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Abstract

Generative Models have been shown to be adept in mimicking the behavior
of an unknown distribution solely from bootstrapped data. However, deep
learning models have been shown to overfit in either the minimization or
maximization stage of the two player min-max game, resulting in unstable
training dynamics. In this work, we explore the use self-supervision as a
way to incorporate domain-knowledge to stabilize the training dynamics
and avoid overfitting. In this work, we investigate the use self-supervision
to stabilize the training of generative models in the single-step and multi-
step domains.

Recently, there has been an increased interest in rewriting single-step
generative models to output realistic images that are semantically similar
to a handful of fixed, user-defined sketches. However, replicating images
from complex poses or distinctive, minimalist art styles (e.g. “the Picasso
horse”) have been shown to be difficult. To rectify these failure cases,
we propose a method that builds upon the GANSketching architecture
by introducing a translation model that shifts the distribution of fake
sketches to be more similar to that of the user-sketches while also retaining
the essence of the originally generated image. Such a formulation avoids
overfitting by the discriminator, thus reducing the discriminability and
improving gradient propagation. We also illustrate how the choice in the
direction of translation affects the number of training steps required as
well as the overall performance of the generator.

The current landscape of multi-step apprenticeship learning is dominated
by Adversarial Imitation Learning (AIL) based methods. In this work,
we investigate the issues faced by these algorithms and introduce a novel
self-supervised loss that encourages the discriminator to approximate a
richer reward function. We also employ our method to train a graph-based
multi-agent actor-critic architecture that learns a centralized policy, con-
ditioned on a learned latent interaction graph. We show that our method
outperforms prior state-of-the-art methods for both the single-agent and
multi-agent domains. Furthermore, we prove that our new regularizer is
part of the family of AIL methods by providing a theoretical connection
to cost-regularized apprenticeship learning. Moreover, we leverage the
self-supervised formulation to illustrate novel reward shaping capabilities
as well as the introduction of a novel teacher forcing-based curriculum
(Trajectory Forcing) that improves sample efficiency by progressively
increasing the length of the generated trajectory.
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Chapter 1

Introduction

Generative models are a class of statistical models that can generate or mimic an

unknown distribution, and reproduce data-instances that are indistinguishable from

the target distribution. There has recently been an increased interest in these models,

and one particular approach has become widely adopted, namely the Generative

Adversarial Network (GANs) [13]. GANs have been extremely successful in modeling

and replicating high dimensional distributions, such as generating realistic human

portraits [41, 60, 26]. These models are trained in an adversarial approach, which

involves a joint optimization scheme where a generative model and a discriminative

model compete against each other. The training dynamics is formulated as a min-max

game [13], and the generator and discriminator take turns optimizing competing loss

functions. Intuitively, this approach would be expected to generate rich estimators

for the target distribution; however, in practise it has been observed that training

such models requires considerable engineering prowess [42].

Another recent trend in machine learning, specifically in unsupervised learning,

involves employing supervised learning approaches along with pseudo-labels, generated

from the data itself, to create expressive unsupervised models without the need for

carefully constructed input and label pairs. These approaches fall under the broad

umbrella of self-supervision [47, 2, 40]. Self-supervision can be broadly classified into

two categories: Contrastive Self-Supervised Learning (CSS) and Non-Contrastive

Self-Supervised Learning (NCSS). CSS based approaches employ the use of positive

and negative samples to optimize a contrastive loss to learn in a latent space [38].
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1. Introduction

Combining Self-Supervision with recent adversarial approaches creates new possi-

bilities with respect to stabilizing the training dynamics of these adversarial meth-

ods. Self-supervision helps the designer encode domain knowledge into the training

paradigm.

In the multi-step generative frameworks, the discriminator is used as a way to

help improve the RL agent’s performance by artificially creating a competition. Some

popular algorithms in this domain fall under the umbrella of Adversarial Imitation

Learning (AIL). Some examples of popular algorithms in this domain are GAIL [20],

AIRL [9] and f -MAX [10]. The primary objective in these algorithms is to optimally

act in an environment in a manner that is indistinguishable from the expert. The

algorithms are modeled as a 2-player competitive game between an agent and a

discriminator. The discriminator tries to distinguish agent trajectories from expert

trajectories. The agent tries to fool the adversary by generating trajectories that are

similar to expert trajectories. At convergence, the agent trajectories closely mimic

the expert trajectories and the adversary cannot distinguish between them. Other

popular applications that use an adversary as a tool are those of Robust RL or

Adversarial attacks in RL [25, 36, 51].

In the single-step generative category, the discriminator functions in a similar

manner; however, the generator in this setting only takes a single step prior to

evaluation. This setting can be thought of as a simplification of the multi-step setting,

akin to the connection between Reinforcement Learning and contextual bandits [30,

59, 48].

In this work, we will explore how to go about incorporating self-supervision

into common generative approaches, and how these methods improve the baseline

performance from an empirical perspective. In particular, we look at the following

scenarios:

1. Self-Supervised Generative Adversarial Imitation Learning (SS-GAIL):

The current landscape of imitation learning is broadly dominated by two families

of algorithms - Behavioral Cloning (BC) and Adversarial Imitation Learning

(AIL) [35]. BC approaches suffer from compounding errors, as they ignore the

sequential decision-making nature of the trajectory generation problem [45].

Furthermore, they cannot effectively model multi-modal behaviors [7]. While

AIL methods solve the issue of compounding errors and multi-modal policy

2



1. Introduction

training, they are plagued with instability in their training dynamics [23]. In

this work, we address this issue by introducing a novel self-supervised loss that

encourages the discriminator to approximate a richer reward function. We

show that our method (SS-GAIL) outperforms prior state-of-the-art methods on

real-world prediction tasks, as well as on custom-designed synthetic experiments.

We prove that SS-GAIL is part of the family of AIL methods by providing

a theoretical connection to cost- regularized apprenticeship learning. More-

over, we leverage the self-supervised formulation to introduce a novel teacher

forcing-based curriculum (Trajectory Forcing) that improves sample efficiency

by progressively increasing the length of the generated trajectory. The SS-GAIL

framework improves imitation capabilities by stabilizing the policy training,

improving the reward shaping capabilities, as well as providing the ability for

modeling multi-modal trajectories.

2. TroGAN: There has been an increased interest in employing sketches as

a user-friendly representation to control the out- put of a generative model.

Sketch Your Own GAN [52] focuses on rewriting a generative model to output

realistic images that are semantically similar to a handful of fixed, user- defined

sketches. However, there are failure cases – GANSketching [52] cannot replicate

images from complex poses or distinctive, minimalist art styles (e.g. “the

Picasso horse”). We hypothesize that this is occurring because the user-sketch

distribution is considerably different from the generated sketch distribution,

given the underlying dataset. To rectify these failure cases, we propose a method

that builds upon the GAN Sketching architecture by introducing a translation

model that shifts the distribution of fake sketches to be more similar to that

of the user-sketches while also retaining the essence of the initially generated

image. Such a formulation avoids overfitting by the discriminator, thus reducing

the discriminability and increasing gradient propagation. We also experiment

with translating the user-sketches instead and discuss how the choice in the

direction of translation affects generator performance. Finally, we show that

our method reduces the number of training steps required when compared with

GAN Sketching.

3
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Chapter 2

Background

Generative Models have been shown to be exceptionally proficient in mimicking the

behavior of an unknown distribution solely from bootstrapped data. These models

are usually trained to optimize a distinguishability loss that is estimated by a learned

discriminative model. This approach is known as adversarial training, and it involves

the joint optimization of a generator and a discriminator [13]. These two models

compete against each other according to a min-max objective function defined by the

adversarial training regiment [12]. However, with modern deep learning architectures,

the exceptional function-approximating ability of these models can quickly destabilize

the training dynamics by overfitting in either the minimization or maximization stage

of the two player game [42]. In this work, we explore the use self-supervision as a

way to stabilize the training dynamics and avoid overfitting.

2.1 Single-Step Generative Models

GANSketching focuses on rewriting a generative model to output realistic images

that are semantically similar to a handful of fixed, user-defined sketches. However,

there are failure cases – GANSketching cannot replicate images from complex poses

or distinctive, minimalist art styles (e.g. “the Picasso horse”) [52]. This is believed

to occur because the user-sketch distribution is considerably different from the

generated sketch distribution, given the underlying dataset, as illustrated in Fig. 2.1.

Such a formulation does not avoid overfitting by the discriminator, as the sketch

5



2. Background

distributions and the distribution after the mapping network might differ considerably.

We illustrate this issue in Fig. 2.1. This reduces the discriminability and reduces

gradient propagation. This method would naturally require a large number of training

steps required when compared with GANSketching.

Figure 2.1: GAN Sketching Architecture: The main forward pass involves sampling
an image from the generator, passing it through an encoding network or mapping
network, followed by a sketch discriminator and a style discriminator. The learned
networks are illustrated as Blue squares, while frozen differentiable networks are
shown in grey. The purple boxes are the intermediate pictures after the corresponding
networks, and we show a sample example of how it would look at a given stage in the
pipeline.

2.1.1 Rewriting Generative Models using Sketches

Being able to control the output of a generative model would enable engineers and

scientists to create realistic images in a matter of seconds, which would have otherwise

taken weeks or months to synthesize [11]. Moreover, there has recently been an

increased interest in employing sketches as a user-friendly representation to control

the output of a generative model [52]. Rewriting generative models [3, 53] is one such

approach that enables fast adaptation of pre-trained models for customized image

6



2. Background

synthesis. The framework presented in this paper builds upon the GAN rewriting

work by Wang [52].

The GAN sketching framework illustrated above involves initializing a generative

model with a set of pre-trained weights, followed by a training regiment that encourages

the model to match a set of user defined sketches. The architecture is illustrated in

Fig 2.1. The type of object to mimic (e.g. horse, cat, etc.) is either known beforehand

or identified by a human-drawn user-sketch. A generator and two discriminators are

trained end-to-end. The framework employs two soft constraints that are defined by

two adversarial losses – a style loss and a sketch loss. One discriminator provides a

style loss of the generated image using a dataset of real images of the object, and the

other one (the main focus of our paper) provides a loss of the sketch outlines of the

generated image against one or a handful (single-sketch and multi-sketch paradigm,

respectfully) human-drawn sketches. The sketch of the generated image are provided

by an image to sketch translation network (a pre-trained pix2pix [22] network). Note

that the network must train end-to-end for every new sketch(es) provided. In this

paper, “sketches” or “fake sketches” will refer to the output of fake images under

this translation network, “human/user-sketch” refers to the human-drawn sketch,

and “contours” (not yet introduced) will refer to the sketch-translation of real images

under some image translation network.

The flow of the algorithm involves first sampling a generated image G(z) from the

generator. Next, this image is passed into a mapping or encoding network represented

by F . In GAN Sketching [52], the mapping network is initialized using a pre-trained

network similar to Photosketch[32] and identifies the contours in the image. The

output at this stage F (G(z)) would look similar to a sketch drawn by a human,

and is thus used as the fake images for training a sketch discriminator. The real

user-sketches used to train the sketch discriminator would come from a subset of the

QuickDraw dataset [5]. Finally, the original sampled image G(z) is passed into a style

discriminator along with other real images to ensure that the style remains intact.

2.2 Multi-Step Generative Models

In this work, we consider sequential decision making problems, and we model them

using the framework of Markov decision processes (MDP). An MDP can be represented

7



2. Background

as a tuple (S,A,P , r, ρ0, T ) with state-space S, action-space A, dynamics P : S ×
A× S → [0, 1], reward function r(s, a), initial state distribution ρ0, and horizon T.

Imitation learning [37] methods aim to learn task policies directly from expert

demonstrations. The family of imitation learning algorithms is broadly divided into

two classes, behavioral cloning (BC) [1] and Adversarial Imitation Learning (AIL)

[9]. BC directly regresses from the expert’s states to its decisions; however, such a

straightforward supervised learning approach ignores the sequential nature of the

problem and policy errors cascade during execution.

Adversarial IL methods formulate the imitation learning problem as an adversarial

game between the policy and the discriminator. The discriminator measures some

divergence between the expert and policy’s state-action distribution, and the policy

aims to fool this discriminator. For instance, GaIL [20] minimizes the JS divergence

between the expert and policy’s state distribution. Their algorithm implements a

min-max optimization procedure,

min
π∈Π

max
D∈(0,1)S×A

−λHH(π) + Eπ[log(D(s, a)] + EπE [log(1−D(s, a))] (2.1)

AIL methods provide a compelling approach to imitation since they do not face

the issue of compounding errors. However, such adversarial methods are known to

be unstable to train. Our work aims to deal with this instability while retaining the

advantages of AIL methods.

Previous work for multi-agent behavior prediction such as NRI [28] and DNRI [14]

model the expert’s behavior using a VAE [27] in which the encoder and the decoder

networks are modeled as GNNs [29] and the latent code represents the intrinsic

interaction graph. Since their network architecture is designed to represent and

work on the interaction graph of the agents, they can be used to understand the

relationships between the agents qualitatively. These models are trained using multi-

step BC and, therefore, cannot model multi-modal behavior. This is a significant

drawback since real-world behavior is often multi-modal. Our work builds upon their

policy architecture by training them using an actor-critic algorithm in an AIL setting.
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Chapter 3

TroGAN

3.1 Introduction

Prior to the advent of the camera, creating realistic pictures based on a particular

stylistic penchant required artistic skill and meticulous attention to detail, which

resulted in exorbitant costs and man-hours. Nowadays, with a smartphone in most

people’s pockets we have a plethora of realistic image generation methods. However,

we still have not overcome the barrier of editing images to match a particular style, at

scale. There are applications such as Photoshop [34] that can edit images; however,

they require dozens of man-hours and cannot be scaled to millions of images. In this

paper we intend on investigating a neural approach to editing realistic images and

mass producing variations using relatively simple sketches as standard archetypes.

GANs have recently been shown to be powerful tools in creating generative models

for image synthesis, and there has been interest in being able to control the generated

outputs [18, 39, 52]. In the GANSketching model [52], a generator is trained to create

fake images similar to a human-provided drawing (the “user-sketch”). The goal of

their architecture is to allow users to create their own generative network from only a

single drawing or a handful of sketches.

As is discussed later, our hypothesis is that the ability for the generator to learn

involves fooling the discriminator by mimicking the semantics of the sketch, which

becomes increasing difficult the farther apart the distributions between the user-sketch

and the generated-contours are. If the distributions are considerably far apart, the

9



3. TroGAN

discriminator’s job becomes “easy” and the generator cannot learn as well due to low

gradient magnitudes. This becomes the case for user-sketches that are far from the

fake sketch distribution, e.g. for user-sketches of cats in difficult poses, or minimalist,

over-simplified drawings with rare sketch styles.

Our goal therefore becomes to understand how to rectify failure cases (discussed in

the previous chapter) by bringing these two distributions closer together. In a sense,

we want to make it harder for the sketch discriminator to discern between the two

distributions so that gradients can better help the generator replicate the user-sketch

styles or poses. It is important to note; however, that making the discriminator’s

inputs indiscernible from the get-go also is not desired as the generator will get little

to no training signal.

Failure Cases In GANSketching [52], the authors identify a few failure-cases for

their architecture, one such case being user-sketches drawn with a distinctive style.

They illustrate this issue with an example of a horse drawn to imitate the style

of Picasso. This example demonstrates the sketch-space-mismatch issue with this

framework, namely the problem arising from a distributional shift in the user-sketches

and the generated sketches. We will build upon the issues arising from this mismatch

shortly, while also presenting some empirical analysis in the Experiments 3.3 section.

The Picasso Horse [52] and other rare drawing styles example sheds light on the

interesting problems surrounding sketch generation. This discussion motivates our

choice to use an unpaired image-2-image translation model [38] as a method to bridge

the gap arising from the distributional shifts between the sketch space of the model

and the user-sketches.

Distributional Shifts The central objective behind the adversarial min-max

problem [13] is to converge to a Nash equilibrium point which describes a state where

the generator’s outputs are indistinguishable from the ground-truth samples. However,

if there is still a considerably distinct deviation between the two distributions when

the model converges, then a discriminator might overfit to the classification objective,

thereby resulting in vanishing gradients passing back to the generator. This can

be fixed with approaches such as increasing the number of generator update steps;

however, this doesn’t solve the underlying issue of the current GANSketching [52]

10



3. TroGAN

(a) Generalized experimental template.

Variant A B

v1 SketchRNN Identity
v2 Identity SketchRNN
v3 Identity U-Net
v4 Identity CUT
v5 CUT Identity

(b) A table of architectural variants
(which networks go in A,B in 3.1a).

Figure 3.1: (Left) the general template for our experimental architectures. Rectify-
ing the distribution between user-sketches and fake-sketches involve putting image-
translation models (ResNet18) in slots A or B. (Right) a summary of experimental
variants in terms of what networks go in slots A,B in 3.1a

framework on rare drawing styles. The issue with the current framework is that the

fake sketches arising from the generated samples cannot match the user-sketches as

they are from entirely different distributions even after the model has converged.

This leads us back to the issues discussed in the previous sub-section and motivates

the design choices that we will present in the following sections. We aim to solve the

distributional mismatch issue with an unpaired image-2-image translation model [38],

thus resulting in the possibility for the generator to potentially converge to a Nash

equilibrium. Furthermore, this avoids the overfitting issue that we would otherwise

see when the discriminator optimizes over semantically inappropriate features, which

would not result in meaningful weight updates for the generator.

3.2 Method

In order to rectify the distributional shift, we introduce a translation model that

modifies one sketch distribution as described in Figure 3.1a. Our goal is to modify

either sketch distributions in a way that closes the gap between the two distributions,

while also retaining the original meaning of the user-sketch. We acknowledge that

incorporating a translation model between the output of the mapping network F and

the sketch discriminator could cause sparse gradients due to the depth of the pipeline.

11
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(a) TroGAN S2C iteration=0
(b) TroGAN S2C itera-

tion=10K
(c) TroGAN S2C itera-

tion=20K

Figure 3.3: TroGAN S2C Samples Psi0.5

3.2.1 Architectural Variants

While we initially planned to use the translation model to modify ground-truth user-

sketches, we also experiment with rectifying the distribution shift by transforming

the user-sketches as shown in Figure 3.1. The general template of our modified

GANSketching model is shown in Figure 3.1a and the variants listed in 3.1b. We also

try experimenting with biasing the training dataset for GANSketching by identifying

nearest-neighbor real images to the user-sketch (in the sketch domain). Note that we

did not implement v1, v2, or v3, but discuss observations or anticipations of each

variant below.

3.2.2 Differences between A and B

We have a choice of inserting an image translation model in either A or B, while

leaving the other slot empty. If a model is inserted into A, then it is intended to serve

as fake sketch to user-sketch image translation. The general idea is to pre-train a

translation network to make fake sketches look more like user-sketch domain, and

these variants are v1 & v5, as shown in 3.1b. On the other hand, if a model is inserted

into B, it is intended to translate sketches from the user-sketch to the fake sketch

distribution. Ideally a pre-trained model is used, and these variants are v2,v3, and

v4, as shown in 3.1b.

3.2.3 SketchRNN Variants (v1, v2)

Inspired by the observation that fake sketches usually have more numerous and

smooth strokes than user-sketches, we hypothesized that a recurrent model such

12
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(a) GANSketching itera-
tion=0

(b) GANSketching itera-
tion=10K

(c) GANSketching itera-
tion=20K

Figure 3.4: GANSketching Baseline Samples Psi0.5

as SketchRNN [16] will sequentially add sketches to the user-sketch to look more

like fake-sketches (v2). Conversely, we might imagine a scheme where strokes are

sequentially removed from the fake-sketch to look more like the user-sketch (v1).

Although recurrent networks would theoretically add/remove strokes one by one in

this hypothesized manner, v1 inserts a RNN in an already deep pipeline and training

may suffer from vanishing gradients. Both variants need to train with multi-step

rollouts and the number of steps may add additional complexity as an unknown

hyperparameter. Furthermore, pre-training these network requires training with image

pairs, which requires human labeling or some semi-supervised paradigm with nearest

neighbor search. In any case, we decided to employ non-recurrent image-to-image

translation models.

3.2.4 U-NET Variants (v3)

U-nets are shown to be powerful tools for image-to-image translation [44], so our v3

variant proposes to insert a U-net model in slot B, where the network is pre-trained

to translate user-sketches to fake sketches. The main difficulty with this model is that

it still requires image pairs to translate. Unlike SketchRNN, U-net is not a recurrent

model and requires no rollouts, but the image-pair creation problem still persists and

we would like to proceed with unsupervised translation models.

3.2.5 CUT Variants (v4, v5)

The contrastive unpaired translation model (CUT) [38] is a good model candidate since

it does not require supervised pair of images. It works by training an encoder-decoder

generation model to translate image styles while learning to keep corresponding

13



3. TroGAN

patches of the input and output semantically similar. The use of CUT will eliminate

multi-step rollouts as in SketchRNN and supervised image pairing during pre-training.

v4 introduces a CUT model in B, and v5 introduces a CUT model in A. For v4 since

we are transforming user-sketch to look like fake sketches (which often have non-horse

related strokes), the translated image may not be semantically correct, although

having the style of these fake sketches. We implement v4 and v5 and identify some

good results with v5 later, which still may need more samples or training.

Figure 3.5: The Generator sketch loss defined as: softplus(−D(G(z))). A lower loss
indicates an increased predilection by the discriminator into believing the generated
images are indeed real. We observe higher mean and variance in the baseline (red)
compared to the two TroGAN architectures (blue and green).

3.3 Experiments

We hypothesize that introducing an image-2-image translation model to the GANS-

ketching [52] model will rectify the distributional shift between the generated sketch

and user-sketch, which will thereby result in improved performance – both qualita-

tively and quantitatively. In this section we present experiments that justify our

claim, along with a few failure cases as well.
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3.3.1 Evaluations

Datasets. To compare our model against the GANSketching baseline we needed

to first construct an unpaired image-2-image translation dataset, consisting of horse

contours and sketches. We collected 200 horse contours by sampling 400 pictures of

horses from the LSUN Dataset [56], passing them through the QuickDraw model [5],

and selecting the top 200 qualitatively appropriate horse contours.

Next, we sampled a subset of 25,000 horse images from the LSUN Dataset for

evaluating our image loss. We have included instructions on how to download this

dataset in the repository released along with this paper. Finally, we obtained a set

of 200 sketches from the QuickDraw dataset [5] by obtaining JSON files with stroke

information and rendering the vector images. Using this process, we qualitatively

evaluate the sketches and select the best 200 for our task.

Performance Metrics. Apart from a qualitative evaluation of our models, we

also evaluate the number of horses that were initially in an incorrect configuration,

and the number that remained incorrect after 20,000 epochs.

We also plot the Generator Sketch Loss, which is described as: softplus(−D(G(z))),

where G(z) is the generated sketch and D is the sketch discriminator. This loss

quantitatively evaluates the degree to which the generator is able to fool the sketch

discriminator. In other words, the generator sketch loss evaluates the number of false

positives by this discriminator.

3.3.2 Generator Sketch Loss

In Fig. 3.5, we plot the generator sketch loss for the GANSketching Baseline, the

TroGAN sketch-to-contour (s2c, v4) model, and the TroGAN contour-to-sketch (c2s,

v5) model. The loss is defined as softplus(−D(G(z))), where G is the generated

sketch and D is the discriminator output given a sketch. This loss quantitatively

evaluates the degree to which the generator is able to fool the sketch discriminator.

This metric was chosen as a quantitative approach to validate our hypothesis, namely

that introducing an image-2-image translation model would allow for better gradient

propagation, and lower generator losses. We notice that the baseline has considerably

greater mean and variance compared to the both TroGAN models. Though these

results must be taken in conjunction with the qualitative analysis, we show that the
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introduction of a CUT [38] model improves training dynamics.

Figure 3.6: We illustrate randomly sampled outputs from the generator for time-steps
at multiples of 5,000 for the baseline (red), the TroGAN s2c (green), and TroGAN
c2s (blue). We show the sketch used for GAN rewriting to the left of the dotted line.
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Figure 3.7: We illustrate randomly sampled interpolations between outputs from the
generator for time-steps at multiples of 10,000 for the baseline (red), the TroGAN
s2c (green), and TroGAN c2s (blue). The sketch used for GAN rewriting is the same
as in Fig 3.6.

3.3.3 Faster Convergence

As described in Fig. 3.5, the TroGAN architectures have richer gradients, thereby

resulting in faster convergence. We can see the results of this in Fig. 3.6. We
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(a) TroGAN C2S iteration=0
(b) TroGAN C2S itera-

tion=10K
(c) TroGAN C2S itera-

tion=20K

Figure 3.8: TroGAN C2S Interp Psi0.5

(a) TroGAN S2C iteration=0
(b) TroGAN S2C itera-

tion=10K
(c) TroGAN S2C itera-

tion=20K

Figure 3.9: TroGAN S2C Interp Psi0.5

notice that the baseline and TroGAN s2c have still not converged even after 20,000

epochs. However, the TroGAN c2s model has indeed converged. We have added more

samples in the Appendix for further reference. We measure convergence based on the

qualitative likeliness to the sketch – illustrated to the left of the dashed line in Fig.

3.6.

3.3.4 Interpolations

In this experiment, we show some interpolated examples between the horse samples.

As expected, the TroGAN architectures fare better than the baseline. However, we can

(a) GANSketching itera-
tion=0

(b) GANSketching itera-
tion=10K

(c) GANSketching itera-
tion=20K

Figure 3.10: GANSketching Baseline Interp Psi0.5
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see that not all interpolations are semantically similar to the left-facing horse sketch.

There could be various explanations, and one is overfitting by the architecture over

exclusively the sampled images. This could mean that the bulk of the architecture is

in fact the same, while only portions of the state space have been modified to look

like the sketch.

Figure 3.11: We show samples of contour and sketch translations after training, along
with the style the model is trying to imitate.

3.3.5 Semantically Incorrect Lines

We can train the translation model to transform sketches to contours as well contours

to sketches. However, we observe that the TroGAN c2s model vastly outperforms

TroGAN s2c. This can be attributed to the fact that the translation model from

sketches-to-contours adds spurious details to the sketches, which need not be semanti-

cally correct. We show a few examples in Fig. 3.11. The addition of these lines that

may not be semantically appropriate would be picked up as causal features by the

Discriminator, and would be used for classification. However, these features were just

stylistic renditions introduced by the CUT model to mimic the style of a contour.
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This significantly hampers the performance of the overall model, as seen in the results

present previously. Thus, translating from contours-to-sketches is the optimal process,

as the spurious features are removed, thus resulting in only the important features

being taken into account by the Discriminator. This conclusion is bolstered by the

improved results seen by TroGAN c2s over its s2c counterpart.

3.3.6 Nearest Neighbors

Another idea we implemented was biasing the training dataset for our v4 model

(CUT translates user-sketch to fake sketches). The hypothesis is that if the training

images look more like the user-sketch semantically, then there will be less generation

diversity, and the fake distribution will be semantically closer to the desired target in

the user-sketch domain.

We start with a pre-trained CUT model that translates user-sketches to fake

sketches and keeps the translated user-sketch as a template. Then we translate the

entire image dataset to the contour domain by using the F translation network used

in [52]. Finally, we find the contours that have the smallest Chamfer Distance to the

template in the sketch domain. Note that for simplicity, we find the contours of the

sketches using OpenCV and compare these points to find the closest corresponding

images. Using 1/5 nearest neighbors of the original 2̃5K dataset to the template,

training v4 using the picasso horse did not give results better than v4 on the original

dataset (TroGAN s2c in 3.5).

3.4 Conclusion

In general, we outline five methods 3.1 to rectify the distributional shifts between the

sketch discriminator inputs, in order to assist in the generation of images that are

semantically similar to hard/rare user-sketches. We implement and test two methods

involving using CUT [38] to translate either distribution. Our results show that

for the user-sketches that we tested upon, the output of the TroGAN c2s generator

converges to the desired pose faster than the GANSketching model [52]. However,

the picasso-horse sketch still proves to be difficult to emulate, and persists as a failure

case in our experiments. This can be attributed to the issue of identifying why a
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failure case is a failure case, which is rather difficult. Our modified architecture

seems to converge faster on normal input but does not verify our hypothesis on

user-sketches with rare or distinctive styles. Without further testing, it is unclear

whether modifying the sketch discriminator inputs in this way converges at different

speeds for user-sketches closer or farther from distribution. We leave this to future

work.
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Chapter 4

SS-GAIL

4.1 Introduction

Training an agent to imitate an expert is a promising approach to learning intelligent

behavior and can be used in applications such as autonomous driving and robotic

manipulation. More specifically, the ability of the agent to robustly learn optimal

policies in real-world scenarios is a current challenge facing the field. The most promis-

ing approaches for imitation learning are Behavioral Cloning (BC) and Adversarial

Imitation Learning (AIL). BC methods have been shown to produce compounding

errors [45], which makes it unsuitable for complex applications. Adversarial Imitation

learning methods, such as GAIL [20], iteratively train a discriminator, and use it

as a proxy reward function for updating a policy. We show that the proxy reward

function learned by GAIL fails to provide dense supervision for policy updates and

leads to inefficient and unstable training.

Let’s consider the example task of training two agents to draw the planar letters

“ML” on a piece of paper, with the expert trajectories shown in red, and the initial

policy shown in blue in Fig. 1(a). Training an RL agent to imitate the expert policy

would ideally require a rich reward landscape with a clear gradient starting from

the current policies, in the lower half of the image, and terminating at the expert

sketches, as depicted in Fig. 1(b). However, the reward function learned by GAIL is

almost constant throughout the state space, while abruptly changing at the decision

boundary, as depicted in Fig. 1(c). In theory, GAIL would be able to learn the
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Fig 1.a) Policy & Target Fig 1.b) Ideal Reward

Fig 1.c) GAIL Fig 1.d) Our Method

Figure 4.1: (a) An example task that starts with an initial policy shown in blue,
and aims to imitate the expert trajectories shown in red. (b)-(d) show the reward
landscapes of the ideal reward function, the learned discriminator in GAIL, and our
method (SS-MAIL), respectively.

optimal policy with sufficient exploration; however, in practice, the training dynamics

resulting from the sparse rewards in the local neighborhood of the current policy lead

to sub-optimal policies. We see that apart from a minuscule sliver of the state space,

the agent is left in the dark when it comes to a prospective policy update. This leads

us to wonder how the agents will ever learn to imitate the expert if they are left to

explore in the dark. There have been attempts such as WAIL [54] to address this

issue; however, it is also plagued with unstable critic-training, which we will elaborate

upon in the upcoming sections. To briefly motivate the rest of the paper, we tease the

results of our methods (SS-MAIL and SS-GAIL) in Fig. 1(d), and we will explain in

the upcoming sections the details of the framework that helped us get these results.

The problem illustrated in the toy example above would be exacerbated in larger

state spaces. We see that despite the recent progress in Adversarial Imitation Learning

(AIL), the application of methods such as GAIL in scenarios with larger state spaces

may be impeded by the exponential cost of exploring in ever-increasing hyper-spaces.
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The exploding cost of exploration would make tasks such as self-driving and robotic

manipulation infeasible. These shortcomings are addressed in the SS-MAIL method

introduced in this work.

In this work, we address these issues by introducing a novel self-supervised loss

that encourages the discriminator to approximate a richer reward function. We employ

our method to train a graph-based multi-agent actor-critic architecture that learns a

centralized policy, conditioned on a learned latent interaction graph. We show that

our methods (SS-MAIL and SS-GAIL) outperform prior state-of-the-art methods on

real-world prediction tasks, as well as on custom-designed synthetic experiments. We

prove that SS-MAIL is part of the family of AIL methods by providing a theoretical

connection to cost-regularized apprenticeship learning. Moreover, we leverage the

self-supervised formulation to introduce a novel teacher forcing-based curriculum

(Trajectory Forcing) that improves sample efficiency by progressively increasing

the length of the generated trajectory. The SS-MAIL and SS-GAIL frameworks

improves expert imitation capabilities by stabilizing the policy training, improving

the reward shaping capabilities, as well as providing the ability for modeling multi-

modal trajectories.

4.2 Method

In this section we will introduce SS-MAIL, and its components, namely: 1) SS-

GAIL: a self-supervised AIL method to train the Discriminator, 2) MAIL: an

off-policy graph convolutional actor-critic architecture that imitates the expert using

supervision from the Discriminator, 3) Trajectory Forcing: a teacher forcing

based curriculum generator for stabilized training dynamics.
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4.2.1 SS-GAIL: Self-Supervised Generative Adversarial

Imitation Learning

From Apprenticeship Learning to SS-GAIL

[20] show that GAIL is a form of apprenticeship learning with a specific cost regular-

ization, which optimizes the min-max objective:

ψ∗
GA (ρπ − ρπE) = max

D∈(0,1)S×A
Eπ[log(D(s, a))] + EπE [log(1−D(s, a))] (4.1)

In practise, the rewards from the discriminator do not provide rich policy-gradients,

which result in sub-optimal policies. We address this issue by introducing a self-

supervised loss function for our discriminator that encourages it to provide an enriched

reward signal, not only in the local neighborhood of the current trajectory, but globally

as well.

Our self-supervised loss is presented in Eq. 3, below. We sample α ∈ [−1, 1]

and take the weighted average of the trajectories resulting from the policy and the

expert, specifically τG ∼ π and τE ∼ πE. This new trajectory can be mathematically

formulated as τα = ατG+(1−α)τE. Our intuition behind creating the self-supervised

loss is that the state action pairs of τα should regress smoothly based on their relative

distance to τG, or in other words Eτα [Dθ(s, a)] = α. Thus, we convert the Binary

Cross Entropy loss to a Mean Squared Error (MSE) loss and use the sampled α values

as self-supervised labels.

ψ∗
SS (ρπ − ρπE) = Eπ,πE ,α

(0−D(sG, aG))
2︸ ︷︷ ︸

Generated MSE

+(1−D(sE, aE))
2︸ ︷︷ ︸

Expert MSE

+ (α−D(sα, aα))
2︸ ︷︷ ︸

Self-Supervised MSE


(4.2)

An interesting consequence of this formulation is that the third term in the self-

supervised optimization objective, the self-supervised MSE term, serves as a natural

from of exploration during the policy optimization stage.
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Theorem 1. SS-GAIL is an instantiantion of cost-regularized apprenticeship

learning, i.e. the policy at the saddle point (π,D) of the min-max problem

described above is a solution to minπmaxc(−ψ(c) +Eπ[c(s, a)]−EπE [c(s, a)]) for

some specific ψ.

Proof. Ho and Ermon show that the cost-regularized apprenticeship learning problem

ALψ (πE) = min
π

max
c

−ψ(c) + Eπ[c(s, a)]− EπE [c(s, a)] (4.3)

the above is equivalent to min-max problem

min
π
ψ∗ (ρπ, ρE) (4.4)

where ψ∗ is the convex conjugate of the cost regularizer ψ.

For SS-GAIL,

ψ∗
SS (ρπ − ρπE) = Eπ,πE ,α

(0−D(sG, aG))
2︸ ︷︷ ︸

Generated MSE

+(1−D(sE, aE))
2︸ ︷︷ ︸

Expert MSE

+ (α−D(sα, aα))
2︸ ︷︷ ︸

Self-Supervised MSE


(4.5)

The SS-GAIL algorithm aims to solve the min-max optimization problem

max
π

min
D

Eπ,πE ,α[(0−D(sG, aG))
2 + (1−D(sE, aE))

2 + (α−D(sα, aα))
2]

using the gradient descent-ascent algorithm. The inner discriminator optimization

is a supervised learning problem with the self-supervised loss. The outer policy

optimization is an off-policy policy improvement problem, and we use the soft actor-

critic algorithm.

Therefore, SS-GAIL is an instantiation of cost-regularized apprenticeship learning

with the cost regularizer ψSS.
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Algorithm 1 SS-GAIL

Input: Expert Trajectories τE ∼ πE, Initial Policy πϕ, Initial Discriminator Dθ

Initialize: Policy πϕ,Discriminator Dθ

while Policy Improves do
Sample Trajectories τG ∼ πϕ

Sample α and Compute: τα = ατG + (1− α)τE

Update Dθ using gradient:

EτG
[
∇θ (Dθ(s, a))

2]+ EτE
[
∇θ (1−Dθ(s, a))

2]+ Eτα,α
[
∇θ (α−Dθ(s, a))

2]
Update ϕ with SAC to increase the following objective: Eτi∼{τG,τα} [Dθ(s, a)]

Algorithm

In the SS-GAIL algorithm we start by sampling a trajectory from the current policy.

Next, we compute the weighted average between the current trajectory and a sampled

expert trajectory. We denote this trajectory as τα. According to our Discriminator

update rule, derived previously, we train our discriminator to learn a smooth reward

function by reconstructing the self-supervised labels, α. Next, we need to update our

policy function.

In GAIL, [20] use the on-policy TRPO update rule. However, according to the

min-max function derived above, our policy should be optimized on not only the

current trajectory, but also τα. This serves as an inherent exploration term for

our policy training, as we are exploring states that are disparate from the current

trajectory. Thus, we use the SAC update policies to accommodate the off-policy

updates from τα.

We formulate our update rules such that the discriminator converges faster than

the actor, similar to the two-timescale approach in the actor-critic setting. Thus, we

no longer require balancing the discriminator, as seen in GAIL. Also, the change in

our Discriminator values converges to zero, as opposed to WAIL, which constantly

updates the fluid surface of the Discriminator output, as there is no grounding of the

outputs to any specific value.
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Figure 4.2: Vector field induced by negative α.

Self-Supervision as a form of Reward-Shaping

Our novel self-supervised loss gives us considerable flexibility in the sampling ap-

proaches used to obtain α. As stated previously in our discussion on the discriminator

approximating a vector field, we noticed that only taking α values from [0,1] would

be insufficient for training as during exploration, the agent would explore states that

would naturally correspond to negative α values. As the discriminator was not trained

on these states, generalization isn’t guaranteed. Thus, to complete the neighborhood

around the current policy trajectory, we also consider negative α values. We show

an empirical analysis in the next section. The negative α values assist in inducing a

complete vector field around the neighborhood of our trajectory, as shown in Fig 3.

We can custom design the sampling approach and the loss functions to suit

our need, which will open up greater flexibility and control for the community to

experiment with.

In 4.2, we observe that sampling α ∈ [−1, 1] was not sufficient for reproducing

a drop in the reward function after the expert trajectories. Thus, we increased our

sampling range to [−1, 1.5] and set the reward function to 0 for values of α > 1. This

helped our discriminator learn a reward function that does not monotonically increase
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as we get farther from the current policy.

We can always split our sampling procedure to get different results. We can make

use of the non-linearity of the neural-network architectures to even approximate piece-

wise distributions. Another extension could be to have steeper slopes farther away

from the current policy and smoother slopes closer to the policy state-distribution.

4.2.2 MAIL: Multi-Agent Imitation Learning

In this section we introduce the architecture of the policy network, which is divided

into two parts - the graph encoder and the graph soft actor-critic (G-SAC). In our

architectures, we use the message passing standard established by [28], and model

the node-to-edge and edge-to-node message passing operations as follows:

hl(i,j) = f le
([
hli,h

l
j, s(i,j)

])
; hl+1

j = f lv

∑
i∈Nj

hl(i,j), sj

 (4.6)

where the subscripts of (i, j) represent edge related features, while subscripts

denoted with single letters, such as i and j represent node related features. h

represents the corresponding edge or node embedding, and s represents states. Finally,

f represents a neural network function approximator, and Nj corresponds to indices

of the neighboring nodes connected to the node indexed by the subscript, which in

this example is j.

Graph Encoder

The goal of the Graph Encoder is to infer the underlying interaction graph of the

various agents, conditioned upon the observed history. This latent interaction graph

will be used as weights in the graph convolution step in G-SAC. Our Graph Encoder is

based on the encoder network [14]. We employ a fully connected graph convolutional

network to output a distribution over edge weights. However, unlike in DNRI, we do

not include prior networks that train for precognition of the future evolution of the

graph based on the observed history. Our model takes in as input the cumulative

observable state space, and employs an LSTM to keep track of the history. We model
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this as follows:

ht+1
(i,j),enc = LSTMenc

(
ht(i,j),h

t
(i,j),enc

)
, (4.7)

qϕ
(
zt(i,j) | x

)︸ ︷︷ ︸
Graph Encoder Output

=softmax
(
fenc

(
ht(i,j⟩,enc

))
(4.8)

Graph Soft Actor-Critic (G-SAC)

G-SAC samples a dynamically computed interaction graph from the Graph Encoder

and uses the graph as the activations for the respective edges among the nodes of the

graphs. It then computes a graph convolutional to obtain the mean and standard

deviation values, similar to the output of SAC [17]. We also include another head

which functions as a critic. The critic head approximates the Q-function of the policy

and is used to train the network. As in SAC, we also keep a target critic, which is

updated based on polyak averaging.

ht(i,j⟩ =
∑
k

zij,kf
k
e

([
xti,x

t
j

])
µt+1
j = fµ

(∑
i ̸=j

ht(i,j)

)
; σt+1

j = fσ

(∑
i ̸=j

ht(i,j)

)
;

p
(
µt+1
j , σt+1

j | xt, z
)︸ ︷︷ ︸

G-SAC Output

= N
(
µt+1
j , σ2I

)

4.2.3 Trajectory Forcing

Teacher Forcing based curriculums are an important tool for training sequence models

[43]. In a sequence generation setting, we expect the learned models to use the

outputs of the previous timesteps as inputs. However, training such generative models

was shown to be sensitive to weight intitialization [58], in the absence of pedagogical

intervention, such as teacher forcing. Scheduled Sampling [4] is a curriculum based

on teacher forcing that attempts to gradually transition from using the ground-truths

as inputs, to using the model’s previous outputs. NRI and DNRI use teacher forcing

in their approaches; however, such an approach could result in compounding errors

during test time, due to the distributional shift. The use of such curriculums is not
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Figure 4.3: We plot the expected length of the generated trajectory during training
in between pedagogical intervention for teacher forcing, scheduled sampling and
trajectory forcing. We show that our curriculum provides a gradual increase in
expected trajectory lengths for better policy training.

prevalent in AIL, as the frameworks accommodate only for on-policy updates. There

are methods that try to work around this by pre-training using BC [23]. However,

in SS-GAIL, the off-policy functionality is built into the formulation. Thus, we can

leverage α values close to 1 and use them as a proxy for teacher forcing. Our goal is to

take advantage of the exploration functionality of our loss function to gradually reduce

the teacher forcing frequency to zero. In other words, our curriculum progressively

increases the intervals of pedagogical intervention. We show this in Section 4.5.

We mathematically model the frequency of interventions as 1.5−epoch/β, where beta

is a hyperparameter that assists in generating a progressively increasing sequence. Our

intuition behind modeling the length of the generated trajectory as an exponential

with respect to the epoch, is that we intend on doubling the size of the generated

trajectory every β epochs. A linear model would result in reduced sample efficiency

during the later stages of training, as the generalizability of the model would outpace

the curriculum. The exponential increase ensures efficient data utilization.

4.3 Results

In this section, we quantitatively evaluate the strengths of our framework using two

custom-built environments and a real-world dataset. These experiments illustrate the
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advantages of the SS-MAIL framework, namely: i) increased stability of its training

dynamics, ii) multi-modal trajectory modeling capabilities, iii) increased sample-

efficiency of Trajectory Forcing, iv) enhanced versatility in reward-shaping using

self-supervision, and v) robustness to compounding errors on real-world datasets.

4.3.1 Experimental Setup

To evaluate the capabilities of our methods against prior SOTA baselines, we evaluate

our framework on one custom-built environment (Y-Junction), and one real world

prediction task (Noisy Mocap). To minimize the prevalence of confounding variables,

the experiment design of Y-Junction was simplified considerably to ensure that any

promising improvement in performance is warranted by the inherent attributes of the

frameworks, and not any other external confounding factors, such as variable overflow

[8]. The Y-Junction environment is a trajectory forecasting environment that tests

the multi-modal capabilities of AIL and BC based frameworks by simulating a 3-way

Y-Junction scenario. The environment has three agents that follow one another on a

one-way street until the beginning of a fork or Y-Junction. Then the lane splits into

two, thus simulating two potential modes. Our goal is to pick one of the two lanes

or modes. We provide more details in the appendix. The Noisy Mocap prediction

task involves training a multi-agent policy on the CMU Motion Capture Dataset [6]

for subject #35, and observing the zero-shot generalization in the presence of noisy

inputs.

4.3.2 Stability in Training Dynamics

Robustness of the training algorithm to initialization, stochasticity in the environment,

and training data is very important to assure predictability in the training dynamics.

The Y Junction experiment, upon which we evaluate the robustness, provides a

simple multi-agent testing scenario to illustrate the differences between various AIL

approaches. To have a uniform evaluating strategy, we use the same architecture for

all methods, and solely swap-out the corresponding AIL loss functions. We elaborate

further in the Appendix.

In Fig. 4, we observe that the training loss of SS-GAIL reduces to zero, implying

that the algorithm is able to successfully imitate the expert during training. SS-GAIL
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Figure 4.4: Training error over time in the Y-Junction environment shows that
SS-GAIL successfully imitates the expert. The low standard deviation of error for
SS-GAIL despite unfavorable initialization demonstrates the increased robustness of
its training dynamics.

quickly converges to the expert policy for all initializations; however, GAIL and WAIL

are unable to converge despite good policy initializations. We see that GAIL and

WAIL start-out with better performances, due to their policy initializations; however,

are unable to consistently improve and fluctuate considerably. As the Y-Junction

experiment is unbounded in its state-space, there is no boundary that constrains

diverging policies, thus resulting in the observed exploding losses. In contrast, we

see that the performance of the policy trained with SS-GAIL consistently improves,

and converges to zero. These results can be attributed to the richer family of reward

functions being approximated by the Discriminator. The Binary Cross Entropy loss

of GAIL [20] results in sparse reward signals for the policy training, thus resulting in

unstable training. Furthermore, the inablility of the WAIL Discriminator to converge

upon a designated output surface results in a non-stationary value-function, thereby

destabilizing the training of the critic. This instability becomes more pronounced

as the policy and expert approach each other in the space of trajectories, as small

variations in the surface of the discriminator output would lead to prominent shifts

in the value-function.
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Figure 4.5: A visualization of the multi-modal trajectories learned by SS-GAIL and
DNRI on the Y-Junction task. We observe that DNRI averages over the different
modes, while SS-GAIL successfully differentiates between them. The inability to
distinguish between multi-modal expert trajectories can prove disastrous in continuous
state settings, as this may lead to visiting states that differ considerably from the
expert state-distribution.

4.3.3 Multi-Modal Capabilities

Differentiating between the various modes in the expert-trajectory dataset is essential

for training multi-modal policies. The gradient of the policy training loss should

be in the direction of a specific mode, instead of the weighted average over all the

modes. The Y Junction example provides a simple multi-agent testing scenario that

demonstrates how BC based methods learn sub-optimal policies in the presence of

multiple modes. To evaluate SS-GAIL and DNRI on their multi-modal modeling

capabilities, we ensure both algorithms have similar policy architectures and differ

solely in their BC and AIL based policy training steps.

We plot the trajectories in Fig 5, and illustrate issue of modal averaging, observed

in BC methods. We observe that SS-GAIL converges to the different expert modes,

implying that the Discriminator successfully approximates a reward function that

has a discernible preference among prospective modalities. We do not observe this

property in BC based DNRI algorithm, as shown in Fig. 5. The self-supervised

loss function has an inherent positive feedback loop that progressively increases the

gradients of the rewards for imitating the closest expert modality. This property is a

direct consequence of the self-supervised loss, as the slope of the reward is inversely
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Figure 4.6: Running an ablation, over β, for the mean and standard deviation of
testing error in the Y-Junction environment illustrates the existence of β values that
result in both low mean and standard deviation. This highlights Trajectory Forcing’s
ability to improve the robustness to unfavorable weight initializations, increase the
sample efficiency, as well as eliminate the issue of compounding errors.

proportional to the distance between the policy and expert trajectories.

4.3.4 Sample Efficiency and Curriculums

Teacher Forcing alleviates the issues of unfavorable initializations and low sample

efficiency during the initial stages of training; however, it results in compounding

errors during testing. The Y Junction experiment is a simple multi-agent scenario that

demonstrates how Trajectory Forcing alleviates unfavorable initializations, increases

sample efficiency during the initial stages of training, and eliminates the issue of

compounding errors. To evaluate the effectiveness of the Trajectory Forcing curricu-

lum, we train SS-GAIL with different values of β to show an ablation over β, which

ranges from no Teacher Forcing (0%), seen in AIL approaches, to complete Teacher

Forcing (100%), seen in BC approaches. In Figure 6, we focus on two aspects of the

plot, the mean and standard deviation. A smaller mean loss, averaged over multiple

random seeds, implies robustness in policy training to different model initializations.

Moreover, a low standard deviation implies superior generalization during testing,

and thereby lower compounding errors. we see that without teacher forcing the mean

and standard deviation of the testing loss is considerably high, which is common

for AIL methods. Teacher Forcing reduces the mean loss considerably; however, the
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Figure 4.7: We plot the Compounding Errors over time for the Noisy Mocap envi-
ronment shows that SS-GAIL successfully compensates for noisy inputs during test
time, zero-shot. The low standard deviation and the decrease in slope for SS-GAIL
illustrate its generalization capabilities.

standard deviation is high due to the compounding errors. We observe that for a

β value of around 15%, the trajectory forcing curriculum considerably reduces the

mean loss as well as the standard deviation during testing. This demonstrates the

robustness to weight initializations, improvement in sample efficiency, and reduction

in compounding errors.

4.3.5 Zero-Shot Generalization on Noisy Real-World Data

Compounding errors occur when the model is unable to correct for deviations from

the training distribution of states, and fails to compensate for the observed deviations.

This can be attributed to poor generalization, and is commonly caused by noise.

The Noisy Mocap experiment is a real-world multi-agent prediction dataset that

demonstrates how negligible amounts of Gaussian noise, with standard deviation

of 0.05, can accumulate and permanently derail the generation of trajectories. To

evaluate the issue of compounding errors in the presence of noise during test time,

we evaluate SS-GAIL and DNRI using similar policy architectures.

In this experiment, we observe that DNRI progressively deviates further from

the expert trajectories as the trajectory length increases. We also observe a positive

correlation between the standard deviation and the trajectory length. However, in
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Figure 4.8: We plot the training loss over epochs for the Noisy Mocap environment and
show that sampling negative α values improves the final loss and speeds up training.
This can be attributed to the richer reward gradient in the local neighborhood of the
current trajectory.

the case of MAIL we do not observe a similar linear increase in the compounding

errors. Moreover, the slope decreases with the increase in trajectory length. This

observed deviation can be attributed to the loss functions used to train the respective

algorithms. BC approaches are trained to precisely match the expert. Despite having

a lower validation loss, generalizing zero-shot to noisy environments is not guaranteed,

as seen in Fig 7. SS-GAIL, on the other hand, learns a policy that maximizes

the cumulative discriminator return. Thus, the trained policy is akin to a vector

field surrounding the expert state-distribution, as it learns to optimize for reaching

rewarding states, thereby resulting in robust recovery even in noisy environments.

4.3.6 Reward Shaping using Self-Supervision

Reward-Shaping provides engineers and scientists with a way to meticulously control

the reward function, resulting in more efficient policy training and reduction in

training time. In our method, the self-supervised sampling allows for precise control

over the reward function the discriminator is approximating. In this experiment, we

investigate one such customization of the reward function that results in enhanced

training dynamics. The Noisy Mocap experiment provides us with a real-world

dataset to investigate the ramifications of different sampling procedures on the
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training dynamics of SS-GAIL. To evaluate the effect of the self-supervised sampling,

we keep the overall SS-GAIL algorithm constant and solely change the sampling

distributions of α.

We see that sampling only positive values of α results in training dynamics that

take longer to converge. We observe that with the introduction of negative α values,

the training dynamics substantially improves. This demonstrates the importance of

reward shaping using self-supervision, which opens up the possibilities for researchers

to design more intricate reward function approximators. The improved performance

observed upon the introduction of negative α values can be attributed to the resulting

completion of the reward function in the local neighborhood of the current trajectory.

As the current trajectory corresponds to an α value of zero, then the absence of

negative α values during self-supervised sampling would result in an incomplete

reward function in the local neighborhood of the policy’s state-distribution.

The inclusion of negative α values is one such example of reward-shaping for

enhanced performance and stable training dynamics. Based on the application,

engineers and scientists can design custom rewards for the enhancing the policy

training, based on the application constraints.

4.4 Related Work

In this section we provide a brief overview of the various research contributions that

share similarities to the approaches described in our work. We start by discussing

the recent work on graph-structured data, and then delve into multi-agent trajectory

forecasting, and finally, imitation learning.

Graph structured data does not possess a fixed structure, and thus can not be

used with traditional neural networks. To address these issues, there have been

approaches such as [33], [46], and [29] that introduce the notion of message passing

to accommodate for the irregular, yet structured nature of graphical data. In this

paper, we use Graph Convolutional Networks [29] for our internal message passing;

however, there are other methods proposed, such as Graph Attention Networks [49],

and Graph Recurrent Networks (GRN) [19] as prospective forms of message passing.

GRN also provides the notion of recurrence, which can be used to model time-series

data. The Graph Convolutional RL [24] work is a relevant bridge between graph
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structured data and the sequential decision making setting, which employs message

passing to deal with multi-agent reinforcement learning. Finally, we move on to

the multi-agent trajectory prediction task. This setting provides is an interesting

application of message passing, as the nature of the interactions among the agents

may or may not be known a priori. Some recent work are: Evolve Graph [31], Social

Attention [50], SocialGAN [15], and STGAT [21].

Adversarial imitation learning methods train a discriminator network to estimate

the divergence between the expert and the policy’s state distribution, and use this

discriminator for policy improvement. [10] provide an unified perspective on this

family of algorithms and show that they can be used to minimize any f -divergence

between the expert and policy state distributions. [9] extend this line of work, and

present an inverse reinforcement learning algorithm based on this adversarial setup.

[35] move away from this adversarial setup, and present an IRL algorithm that directly

optimizes the reward function to minimize any f -divergence between the expert and

policy state distributions. Another line of work focuses on utilizing meta-learning

methods to enable few-shot imitation or reward inference [57, 55].

4.5 Implementation Details

We begin by delineating all the experimental details that are common to each of

the experiments. Our code is built on Pytorch version 1.2, and we use Adam as

our optimizer of choice. We follow the teacher forcing training regiment provided in

DNRI [14] to train our baseline reference models for comparison.

We save the best models after every epoch, and use the models with the best

validation loss for testing. Similar to [14], we normalize our inputs between -1 to

1 using the maximum and the minimum state norms. For all the experimental

evalutaions, we average the results over 5 seeds.

4.6 Reproducibility

This section describes our efforts towards ensuring reproducibility of our experiments.

First, we provide code (https://github.com/Aks-Dmv/circles.git) for reproducing all
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of our experimental results. The code contains documentation for how to generate and

plot each experimental result in this paper. In addition, we also provide details about

our experimental setup, training hyperparameters, and datasets used in the appendix,

which should be sufficient for an independent implementation. All of our experiments

are done on at least five seeds to ensure reproducibility. We use author-provided

implementations of DNRI and SAC to ensure consistency. Our experiments were

done using a single Quadro RTX 6000 GPU, and therefore, are reasonably easy to

reproduce within a small computational budget.

4.7 Conclusion

We introduced SS-GAIL and SS-MAIL to effectively model multi-agent experts and

improve the stability of their training dynamics compared to previous AIL methods.

Our method comprises of:

1. SS-GAIL: a self-supervised cost-regularized apprenticeship learning framework

that has considerably more stable training dynamics compared to previous AIL

methods, while also providing the flexibility for reward-design.

2. MAIL: A graph convolutional multi-agent actor-critic framework, which aids in

multi-modal trajectory generation and alleviates compounding errors.

3. Trajectory Forcing: a teacher forcing based curriculum that takes advantage of

our SS-GAIL formulation to stabilize the training dynamics and alleviates the

issue of domain shift between training and testing.

The improved stability of the training dynamics and the increased sample ef-

ficiency of SS-GAIL and SS-MAIL allows us to train policies that are robust to

weight initializations, which would enable efficient training of multi-agent interac-

tions. Moreover, the ability to handle compounding errors would ensure enhanced

generalization during test time, in the presence of noisy inputs. Finally, learning

from expert imitation provides a useful framework to train control policies in the

absence of the ground truth reward function, and SS-MAIL can be applied to such

multi-agent control setting, such as autonomous driving and robotic interactions to

learn proficient policies that achieve human-level performance.
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Chapter 5

Conclusions

In this work we explored the use of self-supervision for stabilizing the training of

generative models. We explored the single-step and multi-step domains, and explored

the issues and potential self-supervised solutions.

In the single-step domain, we outline five methods 3.1 to rectify the distributional

shifts between the sketch discriminator inputs, in order to assist in the generation

of images that are semantically similar to hard/rare user-sketches. We implement

and test two methods involving using CUT [38] to translate either distribution. Our

results show that for the user-sketches that we tested upon, the output of the TroGAN

c2s generator converges to the desired pose faster than the GAN Sketching model [52].

However, the picasso-horse sketch still proves to be difficult to emulate, and persists

as a failure case in our experiments. This can be attributed to the issue of identifying

why a failure case is a failure case, which is rather difficult. Our modified architecture

seems to converge faster on normal input but does not verify our hypothesis on

user-sketches with rare or distinctive styles. Without further testing, it is unclear

whether modifying the sketch discriminator inputs in this way converges at different

speeds for user-sketches closer or farther from distribution. We leave this to future

work.

For the multi-step domain, we introduce SS-GAIL and SS-MAIL to effectively

model multi-agent experts and improve the stability of their training dynamics

compared to previous AIL methods. Our method comprises of:

1. SS-GAIL: a self-supervised cost-regularized apprenticeship learning framework
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that has considerably more stable training dynamics compared to previous AIL

methods, while also providing the flexibility for reward-design.

2. MAIL: A graph convolutional multi-agent actor-critic framework, which aids in

multi-modal trajectory generation and alleviates compounding errors.

3. Trajectory Forcing: a teacher forcing based curriculum that takes advantage of

our SS-GAIL formulation to stabilize the training dynamics and alleviates the

issue of domain shift between training and testing.
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[45] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 627–635.

[46] Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions
on neural networks 20.1 (2008), pp. 61–80.

[47] Yu Sun et al. “Unsupervised domain adaptation through self-supervision”. In:
arXiv preprint arXiv:1909.11825 (2019).

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.
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