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Abstract

Efficient processing of high-res video streams is safety-
critical for many robotics applications such as autonomous
driving. To maintain real-time performance, many practi-
cal systems downsample the video stream. But this can hurt
downstream tasks such as (small) object detection. Instead,
we take inspiration from biological vision systems that al-
locate more foveal “pixels” to salient parts of the scene.
We introduce FOVEA, an approach for intelligent down-
sampling that ensures salient image regions remain “mag-
nified” in the downsampled output. Given a high-res im-
age, FOVEA applies a differentiable resampling layer that
outputs a small fixed-size image canvas, which is then pro-
cessed with a differentiable vision module (e.g., object de-
tection network), whose output is then differentiably back-
ward mapped onto the original image size. The key idea
is to resample such that background pixels can make room
for salient pixels of interest. In order to ensure the over-
all pipeline remains efficient, FOVEA makes use of cheap
and readily available cues for saliency, including dataset-
specific spatial priors or temporal priors computed from ob-
ject predictions in the recent past. On the autonomous driv-
ing datasets Argoverse-HD and BDD100K, our proposed
method boosts the detection AP over standard Faster R-
CNN, both with and without finetuning. Without any notice-
able increase in compute, we improve accuracy on small
objects by over 2x without degrading performance on large
objects. Finally, FOVEA sets a new record for streaming
AP (from 17.8 to 23.0 on a GTX 1080 Ti GPU), a metric
designed to capture both accuracy and latency.

1. Introduction
Safety-critical robotic agents such as self-driving cars

make use of an enormous suite of high-resolution percep-
tual sensors, with the goal of minimizing blind spots, max-
imizing perception range, and ensuring redundancy [5, 4,
40]. We argue that “over-sensed” perception platforms pro-
vide unique challenges for vision algorithms since those
visual sensors must rapidly consume sensor streams while
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Figure 1: Standard image downsampling (top right) limits
the capability of the object detector to find small objects. In
this paper, we propose an attentional warping method (bot-
tom right) that enlarges salient objects in the image while
maintaining a small input resolution. Challenges arise when
warping also alters the output labels (e.g., bounding boxes).

continuously reporting back the state of the world. While
numerous techniques exist to make a particular model run
fast, such as quantization [43], model compression [9], and
inference optimization [33], at the end of the day, simple
approaches that subsample sensor data (both spatially by
frame downsampling and temporally by frame dropping)
are still most effective for meeting latency constraints [21].
However, subsampling clearly throws away information,
negating the goals of high-resolution sensing in the first
place! This status quo calls for novel vision algorithms.

To address this challenge, we take inspiration from the
human visual system; biological vision makes fundamental
use of attentional processing. While current sensing stacks
make use of regular grid sampling, the human vision system
in the periphery has a much lower resolution than in the cen-
ter (fovea), due to the pooling of information from retinal
receptors by retinal ganglion cells. Such variable resolution
is commonly known as foveal vision [20].

In this paper, we propose FOVEAted image magnifica-
tion (FOVEA) for object detection, which retains high reso-
lution for objects of interest while maintaining a small can-
vas size. We exploit the sparsity of detection datasets – ob-
jects of interest usually only cover a portion of the image.
The key idea is to resample such that background pixels can
make room for salient pixels of interest. The input images
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are downsampled and warped such that salient areas in the
warped image have higher resolutions. While image warp-
ing has been explored for image classification [18, 34] and
regression [34], major challenges remain when applying
such methods to detailed spatial prediction tasks such as ob-
ject detection. First, processing warped images will produce
warped spatial predictions (bounding box coordinates). We
make use of differentiable backward maps to unwarp spa-
tial predictions back to the original space. Second, it is hard
to efficiently identify salient regions; in the worst case, a
saliency network tuned for object detection may be as ex-
pensive as the downstream detection network itself, thereby
eliminating any win from downsampling. In our case, we
make use of cheap and readily available saliency cues, ei-
ther in the form of dataset-specific spatial priors (i.e., small
objects tend to exist near a fixed horizon) or temporal pri-
ors (small objects tend to lie nearby small object predictions
from previous frames). Third, previous image warps (tuned
for image classification tasks) can produce cropped image
outputs. Since objects can appear near the image boundary,
we introduce anti-cropping constraints on the warping.

We validate our approach on two self-driving datasets
for 2D object detection: Argoverse-HD [21] and BDD100K
[45]. First, we show that FOVEA can improve the per-
formance of off-the-shelf detectors (Faster R-CNN [36]).
Next, we finetune detectors with differentiable image warp-
ing and backward label mapping, further boosting perfor-
mance. In both cases, small objects improve by more than
2x in average precision (AP). Finally, we evaluate FOVEA
under streaming perception metrics designed to capture
both accuracy and latency [21], producing state-of-the-art
results.

2. Related Work
Object detection Object detection is one of the most
fundamental problems in computer vision. Many meth-
ods have pushed the state-of-the-art in detection accu-
racy [13, 36, 25, 6, 32], and many others aim for improv-
ing the efficiency of the detectors [29, 35, 41, 3]. The in-
troduction of fully convolution processing [39] and spatial
pyramid pooling [15] have allowed us to process the input
image in its original size and shape. However, it is still
a common practice to downsample the input image for ef-
ficiency purposes. Efficiency becomes a more prominent
issue when people move to the video domain. In video
object detection, the focus has been on how to make use
of temporal information to reduce the number of detectors
invoked [47, 46, 30]. These methods work well on sim-
ple datasets like ImageNet VID [38], but might be unsuit-
able for the self-driving car senarios, where multiple new
objects appear at almost every frame. Furthermore, those
methods are usually designed to work in the offline fashion,
i.e., allowing access to future frames. Detection methods

are the building blocks of our framework, and our proposed
approach is largely agnostic to any particular detector.

Online/streaming perception In the online setting, the
algorithm must work without future knowledge. [24] pro-
poses the Temporal Shift Module that enables video under-
standing through channel shifting and in the online setting,
the shifting is restricted to be uni-directional. [2] proposes
a multi-object tracking method that takes input previous
frame detection as addition proposals for the current frame.
Our method also takes previous frame detection as input,
but we use that to guide image warping. Streaming accu-
racy [21] is a recently proposed metric that evaluates the
output of a perception algorithm at all time instants, forc-
ing the algorithm to consider the amount of streaming data
that must be ignored while computation is occuring. [21]
demonstrates that streaming object detection accuracy can
be significantly improved by tuning the input frame resolu-
tion and framerate. In this work, we demonstrate that adap-
tive attentional processing is an orthogonal dimension for
improving streaming performance.

Adaptive visual attention Attentional processing has
been well studied in the vision community, and it appears
in different forms [10, 17, 19, 28, 23, 44]. Specially in
this paper, we focus on dynamic resolutions. For image
classification, [42] designs an algorithm to select high-
resolution patches, assuming each patch is associated with
a data acquisition cost. [31] applies non-uniform downsam-
pling to semantic segmentation and relies on the network
to learn both the forward and backward mapping, whose
consistency is not guaranteed. For object detection, a dy-
namic zoom-in algorithm is proposed that processes high-
resolution patches sequentially [12]. However, sequential
execution might not meet latency requirements for real-time
applications. Most similar to our work, [34] proposes an
adaptive image sampling strategy that allocates more pix-
els for salient areas, allowing a better downstream task per-
formance. But the method only works for image classifica-
tion and regression, where the output is agnostic to the input
transformation.

3. Approach
Assume we are given a training set of image-label pairs

(I, L). We wish to learn a nonlinear deep predictor f
that produces a low loss L(f(I), L). Inspired by past
work [34, 18], we observe that certain labeling tasks can
be performed more effectively by warping/resampling the
input image. However, when the label L itself is spatially
defined (e.g., bounding box coordinates or semantic pixel
labels), the label itself may need to be warped, or alter-
natively, the output of the deep predictor may need to be
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Figure 2: Our proposed method for object detection. Given bounding box predictions from the previous frame (if the input
are videos) or a collection of all the ground truth bounding boxes in the training set, the saliency generator creates a saliency
map and that is fed into the spatial transformer (adapted from [34, 18]) to downsample the high-resolution input frame while
magnifying salient regions. Then we feed the downsampled input into a regular object detector, and it produces bounding
box output in the warped space, which is then converted back to the original image space as the final output.

inverse-warped.
In this section, we first introduce the saliency-guided

spatial transform from related work as the foundation of
our method. Next, we introduce our solutions to address
the challenges in image warping for object detection. An
overview of FOVEA, our method, is shown in Fig 2.

3.1. Background: Saliency-Guided Spatial Trans-
form

The seminal work of spatial transformer networks (STN)
introduces a differentiable warping layer for input images
and feature maps [18]. It was later extended to incorporate
a saliency map to guide the warping [34]. Here we pro-
vide implementation details that are crucial to our method.
Please refer to the original papers [18, 34] for more details.

A 2D transformation can be written as:

T : (x, y) → (x′, y′), (1)

where (x, y) and (x′, y′) are the input and output coordi-
nates. Since image pixels are usually discrete, interpolation
is required to sample values at non-integral coordinates. An
image warp WT takes input an image I , samples the pixel
values according to the given transformation T , and outputs
the warped image I ′:

I ′(T (x, y)) = I(x, y) (2)

Naive forward warping of discrete pixel locations from in-
put I can result in non-integral target pixel positions that
need to be “splatted” onto the pixel grid of I , which can
produce artifacts such as holes. Instead, image warps are
routinely implemented via a backward map [1]: iterate over

each output pixel grid location, compute its inverse map-
ping T −1 to find its corresponding input coordinates (which
may be non-integral), and bilinearly interpolate its color
from neighboring input pixel grid points:

I ′(x, y) = I(T −1(x, y)) (3)

In other words, the implementation of WT only requires the
knowledge of the inverse transformation T −1. The pixel
iteration can be replaced with a batch operation by using a
grid generator and apply the transformation T −1 over the
entire grid.

STN uses a differentiable formulation of T −1
θ (parame-

terized by θ) and an ensuing bilinear grid sampler, which
is differentiable and parameter-free. [34] proposes a spe-
cial form of T −1 parameterized by a saliency map S:
T −1
θ = T −1

S . This transform has a convolution form and
is therefore fast, using the intuition that each input pixel
(x, y) attracts samples from the original image with a force
S(x, y), leading to more sampling at salient regions. We
point out that both [18] and [34] ignore the effect of warp-
ing on the output label space and skip the modeling of the
forward transform T , which (we will show) is required for
unwarping certain label types.

3.2. Image Warping for Object Detection

In this section, we first explain our high-level inference
formulation, then our specific form of the warping, and in
the end some adjustments for training the task network.

Inference formulation We visually lay out the space of
image and label warps in Fig 3. Recent methods for differ-
entiable image warping assume labels are invariant under
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Figure 3: Image warps WT are commonly implemented via
a backward map T −1 followed by (bilinear) interpolation of
nearby source pixel grid values, since forward mapping T
can result in target pixel positions that do not lie on the pixel
grid (not shown). Though image warping is an extensively
studied topic (notably by [18, 34] in the context of differ-
entiable neural warps), its effect on labels is less explored
because much prior art focuses on global labels invariant to
warps (e.g. an image class label). We explore warping for
spatial prediction tasks whose output must be transformed
back into the original image space to generate consistent
output. Interestingly, transforming pixel-level labels with
warp WT −1 requires inverting T −1, which can be difficult
depending on its parameterization [1]. In this paper, we fo-
cus on transforming pixel coordinates of bounding boxes,
which requires only the already-computed backward map
T −1 (the red arrow).

the warping (the first pathway in Fig 3). For object detec-
tion, however, image warping clearly warps bounding box
outputs. To produce consistent outputs (e.g., for computing
bounding box losses during learning), these warped outputs
need to transformed back into the original space (the second
pathway in Fig 3). Quite conveniently, because standard im-
age warping is implemented via the backward map T −1, the
backward map is already computed in-network and so can
be directly applied to the pixel coordinates of the predicted
bounding box. The complete procedure for our approach f̂
can be written as f̂(I, T ) = T −1(f(WT (I))). where f(·)
is the nonlinear function that returns bounding box coordi-
nates of predicted detections. Importantly, this convenience
doesn’t exist when warping pixel-level values; e.g., when
warping a segmentation mask back to the original image in-
put space (the third pathway in Fig 3). Here, one needs to
invert T −1 to explicitly compute the forward warp T .

Figure 4: By restricting the general class of warps (left)
to be separable (right), we ensure that bounding boxes in
the warped image (examples outlined in red) remain axis-
aligned. We demonstrate that such regularization (surpris-
ingly) improves performance, even though doing so theo-
retically restricts the range of expressible warps (details in
Sec 4.1.2).

Warping formulation We adopt the saliency-guided
warping formulation from [34]:

T −1
x (x, y) =

∫
x′,y′ S(x

′, y′)k((x, y), (x′, y′))x′∫
x′,y′ S(x′, y′)k((x, y), (x′, y′))

, (4)

T −1
y (x, y) =

∫
x′,y′ S(x

′, y′)k((x, y), (x′, y′))y′∫
x′,y′ S(x′, y′)k((x, y), (x′, y′))

, (5)

where k is a distance kernel (we use a Gaussian kernel
in our experiments). However, in this general form, axis-
aligned bounding boxes might have different connotations
in the original and warped space. To ensure axis-alignment
is preserved during the mapping, we restrict the warping to
be separable along the two dimensions, i.e., T −1(x, y) =
(T −1

x (x), T −1
y (y)). For each dimension, we adapt the pre-

vious formulation to 1D:

T −1
x (x) =

∫
x′ Sx(x

′)k(x′, x)x′∫
x′ Sx(x′)k(x, x′)

, (6)

T −1
y (y) =

∫
y′ Sy(y

′)k(y′, y)y′∫
y′ Sy(y′)k(y, y′)

. (7)

We call this formulation separable and the general form
nonseparable. Note that the nonseparable formulation has
a 2D saliency map parameter, whereas the separable formu-
lation has two 1D saliency maps, one for each axis. Fig 4
shows an example of each type of warp.

One nice property of T −1 is that it is differentiable and
thus can be trained with backpropagation. One limitation
though is that its inverse T doesn’t have a closed-form so-
lution, nor does its derivative. The absence of T is not ideal,
and we propose some workaround as shown in the follow-
ing subsection.

Anti-Cropping Constraint We find the convolution form
of saliency-guided spatial transform tends to crop the im-
ages, which might be acceptable for image classification
where a large margin exists around the border. However,
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any cropping in object detection creates a chance to miss ob-
jects. We solve this by using reflect padding on the saliency
map while applying the attraction kernel in Eq 6. This in-
troduces symmetries about each of the edges of the saliency
map, eliminating all horizontal offsets along vertical image
edges and vice versa. Thus cropping is impossible under
this formulation. A 1D illustration is shown in Fig 5 to ex-
plain the problem and the solution.

Training formulation Once we have the inference for-
mulation, training is also straightforward as we re-
quire the loss L to be computed in the original space:
L(Q(f(WT (I)), L), where Q is the label-type-specific
backward mapping as shown in Fig 3, and in our case,
Q = T −1. Note that WT , f and T −1 are all differen-
tiable. While inference itself does not require the knowl-
edge of T , it is not the case for training detectors with re-
gion proposal networks (RPN) [36]. When training RPNs
[36], the regression targets are the deltas between the an-
chors and the ground truth, and the deltas are later used in
RoI Pooling/Align [15, 14]. The former should be com-
puted in the original space (the ground truth is in the origi-
nal space), while the latter is in the warped space (RoI Pool-
ing/Align is over the warped image). This implies that the
deltas need first to be learned in the original space, applied
to the bounding box, and then mapped to the warped space
using T for RoI Pooling/Align. But as discussed before, T
cannot be easily computed. As a workaround, we omit the
delta encoding and adopt Generalized IoU (GIoU) loss [37]
to account for the lost stability. The main idea of GIoU is
to better reflect the similarity of predicted and ground truth
bounding boxes in cases of zero intersection; this has been
shown to improve results.

3.3. KDE Saliency Generator

Prior work [18, 34] trains a saliency network to generate
saliency maps, which we explore as a baseline in Sec 4.1.
Because saliency maps for object detection appear hard to
learn, we explore cheap alternatives for saliency map con-
struction: dataset-level priors over object locations or tem-
poral priors extracted from previous frame’s predictions.
Both priors can be operationalized with an approach that
converts bounding boxes to a saliency map.

Intuitively, we build a saliency map by “overlaying”
boxes on top of one another via non-parametric kernel den-
sity estimation (KDE). More precisely, given a set of bound-
ing boxes B with centers ci, heights hi and widths wi, we
model the saliency map SB as a sum of normal distribu-
tions:

Sa,b
B =

1

K2
+ a

∑
(ci,wi,hi)∈B

N
(
ci, b

[
wi 0
0 hi

])
(8)

(a) Default, σ ≈ 5.5 (b) Anti-crop, σ ≈ 5.5 (c) Anti-crop, σ ≈ 1.7

Figure 5: Saliency-guided transform illustrated in 1D. The
red curve is a saliency map S. The bottom row of dots
are the output points (at uniform intervals), and the top row
of dots are the locations where we’ve sampled each output
point from the original “image”, as computed by applying
T −1
S to the output points. (a) The default transform can

be understood as a weighted average over the output points
and thus ignores points with near zero weights such as those
at the boundaries. (b) Note the effects of introducing anti-
crop reflect padding, and (c) how decreasing the std dev σ of
the attraction kernel k results in more local warping around
each peak (better for multimodal saliency distributions).

where a and b are hyperparameters for amplitude and band-
width, respectively, and K is the size of the attraction kernel
k in Eq 6. Adding the small constant is done to prevent ex-
treme warps. We then normalize the 2D saliency map such
that it sums to 1 and marginalize along the two axes if using
the separable formulation1. As laid out in the previous sec-
tion, this is then used to generate the image transformation
T −1
S according to Eq 6. Ensuring that each kernel is lo-

cally normalized produces our desired behavior; we’ll have
high saliency for pixels covered by objects, and even higher
saliency for pixels covered by small objects (that have their
Gaussian mass focused on a smaller object size).

We can apply SB to the set of all bounding boxes in the
training set to obtain a dataset-wide prior (denoted as SD),
or apply it to the previous frame’s predictions to obtain a
image-specific temporal prior (denoted as SI ). The former
encodes dataset-level spatial priors such as small objects ap-
pearing near the horizon (Fig 7). The latter encodes a form
of temporal contextual priming, allocating pixel samples to
previously seen objects (with a default of uniform saliency
for the first frame). We also experiment with a weighted
combination of both: SC = α · SI + (1 − α) · SD. All of
the above saliency generators are differentiable, so the final
task loss can be used to learn hyperparameters a, b, α.

4. Experiments

We first compare FOVEA to naive downsampling on au-
tonomous driving datasets such as Argoverse-HD. Next, we

1When using the separable formulation, we could instead skip the inter-
mediate 2D saliency map representation. However, we opt not to, because
the intermediate 2D saliency map produces more interpretable visualiza-
tions, and the difference in runtime is negligible.

5



use streaming perception metrics to show that the accuracy
gain is worth the additional cost in latency. Finally, we
present results on BDD100K, showing the generalization
of our method. We include additional results, diagnostic
experiments, and implementation details in the appendix.

4.1. Object Detection for Autonomous Navigation

Argoverse-HD [21] is an object detection dataset for au-
tonomous vehicles. Noteably, it contains high framerate
(30 FPS) data and annotations. As is standard practice,
we adopt AP for evaluation. We also report end-to-end la-
tency (including image preprocessing, network inference,
and bounding box postprocessing) measured on a single
GTX 1080 Ti GPU. The image resolution for this dataset
is 1920×1200, much larger than COCO’s, which is capped
at 640. Since all models used in this paper are fully con-
volutional, we run them with different input scales, denoted
by ratios to the native resolution, e.g., 0.5x means an input
resolution of 960× 600.

4.1.1 Baseline and Setup

The baseline we compare to throughout our experiments is
Faster RCNN [36] with a ResNet-50 backbone [16] plus
FPN [25]. The default input scale for both the baseline
and our method is 0.5x. For the baseline, however, we ad-
ditionally train and test at 0.75x and 1x scales, to derive
a sense of the latency-accuracy tradeoff using this model.
Our contribution is orthogonal to the choice of the baseline
detector and we obtain similar results with other detectors
including RetinaNet [26] and YOLOF [8] (shown in Ap-
pendix B). Additionally, we compare against other zoom-
based approaches [34, 12] in Appendix C.

Notably, Argoverse-HD’s training set only contains
pseudo ground truth (at the time of paper submission) gen-
erated by running high-performing detector HTC [6] in the
offline setting. For all experiments, unless otherwise stated,
we train on the train split with pseudo ground truth anno-
tations, and evaluate on the val split with real annotations.
Additional measures are taken to prevent overfitting to bi-
ased annotations. We finetune COCO pretrained models on
Argoverse-HD for only 3 epochs (i.e., early stopping). We
use momentum SGD with a batch size of 8, a learning rate
of 0.02, 0.9 momentum, 10−4 weight decay, and a step-
wise linear learning rate decay for this short schedule [22].
Also, when training detectors with warped input, we apply
our modifications to RPN and the loss function as discussed
in Sec 3.2.

4.1.2 Learned Saliency

Our first control experiment does not make use of bounding
box KDE priors, but rather directly learns a global, dataset-
wide saliency map S(x, y) via backprop. We directly learn

Figure 6: The learned direct separable (left) and nonsepa-
rable (right) dataset-wide warps. Despite the vastly greater
flexibility of nonseparable warps, the learned warp is almost
separable anyway.

both separable and nonseparable saliency maps in Tab 1.
Training configuration and implementation details are given
in Appendix F.

We find that both separable and nonseparable warps sig-
nificantly improve overall AP over the baseline, owing to
the boosted performance on small objects. However, there
is also a small decrease in AP on large objects. Interest-
ingly, even though nonseparable warps are more flexible,
the learned solutions look nearly separable (Fig 6) but per-
form worse, indicating overfitting. Therefore, going for-
ward, we focus on separable warps in our experiments.

Following [34], we also learn a “saliency network” that
maps each input image to its saliency map via a ResNet-
18 backbone [16]. In this sense, the learned saliency map
would adapt to each image. However, we find that this ap-
proach very unstable for object detection. From our ex-
periments, even with a small learning rate of 10−5 on the
saliency network, the model learns a degeneracy in which
an extreme warp leads to no proposals being matched with
ground truth bounding boxes in the RoI bounding box head,
leading to a regression loss of 0.

4.1.3 KDE Saliency Generator

This section makes use of the KDE construction in Sec 3.3
to generate saliency maps. We first manually tune the am-
plitude a and bandwidth b to obtain desired magnifications.
We find that an amplitude a = 1 and a bandwidth b = 64
works the best, paired with an attraction kernel of std. dev.
of about 17.8% the image height, which allows for more lo-
cal warps as illustrated in Fig 5. We finetune our models
using the same configuration as the baseline, the only dif-
ference being the added bounding box and saliency-guided
spatial transformation layer. We learn SD using all bound-
ing boxes from the training set and for simplicity, learn
SI with jittered ground-truth boxes from the current frame
(though at test-time it always uses predictions from the pre-
vious frame). We set α = 0.5 for SC .

We then learn hyperparameters a and b through back-
propagation, since our KDE formulation is differentiable.
We initialize parameters a′ and b′ to 0, under the construc-
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tion that a = |1 + a′| + 0.1, b = 64 · |1 + b′| + 0.1. The
learning rate of a′ and b′ is set to 10−4 with zero weight
decay. Other than this, we train the learned KDE (LKDE)
model with the same configuration as the baseline. We im-
plement the SI formulation.

All results are shown in Table 1. Even without finetun-
ing our detector, using a simple fixed dataset-wide warp SD,
we find significant improvements in AP. As we migrate to
temporal priors with finetuning, we see even more improve-
ment. As in the learned saliency case, these improvements
in overall AP are due to large boosts in APS , outweighing
the small decreases in APL. Combining our saliency sig-
nals (SC) doesn’t help, because in our case, it seems that
the temporal signal is strictly stronger than the dataset-wide
signal. Perhaps if we had an alternate source of saliency
like a map overlay, combining saliencies could help. Our
best method overall is LKDE, which learned optimal values
a = 1.07, b = 71.6. Learning a nonseparable saliency per-
forms better than our hand-constructed dataset-wide warp
SD; however, they’re both outperformed by SI . Impor-
tantly, our LKDE not only significantly improves APS , but
also improves all other accuracy measures, suggesting that
our method does not need to tradeoff accuracy of large ob-
jects for that of small objects. Finally, we note that our
increased performance comes at the cost of only about 2 ms
in latency.

4.2. Streaming Accuracy for Cost-Performance
Evaluation

Streaming accuracy is a metric that coherently integrates
latency into standard accuracy evaluation and therefore is
able to quantitatively measure the accuracy-latency trade-
off for embodied perception [21]. Such a setup is achieved
by having the benchmark stream the data to the algorithm
in real-time and query for the state of the world at all time
instants. One of their key observations is that by the algo-
rithm finishes processing, the world has around changed and
therefore proper temporal scheduling and forecasting meth-
ods should be used to compensate for this latency. Here
we adopt their evaluation protocol for our cost-performance
analysis. In our case of streaming object detection, the
streaming accuracy refers to streaming AP. We use the same
GPU (GTX 1080 Ti) and their public available codebase
for a fair comparison with their proposed solution. Their
proposed solution includes a scale-tuned detector (Faster R-
CNN), dynamic scheduler (shrinking-tail) and Kalman Fil-
ter forecastor. Our experiments focus on improving the de-
tector and we keep the scheduler and forecastor fixed.

Tab 2 presents our evaluation under the full-stack set-
ting (a table for the detection-only setting is included in
Appendix E. We see that FOVEA greatly improves the pre-
vious state-of-the-art. The improvement first comes from
a faster and slightly more accurate implementation of the

Baseline - 0.5x Baseline - 1x

KDE (SD) - 0.5x

KDE (SI) - 0.5x

KDE (SC) - 0.5x

KDE (SD) - 0.5x - Saliency Map

KDE (SI) - 0.5x - Saliency Map

KDE (SC) - 0.5x - Saliency Map

Figure 7: Qualitative results for our methods after finetun-
ing on Argoverse-HD. The cars in the distance (in the dotted
boxes), undetected at 0.5x scale, are detected at 1x scale,
and partially detected by our methods. Different rows show
the variations within our method based on the source of at-
tention.

baseline (please refer to Appendix F for the implementation
details). Note that under streaming perception, a faster algo-
rithm while maintaining the same offline accuracy translates
to an algorithm with higher streaming accuracy. The second
improvement is due to training on pseudo ground truth (dis-
cussed in Sec 4.1.1). Importantly, our KDE image warping
further boosts the streaming accuracy significantly on top
of these improvements. Overall, these results suggest that
image warping is a cost-efficient way to improve accuracy.

4.3. Cross-Dataset Generalization

Our experiments so far are all conducted on the
Argoverse-HD dataset. In this section, we cross-validate
our proposed method on another autonomous driving
dataset BDD100K [45]. Note that BDD100K and
Argoverse-HD are collected in different cities. For sim-
plicity, we only test out off-the-shelf generalization with-
out any finetuning. We experiment on the validation split
of the MOT2020 subset, which contains 200 videos with
2D bounding boxes annotated at 5 FPS (40K frames in to-
tal). Also, we only evaluate on common classes between
BDD100K and Argoverse-HD: person, bicycle, car, motor-

7



Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)

Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2 49.4 ± 1.0

KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5 52.0 ± 1.0
KDE (SI ) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4 51.2 ± 0.7
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9 52.0 ± 1.2

Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7 86.9 ± 1.6
Upp. Bound (1.0x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6 133.9 ± 2.2

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)

Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6 50.9 ± 0.9

Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8 51.5 ± 1.0
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1 50.0 ± 0.8

KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3 50.8 ± 1.2
KDE (SI ) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4 52.2 ± 0.9
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5 52.1 ± 0.9

LKDE (SI ) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7 50.5 ± 0.8

Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1 87.0 ± 1.4
Upper Bound (1.0x) 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7 135.0 ± 1.6

Table 1: Results before and after finetuning on Argoverse-HD. Without retraining, processing warped images (KDE SI , top
table) improves overall AP by 2.6 points and triples APS . Even larger gains can be observed after finetuning, making our
final solution (LKDE SI ) performing close to the 0.75x upper bound. Please refer to the text for a more detailed discussion.

ID Method AP APS APM APL

1 Prior art [21] 17.8 3.2 16.3 33.3

2 + Better implementation 19.3 4.1 18.3 34.9
3 + Train with pseudo GT 21.2 3.7 23.9 43.8

4 2 + Ours (SI ) 19.3 5.2 18.5 39.0
5 3 + Ours (SI ) 23.0 7.0 23.7 44.9

Table 2: Streaming evaluation in the full-stack (with fore-
casting) setting on Argoverse-HD. We show that our pro-
posed method significantly improves previous state-of-the-
art by 5.2, in which 1.5 is from better implementation, 1.9
is from making use of pseudo ground truth and 1.8 is from
our proposed KDE warping.

cycle, bus, and truck. The results are summarized in Tab 3,
which demonstrate the generalization capability of our pro-
posed method.

5. Conclusion

We propose FOVEA, a highly efficient attentional model
for object detection. Our model magnifies regions likely
to contain objects, making use of top-down saliency priors
learned from a dataset or from temporal context. To do so,
we make use of differentiable image warping that ensures
bounding box predictions can be mapped back to the orig-
inal image space. The proposed approach significantly im-

ID Method AP APS APM APL

1 Baseline (0.5x) 15.1 1.0 10.6 39.0
2 Ours SD (0.5x) 13.7 1.3 10.0 34.7
3 Ours SI (0.5x) 16.4 2.1 12.8 38.6

4 Baseline (0.75x) 19.7 3.0 16.1 44.2
5 Ours SD (0.75x) 18.2 3.4 15.4 40.0
6 Ours SI (0.75x) 20.1 5.2 17.0 42.5

7 Upper bound (1.0x) 22.6 5.7 20.1 45.7

Table 3: Cross-dataset generalization to BDD100K [45].
Rows 2 & 5 are saliency computed on the Argoverse-HD
training set, as expected, they fail to generalize to a novel
dataset. Despite operating at a larger temporal stride (5
FPS vs 30 FPS), our proposed image-adaptive KDE warp-
ing generalizes to a novel dataset (row 3 & 6). Note that
here the image native resolution is smaller at 1280× 720.

proves over the baselines on Argoverse-HD and BDD100K.
For future work, it would be natural to make use of tra-
jectory forecasting models to provide even more accurate
saliency maps for online processing.

Acknowledgements: This work was supported by the
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A. Additional Diagnostic Experiments

A.1. The Role of Explicit Backward Label Mapping

Related work either focus on tasks with labels invari-
ant to warping like image classification or gaze estimation
[18, 34] (discussed in Sec 3.1), or expect an implicit back-
ward mapping to be learned through black-box end-to-end
training [31] (discussed in Sec 2). In this section, we sug-
gest that the implicit backward label mapping approach is
not feasible for object detection. To this end, we train and
test our KDE methods minus any bounding box unwarping.
Specifically, we no longer unwarp bounding boxes when
computing loss during training and when outputting final
detections during testing. Instead, we expect the model to
output detections in the original image space.

Due to instability, additional measures are taken to make
it end-to-end trainable. First, we train with a decreased
learning rate of 1e-4. Second, we train with and without
adding ground truth bounding boxes to RoI proposals. The
main KDE experiments do not add ground truth to RoI pro-
posals, because there is no way of warping bounding boxes
into the warped image space (the implementation of T does
not exist). We additionally try setting this option here, be-
cause it would help the RoI head converge quicker, under
the expectation that the RPN should output proposals in the
original space. All other training settings are identical to the
baseline setup (Sec 4.1.1).

Results are shown in Tab A. The overall AP is single-
digit under all of these configurations, demonstrating the
difficulty of implicitly learning the backward label map-
ping. This is likely due to the fact that our model is pre-
trained on COCO [27], so it has learned to localize objects
based on their exact locations in the image, and finetuning
on Argoverse-HD is not enough to “unlearn” this behavior
and learn the backward label mapping. Another factor is
that in the SI and SC cases, each image is warped differ-
ently, making the task of learning the backwards label map-
ping even more challenging. We suspect that training from
scratch with a larger dataset like COCO and using the warp
parameters (e.g. the saliency map) as input may produce
better results. However, this only reinforces the appeal of
our method due to ease of implementation and cross-warp
generalizability (we can avoid having to train a new model
for each warping mechanism).

A.2. Sensitivity to Quality of Previous-Frame De-
tections

Two of our methods, SI and SC are dependent on the
accuracy of the previous-frame detections. In this section,
we analyze the sensitivity of such a dependency through a
soft upper bound on SI and SC , which is generated using
the current frame’s ground truth annotations in place of de-
tections from the previous frame. This soft upper bound is

Figure A: Plots showing the effect of motion (jitter) on AP
using the KDE SI formulation. Results have been normal-
ized according to the AP at 0 jitter. As is intuitive, motion
affects APS the most and APL the least. After finetuning
(with an artificial jitter of 50), we see that the model reacts
less adversely to jitter, indicating that our regularization has
helped.

a perfect saliency map, up to the amplitude and bandwidth
hyperparameters. Note that this is only a change in the test-
ing configuration.

We report results in Tab A. We see a significant boost
in accuracy in all cases. Notably, the finetuned KDE SI

model at 0.5x scale achieves an AP of 29.6, outperforming
the baseline’s accuracy of 29.2 at 0.75x scale.

A.3. Sensitivity to Inter-Frame Motion

Having noted that the SI and SC formulations are sensi-
tive to the accuracy of the previous-frame detections, in this
section, we further test its robustness to motion between
frames. We use ground truth bounding boxes (rather than
detections) from the previous frame in order to isolate the
effect of motion on accuracy. We introduce a jitter parame-
ter j and translate each of the ground truth bounding boxes
in the x and y directions by values sampled from U(−j, j).
The translation values are in pixels in reference to the orig-
inal image size of 1920 × 1200. As in Sec A.2, this is a
purely testing-time change. Also note that the upper bound
experiments in Sec A.2 follows by setting j = 0. We test
only on SI and report the full results in Tab A. We also plot
summarized results and discuss observations in A.

B. FOVEA Beyond Faster R-CNN
In the main text and other sections of the appendix, we

conduct our experiment based on Faster R-CNN. However,
our proposed warping-for-detection framework is agnostic
to specific detectors. To show this, we test our methods
on RetinaNet [26], a popular single-stage object detector,
and on YOLOF [8], a recent YOLO variant that avoids bells
and whistles and long training schedules (up to 8x for Ima-
geNet and 11x for COCO compared to standard schedules
for YOLOv4 [3]).
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Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck

Main Results (copied from the main text for comparison)
Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2
KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5
KDE (SI ) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9
Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7
Upp. Bound (1x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6

Without an Explicit Backward Label Mapping (Sec A.1)
KDE (SD) 5.4 14.2 3.7 0.0 0.9 20.7 3.2 0.4 1.2 0.8 27.9 0.0 5.3 4.2
KDE (SI ) 6.1 15.6 4.0 0.2 0.8 20.3 2.3 0.6 0.7 1.8 30.8 0.0 7.0 5.4
KDE (SC) 6.0 15.9 3.8 0.1 0.9 21.9 3.0 0.6 0.9 1.5 30.2 0.0 6.7 5.2

Upper Bound with Ground Truth Saliency (Sec A.2)
KDE (SI ) 25.4 42.6 25.6 9.1 26.2 49.5 25.3 17.4 16.8 10.1 49.4 23.4 41.7 19.4
KDE (SC) 24.5 41.7 24.6 7.5 26.8 48.8 23.6 14.5 15.2 9.7 49.7 22.6 41.3 19.8

Sensitivity to Inter-Frame Motion (Sec A.3)
KDE (SI ), j = 10 25.3 42.9 25.3 8.4 26.7 49.1 25.0 16.4 16.2 10.1 48.8 25.0 41.8 19.5
KDE (SI ), j = 25 24.1 41.0 24.5 6.4 26.1 49.0 24.0 12.6 15.2 9.0 48.5 22.9 41.1 19.6
KDE (SI ), j = 50 22.5 38.3 22.9 4.2 24.1 49.1 21.9 9.9 14.4 8.2 48.4 18.5 39.0 19.7
KDE (SI ), j = 100 20.9 35.1 21.6 2.8 21.9 48.0 20.1 7.1 14.0 6.8 47.8 15.3 36.7 19.1
KDE (SI ), j = 200 20.0 33.5 20.6 2.5 20.5 46.7 19.2 6.0 13.4 6.2 46.7 14.3 35.5 18.5

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck

Main Results (copied from the main text for comparison)
Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6
Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1
KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3
KDE (SI ) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5
LKDE (SI ) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7
Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1
Upp. Bound (1x) 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7

Without an Explicit Backward Label Mapping (Sec A.1)
KDE (SD), no RoI GT 2.1 2.6 2.5 0.0 0.0 4.0 0.6 0.0 0.0 0.6 14.8 0.0 0.0 0.9
KDE (SD) 1.8 2.7 1.9 0.0 0.0 3.2 0.6 0.0 0.0 0.0 13.3 0.0 0.1 0.6
KDE (SI ), no RoI GT 2.5 3.0 2.9 0.0 0.1 4.3 0.7 0.0 0.0 0.6 17.0 0.9 0.0 0.9
KDE (SI ) 2.0 2.8 2.4 0.0 0.0 3.7 0.6 0.0 0.0 0.0 14.8 0.0 0.3 0.5

Upper Bound with Ground Truth Saliency (Sec A.2)
KDE (SI ) 29.6 48.7 30.7 12.0 32.8 54.4 28.3 16.3 27.7 9.9 43.9 30.6 50.9 28.8
KDE (SC) 27.8 45.5 28.8 9.6 31.7 53.4 27.5 13.9 24.7 6.5 44.5 25.1 50.2 29.6

Sensitivity to Inter-Frame Motion (Sec A.3)
KDE (SI ), j = 10 29.4 48.3 30.7 11.5 32.8 54.6 27.9 15.9 27.2 9.7 43.7 31.1 50.6 28.7
KDE (SI ), j = 25 28.0 46.1 29.2 9.2 32.1 55.3 26.4 13.9 25.9 9.3 43.9 26.8 49.2 28.7
KDE (SI ), j = 50 26.2 42.9 27.7 6.6 30.5 54.9 24.1 12.1 24.9 8.6 44.1 21.8 46.2 27.9
KDE (SI ), j = 100 24.5 39.9 25.8 4.8 28.6 53.5 22.3 10.2 23.5 7.6 43.5 17.7 43.9 27.1
KDE (SI ), j = 200 23.6 38.3 25.2 4.2 27.8 53.0 21.4 8.6 22.8 7.4 42.9 16.6 42.7 26.6

Table A: Additional diagnostics experiments on Argoverse-HD. Please refer to Sec A for a detailed discussion.

For both these detectors, we test baselines at 0.5x and
0.75x scales both before and after finetuning. We then com-
pare these results against our KDE SI method at 0.5x scale.

We use a learning rate of 0.01 for the RetinaNet KDE SI

model and 0.005 for the RetinaNet baselines. All other
training settings for RetinaNet are identical to the Faster-
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Method AP AP50 AP75 APS APM APL

RetinaNet, Before Finetuning on Argoverse-HD
Baseline (0.5x) 18.5 29.7 18.6 1.3 17.2 48.8
KDE (SI ) 18.5 31.2 17.9 4.5 16.8 44.9
Upp. Bound (0.75x) 24.8 38.8 25.5 4.5 28.7 52.0

RetinaNet, After Finetuning on Argoverse-HD
Baseline (0.5x) 22.6 38.9 21.4 4.0 22.0 53.1
KDE (SI ) 24.9 40.3 25.3 7.1 27.7 50.6
Upp. Bound (0.75x) 29.9 48.6 30.1 9.7 32.5 54.2

YOLOF, Before Finetuning on Argoverse-HD
Baseline (0.5x) 15.0 25.4 14.3 0.6 11.0 46.0
KDE (SI ) 16.8 29.0 16.0 0.9 14.0 46.4
Upp. Bound (0.75x) 21.6 35.5 22.3 2.3 22.2 52.7

YOLOF, After Finetuning on Argoverse-HD
Baseline (0.5x) 18.4 30.5 18.3 1.4 16.5 47.9
KDE (SI ) 21.3 36.7 20.2 3.5 21.8 49.7
Upp. Bound (0.75x) 25.1 41.3 25.3 4.7 27.6 54.1

Table B: Experiments with RetinaNet [26] and YOLOF [8].
We follow the same setup as the experiment with Faster R-
CNN. The top quarter suggests that unlike Faster R-CNN,
RetinaNet does not work off-the-shelf with our KDE warp-
ing. However, the second quarter suggests similar perfor-
mance boosts as with Faster R-CNN can be gained after
finetuning on Argoverse-HD. Interestingly, for YOLOF, our
method boosts AP in all categories – small, medium, and
large – even with off-the-shelf weights.

RCNN baseline. For YOLOF, we use a learning rate of
0.012 and keep all other settings true to the original paper.
Results are presented in Tab B.

C. Comparison Against Additional Baselines
There are other approaches that make use of image warp-

ing or patch-wise zoom for visual understanding. The first
noticeable work [34], explained extensively in the main text,
warps the input image for tasks that have labels invariant to
warping. The second noticeable work [12] employs rein-
forcement learning (RL) to decide which patches to zoom in
for high-resolution processing. In this section, we attempt
to compare our FOVEA with these two approaches.

Our method builds upon spatial transformer net-
works [18, 34] and we have already compared against [34]
sporadically in the main text. Here provides a summary of
all the differences (see Tab C). A naive approach might di-
rectly penalize the discrepancy between the output of the
(warped) network and the unwarped ground-truth in an at-
tempt to implicitly learn the inverse mapping, but this re-
sults in abysmal performance (dropping 28.1 to 2.5 AP, dis-
cussed in Sec A.1). To solve this issue, in Sec 3.1, we note
that [18, 34] actually learn a backward map T −1 instead
of a forward one T . This allows us to add a backward-
map layer that transforms bounding box coordinates back

to the original space via T −1, dramatically improving ac-
curacy. A second significant difference with [18, 34] is our
focus on attention-for-efficiency. If the effort required to
determine where to attend is more than the effort to run the
raw detector, attentional processing can be inefficient (see
the next paragraph). [34] introduces a lightweight saliency
network to produce a heatmap for where to attend; how-
ever, this model does not extend to object detection, per-
haps because it requires the larger capacity of a detection
network (see Sec 4.1.1). Instead, we replace this feedfor-
ward network with an essentially zero-cost saliency map
constructed via a simple but effective global spatial prior
(computed offline) or temporal prior (computed from pre-
vious frame’s detections). Next, we propose a technique to
prevent cropping during warping (via reflection padding, as
shown in Fig 5), which also boosts performance by a notice-
able amount. Finally, as stated in the training formulation in
Sec 3.2, it doesn’t even make sense to train a standard RPN-
based detector with warped input due to choice of delta en-
coding (which normally helps stabilize training). We must
remove this standard encoding and use GIoU to compensate
for the lost stability during training.

Method AP

FOVEA (Ours full) 28.1
w/o Explicit backward mapping 2.5
w/o KDE saliency (using saliency net as in [34]) Doesn’t train
w/o Anti-crop regularization 26.9
w/o direct RPN box encoding N/A

Table C: Summary of key modifications in FOVEA.

Next, we attempt to compare against this RL-based zoom
method [12] using our baseline detector (public implemen-
tation from mmdetection [7]) on their Caltech Pedestrian
Dataset [11]. However, while their full-scale 800 × 600
Faster R-CNN detector reportedly takes 304ms, our im-
plementation is dramatically faster (44ms), consistent with
the literature for modern implementations and GPUs. This
changes the conclusions of that work because full-scale pro-
cessing is now faster than coarse plus zoomed-in processing
(taking 28ms and 25ms respectively), even assuming a zero-
runtime RL module (44ms < 28ms + 25ms).

D. Additional Visualizations

Please refer to Fig B and C for additional qualitative re-
sults of our method.

E. Detection-Only Streaming Evaluation

In Sec 4.2 of the main text, we provide the full-stack
evaluation for streaming detection. Here we provide the
detection-only evaluation for completeness in Tab D. This
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Figure B: Additional examples of the SI KDE warping method. Bounding boxes on the saliency map denote previous frame
detections, and bounding boxes on the warped image denote current frame detections. The magnification heatmap depicts the
amount of magnification at different regions of the warped image. (a) is an example of SI correctly adapting to an off-center
horizon. (b) shows a multimodal saliency distribution, leading to a multimodal magnification in the x direction. (c) is another
example of SI correctly magnifying small objects in the horizon. (d) is a failure case in which duplicate detections of the
traffic lights in the previous frame leads to more magnification than desired along that horizontal strip. One solution to this
could be to weight our KDE kernels by the confidence of the detection. (e) is another failure case of SI , in which a small
clipped detection along the right edge leads to extreme magnification in that region. One general issue we observe is that the
regions immediately adjacent to magnified regions are often contracted. This is visible in the magnification heatmaps as the
blue shadows around magnified regions. This is a byproduct of the dropoff in attraction effect of the local attraction kernel.
Perhaps using non-Gaussian kernels can mitigate this issue.

setting only allows detection and scheduling, and thus iso-
lating the contribution of tracking and forecasting. We ob-
serve similar trend as in the full-stack setting in Tab 2.

F. Additional Implementation Details
In this section, we provide additional details necessary

to reproduce the results in the main text.
For the learned separable model from Sec 4.1.2, we use

two arrays of length 31 to model saliency along the x and y
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Figure C: Examples of KDE warp computed from bounding boxes, extracted from a training dataset (SD) or the previous
frame’s detections (SI , SC). We visualize predicted bounding boxes in the warped image. Recall that large objects won’t
be visible in the saliency due to their large variance from Eq 8. (a) SD magnifies the horizon (b) SI magnifies the center of
the image, similar to SD (c) SI adapts to magnify the mid-right region (d) SC’s saliency combines the temporal and spatial
biases.

dimensions, and during training, we blur the image with a
47× 47 Gaussian filter in the first epoch, a trick introduced
in [34] to force the model to zoom. For the learned nonsep-
arable model, we use an 11× 11 saliency grid, and we blur
the image with a 31 × 31 filter in the first epoch. We use
an attraction kernel k with a standard deviation of 5.5 for
both versions. Additionally, we multiply the learning rate
and weight decay of saliency parameters by 0.5 in the first

epoch and 0.2 in the last two epochs, for stability. We find
that we don’t need anti-crop regularization here, because
learning a fixed warp tends to behave nicely.

For each of our KDE methods, we use arrays of length 31
and 51 to model saliency in the vertical and horizontal direc-
tions, respectively. This is chosen to match the aspect ratio
of the original input image and thereby preserve the vertical
and horizontal “forces” exerted by the attraction kernel.
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ID Method AP APS APM APL

1 Prior art [21] 13.0 1.1 9.2 26.6

2 + Better implementation 14.4 1.9 11.5 27.9
3 + Train with pseudo GT 15.7 3.0 14.8 27.1

4 2 + Ours (SI ) 15.7 4.7 12.8 26.8
5 3 + Ours (SI ) 17.1 5.5 15.1 27.6

Table D: Streaming evaluation in the detection-only setting.
First, we are able to improve over previous state-of-the-art
through better implementation (row 2) and training with
pseudo ground truth (row 3). Second, our proposed KDE
warping further boosts the streaming accuracy (row 4-5).

For the baseline detector, we adopt the Faster R-CNN
implementation of mmdetection 2.7 [7]. All our experi-
ments are conducted in an environment with PyTorch 1.6,
CUDA 10.2 and cuDNN 7.6.5. For streaming evaluation,
we mention a performance boost due to better implementa-
tion in Tab D & Tab 2, and the changes are mainly adopting
newer versions of mmdetection and cuDNN compared to
the solution in [21] (switching from a smooth L1 loss to L1
loss for the regression part and code optimization).
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