website.

TABLE I
ENVIRONMENT MODEL CHARACTERISTICS

Large Convoluted Multi Undulating Cluttered Thin
Scale Storage Terrain Obstacles Structure

Campus X X X
Indoor X X X
Garage X X
Tunnel X X
Forest X



(a)

(b) (c) (d)

Fig. 3. (a) A Matterport3D house model and (b) corresponding RGB,
depth, and semantic images rendered by AI Habitat.

B. Local Planner

The local planner [35] warrants safety in reaching way-
points that are sent by high-level planners. It computes
and follows collision-free paths that lead to the waypoint.
The module pre-computes a motion primitive library and
associates the motion primitives to 3D locations in the
vicinity of the vehicle. The motion primitives are modeled
as Monte Carlo samples and organized in groups. In real-
time, when a location is occupied by obstacles, the module
can determine motion primitives that are collided with the
obstacle within milliseconds. The module then selects the
group of motion primitives with the maximum likelihood
toward the waypoint. In Fig. 4, the red paths represent the
collision-free motion primitives. For ground vehicles, the
traversability of the vehicle is determined by the terrain
characteristics. The local planner takes in the terrain map
from the terrain analysis module, detailed in the next section.
The module also has interface to take in additional range data
for collision avoidance as an extension option.

C. Terrain Traversability Analysis

The terrain analysis module exams the traversability of
the local terrain surrounding the vehicle. The module builds
a cost map where each point on the map is associated
with a traversal cost. The cost is determined by the local
smoothness of the terrain. We use a voxel grid to represent
the environment and analyze the distributions of data points
in adjacent voxels to estimate the ground height. The points
are associated with higher traversal costs if they are further

(a) (b)

Fig. 4. Example motion primitives. The vehicle in (a) and the coordinate
frame in (b) share the same location. The red paths in (b) indicate collision-
free motion primitives.

(a) (b)

Fig. 5. Example terrain map. The image in (a) is taken from the location
of the coordinate frame in (b). The green points in (b) are traversable and
the red points are non-traversable.

apart from the ground. Fig. 5 gives an example terrain
map covering a 40m x 40m area with the vehicle in the
center. The green points are traversable and the red points
are non-traversable. In addition, the terrain analysis module
can handle negative obstacles that often result in empty
areas with no data points on the terrain map. When negative
obstacle handling is turned on, the module treats those areas
as non-traversable.

D. Visualization and Debugging Tools

To facilitate algorithm development, we provide a set of
tools to visualize the algorithm performance. The visual-
ization tools display the overall map, explored areas, and
vehicle trajectory. Metrics such as explored volume, traveling
distance, and algorithm runtime are plotted and logged to
files. Further, the system supports using a joystick controller
to interfere with the navigation, switching among multiple
operation modes to ease the process of system debugging.
Detailed information is available on the project website.

IV. HIGH-LEVEL PLANNERS

We discuss two high-level planners, TARE planner for ex-
ploration and FAR planner for route planning. The high-level
planners take in the state estimation output and generate task-
specific waypoints, which are executed by the local planner
in closed-control-loop navigation. Typically, the high-level
planners re-plan at a lower frequency and provide long-
distance routes, while the low-level navigation modules react
instantaneously to follow the route and avoid obstacles.

A. TARE Planner for Exploration

TARE planner is a hierarchical framework that utilizes a
two-layered representation of the environment to plan the
exploration path in a multi-resolution manner. As illustrated
in Fig 6, the planner uses low-resolution information to plan
a coarse path at the global level. In the local area surrounding
the vehicle, the planner plans a detailed path using high-
resolution information. The method optimizes the overall
path by solving a traveling salesman problem at each level.
Compared to existing methods relying on greedy strategies,
the planner can effectively adapt to the structural environ-
ment and produce an approximately optimal exploration path
that avoids redundant revisiting.

TARE planner is evaluated in several large and complex
environments in both simulation and real world. It is com-
pared to state-of-the-art methods, namely, NBVP [33], GBP
[36], and MBP [37]. Results indicate that TARE planner



Local detailed path

Global coarse path

Local planning horizon

Global subspace

Fig. 6. Illustration of TARE planner’s framework. In areas surrounding the
vehicle (green box), data is densely maintained and a local detailed path is
computed (dark-blue curve). At the global scale, data is sparsely maintained
in distant subspaces (solid green cubes) and a global coarse path is computed
(light-blue curve). The local path and global paths are connected to form
the exploration path.

produces significantly higher efficiency in exploration and
computation. Fig. 7 shows a representative result where the
ground vehicle in Fig. 4(a) is used to explore a four-storage
garage and a connected patio. The vehicle starts from the
entrance of the garage on the top floor and explores the
whole environment before reporting completion after 1839m
of travel in 1907s. Fig. 7 shows the resulting map and vehicle
trajectory. Due to space limitations, we omit the experiment
details. Please refer to our paper [1] and website for detailed
evaluations of the exploration performance.

B. FAR Planner for Route Planning

FAR planner is a visibility graph-based planner that dy-
namically builds and maintains a reduced visibility graph
along with the navigation. The planner can handle both
known and unknown environments. In a known environment,
it uses a prior map to plan the route. In an unknown
environment, however, it attempts multiple ways to guide
the vehicle to the goal and picks up the environment layout
during the navigation. FAR planner models obstacles in the
environment as polygons. It extracts edge points around the
obstacles and converts the edge points into a set of polygons.
The polygons are then merged over sensor data frames, and
from which, the visibility graph is developed.

FAR planner is evaluated in large and convoluted envi-
ronments. It is compared to RRT* [38], RRT-connect [39],
A* [40], and D* Lite [41] planners and demonstrates its
strength in fast re-planing over long distances. The planner
uses ∼15% of a single CPU thread on an i7 computer for
expanding the visibility graph and a second CPU thread for

Fig. 7. Resulting map and vehicle trajectory from TARE planner exploring
a multi-storage garage and a connected patio. The blue dot is the start point.
The red polygon in the bottom-left image shows the location of the site.

(a)

(b)

Fig. 8. Result of FAR planner in (a) unknown and (b) known environments
using a Matterport3D house model. The blue curve is the vehicle trajectory
staring at the blue dot and ending at the red dot. In (a), the planner attempts
to guide the vehicle to the goal by registering obstacles in the environment
(red polygons) and building a visibility graph (cyan lines) along with the
navigation. At A and B, it re-plans after discovering a better route. In (b),
the planner uses the visibility graph from a prior map to plan the route.

path search. A path is found within 0.3ms in all of our
experiments. Fig. 8 shows a representative result using a
Matterport3D house model as the environment. In Fig. 8(a),
the planner does not use any prior information of the environ-
ment and treats the environment as unknown. The planner
attempts to guide the vehicle to the goal by dynamically
registering obstacles in the environment (red polygons) and
building a visibility graph (cyan lines) during the navigation.
In Fig. 8(b) the planner is given a prior map. It navigates
based on the visibility graph developed from the prior map
and plans the route in a known environment.

V. BEST PRACTICES

Safety margin: The local planner uses a planning horizon
at the distance between the vehicle and waypoint. This
ensures that the vehicle can stop at waypoints relatively close
to obstacles - collision check does not consider obstacles
further than the waypoint. However, if the vehicle is not
expected to stop at the waypoint, it is preferable for the
high-level planner to keep the waypoint a distance away (≥
3.75m as the default planning horizon) from the vehicle. If
the waypoint is closer, users can project the waypoint further
away and keep the waypoint in the same direction w.r.t. the
vehicle to fully use the safety margin. On the other hand,
if the vehicle needs to navigate through narrow openings,
reducing the distance helps the local planner find collision-
free motion primitives through the openings.

Sharp turns: Typically, a high-level planner selects the
waypoint along the path that is a distance, namely look-ahead
distance, ahead of the vehicle and sends the waypoint to the
local planner (possibly after projecting the waypoint further



(a) (b)

Fig. 9. (a) Wheelchair-based platform. (b) Ground vehicle used by the
CMU-OSU Team in DARPA Subterranean Challenge.

away from the vehicle as discussed above). When handling
sharp turns (≥ 90 deg), the look-ahead distance needs to be
properly set or the waypoint may jump to the back of the
vehicle, causing the vehicle to osculate back-and-forth. We
recommend to select the waypoint on the starting segment
of the path that is in line-of-sight from the vehicle.

Dynamic obstacles: The terrain analysis module eliminates
dynamic obstacles from the terrain map by ray-tracing after
the dynamic obstacles move away. This is implemented in the
vicinity of the vehicle (≤ 5m to the vehicle) due to the fact
that range data becomes sparse further away and the trade-off
between eliminating dynamic obstacles and thin structures
is hard to set. Depending on the use case, users are advised
to perform task-specific dynamical obstacle handling. Both
TARE and FAR planners contain such a step.

VI. SYSTEM INTEGRATION

A. Basic System

Our basic system uses a wheelchair-based platform shown
in Fig. 9(a). The vehicle is equipped with a Velodyne Puck
Lidar, a camera at 640 × 360 resolution, and a MEMS-based
IMU. A 4.1GHz i7 computer handles processing onboard.
Fig. 10 shows the basic system diagram. The development
environment functions as the mid-layer where it takes in the
output from state estimation module and sends command
velocity to the motion control module on the bottom layer.
It interfaces with the high-level planner (TARE or FAR
planner) at the top layer by providing terrain map and taking
in waypoint, navigation boundary, and speed. Such a system
setup allows users to develop high-level planning algorithms
without the necessity of understanding the interfaces among
low-level navigation modules.

Our system is compatible with several open-source 3D
Lidar-based odometry/SLAM methods as candidates of the
state estimation module, including LOAM [42], A-LOAM
[43], LeGO-LOAM [44], LIO-SAM [45] and LIO-mapping

Fig. 10. Basic system diagram for wheelchair-based platform.

[46]. Instructions on setting up these methods can be found
on our website. Specifically, our system requires the state
estimation module to output scan data registered in the world
frame. Using registered scans has a few advantages, i.e., it
makes processing less sensitive to the time synchronization
between scan data and state estimation. Further, multiple
registered scans can be stacked together to extract rich
geometric information from the environment. However, if
scan data associated with the sensor frame is needed, our
system also provides it with the corresponding synchronized
state estimation. Our system supports generic differential-
drive platforms (including skid-steer mechanisms), which is
the most commonly used mobile robot kinematic model. Om-
nidirectional and legged platforms can still use our system
but their mobility is not fully exploited, i.e., they move as
a differential-drive platform without lateral movement. Our
system currently does not support car-like platforms.

B. DARPA Subterranean Challenge System

DARPA Subterranean Challenge highlights autonomous
navigation and exploration in underground, GPS-denied en-
vironments. The challenge involves three types of envi-
ronments: tunnel systems, urban underground, and cave
networks. Teams deploy a fleet of autonomous vehicles to
search for artifacts (backpack, cellphone, etc) and report
their locations. The challenge allows a human operator to
command the vehicles from the entrance of the competition
site over intermittent wireless networks.

The ground vehicles used by the CMU-OSU Team are 4-
wheel-drive and skid-steer platforms as shown in Fig. 9(b).
The navigation system is an extended version of our basic
system. The system diagram is shown in Fig. 11. The state
estimation module can detect and introduce loop closures.
The module outputs state estimation in the odometry frame
generated by 3D Lidar-based odometry containing accumu-
lated drift. When loop closure is triggered, it outputs loop
closure adjustments to globally relax the vehicle trajectory
and corresponding maps. Loop closure adjustments are used
by the high-level planners since they are in charge of
planning at the global scale. Modules such as local planner
and terrain analysis only care about the local environment
surrounding the vehicle and work in the odometry frame.

Fig. 11. System diagram for the ground vehicles used by the CMU-OSU
Team in DARPA Subterranean Challenge. The system is extended from our
basic system in Fig. 10.



Fig. 12. Exploration result from DARPA Subterranean Challenge using
TARE planner. The photo shows the exterior of the site where the event takes
place (Urban Circuit at Satsop Nuclear Plant, WA). Our vehicle travels over
886m in 1458s to explore the entire floor.

The local planner and terrain analysis modules are extended
to handle complex terrains including negative obstacles such
as cliffs, pits, and water puddles with a downward-looking
depth sensor. The TARE planner, FAR planner, and other
planners (for stuck recovery, etc) are run in parallel for tasks
such as exploration, go-to waypoint, and return home. On top
of these planners, behavior executive and multi-robot coor-
dination modules are built specifically for the challenge. The
modules share explored and unexplored areas across multi-
robots and call TARE and FAR planners cooperatively. In
particular, when a long-distance transition is determined due
to new areas containing artifacts are discovered or operator
waypoints are received, the behavior executive switches to
FAR planner for relocating the vehicle. During the relo-
cation, FAR planner uses a sparse roadmap merged from
multi-robots for high-level guidance. After the relocation is
complete, TARE planner takes place for exploration.

Fig. 12 shows a representative exploration result from a
competition run in Urban Circuit held at Satsop Nuclear
Plant, WA. Our vehicle uses TARE planner to explore the
environment fully autonomously, traveling over 886m in
1458s. Fig. 13 shows the result from the final competition in
Louisville Mega Cavern, KY. The course combines tunnel,
urban, and cave settings with complex topology. Our three
vehicles use TARE and FAR planners together to traverse
the environment. On the red trajectory, the vehicle first uses
TARE planner to explore to B. Then, a request is received
to transit to C using FAR planner. Upon arriving at C, the
vehicle resumes exploration using TARE planner for the rest
of the run. On the green trajectory, the vehicle uses TARE
planner solely. On the blue trajectory, the vehicle transits
to A using FAR planner and switches to TARE planner to
explore thereafter. The three vehicles travel over 596.6m,
499.8m, and 445.2m respectively over a time span of 2259s.

VII. EXTENDED APPLICATION EXAMPLES

Our system can contribute to the research society of se-
mantic navigation where existing development environments
are generally limited to datasets or simulation with relatively
primitive navigation planning support. Several learning-based
approaches can utilize the system for training purposes.

Fig. 13. Result from DARPA Subterranean Challenge Final Competition
in Louisville Mega Cavern, KY. Three vehicles with red, green, and blue
trajectories are deployed running TARE and FAR planners together. The
segments between A and B on the red trajectory and between the start
point (blue dot) and C on the blue trajectory use FAR planer to transit.
Other segments on the trajectories use TARE planner to explore.

Self-supervised learning for visual navigation: Learning-
based navigation in the context of exploring a new environ-
ment, traversing to a goal point, or searching for a specific
object can utilize our system to collect training data. For
example, users can set up our Lidar-based system as a way
of self-supervision for training a vision-based deep network,
and then, during test time, the method uses only a camera
to navigate. Since we support photorealistic environment
models such as Matterport3D, our simulation environment
is designed to facilitate the simulation to real adaptation.

Mixed-initiative navigation with human instructions: This
can benefit from the Matterport3D house models which have
semantic ground truth provided. By interpolating natural
language, e.g., “go through the door in the front and then turn
left,” users can use our system together with the semantic
ground truth to locate the door, navigate the vehicle through
the door, and then turn left. The algorithm being developed
does not have access to the semantic ground truth but is
trained by the reference trajectories from our system.

Social navigation in crowed environments: We use Gazebo
simulator which makes modifications to the simulator con-
figuration convenient. Users can insert custom human avatars
into the simulation environment to help develop social navi-
gation algorithms. Once the human avatars are inserted, users
have access to the human pose ground truth, which can
potentially simplify the algorithm development by skipping
the human pose detection module in simulation.

VIII. DISCUSSION AND FUTURE ACTIVITIES

The purpose of this work is to provide a generic navi-
gation system to the society to support a variety of multi-
disciplinary research. To this end, we choose to work with
ground vehicles instead of aerial vehicles due to their capac-
ity to carry heavy sensor-computer payloads and extended
battery life, since contemporary AI research often involves
sophisticated sensors and computers with powerful GPUs.
In the future, we plan to extend our system to multi-
robot coordination and exploration. We also plan to organize
tutorials on future ICRA and CVPR conferences to better
prepare users to utilize our system in facilitating their work.



REFERENCES

[1] C. Cao, H. Zhu, H. Choset, and J. Zhang, “TARE: A hierarchical
framework for efficiently exploring complex 3D environments,” in
Robotics: Science and Systems Conference (RSS), Virtual, July 2021.

[2] F. Yang, C. Cao, H. Zhu, J. Oh, and J. Zhang, “FAR planner: Fast,
attemptable route planner using dynamic visibility update,” arXiv
preprint arXiv:2110.09460, 2021.

[3] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3D: Learning from rgb-
d data in indoor environments,” in International Conference on 3D
Vision (3DV), Qingdao, China, October 2017.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
vol. 32, no. 11, pp. 1231–1237, 2013.

[5] Z. Zhang, T. Sattler, and D. Scaramuzza, “Reference pose generation
for long-term visual localization via learned features and view syn-
thesis,” International Journal of Computer Vision, vol. 129, no. 4, pp.
821–844, 2021.

[6] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Sten-
borg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic et al., “Bench-
marking 6dof outdoor visual localization in changing conditions,” in
Conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, USA, June 2018.

[7] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmenta-
tion and support inference from rgbd images,” in European Conference
on computer vision (ECCV), Florence, Italy, October 2012.

[8] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve, October 2012.

[9] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic,
T. Pajdla, and A. Torii, “InLoc: Indoor visual localization with dense
matching and view synthesis,” in Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, June 2018.

[10] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The MIT
stata center dataset,” The International Journal of Robotics Research
(IJRR), vol. 32, no. 14, pp. 1695–1699, 2013.

[11] A. Pronobis, B. Caputo, P. Jensfelt, and H. I. Christensen, “A dis-
criminative approach to robust visual place recognition,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Beijing, China, October 2006.

[12] J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt, “Incremental learning
for place recognition in dynamic environments,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), San
Diego, CA, USA, October 2007.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conference on Robot
Learning (CoRL), Mountain View, CA, USA, November 2017.

[14] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
service robotics. Springer, 2018, pp. 621–635.

[15] B. Shen, F. Xia, C. Li, R. Martı́n-Martı́n, L. Fan, G. Wang, S. Buch,
C. D’Arpino, S. Srivastava, L. P. Tchapmi et al., “iGibson 1.0: a
simulation environment for interactive tasks in large realistic scenes,”
arXiv preprint arXiv:2012.02924, 2020.

[16] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. E. Tchapmi, A. Toshev,
R. Martı́n-Martı́n, and S. Savarese, “Interactive Gibson benchmark: A
benchmark for interactive navigation in cluttered environments,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 713–720, 2020.

[17] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang et al., “SAPIEN: A simulated part-based interactive
environment,” in Conference on Computer Vision and Pattern Recog-
nition (CVPR), Virtual, June 2020.

[18] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Her-
rasti, D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi, “AI2-
THOR: An interactive 3d environment for visual AI,” arXiv preprint
arXiv:1712.05474, 2017.

[19] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Tor-
ralba, “VirtualHome: Simulating household activities via programs,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, USA, June 2018.

[20] C. Gan, J. Schwartz, S. Alter, M. Schrimpf, J. Traer, J. De Freitas,
J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano et al., “ThreeDWorld:
A platform for interactive multi-modal physical simulation,” arXiv
preprint arXiv:2007.04954, 2020.

[21] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun,
“MINOS: Multimodal indoor simulator for navigation in complex
environments,” arXiv preprint arXiv:1712.03931, 2017.

[22] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable
agents with a realistic and rich 3D environment,” arXiv preprint
arXiv:1801.02209, 2018.

[23] C. Yan, D. Misra, A. Bennnett, A. Walsman, Y. Bisk, and Y. Artzi,
“CHALET: Cornell house agent learning environment,” arXiv preprint
arXiv:1801.07357, 2018.

[24] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik et al., “Habitat: A platform
for embodied AI research,” in International Conference on Computer
Vision (ICCV), Seoul, Korea, October 2019.

[25] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan,
V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang, Z. Kira,
V. Koltun, J. Malik, M. Savva, and D. Batra, “Habitat 2.0: Train-
ing home assistants to rearrange their habitat,” arXiv preprint
arXiv:2106.14405, 2021.

[26] ROS navigation stack. [Online]. Available: https://github.com/
ros-planning/navigation

[27] ETH autonomous system lab repository. [Online]. Available:
https://github.com/ethz-asl

[28] HKUST aerial robotics group repository. [Online]. Available:
https://github.com/HKUST-Aerial-Robotics

[29] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research (IJRR), vol. 34,
no. 3, pp. 314–334, 2015.

[30] T. Qin and S. Shen, “Online temporal calibration for monocular visual-
inertial systems,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, October 2018.

[31] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3D euclidean signed distance fields for on-
board mav planning,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Vancouver, Canada, September
2017.

[32] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[33] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon” next-best-view” planner for 3D exploration,” in
International Conference on Robotics and Automation (ICRA), Stock-
holm, Sweden, May 2016.

[34] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “FUEL: Fast UAV explo-
ration using incremental frontier structure and hierarchical planning,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 779–786,
2021.

[35] J. Zhang, C. Hu, R. G. Chadha, and S. Singh, “Falco: Fast likelihood-
based collision avoidance with extension to human-guided navigation,”
Journal of Field Robotics, vol. 37, no. 8, pp. 1300–1313, 2020.

[36] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and
M. Hutter, “Graph-based subterranean exploration path planning using
aerial and legged robots,” Journal of Field Robotics, vol. 37, no. 8,
pp. 1363–1388, 2020.

[37] M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen,
N. Khedekar, and K. Alexis, “Motion primitives-based path planning
for fast and agile exploration using aerial robots,” in International
Conference on Robotics and Automation (ICRA), Paris, France, May
2020.

[38] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research
(IJRR), vol. 30, no. 7, pp. 846–894, 2011.

[39] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient ap-
proach to single-query path planning,” in International Conference
on Robotics and Automation (ICRA), San Francisco, CA, USA, April
2000.

[40] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[41] S. Koenig and M. Likhachev, “D* lite,” in AAAI Conference on
Artificial Intelligence, Alberta, Canada, July 2002.

[42] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, Berkeley, CA, July 2014.
[Online]. Available: https://github.com/cuitaixiang/LOAM NOTED

https://github.com/ros-planning/navigation
https://github.com/ros-planning/navigation
https://github.com/ethz-asl
https://github.com/HKUST-Aerial-Robotics
https://github.com/cuitaixiang/LOAM_NOTED


[43] T. Qin and S. Cao, “Advanced implementation of LOAM,” HKUST
Aerial Robotics Group. [Online]. Available: https://github.com/
HKUST-Aerial-Robotics/A-LOAM

[44] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, October 2018. [Online]. Available:
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM

[45] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing
and mapping,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, Nevada, October 2020.
[Online]. Available: https://github.com/TixiaoShan/LIO-SAM

[46] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D lidar inertial
odometry and mapping,” in International Conference on Robotics
and Automation (ICRA), Montreal, Canada, May 2019. [Online].
Available: https://github.com/hyye/lio-mapping

https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
https://github.com/TixiaoShan/LIO-SAM
https://github.com/hyye/lio-mapping

	Introduction
	Related Work
	Development Environment
	Environment Models
	Local Planner
	Terrain Traversability Analysis
	Visualization and Debugging Tools

	High-level Planners
	TARE Planner for Exploration
	FAR Planner for Route Planning

	Best Practices
	System Integration
	Basic System
	DARPA Subterranean Challenge System

	Extended Application Examples
	Discussion and Future Activities
	References

