
Planning and Execution using Inaccurate Models
with Provable Guarantees on Task Completeness

Anirudh Vemula

CMU-RI-TR-22-05

February 2 2022

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Maxim Likhachev, Co-Chair
J. Andrew Bagnell, Co-Chair

Oliver Kroemer
Leslie Pack Kaelbling, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Anirudh Vemula

Keywords: Robotics, Planning, Reinforcement Learning, Numerical Optimization

For my mother, who sacrificed her own dreams to help me pursue mine

Abstract

Modern planning methods are effective in computing feasible and optimal plans
for robotic tasks when given access to accurate dynamical models. However, robots
operating in the real world often face situations that cannot be modeled perfectly
before execution. Thus, we only have access to simplified but potentially inaccurate
models. This imperfect modeling can lead to highly suboptimal plans or even the
inability to reach the goal during execution. Existing approaches present a learning-
based solution where real-world experience is used to learn a complex dynamical
model that is subsequently used for planning. However, this requires a prohibitively
large amount of experience over the entire state space, and can be wasteful if we
are interested in completing the task and not in modeling the dynamics accurately.
Furthermore, real robots often have operating constraints and cannot spend hours
acquiring experience to learn dynamics. This thesis argues that by updating the
behavior of the planner and not the dynamics of the model, we can leverage simplified
and potentially inaccurate models and significantly reduce the amount of real-world
experience needed to provably guarantee that the robot completes the task.

We support this argument from an algorithmic perspective by presenting two novel
algorithms. The first algorithm Cmax guarantees that the robot reaches the goal us-
ing the inaccurate model without any resets. This is achieved by biasing the planner
away from transitions whose dynamics are discovered to be inaccurately modeled dur-
ing online execution. However, Cmax requires strong assumptions on the accuracy of
the model used for planning and fails to improve the quality of solution over repetitions
of the same task. The second algorithm Cmax++ leverages real-world experience to
improve the quality of resulting plans over successive repetitions of a robotic task.
Cmax++ achieves this by integrating model-free learning using acquired experience
with model-based planning using the potentially inaccurate model. As a consequence
of this in addition to completeness, Cmax++ also guarantees asymptotic convergence
to the optimal path cost as the number of repetitions increases under relaxed assump-
tions. Crucially, both algorithms do not require any updates to the dynamics of the
model unlike any existing method for planning using inaccurate models.

From a theoretical perspective, this thesis presents a performance analysis for
methods that leverage inaccurate models in optimal control of linearized systems with
quadratic costs. Our analysis shows that naively using inaccurate models can lead
to large suboptimality gaps when modeling errors are significant, while updating the
behavior of the planner during execution, like Cmax and Cmax++, can substantially
reduce the suboptimality gap. The thesis concludes by exploring the paradigm of
updating the dynamics of the model and presents an algorithm Toms that directly
optimizes task performance rather than prediction error. We show that in the online
setting where the robot does not have access to any resets and collects data as it
executes, Toms outperforms prior works that either optimize a maximum likelihood
objective or rely on an offline collected dataset with good coverage.

Acknowledgments

I believe PhD is all about the journey and not about the destination. I was extremely fortunate to
have a wonderful journey with amazing people who have been my collaborators, confidantes, friends,
mentors, and family. I will try my best to thank each and every one of them but alas, my memory
often fails me. So if I forget someone below, know that I am lucky to have known them and they made
my journey all the more fun.

First and foremost, I would like to thank my advisors Max and Drew. I always wanted to work
with both of them, and forging this joint collaboration remains as the most important decision I have
made in my PhD. They were the yin and yang in my PhD, and the body of work you read in this thesis
was a direct result of this delicate balance. Max always ensured that my ideas were grounded and
would work on a robotic system, which was especially useful as I often flew away with idealistic ideas.
I admire his extreme patience during our meetings and his approach of understanding complex ideas
from fundamentals. If not these amazing skills, I hope I learned how to always stay humble and listen
to collaborators from him. Drew has been a constant source of inspiration throughout my journey and
allowed me to chase crazy ideas purely because they were interesting. For someone who is a CTO of a
self-driving company, his passion for pure fundamental research is very inspiring and has driven me to
work harder on ideas that I was excited about. I loved all our phone calls, with me speaking cryptic
equations while he somehow miraculously deciphers them, our walks on campus discussing ideas and
papers, and our terse emails with the entire content in the subject and no body. The most fun projects
in my PhD were a result of brainstorming with Drew, and for that I am extremely grateful.

I take this opportunity to also thank my committee members, Oliver and Leslie. I interacted with
Oliver a lot of times during my PhD both as an RI student who was interested in his work, and as
his teaching assistant for two courses. I admire his straightforward way of thinking and insights in
to the robot manipulation problem, which influenced my own research. Leslie has always been one of
my idols and for someone entering into the field of robot planning and learning, some of her works
were foundational. I am extremely lucky to have them both on my committee and thankful for all the
feedback I have received from them on my thesis.

My journey also took me to some wonderful places besides CMU. I was fortunate to work with
Martin Levihn, Chris Clark, Humphrey Hu, and Jakub Dworakowski at Apple Special Projects Group.
All of them have been incredible mentors both professionally and personally. Their insights and
guidance has influenced both this thesis and my future beyond PhD. I also worked with Vladlen
Koltun and Ozan Sener at Intel Labs, where I learned how to tackle extremely difficult problems and
the value of collaboration. I’d like to thank Ozan for his patience while I slowly grasped the challenges
of the problem.

I would be remiss if I did not thank Jean Oh and Katharina Muelling who were my mentors at the
start of this journey. They showed me how exciting research could be, and encouraged me to apply for
a PhD. Jean is one of the nicest people I know, and I am fortunate to have been her student.

During my time at CMU, I was a part of two wonderful labs - SBPL and Lairlab. I would like to
thank my officemates, Dhruv Saxena, Yash Oza, and Tushar Kusnur for putting up with my constant
scribbles on the whiteboard and my loud discussions. I would like to thank Dhruv especially for always
lending an ear when I needed it. For the first 3 years of my PhD, I was part of a truck unloading project
and worked with fellow SBPL members - Oren Salzman, Fahad Islam, Sung-Kyun Kim, and Andrew
Dornbush, who were all insanely helpful whenever I got stuck and helped me learn motion planning
and belief space planning fundamentals. Besides work, I had loads of fun with other SBPL friends -
Venkatraman Narayanan, Jacky Liang, Anahita Mohseni Kabir, Shivam Vats, Ram Natarajan, Manash

Pratim Das, Vinitha Ranganeni, Shohin Mukherjee, and Rishi Veerapaneni. While SBPL was where
I physically most of my time, Lairlab was my go to for brainstorming on machine learning research.
Wen Sun was my close collaborator initially in my PhD, and he almost became my third advisor for a
year. Fellow “Bagnellians” - Allie Del Giorno, Hanzhang Hu, Jiaji Zhou, Wen Sun, Arun Venkatraman,
and Gokul Swamy were wonderful labmates and I will always cherish the lab lunches with them which
usually had heated discussions on topics ranging from research to the latest gossip. Special shout out to
Allie for making my defense super fun, and helping me with reviewing all my papers and presentations.

The robotics institute at CMU has a wonderful student community. As a part of RoboOrg, and
as a RI Masters and PhD student, I had the good fortune to know some of the most amazing and
talented individuals. These friendships lasted over 6 years and will last for a lot more years to come.
I would like to thank Puneet Puri, Vishal Dugar, Jerry Hsiung, Senthil Purushwalkam, Ankit Bhatia,
Adithya Murali, Alex Spitzer, Xuning Yang, Achal Dave, Debidatta Dwibedi, Rogerio Bonatti, Zhi Tan,
Rosario Scalise, Eric Huang, Arjav Desai, Tabitha Lee, Yifan Hou, Brian Okorn, Tanmay Shankar,
Roberto Shu, Sibi Venkatesan, Nick Gisolfi, Abhijeet Tallavajhula, Ratnesh Madaan, Sankalp Arora,
and Sanjiban Choudhury. A special shout-out to NSH 2204 for being legendary, you know you are. I
would like to give special thanks to Sanjiban who was my first mentor at CMU, and remained a friend
I always reach out to for guidance on work, life, and beyond.

Suzanne Muth and Jean Harpley made my life at RI feel seamless. Suzanne worked hard behind the
scenes to ensure that RI PhDs could focus solely on research. Jean Harpley is one of the most amazing
people in RI. She helped RoboOrg and the student community in RI at every step, even though it was
not a part of her job description. For that and many more, I would like to thank both of them.

RI was too small to contain all the wonderful people I know, and I met people from other depart-
ments who played a big part in my journey. Abilash Subbaraman was always down to climb with me
and do the craziest, and often the most dangerous, adventure sports with me. Ben Eysenbach helped
me understand how my research fits with the broader RL literature. Shefali Umrania and Ananya Up-
pal were close friends who made my grad school life extremely fun. The Explorers club of Pittsburgh
introduced me to several inspiring and fun people with whom I went backpacking, climbing, and biking
with. All work and no play could have made this journey dull, but these folks ensured it was anything
but dull.

I am the person I am today because of my family. My dad instilled the value of working hard in
me, and pushed me to always have bigger ambitions. My brother is my constant partner-in-crime and
was a huge inspiration in my career choices. He has always prioritized my choices over his own, and
baked a fear of mediocrity in me, that has always pushed me to go further. My mom is the reason for
all my successes, and her countless sacrifices gave me the opportunity to focus on my education while
she took care of far more important issues. I hope I say it enough, but if I don’t here it goes - I am
extremely grateful to be your son, brother, and a part of this family.

I said PhD is all about the journey. This journey started with me meeting my partner Pragna
Mannam, and she enriched it far beyond what it would have been without her. She always believed
in me, when I did not. She brought me to the surface, when I sank to the depths. She supported me
unconditionally, when I needed it. She is my rock, and the shining star in my sky. At the end of this
journey, I am at a loss of words to thank her, and can only say “Cutie, we did it!”

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Updating the Dynamical Model . 2

1.1.2 Updating the Behavior of the Planner . 3

1.2 Thesis Goal and Contributions . 4

1.2.1 Sample Complexity of Exploration in Model-Free Policy Search 4

1.2.2 Planning and Execution using Inaccurate Models 5

1.2.3 Leveraging Experience in Planning and Execution using Inaccurate Models 6

1.2.4 On the Effectiveness of Using Inaccurate Models 6

1.2.5 Task-Aware Online Model Search with Misspecified Model Classes 6

1.3 Bibliographical Remarks . 7

1.4 Open Source Software . 7

1.5 Excluded Research . 7

2 Background 9

2.1 Fundamentals of Markov Decision Processes . 9

2.2 Deterministic Shortest Path Problem . 10

2.3 Real-time Heuristic Search . 10

2.3.1 LRTA* . 11

2.3.2 RTAA* . 12

2.4 Local Function Approximation Methods . 13

2.4.1 K-Nearest Neighbor Regression . 13

2.4.2 Locally Weighted Regression . 14

3 Sample Complexity of Exploration in Model-Free Policy Search 15

3.1 Introduction . 15

3.2 Problem Setup . 17

3.2.1 Multi-step Control: Reinforcement Learning 17

3.2.2 One-Step Control: Online Linear Regression with Partial Information . . . 18

3.3 Online Linear Regression with Partial Information 18

3.3.1 Exploration in Parameter Space . 18

3.3.2 Exploration in Action Space . 18

3.3.3 Analysis . 19

3.4 Reinforcement Learning . 20

3.4.1 Exploration in Parameter Space . 20

3.4.2 Exploration in Action Space . 21

3.5 Experiments . 23

ix

3.5.1 One-Step Control . 24

3.5.2 Multi-Step Control . 25

3.6 Conclusion . 26

4 Planning and Execution using Inaccurate Models 27

4.1 Introduction . 27

4.2 Preliminaries . 29

4.3 Problem Setup . 30

4.4 Approach . 30

4.4.1 Penalized Model . 30

4.4.2 Limited-Expansion Search for Planning . 31

4.4.3 Warm Up: Small State Spaces . 32

4.4.4 Large State Spaces . 34

4.5 Experiments . 36

4.5.1 Simulated 4D Planar Pushing in the Presence of Obstacles 37

4.5.2 3D Pick-and-Place with a Heavy Object . 38

4.5.3 7D Arm Planning with a Non-Operational Joint 39

4.5.4 Effect of Function Approximation and Size of Hyperspheres 40

4.5.5 Simulated 2D Gridworld Navigation with Icy States 41

4.6 Related Work . 42

4.7 Discussion and Conclusion . 42

5 Leveraging Experience in Planning and Execution using Inaccurate Models 45

5.1 Introduction . 45

5.2 Related Work . 47

5.3 Problem Setup . 48

5.4 Approach . 49

5.4.1 Hybrid Limited-Expansion Search Planner 49

5.4.2 CMAX++ in Small State Spaces . 50

5.4.3 Adaptive Version of CMAX++ . 51

5.4.4 Theoretical Guarantees . 52

5.4.5 Large State Spaces . 54

5.5 Experiments . 55

5.5.1 3D Mobile Robot Navigation with Icy Patches 55

5.5.2 7D Pick-and-Place with a Heavy Object . 56

5.6 Discussion . 58

6 On the Effectiveness of using Inaccurate Models 59

6.1 Introduction . 59

6.2 Problem Setup . 60

6.2.1 Optimal Control using Misspecified Model 61

6.2.2 Iterative Learning Control . 61

6.2.3 Assumptions . 62

6.3 Main Results . 63

6.4 Interpreting the Worst Case Bounds . 65

6.5 Empirical Results . 66

6.5.1 Linear Dynamical System with Approximate Model 66

x

6.5.2 Nonlinear Inverted Pendulum with Misspecified Mass 67
6.5.3 Nonlinear Planar Quadrotor Control in Wind 67

6.6 Discussion . 68

7 Task-Aware Online Model Search with Misspecified Model Classes 71
7.1 Problem Setup . 72
7.2 Relevant Prior Work . 72

7.2.1 Maximum Likelihood Model Learning . 72
7.2.2 Reward Based Model Search . 73

7.3 Approach . 74
7.3.1 Online Model Search . 74
7.3.2 Optimistic Off-Policy Evaluation . 75

7.4 Theoretical Guarantees . 76
7.5 Experiments . 77
7.6 Conclusion . 80

8 Future Work and Conclusion 81
8.1 Future Work . 81

8.1.1 A Unified Framework for Planning and Execution using Inaccurate Models 81
8.1.2 Online Model Learning with Misspecified Model Classes 82
8.1.3 Extending CMAX and CMAX++ to Stochastic Dynamics 84
8.1.4 Finite Data Performance Analysis . 84

8.2 Conclusion . 85

9 Appendix 87
9.1 Appendix for Chapter 3 . 87

9.1.1 Proof of Theorem 3.3.1 . 87
9.1.2 Proof of Theorem 3.4.1 . 89
9.1.3 Proof of Theorem 3.4.2 . 93
9.1.4 Implementation Details . 95

9.2 Appendix for Chapter 4 . 102
9.2.1 4D Planar Pushing Experiment Details . 102
9.2.2 3D Pick-and-Place Experiment Details . 103
9.2.3 7D Arm Planning Experiment Details . 103

9.3 Appendix for Chapter 5 . 105
9.3.1 Sensitivity Experiments . 105
9.3.2 Experiment Details . 108

9.4 Appendix for Chapter 6 . 112
9.4.1 General Results . 112
9.4.2 Helpful Lemmas . 114
9.4.3 Optimal Control with Misspecified Model Results 115
9.4.4 Note on Assumption 6.2.3 . 118
9.4.5 Iterative Learning Control Results . 118
9.4.6 Scalar Example that Realizes Upper Bounds 120
9.4.7 Experiment Details . 123

Bibliography 125

xi

xii

List of Figures

1.1 A robotic arm picking an object from its start location and placing it at a goal lo-
cation while avoiding collision with the intermediate obstacle during motion. The
first three (from left) figures show an execution with a light object (wooden block)
and a plan (blue trajectory) computed using an accurate dynamical model which
captures the weight of the object correctly. The last figure (rightmost) shows an
instance of the same task but with a heavy object (black dumbbell) and same
dynamical model as before which models the object as light. This results in the
planner computing the same plan as before, which the robot cannot execute as lift-
ing the heavy object requires joint torques that are beyond the robot’s capabilities.
Thus, the plan is not task complete. 2

1.2 Operation of Model-based (blue) and Model-Free RL (red) methods while execut-
ing in unknown environments and collecting experience to complete a task. Figure
inspired from Dyna [Sut91] . 3

1.3 A practitioner’s approach to dealing with inaccuracies in dynamical models used
for planning. In this example, the robot is planning a footstep trajectory along
the partially unknown terrain to reach the other side. The planner has access to
a model of the terrain which is inaccurate in the regions marked by red oval. To
ensure that the planner does not compute any trajectory going through the red
oval region, practitioners typically inflate the cost of any action executed within the
region or any action that takes the robot into this region. This results in biasing
the planner away from this region thereby updating its behavior. Figure taken
from [Zuc+11] and the red oval region depicted is an example used for emphasis. . 5

3.1 Mean test accuracy with standard error for different approaches against number
of samples . 24

3.2 Linear Regression Experiments with varying input dimensionality 25

3.3 Multi-step Control. The left and middle figures show performance of different
methods as horizon length varies. The right figure shows number of samples needed
to reach close to a stationary point as noise in dynamics varies 25

4.1 (left) PR2 executing a pick-and-place task with a heavy object that is modeled as
light, resulting in hitting joint torque limits during execution. (right) Mobile robot
navigating a gridworld with icy states, where the robot slips, that are not modeled
as icy resulting in discrepancy in dynamics. 28

4.2 A small icy gridworld where Assumption 4.4.1 is satisfied but Assumption 4.4.2 is
not satisfied. 33

xiii

4.3 (left) Results for simulated 7D arm planning experiment comparing RTAA* and
Cmax. Each entry in the Steps column is obtained using 10 trials with random
start configurations and goal locations, and we present mean and standard error of
number of timesteps it takes the arm to reach the goal among successful trials. The
% success column indicates percentage of successful trials where the arm reached
the goal in less than 300 timesteps.(right) 4D Planar Pushing in the presence of
obstacles. The task is to push the black box to the red goal using the end-effector. 38

4.4 Physical robot 3D pick-and-place experiment. The task is to pick the object (light
- wooden block, heavy - black dumbbell) and place it at the goal location (green)
while avoiding the obstacle (box). For the light object (first 3 images), the model
dynamics are accurate and the robot takes it on the optimal path that goes above
the obstacle. For the heavy object (next 3 images), the model dynamics are inac-
curate but using Cmax the robot discovers that there is a discrepancy in dynamics
when the object is lifted beyond a certain height (due to joint torque limits), adds
hyperspheres at that height to account for these transitions (red spheres in the last
image), and quickly finds an alternate path going behind the obstacle. 39

4.5 Physical robot 7D arm planning experiment. The task is to start from a fixed
configuration (shown in the first image) and move the arm so that the end-effector
reaches the object place location (green). When the shoulder lift joint is opera-
tional, the robot uses the joint to quickly find a path to the goal (middle image).
However, when the joint is non-operational, it encounters discrepancies in its model
and compensates by finding a path that uses other joints to reach the goal (last
image.) . 40

4.6 (left) Performance of Cmax for 7D arm planning as the smoothness of the cost-to-
go function approximator varies. The plot is generated for each value of length scale
γ by generating 10 random start configurations and goal locations, and running our
approach for a maximum of 100 timesteps. (right) Performance of our approach for
4D planar pushing as the radius of the hypersphere δ varies. The plot is generated
for each value of radius δ by generating 10 random start and goal locations, and
running Cmax for a maximum of 400 timesteps. 41

5.1 (left) PR2 lifting a heavy dumbbell, that is modeled as light, to a goal location
that is higher than the start location resulting in dynamics that are inaccurately
modeled (right) Mobile robot navigating around a track with icy patches with
unknown friction parameters leading to the robot skidding. In both cases, any
path to the goal needs to contain a transition (pink) whose dynamics are not
modeled accurately. 46

5.2 Number of steps taken to finish a lap averaged across 10 instances each with 5 icy
patches placed randomly around the track. The number above each bar reports the
number of instances in which the robot was successful in finishing the respective
lap within 10000 time steps. 56

6.1 Cost suboptimality grap with varying modeling error ε for a linear dynamical
system. Note that both X-axis and Y-axis are in log scale. 67

6.2 Cost suboptimality gap of CE and ILC with varying ∆m for a nonlinear inverted
pendulum system. 68

xiv

6.3 Cost suboptimality gap of MM and ILC for planar quadrotor control with varying
magnitude of wind η . 69

7.1 Mountain car domain with rock (in red) that decreases the speed of the car by c . 78
7.2 Performance versus misspecification on the mountain car domain with dense cost

function. We run each method over 10 trials where the initial state of the car is
picked at random. We cap each trial at 3000 steps. 78

7.3 Performance versus misspecification on the mountain car domain with sparse cost
function. We run each method over 10 trials where the initial state of the car is
picked at random. We cap each trial at 3000 steps. 79

7.4 Performance versus misspecification on the mountain car domain with dense cost
function. We compare Toms with different off-policy evaluation methods to un-
derstand if using optimistic evaluation helps it reach goal quickly 80

9.1 CNN architecture used for the MNIST experiments 97
9.2 Sensitivity experiments with an exponential schedule 105
9.3 Sensitivity experiments with a linear schedule . 106
9.4 Sensitivity experiments with a time decay schedule 106
9.5 Sensitivity experiments with a step schedule . 107
9.6 Sensitivity experiments with best choices among all schedules 107
9.7 3D Mobile Robot experiment example track . 108
9.8 7D Pick-and-Place Experiment . 109

xv

xvi

List of Tables

4.1 Results for the simulated 4D planar pushing task. First column corresponds to the
case when the environment has no obstacles, and the model is accurate. Second
column corresponds to when the environment has static obstacles. and model (with
no obstacles) is inaccurate. Each entry in the Steps subcolumn is obtained using
20 random start and goal locations, and we present mean and standard error of
number of timesteps it takes the robot to reach the goal among successful trials.
The % success subcolumn indicates percentage of successful trials where the robot
reached the goal in less than 1000 timesteps. The last row corresponds to using
the planner with an accurate model (the same as the environment.) 37

4.2 Results for gridworld navigation in presence of icy states for a grid of size 100×100.
Each entry is obtained using 50 random seeds, and we present the mean and
standard error of the number of timesteps it takes the robot to reach the goal. The
columns represent the percentage of icy states in the gridworld. 41

5.1 Number of steps taken to reach the goal in 7D pick-and-place experiment for 5
instances, each with random start and obstacle locations. We report mean and
standard error only among successful instances in which the robot reached the goal
within 500 timesteps. The success subcolumn indicates percentage of successful
instances. 57

9.1 Candidate hyperparameters used for tuning in ARS experiments 96

9.2 Hyperparameters chosen for ARS in each experiment. LR is short-hand for Linear
Regression. 96

9.3 Learning rate and batch size used for REINFORCE experiments. We use an
ADAM [KB14] optimizer for these experiments. 96

9.4 Learning rate and batch size used for Natural REINFORCE experiments. Note
that we decay the learning rate after each batch by

√
T where T is the number of

batches seen. 97

9.5 Candidate hyperparameters used for tuning in ARS experiments 98

9.6 Candidate hyperparameters used for tuning in ARS experiments 98

9.7 Hyperparameters chosen for multi-step experiments for ARS in Swimmer-v2 99

9.9 Candidate hyperparameters used for tuning in ExAct experiments 99

9.8 Hyperparameters chosen for multi-step experiments for ARS in HalfCheetah-v2 . . 100

9.10 Candidate hyperparameters used for tuning in ExAct experiments 100

xvii

9.11 Hyperparameters chosen for multi-step experiments for ExAct in Swimmer-v2 . . . 101
9.12 Hyperparameters chosen for multi-step experiments for ExAct in HalfCheetah-v2 . 101

xviii

List of Algorithms

1 LRTA* with Lookahead 1 [Kor90] . 11
2 RTAA* with lookahead K ≥ 1 [KL06] . 12
3 Locally Weighted Regression . 14
4 Random Search in Parameter Space (BGD [FKM05]) 18
5 Random Search in Action Space . 19
6 Policy Search in Parameter Space . 20
7 Policy Search in Action Space . 22
8 Limited-Expansion Search based on RTAA*[KL06] 31
9 Cmax – Small State Spaces . 32
10 Cmax – Large State Spaces . 35
11 Hybrid Limited-Expansion Search . 49
12 Cmax++ and A-Cmax++ in small state spaces 50
13 Cmax++ in large state spaces . 54
14 ILC Algorithm for Linear Dynamical System with Approximate Model 62
15 Model Search Using Derivative-Free Optimization [Jos+13] 74
16 Online Model Search Framework . 75
17 Optimistic Off-Policy Evaluation . 76

xix

xx

Chapter 1
Introduction

Remember that all models are wrong; the
practical question is how wrong do they
have to be to not be useful.

George Box (1987)

1.1 Motivation

Robotic planning algorithms have been widely successful in computing feasible and optimal plans,
or sequence of decisions, for tasks involving robots operating in known environments or under
known conditions [LaV06]. A large part of this success can be attributed to principled algorithms
that effectively “search” the space of all plans by exploiting the known structure in the form of
dynamical models to quickly compute the solution [Cho+05]. For example in the field of robot
motion planning, there have been various developments in designing planning algorithms that
exploit forward models to effectively discretize the state space into a graph and compute a feasible
plan using graph search techniques [Lat91]. This enables planning algorithms to guarantee task
completeness, which is a requirement on the solution plan to complete the task, and be efficient
in the amount of computational resources needed to find the solution [Hau12].

However for robots to operate in unstructured environments such as homes, offices and disaster
sites, planning algorithms have to reason about how to deal with the lack of complete knowledge
of the environment while ensuring task completeness [KLC98]. To retain their effectiveness, these
planning algorithms will have to utilize partial knowledge of the environment and the task in the
form of simplified and inaccurate dynamical models [AQN06b]. Naively using these inaccurate
dynamical models for planning can result in highly suboptimal plans and in some cases, plans
that do not complete the task during execution [Kol10]. An example of such behavior is shown
in Figure 1.1. In this example, a robotic arm is performing a pick-and-place task while avoiding
collision with an obstacle. In the first scenario (the first three figures from the left in Figure 1.1,)
the arm is interacting with a light object whose mass is accurately captured by the dynamical
model used by the planner. This results in a computed trajectory for the arm that grasps the
object, lifts it above the obstacle and takes it to the goal location. While this scenario has
highlighted the effectiveness of the planning algorithm to complete the task when given access
to an accurate dynamical model, consider the second scenario (the last figure on the right in

1

Figure 1.1: A robotic arm picking an object from its start location and placing it at a goal location
while avoiding collision with the intermediate obstacle during motion. The first three (from
left) figures show an execution with a light object (wooden block) and a plan (blue trajectory)
computed using an accurate dynamical model which captures the weight of the object correctly.
The last figure (rightmost) shows an instance of the same task but with a heavy object (black
dumbbell) and same dynamical model as before which models the object as light. This results
in the planner computing the same plan as before, which the robot cannot execute as lifting the
heavy object requires joint torques that are beyond the robot’s capabilities. Thus, the plan is
not task complete.

Figure 1.1) where the arm is interacting with a heavy object which is modeled as a light object
by the dynamical model. Since the model is same as before, the planner computes the same
trajectory which lifts the object above the obstacle. However, while executing the trajectory the
arm cannot lift the heavy object and cannot command the joint torques required because they
are beyond the arm’s capabilities. Thus, the computed plan is not successful in completing the
task. The above example highlights the ineffectiveness of naively using these inaccurate models
for planning. This ineffectiveness can be tackled broadly in two directions: updating either
the dynamical model or the behavior of the planner, using the accumulated experience during
execution.

1.1.1 Updating the Dynamical Model

The former direction of using online experience to update existing dynamical models or learn-
ing new dynamical models from scratch has been explored in the Reinforcement Learning (RL)
framework. This framework enables autonomous agents, such as robots, to learn how to operate
in an unknown environment by interacting with it and compute an optimal plan that minimizes
total cost [SB98]. With partial or no prior knowledge about the environment, the agent needs
to explore to discover low cost actions or regions where dynamics are inaccurately modeled. The
exploration strategies leveraged by these agents require a large amount of interactions with the
environment before we can compute plans that guarantee task completeness [Kak03]. This is a
major reason why RL, despite being a very general framework, has mostly seen success in domains
where we can afford to collect large amounts of interactions with little effort: video games and
simulations [Sil+17; Ber+19; Hes+18].

Most methods in the RL framework can be categorized as either model-based or model-free
(Figure 1.2). As the name suggests, model-based methods rely on using a model as input to
a planning procedure to compute the solution plan for a given task. These methods use the
experience gained online during execution to update the dynamics of the model and replan to

2

Plan

Model Experience

Model Learning

Planning Execution

Value Learning

Figure 1.2: Operation of Model-based (blue) and Model-Free RL (red) methods while executing
in unknown environments and collecting experience to complete a task. Figure inspired from
Dyna [Sut91]

compute a new solution plan [Sut91]. In contrast, model-free methods directly use the accumu-
lated experience to compute an updated solution plan without ever using a dynamical model.
These methods utilize the experience to estimate value functions, which are essentially cost-to-go
estimates, and compute a plan using the estimated values [WD92]. Both methods have advan-
tages and disadvantages. Model-based methods relatively require fewer amounts of experience to
compute a plan of the same quality as the plan computed by a model-free method [Sun+19a].
On the other hand, model-free methods are not affected by the biases inherent in the design of
the model [DR10]. This thesis will primarily focus on model-based methods as they allow us to
exploit existing domain knowledge in the form of inaccurate models. However, we also explore
integrating model-free methods with model-based planning to combine the advantages of both
approaches.

A primary disadvatange of methods that use the accumulated experience from execution to
update the dynamics of the model is that in tasks with complex dynamics, learning the true
dynamics can require a exhorbitantly large number of executions [Wan+19; Nag+18; Sch+19].
Furthermore, there might be no model in the model class considered that can accurately represent
the true dynamics [Jos+13]. In such cases, prior works have shown that finding the model with
the lowest prediction error need not guarantee task success when subsequently used for planning,
and could have worse performance when compared to a model with higher prediction error [Far18;
Gri+20]. Thus, it is non-trivial to guarantee task completeness for these approaches. Intuitively,
there is an inherent mismatch of objectives where the model is updated to improve its prediction
accuracy, while the planner uses the model to find a plan that completes the task [Lam+20]. This
motivates the need to judiciously update the dynamical model with the goal of optimizing the
planning process, and this thesis takes some preliminary steps in this direction by presenting a
task-aware model learning approach that directly optimizes task success.

1.1.2 Updating the Behavior of the Planner

In contrast, the latter direction of updating the behavior of the planner using online experience
has not been explored as extensively in past literature. Interestingly, this direction has been

3

in use by the practitioner for quite some time. As motivated earlier, in most robotic tasks we
seldom have access to accurate dynamical models and the models we use for planning are often
inaccurate. Robotics engineers and practitioners have been dealing with these inaccuracies by
modifying how the planner uses the inaccurate model rather than updating the model to improve
its accuracy. As an example, consider the task of planning footsteps of a mobile quadruped
robot over partially unknown terrain as shown in Figure 1.3 taken from [Zuc+11]. The unknown
part of the terrain is annotated in the figure (red oval.) To ensure that the planner does not
compute footstep trajectory that goes through this region, a simple hack that the practitioner
does is to inflate the cost of any state-action pair that takes the robot into this region. This
results in biasing the planner away from this region thereby updating its behavior. There are
several other works that deal with inaccurate modeling by simply updating the behavior of the
planner [McC+20; MMB21; PB21; Lee+20a].

An observant reader will notice that these approaches require the models used for planning to
not be completely inaccurate everywhere. As a simple example, if we use a model that predicts
that the robot will crash for any action that it can possibly take, then simply updating the behav-
ior of the planner will not result in any improvement as the model used is inherently bad. While
these approaches have been explored in practice, there is very little prior work that has studied
this direction from a theoretical point of view aiming to understand the assumptions required
to guarantee task completeness, and a systematic study to analyze its empirical performance in
practice. This thesis aims to fill this gap and develop a better understanding when, where, and
how these methods work well in practice.

1.2 Thesis Goal and Contributions

While most existing works have presented and studied approaches that use the experience from
executions to update the dynamics of the inaccurate model, one can argue that this is wasteful if
we are interested in completing the task and not in modeling the dynamics accurately. Further-
more, robots operating in the real world have operating constraints that require them to quickly
adapt to new scenarios and not spend hours acquiring experience to learn true dynamics. Finally
in tasks where the dynamics are complicated, it could be computationally infeasible to have a
representation in the model class that can capture the true dynamics. In light of these challenges
and insights, the goal of this thesis is to justify the following statement:

By updating the behavior of the planner and not the dynamics of the model, we
can leverage simplified and potentially inaccurate models and significantly reduce the
amount of real-world experience needed to provably guarantee that the robot completes
the task.

We support this argument through the primary contributions of this thesis which are detailed
in the following sections.

1.2.1 Sample Complexity of Exploration in Model-Free Policy Search

We analyze the sample complexity of exploration techniques in model-free RL methods. This
analysis is presented by viewing model-free policy search methods through the lens of derivative-
free optimization (DFO) and computing worst case upper bounds on the number of samples
required to compute a ε-suboptimal policy. We present a DFO point of view for methods that
involve either exploration in action space or exploration in policy space, and present trade-offs

4

Figure 1.3: A practitioner’s approach to dealing with inaccuracies in dynamical models used
for planning. In this example, the robot is planning a footstep trajectory along the partially
unknown terrain to reach the other side. The planner has access to a model of the terrain which
is inaccurate in the regions marked by red oval. To ensure that the planner does not compute
any trajectory going through the red oval region, practitioners typically inflate the cost of any
action executed within the region or any action that takes the robot into this region. This results
in biasing the planner away from this region thereby updating its behavior. Figure taken from
[Zuc+11] and the red oval region depicted is an example used for emphasis.

between both styles of exploration in terms of the dimensionality of the policy parameter space,
and the horizon length of the task. This analysis is presented in Chapter 3 of the thesis and
is also presented in our paper [VSB19]. In addition to contrasting exploration in policy space
vs action space, this work also emphasizes the large sample complexity required by model-free
methods, which cannot be realized in practice on a robot.

1.2.2 Planning and Execution using Inaccurate Models

We present the first systematic effort to understand methods that use online experience from
executions to update the behavior of the planner and not update the dynamics of the model. These
methods can make progress towards completing the task despite using a potentially inaccurate
model. One can construct cases where if the model is highly inaccurate (e.g. a model that predicts
a humanoid falling down for any action and failing to complete the task of moving forward,) then
such a method cannot be expected to finish the task. Hence, we study the assumptions required
on the accuracy of the model used for planning that ensures task completeness without requiring
any updates to the dynamics of the model. Furthermore, we frame our problem in the purely
online setting where the experience gathered by the robot is along a single trajectory without any
access to resets. We believe that this setting is realistic and has challenges that these methods
are uniquely positioned to tackle.

We propose Cmax, an approach that guarantees that the robot completes the task using
the inaccurate model without any resets and without requiring any updates to the dynamics
of the model. This is achieved by biasing the planner away from transitions whose dynamics
are discovered to be inaccurately modeled during online execution. On the theoretical side, we
establish provable guarantees on task completeness under assumptions on the accuracy of the
model used for planning. Empirically, we show that Cmax outperforms state-of-the-art model-
free and model-based RL methods in terms of the number of executions taken to complete the
task. Crucially, Cmax exhibits goal-driven behavior which enables it to focus on completing the

5

task as quickly as possible and not waste executions learning the true dynamics. This method is
explained in detail in Chapter 4 and is also presented in our paper [Vem+20].

1.2.3 Leveraging Experience in Planning and Execution using Inaccurate Mod-
els

While a robot using Cmax is provably guaranteed to complete the task, it requires strong as-
sumptions on the accuracy of the model that are often not realized in practice and hard to verify
prior to execution. Furthermore for repetitive tasks, Cmax fails to improve the quality of the
solution over repetitions of the same task as it does not leverage previously discovered inaccu-
rately modeled transitions. This is remedied by our second approach Cmax++ that leverages
experience from past executions to improve the quality of solution over repetitions of the same
task. Crucially unlike Cmax, Cmax++ can compute solution plans that contain previously
discovered inaccurately modeled transitions. Cmax++ achieves this by integrating model-free
value learning using acquired experience with model-based planning using the inaccurate model.
As a consequence of this in addition to completeness, Cmax++ also guarantees asymptotic con-
vergence to the optimal path cost as the number of repetitions increases. These guarantees of
Cmax++ are established under assumptions on the accuracy of the model that are much more
relaxed compared to the assumptions required by Cmax. Importantly, like Cmax, Cmax++
never updates the dynamics of the model. This method is explained in detail in Chapter 5 and
is also presented in our paper [VBL20].

1.2.4 On the Effectiveness of Using Inaccurate Models

In Chapters 4 and 5, the focus is on proving task completeness guarantees for methods that update
the behavior of the planner. However, there are no provable guarantees on the performance of the
plan as a function of the modeling error. This is especially useful in understanding how accurate
a model needs to be, in order to converge to a plan that has bounded worst case performance. To
derive such a guarantee, we study the control of linearized systems with quadratic costs which
is easier to analyze and provides insights into the performance we can expect from using an
inaccurate model. In this setting, we analyze the performance of iterative learning control (ILC)
approaches that use online experience from executions to update the behavior of the planner and
do not update the model, similar to Cmax and Cmax++. We present upper bounds in terms
of modeling error on the sub-optimality gap between the cost incurred by the controller that
ILC converges to, and the cost incurred by using the optimal linear quadratic controller. Our
analysis shows that the sub-optimality gap bound for ILC has a nice quadratic dependency on
the modeling error. Furthermore, our analysis also highlights the pitfalls of methods that naively
use inaccurate models without updating the behavior of the planner. For these methods, the
sub-optimality gap bound has a dependence on quadratic and higher-order terms in modeling
error that can make it significantly worse than ILC when modeling error is significant. This
analysis is explained in detail in Chapter 6 and is also presented in our paper [Vem+21].

1.2.5 Task-Aware Online Model Search with Misspecified Model Classes

Our final contribution departs from the algorithms developed so far, and studies the alternative of
using experience from executions to update the dynamics of the model. More precisely, we study
the problem of planning in an environment with unknown transition dynamics when given access
to a misspecified model class. A model class is misspecified if no model in the class can capture

6

the true dynamics of the environment, which is usually the case in real-world domains where we
either have limited domain knowledge or we would like to use a small model for computational
efficiency. In such a setting, finding a model that optimizes prediction error, as done in most of
the existing work, can lead to poor task performance when the model is used for planning. We
develop a model learning method Toms that is task-aware, i.e. optimizes completing the task
when used for planning, rather than prediction error. We achieve this by performing derivative-
free optimization in the space of model parameters to explicitly select a model that results in
a policy, upon planning, that achieves the best task performance during execution. To measure
the performance of any policy in the environment without executing it, we rely on a monte-carlo
evaluation procedure that uses the experience accumulated so far in state-action regions where
we have good coverage, and fall back on an optimistic model everywhere else. Theoretically,
we can show that given unlimited computation, Toms is guaranteed to reach the goal in small
state-action spaces as long as there is at least one good performing model in the model class.
Empirically, we show that Toms performs significantly better than traditional model learning
methods that optimize prediction error in a simple mountain car domain. This work is explained
in detail in Chapter 7.

1.3 Bibliographical Remarks

This thesis only contains works for which this author is the primary contributor.

Chapter 3 is based on joint work with Wen Sun and Drew Bagnell that appeared in [VSB19].
Chapter 4 is based on joint work with Yash Oza, Drew Bagnell, and Max Likhachev that appeared
in [Vem+20]. Chapter 5 is based on joint work with Drew Bagnell and Max Likhachev that
appeared in [VBL20]. Chapter 6 is based on joint work with Wen Sun, Max Likhachev, and
Drew Bagnell that appeared in [Vem+21]. Chapter 7 is based on ongoing work with Sanjiban
Choudhury, Drew Bagnell, and Max Likhachev.

1.4 Open Source Software

The author is a huge proponent of open sourcing research code. Previously open sourced code has
hugely benefitted the work in this thesis, and the author would like to give back to the community
by open sourcing all the code for this thesis. The links to code are listed below:

1. Chapter 3 code can be found at https://github.com/LAIRLAB/contrasting_exploration_
rl

2. Chapter 4 code can be found at https://github.com/vvanirudh/CMAX

3. Chapter 5 code can be found at https://github.com/vvanirudh/CMAXPP

4. Chapter 6 code can be found at https://github.com/vvanirudh/ILC.jl

5. Chapter 7 code can be found at https://github.com/vvanirudh/TOMS.jl

1.5 Excluded Research

The author has excluded a significant portion of his doctoral work for the purpose of keeping this
thesis succinct. The excluded works are listed below:

7

https://github.com/LAIRLAB/contrasting_exploration_rl
https://github.com/LAIRLAB/contrasting_exploration_rl
https://github.com/vvanirudh/CMAX
https://github.com/vvanirudh/CMAXPP
https://github.com/vvanirudh/ILC.jl
https://github.com/vvanirudh/TOMS.jl

1. TRON: A Fast Solver for Trajectory Optimization with Non-Smooth Cost Functions, that
appeared in [VB20].

2. Planning, Learning and Reasoning Framework for Robot Truck Unloading, that appeared
in [Isl+20].

3. Provably Efficient Imitation Learning from Observation Alone, that appeared in [Sun+19b].

4. Improved Soft Duplicate Detection in Search-Based Motion Planning, that appeared in [MVL21].

5. Task-informed Fidelity Management for Speeding up Robotics Simulation, that appeared
in [Tal+19].

8

Chapter 2
Background

If I have seen further it is by standing on
the shoulders of Giants.

Isaac Newton (1676)

In this chapter, we provide background knowledge with the aim of introducing classical tech-
niques that we will use throughout this thesis. Each chapter of this thesis is self-contained and
has detailed definitions that are more tailored to the specific problem tackled in each chapter.

2.1 Fundamentals of Markov Decision Processes

In this thesis, we will primarily deal with finite horizon problems where the objective is for an agent
to minimize cumulative cost incurred over a horizon of finite length. This is typically formulated
as a finite horizon Markov Decision Process (MDP) [BEL57] that is represented as (S,A, P, c,H)
where S is the set of states that the agent can be in, A is the set of actions that the agent can
execute, P is the transition dynamics such that for any st ∈ S, st+1 ∈ S, at ∈ A, P (st+1|st, at)
is the probability of transitioning to state st+1 from state st by taking action at, c is the cost
function such that for any transition (st, at), c(st, at) is the cost incurred for that transition, and
H ∈ N+ is the length of the horizon. Typically, this formulation also has a discounting factor
γ and a initial state distribution ρ. In this thesis, we consider the non-discounted setting where
γ = 1 and a fixed initial state s0 that is known (thus, ρ is a delta distribution on s0.)

A deterministic policy π : S→ A maps from a state to an action. Given π and a time step t,
we can define the cost-to-go or value estimate V t

π(s) as follows:

V t
π(s) = E

[
H∑
i=t

c(si, ai)|ai = π(si), si+1 ∼ Psi,ai , st = s

]
(2.1)

where Psi,ai = P (·|si, ai) is a distribution over the next state.
Similarly, we can also define the state-action value estimate Qtπ(s, a) as follows:

Qtπ(s, a) = c(s, a) + Es′∼Ps,a [V t+1
π (s′)] (2.2)

The objective function J(π) is defined as

J(π) = V 0
π (s0) (2.3)

9

and the goal is to find a policy from a given policy set Π that minimizes the above objective
function.

If the cost function and the transition dynamics is known, then one can compute the op-
timal policy using Dynamic Programming (DP.) Denote the optimal policy using π∗. Define
QH−1
π∗ (s, a) = c(s, a), we perform DP as follows: Starting from t = H − 2 until t = 1 we itera-

tively do

V t
π∗(s) = max

a∈A
Qtπ∗(s, a) (2.4)

Qt−1
π∗ (s, a) = c(s, a) + Es′∼Ps,a [V t

π∗(s
′)] (2.5)

Given Qtπ∗ we can compute the optimal action at time step t and state st as mina∈AQ
t
π∗(st, a).

The above iterative process is called as Value Iteration. This iterative procedures is derived by
observing that the value function of the optimal policy satisfies the following fixed point equation

V t
π∗(s) = min

a∈A

(
c(s, a) + Es′∼Ps,a [V t+1

π∗ (s′)]
)

(2.6)

The above equation is known as the Bellman optimality condition.

2.2 Deterministic Shortest Path Problem

The shortest path problem is to find among all paths that start at a given state and end at a
goal state, a path has the minimum cost; this is also called a shortest path [BT95]. This can be
instantiated as a markov decision process represented using the tuple (S,A,G, f, c) where G ⊆ S
is the set of goal states, and f : S× A→ S is a deterministic dynamics function that determines
the successor state st+1 of a transition (st, at) as f(st, at). The goal states in G are cost-free
termination states, i.e. f(g, a) = g, c(g, a) = 0 for all g ∈ G and any action a ∈ A. We also
assume that the cost of any transition starting from a non-goal state is positive, i.e. c(s, a) > 0
for all s ∈ S \G and a ∈ A.

We are interested in problems where reaching the termination state is inevitable, at least
under an optimal policy. Thus, the essence of the problem is how to reach a goal state with
minimum cost. In the shortest path problem setting, we use V (s) to denote the cost-to-go (or
value) estimate of any state s ∈ S and V ∗(s) to denote the optimal cost-to-go (or value.) From
the Bellman optimality condition we know

V ∗(s) = min
a∈A

(c(s, a) + V ∗(f(s, a))) (2.7)

A value estimate V is called admissible if underestimates the optimal value at all states, i.e.
V (s) ≤ V ∗(s) for all s ∈ S. Furthermore, V is called consistent if it satisfies the condition that
for any state-action pair (s, a), s /∈ G, V (s) ≤ c(s, a) + V (f(s, a)) and V (g) = 0 for all g ∈ G. A
typical assumption made in all shortest path problems is that there exists at least one path from
each state s ∈ S to one of the goal states in G. This ensures that the optimal value for any state
is finite.

2.3 Real-time Heuristic Search

A traditional way to solve the shortest path problem is to search the graph constructed using
a mental model of the world, and then subsequently execute the resulting plan (or follow the

10

Algorithm 1 LRTA* with Lookahead 1 [Kor90]

1: s← s0

2: while s /∈ G do
3: Compute action a = argmina∈A (c(s, a) + V (f(s, a)))
4: Update V (s)← min (V (s), c(s, a) + V (f(s, a)))
5: Execute action a and update s← f(s, a)

computed path.) Thus, planning and execution are completely separated. An alternative way of
solving this problem is to search online by interleaving planning and execution which results in
several advantages with the major advantage being drastic reductions in planning time. This is
achieved by performing search locally until a fixed horizon (or until a fixed number of states are
expanded,) and then execute the best action for the current state. After the execution, planning
is performed once again to find the next best action. This can decrease the time used for planning
as we are not planning all the way to the goal. Another significant advantage is when the mental
model of the world is inaccurate, these methods enable the agent to update its model and ensure
future replanning results in more optimal paths.

Since the future consequences of executed actions are unknown, interleaving planning and
execution can result in slight overhead in terms of the number of actions executed but this is
often a much smaller overhead compared to the reduced planning time. Real-time search methods
are methods that interleave planning and execution by searching forward from the current state
of the agent. Most importantly, real-time heuristic search methods can satisfy hard real-time
requirements in large state spaces since the sizes of their local search spaces are independent of
the sizes of the state spaces and can thus remain small.

2.3.1 LRTA*

In this thesis, we will focus on Learning real-time A* (LRTA*) real-time search methods that are
real-time search methods that associate information with the states to prevent cycling. These
methods are promising for interleaving planning and execution as they are efficient domain-
independent search methods that allow fine-grained control over how much planning is allowed
between executions, use heuristic knowledge to guide planning, and improve their performance
over time as they solve similar planning tasks. LRTA* operates on deterministic domains only.

Algorithm 1 presents the LRTA* algorithm for a lookahead or search horizon of 1. At each
time step, the algorithm looks one action execution ahead and always greedily chooses the action
that leads to a successor state with the minimum sum of cost of transitioning into the successor
state and the value estimate of the successor state. Furthermore unlike classical real-time search
methods, LRTA* also updates the value estimates of the current state to reflect the updated
estimate of the best path to the goal so that future replanning is more efficient. The planning
time of LRTA* between executions is linear in the number of actions. If the size of action space
is independent of the size of state space, then the planning time is independent of the size of
state space which is a major improvement over offline planning methods whose computational
complexity is at most the size of the state space.

LRTA* can be viewed as a form of asynchronous incremental dynamic programming method
[BBS95]. It can be shown that LRTA* is guaranteed to reach a goal state in a finite number of
executions and if we reset to the start state after reaching the goal state, then the value estimates
eventually converge to the optimal value function [Kor90]. These guarantees hold under the

11

Algorithm 2 RTAA* with lookahead K ≥ 1 [KL06]

1: s← s0

2: while s /∈ G do
3: Construct a search tree at s until K expansions
4: Estimate s̄ as the leaf node with the least g + V estimate among all leaf nodes
5: for all expanded states s′ do
6: Update V (s′)← g(s̄) + V (s̄)− g(s′)

7: Compute action a as the first action on the path from state s to state s̄ in the search tree
8: Execute action a and update s← f(s, a)

assumption that the initial value estimates that we start with are admissible and consistent.
These assumptions are very similar to the traditional definitions of admissible and consistent
heuristic values for A* search. Note that zero-initialized value estimates are both admissible and
consistent.

2.3.2 RTAA*

Real-time Adaptive A* (RTAA*) proposed in [KL06] is similar to LRTA* (Algorithm 2). They
only differ in the way they update the value estimates at each time step. To understand this
better, let us look at how LRTA* updates value estimates. LRTA* replaces the value estimate of
each expanded state with the sum of costs of from the state to a generated but unexpanded state
s (leaf node in the search tree) and the value estimate of state s, minimized over all generated
but unexpanded states (all leaf nodes of the search tree.) If we denote V as the value estimates
after all the value updates then the LRTA* updates satisfy the following system of equations for
all expanded states s:

V (s) = min
a∈A

(c(s, a) + V (f(s, a))) (2.8)

On the other hand, RTAA* constructs a search tree very similar to LRTA* (the number of
states expanded is equal to the lookahead) but updates the value estimates for all expanded states
s as follows:

V (s) = g(s̄) + V (s̄)− g(s) (2.9)

where g(s) encodes the cost-to-come from the root of the search tree to the state s (i.e. sum of
costs of all transitions on the path from root to state s,) and s̄ is the state corresponding to the
leaf node with the least sum of g and V among all leaf nodes in the search tree. In other words,
s̄ is the state that was about to be expanded just before the search was terminated. One can
show that LRTA* and RTAA* updates are exactly the same when the lookahead is 1. But when
the lookahead is greater than 1, these updates differ. More specifically, LRTA* updates tend to
be more informed or reflect the optimal cost-to-go better when compared to RTAA* updates.
However, it takes LRTA* more time to update the value estimates and is difficult to implement.
This is because LRTA* performs one search to determine the local search space and a second
search to determine how to update the value estimates since it is unable to use the results from
the first search for this purpose. Thus, there is a trade-off between the total search time and
cost of the resulting path. In practice, for lookaheads greater than 1, RTAA* tends to compute
solution paths that have higher costs compared to LRTA* but the time taken for planning before
each execution is significantly less in RTAA* compared to LRTA*. This makes RTAA* desirable

12

in applications where planning is slow but actions can be executed fast and there is a very strict
time limit per search episode.

2.4 Local Function Approximation Methods

The goal of function approximation methods is to capture the underlying relationship between
input and output data. A typical approach is to use all the training data to fit a global model
that predicts the output given the input throughout the input space. The hope is that this
approximation predicts output values that are close to the true output values of the original
function. A major disadvantage of these global function approximation methods is that in many
cases, there exists no parameter values that provide a sufficiently good approximation. Moving to
a larger function approximation class with more parameters requires a significantly larger training
data which might not be available. Furthermore, in cases where the model needs to be updated
incrementally, the computational cost of recomputing the global function approximation is very
high and potentially infeasible on real-time systems.

An alternative to global function approximation methods are local function approximation
methods such as Locally Weighted Learning (LWL) [AMS97a; AMS97b]. LWL methods are
non-parametric and prediction is computed using local functions which use only a subset of the
training data. The basic idea of LWL is for each query point, a local model is constructed based
on neighboring training data. Each data point is associated with a weighting factor that captures
the influence of the data point in computing the prediction for the query point. Intuitively,
the closer the data point to the query point the higher its influence. Since the training data is
directly used during prediction and there is no pre-processing before prediction, LWL can be a
very accurate and fast incremental function approximation method.

For ease of exposition, let us consider the following regression model

y = f(x) + ε (2.10)

where f(x) is the unknown function that we are seeking to approximate, x ∈ Rd, y ∈ R and
ε is zero mean noise. Given a dataset D = {(xi, yi)}Ni=1 and a query point xq we can define the
following cost function,

J(βq) =
1

N

N∑
i=1

wi(xq)(yi − βTq xi)
2 (2.11)

where wi are weights that capture the influence of the i-th data point (xi, yi) on the prediction
for query point xq, and βq is the coefficients for our linear model that is used for prediction. The
goal is to find βq that minimizes the above cost function and predict ŷq = βTq xq (Assume that
xi,xq vectors have a 1 added to account for the offset term.) The weights wi(xq) are computed
typically using a distance metric d(xi,xq) that captures relevance of training points to the query
point, and a kernel function K(d) which computes the weight given a distance value.

2.4.1 K-Nearest Neighbor Regression

A very simple LWL method is K-Nearest Neighbor (KNN) regression which given a query point
xq finds the K nearest neighbors in the training data D using a distance metric d(xq,xi). There
are several variants of this method, one of which uniformly weights all the K nearest neighbor’s

13

Algorithm 3 Locally Weighted Regression

1: Input: Training data D = {(xi, yi)}Ni=1, Query point xq
2: Construct matrix X with rows corresponding to x̂i where x̂i = [xTi 1]T

3: Construct vector y with each element corresponding to yi
4: Compute diagonal weight matrix W where the i-th diagonal element is given by

exp
(
−1

2(xi − xq)
TD(xi − xq)

)
5: Compute βq = (XTWX)−1XTWy
6: Compute prediction ŷq = βTq x̂q where x̂q = [xTq 1]T

outputs to obtain the prediction for the query point, i.e.

ŷq =
1

K

∑
xi∈DK(xq)

yi (2.12)

where DK(xq) represents the set of size K consisting of the K nearest neighbors of the query
point xq in D. Another variant, which often works well in practice, is to weigh each neighbor
by the inverse of their distance to the query point. Intuitively, closer neighbors have a greater
influence than farther neighbors. Thus, we have

ŷq =

∑
xi∈DK(xq)

wiyi∑
xi∈DK(xq)

wi
(2.13)

where the weight wi = 1
d(xq ,xi)

is the inverse of distance to the query point. KNN regression

requires storing all the training data in memory in the form of K-d trees which allow very fast
computation of K nearest neighbors.

2.4.2 Locally Weighted Regression

Locally weighted regression (LWR) is a locally weighted learning method that maintains all the
training data in memory and quickly computes the prediction for any given query point. LWR is
presented in Algorithm 3 which is executed once for each query point xq. There are also simple
extensions to the batch setting where we want to obtain predictions for a batch of query points.
The only hyperparameter is the matrix D which is usually set to a scaled identity matrix D = hI
where h is a scalar hyperparameter that is chosen using cross validation. LWR typically has a
very high approximation accuracy due to its local nature and has only few hyperparameters. The
disadvantage is that Algorithm 3 has a computational complexity of O(N2) where N is the size
of training data, which can be very expensive for large datasets. Furthermore, LWR requires you
to store all the training data in memory which might be infeasible for extremely large datasets.

14

Chapter 3
Sample Complexity of Exploration in
Model-Free Policy Search

. . . much of the benefit of policy search is
achieved by black-box methods.

Jens Kober, Drew Bagnell and Jan Peters
(2013)

In this chapter, we will analyze the sample complexity of exploration techniques that are
popularly used in model-free reinforcement learning methods. More specifically, we will contrast
the number of samples required to obtain an ε-suboptimal policy between methods that explore
in policy space versus those that explore in action space. Our goal in this chapter is to understand
the inherent trade-off between these two exploration techniques and to get a better grasp of when
one works better than the other, in terms of sample complexity. This chapter also motivates
the general theme of this thesis that dynamical models, despite being potentially inaccurate,
are extremely useful sources of domain knowledge, and the price to pay for using model-free
approaches can be steep. This chapter is adapted from our original paper [VSB19].

3.1 Introduction

Model-free policy search is a general approach to learn parameterized policies from sampled
trajectories in the environment without learning a model of the underlying dynamics. These
methods update the parameters such that trajectories with higher returns (or total reward) are
more likely to be obtained when following the updated policy [KBP13]. The simplicity of these
approaches have made them popular in Reinforcement Learning (RL).

Policy gradient methods, such as REINFORCE [Wil92] and its extensions [Kak02; Bag+04;
Sil+14; Sch+15], compute an estimate of a direction of improvement from sampled trajectories
collected by executing a stochastic policy. In other words, these methods rely on randomized
exploration in action space. These methods then leverage the Jacobian of the policy to update
its parameters to increase the probability of good action sequences accordingly. Such a gradient
estimation algorithm can be considered a combination of a zeroth-order approach and a first-
order approach: (1) it never exploits the slope of the reward function or dynamics, with respect

15

to actions, but rather relies only on random exploration in action space to discover potentially
good sequences of actions; (2) however, it exploits the first order information of the parameterized
policy for updating the policy’s parameters. Note that the chance of finding a sequence of actions
resulting in high total reward decreases (as much as exponentially [KL02]) as the horizon length
increases and thus policy gradient methods often exhibit high variance and a resulting large
sample complexity [PS08; Zha+11].

Black-box policy search methods, on the other hand, seek to directly optimize the total reward
in the space of parameters by employing , e.g., finite-difference-like methods to compute estimates
of the gradient with respect to policy parameters [BS01; MRG03; HI08; TSC11; Seh+10; Sal+17;
MGR18]. Intuitively, these methods rely on exploration in parameter space: by searching in the
parameter space, these methods may discover an improvement direction. Note that these methods
are fully zeroth-order, i.e., they exploit no first-order information of the parameterized policy, the
reward, or the dynamics. Although policy gradient methods leverage more information, notably
the Jacobian of the action with respect to policy, black-box policy search methods have at times
demonstrated better empirical performance (see the discussion in [KBP13; MGR18]). These
perhaps surprising results motivate us to analyze: In what situations should we expect parameter
space policy search methods to outperform action space methods?

To do so, we leverage prior work in zeroth-order optimization methods. In the convex set-
ting, [FKM05; ADX10; NS17] showed that one can construct gradient estimates using zeroth
order oracles and derived upper bounds on the number of samples needed. But for most RL
tasks, the return as a function of parameters, or action sequence, is highly non-convex [SB98].
Hence we focus on the non-convex setting and analyze convergence to stationary points. [GL13;
NS17] studied zeroth order non-convex optimization by providing upper bounds on the number
of samples needed to close in on a stationary point. Computing lower bounds in zeroth order
non-convex optimization is still an open problem [Car+17a; Car+17b].

In our work, we extend the analysis proposed in [GL13] to the policy search setting and analyze
the sample complexity of parameter and action space exploration methods in policy search. We
begin with a degenerate, one-step control problem of online linear regression with partial feedback,
[FKM05], where the objective is to learn the parameters of the linear regressor without access
to the true scalar regression targets. We show that for parameter space exploration methods,
to achieve ε-optimality, requires O(b2/ε4) samples, where b is the input feature dimensionality.
By contrast, an action space exploration method requires O(1/ε4) many samples with a sample
complexity independent of input feature dimensionality b. This is tested empirically on two simple
tasks: Bandit Multi-class learning on MNIST with policies parameterized by convolutional neural
networks which can be seen as a Contextual Bandit problem with rich observations, and Online
Linear Regression with partial information. The results demonstrate action space exploration
methods outperform parameter space methods when the parameter dimensionality is substantially
larger than action dimensionality.

We present similar analysis for the multi-step control problem of model-free policy search in
reinforcement learning, [KBP13], by considering the objective of reaching ε-close to a stationary
point in the sense that ‖∇J(θ)‖22 ≤ ε for the non-convex objective J(θ). Our results show that,

under certain assumptions, parameter space exploration methods need O(d
2

ε3
) samples to reach ε

close to a stationary point, where d is the policy parameter dimensionality. On the other hand,

action space exploration methods need O(p
2H4

ε4
) samples to achieve the same objective, where

p is the action dimensionality and H is the horizon length of the task. This shows that action
space exploration methods have a dependence on the horizon length H while parameter space

16

exploration methods depend only on parameter space dimensionality d. Ongoing work by [TR18]
demonstrated through asymptotic lower bounds that the dependence of sample complexity of
action space exploration methods on horizon H is unavoidable in the LQR setting. This is tested
empirically on popular RL benchmarks from OpenAI gym [Bro+16a], and the results show that as
horizon length increases, parameter space methods outperform action space exploration methods.
This matches the intuition and results presented in recent works like [BS01; SL06; TSC11; Sal+17;
MGR18] that show parameter space black-box policy search methods outperforming state-of-the-
art action space methods for tasks with long horizon lengths.

In summary, our analysis and experimental results suggests that the complexity of exploration
in action space depends on both the dimensionality of action space and horizon, while the com-
plexity of exploration in parameter space solely depends on dimensionality of parameter space,
providing a natural way to trade-off between these approaches.

3.2 Problem Setup

3.2.1 Multi-step Control: Reinforcement Learning

We consider the problem setting of model-free policy search with the goal of minimizing sum
of costs (or maximizing sum of rewards) over a fixed, finite horizon H. In reinforcement learn-
ing (RL), this is typically formulated using Markov Decision Processes (MDP) [SB98]. Denote
the state space of the MDP as S ⊂ Rb, action space as A ⊂ Rp , transition probabilities as
Psa = P(·|s, a) (which is the distribution of next state after executing action a ∈ A in state
s ∈ S), an initial state distribution µ, and a cost function c(s, a) : S × A → R. Note that the
cost can be interpreted as negative of the reward. In addition to this, we assume a restricted
class of deterministic, stationary policies Π parameterized by θ ∈ Rd where each π(θ, ·) ∈ Π is
differentiable at all θ and is a mapping from S to A, i.e. π(θ, ·) : S → A. The distribution
of states at timestep t induced by running the policy π(θ, ·) until and including t, is defined
∀st : dtπθ(st) =

∑
{si}i≤t−1

µ(s0)
∏t−1
i=0 P(si+1|si, ai = π(θ, si)), where by definition d0

πθ
(s) = µ(s)

for any π. We define the value function V t
πθ

(s) for t ≤ H − 1 as

V t
πθ

(s) = E[
H∑
i=t

c(si, π(θ, si))|st = s]

and state-action value function Qtπθ(s, a) as

Qtπθ(s, a) = c(s, a) + Es′∼Psa [V t+1
πθ

(s′)]

Throughout this work, we assume the total cost is upper bounded by a constant, i.e., supc1,...,cT
∑

t ct ≤
Q ∈ R+, to prevent confounding due to just a change in the scale of total costs. We have then
that Qtπθ is upper bounded by a constant Q for all t and θ.

We seek to minimize the performance objective given by J(θ) = Es∼µ[V 0
πθ

(s)]. Given this
objective, the optimization problem can be formulated as:

min
θ
J(θ) (3.1)

The goal is to find parameters θ∗ that minimize the expected sum of costs J(θ), given no access
to the underlying dynamics of the environment other than samples from the distribution Psa by

17

executing the policy π(θ, ·). However, the objective J(θ) can be highly non-convex and finding a
global minima could be intractable. Thus, in this work, we hope to find a stationary point θ∗ of
the objective J(θ), i.e. a point where ∇θJ(θ) ≈ 0.

3.2.2 One-Step Control: Online Linear Regression with Partial Information

The online linear regression problem is defined as follows: We denote S ⊂ Rb as the feature space,
and Θ ⊂ Rd = Rb as the linear policy parameter space where each θ ∈ Θ represents a policy
π(θ, s) = θ>s. Online linear regression operates in an adversarial online learning fashion: every
round i, nature presents a feature vector si ∈ S, the learner makes a decision by choosing a policy
θi ∈ Θ and predicts the scalar action âi = θ>i si; nature then reveals the loss (âi−ai)2 ∈ R+, which
is just a scalar, to the learner, where ai is ground truth selected by nature and is never revealed
to the learner. We do not place any statistical assumption on the nature’s process of generating
feature vector si and ground truth ai, which could be completely adversarial. Other than the
adversarial aspect of the problem, note that the above setup is a special setting of RL with horizon
H = 1, linear policy θ>si, one-dimension action space, and a cost function ci(θ) = (θ>si − ai)2.
In this setting, we consider the regret with respect to the optimal solution in hindsight,

Regret =

T∑
i=1

ci(θi)− min
θ?∈Θ

T∑
i=1

ci(θ
?) (3.2)

3.3 Online Linear Regression with Partial Information

3.3.1 Exploration in Parameter Space

We can apply a zeroth-order online gradient descent algorithm for the sequence of loss functions
{ci}Ti=1, which is summarized in Algorithm 4. The main idea is to add random noise u, sampled
from a unit sphere in b-dim space Sb, to the parameter θ, and querying loss at θ + δu for some
δ > 0. Using the received loss ci(θ+ δu), one can form an estimation of ∇θci(θ) as cib

δ u [FKM05].

Algorithm 4 Random Search in Parameter Space (BGD [FKM05])

1: Input: α ∈ R+, δ ∈ R+.
2: Learner initializes θ1 ∈ Θ.
3: for i = 1 to T do
4: Learner samples u ∼ Sb.
5: Learner chooses predictor θ′i = θi + δu.
6: Learner only receives loss signal ci(θ

′
i).

7: Learner update: θ′i+1 = θi − α cibδ u.
8: Projection θi+1 = arg minθ∈Θ ‖θ′i+1 − θ‖22.

3.3.2 Exploration in Action Space

The key difference between exploration in action space and exploration in parameter space is
that we are going to leverage our knowledge of the policy π(θ, s) = θ>s. Since we design the
policy class, we can compute its Jacobian with respect to its parameters θ without interaction
with the environment. The Jacobian of the policy gives us a locally linear relationship between

18

a small change in parameter and the resulting change in policy’s action space. The main idea
then in this approach is to explore with randomization in action space, and then leverage the
Jacobian of the policy to update the parameters θ accordingly so that the policy’s output moves
towards better actions. Intuitively, we expect that random exploration in action space will result
in smaller regret, as in our setting the action space is just 1-dimensional, while the parameter
space is b-dimensional. The approach is summarized in Algorithm 5. Denote `i = (âi − ai)

2

and âi = π(θi, si) = θ>i si. The main idea is that we can compute ∇θci(θi) via a chain rule as
∇θci(θi) = ∂`i

∂âi
∇θπ(θi, si). Note that ∇θπ(si, θi) = ∇θθ>i si = si is the Jacobian of the policy

to which we have full access. We then use zeroth order approximation method to approximate
∂`i/∂âi at âi = π(θi, si).

Algorithm 5 Random Search in Action Space

1: Input: α ∈ R+, δ ∈ R+.
2: Learner initializes θ1 ∈ Θ.
3: for i = 1 to T do
4: Learner receives feature si.
5: Learner samples e uniformly from {−1, 1}.
6: Learner makes a prediction âi = θ>i si + δe
7: Learner only receives loss signal ci = (âi − ai)2.
8: Learner update: θ′i+1 = θi − α cieδ si.
9: Projection θi+1 = arg minθ∈Θ ‖θ′i+1 − θ‖22.

3.3.3 Analysis

We analyze the regret of the exploration in parameter space algorithm (Alg. 4) and the exploration
in action space algorithm (Alg. 5) in this section. For analysis, we assume that Θ is bounded,
i.e., supθ∈Θ ‖θ‖2 ≤ Cθ ∈ R+, S is bounded, i.e., sups∈S ‖s‖2 ≤ Cs ∈ R+, and the ground truth
ai is bounded, i.e., |ai| ≤ Ca for any i. Under the above assumptions, we can make sure that
the loss is bounded as well, (θ>s− a)2 ≤ C ∈ R+. The loss function is also Lipschitz continuous
with Lipschitz constant L ≤ (CθCs + Ca)Cs. We call these constants Cs, Cθ, and Ca as problem
dependent constants, which are independent of feature dimension b and number of rounds T . In
regret bounds, we absorb problem dependent constants into O notations, but the bounds will be
explicit in b and T . The theorem below presents the average regret analysis for these methods,

Theorem 3.3.1. After T rounds, with α = Cθδ

b(C2+C2
s)
√
T

and δ = T−0.25
√

Cθb(C2+C2
s)

2L , Alg. 4

incurs average regret:

1

T
(E[

T∑
i=1

ci(θi)]− min
θ?∈Θ

T∑
i=1

ci(θ
?)) ≤ O(

√
bT−

1
4), (3.3)

and with α = Cθδ

(C2+1)Cs
√
T

and δ = T−0.25
√

Cθ(C2+1)Cs
2C , Alg. 5 incurs average regret:

1

T
(E[

T∑
i=1

ci(θi)]− min
θ?∈Θ

T∑
i=1

ci(θ
?)) ≤ O(T−

1
4), (3.4)

for any θ ∈ Θ.

19

The proof for the above theorem can be found in Appendix 9.1.1.

The above regret analysis essentially shows that exploration in action space delivers a regret
bound that is independent of parameter space dimension b, while the regret of the exploration
in parameter space algorithm will have explicit polynomial dependency on feature dimension b.
Converting the regret bounds to sample complexity bounds, we have that for any ε ∈ (0, 1), to

achieve ε-average regret, Alg. 4 needs O(b
2

ε4
) many rounds, while Alg. 5 requires O(1/ε4) many

rounds.

Note that in general if we have a multivariate regression problem, i.e., a ∈ Rp, regret of Algo-
rithm 5 will depend on

√
p as well. But from our extreme case with p = 1, we clearly demonstrate

the sharp advantage of exploration in action space: when the action space’s dimension is smaller
than the dimension of parameter space, we should prefer the strategy of exploration in action
space.

3.4 Reinforcement Learning

In this section, we study exploration in parameter space versus exploration in action space for
multi-step control problem of model-free policy search in RL. As explained in Section 3.2, we are
interested in rates of convergence to a stationary point of J(θ).

3.4.1 Exploration in Parameter Space

The objective defined in Section 3.2.1 can be optimized directly over the space of parameters Rd.
Since we do not use first-order (or gradient) information about the objective, this is equivalent to
derivative-free (or zeroth-order) optimization with noisy function evaluations. More specifically,
for a parameter vector θ, we can execute the corresponding policy π(θ, ·) in the environment,
to obtain a noisy estimate of J(θ). This noisy function evaluation can be used to construct a
gradient estimate and an iterative stochastic gradient descent approach can be used to optimize
the objective. An algorithm that closely follows the ones proposed in [ADX10; MGR18] and
optimizes over the space of parameters is shown in Algorithm 6. Since we are working in episodic
RL setting, we can use a two-point estimate to form a gradient estimation (Line 7 & 8 in Alg. 6),
which in general will reduce the variance of gradient estimation [ADX10], compared to one-point
estimates. We will analyze the finite rate of convergence of Algorithm 6 to a stationary point

Algorithm 6 Policy Search in Parameter Space

1: Input: Learning rate α ∈ R+, standard deviation of exploration noise δ ∈ R
2: Initialize parameters θ1 ∈ Rd
3: for i = 1 to T do
4: Sample u ∼ Sd , a d-dimensional unit sphere
5: Construct parameters θi + δu, θi − δu
6: Execute policies π(θi + δu, ·), π(θi − δu, ·)
7: Obtain noisy estimates of the objective J+

i = J(θi + δu) + η+
i and J−i = J(θi − δu) + η−i

where η+
i , η

−
i are zero mean random i.i.d noise

8: Compute gradient estimate gi =
d(J+

i −J
−
i)

2δ u
9: Update θi+1 = θi − αgi

of the non-convex objective J(θ). First, we will lay out the assumptions and then present the

20

convergence analysis.

Assumptions and Analysis To analyze convergence to stationary point of a nonconvex
objective, we make several assumptions about the objective. Firstly, we assume that J(θ)
is differentiable with respect to θ over the entire domain. We also assume that J(θ) is G-
lipschitz and L-smooth, i.e. for all θ1, θ2 ∈ Rd, we have |J(θ1) − J(θ2)| ≤ G‖θ1 − θ2‖ and
‖∇θJ(θ1)−∇θJ(θ2)‖ ≤ L‖θ1 − θ2‖. Note that these assumptions are similar to the assumptions
made in other zeroth-order analysis works, [FKM05; ADX10; Duc+15; Sha13; GL13; NS17].

Our analysis is along the lines of works like [GL13; NS17] that also analyze the convergence
to stationary points in zeroth order non-convex optimization. The general strategy is to first
construct a smoothed version of the objective J(θ), denoted as Ĵ(θ) = Ev∼Bd [J(θ + δv)], where
Bd is the d-dimensional unit ball. We can then show that Algorithm 6 is essentially running SGD
on the objective function Ĵ(θ), which allows us to apply standard SGD analysis on Ĵ(θ). Lastly
we link the stationary point of the smoothed objective Ĵ(θ) to that of the objective J(θ) using
the assumptions on J(θ).

Theorem 3.4.1. Consider running Algorithm 6 for T steps where the true objective J(θ) satisfies
the assumptions stated above. Then we have,

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤ O(Q 1
2dT

−1
2 +Q 1

3d
2
3T
−1
3 σ) (3.5)

where J(θ) ≤ Q for all θ ∈ Θ and σ2 is the variance of the random noise η in Algorithm 6.

The proof for the above theorem can be found in Appendix 9.1.2.

The above theorem gives us a convergence rate to a stationary point of policy search in
parameter space. The role of variance of i.i.d noise in the noisy evaluations of the true objective is
very important. Consider the case where there is little stochasticity in the environment dynamics,
i.e. σ → 0, then the first term in Equation 3.5 becomes dominant and we only need at mostO(d

2Q
ε2

)
samples to reach a point θ where E‖∇θJ(θ)‖22 ≤ ε. However, if there is a lot of stochasticity in the

environment dynamics then the second term is dominant and we need at most O(d
2Qσ3

ε3
) samples.

It is interesting to observe the direct impact that the stochasticity of environment dynamics has
on convergence rate of policy search, which is also experimentally demonstrated in Sec. 3.5.2.
Note that the convergence rate has no dependency on horizon length H because of the regularity
assumption we used on total reward: J is always bounded by a constant Q that is independent
of H. However, as we will see later, even under the regularity assumption convergence rate of
action space exploration methods have an explicit dependence on H which will prove to be the
primary reason why black-box parameter space policy search methods in [MGR18] have been so
effective when compared to action space methods.

3.4.2 Exploration in Action Space

Another way to optimize the objective defined in Section 3.2.1 is to optimize over the space of
actions A. From [Sil+14], we know that for J(θ) = Es∼µ[V 0

πθ
(s)] we can express the gradient as

∇θJ(θ) =
H−1∑
t=0

Est∼dtπθ
[
∇θπ(θ, st)∇aQtπθ(st, π(θ, st))

]
(3.6)

21

Observe that the first term in the above gradient ∇θπ(θ, s) is the Jacobian of the policy, the local
linear relationship between a small change in policy parameters θ and a small change in its output,
i.e., actions. The second term ∇aQ(s, a) is actually the improvement direction at state action
pair (s, a), i.e., conditioned on state s, if we move action a an infinitesimally small step along the
negative gradient −∇aQ(s, a), we decrease the cost-to-go Q(s, a). Eqn 3.6 then leverages policy’s
Jacobian to transfer the improvement direction in action space to an improvement direction in
parameter space.

We can compute Jacobian ∇θπ(θ, s) exactly as we have knowledge of the policy function,
i.e, we can leverage the first-order information of the parameterized policy. The second term
∇aQtπθ(s, π(θ, st)), however, is unknown as it depends on the dynamics and cost functions and
needs to be estimated by interacting with the environment. We could employ a similar algorithm
as Algorithm 6, shown in Algorithm 7, to obtain an estimate of the gradient ∇aQtπθ(s, π(θ, st)),

i.e., a zeroth order estimation of ∇aQtπθ , computed as pQ̃i
δ u, where Q̃i is an unbiased estimate of

Qtπθi
(st, π(θi, st) + δu), with u ∼ Sp (Line 7 & 9 in Alg. 7).

Another important difference from Algorithm 6 is the fact that we use a one-point estimate
for the gradient gi in Algorithm 7. We cannot employ the idea of two-point estimate in random
exploration in action space to reduce the variance of the estimate of ∇aQtπθ(st, a). This is due
to the fact that environment is stochastic, and we cannot guarantee that we will reach the same
state st at any two independent roll-ins with πθ at time step t. Similar to Section 3.4.1, we will

Algorithm 7 Policy Search in Action Space

1: Input: Learning rate α ∈ R+, standard deviation of exploration noise δ ∈ R, Horizon length
H, Initial state distribution µ

2: Initialize parameters θ1 ∈ Rd
3: for i = 1 to T do
4: Sample u ∼ Sp , a p-dimensional unit sphere
5: Sample uniformly t ∈ {0, · · · , H − 1}
6: Execute policy π(θi, ·) until t− 1 steps
7: Execute perturbed action at = π(θi, st)+δu at timestep t and continue with policy π(θi, ·)

until timestep H − 1 to obtain an estimate Q̃i = Qtπθi
(st, π(θi, st) + δu) + η̃i where η̃i is zero

mean random noise
8: Compute policy Jacobian Ψi = ∇θπ(θi, st)

9: Compute gradient estimate gi = HΨi
pQ̃i
δ u

10: Update θi+1 = θi − αgi

analyze the rate of convergence of Algorithm 7 to a stationary point of the objective J(θ). The
following section will lay out the assumptions and present the convergence analysis.

Assumptions and Analysis The assumptions for policy search in action space are similar to
the assumptions in Section 3.4.1. We assume that J(θ) is differentiable with respect to θ over
the entire domain. We also assume that J(θ) is G-lipschitz and L-smooth. In addition to these
assumptions, we will assume that the policy function π(θ, s) is K-lipschitz in θ and the state-
action value function Qtπθ(s, a) is W -lipschitz and U -smooth in a. Finally, we assume that the
state-action value function Q(s, a) is differentiable with respect to a over the entire domain. Note
that the Lipschitz assumptions above on J(θ), Qtπθ(s, a), and π(θ, s) are also used in the analysis

22

of Deterministic policy gradient [Sil+14]. We need extra smoothness assumption to study the
convergence of our algorithms.

Note that the gradient estimate gi used in Algorithm 7 is a biased estimate of ∇θJ(θ). We
can show this by considering

Ei[gi] = EtEst∼dtπθi

[
H∇θπ(θi, st)Eu∼Sp

[
pQ̃i
δ
u

]]

where Ei denotes expectation with respect to the randomness at iteration i. From [FKM05], we

have that E[pQ̃iδ u] = ∇aEv∼Bp [Qtπθi (st, π(θi, st) + δv)] so we can rewrite the above equation as

E[gi] =
H−1∑
t=0

Est∼dtπθi
Ev∼Bp

[
∇θπ(θi, st)∇aQtπθi (st, π(θi, st) + δv)

]
Comparing the above expression with equation 3.6, we can see that gi is not an unbiased

estimate of the gradient ∇θJ(θ). We can also explicitly upper bound the variance of gi by
Ei‖gi‖22. Note that in the limit when δ → 0, gi becomes an unbiased estimate of ∇θJ(θ), but the
variance will approach to infinity. In our analysis, we explicitly tune δ to balance the bias and
variance.

Theorem 3.4.2. Consider running Algorithm 7 for T steps where the objective J(θ) satisfies the
assumptions stated above. Then, we have

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤ O(T−
1
4Hp

1
2 (Q3 + σ2Q)

1
4) (3.7)

where J(θ) ≤ Q for all θ ∈ Θ and σ2 is the variance of the random noise η̃ in Algorithm 7.

The proof for the above theorem can be found in Appendix 9.1.3.

The above theorem gives us a convergence rate to a stationary point of J(θ) for policy search in
action space. This means that to reach a point θ where E‖∇θJ(θ)‖22 ≤ ε, policy search in action

space needs at most O
(
p2H4

ε4
(Q3 + σ2Q)

)
samples. Interestingly, the convergence rate has a

dependence on the horizon length H, unlike policy search in parameter space. Also, observe
that the convergence rate has no dependence on the parameter dimensionality d as we have
complete knowledge of the Jacobian of policy, and we have a dependence on stochasticity of the
environment σ that slows down the convergence as the stochasticity increases, similar to policy
search in parameter space.

3.5 Experiments

Given the analysis presented in the previous sections, we test the convergence properties of
parameter and action space policy search approaches across several experiments: Contextual
Bandit with rich observations, Linear Regression, RL benchmark tasks and Linear Quadratic
Regulator (LQR). We use Augmented Random Search (ARS), from [MGR18], as the policy search
in parameter space method in our experiments as it has been empirically shown to be effective
in RL tasks. For policy search in action space, we use either REINFORCE [Wil92], or ExAct
(Exploration in Action Space), the method described by Algorithm 7. In all the plots shown,

23

0 200000 400000 600000 800000 1000000
Number of samples

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

MNIST Experiment

ars
reinforce
sgd

Figure 3.1: Mean test accuracy with standard error for different approaches against number of
samples

solid lines represent the mean estimate over 10 random seeds and shaded regions correspond to
±1 standard error. The code for all our experiments can be found here12.

3.5.1 One-Step Control

In these sets of experiments, we test the convergence rate of policy search methods for one time-
step prediction. The objective is to minimize the instantaneous cost incurred. The motivation
behind such experiments is that we want to understand the dependence of different policy search
methods on parametric dimensionality d without the effect of horizon length H.

MNIST as a Contextual Bandit Our first set of experiments is the MNIST digit recognition
task [LeC+98]. To formulate the task in an RL framework, we consider a sequential decision
making problem where at each time-step the agent is given the features of the image and needs
to predict one of ten actions (corresponding to digits). A reward of +1 is given for predicting the
correct digit, and a reward of −1 for an incorrect prediction. With this reduction, the problem is
essentially a Contextual Bandit Problem [Aga+14]. We use a standard LeNet-style convolutional
architecture, [LeC+98], with d = 21840 trainable parameters. Figure 3.1 shows the learning
curves for SGD under standard full-information supervised learning setting with cross entropy
loss, REINFORCE and ARS. We can observe that in this setting where the parameter space
dimensionality d significantly exceeds the action space dimensionality p = 1, policy search in
action space outperforms parameter space methods.

Linear Regression with Partial Information These set of experiments are designed to un-
derstand how the sample complexity of different policy search methods vary as the parametric
complexity is varied. More specifically, from our analysis in Section 3.3, we know that sample
complexity of parameter space methods have a dependence on d, the parametric complexity,
whereas action space methods have no dependence on d. We test this hypothesis in this experi-
ment using artificial data with varying input dimensionality and output scalar values. Figure 9.3

1https://github.com/LAIRLAB/contrasting_exploration_rl
2https://github.com/LAIRLAB/ARS-experiments

24

https://github.com/LAIRLAB/contrasting_exploration_rl
https://github.com/LAIRLAB/ARS-experiments

102 103 104 105

Number of samples

0

10

20

30

40

50

60

Te
st

 sq
ua

re
d

lo
ss

Linear regression with dimensionality 10
ars
reinforce
sgd
n_reinforce
newton

102 103 104 105

Number of samples

0

5

10

15

20

25

30

Te
st

 sq
ua

re
d

lo
ss

Linear regression with dimensionality 100
ars
reinforce
sgd
n_reinforce
newton

103 104 105

Number of samples

0

5

10

15

20

25

Te
st

 sq
ua

re
d

lo
ss

Linear regression with dimensionality 1000
ars
reinforce
sgd

Figure 3.2: Linear Regression Experiments with varying input dimensionality

2 4 6 8 10 12 14
Horizon Length H

0

2

4

6

8

10

12

M
ea

n
Re

tu
rn

Plot of Mean Return vs Horizon Length H
 for Swimmer-v2

ARS
ExAct

2 4 6 8 10 12 14
Horizon Length H

0

1

2

3

4

5

6

7

M
ea

n
Re

tu
rn

Plot of Mean Return vs Horizon Length H
 for HalfCheetah-v2

ARS
ExAct

10 4 10 3 10 2 10 1

Standard deviation of the noise in LQR dynamics
30

40

50

60

70

80

90

100

Nu
m

be
r o

f s
am

pl
es

 (m
ul

tip
le

s o
f 1

04)

Plot of number of samples vs std dev
of noise in LQR dynamics

ARS
ExAct

Figure 3.3: Multi-step Control. The left and middle figures show performance of different methods
as horizon length varies. The right figure shows number of samples needed to reach close to a
stationary point as noise in dynamics varies

shows the learning curves for standard full-information supervised learning approaches with full
access to the square loss (SGD & Newton), REINFORCE, natural REINFORCE [Kak02], and
ARS as we increase the input dimensionality, and hence parametric dimensionality d. Note that
we have not included natural REINFORCE and Newton method in Figure 9.3 (right) as extensive
hyperparameter search for these methods is computationally expensive in such high dimension-
ality settings. The learning curves in Figure 9.3 match our expectations, and show that action
space policy search methods do not degrade as parametric dimensionality increases whereas pa-
rameter space methods do. Moreover, action space methods lie between the curves of supervised
learning and parameter space methods as they take advantage of the Jacobian of the policy and
learn more quickly than parameter space methods.

3.5.2 Multi-Step Control

The above experiments provide insights on the dependence of policy search methods on parametric
dimensionality d. We now shift our focus on to the dependence on horizon length H. In this
set of experiments, we extend the time horizon and test the convergence rate of policy search
methods for multi-step control. The objective is to minimize the sum of costs incurred over a
horizon H, i.e. J(θ) = E[

∑T
t=1 c(st, at)]. According to our analysis, we expect action space policy

search methods to have a dependence on the horizon length H.

We test ARS and ExAct on two popular continuous control simulated benchmark tasks in
OpenAI gym [Bro+16a]: Swimmer and HalfCheetah. We chose these two environments as they
allow you to vary the horizon length H without terminating the task early. For both tasks, we
use linear policies as they have been shown to be very effective in [MGR18; Raj+17]. Swimmer

25

has an observation space dimensionality of d = 8 and a continuous action space of dimensionality
p = 2. Similarly, for HalfCheetah d = 17 and p = 6. Figure 3.3 (left and middle) show the
performance of both approaches in terms of the mean return J(θ) (expected sum of rewards)
they obtain as the horizon length H varies. Note that both approaches are given access to the
same number of samples 104×H from the environments for each horizon length H. In the regime
of short horizon lengths, action space methods are better than parameter space methods as they
do not have a dependence on parametric complexity d. However, as the horizon length increases,
parameter space methods start outperforming action space methods handily as they do not have
an explicit dependence on the horizon length, as pointed out by our analysis. We have observed
the same trend of parameter space methods handily outperforming action space methods as far
as H = 200 and expect this trend to continue beyond. This empirical insight combined with our
analysis presented in Sections 3.4.1, 3.4.2 explains why ARS, a simple parameter space search
method, outperformed state-of-the-art actor critic action space search methods in [MGR18] on
OpenAI gym benchmarks where the horizon length H is typically as high as 1000.

Effect of environment stochasticity In this final set of experiments, we set out to understand
the effect of stochasticity in environment dynamics on the performance of policy search methods.
As our analysis in Sections 3.4.1 and 3.4.2 points out, the stochasticity of the environment plays
an important role in controlling the variance of our gradient estimates in zeroth order optimization
procedures. To empirically observe this, we use a stochastic LQR environment where we have
access to the true cost function c and hence, can compute the gradient ∇θJ(θ) exactly. Given
access to such information, we vary the standard deviation σ of the noise in LQR dynamics and
observe the number of samples needed for ARS to reach θ such that ‖∇θJ(θ)‖22 ≤ 0.05. Figure 3.3
(right) presents the number of samples needed to reach close to a stationary point of J(θ) as the
standard deviation of noise in LQR dynamics varies. Note that we limit the maximum number
of samples to 106 for each run. The results match our expectations from the analysis, where we
observed that as the stochasticity of the environment increases, convergence rate of policy search
methods slows down.

3.6 Conclusion

Parameter space exploration via black-box optimization methods have often been shown to out-
perform sophisticated action space exploration approaches for the reinforcement learning problem.
Our work highlights the major difference between parameter and action space exploration meth-
ods: the latter leverages Jacobian of the parameterized policy. This allows sample complexity of
action space exploration methods to be independent of parameter space dimensionality and only
dependent on the dimensionality of action space and horizon length. For domains where the ac-
tion space dimensionality and horizon length are small and the dimensionality of parameter space
is large, we conclude that exploration in action space should be preferred. On the other hand,
for long horizon control problems with low dimensional policy parameterization, exploration in
parameter space will outperform exploration in action space.

26

Chapter 4
Planning and Execution using Inaccurate
Models

For example, if in a car our current
policy drives a maneuver too far to the
left, . . . even a very poor model of the car
can then be used to tell us that the change
we should make is to turn the steering
wheel clockwise (rather than
anti-clockwise) to correct for this error.

Pieter Abbeel, Morgan Quigley, Andrew
Ng (2006)

This chapter presents our first algorithmic contribution in this thesis. The algorithm presented
is in the spirit of this thesis which advocates using online experience to adapt the behavior of
the planner rather than updating the dynamics of the model. The algorithm perfectly captures
the intuition that figuring out something is wrong is much easier than knowing how to fix it.
While the idea behind the proposed algorithm is quite simple, the guarantees provided are non-
trivial and it works very well in practice. This algorithm is the first approach in literature to
interleave planning and execution using inaccurate dynamical model, with provable guarantees on
completing the task without requiring any updates to the dynamics of the model. This chapter
is adapted from our original paper [Vem+20].

4.1 Introduction

Modern robotic planning approaches involve use of models that tend to be sophisticated and
complex. These models are used to simulate the dynamics of the real world and foresee the
outcomes of actions executed. From using fast analytical solvers to generate motion primitives
on-the-fly [Coh+11] to simulators that do reasoning based on physics, and optimization to resolve
contacts [TET12], these models are getting better at modeling the dynamics of the real world.
However, real world robotic tasks are rife with situations that cannot be predicted and therefore,
modeled before execution. Thus, we need a planning approach that can use potentially inaccurate
models and still complete the task.

27

Goal

Start

Figure 4.1: (left) PR2 executing a pick-and-place task with a heavy object that is modeled as
light, resulting in hitting joint torque limits during execution. (right) Mobile robot navigating
a gridworld with icy states, where the robot slips, that are not modeled as icy resulting in
discrepancy in dynamics.

For example, consider the task depicted in Figure 5.1 (left) where a robotic arm needs to pick
an object and place it at a goal location. Without knowledge of the mass of the object, the model
can be inaccurate in simulating the dynamics. If the object is modeled as light, the planned path
would pick it to a certain height before placing it at the goal location. However, if the object is
heavy in the real world, like in Figure 5.1 (left), this plan cannot be executed as the joint torque
limits are reached and the arm cannot move higher. Thus, by using the inaccurate model for
planning, the arm is stuck and cannot reach the goal. Figure 5.1 (right) presents another simple
scenario where a mobile robot is navigating a gridworld containing icy states, where the robot
slips, i.e. if the robot tries to go right or left in an icy state, it will move two cells rather than one
cell in that direction. However, the model used for planning does not model the icy states and
hence, cannot simulate the real world dynamics correctly. This can lead to highly suboptimal
paths or sometimes even inability to reach the goal, when using such a model for planning.

A typical solution to this problem is to update the dynamics of the model and replan [Sut91].
However, this is often impossible in real world planning problems where we use models that
are complex and in some cases obtained from expensive computation that is done offline before
execution [Hau+06]. The dynamics of these models cannot be changed online arbitrarily without
deteriorating their simulation capabilities in other scenarios and sacrificing real-time execution.
In addition, this solution might require us to have the knowledge of what part of the model
dynamics is inaccurate and how to correct it. Going back to the pick-and-place example in
Figure 5.1, to update the model we need to first identify that the modeled mass is incorrect and
then estimate the true mass to correct the dynamics of the model. Both of these steps require
specialized non-trivial implementations. Finally, in the case of models that can be updated online
efficiently, it might still not be possible to model the true dynamics without an unreasonably large
number of online executions because the true dynamics are often very complex, e.g. modeling
cooperative navigation dynamics in human crowds [VMO17]. The above aspects make the solution
of updating model dynamics online undesirable in real world robotic tasks, where we are interested

28

in completing the task and not in modeling the dynamics accurately.

In this work, we present an alternative approach Cmax for interleaving planning and execution
that does not require updating the dynamics of the model. Instead during execution, whenever we
discover an action where the dynamics differ between the real world and the model, we update the
cost function to penalize executing such state-action pairs in the future. This biases the planner
to replan paths that do not consist of such state-action pairs, and thereby avoid regions of state-
action space where the dynamics are known to differ. Based on this idea, we present algorithms
for both small state spaces, where we can do exact planning, and large state spaces, including
continuous state spaces, where we resort to function approximation to update the cost function
and to maintain cost-to-go estimates. Our framework Cmax comes with provable guarantees on
reaching the goal, without any resets, under specific assumptions on the model. The proposed
algorithms are tested on a range of tasks including simulated 4D planar pushing as well as physical
robot 3D pick-and-place task where the mass of the object is incorrectly modeled, and 7D arm
planning tasks when one of the joints is not operational, leading to discrepancy in dynamics.

4.2 Preliminaries

We are interested in the deterministic shortest path problem represented by the tuple M =
(S,A,G, f, c) where S denotes the state space, A denotes the action space, G ⊆ S is the non-empty
set of goal states we are interested in reaching, f : S×A→ S denotes the deterministic dynamics
governing the transition to next state given current state and action, and c : S × A → [0, 1] is
the cost function. For the purposes of this work, we will focus on small discrete action spaces,
bounded costs lying between 0 and 11, and a cost-free termination goal state i.e. for all g ∈ G,
we have c(g, a) = 0 and f(g, a) = g for all actions a ∈ A. The objective of the shortest path
problem is to find the least-cost path from any given start state s0 ∈ S to any goal state g ∈ G
in M . We assume that there exists at least one path from each state s ∈ S to one of the
goal states g ∈ G in M , and that the cost of any transition starting from a non-goal state is
positive i.e. c(s, a) > 0 for all s ∈ S \ G, a ∈ A. These assumptions are typical for analysis in
deterministic shortest path problems [Ber05]. We use V (s) to denote the cost-to-go estimate of
any state s ∈ S and V ∗(s) to denote the optimal cost-to-go. From dynamic programming literature
[Ber05], we know that the optimal cost-to-go satisfies the Bellman optimality condition V ∗(s) =
mina∈A[c(s, a)+V ∗(f(s, a))]. A cost-to-go estimate V is called admissible if it underestimates the
optimal cost-to-go V (s) ≤ V ∗(s) for all s ∈ S, and is called consistent if it satisfies the condition
that for any state-action pair (s, a), s /∈ G, V (s) ≤ c(s, a)+V (f(s, a)), and V (g) = 0 for all g ∈ G.

In this work, we assume that the exact dynamics are initially unknown to the robot, and
can only be discovered through executions. Thus, instead of offline planning methods, we need
online methods that interleave planning with action execution. Specifically, we focus on the online
real-time planning setting where the robot does not have access to resets, and the robot has to
interleave planning and execution to ensure real-time operation. This is similar to the classical
real-time search setting considered by works like LRTA* [Kor90], RTAA* [KL06], RTDP [BBS95]
and several others. An important aspect of these approaches is that the robot can only perform
a fixed amount of computation for planning, independent of the size of state space, before it has
to execute an action.

1Any bounded non-negative cost can be scaled to fit this assumption

29

4.3 Problem Setup

Consider the problem of a robot acting to find a least-cost path to a goal in an environment
represented by the tuple M = (S,A,G, f, c) with unknown deterministic dynamics f and known
cost function c. The robot gathers knowledge of the dynamics over a single trajectory in the
environment, and does not have access to any resets, ruling out any episodic approach. This is
an extremely challenging setting as the robot has to reason about whether to exploit its current
knowledge of the dynamics to act near-optimally or to explore to gain more knowledge of the
dynamics, possibly at the expense of suboptimality.

We assume that the agent has access to an approximate model, M̂ = (S,A,G, f̂, c), that it
can use to simulate the outcome of its actions and use for planning. In our motivating gridworld
example (Figure 5.1 right), this model represents a grid with no icy states, so the dynamics f̂
moves the robot to the next cell based on the executed action without any slip. However, the real
environment contains icy states resulting in dynamics f that differ on state-action pairs where
the state is icy. For the remainder of this paper, we will refer to such state-action pairs where
f and f̂ differ as “incorrect” state-action pairs, and use the notation X ⊆ S × A to denote the
set of “incorrect” state-action pairs, i.e. f(s, a) 6= f̂(s, a) for all (s, a) ∈ X . The objective is for
the robot to reach a goal state from a given start state, despite using an inaccurate model for
planning, while minimizing the cost incurred and ensuring real-time execution.

4.4 Approach

Existing planning and learning approaches try to learn a very good approximation of M from
scratch through online executions [KS02; BT02; JS07; DFR15], or update the dynamics of model
M̂ so that it approximates M well [AQN06a; Jia18; RKK18]. In this work, we propose an
approach Cmax that uses the inaccurate model M̂ online without updating its dynamics, and
is provably guaranteed to complete the task. In a nutshell, instead of learning a new dynamics
model from scratch or updating the dynamics of existing model, Cmax maintains a running
estimate of the set Xt consisting of all state-action pairs that have been executed and have been
discovered to be incorrect until timestep t. Using the set Xt, we update the cost function to bias
the planner to plan future paths that avoid state-action pairs that are known to be incorrect. It
is important to note that the challenge of dealing with exploration-exploitation dilemma online
still exists, as we do not know the set of state-action pairs X where the dynamics differ ahead of
online execution. A similar approach was proposed in [Jia18] for the episodic setting where the
robot had access to resets, and for small state spaces where we could perform full state space
planning. Cmax extends it to the significantly more challenging online real-time setting and we
present a practical algorithm for large state spaces.

4.4.1 Penalized Model

We formalize our approach as follows: Given a model M̂ and a set X ⊆ S × A consisting of
state-action pairs that have been discovered to be incorrect so far, define the penalized model
M̃X as:

Definition 4.4.1 (Penalized Model). The penalized model M̃X = (S,A,G, f̂, c̃X) has the same
state space, action space, set of goals, and dynamics as M̂ . The cost function c̃X though is defined

30

Algorithm 8 Limited-Expansion Search based on RTAA*[KL06]

1: function SEARCH(s, M̃X , V,K)
2: Initialize g(s)← 0
3: Initialize min-priority open list O, and closed list C
4: Add s to open list O with priority g(s) + V (s)
5: for i = 1, 2, · · · ,K do
6: Pop si from open list O
7: If si ∈ G, then sbest ← si and move to Line 19
8: for a ∈ A do . Expanding state si
9: Get successor s′ = f̂(si, a)

10: If s′ ∈ C, continue to next action
11: if s′ ∈ O and g(s′) > g(si) + c̃X (si, a) then
12: Update g(s′)← g(si) + c̃X (si, a)
13: Reorder open list O
14: else if s′ /∈ O then
15: Set g(s′)← g(si) + c̃X (si, a)
16: Add s′ to O with priority g(s′) + V (s′)

17: Add si to the closed list C

18: Pop sbest from open list O
19: for s′ ∈ C do
20: Update V (s′)← g(sbest) + V (sbest)− g(s′)

21: Backtrack from sbest to s, and set abest as the first action on path from s to sbest
return abest

as c̃X (s, a) = |S| if (s, a) ∈ X , else c̃X (s, a) = c(s, a).2

Intuitively, the penalized model M̃X has a very high cost for any transition where the dynamics
differ, i.e. (s, a) ∈ X , and the same cost as the model M̂ otherwise. More specifically, the cost
is inflated to the size of the statespace, which is the maximum cost of a path that visits all
states3 (remember, that our cost is normalized to lie within 0 and 1.) This biases the planner
to “explore” all other state-action pairs that are not yet known to be incorrect before it plans a
path through an incorrect state-action pair. In the next section, we will describe how we use the
penalized model M̃X for real-time planning.

4.4.2 Limited-Expansion Search for Planning

During online execution, the robot has to constantly plan the next action to execute from its
current state in real-time. This forces the robot to use a fixed amount of computation for planning
before it has to execute the best action found so far. In this work, we use a real-time search method
that is adapted from RTAA* proposed by [KL06].

The planner is summarized in Algorithm 8. At any timestep t, given the current penalized
model M̃Xt and the current state st, the planner constructs a lookahead search tree using at most
K state expansions. We obtain the successors of any expanded state and the cost of any state-
action pair using the penalized model M̃Xt . After expanding K states, it finds the best state sbest

2This is similar to the notion of penalized MDP, introduced in [Jia18]
3Hence, the name Cmax for our approach

31

Algorithm 9 Cmax – Small State Spaces

1: Initialize M̂1 ← M̂ , X1 ← {}, start state s1 ∈ S, cost-to-go estimates V , number of expansions
K, t← 1

2: while st /∈ G do
3: Get at = SEARCH(st, M̂t, V,K)
4: Execute at in environment M to get st+1 = f(st, at)
5: if st+1 6= f̂(st, at) then
6: Add (st, at) to the set : Xt+1 ← Xt ∪ {(st, at)}
7: Update the penalized model : M̂t+1 ← M̃Xt+1

8: else
9: Xt+1 ← Xt, M̂t+1 ← M̂t

10: t← t+ 1

among the leaves of the search tree that has the least sum of cost-to-come from st and cost-to-go
to a goal state (line 18 in Algorithm 8). The best action to execute in the current state st is chosen
to be the first action on the path from st to sbest in the search tree and the cost-to-go estimates
of all expanded states are updated as: V (sexpanded) = g(sbest) +V (sbest)− g(sexpanded), where g(s)
is the cost-to-come from st for any state s in the search tree. The amount of computation used to
compute the best action for the current state is bounded as a factor of the number of expansions
K in the search tree. Thus, we can bound the planning time and ensure real-time operation for
our robot.

4.4.3 Warm Up: Small State Spaces

In this section, we will present an algorithm that is applicable for small discrete state spaces where
it is feasible to maintain cost-to-go estimates for all states s ∈ S using a tabular representation,
and we can maintain a running set Xt containing all the discovered incorrect state-action pairs
so far, without resorting to function approximation. The algorithm4 is shown in Algorithm 12.
Intuitively, Algorithm 12 maintains a running set of incorrect state-action pairs Xt, updates the
set whenever it encounters an incorrect state-action pair, and recomputes the penalized model
M̃Xt . Crucially, the algorithm never updates the dynamics of the model M̂ , and only updates
the cost function according to Definition 4.4.1. In order to prove completeness, we assume the
following:

Assumption 4.4.1. Given a penalized model M̃Xt and the current state st at any timestep t,
there always exists at least one path from st to a goal state that does not contain any state-action
pairs (s, a) that are known to be incorrect, i.e. (s, a) ∈ Xt. 5

A Closer Look at the Assumption Observe that this assumption is on both the quality of
the initial model M̂ and the operation of our algorithm. We would like to emphasize that this
assumption is less restrictive than the following assumption:

Assumption 4.4.2. For any state s ∈ S, there always exists at least one path from s to a goal
state that does not contain any incorrect state-action pairs, i.e. (s, a) ∈ X ∗.

4A similar algorithm in the episodic setting with full state space planning is presented in [Jia18]
5This assumption is less restrictive than the assumption that there exists at least one path from the current

state to a goal that does not contain any state-action pairs (s, a) that are incorrect i.e. (s, a) ∈ X

32

Goal

Figure 4.2: A small icy gridworld where Assumption 4.4.1 is satisfied but Assumption 4.4.2 is
not satisfied.

It is easy to see that Assumption 4.4.2 implies Assumption 4.4.1 since for any timestep t,
Xt ⊆ X ∗. We will show that Assumption 4.4.1 does not imply Assumption 4.4.2 through an
example: Recall the motivating icy gridworld from Figure 5.1 and consider the small icy gridworld
shown in Figure 4.2 (right). Assumption 4.4.2 is clearly violated since there exists no path from
robot’s current state to the goal that does not contain any incorrect state-action pair. However,
Assumption 4.4.1 is not violated since the action of moving right in the robot’s current state is
not yet discovered to be incorrect. In fact, once it executes the move right action it immediately
reaches the goal state since the robot slips on ice and moves two cells to the right. Thus,
Assumption 4.4.1 does not imply Assumption 4.4.2.

Assumption 4.4.1 requires that there exists at least one path from the current state to a goal
state that does not contain any transition that is known to be incorrect. In other words, it should
hold for every time step t before the robot reaches the goal. Hence, it is an assumption on both
the quality of the approximate model and the execution trace (the states visted during execution)
of Cmax. This makes the assumption hard to verify prior to execution as it is dependent on the
operation of the algorithm under true dynamics.

We can also interpret this assumption as a variant of the optimistic model assumption that
is presented in Section 5.4.4 and is introduced in [Jia18]. Specifically, an optimistic model is
an approximate model M̂ whose optimal cost-to-go under its dynamics f̂ at every state s ∈
S underestimates teh optimal cost-to-go under true dynamics f . A popular example of the
optimistic model assumption is the free space assumption [Zel92] that is typically used in tasks
involving navigation in unknown environments, where we assume that any unknown region in
the map is free of obstacles. Assumption 4.4.1 can be interpreted as requiring that the model
M̂t remains optimistic in Algorithm 12 until the robot reaches the goal. Unfortunately, this
interpretation does not make the assumption easier to verify prior to execution as it still depends
on the execution trace of Cmax.

Under this assumption, we can show the following guarantee for Algorithm 12:

Theorem 4.4.1. Assume Assumption 4.4.1 holds then, if X denotes the set consisting of all
incorrect state-action pairs, and the initial cost-to-go estimates used are admissible and consistent,
then using Algorithm 12 the robot is guaranteed to reach a goal state in at most |S|2 timesteps.
Furthermore, if we allow for K = |S| expansions, then we can guarantee that the robot will reach
a goal state in at most |S|(|X |+ 1) timesteps.

Proof Sketch. From [KL06] Theorem 3 and Assumption 4.4.1, we have that using RTAA*, the
robot is guaranteed to reach a goal state. Combining this result with the |S|2 upper bound on the
number of timesteps it takes for LRTA* (which is equivalent to RTAA* with K = 1 expansion)
to reach the goal from [KS93], we have that using Algorithm 12 a robot is guaranteed to reach a
goal state in at most |S|2 timesteps.

33

To prove the second part, observe that when we do K = |S| expansions at any timestep
t in RTAA* and update the cost-to-go, we obtain the optimal cost-to-go V ∗ for the penalized
model M̃Xt . Once we obtain the optimal cost-to-go, there will be no further cost-to-go updates
in subsequent timesteps until we either discover an incorrect state-action pair or reach the goal.
Since the number of incorrect (s, a) pairs is |X | and the length of the longest path is bounded
above by |S|, using pigeon hole principle we have that the robot is guaranteed to reach the goal
in at most |S|(|X |+ 1) timesteps.

The above theorem establishes that using Algorithm 12, the robot is guaranteed to reach a
goal state under Assumption 4.4.1. In practice, we observe that the number of timesteps to reach
a goal has a smaller dependence on the size of state space than the worst-case bound, especially
if Algorithm 12 starts with cost-to-go estimates that are reasonably accurate for the initial model
M̂ .

4.4.4 Large State Spaces

In large state spaces, it is infeasible to maintain cost-to-go estimates for all states s ∈ S using a
tabular representation and maintain a running estimate of the set Xt, as both could be very large
in size. Thus, we will need to resort to function approximations for both cost-to-go estimates and
the set Xt.

We will assume existence of a fixed distance metric d : S × S → R+ ∪ {0}, and that S is
bounded under this metric. We relax the definition of X using the distance metric d as follows:
Define any state-action pair (s, a) ∈ X ξ to be ξ-incorrect if d(f(s, a), f̂(s, a)) > ξ where ξ ≥ 0.
We assume that there is an underlying path following controller that is used to execute our plan
and can deal with discrepancies smaller than ξ. Thus, we allow for small discrepancies in our
approximate model M̂ that can be resolved using a low-level controller.

Our algorithm for large state spaces is presented in Algorithm 13. The main idea of the
algorithm is to “cover” the set X ξ using hyperspheres in S × A. Since the action space A is a
discrete set, we maintain separate sets of hyperspheres for each action a ∈ A. Whenever the agent
encounters an incorrect state-action pair (s, a) ∈ X ξ, it places a hypersphere at s corresponding
to action a whose radius (as measured by the metric d) is given by δ > 0, a domain-dependent
constant. We inflate the cost of a state-action pair (s, a), according to Definition 4.4.1, if s lies
inside any hypersphere corresponding to action a. In practice, this is implemented by constructing
separate KD-Trees in state space S for each action a ∈ A to enable efficient lookup.

After executing the action and placing a hypersphere if a discrepancy in dynamics was ob-
served, the function approximation for cost-to-go is updated iteratively as follows (Line 15 to
Line 17): Sample a batch of states from the buffer of previously visited states with replacement,
construct a lookahead tree for each state in the batch (through parallel jobs) to obtain all states
on the closed list and their corresponding cost-to-go updates using Algorithm 8, and finally up-
date the parameters of the cost-to-go function approximator to minimize the mean squared loss
L(Vθ,X) = 1

2|X|
∑

(s,V (s))∈X(V (s)−Vθ(s))2 for all the expanded states through a gradient descent

step (Line 17).

Observe that, similar to Algorithm 12, we do not update the dynamics f̂ of the model, and
only update the cost function according to Definition 4.4.1. However, unlike Algorithm 12, we
do not explicitly maintain a set of incorrect state-action pairs but maintain it implictly through
hyperspheres. By using hyperspheres, we obtain local generalization and increase the cost of all
the state-action pairs inside a hypersphere. In addition, unlike Algorithm 12, we update cost-to-

34

Algorithm 10 Cmax – Large State Spaces

1: Initialize M̂1 ← M̂ , Cost-to-go function approximation Vθ1 , Set of hyperspheres X ξ1 ← {},
Start state s1, Number of planning updates N , Batch size B, Buffer D, Number of expansions
K, Learning rate η, t← 1, Radius of hypersphere δ, Discrepancy threshold ξ

2: while st /∈ G do
3: Get at ← SEARCH(st, M̂t, Vθt ,K)
4: Execute at in environment M to get st+1 ← f(st, at)
5: if d(st+1, f̂(st, at)) > ξ then

6: Add X ξt+1 ← X ξt ∪ {sphere(st, at, δ)}
7: else
8: X ξt+1 ← X ξt
9: Update M̂t+1 ← M̃X ξt+1

10: Add st to buffer D
11: Update Vθt+1 ← UPDATE(st, M̂t+1, Vθt ,D)
12: t← t+ 1

13: function UPDATE(s, M̂, Vθ,D)
14: for n = 1, · · · , N do
15: Sample batch of B states Sn from buffer D with replacement
16: Call SEARCH(si, M̂, Vθ,K) for each si ∈ Sn to get all states on closed list s′i and their

corresponding cost-to-go updates V (s′i) and construct the training set Xn = {(s′i, V (s′i))}
17: Update: θ ← θ − η∇θL(Vθ,Xn)

return Vθ

go estimates of not only the expanded states in the lookahead tree obtained from current state
st, but also from previously visited states. This ensures that the function approximation used for
maintaining cost-to-go estimates does not deteriorate for states that were previously visited, and
potentially help in generalization.

We can provide a guarantee on the completeness of Algorithm 13 by assuming the following:

Assumption 4.4.3. Given a penalized model M̃X ξt
and the current state st at any timestep t

during execution, there always exists at least one path from st to a goal state that is at least δ
distance away from any state-action pair (s, a) that is known to be ξ-incorrect, i.e. (s, a) ∈ X ξt .

The above assumption has two components: the first one relaxes Assumption 4.4.1 to accom-
modate the notion of ξ-incorrectness, and the second one states that, unlike Assumption 4.4.1,
there exists a path that not only does not contain any state-action pairs that are known to be
ξ-incorrect, but also that any state-action pair on the path is at least δ distance, as measured by
the metric d, away from any state-action pair that is known to be ξ-incorrect. The second com-
ponent makes this assumption stronger. However, it can lead to substantial speedups in the time
taken to reach a goal as we can place hyperspheres of radius δ to quickly “cover” the ξ-incorrect
set.

Algorithm 13 employs approximate planning by using a function approximator for cost-to-go
estimates and performing batch updates to fit the approximator. This is necessary as the state
space is large, and maintaining tabular cost-to-go estimates for each state is expensive in memory
and would take a large number of timesteps to update them in practice. However, for ease of
analysis, we will assume that we do exact updates and maintain tabular cost-to-go estimates like
Algorithm 12. Then, we can show the following guarantee:

35

Theorem 4.4.2. Assume Assumption 4.4.3 holds then, if X ξ denotes the set of all ξ-incorrect
state-action pairs, and the initial cost-to-go estimates are admissible and consistent, then using
Algorithm 13 with exact updates and tabular representation for cost-to-go estimates, the robot is
guaranteed to reach a goal state in at most |S|2 timesteps. Furthermore, if we allow for K = |S|
expansions, then we can guarantee that the robot will reach a goal state in at most |S|(C(δ) + 1)
timesteps, where C(δ) is the covering number of the set X ξ.

Proof Sketch. The proof of the first part of the theorem is very similar to the proof of Theo-
rem 4.4.1. It is crucial to notice that under Assumption 4.4.3, we will always have a path from
the current state to a goal that has no transition within a hypersphere. Thus, using RTAA*
guarantees we have that using Algorithm 13 a robot is guaranteed to reach a goal state in at
most |S|2 timesteps.

To prove the second part, we use a similar pigeon hole principle proof as Theorem 4.4.1.
However, since we “cover” the incorrect set X ξ with hyperspheres, the number of times we
update our heuristic to the optimal cost-to-go of the corresponding penalized model is equal to
the covering number C(δ) of the X ξ, i.e. the number of radius δ spheres whose union is a superset
of X ξ. Thus, with K = |S| expansions the robot is guaranteed to reach the goal in at most
|S|(C(δ) + 1) timesteps.

The above theorem states that, using Algorithm 13, the robot is guaranteed to reach a goal
state, if the initial cost-to-go estimates are admissible and consistent. The theorem also pro-
vides a stronger guarantee that the number of timesteps to the goal has a dependence on the
covering number, if we do |S| number of expansions at each timestep. Covering number C(δ)
of a set A is formally defined as the size of the set B of state-action pairs (s, a) such that
A ⊆ ⋃(s,a)∈B sphere(s, a, δ). Note that the covering number C(δ) is typically much smaller than

the size of the set X ξ. Although performing |S| expansions at each timestep is infeasible in large
state spaces with real-time constraints, it is useful to note that we achieve speedup from adding
hyperspheres of radius δ. Importantly, the efficiency of the Algorithm 13 degrades gracefully
with decreasing δ and reduces to the bound presented in Theorem 4.4.1, if only Assumption 4.4.1
holds. Similar to the worst-case bounds presented in Theorem 4.4.1, the number of timesteps it
takes for the robot to reach a goal state, in practice as shown in our experiments, has a much
smaller dependence on size of state space if we start with cost-to-go estimates that are reason-
ably accurate for the initial model M̂ , and use cost-to-go function approximation as we do in
Algorithm 13.

4.5 Experiments

We test the applicability and efficiency of our approach Cmax on a range of robotic tasks across
simulation and real-world experiments.6 In simulated experiments, we record the mean and
standard error for the number of timesteps taken by the robot to reach the goal emphasizing the
performance of Cmax. For physical robot experiments, we present real-time execution statistics
of Cmax. The video of our physical robot experiments can be found at https://youtu.be/

eQmAeWIhjO8.

6Code to reproduce simulated experiments can be found at https://github.com/vvanirudh/CMAX

36

https://youtu.be/eQmAeWIhjO8
https://youtu.be/eQmAeWIhjO8
https://github.com/vvanirudh/CMAX

Accurate Model Inaccurate Model
Steps % Success Steps % Success

Cmax 63± 22 90% 192± 40 80%

Q-Learning 34± 5 90% 441± 100 45%

Model NN 62± 26 90% 348± 82 15%

Model KNN 106± 34 95% 533± 118 50%

Plan with Accurate Model 63± 22 90% 364± 53 85%

Table 4.1: Results for the simulated 4D planar pushing task. First column corresponds to the case
when the environment has no obstacles, and the model is accurate. Second column corresponds
to when the environment has static obstacles. and model (with no obstacles) is inaccurate. Each
entry in the Steps subcolumn is obtained using 20 random start and goal locations, and we
present mean and standard error of number of timesteps it takes the robot to reach the goal
among successful trials. The % success subcolumn indicates percentage of successful trials where
the robot reached the goal in less than 1000 timesteps. The last row corresponds to using the
planner with an accurate model (the same as the environment.)

4.5.1 Simulated 4D Planar Pushing in the Presence of Obstacles

In this experiment, the task is for a robotic gripper to push a cube from a start location to a goal
location in the presence of static obstacles without any resets, as shown in Figure 4.3 (right).
This can be represented as a planning problem in 4D continuous state space S with any state
represented as the tuple s = (gx, gy, ox, oy) where (gx, gy) are the xy-coordinates of the gripper
and (ox, oy) are the xy-coordinates of the object. The model M̂ used for planning does not have
the static obstacles and the robot can only discover the state-action pairs that are affected due
to the obstacles through real world executions. The action space A is a discrete set of 4 actions
that move the gripper end-effector in the 4 cardinal directions by a fixed offset using an IK-based
controller. The cost of each transition is 1 when the object is not at the goal location, and 0
otherwise.

We compare Cmax with the following baselines: a model-free Q-learning approach [Mni+15]
that learns from online executions in environment and does not use the model M̂ , and a model
learning approach that uses limited-expansion search for planning but updates a learned residual
that compensates for the discrepancy in dynamics between the model and environment. The
model learning approach is very similar to previous works that learn residual dynamics models
and have been shown to work well in episodic settings [RKK18; HY15; Sav+17]. We chose
two function approximators for the learned residual dynamics to account for model learning
approaches that use global function approximators such as neural networks (NN) [Jan+19], and
local function approximators such as K-nearest neighbor regression (KNN) [NL08; JS07]. Finally,
we compare against a limited-expansion search planner that uses an accurate model with the
full knowledge about obstacles to understand the difficulty of the task. Specific details on the
architecture and baseline parameters can be found in Appendix 9.2.1.

For our implementation, we follow Algorithm 13 with euclidean distance metric, ξ = 0.01, and
δ = 0.02. These values are chosen to capture the discrepancies observed in the object and gripper
position when pushed into an obstacle, and the size of the obstacles. We use the same values for
the model learning KNN baseline to ensure a fair comparison. The results of our experiments
are presented in Table 4.1. We notice that all the approaches have almost the same performance

37

Steps % Success

Cmax 47± 6 100%

RTAA* 138± 65 30%

Figure 4.3: (left) Results for simulated 7D arm planning experiment comparing RTAA* and
Cmax. Each entry in the Steps column is obtained using 10 trials with random start configura-
tions and goal locations, and we present mean and standard error of number of timesteps it takes
the arm to reach the goal among successful trials. The % success column indicates percentage
of successful trials where the arm reached the goal in less than 300 timesteps.(right) 4D Planar
Pushing in the presence of obstacles. The task is to push the black box to the red goal using the
end-effector.

when both model and environment have no obstacles (first column). This validates that all the
baselines do well when the model is accurate. However, when the model is inaccurate (second
column), the performance varies across baselines. Q-learning performs decently well since it relies
on the model only for the initialized Q-values and not during online executions, but as the task
is now more difficult, it solves much fewer trials and is highly suboptimal. It is interesting to see
that model learning baselines do not do as well as one would expect. This can be attributed to
the number of online executions required to learn the correct residual, which can be prohibitively
large. Among the two model learning baselines, KNN works better since it requires fewer samples
to learn the residual, while NN requires large amounts of data. In contrast, Cmax does not seek
to learn the true dynamics and instead is more focused on reaching the goal quickly. When
compared with a planner that uses the accurate model with obstacles and solves 17 trials (last
row in Table 4.1), our approach solves 16 trials and achieves the lowest mean number of timesteps
to reach the goal among all baselines. We would like to note that the planner with accurate model
takes a larger number of timesteps because we used the same initial cost-to-go estimates as other
approaches. The initial cost-to-go estimates are more accurate for the model with no obstacles
than for the model with obstacles. Hence, it spends a larger number of timesteps updating cost-
to-go estimates. This experiment shows that by focusing on reaching the goal and not trying
to correct the model dynamics, Cmax performs the best and solves the most number of trials
among baselines.

4.5.2 3D Pick-and-Place with a Heavy Object

The task of this physical robot experiment (Figure 4.4) is to pick and place a heavy object using
a PR2 arm from a start pick location to a goal place location while avoiding an obstacle. This can
be represented as a planning problem in 3D discrete state space S where each state corresponds to
the 3D location of the end-effector. Since it is a relatively small state space, we use exact planning
updates without any function approximation following Algorithm 12 with K = 3 expansions. The
action space is a discrete set of 6 actions corresponding to a fixed offset movement in positive

38

Figure 4.4: Physical robot 3D pick-and-place experiment. The task is to pick the object (light -
wooden block, heavy - black dumbbell) and place it at the goal location (green) while avoiding
the obstacle (box). For the light object (first 3 images), the model dynamics are accurate and
the robot takes it on the optimal path that goes above the obstacle. For the heavy object (next
3 images), the model dynamics are inaccurate but using Cmax the robot discovers that there is
a discrepancy in dynamics when the object is lifted beyond a certain height (due to joint torque
limits), adds hyperspheres at that height to account for these transitions (red spheres in the last
image), and quickly finds an alternate path going behind the obstacle.

or negative direction along each dimension. The model M̂ used by planning does not model the
object as heavy and hence, does not capture the dynamics of the arm correctly when it holds the
heavy object. Specific details regarding the experiment can be found in Appendix 9.2.2.

We observe that if the object was not heavy, then the arm takes the object from the start
pick location to the goal place location on the optimal path which goes above the obstacle (first
3 images of Figure 4.4). However, when executed with a heavy object, the arm cannot lift the
object beyond a certain height as its joint torque limits are reached. At this point, the robot
notes the discrepancy in dynamics between the model M̂ and the real world, and inflates the
cost of any executed transition that tried to move the object higher. Subsequently, the robot
figures out an alternate path that does not require it to lift the object higher by taking the object
behind the obstacle to the goal place location (last 4 images of Figure 4.4). The robot takes 36
timesteps (25.8 seconds) to reach the goal with the heavy object, in comparison to 26 timesteps
(22.8 seconds) for the light object (see video). Thus, the robot using Cmax successfully completes
the task despite having a model with inaccurate dynamics.

4.5.3 7D Arm Planning with a Non-Operational Joint

The task of this physical robot experiment (Figure 4.5) is to move the PR2 arm with a non-
operational joint from a start configuration so that the end-effector reaches a goal location,
specified as a 3D region. We represent this as a planning problem in 7D discrete statespace S
where each dimension corresponds to a joint of the arm bounded by its joint limits. The action
space A is a discrete set of size 14 corresponding to moving each joint by a fixed offset in the
positive or negative direction. The model M̂ used for planning does not know that a joint is
non-operational and assumes that the arm can attain any configuration within the joint limits.
In the real world, if the robot tries to move the non-operational joint, the arm does not move.
Specific details regarding the experiment can be found in Appendix 9.2.3.

For the purpose of this experiment since the state space is very large, we follow Algorithm 13
with δ = 1, ξ = 1, and make the shoulder lift joint (marked by red cross and arrows in last image
of Figure 4.5) of PR2 non-operational. We use a kernel regressor with RBF kernel of length scale
γ = 10 for the cost-to-go function approximation. Figure 4.5 shows Cmax operating in the real
world to place an object at a desired location with a goal tolerance of 10 cm. When the shoulder
lift joint is operational, the robot finds a path quickly to the place location by using the joint

39

Figure 4.5: Physical robot 7D arm planning experiment. The task is to start from a fixed
configuration (shown in the first image) and move the arm so that the end-effector reaches the
object place location (green). When the shoulder lift joint is operational, the robot uses the joint
to quickly find a path to the goal (middle image). However, when the joint is non-operational, it
encounters discrepancies in its model and compensates by finding a path that uses other joints
to reach the goal (last image.)

(middle image of Figure 4.5). However, when the shoulder lift joint is non-operational, the robot
notes discrepancy in dynamics whenever it tries to move the joint, places hyperspheres in 7D
to inflate the cost, and comes up with an alternate path (last image of Figure 4.5) to reach the
place location. The robot takes 13 timesteps (32.4 seconds) to reach the goal location with the
non-operational joint, in comparison to 10 timesteps (25.8 seconds) for the case where the joint is
working (see video). Thus, the robot successfully finds a path to the place location despite using
a model with inaccurate dynamics.

To emphasize the need for cost-to-go function approximation and local generalization from
hyperspheres in large state spaces, we compared Cmax against RTAA*, an exact planning method
that uses a tabular representation for cost-to-go estimates and updates model dynamics online.
Results are presented in Figure 4.3 (left) and show that RTAA* fails to solve 7 of the 10 trials
whereas Cmax solves all of them, and in smaller mean number of timesteps.

4.5.4 Effect of Function Approximation and Size of Hyperspheres

While previous experiments have tested Cmax against other baselines and on a physical robot,
this experiment is designed to evaluate the effect of cost-to-go function approximation and the
size of hyperspheres on the performance of Cmax in large state spaces (Algorithm 13.) For the
first set of experiments (Figure 4.6 left), we use the setup of Section 4.5.3 and focus on varying
the smoothness of the kernel regressor cost-to-go function approximation by varying the length
scale γ of the RBF kernel. Intuitively, small length scales result in approximation with high
variance, and for large scales we obtain highly smooth approximation. We notice that for small
γ, the performance is poor and as γ increases, the performance of Cmax becomes better as it
can generalize the cost-to-go estimates in the state space. However, for large γ the performance
deteriorates as it fails to capture the difference in cost-to-go values among nearby states due
to excessive smoothing. This showcases the need for generalization in cost-to-go estimates for
efficient updates in large state spaces.

For the second set of experiments (Figure 4.6 right), we vary the radius of the hyperspheres

40

10210110010−110−2

Length scale γ of RBF Kernel

40

60

80
N

um
b

er
of

ti
m

es
te

ps
to

re
ac

h
th

e
go

al

Performance with varying length scale
in 7D arm planning

0.01 0.02 0.04 0.06 0.08
Radius of the hypersphere δ

150

200

250

300

350

400

N
um

b
er

of
ti

m
es

te
ps

to
re

ac
h

th
e

go
al

Performance with varying radius
in 4D planar pushing

Figure 4.6: (left) Performance of Cmax for 7D arm planning as the smoothness of the cost-to-go
function approximator varies. The plot is generated for each value of length scale γ by generating
10 random start configurations and goal locations, and running our approach for a maximum of
100 timesteps. (right) Performance of our approach for 4D planar pushing as the radius of the
hypersphere δ varies. The plot is generated for each value of radius δ by generating 10 random
start and goal locations, and running Cmax for a maximum of 400 timesteps.

% Ice → 0% 40% 80%

Cmax 78± 4 231± 18 2869± 331

RTAA* 78± 4 219± 18 2185± 249

Q-Learning 3914± 303 1220± 103 996± 108

Table 4.2: Results for gridworld navigation in presence of icy states for a grid of size 100× 100.
Each entry is obtained using 50 random seeds, and we present the mean and standard error of the
number of timesteps it takes the robot to reach the goal. The columns represent the percentage
of icy states in the gridworld.

δ introduced whenever an incorrect state-action pair is discovered in Algorithm 13. We use the
setup of Section 4.5.1, vary δ and observe the number of timesteps it takes the robot to push the
object to the goal. We observe that when δ is large, the performance is poor as we potentially
penalize state-action pairs that are not incorrect and could result in a very suboptimal path.
However, a very small δ can also lead to a poor performance, as we need more online executions
to discover the set of incorrect state-action pairs. Hence, the radius δ needs to be chosen carefully
to quickly “cover” the incorrect set, while not penalizing any correct state-action pairs.

4.5.5 Simulated 2D Gridworld Navigation with Icy States

In our final experiment, we want to understand the performance of Cmax compared to other
baselines in small domains where model dynamics can be represented using a table, and can be
updated efficiently. We consider the 2D gridworld such as the one shown in Figure 5.1(right)
with icy states where the robot slips (moving left or right on ice moves the robot by two cells.)
The model used for planning does not contain ice, and is an empty gridworld. The results are

41

presented in Table 4.2. We can observe that model-free approaches like Q-learning perform well
compared to model-based approaches in cases where the model available is highly inaccurate (see
Table 4.2 last column.) However, when the model is reasonably accurate RTAA* performs the
best. But the results show that even in domains where model dynamics are simple and can be
updated efficiently, Cmax competes closely with RTAA*. Thus, our approach is still applicable
in such domains and is relatively easier to implement.

4.6 Related Work

The proposed approach has components concerning real-time heuristic search, local function ap-
proximation methods, and dealing with inaccuracy in models. There is a wide array of existing
work at the intersection of planning and learning that deal with these topics. Notably, we lever-
age prior work on real-time heuristic search [Kor90; KL06] for the limited-expansion search-based
planner presented in Algorithm 8. Using local function approximation methods in robotics has
been heavily explored in seminal works [VS00; AS97] due to their smaller sample complexity re-
quirements and local generalization properties that do not cause interference [AMS97a; CAN08].
More recently, [JS07], [NL08] and [BS10] have also proposed approaches that learn local models
from online executions. However unlike Cmax, they use these models to approximate the dy-
namics of the real world. Our work is also closely related to the field of real-time reinforcement
learning that tackles the problem of acting near-optimally in unknown environments, without
any resets [Sut91; BBS95; KS93]. The analysis presented in Theorem 4.4.1 and 4.4.2 borrows
several useful results from [KS93]. Prior works in model-based reinforcement learning with prov-
able guarantees, such as [KS02; BS10; BT02; KKL03], are also related. However, these works
learn the true dynamics by updating the model and give sample complexity results in the finite-
horizon setting or discounted infinite-horizon setting, unlike our shortest path setting. Among
these works, [KKL03], which proposes a method for exploration in metric state spaces, serves
as an inspiration for the covering number bounds given in Theorem 4.4.2. The work that is
most closely related to ours is [Jia18] which proposed an approach that uses a similar idea of
updating the cost function, in cases where updating the model dynamics is infeasible. However,
their approach is suitable only for episodic settings and small state spaces. Concurrent work by
[McC+20] employs a binary classifier trained on offline data to predict whether a transition is
incorrect or correct, that is then queried during online motion planning to construct the search
tree consisting of only transitions that are classified as correct.

4.7 Discussion and Conclusion

Cmax is the first approach for interleaving planning and execution that does not require updating
dynamics, and is guaranteed to reach the goal despite using an inaccurate dynamical model.
The biggest advantage of Cmax is that it does not rely on any knowledge of how the model
is inaccurate, and whether it can be updated in real-time. Hence, it is broadly applicable in
real world robotic tasks with complex inaccurate models. In domains where modeling the true
dynamics is intractable, such as deformable manipulation, Cmax can still be employed to ensure
successful execution. In comparison, approaches that update the model dynamics online rely on
the flexibility of the model to be updated, knowledge of what is lacking in the model, and a
large number of online executions to correct it. For example, to learn accurate dynamics for a

42

transition in N -D statespace we need at least N samples in the worst case, whereas our approach
needs only 1 sample to observe a discrepancy and inflate the cost.

The most important shortcomings of Cmax are Assumptions 4.4.1 and 4.4.3, which are hard
to verify, and are not satisfied in several real world robotic tasks. For example, consider the
task of opening a spring-loaded door which is not modeled as loaded. All transitions would
have discrepancy in dynamics, and Cmax as is would fail at completing the task in a reasonable
amount of time. In addition, the hyperparameter δ describing the radius of hypersphere needs to
be tuned carefully for each domain which is a limitation of Cmax.

To summarize, we present Cmax for interleaving planning and execution using inaccurate
models that does not require updating the dynamics of the model, and still provably completes
the task. We propose practical algorithms for both small and large state spaces, and deploy them
successfully in real world robot tasks showing its broad applicability. In simulation, we analyze
Cmax and show that it outperforms baselines that update dynamics online.

43

44

Chapter 5
Leveraging Experience in Planning and
Execution using Inaccurate Models

. . . many of mundane manipulation tasks
such as picking and placing various
objects in a kitchen are highly repetitive.
It is therefore expected that robots should
be capable of learning and improving their
performance with every execution of these
repetitive tasks.

Mike Phillips, Ben Cohen, Sachin Chitta,
Max Likhachev (2012)

While Cmax, presented in Chapter 4, guaranteed task completeness using inaccurate models,
it required strong assumptions on the accuracy of the model. Furthermore, in a repetitive task
where the robot is required to complete the same task over several repetitions, Cmax fails to
improve the solution quality and in some cases, fails to complete the task in later repetitions.
This chapter presents an algorithm that avoids this behavior by leveraging the online experience
to improve quality of solution across repetitions while retaining task completeness guarantee in
each repetition. These guarantees require a milder assumption on the accuracy of the model
which is easier to satisfy when compared to the assumption required by Cmax. However, like
Cmax, the proposed algorithm does not require any updates to the dynamics of the model and
only adapts the behavior of the planner in the spirit of this thesis. This chapter is adapted from
our original paper [VBL20].

5.1 Introduction

We often require robots to perform tasks that are highly repetitive, such as picking and placing
objects in assembly tasks and navigating between locations in a warehouse. For such tasks,
robotic planning algorithms have been highly effective in cases where system dynamics is easily
specified by an efficient forward model [BAG12]. However, for tasks involving interactions with
objects, dynamics are very difficult to model without complete knowledge of the parameters of the
objects such as mass and friction [JX01]. Using inaccurate models for planning can result in plans

45

Figure 5.1: (left) PR2 lifting a heavy dumbbell, that is modeled as light, to a goal location that is
higher than the start location resulting in dynamics that are inaccurately modeled (right) Mobile
robot navigating around a track with icy patches with unknown friction parameters leading to
the robot skidding. In both cases, any path to the goal needs to contain a transition (pink) whose
dynamics are not modeled accurately.

that are ineffective and fail to complete the task [McC+20]. In addition for such repetitive tasks,
we expect the robot’s task performance to improve, leading to efficient plans in later repetitions.
Thus, we need a planning approach that can use potentially inaccurate models while leveraging
experience from past executions to complete the task in each repetition, and improve performance
across repetitions.

A recent planning approach, Cmax, introduced in [Vem+20] adapts its planning strategy
online to account for any inaccuracies in the forward model without requiring any updates to the
dynamics of the model. Cmax achieves this online by inflating the cost of any transition that
is found to be incorrectly modeled and replanning, thus biasing the resulting plans away from
regions where the model is inaccurate. It does so while maintaining guarantees on completing the
task, without any resets, in a finite number of executions. However, Cmax requires that there
always exists a path from the current state of the robot to the goal containing only transitions
that have not yet been found to be incorrectly modeled. This is a strong assumption on the
accuracy of the model and can often be violated, especially in the context of repetitive tasks.

For example, consider the task shown in Figure 5.1(left) where a robotic arm needs to re-
peatedly pick a heavy object, that is incorrectly modeled as light, and place it on top of a taller
table while avoiding an obstacle. As the object is heavy, transitions that involve lifting the object
will have discrepancy between true and modeled dynamics. However, any path from the start
pose to the goal pose requires lifting the object and thus, the resulting plan needs to contain a
transition that is incorrectly modeled. This violates the aforementioned assumption of Cmax
and it ends up inflating the cost of any transition that lifts the object, resulting in plans that
avoid lifting the object in future repetitions. Thus, the quality of Cmax solution deteriorates
across repetitions and, in some cases, it even fails to complete the task. Figure 5.1(right) presents
another example task where a mobile robot is navigating around a track with icy patches that
have unknown friction parameters. Once the robot enters a patch, any action executed results in
the robot skidding, thus violating the assumption of Cmax because any path to the goal from
current state will have inaccurately modeled transitions. Cmax ends up inflating the cost of all

46

actions executed inside the icy patch, leading to the robot being unable to find a path in future
laps and failing to complete the task. Thus, in both examples, we need a planning approach that
allows solutions to contain incorrectly modeled transitions while ensuring that the robot reaches
the goal.

In this paper we present Cmax++, an approach for interleaving planning and execution
that uses inaccurate models and leverages experience from past executions to provably complete
the task in each repetition without any resets. Furthermore, it improves the quality of solution
across repetitions. In contrast to Cmax, Cmax++ requires weaker conditions to ensure task
completeness, and is provably guaranteed to converge to a plan with optimal cost as the number
of repetitions increases. The key idea behind Cmax++ is to combine the conservative behavior
of Cmax that tries to avoid incorrectly modeled regions with model-free Q-learning that tries to
estimate and follow the optimal cost-to-goal value function with no regard for any discrepancies
between modeled and true dynamics. This enables Cmax++ to compute plans that utilize
inaccurately modeled transitions, unlike Cmax. Based on this idea, we present an algorithm
for small state spaces, where we can do exact planning, and a practical algorithm for large
state spaces using function approximation techniques. We also propose an adaptive version of
Cmax++ that intelligently switches between Cmax and Cmax++ to combine the advantages
of both approaches, and exhibits goal-driven behavior in earlier repetitions and optimality in
later repetitions. The proposed algorithms are tested on simulated robotic tasks: 3D mobile
robot navigation where the track friction is incorrectly modeled (Figure 5.1 right) and a 7D
pick-and-place task where the mass of the object is unknown (Figure 5.1 left).

5.2 Related Work

A typical approach to planning in tasks with unknown parameters is to use acquired experience
from executions to update the dynamics of the model and replan [Sut91]. This works well in prac-
tice for tasks where the forward model is flexible and can be updated efficiently. However for real
world tasks, the models used for planning cannot be updated efficiently online [TET12] and are
often precomputed offline using expensive procedures [Hau+06]. Another line of works [Sav+17;
AQN06a] seek to learn a residual dynamical model to account for the inaccuracies in the initial
model. However, it can take a prohibitively large number of executions to learn the true dynamics,
especially in domains like deformable manipulation [EBG12]. This precludes these approaches
from demonstrating a goal-driven behavior as we show in our experimental analysis.

Recent works such as Cmax [Vem+20] and [McC+20] pursue an alternative approach which
does not require updating the dynamics of the model or learning a residual component. These
approaches exhibit goal-driven behavior by focusing on completing the task and not on modeling
the true dynamics accurately. While Cmax achieves this by inflating the cost of any transition
whose dynamics are inaccurately modeled, [McC+20] present an approach that learns a binary
classifier offline that is used online to predict whether a transition is accurately modeled or
not. Although these methods work well in practice for goal-oriented tasks, they do not leverage
experience acquired online to improve the quality of solution when used for repetitive tasks.

Our work is closely related to approaches that integrate model-based planning with model-
free learning. [Lee+20b] use model-based planning in regions where the dynamics are accurately
modeled and switch to a model-free policy in regions with high uncertainty. However, they mostly
focus on perception uncertainty and require a coarse estimate of the uncertain region prior to
execution, which is often not available for tasks with other modalities of uncertainty like unknown

47

inertial parameters. A very recent work by [LLK20] uses a model-based planner until a model
inaccuracy is detected and switches to a model-free policy to complete the task. Similar to our
approach, they deal with general modeling errors but rely on expert demonstrations to learn
the model-free policy. In contrast, our approach does not require any expert demonstrations and
only uses the experience acquired online to obtain model-free value estimates that are used within
planning.

Finally, our approach is also related to the field of real-time heuristic search which tackles
the problem of efficient planning in large state spaces with bounded planning time. In this
work, we introduce a novel planner that is inspired by LRTA* [Kor90] which limits the number
of expansions in the search procedure and interleaves execution with planning. Crucially, our
planner also interleaves planning and execution but unlike these approaches, employs model-free
value estimates obtained from past experience within the search.

5.3 Problem Setup

Following the notation of [Vem+20], we consider the deterministic shortest path problem that
can be represented using the tuple M = (S,A,G, f, c) where S is the state space, A is the action
space, G ⊆ S is the non-empty set of goals, f : S× A → S is a deterministic dynamics function,
and c : S×A→ [0, 1] is the cost function. Note that we assume that the costs lie between 0 and 1
but any bounded cost function can be scaled to satisfy this assumption. Crucially, our approach
assumes that the action space A is discrete, and any goal state g ∈ G is a cost-free termination
state. The objective of the shortest path problem is to find the least-cost path from a given start
state s1 ∈ S to any goal state g ∈ G in M . As is typical in shortest path problems, we assume that
there exists at least one path from each state s ∈ S to one of the goal states, and that the cost of
any transition from a non-goal state is positive [Ber05]. We will use V (s) to denote the state value
function (a running estimate of cost-to-goal from state s,) and Q(s, a) to denote the state-action
value function (a running estimate of the sum of transition cost and cost-to-goal from successor
state,) for any state s and action a. Similarly, we will use the notation V ∗(s) and Q∗(s, a) to
denote the corresponding optimal value functions. A value estimate is called admissible if it
underestimates the optimal value function at all states and actions, and is called consistent if it
satisfies the triangle inequality, i.e. V (s) ≤ c(s, a) + V (f(s, a)) and Q(s, a) ≤ c(s, a) + V (f(s, a))
for all s, a, and V (g) = 0 for all g ∈ G.

In this work, we focus on repetitive robotic tasks where the true deterministic dynamics f
are unknown but we have access to an approximate model described using M̂ = (S,A,G, f̂, c)
where f̂ approximates the true dynamics. In each repetition of the task, the robot acts in the
environment M to acquire experience over a single trajectory and reach the goal, without access
to any resets. This rules out any episodic approach. Since the true dynamics are unknown and
can only be discovered through executions, we consider the online real-time planning setting
where the robot has to interleave planning and execution. In our motivating navigation example
(Figure 5.1 right,) the approximate model M̂ represents a track with no icy patches whereas
the environment M contains icy patches. Thus, there is a discrepancy between the modeled
dynamics f̂ and true dynamics f . Following [Vem+20], we will refer to state-action pairs that
have inaccurately modeled dynamics as “incorrect” transitions, and use the notation X ⊆ S× A
to denote the set of discovered incorrect transitions. The objective in our work is for the robot to
reach a goal in each repetition, despite using an inaccurate model for planning while improving
performance, measured using the cost of executions, across repetitions.

48

Algorithm 11 Hybrid Limited-Expansion Search

1: procedure SEARCH(s, M̂, V,Q,X ,K)
2: Initialize g(s) = 0, min-priority open list O, and closed list C
3: Add s to open list O with priority p(s) = g(s) + V (s)
4: for i = 1, 2, · · · ,K do
5: Pop si from O
6: if si is a dummy state or si ∈ G then
7: Set sbest ← si and go to Line 22

8: for a ∈ A do . Expanding state si
9: if (si, a) ∈ X then . Incorrect transition

10: Add a dummy state s′ to O with priority p(s′) = g(si) +Q(si, a)
11: continue
12: Get successor s′ = f̂(si, a)
13: If s′ ∈ C, continue
14: if s′ ∈ O and g(s′) > g(si) + c(si, a) then
15: Set g(s′) = g(si) + c(si, a) and recompute p(s′)
16: Reorder open list O
17: else if s′ /∈ O then
18: Set g(s′) = g(si) + c(si, a)
19: Add s′ to O with priority p(s′) = g(s′) + V (s′)

20: Add si to closed list C

21: Pop sbest from open list O
22: for s′ ∈ C do
23: Update V (s′)← p(sbest)− g(s′)

24: Backtrack from sbest to s, and set abest as the first action on path from s to sbest in the
search tree

return abest

5.4 Approach

In this section, we will describe the proposed approach Cmax++. First, we will present a novel
planner used in Cmax++ that can exploit incorrect transitions using their model-free Q-value
estimates. Second, we present Cmax++ and its adaptive version for small state spaces, and
establish their guarantees. Finally, we describe a practical instantiation of Cmax++ for large
state spaces leveraging function approximation techniques.

5.4.1 Hybrid Limited-Expansion Search Planner

During online execution, we want the robot to acquire experience and leverage it to compute
better plans. This requires a hybrid planner that is able to incorporate value estimates obtained
using past experience in addition to model-based planning, and quickly compute the next action
to execute. To achieve this, we propose a real-time heuristic search-based planner that performs
a bounded number of expansions and is able to utilize Q-value estimates for incorrect transitions.

The planner is presented in Algorithm 11. Given the current state s, the planner constructs
a lookahead search tree using at most K state expansions. For each expanded state si, if any

49

Algorithm 12 Cmax++ and A-Cmax++ in small state spaces

Require: Model M̂ , start state s, initial value estimates V , Q, number of expansions K, t← 1,
incorrect set X ← {}, Number of repetitions N , Sequence {αi ≥ 1}Ni=1, initial penalized value
estimates Ṽ = V , penalized model M̃ ← M̂

1: for each repetition i = 1, · · · , N do
2: t← 1, s1 ← s
3: while st /∈ G do
4: Compute at = SEARCH(st, M̂, V,Q,X ,K)
5: Compute ãt = SEARCH(st, M̃, Ṽ, Q, {},K)
6: If Ṽ (st) ≤ αiV (st), assign at = ãt
7: Execute at in environment to get st+1 = f(st, at)
8: if st+1 6= f̂(st, at) then
9: Add (st, at) to the set: X ← X ∪ {(st, at)}

10: Update: Q(st, at) = c(st, at) + V (st+1)
11: Update penalized model M̃ ← M̃X

12: t← t+ 1

outgoing transition has been flagged as incorrect based on experience, i.e. (si, a) ∈ X , then the
planner creates a dummy state with priority computed using the model-free Q-value estimate of
that transition (Line 10). Note that we create a dummy state because the model M̂ does not
know the true successor of an incorrect transition. For the transitions that are correct, we obtain
successor states using the approximate model M̂ . This ensures that we rely on the inaccurate
model only for transitions that are not known to be incorrect. At any stage, if a dummy state
is expanded then we need to terminate the search as the model M̂ does not know any of its
successors, in which case we set the best state sbest as the dummy state (Line 7). Otherwise,
we choose sbest as the best state (lowest priority) among the leaves of the search tree after K
expansions (Line 21). Finally, the best action to execute at the current state s is computed as the
first action along the path from s to sbest in the search tree (Line 24). The planner also updates
state value estimates V of all expanded states using the priority of the best state p(sbest) to make
the estimates more accurate (Lines 22 and 23) similar to RTAA* [KL06].

The ability of our planner to exploit incorrect transitions using their model-free Q-value
estimates, obtained from past experience, distinguishes it from real-time search-based planners
such as LRTA* [Kor90] which cannot utilize model-free value estimates during planning. This
enables Cmax++ to result in plans that utilize incorrect transitions if they enable the robot to
get to the goal with lower cost.

5.4.2 CMAX++ in Small State Spaces

Cmax++ in small state spaces is simple and easy-to-implement as it is feasible to maintain value
estimates in a table for all states and actions and to explicitly maintain a running set of incorrect
transitions with fast lookup without resorting to function approximation techniques.

The algorithm is presented in Algorithm 12 (only the text in black.) Cmax++ maintains a
running estimate of the set of incorrect transitions X , and updates the set whenever it encounters
an incorrect state-action pair during execution. Crucially, unlike Cmax, it maintains a Q-value
estimate for the incorrect transition that is used during planning in Algorithm 11, thereby enabling
the planner to compute paths that contain incorrect transitions. It is also important to note that,

50

like Cmax, Cmax++ never updates the dynamics of the model. However, instead of using the
penalized model for planning as Cmax does, Cmax++ uses the initial model M̂ , and utilizes
both model-based planning and model-free Q-value estimates to replan a path from the current
state to a goal.

The downside of Cmax++ is that estimating Q-values from online executions can be inef-
ficient as it might take many executions before we obtain an accurate Q-value estimate for an
incorrect transition. This has been extensively studied in the past and is a major disadvantage
of model-free methods [Sun+19a]. As a result of this inefficiency, Cmax++ lacks the goal-driven
behavior of Cmax in early repetitions of the task, despite achieving optimal behavior in later
repetitions. In the next section, we present an adaptive version of Cmax++ (A-Cmax++) that
combines the goal-driven behavior of Cmax with the optimality of Cmax++.

5.4.3 Adaptive Version of CMAX++

Background on CMAX

Before we describe A-Cmax++, we will start by summarizing Cmax. For more details, refer
to [Vem+20]. At each time step t during execution, Cmax maintains a running estimate of the
incorrect set X , and constructs a penalized model specified by the tuple M̃X = (S,A,G, f̂, c̃X)
where the cost function c̃X (s, a) = |S| if (s, a) ∈ X , else c̃X (s, a) = c(s, a). In other words, the cost
of any transition found to be incorrect is set high (or inflated) while the cost of other transitions
are the same as in M̂ . Cmax uses the penalized model M̃X to plan a path from the current state
st to a goal state. Subsequently, Cmax executes the first action at along the path and observes
if the true dynamics and model dynamics differ on the executed action. If so, the state-action
pair (st, at) is appended to the incorrect set X and the penalized model M̃X is updated. Cmax
continues to do this at every timestep until the robot reaches a goal state.

Observe that the inflation of cost for any incorrect state-action pair biases the planner to
“explore” all other state-action pairs that are not yet known to be incorrect before it plans a
path using an incorrect transition. This induces a goal-driven behavior in the computed plan
that enables Cmax to quickly find an alternative path and not waste executions learning the true
dynamics

A-CMAX++

A-Cmax++ is presented in Algorithm 12 (black and blue text.) A-Cmax++ maintains a
running estimate of incorrect set X and constructs the penalized model M̃ at each time step t,
similar to Cmax. For any state at time step t, we first compute the best action at based on
the approximate model M̂ and the model-free Q-value estimates (Line 4.) In addition, we also
compute the best action ãt using the penalized model M̃ , similar to Cmax, that inflates the cost
of any incorrect transition (Line 5.) The crucial step in A-Cmax++ is Line 6 where we compare
the penalized value Ṽ (st) (obtained using penalized model M̃) and the non-penalized value V (st)
(obtained using approximate model M̂ and Q-value estimates.) Given a sequence {αi ≥ 1} for
repetitions i = 1, · · · , N of the task, if Ṽ (st) ≤ αiV (st), then we execute action ãt, else we execute
at. This implies that if the cost incurred by following Cmax actions in the future is within αi
times the cost incurred by following Cmax++ actions, then we prefer to execute Cmax.

If the sequence {αi} is chosen to be non-increasing such that α1 ≥ α2 · · · ≥ αN ≥ 1, then we
can observe that A-Cmax++ has the desired anytime-like behavior. It remains goal-driven in

51

early repetitions, by choosing Cmax actions, and converges to optimal behavior in later repeti-
tions, by choosing Cmax++ actions. Further, the executions needed to obtain accurate Q-value
estimates is distributed across repetitions ensuring that A-Cmax++ does not have poor perfor-
mance in any single repetition. Thus, A-Cmax++ combines the advantages of both Cmax and
Cmax++.

5.4.4 Theoretical Guarantees

We will start with formally stating the assumption needed by Cmax to ensure completeness:

Assumption 5.4.1 ([Vem+20]). Given a penalized model M̃Xt and the current state st at any
time step t, there always exists at least one path from st to a goal that does not contain any
state-action pairs (s, a) that are known to be incorrect, i.e. (s, a) ∈ Xt.

Observe that the above assumption needs to be valid at every time step t before the robot
reaches a goal and thus, can be hard to satisfy. Before we state the theoretical guarantees for
Cmax++, we need the following assumption on the approximate model M̂ that is used for
planning:

Assumption 5.4.2. The optimal value function V̂ ∗ using the dynamics of approximate model
M̂ underestimates the optimal value function V ∗ using the true dynamics of M at all states, i.e.
V̂ ∗(s) ≤ V ∗(s) for all s ∈ S.

In other words, if there exists a path from any state s to a goal state in the environment M ,
then there exists a path with the same or lower cost from s to a goal in the approximate model
M̂ . In our motivating example of pick-and-place (Figure 5.1 left,) this assumption is satisfied if
the object is modeled as light in M̂ , as the object being heavy in reality can only increase the
cost. This assumption was also considered in previous works such as [Jia18] and is known as the
Optimistic Model Assumption.

Significance of Optimistic Model Assumption

To understand the significance of the optimistic model assumption, it is important to note that
completeness guarantees usually require the use of admissible and consistent value estimates, i.e.
estimates that always underestimate the true cost-to-goal values. This requirement needs to hold
every time we plan (or replan) to ensure that we never discard a path as being expensive in terms
of cost, when it is cheap in reality.

All our guarantees assume that the initial value estimates are consistent and admissible, but
to ensure that they always remain consistent and admissible throughout execution, we need the
optimistic model assumption. This assumption ensures that updating value estimates by planning
in the model M̂ always results in estimates that are admissible and consistent. In other words,
the optimal value function (which we obtain by doing full state space planning in M̂) of the model
M̂ always underestimates the optimal value function of the environment M at all states s ∈ S.

A very intuitive way to understand the assumption is to imagine a navigation task where
the robot is navigating from a start to goal in the presence of obstacles. In this example, the
optimistic model assumption requires that the model should never place an obstacle in a location
when there isn’t an obstacle in the environment at the same location. However, if there truly is
an obstacle at some location, then the model can either have an obstacle or not have one at the
same location. Put simply, an agent that is planning using the model should never be “pleasantly
surprised” by what it sees in the environment. This example is popularly known as the free space
assumption [Zel92] in robot navigation literature. Several other toy examples of the optimistic

52

model assumption are presented in [Jia18] and we recommend the reader to look at them for
more intuition.

We can now state the following guarantees:

Theorem 5.4.1 (Completeness). Assume the initial value estimates V,Q are admissible and
consistent. Then we have,

1. If Assumption 5.4.2 holds then using either Cmax++ or A-Cmax++, the robot is guar-
anteed to reach a goal state in at most |S|3 time steps in each repetition.

2. If Assumption 5.4.1 holds then (a) using A-Cmax++ with a large enough αi in any repe-
tition i (typically true for early repetitions,) the robot is guaranteed to reach a goal state in
at most |S|2 time steps, and (b) using Cmax++, it is guaranteed to reach a goal state in
at most |S|3 time steps in each repetition

Proof Sketch. To prove completeness, first we need to note that the Q-update in Cmax++
always ensures that the Q-value estimates remain consistent and admissible as long as the state
value estimates remain consistent and admissible. We have already seen why the optimistic model
assumption ensures that the state value estimates always remain consistent and admissible. Thus,
we can use Theorem 3 from RTAA* [KL06] in conjunction with the optimistic model assumption
to ensure completeness. Note that if the model is inaccurate everywhere, then our planner
reduces to doing K = 1 expansions at every time step and acts similar to Q-learning, which is
also guaranteed to be complete with admissible and consistent estimates [KS93]. The worst case
bound of |S|3 steps is taken directly from the upper bound on Q-learning from [KS93]. The above
arguments are true for both Cmax++ and A-Cmax++. Note that for A-Cmax++ if all paths
to the goal contains an incorrect transition then the penalized value estimate Ṽ (s) > αV (s) for
any finite α and thus, will fall back on Cmax++.

For the second part of the theorem, the assumption of Cmax (we will refer this as optimistic
penalized model assumption) in conjunction with RTAA* guarantee again ensures completeness for
Cmax++ and A-Cmax++. To see this, observe that the optimistic penalized model assumption
ensures that the value estimates are always admissible and consistent w.r.t the true penalized
model (M̃X where X contains all the incorrect transitions) and from the assumption, we know that
there exists a path to the goal in the true penalized model. Hence, Cmax++ and A-Cmax++
are bound to find this path.

Cmax++ again utilizes the worst case bounds of Q-learning under the optimistic penalized
assumption as well and attains an upper bound of |S|3 steps. However, A-Cmax++ with a
sufficiently large αi for any repetition i acts similar to Cmax, and thereby can utilize the worst
case bounds of LRTA* (which is simply RTAA* with K = 1 expansions) from [KS93] giving
an upper bound of |S|2 time steps. This shows the advantage of A-Cmax++ over Cmax++,
especially in earlier repetitions when the incorrect set X is small (thus, making the optimistic
penalized model assumption hold,) and αi is large.

Theorem 5.4.2 (Asymptotic Convergence). Assume Assumption 5.4.2 holds, and that the initial
value estimates V,Q are admissible and consistent. For sufficiently large number of repetitions
N , there exists an integer j ≤ N such that the robot follows a path with the optimal cost to the
goal using Cmax++ in Algorithm 12 in repetitions i ≥ j.

Proof Sketch. The asymptotic convergence proof completely relies on the asymptotic convergence
of Q-learning [KS93] and asymptotic convergence of LRTA* [Kor90] to optimal value estimates.
The proof again crucially relies on the fact that the value estimates always remain admissible

53

Algorithm 13 Cmax++ in large state spaces

Require: Model M̂ , start state s, value function approximators Vθ, Qζ , number of expansions
K, t ← 1, Discrepancy threshold ξ, Radius of hypersphere δ, Set of hyperspheres X ξ ← {},
Number of repetitions N , Batch size B, State buffer DS , Transition buffer DSA, Learning
rate η, Number of updates U

1: for each repetition i = 1, · · · , N do
2: t← 1, s1 ← s
3: while st /∈ G do
4: Compute at = SEARCH(st, M̂, Vθ, Qζ ,X ξ,K)
5: Execute at in environment to get st+1 = f(st, at)
6: if d(st+1, f̂(st, at)) > ξ then
7: Add hypersphere: X ξ ← X ξ ∪ {sphere(st, at, δ)}
8: Add st to DS , and (st, at, st+1) to DSA
9: for u = 1, · · · , U do . Approximator updates

10: Q UPDATE(Qζ , Vθ,DSA)
11: V UPDATE(Vθ, Qζ ,DS ,X ξ)
12: t← t+ 1

13: procedure Q UPDATE(Qζ , Vθ,DSA)
14: Sample B transitions from DSA with replacement
15: Construct training set XQ = {((si, ai), Q(si, ai))} for each sampled transition (si, ai, s

′
i)

and compute Q(si, ai) = c(si, ai) + Vθ(s
′
i)

16: Update: ζ ← ζ − η∇ζLQ(Qζ ,XQ)

17: procedure V UPDATE(Vθ, Qζ ,DS ,X ξ)
18: Sample B states from DS with replacement
19: Call SEARCH(si, M̂, Vθ, Qζ ,X ξ,K) for each sampled si to get all states on closed list s′i and

their corresponding value updates V (s′i) to construct training set XV = {(s′i, V (s′i)}
20: Update: θ ← θ − η∇θLV (Vθ,XV)

and consistent, which is ensured by the optimistic model assumption. Note that the optimistic
penalized model assumption is not enough to guarantee asymptotic convergence to the optimal
cost in M as we penalize incorrect transitions. However, it is possible to show that under the
optimistic penalized model assumption both Cmax++ and A-Cmax++ converge to the optimal
cost in the true penalized model M̃X where X contains all incorrect transitions.

It is important to note that the conditions required for Theorem 5.4.1 are weaker than the
conditions required for completeness of Cmax. Firstly, if either Assumption 5.4.1 or Assump-
tion 5.4.2 holds then Cmax++ can be shown to be complete, but Cmax is guaranteed to be
complete only under Assumption 5.4.1. Furthermore, Assumption 5.4.2 only needs to hold for the
approximate model M̂ we start with, whereas Assumption 5.4.1 needs to be satisfied for every
penalized model M̃ constructed at any time step t during execution.

5.4.5 Large State Spaces

In this section, we present a practical instantiation of Cmax++ for large state spaces where
it is infeasible to maintain tabular value estimates and the incorrect set X explicitly. Thus, we

54

leverage function approximation techniques to maintain these estimates. Assume that there exists
a metric d under which S is bounded. We relax the definition of incorrect set using this metric to
define X ξ as the set of all (s, a) pairs such that d(f(s, a), f̂(s, a)) > ξ where ξ ≥ 0. Typically, we
chose ξ to allow for small modeling discrepancies that can be compensated by a low-level path
following controller.

Cmax++ in large state spaces is presented in Algorithm 13. The algorithm closely follows
Cmax for large state spaces presented in [Vem+20]. The incorrect set X ξ is maintained using sets
of hyperspheres with each set corresponding to a discrete action. Whenever the agent executes
an incorrect state-action (s, a), Cmax++ adds a hypersphere centered at s with radius δ, as
measured using metric d, to the incorrect set corresponding to action a. In future planning, any
state-action pair (s′, a′) is declared incorrect if s′ lies inside any of the hyperspheres in the incorrect
set corresponding to action a′. After each execution, Cmax++ proceeds to update the value
function approximators (Line 9) by sampling previously executed transitions and visited states
from buffers and performing gradient descent steps (Procedures 13 and 17) using mean squared
loss functions given by LQ(Qζ ,XQ) = 1

2|XQ|
∑

(si,ai)∈XQ(Q(si, ai)−Qζ(si, ai))2 and LV (Vθ,XV) =
1

2|XV |
∑

si∈XV (V (si)− Vθ(si))2.

By using hyperspheres, Cmax++ “covers” the set of incorrect transitions, and enables fast
lookup using KD-Trees in the state space. Like Algorithm 12, we never update the approximate
model M̂ used for planning. However, unlike Algorithm 12, we update the value estimates for
sampled previous transitions and states (Lines 14 and 18). This ensures that the global function
approximations used to maintain value estimates Vθ, Qζ have good generalization beyond the
current state and action. Algorithm 13 can also be extended in a similar fashion as Algorithm 12
to include A-Cmax++ by maintaining a penalized value function approximation and updating
it using gradient descent.

5.5 Experiments

We test the efficiency of Cmax++ and A-Cmax++ on simulated robotic tasks emphasizing
their performance in each repetition of the task, and improvement across repetitions1. In each
task, we start the next repetition only if the robot reached a goal in previous repetition.

5.5.1 3D Mobile Robot Navigation with Icy Patches

In this experiment, the task is for a mobile robot with Reed-Shepp dynamics [RS90] to navigate
around a track M with icy patches (Figure 5.1 right.) This can be represented as a planning
problem in 3D discrete state space S with any state represented using the tuple (x, y, θ) where
(x, y) is the 2D position of the robot and θ describes its heading. The XY-space is discretized
into 100 × 100 grid and the θ dimension is discretized into 16 cells. We construct a lattice
graph [PKK09] using 66 motion primitives that are pre-computed offline respecting the differential
constraints on the motion of the robot. The model M̂ used for planning contains the same track
as M but without any icy patches, thus the robot discovers transitions affected by icy patches
only through executions.

Since the state space is small, we use Algorithm 12 for Cmax++ and A-Cmax++. For
A-Cmax++, we use a non-increasing sequence with αi = 1 + βi where β1 = 100 and βi is
decreased by 2.5 after every 5 repetitions (See Appendix 9.3.1 for more details on choosing the

1The code to reproduce our experiments can be found at https://github.com/vvanirudh/CMAXPP.

55

https://github.com/vvanirudh/CMAXPP

1 20 40 60 80 100 120 140 160 180 200
Lap

102

103

104
A
ve

ra
ge

nu
m

b
er

of
st

ep
s

ta
ke

n
to

fin
is
h

la
p

10

9

6

5 4 4 4
2 2 2 2

10

10 10
10

10 10
10

10
10 10 10

10

10
10

10
10 10 10

10 10 10 10

3D Mobile Robot Navigation Experiment

Cmax

Cmax++

A-Cmax++

Figure 5.2: Number of steps taken to finish a lap averaged across 10 instances each with 5 icy
patches placed randomly around the track. The number above each bar reports the number of
instances in which the robot was successful in finishing the respective lap within 10000 time steps.

sequence.) We compare both algorithms with Cmax. For all the approaches, we perform K = 100
expansions. Since the motion primitives are computed offline using an expensive procedure, it is
not feasible to update the dynamics of model M̂ online and hence, we do not compare with any
model learning baselines. We also conducted several experiments with model-free Q-learning, and
found that it performed poorly requiring a very large number of executions and finishing only 10
laps in the best case. Hence, we do not include it in our results shown in Figure 5.2.

Cmax performs well in the early laps computing paths with lower costs compared to Cmax++.
However, after a few laps the robot using Cmax gets stuck within an icy patch and does not
make any more progress. Observe that when the robot is inside the icy patch, Assumption 5.4.1 is
violated and Cmax ends up inflating all transitions that take the robot out of the patch leading to
the robot finishing 200 laps in 2 out of 10 instances. Cmax++, on the other hand, is suboptimal
in the initial laps, but converges to paths with lower costs in later laps. More importantly, the
robot using Cmax++ manages to finish 200 laps in all 10 instances. A-Cmax++ also success-
fully finishes 200 laps in all 10 instances. However, it outperforms both Cmax and Cmax++
in all laps by intelligently switching between them achieving goal-driven behavior in early laps
and optimal behavior in later laps. Thus, A-Cmax++ combines the advantages of Cmax and
Cmax++.

5.5.2 7D Pick-and-Place with a Heavy Object

The task in this experiment is to pick and place a heavy object from a shorter table, using a
7 degree-of-freedom (DOF) robotic arm (Figure 5.1 left) to a goal pose on a taller table, while
avoiding an obstacle. As the object is heavy, the arm cannot generate the required force in
certain configurations and can only lift the object to small heights. The problem is represented

56

Repetition→ 1 5 10 15 20
Steps Success Steps Success Steps Success Steps Success Steps Success

Cmax 17.8± 3.4 100% 13.6± 0.5 60% 18± 0 20% 15± 0 20% 15± 0 20%
Cmax++ 17± 4.9 100% 14.2± 3.3 100% 10.6± 0.3 100% 11± 0 100% 10.8± 0.1 100%

A-Cmax++ 17.8± 3.4 100% 11.6± 0.7 100% 17± 6 100% 10.4± 0.3 100% 10.6± 0.4 100%
Model KNN 40.6± 7.3 100% 12.8± 1.3 100% 29.6± 16.1 100% 15.8± 2.9 100% 12.4± 1.4 100%
Model NN 56± 16.2 100% 208.2± 92.1 80% 124.5± 81.6 40% 28± 7.7 40% 37.5± 20.1 40%
Q-learning 172.4± 75 100% 23.2± 10.3 80% 26.5± 6.7 80% 18± 2.8 80% 10.2± 0.6 80%

Table 5.1: Number of steps taken to reach the goal in 7D pick-and-place experiment for 5 in-
stances, each with random start and obstacle locations. We report mean and standard error only
among successful instances in which the robot reached the goal within 500 timesteps. The success
subcolumn indicates percentage of successful instances.

as planning in 7D discrete statespace where the first 6 dimensions describe the 6 DOF pose of
the arm end-effector, and the last dimension corresponds to the redundant DOF in the arm. The
action space A is a discrete set of 14 actions corresponding to moving in each dimension by a fixed
offset in the positive or negative direction. The model M̂ used for planning models the object
as light, and hence does not capture the dynamics of the arm correctly when it tries to lift the
heavy object. The state space is discretized into 10 cells in each dimension resulting in a total of
107 states. Thus, we need to use Algorithm 13 for Cmax++ and A-Cmax++. The goal is to
pick and place the object for 20 repetitions where at the start of each repetition the object is in
the start pose and needs to reach the goal pose by the end of repetition.

We compare with Cmax for large state spaces, model-free Q-learning [HGS16], and resid-
ual model learning baselines [Sav+17]. We chose two kinds of function approximators for the
learned residual dynamics: global function approximators such as Neural Networks (NN) and
local memory-based function approximators such as K-Nearest Neighbors regression (KNN.) Q-
learning baseline uses Q-values that are cleverly initialized using the model M̂ making it a strong
model-free baseline. We use the same neural network function approximators for maintaining
value estimates for all approaches and perform K = 5 expansions. We chose the metric d as
the manhattan metric and use ξ = 0 for this experiment. We use a radius of δ = 3 for the
hyperspheres introduced in the 7D discrete state space, and to ensure fair comparison use the
same radius for KNN regression. These values are chosen to reflect the discrepancies observed
when the arm tries to lift the object. All approaches use the same initial value estimates obtained
through planning in M̂ . A-Cmax++ uses a non-increasing sequence αi = 1 + βi where β1 = 4
and βi+1 = 0.5βi.

The results are presented in Table 5.1. Model-free Q-learning takes a large number of exe-
cutions in the initial repetitions to estimate accurate Q-value estimates but in later repetitions
computes paths with lower costs managing to finish all repetitions in 4 out of 5 instances. Among
the residual model learning baselines, the KNN approximator is successful in all instances but
takes a large number of executions to learn the true dynamics, while the NN approximator finishes
all repetitions in only 2 instances. Cmax performs well in the initial repetitions but quickly gets
stuck due to inflated costs and manages to complete the task for 20 repetitions in only 1 instance.
Cmax++ is successful in finishing the task in all instances and repetitions, while improving
performance across repetitions. Finally as expected, A-Cmax++ also finishes all repetitions,
sometimes even having better performance than Cmax and Cmax++.

57

5.6 Discussion

A major advantage of Cmax++ is that, unlike previous approaches that deal with inaccurate
models, it can exploit inaccurately modeled transitions without wasting online executions to learn
the true dynamics. It estimates the Q-value of incorrect transitions leveraging past experience
and enables the planner to compute solutions containing such transitions. Thus, Cmax++ is
especially useful in robotic domains with repetitive tasks where the true dynamics are intractable
to model, such as deformable manipulation, or vary over time due to reasons such as wear
and tear. Furthermore, the optimistic model assumption is easier to satisfy, when compared to
assumptions used by previous approaches like Cmax, and performance of Cmax++ degrades
gracefully with the accuracy of the model reducing to Q-learning in the case where the model
is inaccurate everywhere. Limitations of Cmax++ and A-Cmax++ include hyperparameters
such as the radius δ and the sequence {αi}, which might need to be tuned for the task. However,
from our sensitivity experiments (see Appendix 9.3.1) we observe that A-Cmax++ performance
is robust to the choice of sequence {αi} as long as it is non-increasing.

Note that Assumption 5.4.2 can be restrictive for tasks where designing a initial optimistic
model requires extensive domain knowledge. We have seen examples of domains where this
assumption is satisfied in the experiments, where we performed pick and place of an object with
the model assuming that it is light weight, and navigation assuming that there are no icy patches.
One can construct other such examples where optimism is easy to build in to the model. For
example, for a planar pushing task the model can assume that there is no friction between the
object and the surface, when in reality there is friction. Once again, this results in an optimistic
model which allows the use of Cmax++. One can always construct a naive optimistic model
Mnaive for any robotic task which simply predicts that any action in any state results in the
robot reaching the goal. But using Mnaive, Cmax++ simply degrades to Q-learning and loses its
goal-driven behavior from the lack of information in the model. Thus, there is always a tradeoff
in ensuring that the model is optimistic and ensuring that the model is accurate, which can be
a burden on the practitioner. However, it is infeasible to avoid this tradeoff without resorting to
global undirected exploration techniques [Thr92], which are highly sample inefficient, to ensure
completeness.

58

Chapter 6
On the Effectiveness of using Inaccurate
Models

Internal models play an important role in
generating command corrections from
performance errors. As an internal model
is made more accurate, learning efficiency
and initial performance are improved.

Chae H. An, Christopher G. Atkeson,
John M. Hollerbach (1988)

The approaches, presented in Chapters 4 and 5, are in the spirit of this thesis by using
online experience to update the behavior of the planner rather than updating the accuracy of the
model. To understand the usefulness of such approaches from a theoretical perspective, we will
take a closer look at a similar approach that is popularly known as iterative learning control in
the literature. To derive concrete bounds on the performance of the controller (or plan/policy)
as a function of the modeling errors, we consider the simplified setting of continuous linearized
systems with quadratic costs (LQR.) Using LQR as our testbed allows easier analysis and provides
insights into the performance one can expect from feedforward adjustment to controls using an
approximate model, rather than updating the model itself. This chapter is adapted from our
original paper [Vem+21].

6.1 Introduction

Iterative learning control (ILC) has seen widespread adoption in a range of control applications
where the dynamics of the system are subject to unknown disturbances or in instances where
model parameters are misspecified [MDB92]. While traditional feedback-based control methods
have been successful at tackling non-repetitive noise, ILC has shown itself to be effective at ad-
justing to repetitive disturbance through feedforward control adjustment [AKM84]. This was
shown empirically in several robotic applications such as manipulation [KNL91], and quadcopter
trajectory tracking [SMD12; MSD12] among others. Prior work [AAH88] uses fixed point the-
ory to analyze the conditions for convergence of ILC but does not present performance bounds
at convergence. Very recent work [Aga+21] presented a ILC algorithm that is robust to model

59

mismatch and uncertainty. However, they analyze the algorithm using planning regret, which
measures regret with respect to the best open loop plan in hindsight, and do not study how
the performance depends on modeling error. Our work contributes to understanding the effec-
tiveness of ILC by studying its worst case performance, as a function of modeling error, in the
linear quadratic regulator (LQR) setting with unknown transition dynamics and access to an
approximate model of the dynamics.

A simple approach to the LQR problem with an approximate model of the dynamics is to
do optimal control using the misspecified model (MM.) The resulting controller is similar to the
certainty equivalent controller obtained by performing optimal control on estimated parameters
of the regulator and ignoring the uncertainty of the estimates in adaptive control [ÅW13]. Despite
the simplicity of MM, it is challenging to quantify its suboptimality, with respect to the optimal
LQR controller, as a result of the modeling errors in the approximate model.

Our first contribution is proving worst case cost suboptimality bounds for MM in the finite
horizon LQR setting in terms of the modeling error. This requires us to depart from the fixed
point analysis used in prior work [MTR19; KPC93], as the solution to the discrete Ricatti equation
in the finite horizon is not a fixed point. A key part of our analysis is establishing perturbation
bounds by carefully tracking the effect of modeling error through the horizon of the control task.
This allows us to quantify the worst case suboptimality gap of MM in the finite horizon LQR
setting.

The second contribution is to utilize the same proof techniques as we used for MM to analyze
the suboptimality gap of ILC. This allows us to explicitly compare the worst case performance
of ILC and MM for LQR problems, and understand why ILC works well in the regime of large
modeling errors when MM often performs poorly. Our analysis highlights that the suboptimality
gap for ILC is lower than that for MM by higher order terms that can become significant when
modeling errors are high. We also show that ILC is capable of keeping the system stable and
cost from blowing up even in the presence of large modeling errors, which MM is incapable of.
By interpreting the worst case bounds, we identify several linear systems with key characteristics
that enable ILC to be robust to large model misspecifications, whereas MM is unable to deal with
model errors and results in poor solutions.

The final contribution of this work is to present simple empirical experiments involving optimal
control tasks with linear and nonlinear dynamical systems that back the theoretical findings
from our analysis. The experiment results reinforce our finding that in the regime of large
modeling errors, ILC performs better than MM and synthesizes control inputs that result in
smaller suboptimality gaps.

6.2 Problem Setup

We consider the finite horizon linear quadratic regulator (LQR) setting with a horizon H and
a fixed initial state x0 ∈ Rn. The dynamics of the system are described by unknown matrices
At ∈ Rn×n and Bt ∈ Rn×d for t = 0, · · · , H − 1 as follows: xt+1 = Atxt + Btut where ut ∈ Rd is
the control input at time step t. Any sequence of control inputs (u0, · · · , uH−1) results in a state
trajectory (x0, · · · , xH). The cost function is defined using matrices Q ∈ Rn×n, Qf ∈ Rn×n and
R ∈ Rd×d as follows:

V0(x0) =

H−1∑
t=0

xTt Qxt + uTt Rut + xTHQfxH (6.1)

From optimal control literature [AM07], we know that the above cost is minimized by a linear

60

time-varying state-feedback controller K? = (K?
0 , · · · ,K?

H−1) with control inputs ut = K?
t xt

satisfying:

K?
t = −(R+BT

t P
?
t+1Bt)

−1BT
t P

?
t+1At

P ?t = Q+ATt P
?
t+1(I +BtR

−1BT
t P

?
t+1)−1At

where we initialize P ?H = Qf and the matrices P ?t define the optimal cost-to-go incurred using
the optimal controller K? from time step t as V ?

t (xt) = xTt P
?
t xt. For any controller K, we will

use the notation Mt(K) to denote the matrix At + BtKt, and the notation Lt(K) to denote the
product

∏t
i=0Mi(K). This is useful for conciseness as we can observe that the state trajectory

obtained using K can be expressed as xt = Mt−1(K)xt−1 = Lt−1(K)x0.
We are given access to an approximate model of the dynamics of the system specified by

matrices Ât ∈ Rn×n and B̂t ∈ Rn×d for t = 0, · · · , H − 1 such that there exists some εA, εB ≥ 0
(also referred to as the modeling error) satisfying ||At − Ât|| ≤ εA and ||Bt − B̂t|| ≤ εB. For
the purposes of this paper, we use the notation || · || to refer to the matrix norm induced by
the L2 vector norm. In this paper, we consider two control strategies: optimal control using the
misspecified model (MM) and iterative learning control (ILC.)

6.2.1 Optimal Control using Misspecified Model

Optimal control using misspecified model uses the approximate model to synthesize a time-varying
linear controller KMM = (KMM

0 , · · · ,KMM
H−1) satisfying:

KMM
t = −(R+ B̂T

t P
MM
t+1 B̂t)

−1B̂T
t P

MM
t+1 Ât

PMM
t = Q+ ÂTt P

MM
t+1 (I + B̂tR

−1B̂T
t P

MM
t+1)−1Ât

where we initialize PMM
H = Qf and the control inputs are defined as uCEt = KMM

t xt. One can
observe that the controller KMM results in suboptimal cost when executed in the system as it is
optimizing the cost under approximate dynamics rather than the true dynamics of the system.
Thus, the suboptimality gap V MM

0 (x0) − V ?
0 (x0) depends on the approximate dynamics Ât, B̂t,

and how well they approximate the true dynamics.

6.2.2 Iterative Learning Control

Iterative learning control [AKM84; MDB92] is a framework that is used to efficiently calculate
the feedforward input signal adjustment by using information from previous trials to improve
the performance in a small number of iterations. An example of an ILC algorithm is shown in
Algorithm 14. ILC assumes a rollout access to the system, i.e. we are allowed to conduct full
rollouts of horizon H in the system to evaluate the cost and obtain the trajectory under true
dynamics (Line 4). Note that this access is only restricted to rollouts, and the true dynamics
At, Bt are unknown. ILC can be understood as an iterative shooting method where we synthesize
control inputs by always evaluating in the true system while computing updates to the controls
using the approximate model [AQN06b; Aga+21]. In Algorithm 14, this is achieved by linearizing
the dynamics and quadraticizing the cost around the observed trajectory (Line 5) resulting in an
LQR problem with the objective:

J(∆x,∆u) =
H−1∑
t=0

(2xt + ∆xt)
TQ∆xt + (2ut + ∆ut)

TR∆ut + (2xH + ∆xH)TQf∆xH (6.2)

61

Algorithm 14 ILC Algorithm for Linear Dynamical System with Approximate Model

1: Input: Approximate model Ât, B̂t, Initial state x0, Step size α, cost matrix Q,R,Qf

2: Initialize a control sequence u0:H−1 using approximate model
3: while not converged do
4: Rollout u0:H−1 on the true system to get trajectory x0:H

5: Compute LQR solution arg min∆x,∆u J(∆x,∆u) subject to Ât∆xt + B̂t∆ut = ∆xt+1

6: Update u0:H−1 = u0:H−1 + α∆u0:H−1

where x0:H is the observed trajectory on the true system when executing controls u0:H−1, and
for any t = 0, · · · , H − 1 we have Ât∆xt + B̂t∆ut = ∆xt+1.

At convergence in Algorithm 14, we have ∆u = 0, i.e. the LQR problem in line 5 returns the
solution where ∆u = 0. The solution to the LQR problem can be derived in closed form using
dynamic programming, and for any t ∈ {0, · · · , H − 1} is given by

∆ut = −(R+ B̂T
t P

ILC
t+1B̂t)

−1(Rut + B̂T
t P

ILC
t+1xt+1)

where P ILC
t+1 captures the cost-to-go from time step t+ 1 with P ILC

H = Qf . To obtain ∆ut = 0 for
any t ∈ {0, · · · , H − 1}, it is necessary for the following condition to hold,

Rut + B̂T
t P

ILC
t+1xt+1 = 0

Rut + B̂T
t P

ILC
t+1(Atxt +Btut) = 0

ut = −(R+ B̂T
t P

ILC
t+1Bt)

−1B̂T
t P

ILC
t+1Atxt

where we use the rollout trajectory to obtain xt+1 = Atxt + Btut. It is important to note
that converging to these control inputs require carefully chosing appropriate step sizes α at each
iteration in the ILC Algorithm 14. Thus, we can see that the control inputs u0:H−1 ILC converges
to can be described using a time-varying state-feedback linear controller K ILC defined as:

K ILC
t = −(R+ B̂T

t P
ILC
t+1Bt)

−1B̂T
t P

ILC
t+1At

P ILC
t = Q+ ÂTt P

ILC
t+1(I +BtR

−1B̂T
t P

ILC
t+1)−1At

where we initialize P ILC
H = Qf and the control inputs are defined as uILCt = K ILC

t xt. We can
observe that the ILC converges to control inputs that are different from the ones computed by
the optimal controller K?, and hence achieves suboptimal cost. In the next few sections, we will
analyze the suboptimality bounds for both MM and ILC, and show how ILC converges to control
sequence that achieves lower costs and is more robust to high modeling errors when compared to
MM.

6.2.3 Assumptions

In this section, we will present all the assumptions used in our analysis. Our first assumption is
on the cost matrices Q,Qf and R, also used in [MTR19]:

Assumption 6.2.1. We assume that Q,Qf , and R are positive-definite matrices. Note that
simply scaling all of Q,Qf , and R does not change the optimal controller K?, so we can assume
that the smallest singular value of R,

¯
σ(R) ≥ 1.

The above assumption allows us to ignore terms relating to singular values of R in the analysis,
keeping it concise. The next assumption states that the true system is stable under the optimal
controller K?. Similar notions of stability have been considered in [Coh+18]:

62

Assumption 6.2.2. We assume that the optimal controller K? satisfies ||At + BtK
?
t || ≤ 1 − δ

for some 0 < δ ≤ 1 and all t = 0, · · · , H − 1.

Observe that the above assumption implies that ||Mt(K
?)|| ≤ 1 − δ and ||Lt(K?)|| ≤ (1 −

δ)t+1 ≤ e−δ(t+1). Finally, we make a crucial assumption about the model that is required for our
ILC analysis:

Assumption 6.2.3. We assume that the matrix BtR
−1B̂T

t has eigenvalues that have non-negative
real parts for all t = 0, · · · , H − 1. A sufficient condition for this to hold is that the modeling

error satisfy εB ≤ ¯
σ(BTt RBt)

||BTt R||
for all t = 0, · · · , H − 1.

The above assumption ensures that xTBtR
−1B̂T

t x ≥ 0 for any vector x ∈ Rn and all time
steps t. Intuitively, if this is not true then ILC is not guaranteed to converge to a local minima.
A more detailed explanation is given in Appendix 9.4.4.

6.3 Main Results

In this section, we will present the main results concerning the worst case performance bounds
of MM and ILC in the LQR setting with an approximate model as described in Section 6.2. Our
first theorem bounds the cost suboptimality of any time-varying linear controller K̂ in terms of
the norm differences ‖K?

t − K̂t‖:
Theorem 6.3.1. Suppose d ≤ n. Denote Γ = 1 + maxt{||At||, ||Bt||, ||P ?t ||, ||K?

t ||}. Then under
Assumption 6.2.2 and if ||K?

t − K̂t|| ≤ δ
2||Bi|| for all t = 0, · · · , H − 1, we have

V̂0(x0)− V ?
0 (x0) ≤ dΓ3‖x0‖2

H−1∑
t=0

e−δt‖K?
t − K̂t‖2 (6.3)

The proof for the above theorem is given in Appendix 9.4.1.
This theorem is central to our analysis as it states that as long as we can keep the norm

differences ||K̂t−K?
t || small, then the cost suboptimality scales with the norm difference squared

at each time step and goes exponentially down with time step. We will now present results on
how we can bound these norm differences for both MM and ILC.

Results for Optimal Control with Misspecified Model Our next lemma bounds the
difference ‖KMM

t −K?
t ‖ in terms of ‖PMM

t+1 − P ?t+1‖ and modeling errors εA, εB:

Lemma 6.3.1. If ||At − Ât|| ≤ εA and ||Bt − B̂t|| ≤ εB for t = 0, · · · , H − 1, and we have
||P ?t+1 − PMM

t+1 || ≤ fMM
t+1 (εA, εB) for some function fMM

t+1 . Then we have under Assumption 6.2.1
for all t = 0, · · · , H − 1,

||K?
t −KMM

t || ≤ 14Γ3εt (6.4)

where Γ = 1 + maxt{||At||, ||Bt||, ||P ?t ||, ||K?
t ||} and εt = max{εA, εB, fMM

t+1 (εA, εB)}.
The proof for the above lemma is given in Appendix 9.4.3.
This result is very promising but there is a big piece still missing: how do we bound fMM

t+1 (εA, εB).
To do this, we need to establish perturbation bounds for the discrete ricatti equation in the finite
horizon setting. Prior work [KPC93; MTR19] has only established such bounds in the infinite
horizon setting using fixed point analysis. Our treatment is significantly different as the finite
horizon solution is not a fixed point. Our final perturbation bounds are presented in the theorem
below:

63

Theorem 6.3.2. If the cost-to-go matrices for the optimal controller and MM controller are
specified by {P ?t } and {PMM

t } such that P ?H = PMM
H = Qf then,

||P ?t − PMM
t || ≤ ‖At‖2‖P ?t+1‖2(2‖Bt‖‖R−1‖εB + ‖R−1‖ε2B)

+ 2‖At‖‖P ?t+1‖εA + ‖P ?t+1‖ε2A
+ cP ?t+1

(‖At‖+ εA)2||P ?t+1 − PMM
t+1 || (6.5)

for t = 0, · · · , H − 1 where cP ?t+1
∈ R+ is a constant that is dependent only on P ?t+1 if εA, εB are

small enough such that ‖P ?t+1 − PMM
t+1 ‖ ≤ ‖P ?t+1‖−1. Furthermore, the upper bound (6.5) is tight

up to constants that only depend on the true dynamics At, Bt, cost matrix R, and P ?t+1.

The proof for the above theorem is given in Appendix 9.4.3.
The above theorem gives us an upper bound for fMM

t for t = 0, · · · , H − 1 in Lemma 6.3.1
with fMM

H = 0. The resulting upper bound on ‖K?
t −KMM

t ‖ from Lemma 6.3.1 combined with
Theorem 6.3.1 gives us the cost suboptimality bound for MM. Notice that the bound on fMM

t

grows quickly as t decreases making fMM
t+1 in Lemma 6.3.1 the dominant error term that affects

the cost suboptimality of MM.

Results for Iterative Learning Control Our final set of results establish similar worst case
cost suboptimality bounds for ILC by first establishing a bound on the difference ‖K ILC

t −K?
t ‖ in

terms of ‖P ILC
t+1 − P ?t+1‖ and modeling error εA, εB:

Lemma 6.3.2. If ||At − Ât|| ≤ εA and ||Bt − B̂t|| ≤ εB for t = 0, · · · , H − 1, and we have
||Pt+1 − P ILC

t+1|| ≤ f ILCt+1(εA, εB) for some function f ILCt+1. Then we have under Assumption 6.2.1 for
all t = 0, · · · , H − 1,

||K?
t −K ILC

t || ≤ 6Γ3εt (6.6)

where Γ = 1 + maxt{||At||, ||Bt||, ||P ?t ||, ||K?
t ||} and εt = max{εA, εB, f ILCt+1(εA, εB)}.

The proof for the above lemma is given in Appendix 9.4.5.
Similar to MM, we need to bound the crucial term f ILCt+1(εA, εB) to bound the norm difference

‖K?
t − K ILC

t ‖ using Lemma 6.3.2. We will present perturbation bounds for the ILC recursion
equation given in Section 6.2.2 in the finite horizon setting below:

Theorem 6.3.3. If the cost-to-go matrices for the optimal controller and iterative learning control
are specified by {P ?t } and {P ILC

t } such that P ?H = P ILC
H = Qf then we have under Assumption 6.2.3,

||P ?t − P ILC
t || ≤ ‖At‖2‖P ?t+1‖2‖Bt‖‖R−1‖εB + ‖At‖‖P ?t+1‖εA

+ cP ?t+1
||At||(‖At‖+ εA)||P ?t+1 − P ILC

t+1|| (6.7)

for t = 0, · · · , H − 1 where cP ?t+1
∈ R+ is a constant that is dependent only on P ?t+1 if εA, εB are

small enough that ‖P ?t+1 − P ILC
t+1‖ ≤ ‖P ?t+1‖−1. Furthermore, the upper bound (6.7) is tight upto

constants that depend only on the true dynamics At, Bt, cost matrix R, and P ?t+1.

The proof for the above theorem is given in Appendix 9.4.5.
The above theorem gives us a bound on f ILCt for t = 0, · · · , H−1 in Lemma 6.3.2 with f ILCH = 0.

The resulting upper bound on ‖K?
t −K ILC

t ‖ from Lemma 6.3.2 combined with Theorem 6.3.1 gives
us the cost suboptimality bound for iterative learning control. Similar to MM, the dominant error
term in Lemma 6.3.2 turns out to be f ILCt+1 especially for smaller t as the upper bound (6.7) grows
quickly as t decreases.

64

6.4 Interpreting the Worst Case Bounds

The recursive bounds presented in (6.5) and (6.7) make it difficult to compute a concise bound
in Theorem 6.3.1. In this section, we will explicitly compare the cost suboptimality bounds for
MM and ILC under different scenarios, where the bound can be simplified.

Small Modeling Errors In the regime of small modeling errors εA << 1 and εB << 1, we can
ignore quadratic terms ε2A and ε2B in upper bound for MM (6.5) which results in an upper bound
that matches that of ILC (6.7) upto a constant. This suggests that when the modeling errors are
small, both ILC and MM have almost the same worst case performance, with ILC having better
performance over MM by a constant factor. Intuitively, this makes sense as the approximate
model is a very good approximation of the true dynamics, and despite using only the model, MM
can synthesize a near-optimal controller.

Highly Damped Systems The second scenario we consider is that of a system that is highly
damped which implies ‖At‖ << 1 for all t = 0, · · · , H − 1. In this regime, the upper bound for
ILC (6.7) goes down to zero resulting in ILC achieving near-optimal cost despite having non-zero
modeling errors εA, εB. The suboptimality in ILC (from Lemma 6.3.2) only arises from εA, εB
and not from f ILCt+1 which is 0. In contrast, the upper bound for MM (6.5) does not go down to
zero and has terms that depend on ε2A, which can be significant when εA is not small. Thus,
for highly damped systems we have that the worst case performance of ILC can be significantly
better than MM, especially when εA is large. Intuitively, this can be understood by observing
that ILC removes the effect of modeling errors by always performing rollouts using true dynamics,
while MM errors are exacerbated by using the approximate model for rollouts. Interestingly, we
also notice that the modeling error εB does not affect the cost-suboptimality in upper bound for
MM (6.5) when the system is highly damped.

Weakly Controlled Systems For systems with small ‖Bt‖ << 1, i.e. where the control
inputs do not affect the dynamics of the system to a large extent, we can observe that the upper
bound for ILC (6.7) reduces to a bound that does not depend εB. In other words, any modeling
error εB in estimating the Bt matrices does not affect the upper bound (6.7) for ILC. In constrast,
the upper bound for MM (6.5) reduces to an expression that has terms that depend on ε2B, which
can become significant when εB is large. Thus, for systems with ‖Bt‖ << 1, ILC is robust to any
modeling errors εB in the Bt matrices, whereas MM degrades its worst case performance with
increasing εB.

Modeling Error only at the first time step Consider a scenario where the model is inac-
curate only at t = 0, i.e. ‖A0 − Â0‖ ≤ εA and ‖B0 − B̂0‖ ≤ εB, while Ât = At and B̂t = Bt
for all t = 1, · · · , H − 1. In this case, the upper bounds (6.5) and (6.7) simplify greatly as
‖P ?t − P ILC

t ‖ = ‖P ?t − PMM
t ‖ = 0 for all t = 1, · · · , H − 1, and we only have upper bounds on

||P ?0 − PMM
0 || and ||P ?0 − P ILC

0 || as given by Theorems 6.3.2 and 6.3.3 which when combined with
Theorem 6.3.1 gives us the suboptimality bounds:

V̂ MM
0 (x0)− V ?

0 (x0) ≤ O(1)dΓ9‖x0‖2(εA + ε2A + εB + ε2B)2 (6.8)

V̂ ILC
0 (x0)− V ?

0 (x0) ≤ O(1)dΓ9‖x0‖2(εA + εB)2 (6.9)

65

The above two cost suboptimality bounds highlight the differences between MM and ILC in worst
case performance. As described in Section 6.4, if εA and εB are small, then MM and ILC worst
case performances match up to constants as we can ignore higher order terms. However, in
cases where modeling errors εA and εB are large and higher order terms like ε2AεB, ε4A etc. start
becoming significant, the worst case performance of ILC tends to be better than MM as indicated
by equations (6.8) and (6.9). Furthermore, the conditions for stability under synthesized control
inputs, as stated in Theorem 6.3.1 (and in Lemma 9.4.1 in Appendix 9.4.1,) is harder to satisfy
for MM when compared to ILC, especially when modeling errors are large.

6.5 Empirical Results

In this section, we present three empirical experiments: a linear dynamical system with an ap-
proximate model, a nonlinear inverted pendulum system with misspecified mass, and a nonlinear
planar quadrotor system in the presence of wind. The aim of these experiments is to show that
under high modeling errors, ILC is more efficient than MM, thus backing our theoretical findings.1

6.5.1 Linear Dynamical System with Approximate Model

In this experiment, we use a linear dynamical system with states x ∈ R2 and control inputs

u ∈ R. The dynamics of the system are specified by matrices: At =

[
1 1
−3 1

]
, Bt =

[
1
3

]
. The

approximate model we use is constructed by perturbing the dynamics as follows: Ât = At + εI,

B̂t = Bt + ε

[
1
0

]
for any ε ≥ 0. Observe that this satisfies ||Ât − At|| ≤ ε and ||B̂t − Bt|| ≤ ε.

We use a quadratic cost as specified in equation 6.1 with matrices: Q = Qf = I, R = 1 (more
details in Appendix 6.5.1). We can solve for the optimal controller K? in closed form using
true dynamics At, Bt as specified in Section 6.2. We compare MM controller KMM and iterative
learning controller K ILC with approximate model Ât, B̂t in Figure 6.1 where we vary ε along the
X-axis (in log scale) and report the cost suboptimality gap V0(x0)− V ?

0 (x0) on the Y-axis (in log
scale) where V0(x0) is the cost incurred by KMM or K ILC. To ensure that Assumption 6.2.3 is

not violated, the X-axis is capped at ε = ¯
σ(BTt RBt)

||BTt R||
. It is important to note that to generate the

plot in Figure 6.1 we directly used the closed form solution for K ILC (as described in Section 6.2)
and did not run a iterative learning control algorithm. This was done to ensure that our results
do not have any dependence on how well the step size sequence was tuned for ILC.

We can observe that for small modeling errors ε < 10−1, ILC outperforms MM by a constant
factor (about 4×102) as evidenced by the linear trend in log scale. However in the regime of high
modeling errors ε > 10−1 we observe that the gap between ILC and MM is not a constant factor
anymore and grows very quickly as ε increases. This can be explained by the fact that for high
ε, the higher order terms in the gap between ILC and MM starts becoming significant and results
in poor performance for MM when compared to ILC. For large epsilons, we also observe that the
cost for MM blows up to really big values as the system is not stable anymore under KMM due
to violation of the condition in Theorem 6.3.1 (and in Lemma 9.4.1 in Appendix 9.4.1.) This
experiment validates our claim from the analysis that ILC tends to perform better in terms of
cost and is more robust when modeling errors are high.

1The code for all experiments can be found at https://github.com/vvanirudh/ILC.jl.

66

https://github.com/vvanirudh/ILC.jl

10 3 10 2 10 1 100

10 6

10 3

100

103

106

Co
st

 S
ub

op
tim

al
ity

 g
ap

Linear Dynamical System with approximate model
MM
ILC (closed form)

Figure 6.1: Cost suboptimality grap with varying modeling error ε for a linear dynamical system.
Note that both X-axis and Y-axis are in log scale.

6.5.2 Nonlinear Inverted Pendulum with Misspecified Mass

For the second experiment, we use the nonlinear dynamical system of an inverted pendulum. The
state space is specified by x =

[
θ θ̇

]
∈ R2 where θ is the angle between the pendulum and the

vertical axis. The control input is u = τ ∈ R specifying the torque τ to be applied at the base of
the pendulum. The dynamics of the system are given by the ODE, θ̈ = τ̄

m`2
− g sin(θ)

` where m is
the mass of the pendulum, ` is the length of the pendulum, g is the acceleration due to gravity,
and τ̄ = max(τmin,min(τmax, τ)) is the clipped torque based on torque limits (more details in
Appendix 9.4.7). We use an approximate model of the dynamics where the mass of the pendulum
is perturbed as m̂ = m+ ∆m. This results in dynamics that are nonlinearly perturbed from the
true dynamics. Since the dynamics are nonlinear, we cannot obtain optimal controls, and MM
controls in closed form. Instead, we approximate these controllers by running iLQR [LT04] (both
forward and backward pass) on the true dynamics and the approximate dynamics respectively
for 200 iterations. To obtain ILC control inputs, we run iLQR with forward pass (or rollouts)
using the true dynamics, and backward pass computed using the approximate dynamics at each
iteration. We chose step sizes for all iLQR runs using backtracking line search.

Figure 6.2 shows the cost suboptimality gap of MM and ILC as the perturbation ∆m varies.
Similar to our previous experiment, we observe that for small modeling errors ∆m < 0.07 both
ILC and MM perform similarly with ILC outperforming slightly. But as ∆m grows, the cost of
MM quickly grows saturating at a suboptimality gap around 57. In contrast, we observe that
ILC is still able to compute near-optimal controls until ∆m = 0.15 showcasing the robustness of
ILC to higher modeling errors. Beyond ∆m = 0.15, ILC performance also degrades significantly
as the approximate model is not representative of the true dynamics anymore. Although our
analysis in the previous sections was restricted to linear dynamical systems, we notice a similar
trend between ILC and MM in the presence of nonlinear dynamics namely, in the regime of large
modeling errors, ILC tends to perform better than MM.

6.5.3 Nonlinear Planar Quadrotor Control in Wind

In our final experiment, we compare MM and ILC on a planar quadrotor control task in the
presence of wind. A similar setting was used in [Aga+21]. The quadrotor is controlled using

67

0.00 0.05 0.10 0.15 0.20 0.25
m

0

10

20

30

40

50

60

Co
st

 su
bo

pt
im

al
ity

 g
ap

Inverted Pendulum with misspecified mass
MM
ILC

Figure 6.2: Cost suboptimality gap of CE and ILC with varying ∆m for a nonlinear inverted
pendulum system.

two propellers that provide upward thrusts (u1, u2) and allows movement in the 3D planar space
described as (px, py, θ) where px, py are X, Y positions, and θ is the yaw of the quadrotor. The
dynamics of the planar quadrotor is specified using a state vector x ∈ R6, and control input
u ∈ R2 (more details in Appendix 9.4.7). The quadrotor is flying in the presence of wind which is
not captured in modeled dynamics, but affects the true dynamics of the quadrotor as a dispersive
force field (ηpxi + ηpyj) resulting in overall dynamics given by:

p̈x =
1

m
(u1 + u2) sin(θ) + ηpx p̈y =

1

m
(u1 + u2) cos(θ)− g + ηpy

where η ∈ R+ is a constant that captures magnitude of the wind force field.

The objective of the task is to move the quadrotor from an initial state x0 to a final state
xf . Similar to previous experiment, the dynamics are nonlinear and we cannot obtain optimal
controls and MM controls in closed form. Thus, we again approximate these by running iLQR
on true dynamics and approximate dynamics respectively. We obtain ILC control inputs again
by using iLQR with forward pass using true dynamics and backward pass using approximate
dynamics. For all iLQR runs, we choose step sizes by performing backtracking line search and we
initialize the control inputs as the hover controls. Figure 6.3 compares MM and ILC for planar
quadratic control with varying magnitude of wind η. For small wind magnitudes, we observe
that both MM and ILC have good performance. As the wind magnitude increases, MM quickly
diverges and the cost of synthesized control inputs blows up quickly as the modeled dynamics
are incapable of capturing the dispersive force field exerted by the wind. ILC, on the other hand,
manages to keep the cost from blowing up even at large wind magnitudes. This reinforces our
conclusion that ILC is robust to large modeling errors while MM can quickly result in the cost
blowing up when the model is highly inaccurate.

6.6 Discussion

Iterative Learning Control is known popularly as a higher performance and more robust alter-
native to optimal control with misspecified model when given access to an inaccurate dynamical
model. Our work takes the first steps in laying the theoretical evidence for why ILC has better

68

0 2 4 6 8 10

10 2

100

102

104

106

Co
st

 su
bo

pt
im

al
ity

 g
ap

Planar Quadrotor Control in Wind
MM
ILC

Figure 6.3: Cost suboptimality gap of MM and ILC for planar quadrotor control with varying
magnitude of wind η

performance and is more robust when compared to MM. Unlike past work on analyzing the perfor-
mance of MM in the infinite-horizon setting, we establish our suboptimality bounds in the finite
horizon setting in which ILC is typically used. We use ricatti perturbation proof techniques to
prove suboptimality bounds in terms of the modeling error εA, εB for both ILC and MM, enabling
us to compare them. This allows us to identify the reasons for the performance and robustness
of ILC.

Our analysis shows that the gap between ILC and MM is in higher order terms that can become
significant when the modeling error εA, εB is large. This is backed by our empirical experiments
where we observe that as the magnitude of modeling error increases, the performance gap between
ILC and MM grows rapidly as MM is incapable of handling large modeling errors and the resulting
cost diverges. Furthermore, the conditions needed for stability of the system under synthesized
control inputs, are easier to satisfy for ILC when compared to MM, especially in the regime of
large modeling errors. This explains the robustness of ILC over MM for complex control tasks
when given access to highly inaccurate dynamical models. We also identify scenarios where the
norms ‖At‖ and ‖Bt‖ are small, where ILC is provably more efficient and more robust to modeling
errors, when compared to MM.

While our current analysis is restricted to the linear quadratic control setting, exploring similar
suboptimality bounds in more complex and possibly, nonlinear settings is an exciting direction for
future work. Recent work by [SF20] uses a self-bounding ODE method to establish perturbation
bounds that sharpens previous bounds in the infinite horizon setting by only depending on natural
control-theoretic quantities and not relying on controllability assumptions. It remains to be seen
if we can rely on similar techniques to sharpen the bounds presented in this work. It would also
be interesting to know whether fast rates for control are possible for cost functions other than
quadratic costs. Finally, comparing iterative learning control and robust control approaches such
as [Dea+20] would allow us to understand the regime of modeling errors in which ILC is more
suitable than robust control approaches, and vice versa.

69

70

Chapter 7
Task-Aware Online Model Search with
Misspecified Model Classes

More work is needed before planning with
learned models can be effective.
Environment models should be constructed
judiciously with regard to both their states
and dynamics with the goal of optimizing
the planning process.

Rich Sutton and Andrew Barto (2018)

The algorithms presented in this thesis, so far, have not required any updates to the dynamics
of the model. In contrast, most existing methods in the literature, such as [KS02; BT02; JS07;
Lju10; AN05; DFR15; AQN06a; RB12; Jia18; RKK18], use experience acquired from executions
to update the dynamics of the model or learn a model from scratch. Chapters 4 and 5 have
argued that updating the dynamics of the model requires a large amount of experience in large
state spaces and can be at the expense of completing the task. While this is generally true,
there are major advantages of updating the dynamics of the model, especially in domains where
it is feasible to do it online, as it allows the planner to compute solutions that exploit the true
dynamics and potentially result in solutions with very low costs. Furthermore even in application
domains where we require a large amount of experience to update the model, the improvement in
task performance from planning on a more accurate model can outweigh the executions wasted
to learn true dynamics. For example, there might be regions in the state space where updating
the dynamics of the model can be done efficiently while in other regions we can resort to methods
that update the behavior of planner such as Cmax and Cmax++. This motivates a trade-off
between both sets of approaches and understanding this trade-off can result in intelligent use of
online experience to achieve efficient planning and execution.

This chapter presents Toms an online model search algorithm that updates the dynamics of
the model to directly optimize task performance, rather than optimizing prediction error that is
commonly done in existing works. This allows Toms to use misspecified model classes, where
none of the models are able to capture the true dynamics accurately, and still improve the task
performance by updating the model dynamics. This chapter is based on ongoing work.

71

7.1 Problem Setup

We consider the deterministic shortest path problem represented using the tupleM = (S,A,G, f, c)
where S is the state space, A is the action space, G ⊂ S is the set of goals that we are interested
in reaching, f : S × A → S is the deterministic dynamics, and c : S × A → [0, 1] is the cost
function. We assume that any goal state g ∈ G is a cost-free termination state. The objective
of the shortest path problem is to find the least-cost path from a given start state s1 ∈ S to any
goal state g ∈ G in M . As is typical in shortest path problems, we assume that there exists at
least one path from each state s ∈ S to one of the goal states in G [Ber05].

In this work, we focus on environments M with unknown transition dynamics f and known
cost function c. Instead we have access to a dynamical model class F = {f̂θ : S × A → S}
that is parameterized by θ ∈ Θ. We do not require that f ∈ F , i.e. the model class F can
be misspecified. This is usually true in real-world domains where the true dynamics can be
time-varying and arbitrarily complex. Even in domains where the dynamics are not complex, we
might desire to chose a small model class to achieve computational efficiency for methods to run
in real-time. The robot gathers knowledge of the true dynamics over a single trajectory in the
environment, and does not have access to any resets, ruling out any episodic approach.

We assume we have access to a planner P that when given a dynamical model f̂θ results in a
policy πθ : S → A that optimizes the cost-to-go according to the cost function c and transition
dynamics f̂θ. Note that we do not require P to be an optimal planner. We will use the notation
V πθ
θ (s) to denote the cost-to-go (or state value function) from state s using policy πθ under the

transition dynamics given by f̂θ ∈ F . To denote the cost-to-go of any policy πθ
1 in M under

the true dynamics f , we use the notation V πθ . Similarly, we will use the notation Qπθθ (s, a) and
Qπθ(s, a) to denote the state-action value function (or cost-to-go after executing action a in state
s) in the model f̂θ and in M respectively.

Our method, Toms, relies crucially on having access to an optimistic dynamical model fopt :
S× A→ S. An optimistic dynamical model satisfies the following assumption [VBL20]:

Assumption 7.1.1. For any policy π, the cost-to-go V π
opt using the dynamics fopt underestimates

the cost-to-go V π using the true dynamics f at all states, i.e. V π
opt(s) ≤ V π(s) for all s ∈ S.

where we use the notation V π
opt to denote the cost-to-go of policy π under the transition

dynamics of the optimistic model fopt.

7.2 Relevant Prior Work

7.2.1 Maximum Likelihood Model Learning

Most of the existing model learning methods [Lju10; AN05; RB12; Wan+19] use a maximum-
likelihood estimation objective (MLE) that optimizes prediction error to choose the best model f̂θ
among the class F . Given a set of transitions obtained from execution inM , D = {(si, ai, si+1)}Ni=1

where si ∈ S, ai ∈ A and si+1 = f(si, ai) we construct a loss function given as follows:

Lmle(θ) =
1

N

N∑
i=1

(si+1 − f̂θ(si, ai))2 (7.1)

1Note that we use the same parameterization θ for both policies and dynamical models as we only consider the
class of policies that result from applying the planner P on the dynamical model class F .

72

While we deal with deterministic dynamics in this work, in the stochastic setting the above
L2 norm prediction error can be derived from maximum likelihood estimator by modeling the
stochastic one-step transition dynamics using a gaussian distribution.

Once we find θmle = arg minθ Lmle(θ), we use the planner P to find the corresponding policy
πθmle that is used for future executions in M . There are some subtleties that are required in these
approaches where we require that the data D is collected using a sufficiently exploratory policy
to ensure good coverage. We will refer the curious reader to these works [Lju10; AN05; RB12;
Wan+19] to understand these subtleties.

7.2.2 Reward Based Model Search

[Jos+13] presented an offline model search approach RBMS that eschews maximum likelihood
learning and directly optimizes the cost-to-go in M . Similar to our work, they treat the dynamical
model class as a parameterization of the policy (using planner P) and search for θrbms that achieves
the least cumulative cost using a gradient descent procedure as follows:

θ = θ − α∂V
πθ(s1)

∂θ
(7.2)

where α > 0 is the stepsize.

To compute the update in (7.2) we require gradient of cost-to-go of policy πθ in M w.r.t θ,

i.e. ∂V πθ (s1)
∂θ which is extremely difficult to compute as the operation that results in V πθ from θ

can be highly nonlinear. [Jos+13] sidestep this difficulty by using a zeroth-order estimate of the
gradient obtained from evaluating V πθ for small perturbations of θ.

Given a policy πθ, RBMS evaluates V πθ in an off-policy fashion using offline collected dataset
D = {(si, ai, si+1)}Ni=1 which consists of transitions in M collected by executing an exploratory
policy different from πθ. For a fixed horizon length H, V πθ is computed by starting at s1 and
sequentially adds transitions such that at time t when the robot is at state s̃, the next transition
is (st, at, st+1) = arg min(s,a,s′)∈D∆((s̃, πθ(s̃)), (s, a)) where ∆ is a user-defined distance metric
in state-action space. Note that each transition in D can only be used once, and the episode is
terminated after H steps. The cumulative cost of the resulting episode is used as a proxy for
V πθ .

Given this estimate of V πθ for any θ, RBMS performs a hill climbing procedure (shown in
Algorithm 15) by perturbing θ locally and repeating until we reach a local minima at which it
returns the θrbms found. Since, the objective optimized V πθ directly corresponds to task per-
formance, RBMS is able to find the best performing model in a misspecified model class that
achieves good task performance.

While RBMS is a task-aware model search procedure, it is an offline method that requires the
dataset D to have good coverage. As we show in our experiments, the online version of RBMS,
where we are collecting the dataset D online while executing policies found by RBMS in M , can
result in a very poor performance as the dataset D will not have a good coverage and can result
in a highly inaccurate estimate of V πθ . We will show that our approach Toms sidesteps this by
falling back on the optimistic dynamical model fopt in state-action space regions where online
data D does not have good coverage.

73

Algorithm 15 Model Search Using Derivative-Free Optimization [Jos+13]

1: procedure MODELSEARCH(D)
2: Initial perturbation δinit, minimum perturbation δmin, start parameters θ, Initial state s1,
δ ← δinit, planner P

3: while δ > δmin do
4: for each dimension of Θ do
5: while True do
6: Compute {πθ− , πθ, πθ+} ← {P (f̂θ−δ), P (f̂θ), P (f̂θ+δ)}
7: Evaluate {V πθ− , V πθ , V πθ+}
8: if min(V πθ− (s1), V πθ+ (s1)) > V πθ(s1) then
9: break

10: if V πθ− (s1) < V πθ+ (s1) then
11: θ ← θ − δ
12: else
13: θ ← θ + δ

14: δ ← δ
2

15: return θ

7.3 Approach

Our approach Toms builds upon RBMS by extending to the online setting where policy execution
and model updates are interleaved. In addition to the online setting, Toms also uses a more
informative cost-to-go evaluation procedure that allows it to use data collected online that might
not have good coverage of state-action space while still improving the task performance of the
policy. We will first describe the online setting and present the framework in Section 7.3.1.
Subsequently in Section 7.3.2, we will explain our novel off-policy evaluation procedure that uses
the optimistic model in state-action space regions where we do not have good data coverage.

7.3.1 Online Model Search

Extending RBMS to the online setting requires us to specify how the data is collected, and once
the data is collected how the policy is updated. The online setting we consider is the deterministic
shortest path problem described in Section 7.1, where the robot has no access to resets and can
gain knowledge about the true dynamics of M through a single trajectory.

The online model search framework is given in Algorithm 16. Starting from the initial state,
the robot executes the policy computed by the planner using the dynamical model f̂θ where θ is
the parameterization of the initial model. For each execution in M using the policy πθ, we store
the resulting transition in the dataset D. Once every ν executions, we use the data collected so
far, and run a model search procedure to pick a new θ and update the policy using the planner
P . This process is repeated until the robot reaches the goal.

Observe that we collect the dataset D using the current policy that is used for execution.
Note that this is in contrast to the offline setting where we have a fixed dataset that is given to us
prior to execution that is collected by executing a fixed exploratory policy. In the online setting,
as the policy changes it results in a different set of states visited thereby changing the dataset
D. Furthermore, due to the lack of resets we obtain more data in regions where the current
policy spends more executions. These characteristics of the online dataset D pose challenges to

74

Algorithm 16 Online Model Search Framework

Require: Initial state s1, Planner P , Initial Model θ, Dataset D = {}, Model update frequency
ν ∈ Z

1: t← 1, πθ ← P (f̂θ)
2: while st /∈ G do
3: Compute at ← πθ(st)
4: Execute at in M to get st+1 = f(st, at)
5: Update D = D ∪ {(st, at, st+1)}
6: if t is a multiple of ν then
7: Update θ ← MODELSEARCH(D)
8: Update πθ ← P (f̂θ)

maximum likelihood model learning methods and offline model search methods like RBMS.

Due to the non-stationary nature of the dataset D, maximum likelihood methods find a model
that best predicts the true dynamics for states that were visited during execution, and can have
terrible prediction everywhere else. This can result in a bad policy that does not make any
progress towards the goal. Meanwhile offline methods like RBMS rely on off-policy evaluation
procedures (such as the one described in Section 7.2.2) that solely rely on the dataset D. Due to
the lack of good coverage in the dataset, these evaluation procedures can be highly inaccurate and
pessimistic resulting in convergence to poor policies when used in model search. Our approach
Toms builds upon RBMS by using an optimistic off-policy evaluation procedure that is described
in the next section.

7.3.2 Optimistic Off-Policy Evaluation

Given a policy πθ and dataset D of transitions executed in M , our goal is to estimate the cost-
to-go V πθ of the policy in M . RBMS estimates this by solely using the dataset D, while our
approach Toms relies on D only in regions where it has good coverage and falls back on the
optimistic dynamical model fopt elsewhere. To determine if the dataset has good coverage for a
state-action pair (s, a), we compute the distance to the closest state-action pair in the dataset
D. A user-defined distance threshold µ determines whether we use the transition in the dataset
to obtain the successor or to fall back on the optimistic model fopt. The optimistic off-policy
evaluation procedure is given in Algorithm 17.

Starting from the initial state s1, we compute the action computed by the policy and find the
closest state-action pair from the dataset D as measured by the distance metric ∆. If the closest
state-action pair is closer than µ, then we assign the successor of the closest state-action pair as
the next state and remove it from the dataset D. Else, we query the optimistic model fopt to
obtain the next state. Our evaluation procedure differs from the evaluation procedure used in
RBMS in that we use µ to switch between using dataset D for state-action regions with good
coverage and using optimistic model fopt elsewhere.

Combining all the components so far, Toms uses the novel optimistic off-policy evaluation
procedure from Algorithm 17 in Line 7 of Algorithm 15. The resulting MODELSEARCH procedure
is used in the online model search framework presented in Algorithm 16.

75

Algorithm 17 Optimistic Off-Policy Evaluation

Require: Policy πθ, Dataset D, start state s1, horizon H, Distance metric ∆, Distance threshold
µ ≥ 0

1: Initialize s̃← s1, V̂ πθ(s1)← 0
2: for t = 1 to H do
3: Compute ã← πθ(s̃)
4: Find (st, at, st+1)← arg min(s,a,s′)∈D∆((s̃, ã), (s, a))
5: if ∆((s̃, ã), (st, at)) ≤ µ then
6: D ← D \ (st, at, st+1)
7: else
8: Compute st+1 ← fopt(st, at)

9: V̂ πθ(s1)← V̂ πθ(s1) + c(st, at), s̃← st+1

10: if s̃ ∈ G then
11: break
12: return V̂ πθ(s1)

7.4 Theoretical Guarantees

Our first guarantee shows that using optimistic off-policy evaluation as done in Algorithm 17
always results in a cost-to-go estimate that is not too pessimistic. In other words, we have

Theorem 7.4.1. If the state-action value function Qπθ is L-lipschitz under the distance metric
∆ for any policy πθ, then we have that the estimate V̂ πθ satsfies

V̂ πθ(s1) ≤ V πθ(s1) + LHµ (7.3)

where H is the horizon, and V πθ is the true cost-to-go of the policy πθ in M .

Proof Sketch. Observe that if we never use any transition in the dataset D, then we completely
rely on the optimistic model fopt for evaluation which by definition results in a cost-to-go estimate
V̂ πθ that is optimistic. Now, let’s say we use a transition (s, a, s′) ∈ D to evaluate the cost-to-go
of (s̃, ã), then we have that

Qπθ(s, a)−Qπθ(s̃, ã) ≤ L∆((s̃, ã), (s, a))

≤ Lµ

Thus, we can introduce a pessimistic error of at most Lµ everytime we use a transition from D.
In the worst case, we use H transitions from D, and thus our resulting cost-to-go estimate V̂ πθ

can overestimate the true cost-to-go V πθ by LHµ.

The above guarantee highlights the advantage of Toms using an optimistic off-policy evalua-
tion method. By not being severely pessimistic, Toms never discounts a policy before obtaining
enough data to do it with certainty. This allows Toms to always be optimistic and not rely
on inaccurate pessimistic value estimates. The potential downside of this is that we might not
be exploiting the dataset D completely, but turns out collecting more data is not as harmful as
switching to a much worse policy based on inaccurate evaluation as evidenced in our experiments.

We can also provide a task-completeness guarantee for Toms in small state-action spaces
(where we can set µ = 0) when given access to unlimited computation (allowing us to solve the

76

hill-climbing procedure in Algorithm 15 a large number of times to reach global minima) which
is stated as follows:

Theorem 7.4.2 (Task Completeness). In small state-action spaces Toms, given access to un-
limited computation, is guaranteed to reach a goal state if there exists at least a single model in
the model class F that is good enough to result in a policy that can reach the goal in M .

Proof Sketch. From Theorem 7.4.1 we have that when we set µ = 0, the resulting cost-to-go
estimates are always optimistic. Thus, as the robot collects more data it either reaches the goal
or collects enough data to get the true cost-to-go estimate. In the latter case, since we are
performing exact global optimization, Toms is guaranteed to find the best model in the model
class that minimizes the true cost-to-go. As long as this best model results in a policy that can
reach the goal, Toms will also reach the goal by picking this model and using its corresponding
policy.

7.5 Experiments

We compare Toms against RBMS, maximum likelihood model learning (MLE) and Cmax on a
variant of the standard mountain car domain. This variant was first introduced in [Jos+13]. In
this variant of the classic mountain car (shown in Figure 7.1), there is a rock (shown in red in
the Figure) which causes the car to decrease its speed by c whenever the car moves across the
rock in either direction. The dynamics of mountain car are specified as follows:

xt+1 = xt + ẋt

ẋt+1 = ẋt + a+ θ1 cos(θ2xt)

where a ∈ {−0.001, 0.001} is the action executed. We use a uniform discretization of x and
ẋ with a 150 × 150 grid. The model class used by all approaches is F = {(θ1, θ2)|θ1, θ2 ∈
R}. The environment M (as shown in Figure 7.1) uses θ1 = −0.0025 and θ2 = 3 for the
dynamics everywhere except at the rock where the velocity dynamics differ. Therefore, increasing
c corresponds to the model class F becoming increasingly misspecified. The initial position for
the car is randomized across each trial by sampling uniformly at random from [−π6 −0.1, −π6 +0.1]
with the initial velocity set to 0. The rock is placed at x = 0.25 for all the trials with the goal at
x = 0.5. We use the distance function ∆ given by,

∆((s, a), (s′, a′)) =

{∑D
d=1

|sd−s′d|
sdmax−sdmin

if a = a′

∞ otherwise
(7.4)

For Toms, we use the threshold µ = 0.01 as specified by the above distance metric. We use a
dense cost function given by c(s) = (x − 0.5)4 for any state s = (x, ẋ) of the car. We also test
Toms and the baselines when we use a sparse cost function given by c̄(s) = 1 for any state s /∈ G
and 0 otherwise.

Through our experiments, we would like to answer the following two questions:

1. Does using Toms help in reaching the goal quickly despite lack of knowledge of the rock
dynamics and the model class being misspecified?

2. Does using optimistic model for off-policy evaluation help in achieving better value estimates
that are useful for reaching the goal quickly?

77

Figure 7.1: Mountain car domain with rock (in red) that decreases the speed of the car by c

Figure 7.2: Performance versus misspecification on the mountain car domain with dense cost
function. We run each method over 10 trials where the initial state of the car is picked at
random. We cap each trial at 3000 steps.

Figure 7.2 answers the first question in the affirmative. For this experiment, we use the dense
cost function c(s). MLE does a poor job of capturing the dynamics of the car near the rock
as most of the data collected online corresponds to the dynamics as specified by θ1 = −0.0025
and θ2 = 3, and is not good enough for the planner P to get the car over the rock. The
performance of MLE quickly deteriorates and is not successful at reaching the goal in several
trials at larger misspecifications. Cmax, on the other hand, does a good job and is successful at
all misspecifications except c = 0.03. Cmax inflates the cost of any transition with discrepancy
in dynamics around the rock until it executes a transition that allows the car to go beyond the
rock and onto the goal. However, this take a large number of executions as evidenced by the
result in Fiture 7.2. RBMS [Jos+13] does well at small misspecifications but deteriorates for
larger misspecifications as the data collected online does not have good coverage of the state-
action space. This results in overly pessimistic and inaccurate cost-to-go evaluations that result
in convergence to poor policies when used in model search. Toms does not have this disadvantage
as it relies on the optimistic model (in this case, the model with θ1 = −0.0025 and θ2 = 3) in

78

Figure 7.3: Performance versus misspecification on the mountain car domain with sparse cost
function. We run each method over 10 trials where the initial state of the car is picked at random.
We cap each trial at 3000 steps.

state-action space regions where the data does not have good coverage. This ensures that the cost-
to-go evaluations remain optimistic and do not discount models quickly before we gain enough
data. As a result, Toms does better than all the baselines, especially at larger misspecifications,
when model learning is essential. For comparison, we have also included a baseline (in green) of
the policy that is obtained by planning using the true model with the rock. This shows that there
is still a large scope for improvement that one can expect by quickly learning the true dynamics.

We perform a similar experiment, in Figure 7.3, as above but with the sparse cost function
c̄(s). Note that with the sparse cost function, the planning problem is difficult as we need to reason
in longer horizons and propagate values from the goal all the way to the start. Furthermore, for
baselines like RBMS that only rely on dataset D for evaluation, unless we have already reached
the goal (in which case, the task is done) the estimates V̂ πθ are completely uninformative as all
policies have the same estimated cost-to-go. In contrast, Toms can still distinguish between good
and bad policies, by falling back on the optimistic model for regions where we do not have data.
In other words, during evaluation, Toms can utilize optimistic model dynamics to connect all
the way to the goal and obtain informative cost-to-go estimates. Thus, as shown in Figure 7.3,
Toms outperforms all baselines in the sparse cost setting while the performance of RBMS and
MLE have significantly deteriorated when compared to Figure 7.2.

To answer the second question posed above, we compared Toms with optimistic off-policy
evaluation with two variants that use a different off-policy evaluation method. The first one,
termed as Toms Current, where instead of falling back on the optimistic model in Algorithm 17
we use the model f̂θ that the evaluated policy πθ is computed for. The second variant, termed
as Toms Non-optimistic, uses a non-optimistic model fnon−opt in Algorithm 17 instead of the
optimistic model. Figure 7.4 presents the results of this experiment. Note that we use the
dense cost function for this experiment, but we have obtained similar results with the sparse cost
function as well.

From the results, we can observe that Toms with off-policy evaluation where we fall back
on any model that is non-optimistic results in poor performance in reaching the goal. This is
also evidenced by Theorem 7.4.1 where Toms is guaranteed to not result in cost-to-go that are

79

Figure 7.4: Performance versus misspecification on the mountain car domain with dense cost
function. We compare Toms with different off-policy evaluation methods to understand if using
optimistic evaluation helps it reach goal quickly

too pessimistic only if we rely on an optimistic model in regions where data is scarce. It is also
interesting to observe that relying on the model for which the evaluated policy is optimal for,
performs much worse than using an arbitrary fixed non-optimistic model. This can be attributed
to the added inaccuracy in evaluation coming from evaluating the cost-to-go using an inaccurate
model.

7.6 Conclusion

In this chapter, we presented some preliminary work done in designing a task-aware online model
search algorithm. Current model search approaches mostly rely on maximum likelihood learning,
where the model is picked to minimize the prediction error and then is subsequently used for
planning. This results in an objective mismatch which can result in such approaches picking a
model, that while minimizing prediction error, can be very poor for computing a good policy.
This is especially true in the regime of limited data which is often the case in online settings.
To counter the objective mismatch issue, existing approaches such as RBMS present an offline
algorithm that leverages an offline collected dataset of transitions executed in the real world to
search in the model class for models that directly optimize task performance. However, such
approaches perform poorly in the online setting where the collected dataset is highly correlated
and does not have good coverage resulting in data scarcity in state-action regions.

Our proposed approach, Toms, extends RBMS to the online model search setting by leverag-
ing an optimistic but potentially inaccurate model of the real world. Using this optimistic model
for off-policy evaluation allows Toms to obtain cost-to-go estimates that are not too pessimistic
and enables it to work with online collected datasets that can potentially be very scarce and highly
correlated. As shown in our experiments, Toms outperforms both RBMS and maximum likeli-
hood learning approaches on a simple mountain car domain in the online setting. Furthermore
our experiments also show that using an optimistic model in the off-policy evaluation procedure
is where Toms derives most of its improvements from.

80

Chapter 8
Future Work and Conclusion

The great scientists, when an opportunity
opens up, get after it and they pursue it.
They drop all other things. They get rid
of other things and they get after an idea
because they had already thought the thing
through. Their minds are prepared; they
see the opportunity and they go after it.
Now of course lots of times it doesn’t
work out, but you don’t have to hit many
of them to do some great science. It’s
kind of easy. One of the chief tricks is to
live a long time!

Richard Hamming (1986)

This chapter concludes the thesis by laying out directions for future work. The author has
made some progress on some of these directions while for others, pointers are given to related
work so that the reader can get started.

8.1 Future Work

8.1.1 A Unified Framework for Planning and Execution using Inaccurate
Models

This thesis has presented two novel algorithms Cmax and Cmax++ that update the behavior of
the planner, rather than updating the dynamics of the model, to allow robots to complete the task
despite using an inaccurate model. Cmax enables the planner to stick to the state-action space
regions where the model is accurate and biases it away from the inaccurately modeled regions.
Cmax++, on the other hand, learns model-free value estimates for inaccurately modeled transi-
tions and integrates them into a model-based planning procedure with the inaccurate model. Both
approaches require the inaccurate model to be optimistic and have task-completeness guarantees.
While our experiments have shown that they work very well empirically, there are domains where
designing “good” optimistic models is difficult. By good, we mean a non-trivial optimistic model
(a trivial optimistic model would be one that predicts any transition executed by robot would

81

complete the task) that is useful in most state-action space regions. In such domains, updating
the dynamics of the model might be more efficient even in cases where the true dynamics does
not lie in the model class considered. This thesis has taken preliminary steps in designing such an
efficient model learning algorithm in Chapter 7 where we presented Toms that performs better
than Cmax in domains where we can update the dynamics of the model through low-dimensional
parameterizations.

An important future direction would be to build upon Toms to design efficient model learning
algorithms that directly optimize task performance and enable choosing models that are useful
for planning rather than prediction. Initial work in this direction has been done in [Gri+20;
Gri+21; Ayo+20; Mod+21; Nik+21; Eys+21]. Given such algorithms, the author envisons a
unified framework for planning and execution where the robot, at every time step, chooses to
either update the dynamics of the model from executions (using algorithms like Toms) or up-
dates the behavior of the planner (using algorithms like Cmax and Cmax++.) This allows us
to combine the advantages of both family of algorithms while retaining task completeness guar-
antees. One viable way of implementing this would be by using the multi-heuristic A* (MHA*)
framework [Ain+16] where we treat each algorithm that the robot can use as a heuristic that it
can follow to reach the goal. This would involve maintaining a different set of cost-to-go estimates
for Toms, Cmax and Cmax++. Intuitively, we prefer Cmax as it does not waste executions
learning dynamics or learning model-free value estimates and quickly finds an alternative path.
To encode this preference, we can design an anytime algorithm similar to A-Cmax++ (in Sec-
tion 5.4.3) where if the cost-to-go following Cmax is not too worse compared to that of Toms and
Cmax++, we follow Cmax. Else, if the cost-to-go following Cmax++ is not too far from that of
Toms, then we follow Cmax++. If neither of those are true, then we follow Toms. This encodes
the preference that avoiding inaccurately modeled transitions is easier to learn than model-free
value estimates which is easier to learn than the model dynamics. The goal is to create a unified
framework where the robot, during the course of its execution, intelligently switches between (a)
learning the true dynamics, (b) learning a model-free value estimate, or (c) biasing the planner
away from an inaccurately modeled transition to guarantee task completeness while reducing the
amount of real-world experience required.

8.1.2 Online Model Learning with Misspecified Model Classes

While Toms was a first step in the direction of online model learning with misspecified model
classes where we directly optimize task performance rather than prediction error, the author
believes there is still a long way to go in this direction. Our main motivation for this comes
from the simulation lemma, which was first introduced in [KS02], and can be reformulated in the
undiscounted deterministic dynamics setting as follows:

Lemma 8.1.1 (Undiscounted Deterministic Dynamics Simulation Lemma). Let M,M ′ be two
Markov Decision Processes with the same cost function. If we have a fixed start state s0, a
deterministic policy π : S→ A, and M,M ′ have deterministic dynamics f, f ′ : S× A→ S. Then
we have,

JM (π) = JM ′(π) +
∞∑
t=0

c(sMt , π(sMt)) + V π
M ′(s

M
t+1)− V π

M ′(s
M
t) (8.1)

= JM ′(π) +

∞∑
t=0

V π
M ′(s

M
t+1)− V π

M ′(f
′(sMt , π(sMt))) (8.2)

82

where sM0 = s0 and sMt = f(sMt−1, π(sMt−1)).

In the case where M is the real world, and M ′ is any dynamical model that we consider,
the above lemma states that the performance of any policy π in the real world M is equal to
the sum of the performance of the policy in the model M ′ and the model advantages at each
time step V π

M ′(s
M
t+1)− V π

M ′(f
′(sMt , π(sMt))). Thus, in order to find a model M ′ that captures the

performance of a policy as the same as that of its performance in the real world, we need to
minimize model advantages. However, most existing works that perform maximum likelihood
learning do not consider this objective function [Lju10; AN05; RB12; Wan+19] and instead use
a prediction error loss. For example, [RB12] present a simple iterative approach for agnostic
system identification with strong guarantees that do not scale with the size of the MDP when
given access to a good exploration distribution. The approach is very simple to implement and
iterates between collecting new data about the real world M by executing a good policy under
the current model M ′ as well as by sampling from the exploration distribution, and updating the
model with the new data. The model is updated by minimizing negative log likelihood of the
data under the model.

To understand why prediction error or maximum likelihood objective makes sense, let us take
a closer look at the model advantages:

V π
M ′(s

M
t+1)− V π

M ′(f
′(sMt , π(sMt))) ≤ L‖sMt+1 − f ′(sMt , π(sMt))‖

≤ L‖f(sMt , π(sMt))− f ′(sMt , π(sMt))‖

where we assumed that the value function of policy π in the model M ′ is L-lipschitz (any bounded
function on a bounded domain is lipschitz.) Thus, instead of optimizing the model advantages
one can optimize the prediction error which is an upper bound on the model advantage [RB12].
However, this can be a very weak upper bound resulting in a high sample complexity requirement.

There are two ways to tackle this: 1) directly optimize JM (π), or 2) optimize the model
advantages instead of prediction error. RBMS and Toms take the first way by directly optimizing
JM (π), i.e. the performance of the policy in the real world M . The policy class is parameterized
by the model class (and the application of planner P) and the performance of policy in M is
computed through an off-policy evaluation procedure. While this works for simple domains, off-
policy evaluation is not always reliable as the data is collected under a different policy than the
policy that is being evaluated resulting in a high variance estimate.

Another option is to take the second way. [VJY21] take this approach in the offline setting
where given an offline collected dataset D they find a model M ′ that minimizes the model ad-
vantages as evaluated on D. Once they find the best model in the model class, they use it for
planning to obtain the policy that is then used for execution in the real world M . While this
works well in offline settings, the online version would face similar difficulties as RBMS where
the online collected dataset D might not have good coverage and can be highly correlated. Thus,
there is a need for an online model learning algorithm that optimizes model advantages.

The author envisions an online iterative approach similar to [RB12] where the model is up-
dated with the new data by minimizing model advantages rather than minimizing negative log-
likelihood. The advantage of such an approach is evident in domains where there are no models
that capture the true dynamics exactly in the model class (a.k.a misspecified) but there are several
models that are useful for planning. Using model advantages, instead of prediction error, allows
us to distinguish models that are useful for planning from models that are good at capturing true
dynamics.

83

8.1.3 Extending CMAX and CMAX++ to Stochastic Dynamics

Most robotics systems are described using deterministic dynamics. However, when we move
to robotics with complex dynamics (such as contact, friction etc.) we cannot hope to capture
everything that is relevant to dynamics within the state description. This leads to partial ob-
servability. An easy way to tackle this is to formulate the dynamics as stochastic where the
stochasticity results from the unobserved part of the state.

So far, in this thesis, we have restricted ourselves to deterministic dynamics (with the exception
of Chapter 3) for ease of exposition and because most of the domains we dealt with had simple
dynamics. A natural next step would be to extend the algorithms introduced, such as Cmax and
Cmax++, to systems that are described using stochastic dynamics. The major component that is
needed for such an extension would be an optimal planner that can work with stochastic dynamics.
The planners, such as RTAA* and LRTA*, are restricted to deterministic dynamics. The author
predicts that we can use general MDP planners such as value iteration, policy iteration [SB98] for
such purposes. There are also more domain-specific planners that work with stochastic dynamics
such as stochastic motion roadmaps [ASG07], stochastic extended LQR [SBA16], and stochastic
ensemble simulation planning [CRT16], where the general idea is to maximize the probability of
task success given stochastic dynamics.

In addition to using an optimal planner that can work with stochastic dynamics, we also need
to change how a transition is classified as inaccurately modeled in Cmax and Cmax++. Rather
than having a hard decision that is made the first time we execute the transition, we will have
to maintain uncertainty estimates on how confident we are that the transition is not modeled
accurately. This might incur an additional cost of executing the same transition more than
once to classify it as inaccurate with certainty. Similar approaches have been taken in [Kid+20;
Yu+20] to classify any transition as being inaccurately modeled. Once we classify a transition as
inaccurate, we can proceed with penalization in Cmax and learning a model-free value estimate
in Cmax++.

Another challenge in extending to stochastic dynamics would be achieving the task complete-
ness guarantees for the stochastic versions of Cmax and Cmax++. The author envisions that
by making modeling assumptions on the stochasticity of the dynamics, and using well-calibrated
uncertainty estimates can result in probabilistic task completeness guarantees. However, this
needs to be explored before further comments can be made.

8.1.4 Finite Data Performance Analysis

Our performance analysis in Chapter 6 analyzed the performance of the final controller that ILC
converged to. However, to converge to this controller, ILC might theoretically require a very
large amount of rollouts in the real world leading to a large number of executions. While this
analysis is useful in understanding what sort of improvements we can expect over naively using
the inaccurate models, it is not realistic of the performance we can expect given a finite amount of
rollouts. Having a more fine grained performance analysis that tracks the quality of the controller
as a function of both modeling error and the number of rollouts performed so far would be much
more beneficial in understanding the usefulness of approaches like Cmax and Cmax++.

84

8.2 Conclusion

This thesis takes the first steps in the study of algorithms that achieve planning and execution
using inaccurate models by updating the behavior of the planner, instead of updating the dynam-
ics of the model. We present two novel algorithms, Cmax and Cmax++, that fit this category
and also have provable guarantees on task completeness, i.e. given enough time the planner is
bound to find a path to a goal state. In addition to our algorithmic contributions, this thesis
also presents a performance analysis of such methods in a simple continuous linearized system
setting with quadratic costs. Our analysis highlights the pitfalls of naively using inaccurate mod-
els for planning and control, and identifies a significant improvement in performance that can be
achieved by updating the behavior of the planner in this setting. Finally, the thesis takes a small
step in the alternative paradigm of updating the dynamics of the model by proposing a novel
task-aware model learning algorithm Toms that updates the dynamics to directly optimize task
performance rather than prediction error in an online setting where the robot has no access to
resets. We conclude the thesis by pointing out several directions for future work convincing the
reader that there are still a bountiful of exciting challenges that remain to be solved in this space.

85

86

Chapter 9
Appendix

I’m not trying to send you out on the
road in search of Valhalla, but merely
pointing out that it is not necessary to
accept the choices handed down to you by
life as you know it. There is more to it
than that no one HAS to do something he
doesn’t want to do for the rest of his life.
But then again, if that’s what you wind
up doing, by all means convince yourself
that you HAD to do it. You’ll have lots of
company.

Hunter S. Thompson (1958)

This chapter contains all the missing details from the previous chapters, especially the proofs,
experiment descriptions, and other relevant information. This is done to ensure that the thesis
is concise for all readers, and for readers who are interested in low-level details they can refer to
this chapter as needed.

9.1 Appendix for Chapter 3

9.1.1 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1. To prove Eq. 3.3 for Alg. 4, we use the proof techniques from [FKM05].
The proof is more simpler than the one in [FKM05] as we do not have to deal with shrinking and
reshaping the predictor set Θ.

Denote u ∼ Bb as uniformly sampling u from a b-dim unit ball, u ∼ Sb as uniformly sampling u
from the b-dim unit sphere, and δ ∈ (0, 1). Consider the loss function ĉi(wi) = Ev∼Bb [ci(θi + δv)],
which is a smoothed version of ci(wi). It is shown in [FKM05] that the gradient of ĉi with respect

87

to θ is:

∇θ ĉi(θ)|θ=θi
=
b

δ
Eu∼Sb [ci(θi + δu)u]

=
b

δ
Eu∼Sb [((θi + δu)T si − ai)2u].

Hence, the descent direction we take in Alg. 4 is actually an unbiased estimate of ∇θ ĉi(θ)|θ=θi .
So Alg. 4 can be considered as running OGD with an unbiased estimate of gradient on the
sequence of loss ĉi(θi). It is not hard to show that for an unbiased estimate of ∇θ ĉi(θ)|θ=θi =
b
δ ((θi + δu)T si − ai)2u, the norm is bounded as b(C2 + C2

s)/δ. Now we can directly applying
Lemma 3.1 from [FKM05], to get:

E

[
T∑
i=1

ĉi(θi)

]
− min
θ?∈Θ

T∑
i=1

ĉi(θ
?) ≤ Cθb(C

2 + C2
s)

δ

√
T . (9.1)

We can bound the difference between ĉi(θ) and ci(θ) using the Lipschitiz continuous property of
ci:

|ĉi(θ)− ci(θ)| = |Ev∼Bb [ci(θ + δv)− ci(θ)]|
≤ Ev∼Bb [|ci(θ + δv)− ci(θ)|] ≤ Lδ. (9.2)

Substitute the above inequality back to Eq. 9.1, rearrange terms, we get:

E

[
T∑
i=1

ci(θi)

]
− min
θ?∈Θ

T∑
i=1

ci(w
?) ≤ Cθb(C

2 + C2
s)

δ

√
T + 2LTδ. (9.3)

By setting δ = T−0.25
√

Cθb(C2+C2
s)

2L , we get:

E

[
T∑
i=1

ci(θi)

]
− min
w?∈Θ

T∑
i=1

ci(w
?) ≤

√
Cθb(C2 + C2

s)LT 3/4.

To prove Eq. 3.4 for Alg. 7, we follow the similar strategy in the proof of Alg. 4.
Denote ε ∼ [−1, 1] as uniformly sampling ε from the interval [−1, 1], e ∼ {−1, 1} as uniformly

sampling e from the set containing −1 and 1. Consider the loss function c̃i(θ) = Eε∼[−1,1][(θ
T si +

δε− ai)2]. One can show that the gradient of c̃i(θ) with respect to θ is:

∇θ c̃i(θ) =
1

δ
Ee∼{−1,1}[e(θ

>si + δe− ai)2si]. (9.4)

As we can see that the descent direction we take in Alg. 7 is actually an unbiased estimate
of ∇θ c̃i(θ)|θ=θi . Hence Alg. 7 can be considered as running OGD with unbiased estimates of
gradients on the sequence of loss functions c̃i(θ). For an unbiased estimate of the gradient,
1
δ e(θ

>
i si + δe − ai)2si, its norm is bounded as (C2 + 1)Cs/δ. Note that different from Alg. 4,

here the maximum norm of the unbiased gradient is independent of feature dimension b. Now we
apply Lemma 3.1 from [FKM05] on c̃i, to get:

E

[
T∑
i=1

c̃i(θi)

]
− min
θ?∈Θ

T∑
i=1

c̃i(θ
∗) ≤ Cθ(C

2 + 1)Cs
δ

√
T . (9.5)

88

Again we can bound the difference between c̃i(θ) and ci(θ) for any θ using the fact that (âi−ai)2

is Lipschitz continuous with respect to prediction âi with Lipschitz constant C:

|c̃i(θ)− ci(θ)| = |Eε∼[−1,1][(θ
>si + δε− ai)2 − (θ>si − ai)2]|

≤ Eε∼[−1,−1][Cδ|ε|] ≤ Cδ. (9.6)

Substitute the above inequality back to Eq. 9.5, rearrange terms:

E

[
T∑
i=1

c̃i(θi)

]
− min
θ?∈Θ

T∑
i=1

c̃i(θ
∗) ≤ Cθ(C

2 + 1)Cs
δ

√
T + 2CδT.

Set δ = T−0.25
√

Cθ(C2+1)Cs
2C , we get:

E

[
T∑
i=1

c̃i(θi)

]
− min
θ∗∈Θ

T∑
i=1

c̃i(θ
∗) ≤

√
Cθ(C2 + 1)CsCT

3/4.

9.1.2 Proof of Theorem 3.4.1

We first present some useful lemmas below.
Consider the smoothed objective given by Ĵ(θ) = Ev∼Bd [J(θ + δv)] where Bd is the unit ball

in d dimensions and δ is a positive constant. Using the assumptions stated in Section 3.4.1, we
obtain the following useful lemma:

Lemma 9.1.1. If the objective J(θ) satisfies the assumptions in Section 3.4.1 and the smoothed
objective Ĵ(θ) is as given above, then we have that

1. Ĵ(θ) is also G-Lipschitz and L-smooth

2. For all θ ∈ Rd, ‖∇θJ(θ)−∇θĴ(θ)‖ ≤ Lδ

Proof of Lemma 9.1.1. Consider for any θ1, θ2 ∈ Rd,

|Ĵ(θ1)− Ĵ(θ2)| = |Ev∼Bd [J(θ1 + δv)− J(θ2 + δv)]|
≤ Ev∼Bd [|J(θ1 + δv)− J(θ2 + δv)|]
≤ Ev∼Bd [G‖θ1 − θ2‖]
= G‖θ1 − θ2‖

The above inequalities are due to the fact that expectation of absolute value is greater than
absolute value of expectation, and the G-lipschitz assumption on J(θ). Thus, the smoothened
loss function Ĵ(θ) is also G-lipschitz. Similarly consider,

‖∇θĴ(θ1)−∇θĴ(θ2)‖
= ‖∇θEv∼Bd [J(θ1 + δv)]−∇θEv∼Bd [J(θ2 + δv)]‖
= ‖Ev∼Bd [∇θJ(θ1 + δv)−∇θJ(θ2 + δv)]‖
≤ Ev∼Bd [‖∇θJ(θ1 + δv)−∇θJ(θ2 + δv)‖]
≤ Ev∼Bd [L‖θ1 − θ2‖]
= L‖θ1 − θ2‖

89

The above inequalities are due to the fact that expectation of norm is greater than norm of
expectation, and the L-smoothness assumption on J(θ1). We interchange the expectation and
derivative using the assumptions on J(θ1) and the dominated convergence theorem. Thus, the
smoothened loss function Ĵ(θ1) is also L-smooth.

We know,

∇θĴ(θ) = ∇θEv∼Bd [J(θ + δv)]

= Ev∼Bd [∇θJ(θ + δv)]

Note that the expectation and derivative can be interchanged using the dominated convergence
theorem. Hence, we have

‖∇θĴ(θ)−∇θJ(θ)‖ = ‖Eu∼Bd [∇θJ(θ + δv)]−∇θJ(θ)‖
≤ Eu∼Bd‖∇θJ(θ + δv)−∇θJ(θ)‖
≤ Eu∼Bd [L||δv||]
≤ Lδ

The above lemma will be very useful later when we try to relate the convergence rate for the
smoothed objective and the true objective. It is shown in [FKM05; ADX10] that the gradient
estimate gi is an unbiased estimator of the gradient ∇θĴ(θi). Hence, Algorithm 6 is performing
SGD on the smoothed objective Ĵ(θ). Using this insight, we can use the convergence rate of SGD
for nonconvex functions to stationary points from [GL13] which is given as follows

Lemma 9.1.2 ([GL13]). Consider running SGD on the objective Ĵ(θ) that is L-smooth and G-
Lipschitz for T steps. Fix initial solution θ0 and denote ∆0 = Ĵ(θ0)− Ĵ(θ∗) where θ∗ is the point
at which Ĵ(θ) attains global minimum. Also, assume that the gradient estimate gi is unbiased and
has a bounded variance, i.e. for all i, Ei[‖gi−∇θĴ(θi)‖22] ≤ V ∈ R+ where Ei denotes expectation
with randomness only at iteration i conditioned on history upto iteration i− 1. Then we have,

1

T

T∑
i=1

E‖∇θĴ(θi)‖22 ≤
2
√

2∆0L(V +G2)√
T

(9.7)

For completeness, we include a proof of the above lemma below.

Proof of Lemma 9.1.2. Denote ξi = gi − ∇θĴ(θi). Note that Ei[ξi] = 0 since the stochastic
gradient gi is unbiased. From θi+1 = θi − αgi, we have:

Ĵ(θi+1) = Ĵ(θi − αgi)

≤ Ĵ(θi)−∇θĴ(θi)
>(αgi) +

Lα2

2
‖gi‖22

= Ĵ(θi)− α∇θĴ(θi)
>gi +

Lα2

2
‖ξi +∇θĴ(θi)‖22

= Ĵ(θi)− α∇θĴ(θi)
>gi +

Lα2

2
(‖ξi‖22 + 2ξ>i ∇θĴ(θi) + ‖∇θĴ(θi)‖22)

90

The first inequality above is obtained since the loss function Ĵ(θ) is L-smooth. Adding Ei on
both sides and using the fact that Ei[ξi] = 0, we have:

Ei[Ĵ(θi+1)] = Ĵ(θi)− α‖∇θĴ(θi)‖22 +
Lα2

2

(
Ei[‖ξi‖22] + ‖∇θĴ(θi)‖22

)
≤ Ĵ(θi)− α‖∇θĴ(θi)‖22 +

Lα2

2

(
Ei[‖ξi‖22] +G2

)
where the inequality is due to the lipschitz assumption. Rearranging terms, we get:

α‖∇θĴ(θi)‖22 = Ĵ(θi)− Ei[Ĵ(θi+1)] +
Lα2

2
(Ei[‖ξi‖22] +G2)

≤ Ĵ(θi)− Ei[Ĵ(θi+1)] +
Lα2

2
(V +G2)

Sum over from time step 1 to T , we get:

α

T∑
t=1

E‖∇θĴ(θi)‖22 ≤ E[Ĵ(θ0)− Ĵ(θT)] +
LTα2

2
(V +G2)

Divide α on both sides, we get:

T∑
t=1

E‖∇θĴ(θi)‖22 ≤
1

α
E[Ĵ(θ0)− Ĵ(θT)] + LTα(V +G2)

≤ 1

α
E[Ĵ(θ0)− Ĵ(θ∗)] + LTα(V +G2)

=
1

α
∆0 + LTα(V +G2)

≤
√

∆0LT (V +G2)

2
+
√

2∆0LT (V +G2)

≤ 2
√

2∆0LT (V +G2)

with α =
√

2∆0
LT (V+G2)

. Hence, we have:

1

T

T∑
t=1

E‖∇θĴ(θi)‖22 ≤
2
√

2∆0L(V +G2)√
T

The above lemma is useful as it gives us the following result:

min
1≤i≤T

E‖∇θĴ(θi)‖22 ≤
1

T

T∑
i=1

E‖∇θĴ(θi)‖22

≤ 2
√

2∆0L(V +G2)√
T

(9.8)

since the minimum is always less than the average. We have then that using SGD to minimize
a nonconvex objective finds a θi that is ‘almost’ a stationary point in bounded number of steps
provided the stochastic gradient estimate has bounded variance.

91

We now show that the gradient estimate gi used in Algorithm 6 indeed has a bounded vari-
ance. Observe that the estimate gi in the algorithm is a two-point estimate, which should have
substantially less variance than one-point estimates [ADX10]. However, the two evaluations, re-
sulting in J+

i and J−i , have different independent noise. This is due to the fact that in policy
search, stochasticity arises from the environment and cannot be controlled and we cannot obtain
the significant variance reduction that is typical of two-point estimators. The following lemma
quantifies the bound on the variance of gradient estimate gi:

Lemma 9.1.3. Consider a smoothed objective Ĵ(θ) = Ev∼Bd [J(θ+ δv)] where Bd is the unit ball
in d dimensions, δ > 0 is a scalar and the true objective J(θ) is G-lipschitz. Given gradient

estimate gi =
d(J+

i −J
−
i)

2δ u where u is sampled uniformly from a unit sphere Sd in d dimensions,
J+
i = J(θi + δu) + η+

i and J−i = J(θ − δu) + η−i for zero mean random i.i.d noises η+
i , η

−
i , we

have

Ei[‖gi −∇θĴ(θi)‖22] ≤ 2d2G2 + 2
d2σ2

δ2
(9.9)

where σ2 is the variance of the random noise η.

Proof of Lemma 9.1.3. From [Sha17], we know that gi is an unbiased estimate of the gradient of
Ĵ(θi), i.e. Eui∼Sd [gi] = ∇Ĵ(θi). Thus, we have

Eui∼Sd‖gi −∇Ĵ(θi)‖2

= Eui∼Sd [‖gi‖2 + ‖∇Ĵ(θ)i‖2 − 2gTi ∇Ĵ(θi)]

= Eui∼Sd‖gi‖2 + ‖∇Ĵ(θi)‖2 − 2‖∇Ĵ(θi)‖2

= Eui∼Sd‖gi‖2 − ‖∇Ĵ(θi)‖2

≤ Eui∼Sd‖gi‖2

=
d2

4δ2
Eui∼Sd‖(J(θi + δui)− J(θi − δui) + (η+

i − η−i))ui‖2

≤ d2

2δ2
[Eui∼Sd‖(J(θi + δui)− J(θi − δui)ui‖22 + Eui∼Sd‖(η+

i − η−i))ui‖2]

≤ d2

2δ2
[Eui∼Sd4G

2δ2‖ui‖2 + 4Eui∼Sd‖η+
i ‖22‖ui‖22]

= 2d2G2 + 2
d2σ2

δ2

where the second inequality is true as ‖a+ b‖22 ≤ 2(‖a‖22 + ‖b‖22) and the last inequality is due to
the Lipschitz assumption on J(θ).

We are ready to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Fix initial solution θ0 and denote ∆0 = Ĵ(θ0)− Ĵ(θ∗) where Ĵ(θ) is the
smoothed objective and θ∗ is the point at which Ĵ(θ) attains global minimum. Since the gradient
estimate gi used in Algorithm 6 is an unbiased estimate of the gradient ∇θĴ(θi), we know that
Algorithm 6 performs SGD on the smoothed objective. Moreover, from Lemma 9.1.3, we know
that the variance of the gradient estimate gi is bounded. Hence, we can use Lemma 9.1.2 on the
smoothed objective Ĵ(θ) to get

1

T

T∑
i=1

E‖∇θĴ(θi)‖22 ≤
2
√

2∆0L(V +G2)√
T

(9.10)

92

where V ≤ 2d2G2 + 2d
2σ2

δ2
(from Lemma 9.1.3). We can relate ∇θĴ(θ) and ∇θJ(θ) - the quantity

that we ultimately care about, as follows:

1

T

T∑
i=1

E‖∇θJ(θi)‖22

=
1

T

T∑
i=1

E‖∇θJ(θi)−∇θĴ(θi) +∇θĴ(θi)‖22

≤ 2

T

T∑
i=1

E‖∇θJ(θi)−∇θĴ(θi)‖22 + E‖∇θĴ(θi)‖22

We can use Lemma 9.1.1 to bound the first term and Equation 9.10 to bound the second term.
Thus, we have

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤
2

T
[TL2δ2 + 2

√
2∆0L(V +G2)T]

Substituting the bound for V from Lemma 9.1.3, using the inequality
√
a+ b ≤ √a +

√
b for

a, b ∈ R+, optimizing over δ, and using ∆0 ≤ Q we get

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤ O(Q 1
2dT

−1
2 +Q 1

3d
2
3T
−1
3 σ)

9.1.3 Proof of Theorem 3.4.2

The bound on the bias of the gradient estimate is given by the following lemma:

Lemma 9.1.4. If the assumptions in Section 3.4.2 are satisfied, then for the gradient estimate
gi used in Algorithm 7 and the gradient of the objective J(θ) given in equation 3.6, we have

‖E[gi]−∇θJ(θi)‖ ≤ KUHδ (9.11)

Proof of Lemma 9.1.4. To prove that the bias is bounded, let’s consider for any i

‖E[gi]−∇θJ(θi)‖2 = ‖
H−1∑
t=0

Est∼dtπθi
[∇θπ(θi, st)∇a(Ev∼BpQtπθi (st, π(θi, st) + δv)−Qtπθi (st, π(θi, st)))]‖2

≤
H−1∑
t=0

Est∼dtπθi ,v∼Bp
‖∇θπ(θi, st)‖2‖[∇aQtπθi (st, π(θi, st) + δv)−∇aQtπθi (st, π(θi, st))]‖2

≤
H−1∑
t=0

KUδEv∼Bp‖v‖2

≤ KUHδ

The first inequality above is obtained by using the fact that ‖E[X]‖2 ≤ E‖X‖2, and the second
inequality using the K-lipschitz assumption on π(θ, s) and U -smooth assumption on Qtπθ(s, a)
in a. Also, observe that we interchanged the derivative and expectation above by using the
assumptions on Qtπθ as stated in Section 3.4.2.

93

We will now show that the gradient estimate gi used in Algorithm 7 has a bounded variance.
Note that the gradient estimate constructed in Algorithm 7 is a one-point estimate, unlike policy
search in parameter space where we had a two-point estimate. Thus, the variance would be higher
and the bound on the variance of such a one-point estimate is given below

Lemma 9.1.5. Given a gradient estimate gi as shown in Algorithm 7, the variance of the estimate
can be bounded as

E‖gi − E[gi]‖22 ≤
2H2p2K2

δ2
((Q+Wδ)2 + σ2) (9.12)

where σ2 is the variance of the random noise η̃.

Proof of Lemma 9.1.5. To bound the variance of the gradient estimate gi in Algorithm 7, lets
consider

Ei‖gi − E[gi]‖22 = Ei‖gi‖22 − ‖Ei[gi]‖22 ≤ Ei‖gi‖22

=
H2p2

δ2
Ei‖∇θπ(θi, st)(Q

t
πθi

(st, π(θi, st) + δu) + η̃i)u‖22

≤ K2p2H2

δ2
Ei‖Qtπθi (st, π(θi, st) + δu)u+ η̃iu‖22

where Ei denotes expectation with respect to the randomness at iteration i and the inequality is
obtained using K-lipschitz assumption on π(θ, s). Note that we can express Qtπθi

(st, π(θi, st) +

δu) ≤ Qtπθi
(st, π(θi, st)) + Wδ‖u‖2 ≤ Q + Wδ where we used the W -lipschitz assumption on

Qtπθ(s, a) in a and that it is bounded everywhere by constant Q. Thus, we have

Ei‖gi − E[gi]‖22

≤ K2p2H2

δ2
Ei‖(Q+Wδ)u+ η̃iu‖22

≤ 2K2p2H2

δ2
(Ei‖(Q+Wδ)u‖22 + Ei‖η̃iu‖22

≤ 2K2p2H2

δ2
((Q+Wδ)2 + σ2)

We are now ready to prove theorem 3.4.2

Proof of Theorem 3.4.2. Fix initial solution θ0 and denote ∆0 = J(θ0) − J(θ∗) where θ∗ is the
point at which J(θ) attains global minimum. Denote ξi = gi − Ei[gi] and βi = Ei[gi] −∇θJ(θi).
From Lemma 9.1.4, we know ‖βi‖ ≤ KUHδ and from lemma 9.1.5, we know E‖ξi‖22 = V ≤
2K2p2H2

δ2
((Q+Wδ)2 + σ2) and Ei[ξi] = 0 from definition. From θi+1 = θi − αgi we have:

J(θi+1) = J(θi − αgi)

≤ J(θi)− α∇θJ(θi)
T gi +

Lα2

2
‖gi‖22

= J(θi)− α∇θJ(θi)
T gi +

Lα2

2
‖ξi + Ei[gi]‖22

= J(θi)− α∇θJ(θi)
T gi +

Lα2

2
(‖Ei[gi]‖22 + ‖ξi‖22 + 2Ei[gi]T ξi)

94

Taking expectation on both sides with respect to randomness at iteration i, we have

Ei[J(θi+1)] = J(θi)− α∇θJ(θi)
TEi[gi] +

Lα2

2
(‖Ei[gi]‖22 + Ei‖ξi‖22 + 2Ei[gi]TEi[ξi])

≤ J(θi)− α∇θJ(θi)
T (βi +∇θJ(θi)) +

Lα2

2
(‖βi +∇θJ(θi)‖22 + V)

= J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(‖∇θJ(θi)‖22 + V + ‖βi‖22) + (Lα2 − α)∇θJ(θi)

Tβi

≤ J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(G2 + V +K2H2U2δ2) + (Lα2 − α)∇θJ(θi)

Tβi

≤ J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(G2 + V +K2H2U2δ2) + (Lα2 + α)‖∇θJ(θi)‖‖βi‖

≤ J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(G2 + V +K2H2U2δ2) + (Lα2 + α)GKUHδ

Rearranging terms and summing over timestep 1 to T , we get

α
T∑
i=1

‖∇θJ(θi)‖22 ≤ J(θ0)− ET [J(θT)] +
LTα2

2
(G2 + V +K2H2U2δ2) + (Lα2 + α)GKUHTδ

≤ ∆0 +
LTα2

2
(G2 + V +K2H2U2δ2) + (Lα2 + α)GKUHTδ

T∑
i=1

‖∇θJ(θi)‖22 ≤
∆0

α
+
LTα

2
(G2 + V +K2H2U2δ2) + (Lα+ 1)GKUHTδ

≤ ∆0

α
+
LTα

2
(G2 +K2H2U2δ2 + 2GKUHδ) +GKUHTδ +

LTα

2
V

≤ ∆0

α
+
LTα

2
(G+KHUδ)2 +GKUHTδ +

LTαK2p2H2

δ2
((Q+Wδ)2 + σ2)

≤ ∆0

α
+ LTα(G2 +K2H2U2δ2) +GKUHTδ + 2

LTαK2p2H2

δ2
(Q2 +W 2δ2 + σ2)

Using ∆0 ≤ Q and optimizing over α and δ, we get α = O(Q 3
4T−

3
4H−1p−

1
2 (Q2 + σ2)−

1
4) and

δ = O(T−
1
4 p

1
2 (Q2 + σ2)

1
4). This gives us

1

T

T∑
i=1

‖∇θJ(θi)‖22 ≤ O(T−
1
4Hp

1
2 (Q3 + σ2Q)

1
4) (9.13)

9.1.4 Implementation Details

One-step Control Experiments

Tuning Hyperparameters for ARS We tune the hyperparameters for ARS [MGR18] in
both MNIST and linear regression experiments, by choosing a candidate set of values for each
hyperparameter: stepsize, number of directions sampled, number of top directions chosen and
the perturbation length along each direction. The candidate hyperparameter values are shown in
Table 9.1.

95

Hyperparameter Candidate Values

Stepsize 0.001, 0.005, 0.01, 0.02, 0.03

Directions 10, 50, 100, 200, 500

Top Directions 5, 10, 50, 100, 200

Perturbation 0.001, 0.005, 0.01, 0.02, 0.03

Table 9.1: Candidate hyperparameters used for tuning in ARS experiments

We use the hyperparameters shown in Table 9.2 chosen through this tuning for each of the
experiments in this work. The hyperparameters are chosen by averaging the test squared loss
across three random seeds (different from the 10 random seeds used in actual experiments) and
chosing the setting that has the least mean test squared loss after 100000 samples.

Experiment Stepsize # Dir. # Top Dir. Perturbation

MNIST 0.02 50 20 0.03

LR d = 10 0.03 10 10 0.03

LR d = 100 0.03 10 10 0.02

LR d = 1000 0.03 200 200 0.03

Table 9.2: Hyperparameters chosen for ARS in each experiment. LR is short-hand for Linear
Regression.

Experiment Learning Rate Batch size

MNIST 0.001 512

LR d = 10 0.08 512

LR d = 100 0.03 512

LR d = 1000 0.01 512

Table 9.3: Learning rate and batch size used for REINFORCE experiments. We use an ADAM
[KB14] optimizer for these experiments.

MNIST Experiments The CNN architecture used is as shown in Figure 9.11. The total
number of parameters in this model is d = 21840. For supervised learning, we use a cross-entropy
loss on the softmax output with respect to the true label. To train this model, we use a batch
size of 64 and a stochastic gradient descent (SGD) optimizer with learning rate of 0.01 and a
momentum factor of 0.5. We evaluate the test accuracy of the model over all the 10000 images
in the MNIST test dataset.

1This figure is generated by adapting the code from https://github.com/gwding/draw_convnet

96

https://github.com/gwding/draw_convnet

Experiment Learning Rate Batch size

LR d = 10 2.0 512

LR d = 100 2.0 512

Table 9.4: Learning rate and batch size used for Natural REINFORCE experiments. Note that
we decay the learning rate after each batch by

√
T where T is the number of batches seen.

Figure 9.1: CNN architecture used for the MNIST experiments

For REINFORCE, we use the same architecture as before. We train the model by sampling
from the categorical distribution parameterized by the softmax output of the model and then
computing a ±1 reward based on whether the model predicted the correct label. The loss function
is the REINFORCE loss function given by,

J(θ) =
1

N

N∑
i=1

ri log(P(ŷi|xi, θ)) (9.14)

where θ is the parameters of the model, ri is the reward obtained for example i, ŷi is the predicted
label for example i and xi is the input feature vector for example i. The reward ri is given by
ri = 2 ∗ I[ŷi = yi]− 1, where I is the 0− 1 indicator function and yi is the true label for example
i.

For ARS, we use the same architecture and reward function as before. The hyperparameters
used are shown in Table 9.2 and we closely follow the algorithm outlined in [MGR18].

Linear Regression Experiments We generate training and test data for the linear regression
experiments as follows: we sampled a random d + 1 dimensional vector w where d is the input
dimensionality. We also sampled a random d × d covariance matrix C. The training and test
dataset consists of d+ 1 vectors x whose first element is always 1 (for the bias term) and the rest
of the d terms are sampled from a multivariate normal distribution with mean 0 and covariance
matrix C. The target vectors y are computed as y = wTx+ε where ε is sampled from a univariate
normal distribution with mean 0 and standard deviation 0.001.

We implemented both SGD and Newton Descent on the mean squared loss, for the supervised
learning experiments. For SGD, we used a learning rate of 0.1 for d = 10, 100 and a learning rate
of 0.01 for d = 1000, and a batch size of 64. For Newton Descent, we also used a batch size of
64. To frame it as a one-step MDP, we define a reward function r which is equal to the negative
of mean squared loss. Both REINFORCE and ARS use this reward function. To compute the

97

REINFORCE loss, we take the prediction of the model ŵTx, add a mean 0 standard deviation
β = 0.5 Gaussian noise to it, and compute the reward (negative mean squared loss) for the noise
added prediction. The REINFORCE loss function is then given by

J(w) =
1

N

N∑
i=1

ri
−(yi − ŵTxi)2

2β2
(9.15)

where ri = −(yi − ŷi)
2, ŷi is the noise added prediction and ŵTxi is the prediction by the

model. We use an Adam optimizer with learning rate and batch size as shown in Table 9.3. For
the natural REINFORCE experiments, we estimate the fisher information matrix and compute
the descent direction by solving the linear system of equations Fx = g where F is the fisher
information matrix and g is the REINFORCE gradient. We use SGD with a O(1/

√
T) learning

rate, where T is the number of batches seen, and batch size as shown in Table 9.4.

For ARS, we closely follow the algorithm outlined in [MGR18].

Multi-step Control Experiments

Tuning Hyperparameters for ARS We tune the hyperparameters for ARS [MGR18] in
both mujoco and LQR experiments, similar to the one-step control experiments. The candidate
hyperparameter values are shown in Tables 9.5 and 9.6. We have observed that using all the
directions in ARS is always preferable under the low horizon settings that we explore. Hence, we
do not conduct a hyperparameter search over the number of top directions and instead keep it
the same as the number of directions.

Hyperparameter Swimmer-v2 HalfCheetah-v2

Stepsize 0.03, 0.05, 0.08, 0.1, 0.15 0.001, 0.003, 0.005, 0.008, 0.01

Directions 5, 10, 20 5, 10, 20

Perturbation 0.05, 0.1, 0.15, 0.2 0.01, 0.03, 0.05, 0.08

Table 9.5: Candidate hyperparameters used for tuning in ARS experiments

Hyperparameter LQR

Stepsize 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01

Directions 10

Perturbation 0.01, 0.05, 0.1

Table 9.6: Candidate hyperparameters used for tuning in ARS experiments

We use the hyperparameters shown in Tables 9.7 and 9.8 chosen through tuning for each of the
multi-step experiments. The hyperparameters are chosen by averaging the total reward obtained
across three random seeds (different from the 10 random seeds used in experiments presented
in Figure 3.3) and chosing the setting that has the highest total reward after 10000 episodes of
training..

Tuning Hyperparameters for ExAct We tune the hyperparameters for ExAct (Algorithm
7) in both mujoco and LQR experiments, similar to ARS. The candidate hyperparameter values

98

Horizon Stepsize # Directions Perturbation

H = 1 0.15 5 0.2

H = 2 0.08 5 0.2

H = 3 0.15 5 0.2

H = 4 0.08 5 0.2

H = 5 0.05 5 0.2

H = 6 0.08 5 0.2

H = 7 0.08 5 0.2

H = 8 0.08 5 0.2

H = 9 0.1 5 0.2

H = 10 0.08 5 0.2

H = 11 0.08 5 0.2

H = 12 0.1 5 0.2

H = 13 0.08 5 0.2

H = 14 0.08 5 0.2

H = 15 0.08 10 0.2

Table 9.7: Hyperparameters chosen for multi-step experiments for ARS in Swimmer-v2

are shown in Tables 9.9 and 9.10. Similar to ARS, we do not conduct a hyperparameter search
over the number of top directions and instead keep it the same as the number of directions.

Hyperparameter Swimmer-v2 HalfCheetah-v2

Stepsize 0.005, 0.008, 0.01, 0.015, 0.02, 0.025, 0.03 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.002, 0.003

Directions 5, 10, 20 5, 10, 20

Perturbation 0.15, 0.2, 0.3, 0.5 0.15, 0.2, 0.3, 0.5

Table 9.9: Candidate hyperparameters used for tuning in ExAct experiments

We use the hyperparameters shown in Tables 9.11 and 9.12 chosen through tuning for each
of the multi-step experiments, similar to ARS.

Mujoco Experiments For all the mujoco experiments, both ARS and ExAct use a linear
policy with the same number of parameters as the dimensionality of the state space. The hy-
perparameters for both algorithms are chosen as described above. Each algorithm is run on
both environments (Swimmer-v2 and HalfCheetah-v2) for 10000 episodes of training across 10
random seeds (different from the ones used for tuning). This is repeated for each horizon value
H ∈ {1, 2, · · · , 15}. In each experiment, we record the mean evaluation return obtained after
training and plot the results in Figure 3.3. For more details on the environments used, we refer
the reader to [Bro+16b].

LQR Experiments In the LQR experiments, we constructed a linear dynamical system xt+1 =
Axt + But + ξt where xt ∈ R100, A ∈ R100×100, B ∈ R100, ut ∈ R and the noise ξt ∼
N (0100, cI100×100) with a small constant c ∈ R+. We explicitly make sure that the maxi-
mum eigenvalue of A is less than 1 to avoid instability. We fix a quadratic cost function

99

Horizon Stepsize # Directions Perturbation

H = 1 0.001 20 0.08

H = 2 0.008 5 0.08

H = 3 0.008 10 0.08

H = 4 0.003 5 0.05

H = 5 0.003 5 0.05

H = 6 0.003 10 0.05

H = 7 0.008 20 0.05

H = 8 0.008 5 0.05

H = 9 0.01 20 0.03

H = 10 0.005 10 0.03

H = 11 0.008 20 0.03

H = 12 0.005 5 0.05

H = 13 0.008 20 0.03

H = 14 0.01 10 0.03

H = 15 0.008 20 0.03

Table 9.8: Hyperparameters chosen for multi-step experiments for ARS in HalfCheetah-v2

Hyperparameter LQR

Stepsize 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01

Directions 10

Perturbation 0.01, 0.05, 0.1

Table 9.10: Candidate hyperparameters used for tuning in ExAct experiments

c(x, u) = xTQx + uRu, where Q = 10−3I100×100 and R = 1. The hyperparameters chosen
for both algorithms are chosen as described above.

For each algorithm, we run it for noise covariance values c ∈ {10−4, 5 × 10−4, 10−3, 5 ×
10−3, 10−2, 5 × 10−2, 10−1, 5 × 10−1} until we reach a stationary point where ‖∇θJ(θ)‖22 ≤ 0.05.
The number of interactions with the environment allowed is capped at 106 steps for each run.
This is repeated across 10 random seeds (different from the ones used for tuning). The number of
interactions needed to reach the stationary point as the noise covariance is increased is recorded
and shown in Figure 3.3.

100

Horizon Stepsize # Directions Perturbation

H = 1 0.02 5 0.2

H = 2 0.02 5 0.2

H = 3 0.015 10 0.2

H = 4 0.015 10 0.2

H = 5 0.01 10 0.2

H = 6 0.015 10 0.2

H = 7 0.01 20 0.2

H = 8 0.015 20 0.2

H = 9 0.02 20 0.2

H = 10 0.008 5 0.2

H = 11 0.02 5 0.15

H = 12 0.02 20 0.2

H = 13 0.015 5 0.15

H = 14 0.02 10 0.15

H = 15 0.01 5 0.1

Table 9.11: Hyperparameters chosen for multi-step experiments for ExAct in Swimmer-v2

Horizon Stepsize # Directions Perturbation

H = 1 0.0001 20 0.2

H = 2 0.001 5 0.2

H = 3 0.001 5 0.2

H = 4 0.001 5 0.2

H = 5 0.001 10 0.2

H = 6 0.001 5 0.2

H = 7 0.001 10 0.2

H = 8 0.001 5 0.2

H = 9 0.001 5 0.2

H = 10 0.001 5 0.2

H = 11 0.0008 5 0.15

H = 12 0.001 5 0.2

H = 13 0.001 10 0.2

H = 14 0.001 5 0.2

H = 15 0.0008 10 0.2

Table 9.12: Hyperparameters chosen for multi-step experiments for ExAct in HalfCheetah-v2

101

9.2 Appendix for Chapter 4

9.2.1 4D Planar Pushing Experiment Details

In this experiment, the task is for a robotic gripper to push a cube from a start location to a goal
location in the presence of static obstacles without any resets, as shown in Figure 4.3 (right).
This can be represented as a planning problem in 4D continuous state space S with any state
represented as the tuple s = (gx, gy, ox, oy) where (gx, gy) are the xy-coordinates of the gripper
and (ox, oy) are the xy-coordinates of the object. The model M̂ used for planning does not have
the static obstacles and the robot can only discover the state-action pairs that are affected due
to the obstacles through real world executions. The action space A is a discrete set of 4 actions
that move the gripper end-effector in the 4 cardinal directions by a fixed offset using an IK-based
controller. The cost of each transition is 1 when the object is not at the goal location, and 0
otherwise.

For all the approaches (except Q-learning), we use the following neural network architecture
for cost-to-go approximation: a feedforward network with 3 hidden layers each of 64 units, the
network takes as input a 15D feature representation of the 4D state s = (ox, oy, gx, gy) that is
constructed as follows:

• Relative position of the object w.r.t gripper o−g
‖o−g‖2 , where o = (ox, oy) is the 2D object

position and g = (gx, gy) is the 2D gripper position

• Distance between position of the object and gripper ‖o− g‖2
• Relative position of the object w.r.t. goal o−t

‖o−t‖2 where t = (tx, ty) is the 2D goal location

• Distance between position of the object and goal location ‖o− t‖2
• Relative position of the gripper w.r.t goal g−t

‖g−t‖2
• Distance between position of the gripper and goal location ‖g − t‖2
• Relative position of the object w.r.t center of the table o−c

‖o−c‖2
• Distance between position of the object and center of the table ‖o− c‖2
• Relative position of the gripper w.r.t center of the table g−c

‖g−c‖2
• Distance between position of the gripper and center of the table ‖g − c‖2
The output of the network is a single scalar value representing the cost-to-go of the input

state. We use ReLU activations after each layer except the last layer. Instead of learning the
cost-to-go from scratch, we start with an initial cost-to-go estimate that is hardcoded and the
neural network function approximator is used to learn a residual on top of it. The hardcoded
initial cost-to-go estimate is obtained as follows:

• For the given object position, construct a target position for the gripper to go to as follows:

Get the angle of the vector pointing from the object to the goal location: θ =
tan−1(tx−oxty−oy)

The target position for gripper is then given by gt = (ox − sin(θ)w
2 , oy − cos(θ)w

2) where
w is the width of the object

• We compute the manhattan distance from the gripper to its target position M(g,gt), and
from the object to the goal location M(o, t)

• The hardcoded heuristic is obtained as V̂ (s) = M(g,gt)+M(o,t)
d , where d is the fixed offset

102

distance the gripper moves for each action

The residual cost-to-go function approximator is initialized in such a way that it outputs 0
initially for all s ∈ S. We use a similar residual Q-value function approximator for Q-learning
with the same architecture but that takes as input the above feature representation and outputs
a vector in R|A|, where each element corresponds to the Q-value for that action in the input
state. We also use hardcoded initial Q-values that are constructed in a similar fashion Q̂(s, a) =
c(s, a) + V̂ (f̂(s, a)). To ensure a fair comparison across all baselines, we use the same neural
network function approximator for cost-to-go, and start with the same initial cost-to-go estimates.

For the model learning baseline that uses Neural network function approximator, we use a
feedforward neural network with 2 hidden layers each of 32 units, the network takes as input the
4D state s and a one-hot encoding of the discrete action a and outputs a 4D residual vector. The
residual vector is added to the next state predicted by the model f̂(s, a) to get the learned next
state. The loss function used to train the residual is mean squared loss.

For the model learning baseline that uses KNN function approximator, we use a radius of 0.02,
and average the next state residual vector observed for any state within this radius to obtain the
prediction for a new state residual vector. In the same way as above, this residual vector is added
to the next state predicted by the model f̂(s, a) to obtain the learned next state.

For all the neural network function approximators, we use an Adam optimizer with learning
rate of 0.001, and an L2 regularization constant of 0.01. We use a batch size of 64 for training
all the neural network function approximators. For Q-learning, we use an random exploration
probability of ε = 0.1 and change the target network by a polyak coefficient of 0.9.

For all the approaches, we use a limited expansion search planner with K = 5 expansions,
N = 5 planning updates, batch size B = 64, and an Adam optimizer [KB15] with learning rate
η = 0.001.

In training the cost-to-go function approximation, we use the hindsight experience replay trick
with a probability of 0.8 for sampling any future state in the trajectory as the desired goal. This
helps in keeping the function approximation stable and also helps in generalization.

9.2.2 3D Pick-and-Place Experiment Details

The task of this physical robot experiment (Figure 4.4) is to pick and place a heavy object using
a PR2 arm from a start pick location to a goal place location while avoiding an obstacle. This can
be represented as a planning problem in 3D discrete state space S where each state corresponds
to the 3D location of the end-effector. In our experiment, we discretize each dimension into 20
bins and plan in the resulting discrete state space of size 203. Since it is a relatively small state
space, we use exact planning updates without any function approximation following Algorithm 12
with K = 3 expansions. The action space is a discrete set of 6 actions corresponding to a fixed
offset movement in positive or negative direction along each dimension. We use a RRT-based
motion planner [LJ01] to plan the path of the arm between states, while avoiding collision with
the obstacle. The model M̂ used by planning does not model the object as heavy and hence,
does not capture the dynamics of the arm correctly when it holds the heavy object. The cost of
each transition is 1 if object is not at the goal place location, otherwise it is 0.

9.2.3 7D Arm Planning Experiment Details

The task of this physical robot experiment (Figure 4.5) is to move the PR2 arm with a non-
operational joint from a start configuration so that the end-effector reaches a goal location,

103

specified as a 3D region. We represent this as a planning problem in 7D discrete statespace
S where each dimension corresponds to a joint of the arm bounded by its joint limits. Each
dimension is discretized into 10 bins resulting in a large state space of size 107. The action space
A is a discrete set of size 14 corresponding to moving each joint by a fixed offset in the positive
or negative direction. We use an IK-based controller to navigate between discrete states. The
model M̂ used for planning does not know that a joint is non-operational and assumes that the
arm can attain any configuration within the joint limits. In the real world, if the robot tries to
move the non-operational joint, the arm does not move. Thus, the robot realizes unreachable
states only through real world executions.

104

0 25 50 75 100 125 150 175 200
Laps

103

104

C
um

ul
at

iv
e

N
um

b
er

of
S

te
ps

ta
ke

n
to

re
ac

h
go

al

Varying βi+1 = ρβi according to an exponential schedule and αi = 1 + βi

EXP β1=10.0 ρ=0.5

EXP β1=10.0 ρ=0.7

EXP β1=10.0 ρ=0.9

EXP β1=100.0 ρ=0.5

EXP β1=100.0 ρ=0.7

EXP β1=100.0 ρ=0.9

EXP β1=1000.0 ρ=0.5

EXP β1=1000.0 ρ=0.7

EXP β1=1000.0 ρ=0.9

Figure 9.2: Sensitivity experiments with an exponential schedule

9.3 Appendix for Chapter 5

9.3.1 Sensitivity Experiments

In this section, we present the results of our sensitivity experiments examining the performance
of A-Cmax++ with the choice of the sequence {αi}. We compare the performance of different
choices of the sequence {αi} on the 3D mobile robot navigation task. For each run, we average the
results across 5 instances with randomly placed ice patches and present the mean and standard
errors. To keep the figures concise, we plot the cumulative number of steps taken to reach the
goal from the start of the first lap to the current lap across all laps. In all our runs, A-Cmax++
successfully completes all 200 laps and hence, we do not report the number of successful instances
in our results.

We choose 4 schedules for the sequence {αi}:
1. Exponential Schedule: In this schedule, we vary βi+1 = ρβi where ρ < 1 is a constant

that is tuned and αi = 1 + βi. Observe that as i→∞, αi → 1 and that the sequence {αi}
is a decreasing sequence.

We vary both the initial β1 chosen and the constant ρ in our experiments. For β1 we choose
among values [10, 100, 1000] and ρ is chosen among [0.5, 0.7, 0.9]. The results are shown in
Figure 9.2.

All choices have almost the same performance with β1 = 1000 and ρ = 0.9 having the best
performance initially but has slightly worse performance in the last several laps. The choice
of β1 = 100 and ρ = 0.9 seems to be a good choice with great performance in both initial
and final laps.

2. Linear Schedule: In this schedule, we vary βi+1 = βi − η where αi = 1 + βi and η > 0 is
a constant that is determined so that β200 = 0, i.e. α200 = 1. Hence, we have η = β1

200 .

We vary the initial β1 and choose among values [10, 100, 200]. The results are shown in
Figure 9.3.

All three choices have the same performance except in the last few laps where β1 = 10
degrades while the other two choices perform well.

3. Time Decay Schedule: In this schedule, we vary βi+1 = β1
i+1 where αi = 1 + βi. In other

words, we decay β at the rate of 1
i where i is the lap number. Again, observe that as i→∞,

we have αi → 1.

105

0 25 50 75 100 125 150 175 200
Laps

103

104

C
um

ul
at

iv
e

N
um

b
er

of
S

te
ps

ta
ke

n
to

re
ac

h
go

al

Varying βi+1 = βi − η according to a linear schedule and αi = 1 + βi

LINEAR β1=10.0 η=0.05

LINEAR β1=100.0 η=0.5

LINEAR β1=200.0 η=1.0

Figure 9.3: Sensitivity experiments with a linear schedule

0 25 50 75 100 125 150 175 200
Laps

103

104

C
um

ul
at

iv
e

N
um

b
er

of
S

te
ps

ta
ke

n
to

re
ac

h
go

al

Varying βi+1 = β1/(i + 1) according to a time decay schedule and αi = 1 + βi

TIME β1=10.0

TIME β1=100.0

TIME β1=1000.0

Figure 9.4: Sensitivity experiments with a time decay schedule

We vary the initial β1 and choose among values [10, 100, 1000]. The results are shown in
Figure 9.4.

The choices of β1 = 100 and β1 = 1000 have the best (and similar) performance while
β1 = 10 has a poor performance as it quickly switches to Cmax++ in the early laps and
wastes executions learning accurate Q-values.

4. Step Schedule: In this schedule, we vary β as a step function with βi+1 = βi − δ if i
is a multiple of ξ where ξ is the step frequency, αi = 1 + βi and δ is a constant that is
determined so that β200 = 0, i.e. α200 = 1. Hence, we have δ = β1ξ

200 .

We vary both the initial β1 and the step frequency ξ. For β1 we choose among values
[10, 100, 200] and for ξ we choose among [5, 10, 20]. The results are shown in Figure 9.5.

All choices have the same performance and A-Cmax++ seems to be robust to the choice
of step size frequency.

For our final comparison, we will pick the best performing choice among all the schedules and
compare performance among these selected choices. The results are shown in Figure 9.6.

We can observe that all schedules have the same performance except the exponential schedule
which has worse performance. This can be attributed to the rapid decrease in the value of β
compared to other schedules and thus, around lap 50 A-Cmax++ switches to Cmax++ resulting
in a large number of executions wasted to learn accurate Q-value estimates. This does not happen

106

0 25 50 75 100 125 150 175 200
Laps

103

104

C
um

ul
at

iv
e

N
um

b
er

of
S

te
ps

ta
ke

n
to

re
ac

h
go

al

Varying βi+1 = βi − δ if i is a multiple of ξ according to a step schedule and αi = 1 + βi

STEP β1=10.0 ξ=5.0 δ=0.25

STEP β1=10.0 ξ=10.0 δ=0.5

STEP β1=10.0 ξ=20.0 δ=1.0

STEP β1=100.0 ξ=5.0 δ=2.5

STEP β1=100.0 ξ=10.0 δ=5.0

STEP β1=100.0 ξ=20.0 δ=10.0

STEP β1=200.0 ξ=5.0 δ=5.0

STEP β1=200.0 ξ=10.0 δ=10.0

STEP β1=200.0 ξ=20.0 δ=20.0

Figure 9.5: Sensitivity experiments with a step schedule

0 25 50 75 100 125 150 175 200
Laps

103

104

C
um

ul
at

iv
e

N
um

b
er

of
S

te
ps

ta
ke

n
to

re
ac

h
go

al

Comparing the best choices among all schedules

EXP β1=100.0 ρ=0.9

LINEAR β1=100.0 η=0.5

TIME β1=100.0

STEP β1=100.0 ξ=5.0 δ=2.5

Figure 9.6: Sensitivity experiments with best choices among all schedules

107

Figure 9.7: 3D Mobile Robot experiment example track

for other schedules as they decrease β gradually and thus, spreading out the executions used to
learn accurate Q-value estimates across several laps and not performing poorly in any single lap.

9.3.2 Experiment Details

All experiments were implemented using Python 3.6 and run on a 3.1GHz Intel Core i5 machine.
We use PyTorch [Pas+19] to train neural network function approximators in our 7D experiments,
and use Box2D [Cat07] for our 3D mobile robot simulation (similar to OpenAI Gym [Bro+16b]
car racing environment) and use PyBullet [Cou+13] for our 7D PR2 experiments.

3D Mobile Robot Navigation with Icy Patches

An example track used in the 3D experiment is shown in Figure 9.7. We generate 66 motion
primitives offline using the following procedure: (a) We first define the primitive action set for
the robot by discretizing the steering angle into 3 cells, one corresponding to zero and the other
two corresponding to +0.6 and −0.6 radians. We also discretize the speed of the robot to 2 cells
corresponding to +2m/s and −2m/s, (b) We then discretize the state space into a 100× 100 grid
in XY space and 16 cells in θ dimension. Thus, we have a 100× 100× 16 grid in XY θ space., (c)
We then initialize the robot at (0, 0) xy location with different headings chosen among [0, · · · , 15]
and roll out all possible sequences of primitive actions for all possible motion primitive lengths
from 1 to 15 time steps, (d) We filter out all motion primitives whose end point is very close to
a cell center in the XY θ grid. During execution, we use a pure pursuit controller to track the
motion primitive so that the robot always starts and ends on a cell center. During planning,
we simply use the discrete offsets stored in the motion primitive to compute the next state (and
thus, the model dynamics are pre-computed offline during motion primitive generation.)

The cost function used is as follows: for any motion primitive a and state s, the cost of
executing a from s is given by c(s, a) =

∑
s′ c
′(s′) where c′ is a pre-defined cost map over the

100× 100× 16 grid and s′ is all the intermediate states (including the final state) that the robot
goes through while executing the motion primitive a from s. The pre-defined cost map is defined
as follows: c′(s) = 1 if state s lies on the track (i.e. xy location corresponding to s lies on the

108

Figure 9.8: 7D Pick-and-Place Experiment

track) and c′(s) = 100 otherwise (i.e. all xy locations corresponding to grass or wall has a cost
of 100). This encourages the planner to come up with a path that lies completely on the track.

We define two checkpoints on the opposite ends of the track (shown as blue squares in Fig-
ure 9.7.) The goal of the robot is to reach the next checkpoint incurring least cost while staying
on the track. Note that this requires the robot to complete laps around the track as quickly as
possible. Since the state space is small, we maintain value estimates V,Q, Ṽ using tables and
update the appropriate table entry for each value update. The tables are initialized with value
estimates obtained by planning in the model M̂ using a planner with K = 100 expansions until
the robot can efficiently complete the laps using the optimal paths. However, this does not mean
that the initial value estimates are the optimal values for M̂ dynamics since the planner looks
ahead and can achieve optimal paths with underestimated value functions. Nevertheless, these
estimates are highly informative.

7D Pick-and-Place with a Heavy Object

For our 7D experiments, we make use of Bullet Physics Engine through the pyBullet interface. For
motion planning and other simulation capabilities we make use of ss-pybullet library [Gar18].
The task is shown in Figure 9.8. The goal is for the robot to pick the heavy object from its start
pose and place it at its goal pose while avoiding the obstacle, without any resets. Since the object
is heavy, the robot fails to lift the object in certain configurations where it cannot generate the
required torque to lift the object. Thus, the robot while lifting the object might fail to reach
the goal waypoint and onky reach an intermediate waypoint resulting in discrepancies between
modeled and true dynamics.

This is represented as a planning problem in 7D statespace. The first 6 dimensions correspond
to the 6DOF pose of the object (or gripper,) and the last dimension corresponds to the redundant
DOF in the arm (in our case, it is the upper arm roll joint.) Given a 7D configuration, we use
IKFast library [Dia10] to compute the corresponding 7D joint angle configuration. The action
space consists of 14 motion primitives that move the arm by a fixed offset in each of the 7

109

dimensions in positive and negative directions. The discrepancies in this experiment are only in
the Z dimension corresponding to lifting the object. For planning, we simply use a kinematic
model of the arm and assume that the object being lifted is extremely light. Thus, we do not
need to explicitly consider dynamics during planning. However, during execution we take the
dynamics into account by executing the motion primitives in the simulator. The cost of any
transition is 1 if the object is not at goal pose, 0 if the object is at goal pose. We start the next
repetition only if the robot reached the goal pose in the previous repetition.

The 7D state space is discretized into 10 cells in each dimension resulting in 107 states.
Since the state space is large we use neural network function approximators to maintain the
value functions V,Q, Ṽ . For the state value functions V, Ṽ we use the following neural network
approximator: a feedforward network with 3 hidden layers consisting of 64 units each, we use
ReLU activations after each layer except the last layer, the network takes as input a 34D feature
representation of the 7D state computed as follows:

• For any discrete state s, we compute a continuous 10D representation r(s) that is used to
construct the features

The discrete state is represented as (xd, yd, zd, rd, pd, yd, rjointd) where (xd, yd, zd)
represents the 3D discrete location of the object (or gripper,) (rd, pd, yd) represents the
discrete roll, pitch, yaw of the object (or gripper,) and rjointd represents the discrete
redundant joint angle

We convert (xd, yd, zd) to a continuous representation by simply dividing by the grid
size in those dimensions, i.e. (xc, yc, zc) = (xd/10, yd/10, zd/10)

We do a similar construction for rjointc, i.e. rjointc = rjointd/10

However, note that rd, pd, yd are angular dimensions and simply dividing by grid size
would not encode the wrap around nature that is inherent in angular dimensions (we
did not have this problem for rjointd as the redundant joint angle has lower and
upper limits, and is always recorded as a value between those limits.) To account
for this, we use a sine-cosine representation defined as (rc1, rc2, pc1, pc2.yc1, yc2) =
(sin(rc), cos(rc), sin(pc), cos(pc), sin(yc), cos(yc)) where rc, pc, yc are the roll, pitch,
yaw angles corresponding to the cell centers of the grid cells rd, pd, yd.

Thus, the final 10D representation of state s is given by r(s) = (xc, yc, zc, rc1, rc2, pc1, pc2, yc1, yc2, rjointc)

We also define a truncated 9D representation r′(s) = (xc, yc, zc, rc1, rc2, pc1, pc2, yc1, yc2)
and a 3D representation r′′(s) = (xc, yc, zc)

• The first feature is the 9D relative position of the 6D goal pose w.r.t the object f1 =
r′(g)− r′(s)

• The second feature is the 10D relative position of the object w.r.t the gripper home state
h, f2 = r(s)− r(h)

• The third feature is the 9D relative position of the goal w.r.t the gripper home state h,
f3 = r′(g)− r′(h)

• The fourth feature is the 3D relative position of the obstacle left top corner o1 w.r.t the
object, f4 = r′′(o1)− r′′(s)

• The fifth and final feature is the 3D relative position of the object right bottom corner o2
w.r.t. the object, f5 = r′′(o2)− r′′(s)

110

• Thus, the final 34D feature representation is given by f(s) = (f1, f2, f3, f4, f5).

The output of the network is a single scalar value representing the cost-to-goal of the input
state. Instead of learning the cost-to-goal/value from scratch, we start with an initial value
estimate that is hardcoded (manhattan distance to goal in the 7D discrete grid) and the neural
network approximator is used to learn a residual on top of it. A similar trick was used in
Cmax [Vem+20]. The residual state value function approximator was initialized to output 0
for all s ∈ S. We use a similar architecture for the residual Q-value function approximator
but it takes as input the 34D state feature representation and outputs a vector in R|A| (in our
case, R14) to represent the cost-to-goal estimate for each action a ∈ A. We also use the same
hardcoded value estimates as before in addition to the residual approximator to construct the
Q-values. All baselines and proposed approaches use the same function approximator and same
initial hardcoded value estimates to ensure fair comparison. The value function approximators
are trained using mean squared loss.

The residual model learning baseline with neural network (NN) function approximator uses
the following architecture: 2 hidden layers each with 64 units and all layers are followed by ReLU
activations except the last layer. The input of the network is the 34D feature representation of
the state and a one-hot encoding of the action in R14. The output of the network is the 7D
continuous state which is added to the state predicted by the model M̂ . The loss function used
to train the network is a simple mean squared loss. The residual model learning baseline with
K-Nearest Neighbor regression approximator (KNN) uses a manhattan radius of 3 in the discrete
7D state space. We compute the prediction by averaging the next state residual vector observed
in the past for any state that lies within the radius of the current state. The averaged residual is
added to the next state predicted by model M̂ to obtain the learned next state.

We use Adam optimizer [KB15] with a learning rate of 0.001 and a weight decay (L2 reg-
ularization coefficient) of 0.001 to train all the neural network function approximators in all
approaches. We use a batch size of 32 for the state value function approximators and a batch
size of 128 for the Q-value function approximators. We perform U = 3 updates for state value
function and U = 5 updates for state-action value function for each time step. We update the
parameters of all neural network approximators using a polyak averaging coefficient of 0.5.

Finally, we use hindsight experience replay trick [And+17] in training all the value function
approximators with the probability of sampling any future state in past trajectories as the goal
set to 0.7. This is crucial as our cost function used is extremely sparse.

111

9.4 Appendix for Chapter 6

9.4.1 General Results

In this section, we will present general results that bound the cost suboptimality of any time-
varying controller K̂ in terms of the norm differences ||K?

t − K̂t||. Our first lemma makes use of
Assumption 6.2.2 to show that if the norm differences ||K?

t − K̂t|| are small, then the true system
can be stable under K̂:

Lemma 9.4.1. If Assumption 6.2.2 holds and if K̂ satisfies ||K?
i − K̂i|| ≤ δ

2||Bi|| for all i ∈
{0, · · · , H − 1}, then we have

||Lt(K̂)|| ≤
(

1− δ

2

)t+1

≤ e− δ2 (t+1) (9.16)

Proof. Observe that,

||Lt(K̂)|| = ||
t∏
i=0

Mi(K̂)|| = ||
t∏
i=0

Ai +BiK̂i||

= ||
t∏
i=0

Ai +BiK
?
i +Bi(K̂i −K?

i)|| = ||
t∏
i=0

Mi(K
?) + ∆i||

where ∆i = Bi(K̂i −K?
i). Since the spectral norm is sub-multiplicative we can see that

||
t∏
i=0

Mi(K
?) + ∆i|| ≤

t∏
i=0

||Mi(K
?) + ∆i||

≤
t∏
i=0

(||Mi(K
?)||+ ||∆i||)

where we used the triangle inequality. Now note that ||Mi(K
?)|| ≤ 1− δ from assumption 6.2.2,

‖∆i‖ = ‖Bi(K̂i −K?
i)‖ ≤ ‖Bi‖‖K̂i −K?

i ‖

≤ κ δ

2κ

≤ δ

2

The last inequality above is from our assumption on model errors in the lemma statement.
Combining all of this above, we get

||Lt(K̂)|| ≤
t∏
i=0

(
1− δ +

δ

2

)
≤
(

1− δ

2

)t+1

The next lemma is very similar to the performance difference lemma that was first proposed
in [KL02]. We borrow the version presented in [Faz+18] and extend it to the finite horizon setting
below:

112

Lemma 9.4.2. Let x̂0, û0, · · · , x̂H , ûH be the trajectory generated by controller K̂ using the true
dynamics such that x̂0 = x0, ût = K̂tx̂t for t = 0, · · · , H − 1. Then we have:

V̂0(x0)− V ?
0 (x0) =

H−1∑
t=0

A?t (x̂t, ût)− V ?
H(x̂H) (9.17)

where V̂t is the cost-to-go using controller K̂ from time step t, V ?
t is the cost-to-go using the

optimal controller K? from time step t, and A?t (x, u) = Q?t (x, u)− V ?
t (x) is the advantage of the

controller K? at time step t. Furthermore, we have that for any x

A?t (x, K̂tx) = xT (K̂t −K?
t)T (R+BT

t P
?
t+1Bt)(K̂t −K?

t)x

Proof. For proof, we refer the readers to [Faz+18].

We use the performance difference lemma, as stated above, in the finite horizon LQR setup and
make use of Lemma 9.4.1 to establish the suboptimality bound in terms of the norm differences
||K?

t − K̂t||:
Theorem 6.3.1. Suppose d ≤ n. Denote Γ = 1 + maxt{||At||, ||Bt||, ||P ?t ||, ||K?

t ||}. Then under
Assumption 6.2.2 and if ||K?

t − K̂t|| ≤ δ
2||Bi|| for all t = 0, · · · , H − 1, we have

V̂0(x0)− V ?
0 (x0) ≤ dΓ3‖x0‖2

H−1∑
t=0

e−δt‖K?
t − K̂t‖2 (6.3)

Proof. From Lemma 9.4.2 we have

At(x̂t, K̂tx̂t) = x̂Tt (K̂t −K?
t)T (R+BT

t Pt+1Bt)(K̂t −K?
t)x̂t

We know x̂t = Lt−1(K̂)x0 and using the trace identity we get

At(x̂t, K̂tx̂t) = Tr(Lt−1(K̂)x0x
T
0 (Lt−1(K̂))T (K̂t −K?

t)T (R+BT
t Pt+1Bt)(K̂t −K?

t))

≤ ‖Lt−1(K̂)x0x
T
0 ‖‖R+BT

t Pt+1Bt‖‖K̂t −K?
t ‖2F

≤ ‖Lt−1(K̂)‖2‖x0‖2‖R+BT
t Pt+1Bt‖‖K̂t −K?

t ‖2F

We can bound ‖R+BT
t Pt+1Bt‖ ≤ Γ3 and ‖K̂t−K?

t ‖2F ≤ min{n, d}‖K̂t−K?
t ‖2. We can also use

Lemma 9.4.1 to bound ‖Lt−1(K̂)‖ ≤ exp
(
− δ

2 t
)
. Combining all of this above we get

At(x̂t, K̂tx̂t) ≤ min{n, d}Γ3 exp (−δt) ‖K̂t −K?
t ‖2‖x0‖2

Summing over all time steps we obtain (using d ≤ n)

V̂0(x0)− V0(x0) ≤ dΓ3‖x0‖2
H−1∑
t=0

exp (−δt) ‖K̂t −K?
t ‖2

113

9.4.2 Helpful Lemmas

Before we dive into the results, let us present a helpful lemma borrowed from [MTR19]:

Lemma 9.4.3. Let f1, f2 be µ-strongly convex twice differentiable functions. Let x1 = arg minx f1(x)
and x2 = arg minx f2(x). Suppose ||∇f1(x2)|| ≤ ε, then ||x1 − x2|| ≤ ε

µ

Proof. Taylor expanding ∇f1 we get

∇f1(x2) = ∇f1(x1) +∇2f1(x̃)(x2 − x1)

= ∇2f1(x̃)(x2 − x1)

for some x̃ = tx1 + (1− t)x2 where t ∈ [0, 1]. Thus we have

‖∇f1(x2)‖ = ‖∇2f1(x̃)(x2 − x1)‖ ≤ ε

But we know ‖∇2f1(x̃)‖ ≥ µ which gives us

‖x2 − x1‖ ≤
ε

µ

The next lemma is a useful fact about positive semi-definite matrices, also from [MTR19],

Lemma 9.4.4. Given matrices A, Â such that ‖A− Â‖ ≤ εA, and positive-semidefinite matrices
Q,S, Ŝ we have

‖ATQ(I + SQ)−1A− ÂTQ(I + ŜQ)−1Â‖ ≤ ‖A‖2‖Q‖2‖Ŝ − S‖+ 2‖A‖‖Q‖εA + ‖Q‖ε2A (9.18)

Proof. We can rewrite the expression,

ATQ(I + SQ)−1A− ÂTQ(I + ŜQ)−1Â =

ATQ(I + SQ)−1(Ŝ − S)Q(I + ŜQ)−1A−ATQ(I + ŜQ)−1(Â−A)

− (Â−A)TQ(I + ŜQ)−1A− (Â−A)TQ(I + ŜQ)−1(Â−A)

Now we make use of Lemma 7 from [MTR19] which states that for any two positive semidef-
inite matrices M,N of the same dimension, we have ‖N(I + MN)−1‖ ≤ ‖N‖. Thus, we have
‖Q(I + SQ)−1‖ ≤ ‖Q‖ and ‖Q(I + ŜQ)−1‖ ≤ ‖Q‖.

Using the above facts we get,

‖ATQ(I + SQ)−1A− ÂTQ(I + ŜQ)−1Â‖ ≤ ‖A‖2‖Q‖2‖Ŝ − S‖+ 2‖A‖‖Q‖εA + ‖Q‖ε2A

Finally, we have a lemma that will be useful in proving ricatti perturbation bounds,

Lemma 9.4.5. Given positive semidefinite matrices N1, N2,M of the same dimensions, we have

||N1(I +MN1)−1 −N2(I +MN2)−1|| ≤ ||(I +MN1)−1||||N1 −N2||||(I +MN2)−1|| (9.19)

114

Proof. We can rewrite the expression as,

N1(I +MN1)−1 −N2(I +MN2)−1

=
[
N1(I +MN1)−1 −N1(I +MN2)−1

]
+
[
N1(I +MN2)−1 −N2(I +MN2)−1

]
= N1(I +MN1)−1 [(I +MN2)− (I +MN1)] (I +MN2)−1 + (N1 −N2)(I +MN2)−1

= N1(I +MN1)−1M(N2 −N1)(I +MN2)−1 + (N1 −N2)(I +MN2)−1

=
[
I −N1(I +MN1)−1M

]
(N1 −N2)(I +MN2)−1

= (I +N1M)−1(N1 −N2)(I +MN2)−1

The rest follows by taking norm on both sides, and using the submultiplicative property of the
induced norm.

||N1(I +MN1)−1 −N2(I +MN2)−1|| ≤ ||(I +N1M)−1||||N1 −N2||||(I +MN2)−1||
= ||(I +N1M)−T ||||N1 −N2||||(I +MN2)−1||
= ||(I +MN1)−1||||N1 −N2||||(I +MN2)−1||

9.4.3 Optimal Control with Misspecified Model Results

The next lemma, from [MTR19], applies the above result to quadratic functions that are observed
in linear quadratic control:

Lemma 9.4.6. Define f1(x, u) = 1
2u

TRu + 1
2(A1x + B1u)TP1(A1x + B1u) and similarly define

f2(x, u) where R,P1, P2 are positive-definite matrices. Let K1 be such that u1 = arg minu f1(x, u) =
K1x for any vector x. Define the matrix K2 in a similar fashion. Also, denote Γ = 1+max{||A1||,
||B1||, ||P1||, ||K1||}. Suppose there exists εA, εB, εP > 0 (and < Γ) such that ||A1 − A2|| ≤ εA,
||B1 −B2|| ≤ εB, and ||P1 − P2|| ≤ εP . Then we have,

‖K1 −K2‖ ≤
Γ2εA + (3Γ3 + 2Γ2)εB + 4(Γ3 + Γ2)εP

¯
σ(R)

(9.20)

Proof. Consider

∇uf1(x, u) = (BT
1 P1B1 +R)u+BT

1 P1A1x

∇uf2(x, u) = (BT
2 P2B2 +R)u+BT

2 P2A2x

Let us bound the difference ‖∇uf1(x, u) − ∇uf2(x, u)‖ by bounding each term separately.
First consider the term

‖BT
1 P1B1 −BT

2 P2B2‖ = ‖BT
1 P1(B1 −B2) + (B1 −B2)TP1B2 +BT

2 (P1 − P2)B2‖
≤ ‖BT

1 P1(B1 −B2)‖+ ‖(B1 −B2)TP1B2‖+ ‖BT
2 (P1 − P2)B2‖

≤ Γ2εB + ΓεB(Γ + εB) + (Γ + εB)2εP

≤ Γ2(3εB + 4εP)

where we used the fact that ‖B2‖ ≤ Γ + εB. We can similarly bound the term

‖BT
1 P1A1 −BT

2 P2A2‖ ≤ Γ2(εA + 2εB + 4εP)

115

Thus, we have for any vector x such that ‖x‖ ≤ 1

‖∇uf1(x, u)−∇uf2(x, u)‖ ≤ Γ2(3εB + 4εP)‖u‖+ Γ2(εA + 2εB + 4εP)

Substituting u = u1 we get

‖∇uf2(x, u1)‖ ≤ Γ2(3εB + 4εP)‖u1‖+ Γ2(εA + 2εB + 4εP)

We can bound ‖u1‖ ≤ ‖K1‖‖x‖ ≤ ‖K1‖ ≤ Γ. Then from Lemma 9.4.3 we have,

‖u1 − u2‖ ≤
Γ3(3εB + 4εP) + Γ2(εA + 2εB + 4εP)

¯
σ(R)

‖K1 −K2‖ ≤
Γ2εA + (3Γ3 + 2Γ2)εB + 4(Γ3 + Γ2)εP

¯
σ(R)

Now we will prove Lemma 6.3.1,

Lemma 6.3.1. If ||At − Ât|| ≤ εA and ||Bt − B̂t|| ≤ εB for t = 0, · · · , H − 1, and we have
||P ?t+1 − PMM

t+1 || ≤ fMM
t+1 (εA, εB) for some function fMM

t+1 . Then we have under Assumption 6.2.1
for all t = 0, · · · , H − 1,

||K?
t −KMM

t || ≤ 14Γ3εt (6.4)

where Γ = 1 + maxt{||At||, ||Bt||, ||P ?t ||, ||K?
t ||} and εt = max{εA, εB, fMM

t+1 (εA, εB)}.

Proof. Use Assumption 6.2.1 and Lemma 9.4.6 for every t = 0, · · · , H−1 with εP = fMM
t+1 (εA, εB)

and choosing εt = max{εA, εB, fMM
t+1 (εA, εB)}.

All that is left is to prove Theorem 6.3.2 which we will do now,

Theorem 6.3.2. If the cost-to-go matrices for the optimal controller and MM controller are
specified by {P ?t } and {PMM

t } such that P ?H = PMM
H = Qf then,

||P ?t − PMM
t || ≤ ‖At‖2‖P ?t+1‖2(2‖Bt‖‖R−1‖εB + ‖R−1‖ε2B)

+ 2‖At‖‖P ?t+1‖εA + ‖P ?t+1‖ε2A
+ cP ?t+1

(‖At‖+ εA)2||P ?t+1 − PMM
t+1 || (6.5)

for t = 0, · · · , H − 1 where cP ?t+1
∈ R+ is a constant that is dependent only on P ?t+1 if εA, εB are

small enough such that ‖P ?t+1 − PMM
t+1 ‖ ≤ ‖P ?t+1‖−1. Furthermore, the upper bound (6.5) is tight

up to constants that only depend on the true dynamics At, Bt, cost matrix R, and P ?t+1.

Proof. We know P ?t satisfies,

P ?t = Q+ATt P
?
t+1At −ATt P ?t+1Bt(R+BT

t P
?
t+1Bt)

−1BT
t P

?
t+1At

= Q+ATt P
?
t+1(I +BtR

−1BT
t P

?
t+1)−1At

where we used the matrix inversion lemma.
Similarly we have,

PMM
t = Q+ ÂTt P

MM
t+1 (I + B̂tR

−1B̂T
t P

MM
t+1)−1Ât

116

Consider the difference,

P ?t − PMM
t = ATt P

?
t+1(I +BtR

−1BT
t P

?
t+1)−1At − ÂTt PMM

t+1 (I + B̂tR
−1B̂T

t P
MM
t+1)−1Ât

= ATt P
?
t+1(I +BtR

−1BT
t P

?
t+1)−1At − ÂTt P ?t+1(I + B̂tR

−1B̂T
t P

?
t+1)−1Ât

+ ÂTt

(
P ?t+1(I + B̂tR

−1B̂T
t P

?
t+1)−1 − PMM

t+1 (I + B̂tR
−1B̂T

t P
MM
t+1)−1

)
Ât

To bound the above expression, we will make use of Lemma 9.4.4 with S = BtR
−1BT

t , Ŝ =
B̂tR

−1B̂T
t , Q = P ?t+1 and observing that ‖Ŝ − S‖ ≤ 2‖Bt‖‖R−1‖εB + ‖R−1‖ε2B we obtain

‖PMM
t − P ?t ‖ ≤‖At‖2‖P ?t+1‖2(2‖Bt‖‖R−1‖εB + ‖R−1‖ε2B) + 2‖At‖‖P ?t+1‖εA + ‖P ?t+1‖ε2A

+ ‖ÂTt
(
P ?t+1(I + B̂tR

−1B̂T
t P

?
t+1)−1 − PMM

t+1 (I + B̂tR
−1B̂T

t P
MM
t+1)−1

)
Ât‖

All that remains is to bound the second expression. We will use Lemma 9.4.5 with N1 = P ?t+1,

N2 = PMM
t+1 and M = B̂tR

−1B̂T
t gives us,

||P ?t+1(I + B̂tR
−1B̂T

t P
?
t+1)−1 − PMM

t+1 (I + B̂tR
−1B̂T

t P
MM
t+1)−1||

≤ ||(I + B̂tR
−1B̂T

t P
?
t+1)−1||||P ?t+1 − PMM

t+1 ||||(I + B̂tR
−1B̂T

t P
MM
t+1)−1||

Thus, we have

||P ?t − PMM
t || ≤ ‖At‖2‖P ?t+1‖2(2‖Bt‖‖R−1‖εB + ‖R−1‖ε2B) + 2‖At‖‖P ?t+1‖εA + ‖P ?t+1‖ε2A

+ ‖Ât‖2||(I + B̂tR
−1B̂T

t P
?
t+1)−1||||P ?t+1 − PMM

t+1 ||||(I + B̂tR
−1B̂T

t P
MM
t+1)−1||

Observe that we can bound

||(I + B̂tR
−1B̂T

t P
?
t+1)−1|| = ||(P ?t+1)−1P ?t+1(I + B̂tR

−1B̂T
t P

?
t+1)−1||

≤ ||(P ?t+1)−1||||P ?t+1(I + B̂tR
−1B̂T

t P
?
t+1)−1||

≤ ||(P ?t+1)−1||||P ?t+1|| = κP ?t+1

where κP ?t+1
is the condition number of the matrix P ?t+1. This gives us the bound

||P ?t − PMM
t || ≤ ‖At‖2‖P ?t+1‖2(2‖Bt‖‖R−1‖εB + ‖R−1‖ε2B) + 2‖At‖‖P ?t+1‖εA + ‖P ?t+1‖ε2A

+ ‖Ât‖2κP ?t+1
κPMM

t+1
||P ?t+1 − PMM

t+1 ||

Using the fact that ||Ât||2 ≤ (‖At‖+ εA)2 gives us

||P ?t − PMM
t || ≤ ‖At‖2‖P ?t+1‖2(2‖Bt‖‖R−1‖εB + ‖R−1‖ε2B) + 2‖At‖‖P ?t+1‖εA + ‖P ?t+1‖ε2A

+ (‖At‖+ εA)2κP ?t+1
κPMM

t+1
||P ?t+1 − PMM

t+1 || (9.21)

If εA, εB are small enough that ‖P ?t+1 − PMM
t+1 ‖‖P ?t+1‖ ≤ 1 then we can bound

‖(PMM
t+1)−1 − (P ?t+1)−1‖ ≤ ‖(P ?t+1)−1‖

1− ‖(P ?t+1)−1‖‖P ?t+1 − PMM
t+1 ‖

≤ ‖(P ?t+1)−1‖‖P ?t+1‖
‖P ?t+1‖ − ‖(P ?t+1)−1‖

≤
κP ?t+1

‖P ?t+1‖2 − κP ?t+1

117

The above result is from [HJ12] (Section 5.8 page 381). Now we can bound the condition number

κPMM
t+1

by observing that ‖(PMM
t+1)−1‖ ≤ ‖(P ?t+1)−1‖+

κP?t+1

‖P ?t+1‖2−κP?t+1

and ‖PMM
t+1 ‖ ≤ ‖P ?t+1‖+‖PMM

t+1 −
P ?t+1‖ ≤ ‖P ?t+1‖+ 1

‖P ?t+1‖
giving us

κP ?t+1
κPMM

t+1
= κP ?t+1

‖(PMM
t+1)−1‖‖PMM

t+1 ‖ ≤ κP ?t+1
(‖(P ?t+1)−1‖+

κP ?t+1

‖P ?t+1‖2 − κP ?t+1

)(‖P ?t+1‖+
1

‖P ?t+1‖
)

= κ2
P ?t+1

+
κ2
P ?t+1

‖P ?t+1‖2
+

κ2
P ?t+1

‖P ?t+1‖2 − κP ?t+1

(‖P ?t+1‖+
1

‖P ?t+1‖
)

Denoting cP ?t+1
as the right hand side expression in the above inequality we get the desired

result.The example that realizes the upper bound is given in Appendix 9.4.6.

9.4.4 Note on Assumption 6.2.3

Consider the cost-to-go matrix P ILC
t given by

P ILC
t = Q+ ÂTt P

ILC
t+1At − ÂTt P ILC

t+1Bt(R+ B̂T
t P

ILC
t+1Bt)

−1B̂T
t P

ILC
t+1At

= Q+ ÂTt P
ILC
t+1(I +BtR

−1B̂T
t P

ILC
t+1)−1At

and the cost-to-go from any state x is given by

Vt(x) = xTP ILC
t x

Since this is a quadratic, for it to be convex (and thus, have a minima) we require the leading
coefficient to be positive semi-definite. In other words, P ILC

t should have eigenvalues with non-
negative real parts. Assuming P ILC

t+1 to be positive semi-definite, and observing the fact that Q is

a positive semi-definite matrix, we require that BtR
−1B̂T

t to have eigenvalues with non-negative
real parts for P ILC

t to be positive semi-definite. Note that this is trivially satisfied for MM as the
leading coefficient there contains a similar term BtR

−1BT
t which is positive semi-definite.

Intuitively, if BtR
−1B̂T

t does not have eigenvalues with non-negative real parts, then the
resulting quadratic cost-to-go function need not be convex, and ILC will not converge.

9.4.5 Iterative Learning Control Results

Our first lemma derives a similar result as Lemma 9.4.6 but for the iterative learning control
setting,

Lemma 9.4.7. Given functions f1(x, u) and f2(x, u) such that ∇uf1(x, u) = (BT
1 P1B1 +R)u+

BT
1 P1A1x and ∇uf2(x, u) = (BT

2 P2B1 + R)u + BT
2 P2A1x where R,P1, P2 are positive-definite

matrices. Let K1 and K2 be unique matrices such that ∇uf1(x,K1x) = 0 and ∇uf2(x,K2x) = 0
for any vector x. Also, denote Γ = 1 + max{||A1||, ||B1||, ||P1||, ||K1||}. Suppose there exists
εA, εB, εP > 0 (and < Γ) such that ||A1 − A2|| ≤ εA, and ||B1 −B2|| ≤ εB, and ||P1 − P2|| ≤ εP .
Then we have,

‖K1 −K2‖ ≤
2Γ3(εB + 2εP)

¯
σ(R)

(9.22)

118

Proof. Let us bound the difference ‖∇uf1(x, u)−∇uf2(x, u)‖ by bounding each term separately.
First consider the term

‖BT
1 P1B1 −BT

2 P2B1‖ = ‖(B1 −B2)TP1B1 +BT
2 (P1 − P2)B1‖

≤ Γ2εB + Γ(Γ + εB)εP

≤ Γ2(εB + 2εP)

where we used the fact that ‖B2‖ ≤ Γ + εB. We can similarly bound the term

‖BT
1 P1A1 −BT

2 P2A1‖ ≤ Γ2(εB + 2εP)

Thus, we have for any vector x such that ‖x‖ ≤ 1

‖∇uf1(x, u)−∇uf2(x, u)‖ ≤ Γ2(εB + 2εP)(‖u‖+ 1)

Substituting u = u1 we get

‖∇uf2(x, u1)‖ ≤ Γ2(εB + 2εP)(‖u1‖+ 1)

We can bound ‖u1‖ ≤ ‖K1‖‖x‖ ≤ ‖K1‖ ≤ Γ. Then from Lemma 9.4.3 we have,

‖u1 − u2‖ ≤
Γ2(εB + 2εP)(Γ + 1)

¯
σ(R)

‖K1 −K2‖ ≤
2Γ3(εB + 2εP)

¯
σ(R)

Now we will prove Lemma 6.3.2,

Lemma 6.3.2. If ||At − Ât|| ≤ εA and ||Bt − B̂t|| ≤ εB for t = 0, · · · , H − 1, and we have
||Pt+1 − P ILC

t+1|| ≤ f ILCt+1(εA, εB) for some function f ILCt+1. Then we have under Assumption 6.2.1 for
all t = 0, · · · , H − 1,

||K?
t −K ILC

t || ≤ 6Γ3εt (6.6)

where Γ = 1 + maxt{||At||, ||Bt||, ||P ?t ||, ||K?
t ||} and εt = max{εA, εB, f ILCt+1(εA, εB)}.

Proof. Use Assumption 6.2.1 and Lemma 9.4.7 for t = 0, · · · , H − 1 with εP = f ILCt+1(εA, εB) and
choosing εt = max{εA, εB, f ILCt+1(εA, εB)}.

Our final task is to prove Theorem 6.3.3,

Theorem 6.3.3. If the cost-to-go matrices for the optimal controller and iterative learning control
are specified by {P ?t } and {P ILC

t } such that P ?H = P ILC
H = Qf then we have under Assumption 6.2.3,

||P ?t − P ILC
t || ≤ ‖At‖2‖P ?t+1‖2‖Bt‖‖R−1‖εB + ‖At‖‖P ?t+1‖εA

+ cP ?t+1
||At||(‖At‖+ εA)||P ?t+1 − P ILC

t+1|| (6.7)

for t = 0, · · · , H − 1 where cP ?t+1
∈ R+ is a constant that is dependent only on P ?t+1 if εA, εB are

small enough that ‖P ?t+1 − P ILC
t+1‖ ≤ ‖P ?t+1‖−1. Furthermore, the upper bound (6.7) is tight upto

constants that depend only on the true dynamics At, Bt, cost matrix R, and P ?t+1.

119

Proof. We know P ILC
t satisfies,

P ILC
t = Q+ ÂTt P

ILC
t+1At − ÂTt P ILC

t+1Bt(R+ B̂T
t P

ILC
t+1Bt)

−1B̂T
t P

ILC
t+1At

= Q+ ÂTt P
ILC
t+1(I +BtR

−1B̂T
t P

ILC
t+1)−1At

where we used the matrix inversion lemma.

Consider the difference,

P ?t − P ILC
t = ATt P

?
t+1(I +BtR

−1BT
t P

?
t+1)−1At − ÂTt P ILC

t+1(I +BtR
−1B̂T

t P
ILC
t+1)−1At

= ATP ?t+1(I +BtR
−1BT

t P
?
t+1)−1At − ÂTt P ?t+1(I +BtR

−1B̂T
t P

?
t+1)−1At

+ ÂTt

(
P ?t+1(I +BtR

−1B̂T
t P

?
t+1)−1 − P ILC

t+1(I +BtR
−1B̂T

t P
ILC
t+1)−1

)
At

Here again we can use Lemma 9.4.4 with S = BtR
−1BT

t , Ŝ = BtR
−1B̂T

t , Q = P ?t+1 and

observing that ||Ŝ − S|| ≤ ||Bt||||R−1||εB to get

||P ILC
t − P ?t || ≤ ||At||2||P ?t+1||2||Bt||||R−1||εB + ||At||||P ?t+1||εA

+ ||At||||Ât||||P ?t+1(I +BtR
−1B̂T

t P
?
t+1)−1 − P ILC

t+1(I +BtR
−1B̂T

t P
ILC
t+1)−1||

Here again we use Lemma 9.4.5 to bound the second expression giving us

||P ILC
t − P ?t || ≤ ||At||2||P ?t+1||2||Bt||||R−1||εB + ||At||||P ?t+1||εA

+ ||At||||Ât||||(I +BtR
−1B̂T

t P
?
t+1)−1||||P ILC

t+1 − P ?t+1||||(I +BtR
−1B̂T

t P
ILC
t+1)−1||

This can be rewritten as the final bound,

||P ?t − P ILC
t || ≤ ||At||2||P ?t+1||2||Bt||||R−1||εB + ||At||||P ?t+1||εA

+ (||At||2 + εA||At||)κP ?t+1
κP ILC

t+1
||P ?t+1 − P ILC

t+1|| (9.23)

The constant cP ?t+1
can be derived very similarly as we have done in the proof of Theorem 6.3.2.

The example that realizes the upper bound is given in Appendix 9.4.6.

9.4.6 Scalar Example that Realizes Upper Bounds

General Formulation

Consider a 1D linear dynamical system given by,

xt = axt + but (9.24)

where xt, ut, a, b ∈ R. The cost function is given by,

V0(x0) =
H−1∑
t=0

qx2
t + ru2

t + qx2
H (9.25)

We are given access to an approximate model specified using â, b̂ ∈ R.

120

The optimal cost-to-go is specified using

p?H = q (9.26)

p?t = q +
a2p?t+1

1 + b2r−1p?t+1

= q +
a2rp?t+1

r + b2p?t+1

(9.27)

For MM, the cost-to-go is specified using

pMM
H = q (9.28)

pMM
t = q +

â2rpMM
t+1

r + b̂2pMM
t+1

(9.29)

For ILC, the cost-to-go is specified using

pILCh = q (9.30)

pILCt = q +
aârpILCt+1

r + bb̂pILCt+1

(9.31)

In the next two subsections, we will show that an example dynamical system where b̂ = 0,
i.e. the approximate model thinks that the system is not controllable will realize the worst case
upper bounds for both MM and ILC as presented in Theorems 6.3.2 and 6.3.3 respectively.

Optimal Control with Misspecified Model

Consider the difference

p?t − pMM
t =

a2rp?t+1

r + b2p?t+1

− â2rpMM
t+1

r + b̂2pMM
t+1

=

(
a2rp?t+1

r + b2p?t+1

− â2rp?t+1

r + b̂2p?t+1

)
+

(
â2rp?t+1

r + b̂2p?t+1

− â2rpMM
t+1

r + b̂2pMM
t+1

)

Let us look at each term separately. The first term can be simplified as(
a2rp?t+1

r + b2p?t+1

− â2rp?t+1

r + b̂2p?t+1

)
=
p?t+1(a2 − â2)

1 + b̂2r−1p?t+1

+
a2r−1(b̂2 − b2)(p?t+1)2

(1 + b2r−1p?t+1)(1 + b̂2r−1p?t+1)
(9.32)

Similarly, the second term can be simplified as(
â2rp?t+1

r + b̂2p?t+1

− â2rpMM
t+1

r + b̂2pMM
t+1

)
=

â2(p?t+1 − pMM
t+1)

(1 + b̂2r−1p?t+1)(1 + b̂2r−1pMM
t+1)

(9.33)

Now, consider the example dynamical system where a − â = εa, b − b̂ = εb, and b̂ = 0. Our
upper bound in Theorem 6.3.2 states that,

|p?t − pMM
t | ≤ a2r−1(p?t+1)2(2bεb + ε2b) + p?t+1(2aεa + ε2a) + (a+ εa)

2|p?t+1 − pMM
t+1 | (9.34)

121

For the example system equation (9.32) simplifies to,

p?t+1(a2 − â2)

1 + b̂2r−1p?t+1

+
a2r−1(b̂2 − b2)(p?t+1)2

(1 + b2r−1p?t+1)(1 + b̂2r−1p?t+1)
= p?t+1(2aεa + ε2a) +

a2r−1(p?t+1)2(2bεb + ε2b)

(1 + b2r−1p?t+1)

which matches the first two terms in the upper bound (equation (9.34)) upto a constant. Now,
let’s look at how equation (9.33) simplifies

â2(p?t+1 − pMM
t+1)

(1 + b̂2r−1p?t+1)(1 + b̂2r−1pMM
t+1)

= (a+ εa)
2(p?t+1 − pMM

t+1)

which matches the last term in the upper bound (equation (9.34)) exactly. Thus, we found an
example where |p?t − pMM

t | matches the upper bound specified in Theorem 6.3.2 upto a constant.

Iterative Learning Control

Consider the difference

p?t − pILCt =
a2rp?t+1

r + b2p?t+1

− aârpILCt+1

r + bb̂pILCt+1

=

(
a2rp?t+1

r + b2p?t+1

− aârp?t+1

r + bb̂p?t+1

)
+

(
aârp?t+1

r + bb̂p?t+1

− aârpILCt+1

r + bb̂pILCt+1

)
Once again let us look at each term separately. The first term can be simplified as(

a2rp?t+1

r + b2p?t+1

− aârp?t+1

r + bb̂p?t+1

)
=

ap?t+1(a− â)

(1 + bb̂r−1p?t+1)
+

a2br−1(p?t+1)2(b̂− b)
(1 + b2r−1p?t+1)(1 + bb̂r−1p?t+1)

(9.35)

Similarly, the second term can be simplified as(
aârp?t+1

r + bb̂p?t+1

− aârpILCt+1

r + bb̂pILCt+1

)
=

aâ(p?t+1 − pILCt+1)

(1 + bb̂r−1p?t+1)(1 + bb̂r−1pILCt+1)
(9.36)

Similar to MM in the previous section, consider the example dynamical system where a− â = εa,
b− b̂ = εb and b̂ = 0. Our upper bound in Theorem 6.3.3 states that

|p?t − pILCt | ≤ a2(p?t+1)2br−1εb + ap?t+1εa + a(a+ εa)|p?t+1 − pILCt+1| (9.37)

For the example dynamical system, equation (9.35) simplifies to

ap?t+1(a− â)

(1 + bb̂r−1p?t+1)
+

a2br−1(p?t+1)2(b̂− b)
(1 + b2r−1p?t+1)(1 + bb̂r−1p?t+1)

= ap?t+1εa +
a2(p?t+1)2br−1εb

(1 + b2r−1p?t+1)

which matches the first two terms in the upper bound (equation (9.37)) upto a constant. Now,
let’s look at how equation (9.36) simplifies

aâ(p?t+1 − pILCt+1)

(1 + bb̂r−1p?t+1)(1 + bb̂r−1pILCt+1)
= a(a+ εa)(p

?
t+1 − pILCt+1)

which matches the last term in the upper bound (equation (9.37)) exactly. Thus, we found that
the same example also matches the upper bound specified in Theorem 6.3.3 upto a constant.

122

9.4.7 Experiment Details

Linear Dynamical System with Approximate Model

We use a horizon H = 10 and initial state x0 =

[
0.1
0.1

]
.

Nonlinear Inverted Pendulum with Misspecified Mass

For the second experiment, we use the nonlinear dynamical system of an inverted pendulum. The

state space is specified by x =

[
θ

θ̇

]
∈ R2 where θ is the angle between the pendulum and the

vertical axis. The control input is u = τ ∈ R specifying the torque τ to be applied at the base of
the pendulum. The dynamics of the system are given by the ODE, θ̈ = τ̄

m`2
− g sin(θ)

` where m is
the mass of the pendulum, ` is the length of the pendulum, g is the acceleration due to gravity,
and τ̄ = max(τmin,min(τmax, τ)) is the clipped torque based on torque limits. We use ` = 1m,
τmax = 8Nm, τmin = −8Nm, and m = 1kg.

We use a per time step cost function defined as c(θ, τ) = 0.1τ2 + θ2 where θ ∈ [−π, π], an

initial state x0 =

[
π
2

0.5

]
, and a horizon H = 20. For all algorithms, we start with an initial control

sequence consisting of zero torques for the entire horizon.

Nonlinear Planar Quadrotor Control in Wind

In our final experiment, we compare MM and ILC on a planar quadrotor control task in the
presence of wind. The quadrotor is controlled using two propellers that provide upward thrusts
(u1, u2) and allows movement in the 3D planar space described as (px, py, θ) where px, py are X,
Y positions, and θ is the yaw of the quadrotor. The dynamics of the planar quadrotor is specified
using a state vector x ∈ R6, control input u ∈ R2 as

x =

px
py
θ
ṗx
ṗy
θ̇

 , u =

[
u1

u2

]
, ẋ =

ṗx
ṗy
θ̇

1
m(u1 + u2) sin(θ)

1
m(u1 + u2) cos(θ)− g

`
2J (u2 − u1)

where m is the mass of the quadrotor, ` is the distance between the propellers, g is acceleration
due to gravity, and J is the moment of inertia of the quadrotor. We use m = 1kg, ` = 0.3m, and
J = 0.2m`2. The objective of the task is to move the quadrotor from an initial state x0 at (−3, 1)
with zero velocity to a final state xf at (3, 1) with zero velocity. This is achieved using the per
time-step cost function c(x, u) = (x−xf)TQ(x−xf)+(u−uh)TR(u−uh) where uh = [1

2mg,
1
2mg]

are the hover controls. We use a horizon of H = 60 with a step size of 0.025 for RK4 integration.

123

124

Bibliography
This bibliography contains 150 references.

[AAH88] Chae H An, Christopher G Atkeson, and John M Hollerbach. Model-based control of
a robot manipulator. MIT press, 1988.

[ADX10] Alekh Agarwal, Ofer Dekel, and Lin Xiao. “Optimal Algorithms for Online Convex
Optimization with Multi-Point Bandit Feedback.” In: COLT. Citeseer. 2010, pp. 28–
40.

[Aga+14] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert
Schapire. “Taming the monster: A fast and simple algorithm for contextual bandits”.
In: International Conference on Machine Learning. 2014, pp. 1638–1646.

[Aga+21] Naman Agarwal, Elad Hazan, Anirudha Majumdar, and Karan Singh. “A Regret
Minimization Approach to Iterative Learning Control”. In: Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 2021, pp. 100–109. url: http://proceedings.mlr.
press/v139/agarwal21b.html.

[Ain+16] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor Hwang, and
Maxim Likhachev. “Multi-Heuristic A”. In: Int. J. Robotics Res. 35.1-3 (2016),
pp. 224–243. doi: 10.1177/0278364915594029. url: https://doi.org/10.1177/
0278364915594029.

[AKM84] Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. “Bettering operation of
Robots by learning”. In: J. Field Robotics 1.2 (1984), pp. 123–140. doi: 10.1002/
rob.4620010203. url: https://doi.org/10.1002/rob.4620010203.

[AM07] Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods.
Courier Corporation, 2007.

[AMS97a] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. “Locally Weighted
Learning for Control”. In: Artif. Intell. Rev. 11.1-5 (1997), pp. 75–113. doi: 10.

1023/A:1006511328852.

[AMS97b] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. “Locally Weighted
Learning”. In: Artif. Intell. Rev. 11.1-5 (1997), pp. 11–73. doi: 10.1023/A:1006559212014.
url: https://doi.org/10.1023/A:1006559212014.

[AN05] Pieter Abbeel and Andrew Y. Ng. “Exploration and apprenticeship learning in re-
inforcement learning”. In: Machine Learning, Proceedings of the Twenty-Second In-
ternational Conference (ICML 2005), Bonn, Germany, August 7-11, 2005. Ed. by
Luc De Raedt and Stefan Wrobel. Vol. 119. ACM International Conference Pro-
ceeding Series. ACM, 2005, pp. 1–8. doi: 10.1145/1102351.1102352. url: https:
//doi.org/10.1145/1102351.1102352.

125

http://proceedings.mlr.press/v139/agarwal21b.html
http://proceedings.mlr.press/v139/agarwal21b.html
https://doi.org/10.1177/0278364915594029
https://doi.org/10.1177/0278364915594029
https://doi.org/10.1177/0278364915594029
https://doi.org/10.1002/rob.4620010203
https://doi.org/10.1002/rob.4620010203
https://doi.org/10.1002/rob.4620010203
https://doi.org/10.1023/A:1006511328852
https://doi.org/10.1023/A:1006511328852
https://doi.org/10.1023/A:1006511328852
https://doi.org/10.1023/A:1006511328852
https://doi.org/10.1023/A:1006559212014
https://doi.org/10.1023/A:1006559212014
https://doi.org/10.1145/1102351.1102352
https://doi.org/10.1145/1102351.1102352
https://doi.org/10.1145/1102351.1102352

[And+17] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. “Hind-
sight Experience Replay”. In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA. 2017, pp. 5048–5058.

[AQN06a] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. “Using inaccurate models in
reinforcement learning”. In: Machine Learning, Proceedings of the Twenty-Third In-
ternational Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29,
2006. 2006, pp. 1–8. doi: 10.1145/1143844.1143845.

[AQN06b] Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. “Using inaccurate models in rein-
forcement learning”. In: Proceedings of the 23rd international conference on Machine
learning. ACM. 2006, pp. 1–8.

[AS97] Christopher G. Atkeson and Stefan Schaal. “Learning tasks from a single demonstra-
tion”. In: Proceedings of the 1997 IEEE International Conference on Robotics and
Automation, Albuquerque, New Mexico, USA, April 20-25, 1997. 1997, pp. 1706–
1712. doi: 10.1109/ROBOT.1997.614389.

[ASG07] Ron Alterovitz, Thierry Siméon, and Kenneth Y. Goldberg. “The Stochastic Motion
Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty”.
In: Robotics: Science and Systems III, June 27-30, 2007, Georgia Institute of Tech-
nology, Atlanta, Georgia, USA. Ed. by Wolfram Burgard, Oliver Brock, and Cyrill
Stachniss. The MIT Press, 2007. doi: 10.15607/RSS.2007.III.030. url: http:
//www.roboticsproceedings.org/rss03/p30.html.

[ÅW13] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation, 2013.

[Ayo+20] Alex Ayoub, Zeyu Jia, Csaba Szepesvári, Mengdi Wang, and Lin Yang. “Model-
Based Reinforcement Learning with Value-Targeted Regression”. In: Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event. Vol. 119. Proceedings of Machine Learning Research. PMLR,
2020, pp. 463–474. url: http://proceedings.mlr.press/v119/ayoub20a.html.

[Bag+04] J Andrew Bagnell, Sham M Kakade, Jeff G Schneider, and Andrew Y Ng. “Policy
search by dynamic programming”. In: Advances in neural information processing
systems. 2004, pp. 831–838.

[BAG12] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. “A robot path planning frame-
work that learns from experience”. In: IEEE International Conference on Robotics
and Automation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota, USA. IEEE,
2012, pp. 3671–3678. doi: 10.1109/ICRA.2012.6224742. url: https://doi.org/
10.1109/ICRA.2012.6224742.

[BBS95] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. “Learning to Act Using
Real-Time Dynamic Programming”. In: Artif. Intell. 72.1-2 (1995), pp. 81–138. doi:
10.1016/0004-3702(94)00011-O.

[BEL57] RICHARD BELLMAN. “A Markovian Decision Process”. In: Journal of Mathemat-
ics and Mechanics 6.5 (1957), pp. 679–684. issn: 00959057, 19435274. url: http:
//www.jstor.org/stable/24900506.

[Ber+19] Christopher Berner et al. “Dota 2 with Large Scale Deep Reinforcement Learning”.
In: CoRR abs/1912.06680 (2019). arXiv: 1912.06680. url: http://arxiv.org/
abs/1912.06680.

126

http://papers.nips.cc/paper/7090-hindsight-experience-replay
http://papers.nips.cc/paper/7090-hindsight-experience-replay
https://doi.org/10.1145/1143844.1143845
https://doi.org/10.1145/1143844.1143845
https://doi.org/10.1145/1143844.1143845
https://doi.org/10.1109/ROBOT.1997.614389
https://doi.org/10.1109/ROBOT.1997.614389
https://doi.org/10.1109/ROBOT.1997.614389
https://doi.org/10.15607/RSS.2007.III.030
http://www.roboticsproceedings.org/rss03/p30.html
http://www.roboticsproceedings.org/rss03/p30.html
http://proceedings.mlr.press/v119/ayoub20a.html
https://doi.org/10.1109/ICRA.2012.6224742
https://doi.org/10.1109/ICRA.2012.6224742
https://doi.org/10.1109/ICRA.2012.6224742
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1016/0004-3702(94)00011-O
http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680

[Ber05] Dimitri P. Bertsekas. Dynamic programming and optimal control, 3rd Edition. Athena
Scientific, 2005. isbn: 1886529264.

[Bro+16a] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[Bro+16b] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. “OpenAI gym”. In: arXiv preprint arXiv:1606.01540
(2016).

[BS01] J Andrew Bagnell and Jeff G Schneider. “Autonomous helicopter control using re-
inforcement learning policy search methods”. In: Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International Conference on. Vol. 2. IEEE. 2001,
pp. 1615–1620.

[BS10] Andrey Bernstein and Nahum Shimkin. “Adaptive-resolution reinforcement learning
with polynomial exploration in deterministic domains”. In: Machine Learning 81.3
(2010), pp. 359–397. doi: 10.1007/s10994-010-5186-7.

[BT02] Ronen I. Brafman and Moshe Tennenholtz. “R-MAX - A General Polynomial Time
Algorithm for Near-Optimal Reinforcement Learning”. In: J. Mach. Learn. Res. 3
(2002), pp. 213–231.

[BT95] Dimitri P Bertsekas and John N Tsitsiklis. “Neuro-dynamic programming: an overview”.
In: Decision and Control, 1995., Proceedings of the 34th IEEE Conference on. Vol. 1.
IEEE. 1995, pp. 560–564.

[CAN08] Adam Coates, Pieter Abbeel, and Andrew Y. Ng. “Learning for control from multi-
ple demonstrations”. In: Machine Learning, Proceedings of the Twenty-Fifth Inter-
national Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008. 2008, pp. 144–
151. doi: 10.1145/1390156.1390175.

[Car+17a] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “Lower bounds for
finding stationary points I”. In: arXiv preprint arXiv:1710.11606 (2017).

[Car+17b] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “Lower Bounds for
Finding Stationary Points II: First-Order Methods”. In: arXiv preprint arXiv:1711.00841
(2017).

[Cat07] Erin Catto. Box2d physics engine. 2007.

[Cho+05] Howie Choset, Kevin M Lynch, Seth Hutchinson, George A Kantor, and Wolfram
Burgard. Principles of robot motion: theory, algorithms, and implementations. MIT
press, 2005.

[Coh+11] Benjamin J. Cohen, Gokul Subramania, Sachin Chitta, and Maxim Likhachev. “Plan-
ning for Manipulation with Adaptive Motion Primitives”. In: IEEE International
Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9-13 May
2011. 2011, pp. 5478–5485. doi: 10.1109/ICRA.2011.5980550.

[Coh+18] Alon Cohen, Avinatan Hassidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and
Kunal Talwar. “Online Linear Quadratic Control”. In: Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 1028–1037. url: http:
//proceedings.mlr.press/v80/cohen18b.html.

[Cou+13] Erwin Coumans et al. “Bullet physics library”. In: Open source: bulletphysics. org
15.49 (2013), p. 5.

127

http://www.worldcat.org/oclc/314894080
arXiv:1606.01540
https://doi.org/10.1007/s10994-010-5186-7
https://doi.org/10.1007/s10994-010-5186-7
https://doi.org/10.1007/s10994-010-5186-7
http://jmlr.org/papers/v3/brafman02a.html
http://jmlr.org/papers/v3/brafman02a.html
https://doi.org/10.1145/1390156.1390175
https://doi.org/10.1145/1390156.1390175
https://doi.org/10.1145/1390156.1390175
https://doi.org/10.1109/ICRA.2011.5980550
https://doi.org/10.1109/ICRA.2011.5980550
https://doi.org/10.1109/ICRA.2011.5980550
http://proceedings.mlr.press/v80/cohen18b.html
http://proceedings.mlr.press/v80/cohen18b.html

[CRT16] Hao-Tien Chiang, Nathanael Rackley, and Lydia Tapia. “Runtime SES planning:
Online motion planning in environments with stochastic dynamics and uncertainty”.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2016, Daejeon, South Korea, October 9-14, 2016. IEEE, 2016, pp. 4802–4809.
doi: 10.1109/IROS.2016.7759705. url: https://doi.org/10.1109/IROS.2016.
7759705.

[Dea+20] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. “On
the Sample Complexity of the Linear Quadratic Regulator”. In: Found. Comput.
Math. 20.4 (2020), pp. 633–679. doi: 10.1007/s10208-019-09426-y. url: https:
//doi.org/10.1007/s10208-019-09426-y.

[DFR15] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. “Gaussian Pro-
cesses for Data-Efficient Learning in Robotics and Control”. In: IEEE Trans. Pattern
Anal. Mach. Intell. 37.2 (2015), pp. 408–423. doi: 10.1109/TPAMI.2013.218.

[Dia10] Rosen Diankov. “Automated Construction of Robotic Manipulation Programs”. PhD
thesis. Carnegie Mellon University, Robotics Institute, Aug. 2010. url: http://www.
programmingvision.com/rosen_diankov_thesis.pdf.

[DR10] Marc Peter Deisenroth and Carl Edward Rasmussen. “Reducing model bias in rein-
forcement learning”. In: (2010).

[Duc+15] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. “Optimal Rates
for Zero-Order Convex Optimization: The Power of Two Function Evaluations”. In:
IEEE Transactions on Information Theory 61.5 (May 2015), pp. 2788–2806. issn:
0018-9448. doi: 10.1109/TIT.2015.2409256.

[EBG12] Nabil Essahbi, Belhassen Chedli Bouzgarrou, and Grigore Gogu. “Soft Material Mod-
eling for Robotic Manipulation”. In: Mechanisms, Mechanical Transmissions and
Robotics. Vol. 162. Applied Mechanics and Materials. Trans Tech Publications Ltd,
Apr. 2012, pp. 184–193. doi: 10.4028/www.scientific.net/AMM.162.184.

[Eys+21] Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Ruslan Salakhutdi-
nov. “Mismatched No More: Joint Model-Policy Optimization for Model-Based RL”.
In: CoRR abs/2110.02758 (2021). arXiv: 2110.02758. url: https://arxiv.org/
abs/2110.02758.

[Far18] Amir Massoud Farahmand. “Iterative value-aware model learning”. In: Advances in
Neural Information Processing Systems 2018-December.Section 3 (2018), pp. 9072–
9083. issn: 10495258.

[Faz+18] Maryam Fazel, Rong Ge, Sham M. Kakade, and Mehran Mesbahi. “Global Con-
vergence of Policy Gradient Methods for the Linear Quadratic Regulator”. In: Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and
Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018,
pp. 1466–1475. url: http://proceedings.mlr.press/v80/fazel18a.html.

[FKM05] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. “Online
convex optimization in the bandit setting: gradient descent without a gradient”. In:
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics. 2005, pp. 385–394.

[Gar18] Caelan Reed Garrett. ss-pybullet library. 2018. url: https://github.com/caelan/
ss-pybullet.

128

https://doi.org/10.1109/IROS.2016.7759705
https://doi.org/10.1109/IROS.2016.7759705
https://doi.org/10.1109/IROS.2016.7759705
https://doi.org/10.1007/s10208-019-09426-y
https://doi.org/10.1007/s10208-019-09426-y
https://doi.org/10.1007/s10208-019-09426-y
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1109/TPAMI.2013.218
https://doi.org/10.1109/TPAMI.2013.218
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.4028/www.scientific.net/AMM.162.184
http://arxiv.org/abs/2110.02758
https://arxiv.org/abs/2110.02758
https://arxiv.org/abs/2110.02758
http://proceedings.mlr.press/v80/fazel18a.html
https://github.com/caelan/ss-pybullet
https://github.com/caelan/ss-pybullet

[GL13] Saeed Ghadimi and Guanghui Lan. “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming”. In: SIAM Journal on Optimization 23.4 (2013),
pp. 2341–2368.

[Gri+20] Christopher Grimm, André Barreto, Satinder Singh, and David Silver. “The Value
Equivalence Principle for Model-Based Reinforcement Learning”. In: Advances in
Neural Information Processing Systems 33 (2020).

[Gri+21] Christopher Grimm, André Barreto, Gregory Farquhar, David Silver, and Satinder
Singh. “Proper Value Equivalence”. In: CoRR abs/2106.10316 (2021). arXiv: 2106.
10316. url: https://arxiv.org/abs/2106.10316.

[Hau+06] Kris K. Hauser, Timothy Bretl, Kensuke Harada, and Jean-Claude Latombe. “Using
Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots”.
In: Algorithmic Foundation of Robotics VII, Selected Contributions of the Seventh
International Workshop on the Algorithmic Foundations of Robotics, WAFR 2006,
July 16-18, 2006, New York, NY, USA. 2006, pp. 507–522. doi: 10.1007/978-3-
540-68405-3_32.

[Hau12] Kris K. Hauser. “On responsiveness, safety, and completeness in real-time motion
planning”. In: Auton. Robots 32.1 (2012), pp. 35–48. doi: 10.1007/s10514-011-
9254-z. url: https://doi.org/10.1007/s10514-011-9254-z.

[Hes+18] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Sil-
ver. “Rainbow: Combining Improvements in Deep Reinforcement Learning”. In: Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila A. McIl-
raith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 3215–3222. url: https:

//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204.

[HGS16] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning
with Double Q-Learning”. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. Ed. by Dale
Schuurmans and Michael P. Wellman. AAAI Press, 2016, pp. 2094–2100. url: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389.

[HI08] Verena Heidrich-Meisner and Christian Igel. “Evolution strategies for direct pol-
icy search”. In: International Conference on Parallel Problem Solving from Nature.
Springer. 2008, pp. 428–437.

[HJ12] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,
2012.

[HY15] Sehoon Ha and Katsu Yamane. “Reducing hardware experiments for model learning
and policy optimization”. In: IEEE International Conference on Robotics and Au-
tomation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015. 2015, pp. 2620–2626.
doi: 10.1109/ICRA.2015.7139552.

[Isl+20] Fahad Islam, Anirudh Vemula, Sung-Kyun Kim, Andrew Dornbush, Oren Salzman,
and Maxim Likhachev. “Planning, Learning and Reasoning Framework for Robot
Truck Unloading”. In: 2020 IEEE International Conference on Robotics and Automa-
tion, ICRA 2020, Paris, France, May 31 - August 31, 2020. IEEE, 2020, pp. 5011–

129

http://arxiv.org/abs/2106.10316
http://arxiv.org/abs/2106.10316
https://arxiv.org/abs/2106.10316
https://doi.org/10.1007/978-3-540-68405-3_32
https://doi.org/10.1007/978-3-540-68405-3_32
https://doi.org/10.1007/978-3-540-68405-3_32
https://doi.org/10.1007/978-3-540-68405-3_32
https://doi.org/10.1007/s10514-011-9254-z
https://doi.org/10.1007/s10514-011-9254-z
https://doi.org/10.1007/s10514-011-9254-z
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://doi.org/10.1109/ICRA.2015.7139552
https://doi.org/10.1109/ICRA.2015.7139552
https://doi.org/10.1109/ICRA.2015.7139552

5017. doi: 10.1109/ICRA40945.2020.9196604. url: https://doi.org/10.1109/
ICRA40945.2020.9196604.

[Jan+19] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. “When to Trust Your
Model: Model-Based Policy Optimization”. In: Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada. 2019, pp. 12498–
12509.

[Jia18] Nan Jiang. “PAC Reinforcement Learning With an Imperfect Model”. In: Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018. 2018, pp. 3334–3341.

[Jos+13] Joshua Mason Joseph, Alborz Geramifard, John W. Roberts, Jonathan P. How, and
Nicholas Roy. “Reinforcement learning with misspecified model classes”. In: 2013
IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
May 6-10, 2013. IEEE, 2013, pp. 939–946. doi: 10.1109/ICRA.2013.6630686. url:
https://doi.org/10.1109/ICRA.2013.6630686.

[JS07] Nicholas K. Jong and Peter Stone. “Model-based function approximation in rein-
forcement learning”. In: 6th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2007), Honolulu, Hawaii, USA, May 14-18, 2007.
2007, p. 95. doi: 10.1145/1329125.1329242.

[JX01] Xuerong Ji and Jing Xiao. “Planning Motions Compliant to Complex Contact States”.
In: IJ Robotics Res. 20.6 (2001), pp. 446–465. doi: 10.1177/02783640122067480.
url: https://doi.org/10.1177/02783640122067480.

[Kak02] Sham Kakade. “A natural policy gradient”. In: NIPS (2002).

[Kak03] Sham Machandranath Kakade. On the sample complexity of reinforcement learning.
University of London, University College London (United Kingdom), 2003.

[KB14] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015.

[KBP13] Jens Kober, J Andrew Bagnell, and Jan Peters. “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research 32.11 (2013), pp. 1238–
1274.

[Kid+20] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims.
“MOReL: Model-Based Offline Reinforcement Learning”. In: Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin. 2020. url: https://proceedings.neurips.cc/paper/2020/hash/

f7efa4f864ae9b88d43527f4b14f750f-Abstract.html.

[KKL03] Sham M. Kakade, Michael J. Kearns, and John Langford. “Exploration in Met-
ric State Spaces”. In: Machine Learning, Proceedings of the Twentieth Interna-
tional Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA. 2003,
pp. 306–312.

130

https://doi.org/10.1109/ICRA40945.2020.9196604
https://doi.org/10.1109/ICRA40945.2020.9196604
https://doi.org/10.1109/ICRA40945.2020.9196604
https://papers.nips.cc/paper/9416-when-to-trust-your-model-model-based-policy-optimization
https://papers.nips.cc/paper/9416-when-to-trust-your-model-model-based-policy-optimization
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16052
https://doi.org/10.1109/ICRA.2013.6630686
https://doi.org/10.1109/ICRA.2013.6630686
https://doi.org/10.1145/1329125.1329242
https://doi.org/10.1145/1329125.1329242
https://doi.org/10.1145/1329125.1329242
https://doi.org/10.1177 / 02783640122067480
https://doi.org/10.1177/02783640122067480
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2020/hash/f7efa4f864ae9b88d43527f4b14f750f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f7efa4f864ae9b88d43527f4b14f750f-Abstract.html
http://www.aaai.org/Library/ICML/2003/icml03-042.php
http://www.aaai.org/Library/ICML/2003/icml03-042.php

[KL02] Sham Kakade and John Langford. “Approximately optimal approximate reinforce-
ment learning”. In: ICML. 2002.

[KL06] Sven Koenig and Maxim Likhachev. “Real-time adaptive A*”. In: 5th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006),
Hakodate, Japan, May 8-12, 2006. 2006, pp. 281–288. doi: 10.1145/1160633.

1160682.

[KLC98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning
and Acting in Partially Observable Stochastic Domains”. In: Artif. Intell. 101.1-2
(1998), pp. 99–134. doi: 10.1016/S0004-3702(98)00023-X. url: https://doi.
org/10.1016/S0004-3702(98)00023-X.

[KNL91] Tae-Yong Kuc, Kwanghee Nam, and Jin S. Lee. “An iterative learning control of
robot manipulators”. In: IEEE Trans. Robotics Autom. 7.6 (1991), pp. 835–842.
doi: 10.1109/70.105392. url: https://doi.org/10.1109/70.105392.

[Kol10] J Zico Kolter. Learning and control with inaccurate models. Stanford University,
2010.

[Kor90] Richard E. Korf. “Real-Time Heuristic Search”. In: Artif. Intell. 42.2-3 (1990),
pp. 189–211. doi: 10.1016/0004-3702(90)90054-4.

[KPC93] Michail M. Konstantinov, Petko Hr. Petkov, and Nicolai Christov. “Perturbation
analysis of the discrete Riccati equation”. In: Kybernetika 29.1 (1993), pp. 18–29.
url: http://www.kybernetika.cz/content/1993/1/18.

[KS02] Michael J. Kearns and Satinder P. Singh. “Near-Optimal Reinforcement Learning in
Polynomial Time”. In: Machine Learning 49.2-3 (2002), pp. 209–232. doi: 10.1023/
A:1017984413808.

[KS93] Sven Koenig and Reid G. Simmons. “Complexity Analysis of Real-Time Reinforce-
ment Learning”. In: Proceedings of the 11th National Conference on Artificial Intel-
ligence. Washington, DC, USA, July 11-15, 1993. 1993, pp. 99–107.

[Lam+20] Nathan O. Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. “Ob-
jective Mismatch in Model-based Reinforcement Learning”. In: Proceedings of the
2nd Annual Conference on Learning for Dynamics and Control, L4DC 2020, Online
Event, Berkeley, CA, USA, 11-12 June 2020. Ed. by Alexandre M. Bayen, Ali Jad-
babaie, George J. Pappas, Pablo A. Parrilo, Benjamin Recht, Claire J. Tomlin, and
Melanie N. Zeilinger. Vol. 120. Proceedings of Machine Learning Research. PMLR,
2020, pp. 761–770. url: http://proceedings.mlr.press/v120/lambert20a.html.

[Lat91] Jean-Claude Latombe. Robot motion planning. Vol. 124. The Kluwer international
series in engineering and computer science. Kluwer, 1991. isbn: 978-0-7923-9206-4.
doi: 10.1007/978-1-4615-4022-9. url: https://doi.org/10.1007/978-1-
4615-4022-9.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006. isbn:
9780511546877. doi: 10.1017/CBO9780511546877. url: http://planning.cs.
uiuc.edu/.

[LeC+98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324.

[Lee+20a] Michelle A. Lee, Carlos Florensa, Jonathan Tremblay, Nathan D. Ratliff, Animesh
Garg, Fabio Ramos, and Dieter Fox. “Guided Uncertainty-Aware Policy Optimiza-

131

https://doi.org/10.1145/1160633.1160682
https://doi.org/10.1145/1160633.1160682
https://doi.org/10.1145/1160633.1160682
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1109/70.105392
https://doi.org/10.1109/70.105392
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1016/0004-3702(90)90054-4
http://www.kybernetika.cz/content/1993/1/18
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
http://www.aaai.org/Library/AAAI/1993/aaai93-016.php
http://www.aaai.org/Library/AAAI/1993/aaai93-016.php
http://proceedings.mlr.press/v120/lambert20a.html
https://doi.org/10.1007/978-1-4615-4022-9
https://doi.org/10.1007/978-1-4615-4022-9
https://doi.org/10.1007/978-1-4615-4022-9
https://doi.org/10.1017/CBO9780511546877
http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/

tion: Combining Learning and Model-Based Strategies for Sample-Efficient Policy
Learning”. In: 2020 IEEE International Conference on Robotics and Automation,
ICRA 2020, Paris, France, May 31 - August 31, 2020. IEEE, 2020, pp. 7505–7512.
doi: 10.1109/ICRA40945.2020.9197125. url: https://doi.org/10.1109/

ICRA40945.2020.9197125.

[Lee+20b] Michelle A. Lee, Carlos Florensa, Jonathan Tremblay, Nathan D. Ratliff, Animesh
Garg, Fabio Ramos, and Dieter Fox. “Guided Uncertainty-Aware Policy Optimiza-
tion: Combining Learning and Model-Based Strategies for Sample-Efficient Policy
Learning”. In: CoRR abs/2005.10872 (2020). arXiv: 2005.10872. url: https://
arxiv.org/abs/2005.10872.

[LJ01] Steven M. LaValle and James J. Kuffner Jr. “Randomized Kinodynamic Planning”.
In: I. J. Robotics Res. 20.5 (2001), pp. 378–400. doi: 10.1177/02783640122067453.

[Lju10] Lennart Ljung. “Perspectives on system identification”. In: Annu. Rev. Control.
34.1 (2010), pp. 1–12. doi: 10.1016/j.arcontrol.2009.12.001. url: https:
//doi.org/10.1016/j.arcontrol.2009.12.001.

[LLK20] Alex Lagrassa, Steven Lee, and Oliver Kroemer. “Learning skills to patch plans
based on inaccurate models”. In: 2020 IEEE International Conference on Intelligent
Robots and Systems (IROS). 2020.

[LT04] Weiwei Li and Emanuel Todorov. “Iterative Linear Quadratic Regulator Design
for Nonlinear Biological Movement Systems”. In: ICINCO 2004, Proceedings of the
First International Conference on Informatics in Control, Automation and Robotics,
Setúbal, Portugal, August 25-28, 2004. Ed. by Helder Araújo, Alves Vieira, José Braz,
Bruno Encarnação, and Marina Carvalho. INSTICC Press, 2004, pp. 222–229.

[McC+20] Dale McConachie, Thomas Power, Peter Mitrano, and Dmitry Berenson. “Learning
When to Trust a Dynamics Model for Planning in Reduced State Spaces”. In: IEEE
Robotics Autom. Lett. 5.2 (2020), pp. 3540–3547. doi: 10.1109/LRA.2020.2972858.

[MDB92] Kevin L. Moore, Mohammed Dahleh, and S. P. Bhattacharyya. “Iterative learning
control: A survey and new results”. In: J. Field Robotics 9.5 (1992), pp. 563–594. doi:
10.1002/rob.4620090502. url: https://doi.org/10.1002/rob.4620090502.

[MGR18] Horia Mania, Aurelia Guy, and Benjamin Recht. “Simple random search provides a
competitive approach to reinforcement learning”. In: arXiv preprint arXiv:1803.07055
(2018).

[MMB21] Peter Mitrano, Dale McConachie, and Dmitry Berenson. “Learning where to trust
unreliable models in an unstructured world for deformable object manipulation”.
In: Sci. Robotics 6.54 (2021), p. 8170. doi: 10.1126/scirobotics.abd8170. url:
https://doi.org/10.1126/scirobotics.abd8170.

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (2015), pp. 529–533. doi: 10.1038/nature14236.

[Mod+21] Nirbhay Modhe, Harish Kamath, Dhruv Batra, and Ashwin Kalyan. “Model-Advantage
Optimization for Model-Based Reinforcement Learning”. In: CoRR abs/2106.14080
(2021). arXiv: 2106.14080. url: https://arxiv.org/abs/2106.14080.

[MRG03] Shie Mannor, Reuven Y Rubinstein, and Yohai Gat. “The cross entropy method for
fast policy search”. In: Proceedings of the 20th International Conference on Machine
Learning (ICML-03). 2003, pp. 512–519.

132

https://doi.org/10.1109/ICRA40945.2020.9197125
https://doi.org/10.1109/ICRA40945.2020.9197125
https://doi.org/10.1109/ICRA40945.2020.9197125
http://arxiv.org/abs/2005.10872
https://arxiv.org/abs/2005.10872
https://arxiv.org/abs/2005.10872
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1109/LRA.2020.2972858
https://doi.org/10.1109/LRA.2020.2972858
https://doi.org/10.1109/LRA.2020.2972858
https://doi.org/10.1002/rob.4620090502
https://doi.org/10.1002/rob.4620090502
https://doi.org/10.1126/scirobotics.abd8170
https://doi.org/10.1126/scirobotics.abd8170
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/2106.14080
https://arxiv.org/abs/2106.14080

[MSD12] Fabian L. Mueller, Angela P. Schoellig, and Raffaello D’Andrea. “Iterative learning
of feed-forward corrections for high-performance tracking”. In: 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura,
Algarve, Portugal, October 7-12, 2012. IEEE, 2012, pp. 3276–3281. doi: 10.1109/
IROS.2012.6385647. url: https://doi.org/10.1109/IROS.2012.6385647.

[MTR19] Horia Mania, Stephen Tu, and Benjamin Recht. “Certainty Equivalent Control of
LQR is Efficient”. In: CoRR abs/1902.07826 (2019). arXiv: 1902.07826. url: http:
//arxiv.org/abs/1902.07826.

[MVL21] Nader Maray, Anirudh Vemula, and Maxim Likhachev. “Improved Soft Duplicate
Detection in Search-Based Motion Planning”. In: CoRR abs/2109.12427 (2021).
arXiv: 2109.12427. url: https://arxiv.org/abs/2109.12427.

[Nag+18] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. “Neural
Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free
Fine-Tuning”. In: 2018 IEEE International Conference on Robotics and Automation,
ICRA 2018, Brisbane, Australia, May 21-25, 2018. IEEE, 2018, pp. 7559–7566. doi:
10.1109/ICRA.2018.8463189. url: https://doi.org/10.1109/ICRA.2018.
8463189.

[Nik+21] Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon. “Control-
Oriented Model-Based Reinforcement Learning with Implicit Differentiation”. In:
CoRR abs/2106.03273 (2021). arXiv: 2106.03273. url: https://arxiv.org/abs/
2106.03273.

[NL08] Ali Nouri and Michael L. Littman. “Multi-resolution Exploration in Continuous
Spaces”. In: Advances in Neural Information Processing Systems 21, Proceedings of
the Twenty-Second Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 8-11, 2008. 2008, pp. 1209–1216.

[NS17] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free minimization of con-
vex functions”. In: Foundations of Computational Mathematics 17.2 (2017), pp. 527–
566.

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/
9015- pytorch- an- imperative- style- high- performance- deep- learning-

library.pdf.

[PB21] Thomas Power and Dmitry Berenson. “Keep It Simple: Data-Efficient Learning for
Controlling Complex Systems With Simple Models”. In: IEEE Robotics Autom. Lett.
6.2 (2021), pp. 1184–1191. doi: 10.1109/LRA.2021.3056368. url: https://doi.
org/10.1109/LRA.2021.3056368.

[PKK09] Mihail Pivtoraiko, Ross A. Knepper, and Alonzo Kelly. “Differentially constrained
mobile robot motion planning in state lattices”. In: J. Field Robotics 26.3 (2009),
pp. 308–333. doi: 10.1002/rob.20285. url: https://doi.org/10.1002/rob.
20285.

[PS08] Jan Peters and Stefan Schaal. “Reinforcement learning of motor skills with policy
gradients”. In: Neural networks 21.4 (2008), pp. 682–697.

[Raj+17] Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade.
“Towards generalization and simplicity in continuous control”. In: Advances in Neu-
ral Information Processing Systems. 2017, pp. 6550–6561.

133

https://doi.org/10.1109/IROS.2012.6385647
https://doi.org/10.1109/IROS.2012.6385647
https://doi.org/10.1109/IROS.2012.6385647
http://arxiv.org/abs/1902.07826
http://arxiv.org/abs/1902.07826
http://arxiv.org/abs/1902.07826
http://arxiv.org/abs/2109.12427
https://arxiv.org/abs/2109.12427
https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.1109/ICRA.2018.8463189
http://arxiv.org/abs/2106.03273
https://arxiv.org/abs/2106.03273
https://arxiv.org/abs/2106.03273
http://papers.nips.cc/paper/3557-multi-resolution-exploration-in-continuous-spaces
http://papers.nips.cc/paper/3557-multi-resolution-exploration-in-continuous-spaces
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/LRA.2021.3056368
https://doi.org/10.1109/LRA.2021.3056368
https://doi.org/10.1109/LRA.2021.3056368
https://doi.org/10.1002/rob.20285
https://doi.org/10.1002/rob.20285
https://doi.org/10.1002/rob.20285

[RB12] Stéphane Ross and Drew Bagnell. “Agnostic System Identification for Model-Based
Reinforcement Learning”. In: Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012.
icml.cc / Omnipress, 2012. url: http://icml.cc/2012/papers/833.pdf.

[RKK18] Divyam Rastogi, Ivan Koryakovskiy, and Jens Kober. “Sample-efficient reinforce-
ment learning via difference models”. In: Machine Learning in Planning and Control
of Robot Motion Workshop at ICRA. 2018.

[RS90] J. A. Reeds and L. A. Shepp. “Optimal paths for a car that goes both forwards
and backwards.” In: Pacific J. Math. 145.2 (1990), pp. 367–393. url: https://

projecteuclid.org:443/euclid.pjm/1102645450.

[Sal+17] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. “Evolution
strategies as a scalable alternative to reinforcement learning”. In: arXiv preprint
arXiv:1703.03864 (2017).

[Sav+17] Matteo Saveriano, Yuchao Yin, Pietro Falco, and Dongheui Lee. “Data-efficient con-
trol policy search using residual dynamics learning”. In: 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC,
Canada, September 24-28, 2017. 2017, pp. 4709–4715. doi: 10.1109/IROS.2017.
8206343.

[SB98] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning.
Vol. 135. MIT Press Cambridge, 1998.

[SBA16] Wen Sun, Jur van den Berg, and Ron Alterovitz. “Stochastic Extended LQR for
Optimization-Based Motion Planning Under Uncertainty”. In: IEEE Trans Autom.
Sci. Eng. 13.2 (2016), pp. 437–447. doi: 10.1109/TASE.2016.2517124. url: https:
//doi.org/10.1109/TASE.2016.2517124.

[Sch+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz.
“Trust Region Policy Optimization.” In: ICML. 2015, pp. 1889–1897.

[Sch+19] Julian Schrittwieser et al. “Mastering Atari, Go, Chess and Shogi by Planning with a
Learned Model”. In: CoRR abs/1911.08265 (2019). arXiv: 1911.08265. url: http:
//arxiv.org/abs/1911.08265.

[Seh+10] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters,
and Jürgen Schmidhuber. “Parameter-exploring policy gradients”. In: Neural Net-
works 23.4 (2010), pp. 551–559.

[SF20] Max Simchowitz and Dylan J. Foster. “Naive Exploration is Optimal for Online
LQR”. In: Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learn-
ing Research. PMLR, 2020, pp. 8937–8948. url: http://proceedings.mlr.press/
v119/simchowitz20a.html.

[Sha13] Ohad Shamir. “On the complexity of bandit and derivative-free stochastic convex
optimization”. In: Conference on Learning Theory. 2013, pp. 3–24.

[Sha17] Ohad Shamir. “An optimal algorithm for bandit and zero-order convex optimization
with two-point feedback”. In: Journal of Machine Learning Research 18.52 (2017),
pp. 1–11.

[Sil+14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. “Deterministic policy gradient algorithms”. In: ICML. 2014.

134

http://icml.cc/2012/papers/833.pdf
https://www.cs.unm.edu/amprg/Workshops/MLPC18/submissions/paper_9.pdf
https://www.cs.unm.edu/amprg/Workshops/MLPC18/submissions/paper_9.pdf
https://projecteuclid.org:443/euclid.pjm/1102645450
https://projecteuclid.org:443/euclid.pjm/1102645450
https://doi.org/10.1109/IROS.2017.8206343
https://doi.org/10.1109/IROS.2017.8206343
https://doi.org/10.1109/IROS.2017.8206343
https://doi.org/10.1109/IROS.2017.8206343
https://doi.org/10.1109/TASE.2016.2517124
https://doi.org/10.1109/TASE.2016.2517124
https://doi.org/10.1109/TASE.2016.2517124
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265
http://proceedings.mlr.press/v119/simchowitz20a.html
http://proceedings.mlr.press/v119/simchowitz20a.html

[Sil+17] David Silver et al. “Mastering the game of Go without human knowledge”. In: Nat.
550.7676 (2017), pp. 354–359. doi: 10.1038/nature24270. url: https://doi.org/
10.1038/nature24270.

[SL06] István Szita and András Lörincz. “Learning Tetris using the noisy cross-entropy
method”. In: Neural computation 18.12 (2006), pp. 2936–2941.

[SMD12] Angela P. Schoellig, Fabian L. Mueller, and Raffaello D’Andrea. “Optimization-based
iterative learning for precise quadrocopter trajectory tracking”. In: Auton. Robots
33.1-2 (2012), pp. 103–127. doi: 10.1007/s10514- 012- 9283- 2. url: https:

//doi.org/10.1007/s10514-012-9283-2.

[Sun+19a] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
“Model-based RL in Contextual Decision Processes: PAC bounds and Exponen-
tial Improvements over Model-free Approaches”. In: Conference on Learning The-
ory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA. Ed. by Alina Beygelzimer
and Daniel Hsu. Vol. 99. Proceedings of Machine Learning Research. PMLR, 2019,
pp. 2898–2933. url: http://proceedings.mlr.press/v99/sun19a.html.

[Sun+19b] Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. “Provably Efficient
Imitation Learning from Observation Alone”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 6036–6045. url: http:
//proceedings.mlr.press/v97/sun19b.html.

[Sut91] Richard S. Sutton. “Dyna, an Integrated Architecture for Learning, Planning, and
Reacting”. In: SIGART Bulletin 2.4 (1991), pp. 160–163. doi: 10.1145/122344.
122377.

[Tal+19] Abhijeet Tallavajhula, Adrian Schoisengeier, Sung-Kyun Kim, Anirudh Vemula, Levi
Lister, and Oren Salzman. “Task-Informed Fidelity Management for Speeding Up
Robotics Simulation”. In: CoRR abs/1910.12284 (2019). arXiv: 1910.12284. url:
http://arxiv.org/abs/1910.12284.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine for
model-based control”. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-12, 2012.
2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

[Thr92] Sebastian Thrun. Efficient Exploration In Reinforcement Learning. Tech. rep. CMU-
CS-92-102. Pittsburgh, PA: Carnegie Mellon University, Jan. 1992.

[TR18] Stephen Tu and Benjamin Recht. “The Gap Between Model-Based and Model-Free
Methods on the Linear Quadratic Regulator: An Asymptotic Viewpoint”. In: arXiv
preprint arXiv:1812.03565 (2018).

[TSC11] Matthew Tesch, Jeff Schneider, and Howie Choset. “Using response surfaces and ex-
pected improvement to optimize snake robot gait parameters”. In: Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE. 2011,
pp. 1069–1074.

[VB20] Anirudh Vemula and J. Andrew Bagnell. “Tron: A Fast Solver for Trajectory Op-
timization with Non-Smooth Cost Functions”. In: 59th IEEE Conference on De-
cision and Control, CDC 2020, Jeju Island, South Korea, December 14-18, 2020.
IEEE, 2020, pp. 4157–4163. doi: 10.1109/CDC42340.2020.9303915. url: https:
//doi.org/10.1109/CDC42340.2020.9303915.

135

https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1007/s10514-012-9283-2
https://doi.org/10.1007/s10514-012-9283-2
https://doi.org/10.1007/s10514-012-9283-2
http://proceedings.mlr.press/v99/sun19a.html
http://proceedings.mlr.press/v97/sun19b.html
http://proceedings.mlr.press/v97/sun19b.html
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
http://arxiv.org/abs/1910.12284
http://arxiv.org/abs/1910.12284
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/CDC42340.2020.9303915
https://doi.org/10.1109/CDC42340.2020.9303915
https://doi.org/10.1109/CDC42340.2020.9303915

[VBL20] Anirudh Vemula, J. Andrew Bagnell, and Maxim Likhachev. “CMAX++ : Lever-
aging Experience in Planning and Execution using Inaccurate Models”. In: CoRR
abs/2009.09942 (2020). arXiv: 2009.09942. url: https://arxiv.org/abs/2009.
09942.

[Vem+20] Anirudh Vemula, Yash Oza, J. Bagnell, and Maxim Likhachev. “Planning and Execu-
tion using Inaccurate Models with Provable Guarantees”. In: Proceedings of Robotics:
Science and Systems. Corvalis, Oregon, USA, July 2020. doi: 10.15607/RSS.2020.
XVI.001.

[Vem+21] Anirudh Vemula, Wen Sun, Maxim Likhachev, and J. Andrew Bagnell. “On the
Effectiveness of Iterative Learning Control”. In: CoRR abs/2111.09434 (2021). arXiv:
2111.09434. url: https://arxiv.org/abs/2111.09434.

[VJY21] Cameron Voloshin, Nan Jiang, and Yisong Yue. “Minimax Model Learning”. In:
The 24th International Conference on Artificial Intelligence and Statistics, AISTATS
2021, April 13-15, 2021, Virtual Event. Ed. by Arindam Banerjee and Kenji Fuku-
mizu. Vol. 130. Proceedings of Machine Learning Research. PMLR, 2021, pp. 1612–
1620. url: http://proceedings.mlr.press/v130/voloshin21a.html.

[VMO17] Anirudh Vemula, Katharina Mülling, and Jean Oh. “Modeling cooperative naviga-
tion in dense human crowds”. In: 2017 IEEE International Conference on Robotics
and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017. 2017,
pp. 1685–1692. doi: 10.1109/ICRA.2017.7989199.

[VS00] Sethu Vijayakumar and Stefan Schaal. “Locally Weighted Projection Regression:
Incremental Real Time Learning in High Dimensional Space”. In: Proceedings of the
Seventeenth International Conference on Machine Learning (ICML 2000), Stanford
University, Stanford, CA, USA, June 29 - July 2, 2000. 2000, pp. 1079–1086.

[VSB19] Anirudh Vemula, Wen Sun, and J. Andrew Bagnell. “Contrasting Exploration in
Parameter and Action Space: A Zeroth-Order Optimization Perspective”. In: The
22nd International Conference on Artificial Intelligence and Statistics, AISTATS
2019, 16-18 April 2019, Naha, Okinawa, Japan. Ed. by Kamalika Chaudhuri and
Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR, 2019,
pp. 2926–2935. url: http://proceedings.mlr.press/v89/vemula19a.html.

[Wan+19] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Lan-
glois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. “Benchmark-
ing Model-Based Reinforcement Learning”. In: CoRR abs/1907.02057 (2019). arXiv:
1907.02057. url: http://arxiv.org/abs/1907.02057.

[WD92] Christopher J. C. H. Watkins and Peter Dayan. “Technical Note Q-Learning”. In:
Mach. Learn. 8 (1992), pp. 279–292. doi: 10.1007/BF00992698. url: https://doi.
org/10.1007/BF00992698.

[Wil92] Ronald J Williams. “Simple statistical gradient-following algorithms for connection-
ist reinforcement learning”. In: Machine learning (1992).

[Yu+20] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey
Levine, Chelsea Finn, and Tengyu Ma. “MOPO: Model-based Offline Policy Opti-
mization”. In: Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin. 2020. url: https://proceedings.

136

http://arxiv.org/abs/2009.09942
https://arxiv.org/abs/2009.09942
https://arxiv.org/abs/2009.09942
https://doi.org/10.15607/RSS.2020.XVI.001
https://doi.org/10.15607/RSS.2020.XVI.001
http://arxiv.org/abs/2111.09434
https://arxiv.org/abs/2111.09434
http://proceedings.mlr.press/v130/voloshin21a.html
https://doi.org/10.1109/ICRA.2017.7989199
https://doi.org/10.1109/ICRA.2017.7989199
https://doi.org/10.1109/ICRA.2017.7989199
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.4151
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.4151
http://proceedings.mlr.press/v89/vemula19a.html
http://arxiv.org/abs/1907.02057
http://arxiv.org/abs/1907.02057
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html

neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.

html.

[Zel92] Alexander Zelinsky. “A mobile robot exploration algorithm”. In: IEEE Trans. Robotics
Autom. 8.6 (1992), pp. 707–717. doi: 10.1109/70.182671. url: https://doi.org/
10.1109/70.182671.

[Zha+11] Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. “Analysis and
improvement of policy gradient estimation”. In: Advances in Neural Information
Processing Systems. 2011, pp. 262–270.

[Zuc+11] Matthew Zucker, Nathan D. Ratliff, Martin Stolle, Joel E. Chestnutt, J. Andrew
Bagnell, Christopher G. Atkeson, and James Kuffner. “Optimization and learn-
ing for rough terrain legged locomotion”. In: Int. J. Robotics Res. 30.2 (2011),
pp. 175–191. doi: 10.1177/0278364910392608. url: https://doi.org/10.1177/
0278364910392608.

137

https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a322852ce0df73e204b7e67cbbef0d0a-Abstract.html
https://doi.org/10.1109/70.182671
https://doi.org/10.1109/70.182671
https://doi.org/10.1109/70.182671
https://doi.org/10.1177/0278364910392608
https://doi.org/10.1177/0278364910392608
https://doi.org/10.1177/0278364910392608

	1 Introduction
	1.1 Motivation
	1.1.1 Updating the Dynamical Model
	1.1.2 Updating the Behavior of the Planner

	1.2 Thesis Goal and Contributions
	1.2.1 Sample Complexity of Exploration in Model-Free Policy Search
	1.2.2 Planning and Execution using Inaccurate Models
	1.2.3 Leveraging Experience in Planning and Execution using Inaccurate Models
	1.2.4 On the Effectiveness of Using Inaccurate Models
	1.2.5 Task-Aware Online Model Search with Misspecified Model Classes

	1.3 Bibliographical Remarks
	1.4 Open Source Software
	1.5 Excluded Research

	2 Background
	2.1 Fundamentals of Markov Decision Processes
	2.2 Deterministic Shortest Path Problem
	2.3 Real-time Heuristic Search
	2.3.1 LRTA*
	2.3.2 RTAA*

	2.4 Local Function Approximation Methods
	2.4.1 K-Nearest Neighbor Regression
	2.4.2 Locally Weighted Regression

	3 Sample Complexity of Exploration in Model-Free Policy Search
	3.1 Introduction
	3.2 Problem Setup
	3.2.1 Multi-step Control: Reinforcement Learning
	3.2.2 One-Step Control: Online Linear Regression with Partial Information

	3.3 Online Linear Regression with Partial Information
	3.3.1 Exploration in Parameter Space
	3.3.2 Exploration in Action Space
	3.3.3 Analysis

	3.4 Reinforcement Learning
	3.4.1 Exploration in Parameter Space
	3.4.2 Exploration in Action Space

	3.5 Experiments
	3.5.1 One-Step Control
	3.5.2 Multi-Step Control

	3.6 Conclusion

	4 Planning and Execution using Inaccurate Models
	4.1 Introduction
	4.2 Preliminaries
	4.3 Problem Setup
	4.4 Approach
	4.4.1 Penalized Model
	4.4.2 Limited-Expansion Search for Planning
	4.4.3 Warm Up: Small State Spaces
	4.4.4 Large State Spaces

	4.5 Experiments
	4.5.1 Simulated 4D Planar Pushing in the Presence of Obstacles
	4.5.2 3D Pick-and-Place with a Heavy Object
	4.5.3 7D Arm Planning with a Non-Operational Joint
	4.5.4 Effect of Function Approximation and Size of Hyperspheres
	4.5.5 Simulated 2D Gridworld Navigation with Icy States

	4.6 Related Work
	4.7 Discussion and Conclusion

	5 Leveraging Experience in Planning and Execution using Inaccurate Models
	5.1 Introduction
	5.2 Related Work
	5.3 Problem Setup
	5.4 Approach
	5.4.1 Hybrid Limited-Expansion Search Planner
	5.4.2 CMAX++ in Small State Spaces
	5.4.3 Adaptive Version of CMAX++
	5.4.4 Theoretical Guarantees
	5.4.5 Large State Spaces

	5.5 Experiments
	5.5.1 3D Mobile Robot Navigation with Icy Patches
	5.5.2 7D Pick-and-Place with a Heavy Object

	5.6 Discussion

	6 On the Effectiveness of using Inaccurate Models
	6.1 Introduction
	6.2 Problem Setup
	6.2.1 Optimal Control using Misspecified Model
	6.2.2 Iterative Learning Control
	6.2.3 Assumptions

	6.3 Main Results
	6.4 Interpreting the Worst Case Bounds
	6.5 Empirical Results
	6.5.1 Linear Dynamical System with Approximate Model
	6.5.2 Nonlinear Inverted Pendulum with Misspecified Mass
	6.5.3 Nonlinear Planar Quadrotor Control in Wind

	6.6 Discussion

	7 Task-Aware Online Model Search with Misspecified Model Classes
	7.1 Problem Setup
	7.2 Relevant Prior Work
	7.2.1 Maximum Likelihood Model Learning
	7.2.2 Reward Based Model Search

	7.3 Approach
	7.3.1 Online Model Search
	7.3.2 Optimistic Off-Policy Evaluation

	7.4 Theoretical Guarantees
	7.5 Experiments
	7.6 Conclusion

	8 Future Work and Conclusion
	8.1 Future Work
	8.1.1 A Unified Framework for Planning and Execution using Inaccurate Models
	8.1.2 Online Model Learning with Misspecified Model Classes
	8.1.3 Extending CMAX and CMAX++ to Stochastic Dynamics
	8.1.4 Finite Data Performance Analysis

	8.2 Conclusion

	9 Appendix
	9.1 Appendix for Chapter 3
	9.1.1 Proof of Theorem 3.3.1
	9.1.2 Proof of Theorem 3.4.1
	9.1.3 Proof of Theorem 3.4.2
	9.1.4 Implementation Details

	9.2 Appendix for Chapter 4
	9.2.1 4D Planar Pushing Experiment Details
	9.2.2 3D Pick-and-Place Experiment Details
	9.2.3 7D Arm Planning Experiment Details

	9.3 Appendix for Chapter 5
	9.3.1 Sensitivity Experiments
	9.3.2 Experiment Details

	9.4 Appendix for Chapter 6
	9.4.1 General Results
	9.4.2 Helpful Lemmas
	9.4.3 Optimal Control with Misspecified Model Results
	9.4.4 Note on Assumption 6.2.3
	9.4.5 Iterative Learning Control Results
	9.4.6 Scalar Example that Realizes Upper Bounds
	9.4.7 Experiment Details

	Bibliography

