
Heuristics for routing and scheduling of
spatio-temporal type problems in industrial

environments.

Jayanth Krishna Mogali

CMU-RI-TR-21-69

September 2021

Thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Robotics.

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Stephen F. Smith, Chair
Willem-Jan van Hoeve

Maxim Likhachev
J. Christopher Beck, Univ. of Toronto

Copyright © 2021 Jayanth Krishna Mogali

To my family

Section I

Abstract
Spatio-temporal problems are fairly common in industrial environments. In practice, these

problems come with different characteristics and are often very hard to solve optimally. So,
practitioners prefer to develop heuristics that exploit mathematical structure specific to the
problem to obtain good performance. In this thesis, we will present work on heuristics for 3
different classes of problems that commonly appear in industrial settings. The methods in this
thesis generally view a region in space-time as a discrete resource, and so a recurring theme
in this thesis is to view these problems from under a discrete optimization lens.

The first problem we will look at is the Multi-agent path-finding (MAPF) problem. MAPF
is a useful abstraction for modeling pick-up and delivery problems within automated ware-
houses, where conflict-free paths for a set of robots need to be computed from pre-specified
start and goal locations for robots while minimizing travel costs. A lot of prior work has been
done by AI researchers, predominantly search techniques that are extensions of A* or conflict-
driven binary search. Departing from existing approaches, we take a polyhedral view of the
problem and propose a cutting plane procedure for computing a lower bound on the optimal
solution to the MAPF problem, which is then incorporated into existing search-based methods
as an evaluation function via Lagrangians. A novel feature of our approach lies in the cut gen-
eration procedure, which we show to be reminiscent of the template matching technique from
image processing. Empirically, we show that our procedure outperforms a state-of-the-art
search based approach for MAPF.

We then move on to problems such as the movement of products across the factory floor
using conveyor belts, railway tracks etc. At a high level, products need to be transported
on railway tracks along a pre-specified route, where each track can appear on the routes for
different products, and so each track is like a shared resource. While a product occupies some
track, no other product may occupy the same track. The overall objective is to transport all
products to their respective destinations in the shortest time (makespan). Such problems are
typically abstracted as Blocking Job Shop (BJS) problems. While makespan minimization for
BJS is NP-Hard, most local search heuristics for BJS also suffer from a high computational
cost per local search move. We propose several algorithmic improvements for existing local
search procedures by leveraging structural properties (some existing and some new) of the
BJS polytope. With those efficient updates, we are able to achieve new best results on a large
fraction of existing BJS benchmark problems.

The third problem deals with situations where robots work in proximity. We present some
work done for an aircraft manufacturer, where robots assemble the fuselage of an aircraft.
The problem can be abstracted as a multiple-traveling salesman problem with collision and
enabling constraints and makespan objective. Collision constraints prohibit robots from occu-
pying certain regions simultaneously. Enabling constraints impose a weak ordering in which
robots can perform tasks. We present 2 complementary heuristics which emphasize the rout-
ing and scheduling aspects in the problem to different degrees, with both heuristics relying on
an efficient implementation of a scheduling sub-solver. We describe the overall system and
present empirical results.

Section II

Acknowledgements
First and foremost, I would like to thank my thesis adviser, Prof. Stephen Smith. I am

very thankful for his flexibility and freedom, which enabled me to explore many research
directions. His relaxed demeanor often calmed me down during many stressful situations. As
a researcher, he has a very diverse portfolio and never shies away from complicated real-world
problems. His research approach has been both inspirational and has significantly influenced
my outlook on real-world problems. Thank you, Steve, for taking me in your lab since my
early time as a Master’s student, and for supporting me all along.

Next, I like to thank the rest of my committee, Prof. Willem-Jan van Hoeve, Prof. Christo-
pher Beck, and Prof. Maxim Likhachev, for their time and valuable suggestions. In particular,
I would like to thank Prof. Willem, with whom I was fortunate to collaborate on one of the
chapters in this thesis. I am thankful for his guidance and generosity with his time.

CMU has been a wonderful place to do research. The large and diverse research conducted
at the School of Computer Science has broadened my horizon. The excellent courses at the
Tepper School of Business, and the seminar series in the Chemical Engineering department
were probably the most important sources of information relevant to my thesis research. There
are too many friends and researchers from these departments for me to name and thank. I am
very grateful to the late Prof. Egon Balas, who has been an enormous influence on my research
methodology. Very early during my PhD, I was unsure whether to work on Machine Learning
or Discrete Optimization. It was his courses that helped me make up my mind to choose the
latter. In all the 3 projects that are presented in this thesis, some of the ideas that he developed
during his distinguished career manifests itself in some form or the other.

I would next like to thank my lab members. Thank you, Dr. Zachary Rubinstein, for all the
fun chats and collaborations on multiple projects. Also, thank you for serving on my qualifier
committees. Thank you, Dr. Laura Barbulescu, for collaborating with me on the Job Shop
project. Thank you for your diligence and patience. Thank you, Prof. Joris Kinable, for your
friendship, and for being a mentor, and for collaborating with me on the Quadbot project.
Also, thank you for introducing me to Decision Diagrams. I thank Achal Arvind, Chung-
Yao Chuang, Allen Hawkes, Isaac Isukapati, Richard Goldstein, Viraj Parimi, and Suryansh
Saxena for their friendship and support. A special thanks to Achal Arvind, whose passion for
combinatorial problems in industrial settings rubbed onto me. A special thanks to Viraj Parimi
for his help in the preparation of my research papers and for always agreeing to play Table
Tennis at whatever time of the day.

The Robotics Institute has been a fun department to be a part of. Many thanks to Suzanne
Lyons Muth, Keyla Cook, and Barbara Jean Fecich for taking care of all the administrative
work for the students. I have made several friendships these past seven years at Pittsburgh,
which I hope will continue for a lifetime. I would like to thank Rajshekar Prabhakar, Sri
Vignesh Rajendran, Gobinath Velliappan, Sandeep Konam, Saurabh Sharma, Ishani Chat-
terjee, Wenhao Luo, Dilip Krishnamurthy, Shashank Sripad, Adithya Pediredla, Sudershan
Boovaraghavan, Neeha Dev, Akhila Kolapalli, Alankar Kotwal, Aparajita Sahoo, and Sravani
Hotha.

I would also like to thank my first research mentor, Prof. Chandrasekhar Seelamantula

Section III

from IISc Bangalore, and my undergraduate adviser, Prof. Somasekhar Veeramraju from NIT
Warangal.

Last but not least, I wish to express a deep sense of gratitude to my beloved parents and my
brother for their endless support and love throughout my life that made me who I am today. I
am forever indebted to them.

Contents

1 Introduction 2
1.1 Philosophy pursued in this work . 3

1.1.1 Discrete optimization view of the problems 3
1.1.2 Solution approach . 4

1.2 This thesis . 4
1.3 Outline of the thesis . 5

2 Mathematical tools used in the heuristics 6
2.1 Tools for MAPF . 6

2.1.1 Lagrangian dual . 6
2.1.2 Decision diagrams . 7

2.2 Concepts and tools for BJS and MRSBE . 8
2.2.1 Local search framework . 8
2.2.2 Alternative graphs . 9

I 13

3 Multi-Agent Path Finding 14
3.1 MAPF Problem Description . 15

3.1.1 Integer programming model for MAPF 16
3.2 Lagrangian Relax-and-Cut . 17

3.2.1 Primal repair procedure . 19
3.3 Projections and cut generation . 19

3.3.1 A motivating example . 20
3.3.2 Projection polytopes . 22
3.3.3 On selecting S for a conflict . 23
3.3.4 Relaxation polytope P (S) . 24
3.3.5 Cut generation through querying . 25
3.3.6 Objective Cuts . 28
3.3.7 Delay-and-Long Inequalities . 30

3.4 Decision Diagrams for P (S) . 33
3.4.1 Strategy for constructing D(S) . 33
3.4.2 Construction of D(S) . 34

IV

CONTENTS V

3.4.3 Performing the maximization in Eqn (3.28) over P (S) using D(S) . . 38
3.4.4 Tightening the construction of D(S): 38

3.5 Integration in Conflict Based Search . 39
3.5.1 Conflict-based search . 39
3.5.2 Integrating Lagrangian Relax-and-Cut with CBS 40

3.6 Experimental Evaluation . 45
3.6.1 Experimental Setup . 45
3.6.2 Experimental Results . 48

3.7 Future Work . 53
3.7.1 Cuts from multiple rst-neighborhoods (Consensus cuts) 53
3.7.2 Serial cuts . 54
3.7.3 Branching on cuts . 55

3.8 Related Work and Discussions . 56
3.9 Summary . 58
3.10 Summary of contributions . 58

II 60

4 Blocking Job Shop problem 61
4.1 Introduction . 61
4.2 Literature review . 62

4.2.1 Current challenges . 64
4.2.2 Our work and contributions . 64

4.3 Blocking Job Shop problem . 66
4.4 Critical blocks and N4 neighborhood . 68
4.5 Enumerating all N4 neighbors . 70

4.5.1 Consistency checking for the forward move 71
4.5.2 Consistency checking for backward moves 76

4.6 Job insertion feasibility recovery (JIFR) . 77
4.6.1 JIFR-1 . 77
4.6.2 JIFR-2 . 78
4.6.3 Algorithm to perform JIFR-2 . 80

4.7 Job insertion . 81
4.7.1 Job insertion polytope . 82
4.7.2 Conflict Bipartite graph representation of the JIP 83
4.7.3 Performing Algorithm 8 using the conflict graph 83
4.7.4 Complexity of executing Algorithm 9 85
4.7.5 Improving the complexity of job insertion 85
4.7.6 Pruning redundant cycle elimination constraints 86
4.7.7 Computation of fmo . 88

4.8 Tabu search metaheuristic implementation 88
4.9 Evaluation . 90

4.9.1 Neighborhoods considered . 90

CONTENTS VI

4.9.2 Experimental setup . 90
4.9.3 Experimental Results . 91

4.10 Structural characterization of feasible schedules and implications for local search 96
4.10.1 Streamlining job insertion . 97
4.10.2 Incrementally computing the conflict graph when using JIFR-1 during

local search . 98
4.11 Summary and discussion . 100
4.12 Summary of contributions . 101

III 102

5 Scheduling for Multi-Robot Routing with Blocking And Enabling Constraints 103
5.1 Problem description . 104
5.2 Problem formulation . 107

5.2.1 Scheduling subproblem . 107
5.3 Problem complexity . 110
5.4 Overview of solution approach for MRSBE 111
5.5 Solving the scheduling sub-problem . 112

5.5.1 Alternative graph representation of SSp. 113
5.5.2 Linking the SSG and AG . 115
5.5.3 State enumeration procedure . 116
5.5.4 Simplifying the SSp formulation through logical inference 120

5.6 Initial solution generator . 123
5.7 Deterministic moves for local search . 124

5.7.1 RELOCATE move . 124
5.7.2 REORDER move . 128

5.8 Experimental evaluation . 130
5.8.1 Benchmark data . 130
5.8.2 mTSP bound . 132
5.8.3 Computational results . 133
5.8.4 Alternate approaches . 136

5.9 Related work . 137
5.10 Summary . 139
5.11 Summary of contributions . 139

IV 140

6 Conclusions 141
6.1 General Takeaways Retrospectively . 142
6.2 Future Research Directions . 144

6.2.1 Multi-Agent Path Finding . 144
6.2.2 Blocking Job Shop Problem . 144

CONTENTS VII

6.2.3 Multi-Robot Routing and Scheduling with Blocking and Enabling Con-
straints (MRSBE) . 145

Bibliography 146

Appendices 155

Appendix 156
A Multi-agent Path Finding . 156

A.1 Additional Proofs . 156
A.2 Templates for Experiments . 157
A.3 Choosing a 3-robot template for a conflict 158
A.4 Additional Figures . 158
A.5 Additional Tables . 162

B Blocking Job Shop Problem . 163
B.1 Makespan computation for forward move 163
B.2 Complexity of makespan computations for feasible N4 neighbors ob-

tained from a single critical block 166
B.3 Makespan computation for the backward move 171
B.4 Additional Proofs . 179
B.5 Additional Tables . 182

C Scheduling for multi-robot routing with blocking and enabling constraints . . 185
C.1 Additional Proofs . 185
C.2 Example for a case where the number of minimal models for CF Ps

scurr

in Equation (5.12) is exponential in M 187

List of Figures

2.1 Decision diagram for a Knapsack constraint 8
2.2 Alternative graph for a problem with 2 robots. 11
2.3 Alternative graph with selection. 12

3.1 MAPF instance with 3 robots. 20
3.2 Example figure for objective cuts. 25
3.3 Example figure for long-and-delay cuts. 30
3.4 Templates on 4-connected grid example. 36
3.5 MAPF DD example. 36
3.6 LR-WDG versus WDG examples. 43
3.7 Results on Random layout plots. 49
3.8 Runtime plots and gaps for 20% obstacle instances. 50
3.10 Serial conflicts example. 54
3.11 Congested MAPF example. 56

4.1 Alternative graph representation of a problem with 2 jobs and 2 machines. . . 67
4.2 Critical blocks example. 70
4.3 Changes to the graph by a forward or a backward N4 move. 72

5.1 Modeling of a real world problem example. 106
5.2 State space expansion example. 110
5.3 Overall architechture. 111
5.4 Alternative graph example, and benefit of alternative graph for guiding Depth-

First search example. 114
5.6 Collision constraint filtering example. 121
5.7 RELOCATE example . 126
5.8 Unstructured layouts examples. 131
5.9 Computatioanl results for 2 robot experiments. 134
5.10 Computational results for multi robot experiments. 135

A.1 3 Robot Templates . 157
A.3 Runtime plots and optimality gap for 10% obstacle instances. 159
A.4 Runtime plots and gap for 15% obstacle instances. 159
A.5 Runtime plots and gap for 25% obstacle instances. 160
A.6 Runtime plots and gap for Empty obstacle instances. 160

VIII

LIST OF FIGURES IX

A.7 Runtime plots and gap for Room instances. 161
A.8 Runtime plots and gap for Maze instances. 161
C.9 Example for exponential branching . 188

List of Tables

3.1 Node filtering comparison on 20% obstacle instances 51

4.1 Performance comparison against previous best known on Lawrence instances
using N5, and N4 neighborhoods. Numbers in bold font indicate the makespan
of the best solution for that instance. Underlined instances are those for which
a new best solution is reported by an experiment conducted in this work. . . . 92

4.2 Average # of tabu search iterations within 30 minutes for experiments con-
ducted corresponding to Table 4.1. 93

4.3 The number of tabu search iterations on LA instances in 30 minutes averaged
across 10 runs with N4 neighborhood and JIFR-1. 93

4.4 Best and average result after 60 seconds with N4 and JIFR-1 & 2 compared
against results reported in a = Mati and Xie [2011], b = Pranzo and Pacciarelli
[2016] . 95

4.5 Results on the largest Taillard instances . 96

A.1 Search node filtering comparison on 10% obstacle instances 162
A.2 Search node filtering comparison on 15% obstacle instances 162
A.3 Search node filtering comparison on 25% obstacle instances 162
A.4 Search node filtering comparison on Empty instances 162
A.5 Search node filtering comparison on Room instances 162
A.6 Search node filtering comparison on Maze instances 162
B.7 Makespan computation for feasible neighbors produced by N4 forward move 164
B.8 Quantities for makespan computation of feasible N4 neighbors obtained by

N4 backward move . 173
B.9 Missing results from Table 4.1 for 5 and 20 minutes. We followed the same conven-

tions as we did for Table 4.1, where numbers in bold font indicate the makespan of
the best solution for that instance, and underlined instances are those for which a new
best solution is reported in this paper. 182

B.10 Results for TA Instances with N5 and JIFR - 1 & 2. 183
B.10 Results for TA Instances continued . 184

1

Chapter 1

Introduction

In the last few decades, robots are increasingly being employed to assist humans in industrial
environments. As the physical space is shared by robots and humans, unsurprisingly, inter-
actions between robots, and between robots and humans occur. Typically, in these problems,
agents (robots, humans) must collaborate in order to complete the task, by sharing resources.
The physical space in which the agents operate is an example of such a shared resource. The
shared resources need to be allocated over time in order for the agents to complete their re-
spective tasks, naturally the allocation of these resources leads to optimization problems. In
this thesis, we present work on some specific optimization problems with a spatio-temporal
flavor arising in industrial environments.

Spatio-temporal interactions between agents are not limited to industrial environments,
they arise in other applications such as autonomous driving in urban environments etc... In-
dustrial environments, unlike other application areas where spatio-temporal interactions arise,
distinguish themselves by a few characteristics. Sometimes, the problems in industrial envi-
ronments are the result of some manufacturing process, where the same procedure is executed
day in and day out. Secondly, the systems involved in industrial problems are usually very
reliable, and the environment in which the agents operate is usually almost fully controllable.
On the flip-side, the spatio-temporal problems in industrial environments typically need plan-
ning over long horizons, so the corresponding optimization problems they generate tend to be
large scale i.e., many variables and constraints. Owing to these distinguishing characteristics
of spatio-temporal problems in industrial environments, the following objectives are very at-
tractive from a practitioner’s point of view while developing solution methodologies for such
problems: (1) Computing an optimal or near-optimal solution for problems that are solved
repeatedly and where reliable data exists; (2) Developing problem-specific procedures that
exploit underlying mathematical structure to cope with problem scale.

We begin by briefly introducing all the spatio-temporal problems considered in this thesis.
In the subsequent chapters, we provide precise mathematical formulations, literature review,
contributions and results obtained for each of those problems. The three problems are:

(A) Multi-Agent Path-Finding (MAPF) problem: MAPF is a useful abstraction for modeling
pick-up and delivery problems within automated warehouses [Wurman et al., 2008; Stern,
2019]. Given pre-specified start and goal locations for a set of robots, the problem is to

2

CHAPTER 1. INTRODUCTION 3

generate conflict-free paths while minimizing an objective that aims to balance travel costs
and makespan.

(B) Blocking Job Shop (BJS) problem: BJS is a useful abstraction for modeling movement of
products\material across the factory floor using railway tracks, conveyor belts, etc..., see [Mati
et al., 2001a; Klinkert, 2001; Poppenborg et al., 2012]. We use an example representative
of BJS to explain the problem. At a high level, products need to be transported along pre-
specified routes. At any given time, at most one product can be transported along a track.
Even after reaching the end of the track, the product remains on the track until the downstream
track on its route is not occupied by any other product. While a product occupies a track, all
other products are blocked from accessing that track. The overall objective is to transport
all products to their respective destinations in the shortest time (makespan). The example
described above occurs in real world applications where there are no intermediate buffers to
store the products during transportation.

(C) Multi-Robot scheduling with Blocking and Enabling (MRSBE) constraints: MRSBE is a
new class of problems introduced in this thesis. We explain this problem class using a real-
world example that is representative of MRSBE. The task of attaching the skin of an airplane
fuselage requires fastening at multiple locations, and these locations are distributed across
the surface in multiple clusters. The order in which the fastening locations can be serviced
needs to obey a weak ordering specified in terms of enabling constraints (a generalization
of the precedence constraint). A robot is used to reach each fastening location, and we are
given a set of robots to complete attaching the skin to the fuselage. The overall problem is
to allocate fastening locations to robots and determine the order in which each robot visits
their allocated locations, such that, at all times, robots do not collide with each other and obey
enabling constraints. Solutions with lower makespan are preferred. At a high level, we can
view MRSBE as a mTSP (multiple traveling salesman problem) with collision constraints.

MAPF, BJS, and MRSBE, all have one attribute in common. All three problems contain
constraints that are referred to in scheduling literature as Blocking type constraints. Observe
that in the MAPF problem, when a robot occupies a location, it blocks that location from being
accessed by other robots until the moment in time the robot moves to a different location.
Similarly, in the BJS problem, a track is blocked until the moment in time the product that is
currently on it moves to a downstream track. Similarly, for the MRSBE problem, the space
occupied by a robot is blocked to other robots to ensure that the robots do not collide. While
it is difficult to imagine MAPF without blocking, it is not the same for BJS and MRSBE.
Without blocking, BJS reduces to the well studied classical Job Shop problem.

1.1 Philosophy pursued in this work

1.1.1 Discrete optimization view of the problems
In this thesis, we adopt the view that regions in space-time are discrete resources. These
resources need to be allocated to agents and scheduled for solving the optimization problem.

CHAPTER 1. INTRODUCTION 4

By taking such a view, we can model all three problems as discrete optimization problems.
For example, in the MAPF problem, locations in the warehouse are viewed as resources that
the robots need to share to get to their goal locations. In BJS, the machines (conveyor belts,
railway tracks, etc...) needed to process the jobs are the resources. In MRSBE, the physical
space in which the robots operate is the shared resource. Viewing spatio-temporal problems
through a discrete optimization lens is quite common in optimization literature, see [Hall and
Sriskandarajah, 1996] for other examples.

1.1.2 Solution approach
The spatio-temporal optimization problems considered in this work are all NP-Hard in the
strong sense. One can attempt to obtain the optimal solution to those problems by model-
ing and solving them using Mathematical Programming technologies such as Mixed Integer
Linear Programming, and Constraint Programming. However, obtaining optimal solutions for
realistically sized problem instances for our problem classes within practical time limits has
been challenging1. While these solvers can still be used to obtain good quality solutions us-
ing their built-in generic primal feasibility procedures, the quality of the solutions have not
generally been competitive when compared to dedicated heuristics developed for each prob-
lem separately. Practitioners commonly forgo computing the optimal solution, instead, they
develop a heuristic that is specific to each problem type to obtain good quality solutions. This
should not be suprising, since the three problems have typically been used to model different
applications in the real world, and so the problem characteristics vary. Typically, the state of
the art approaches for these problems have very little in common. Often, the heuristics de-
veloped exploit the underlying mathematical structure in the problem class to enhance search
performance in different ways. In this thesis, we adopt a similar philosophy for the BJS and
MRSBE problem. For the MAPF problem, though, we try to speed up an exact search algo-
rithm, through the use of a heuristic lower bounding procedure that exploits structure.

1.2 This thesis
In this section, we briefly glimpse through our work in this thesis and identify its main contri-
butions.

Previous work on MAPF has largely been focused on developing methods that compute
the optimal solution to the problem, using best first search approaches. The performance of
these approaches, crucially, depends on the use of good quality node evaluation functions.
However, the problem of developing good quality node evaluation function has received very
little attention in the MAPF literature. In this work, we propose a polyhedral cutting plane
procedure for computing a lower bound on the optimal solution to the MAPF problem. The
lower bound will serve as the node evaluation function for best first search procedures. By
incorporating our node evaluation function into a state-of-the-art search based approach for

1 We will elaborate on the challenges for each of the spatio-temporal problems separately, in their respective
chapters.

CHAPTER 1. INTRODUCTION 5

MAPF, called Conflict-based search, we were able to improve the performance of the search
procedure.

Research effort on heuristics for the BJS has largely focused on tabu-search neighborhood
based heuristics. Briefly, they are iterative methods, moving from one solution to another
solution chosen from the neighborhood of the current solution. The main research challenge
of such schemes is in providing a neighborhood definition, such that, near optimal solutions
can be reached by only considering solutions within that neighborhood. Unfortunately, pop-
ular approaches for obtaining neighbors have relied on procedures that scale poorly with the
dimensionality of the input problem. Due to the high computational complexity, the search
performance has been very poor. In our work, we improve the computational complexity of
obtaining neighbors by leveraging insights from the polyhedral view of the BJS problem. In
certain cases, we also provide very efficient procedures for evaluating the makespan objec-
tive of neighboring solutions. With those improvements, we report new best results with the
makespan objective on a large fraction (≈ 3

4
) of existing benchmarks for BJS.

The MRSBE problem as mentioned earlier is a new problem class. We formalize this
general problem and analyze its complexity. We develop a system comprising of a scheduler
and two neighborhood based local search operators for obtaining good quality solutions. Our
scheduler is a hybrid approach that leverages constraint programming techniques to accelerate
a heuristic search approach. We analyze the performance of the system developed on a set of
synthetically generated problem instances, some of which capture the real world problem that
motivated our work on MRSBE, and others that generalize to other application settings. We
provide a differential analysis of our local search procedure and provide a comparison to other
approaches to demonstrate the efficacy of the proposed heuristic.

Thesis Statement: This thesis explores the general hypothesis that scheduling problems with
blocking constraints can be effectively addressed by exploiting the problem structure that such
constraints provide. For each of the three problem variants identified above, we aim to obtain
our structural insights through polyhedral and decomposition techniques and demonstrate this
hypothesis by producing new state of the art results.

1.3 Outline of the thesis
In Chapter 2, we introduce some helpful concepts and mathematical tools that have been
employed in the development of the heuristics in this work. In Chapter 3, we present our
work on the MAPF problem. Parts of this chapter previously appeared in [Mogali et al., 2020].
In Chapter 4, we present our work on the BJS problem. This chapter is based on our paper
[Mogali et al., 2021a]. In Chapter 5, we present our work on the MRSBE problem. This
chapter is based on our paper [Mogali et al., 2021b]. In Chapter 6, we provide a summary of
the work completed in this thesis, more general takeaways and future research directions. The
contents in Chapters 3, 4 and 5 are not connected to each other, and so a reader interested in a
specific problem can directly read the appropriate chapter he\she is interested in.

Chapter 2

Mathematical tools used in the heuristics

In this chapter, we introduce the tools that have been employed for the development of the
heuristics. The reader is assumed to have basic familiarity with Linear and Integer Program-
ming [Conforti et al., 2014]. The tools that have been used for the MAPF problem are de-
scribed in Section 2.1. The tools used for the work on BJS and MRSBE problems are de-
scribed in Section 2.2.

2.1 Tools for MAPF
Recall from Section 1.2, our work on the MAPF problem involves developing a node eval-
uation function for search based methods based on polyhedral approaches. Central to our
approach will be the construction of polyhedral relaxations to the projections of the MAPF
polytope, which in our approach is done using Decision Diagrams (DDs). DDs are introduced
in Section 2.1.2. A reader familiar with DDs can skip Section 2.1.2. A second concept that
we’ll use for computing the node evaluation function is the Lagrangian dual, we introduce it
in Section 2.1.1.

2.1.1 Lagrangian dual
Consider an optimization problem of the form shown below:

P : min
x∈{0,1}n

{cTx|x ∈ X} (2.1)

where X ⊆ {0, 1}n. P is the prototypical optimization problem that we will frequently en-
counter in this thesis. It may be difficult to obtain an exact description of X for our problem,
however we may have with us a set X ′ = {x ∈ Rn|Ax ≤ b}, such that X ⊆ X ′. Then a trivial
lower bound to Opt(P) i.e., the optimal value of P , can be obtained by solving the following
optimization problem:

D : max
λ≥0

min
x

cTx+ λT(Ax− b) (2.2)

By Lagrangian duality, it follows that Opt(D) ≤ Opt(P). For a detailed introduction to
Lagrangian duality, the reader can refer to [Boyd et al., 2004]. Opt(D) will be referred to as

6

CHAPTER 2. MATHEMATICAL TOOLS USED IN THE HEURISTICS 7

the Lagrangian dual lower bound to the problem. The Lagrangian dual is used in designing
our node evaluation function for the MAPF problem.

2.1.2 Decision diagrams
Decision diagrams (DDs) have become an emerging tool for discrete optimization problems.
Let X ⊆ {0, 1}n denote the feasible set of a 0-1 discrete optimization problem. Note that
cardinality of X may beO(2n). In this section, we will be interested in computing the optimal
value to the problem shown in Equation (2.1), i.e., Opt(P), using DDs. At a high level, DDs
provide a compact representation of the members in X , that will facilitate efficient computa-
tion of Opt(P). For a thorough introduction to DDs for optimization, the reader can refer to
[Bergman et al., 2016].

Borrowing notation from [Davarnia and van Hoeve, 2020], a DD for X , represented by
D(X) = (U ,A, l) is a top-down directed multi-graph, where U represents the set of nodes, and
A represents a set of arcs. D(X) can be decomposed into n+ 1 node layers U1,U2, . . . ,Un+1,
and n arc layers A1,A2, . . . ,An. The node layer U1 contains a single source node s, and the
node layer Un+1 contains a single terminal node t. The tail of any arc in layer j is connected
to a node in Uj , and its head to a node in Uj+1. The label l(a) of each arc a ∈ Aj , for j ∈ [n],
represents the value of xj ∈ {0, 1}. Each node in the layer Uj has a maximum out-degree
equal to the size of the domain of variable xj . Owing to such a structure in the DD, each s− t
path represents a point in {0, 1}n. A DD is said to be an exact representation of X , if there is a
1:1 correspondence between the points represented by the s−t paths inD(X) and members in
the set X . The reader may refer to [Bergman et al., 2016], for procedures to construct D(X).
We provide the DD for a Knapsack problem in Figure 2.1 as an example.

Given a DD D(X) which exactly represents X , we now describe the procedure for com-
puting Opt(P). The first step is to assign a cost to each arc in A. Suppose a ∈ Aj , then set
the cost of a to l(a) · c(xj), where c(xj) is the value corresponding to xj in the vector c. Then
Opt(P) is simply the cost of the shortest s − t path in D(X). Note that such a path can be
computed in O(|A|) complexity.

We make a few remarks about DDs. The DD to exactly represent X is non-unique. For
example, previously in the description of D(X), we mapped arcs in Aj to the variable xj ,
however we could have chosen a different mapping from arc layer to variable. A different
mapping leads to a different DD than the one described earlier. It is possible for the new
DD to be more compact, and thereby allowing us to compute the shortest s − t path more
efficiently. Secondly, note that in the description of D(X), we labeled each arc in A to the
value of one variable in the set {xj}nj=1, and so we ended up having n arc layers. However,
depending on the definition of X , it may be possible to create a highly compact DD where we
label each arc in A to the values of multiple variables in the set {xj}nj=1. The main challenge
with this new encoding is to ensure that there is a 1:1 correspondence between the members
in the set X , and the points corresponding to the s − t paths in the DD. In general, it may
be highly non-trivial to come up with such designs for every candidate X ⊆ {0, 1}n. For the
MAPF problem, fortunately, there is a very intuitive and simple way to construct a DD with
such a compact encoding. We will elaborate on this in Chapter 3.

CHAPTER 2. MATHEMATICAL TOOLS USED IN THE HEURISTICS 8

Figure 2.1: Decision diagram for a Knapsack constraint where X =
{x ∈ {0, 1}4|12x1 + 8x2 + 4x3 + 2x4 ≤ 17}. The numbers marked in the nodes is the
sum of the weights on each path originating from s to that node.

2.2 Concepts and tools for BJS and MRSBE
The heuristics developed for both the MAPF and MRSBE are local search methods. In Sec-
tion 2.2.1, we give a high level sketch as to how such a scheme is implemented. A tool that
gets heavily used in the development of these heuristics is the Alternative graph [Mascis and
Pacciarelli, 2002]. We introduce this tool in Section 2.2.2.

2.2.1 Local search framework
The heuristics procedures developed for both BJS and MRSBE are implemented as local
search schemes. Local search procedures are iterative methods, which start from a feasible
solution to the problem, and then iteratively move to a neighbor solution. To facilitate this
movement across solutions, the designer of the heuristic must provide a way to obtain the
neighbors of a solution. Typically, the neighborhood of a solution is defined as those solutions
that are structurally very similar to the input solution. The definition for structural similarity is
left to the designer to choose. The designer specified procedure to obtain a neighbor is loosely
referred to as a “move" in local search terminology.

The pseudo-code for a typical local search scheme is provided in Algorithm 1. In line 6,
the user has considerable choice in selecting the neighbor s′. If the neighborhood is not too
large, then it may be possible to evaluate the objective of all neighbors in the neighborhood,
and then pick the best neighbor among them. If the neighborhood is very large, an alternative

CHAPTER 2. MATHEMATICAL TOOLS USED IN THE HEURISTICS 9

Algorithm 1 Local search heuristic framework
1: Given:
2: Initial feasible solution s.
3: Initialize:
4: best solution = s.
5: repeat
6: s′ := Select a neighbor from the neighborhood of s.
7: if obj(s′) < obj(best solution) then
8: best solution := s′.
9: if Accept(s′) then

10: s := s′

11: until Termination Criterion
12: return best solution

is to randomly select one of the neighbors from the neighborhood. In line 9, a criterion is
used whether to accept s′ as the solution for the next iteration, and typically only used if the
neighbor selected in line 6 is not necessarily the best neighbor in the neighborhood.

Algorithm 1 provides a high level framework of how local search schemes are typically
implemented. Often in practice, designers choose to enhance its performance with the help of
meta-heuristic procedures. Meta-heuristics are procedures that are embedded within the local
search procedures, and they typically help in escaping local minima. Generally, these meta-
heuristics operate by either modifying the way in which the worth of a neighbor is measured
in line 6, or by explicitly specifying a scheme to decide whether to accept a neighbor in line
9. Tabu search [Glover and Laguna, 1998] is an example of the former, and Late acceptance
[Burke and Bykov, 2017] is an example of the latter type. In our work, we use Tabu search
in the heuristic for BJS, and Late acceptance for the MRSBE heuristic. We describe these
procedures in greater detail in their respective chapters.

2.2.2 Alternative graphs
The Alternative graph (AG) is a special kind of temporal network for representing optimization
problems with blocking constraints. The AG representation allows us to represent partial
and complete solutions to those problems graphically, a property that is useful for describing
neighborhoods in local search, and for developing constructive heuristics. The AG was first
introduced in the context of BJS in Mascis and Pacciarelli [2002]. Below, we provide a slightly
general version of the AG representation, to facilitate its usage for MRSBE heuristic as well.
Before we describe the AG representation, we describe the class of optimization problems
with blocking constraints for which the AG representation is used in this thesis.

Consider a problem with M robots, and let Seq1, . . . , SeqM denote a sequence of land-
marks for each robot, where Seqi ∩ Seqj = ∅ if i 6= j. The robot needs to visit each landmark
in its respective sequence, and in the same order as provided in the sequence. Corresponding
to robot i ∈ [M] and landmark u ∈ Seqi, let pu denote the minimum time that robot i needs to
be physically located at landmark u. Generally the problems of our interest would be to com-

CHAPTER 2. MATHEMATICAL TOOLS USED IN THE HEURISTICS 10

pute a schedule for the robots to visit all landmarks, subject to certain additional constraints
that will specified shortly. Let nextu denote the landmark following u in Seqi. Let Su denote
the time at which robot i first visits u. The first constraint that any feasible schedule to our
problem must satisfy is:

Su + pu ≤ Snextu , ∀i ∈ [M],∀u ∈ Seqi (2.3)

We now introduce the blocking component in the problem. Blocking means that after Su,
robot i continues to block the physical space robot i requires for visiting u, until the moment
in time robot i moves to visit nextu , i.e., until Snextu . To ensure that robots do not collide
while they block the physical space, we introduce a set of collision constraints C. Each
collision constraint (CC) in C is specified in terms of a tuple (u, i, v, j) , where i, j ∈ [M],
and u ∈ Seqi, v ∈ Seqj . To ensure no collisions occur, we must ensure that the blocking
intervals [Su, Snextu] and [Sv, Snextv] do not overlap. So appropriately, the following set of
constraints are introduced:

(Sv ≥ Snextu) ∨ (Su ≥ Snextv) , ∀(u, i, v, j) ∈ C (2.4)

Finally, we introduce enabling constraints (also known as OR constraints in literature [Möhring
et al., 2004]) into our problem. In order to service a landmark u ∈ Seqi by robot i, a set of
enablers denoted by Eu ⊆ ∪

j∈[M]\i
Seqj is specified. At least one among the enablers should

be serviced prior to u being serviced, or equivalently, the condition in Equation (2.5) must be
satisfied. Equation (2.5) is referred to as the enabling constraint (EC) for u.

∨
v∈Eu

(Su ≥ Snextv) (2.5)

So our problem also contains the following set of ECs:

∨
v∈Eu

(Su ≥ Snextv) , ∀u ∈ ∪
j∈[M]

Seqj (2.6)

While there can be infinitely many schedules that are feasible to our constraints in Equa-
tions (2.3), (2.4), (2.5), generally in this thesis we will be interested in solutions that minimize
makespan. A schedule that minimizes makespan to our problem can be obtained by solving
an optimization problem (BJ-OPT) shown below:

BJ-OPT
min
S≥0

max
i∈[M]

max
u∈Seqi

Su + pu

s.t. Equations (2.3), (2.4) and (2.5) are satisfied..

Before moving on to the AG representation, note that BJ-OPT is a fairly general problem
class. For instance, we can represent the example for BJS involving movement of products
across the factory floor on tracks in Chapter 1 as a BJ-OPT. To see why, for each railway
track j traversed by product i, we can introduce a landmark lji in Seqi. If a track is used by
more than one product, we simply introduce CCs between the appropriate pair of landmarks

CHAPTER 2. MATHEMATICAL TOOLS USED IN THE HEURISTICS 11

Figure 2.2: Alternative graph for a problem with 2 robots. Green arrows are the arcs in F .
Alternative arcs, belonging to the same CC, have been marked with the same color.

representing the same track. For example, if track j is used by products, i, k we introduce the
CC (lji , i, l

j
k, k). No ECs will be needed for this problem.

We are now ready to represent BJ-OPT using an AG. Basically, the temporal constraints in
BJ-OPT are represented as arcs in the AG. For example, to represent a constraint of the form
Sv ≥ Su + l(u, v), we will have an arc (u, v) with length l(u, v) in our AG. Formally, an AG
is a directed, weighted graph G (N , F,A, En), where N represents the nodes in the graph.
Each node in N corresponds to a landmark visited by a robot. F is the set of arcs traversed
by the robots in their respective itineraries. There is a 1:1 correspondence between arcs in F
and temporal equations shown in Equation (2.3). Before defining A and En, let us look at
an example. Consider a problem with 2 robots, and let robot 1 visit landmarks a, b, c in the
same order. Similarly, for robot 2, let Seq2 = (d, e, f). The AG for this example is shown in
Figure 2.2, with the arcs in F shown in green. We have also included 2 dummy nodes, namely
L1, L2, for reasons which will become self-explanatory when we describe A.

For every CC in Equation (2.4), there are 2 disjunctions. Analogously, for every CC in C,
the AG provides a set of arcs to choose. For instance, for the CC c = (v, i, w, j) the set of arcs
to choose from is Ac = {(nextv, w), (nextw, v)}, one arc corresponding to each disjunction.
Both arcs are set to length 0, in order to match the temporal relation in those disjunctions.
The arcs in the set Ac are called alternative arcs. Going back to the AG definition, we define
A = {Ac}c∈C as a set of pairs of arcs. For our earlier example, assume the CCs are (a, 1, e, 2)
and (c, 1, d, 2). Observe in Figure 2.2, the alternative arcs corresponding to the two CCs
present in our example are shown as dashed arcs.

For each node u ∈ N , we define a set Enu = {(nextv, u)|v ∈ Eu}, one arc corresponding
to each enabler of u. The arcs in the set Enu are used to represent the enabling constraint in
Equation (2.5) for u. The length of each arc in the set Enu is 0. The set Enu, like in the case
of collision constraints, offers a set of alternative arcs to choose from. Going back to the AG
definition, we define En = {Enu}u∈N . Sometimes, to distinguish between the alternative
arcs in A and En, we will refer to the arcs in A as collision alternative arcs (CAA), and the

CHAPTER 2. MATHEMATICAL TOOLS USED IN THE HEURISTICS 12

Figure 2.3: θ,Λ have been introduced for computing start times.

arcs in the set En as enabling alternative arcs (EAA).
All that remains to be shown is how feasible solutions to BJ-OPT are represented graph-

ically on the AG. In any feasible schedule to BJ-OPT, observe that exactly one of the two
disjunctions corresponding to each c ∈ C in Equation (2.4) can be active, i.e., evaluates to
true. Likewise, at least one of the disjunctions in Equation (2.5) evaluates to true in any fea-
sible solution to BJ-OPT. Let Sol be some feasible solution to BJ-OPT, and denote the set
of alternative arcs corresponding to the active disjunctions (computed using Sol) by Cs. In
the case of an enabling constraint for a node (see Equation (2.5)), more than one disjunction
can be active in Sol, but we will assume that Cs only contains the arc corresponding to the
disjunction that became active the earliest (ties resolved arbitrarily). The AG representation
for solution Sol is given by the graph G(N , F ∪ Cs) , i.e., only arcs in the set F ∪ Cs are
included in the AG. For our running example, consider a solution where for the CC (a, 1, e, 2)
the disjunction (Se ≥ Sb) is active, and for the CC (c, 1, d, 2) the disjunction (Sc ≥ Se) is
active. We represent such a solution on the AG with the appropriate selection in Figure 2.3.
The makespan of the solution is given by the longest θ − Λ path on the graph.

Part I

13

Chapter 3

Multi-Agent Path Finding

Multi-agent path finding (MAPF) is the problem of finding paths for individual robots (agents),
given a start and end vertex for each robot on some layout (graph), such that the paths are
spatio-temporally conflict-free and an objective resembling travel costs is minimized. MAPF
has found many applications in warehouse logistic systems [Wurman et al., 2008], robotics
and video games [Silver, 2005]. MAPF is known to be NP-Hard to solve optimally on general
graphs [Yu and LaValle, 2013b].

Many techniques have been proposed for solving the MAPF problem, and they come in
different flavors. Current approaches for solving MAPF optimally can be broadly classified
into search based methods [Sharon et al., 2015; Wagner and Choset, 2011], constraint pro-
gramming approaches [Gange et al., 2019], and solution methods that rely on polyhedral
techniques such as the integer programming formulation of [Yu and LaValle, 2013a], and the
branch-cut-price method [Lam et al., 2019]. A significant challenge for all these approaches
is in developing strong lower bounding techniques required for proving optimality. From the
point of view of search based methods, this typically translates into developing strong ad-
missible heuristics. For polyhedral techniques, strong lower bounds are typically obtained by
developing cutting plane procedures that tighten the linear description of the feasible region
[Conforti et al., 2014].

In this work, we propose a cut generation scheme that can be incorporated into search
based methods for MAPF as well as polyhedral approaches. Incorporating cuts into tech-
niques that use polyhedral approaches is common, but incorporating cuts into search based
methods for MAPF is somewhat rare, and will be the focus of this work. The key techni-
cal tools that we will use in this work, are the Lagrangian Relax-and-Cut (LRC) procedure,
and Decision Diagrams. Lagrangian Relax-and-Cut (LRC) [Escudero et al., 1994; Lucena,
2005] is a popular Lagrangian based approach for obtaining strong lower bounds for discrete
optimization problems, and is based on the idea of dualizing cuts.

Although the target application is the MAPF problem, this chapter simultaneously makes
contributions to the literature on LRC, Decision Diagrams (DDs) and MAPF. All the con-
tributions are presented in the context of the MAPF problem, but some ideas may be more
broadly applicable. For the MAPF problem, we introduce 1) a new polyhedral approach for
MAPF based on lower-dimensional ‘templates’ that can be translated spatio-temporally over
the input graph, 2) a new cut generation scheme that utilizes decision diagram representations

14

CHAPTER 3. MAPF 15

of templates, 3) a Lagrangian Relax-and-Cut procedure to compute the lower bound, and 4)
the idea of using the resulting lower bound as a node evaluation function in a conflict-based
search (CBS) procedure. Experimental evaluation shows that our lower bounds can be very
effective when the MAPF problem is more constrained.

The rest of the chapter is organized as follows. In Section 3.1 we introduce the MAPF
problem and provide an Integer Programming formulation for the problem. In Section 3.2 we
introduce the LRC scheme in the context of the MAPF problem. In Section 3.3 we present the
cut generation scheme and introduce the necessary tools for performing cut generation, i.e., the
projection polytope and the relaxation of the projection polytope. In Section 3.4 we introduce
the DD representation of the relaxation to the projection polytope. The reader may choose to
skip Section 3.4 without any implications for understanding the later sections. In Section 3.5
we briefly introduce CBS, and present how the LRC scheme is incorporated within CBS as
a node evaluation function. In Section 3.6 we present the experimental setup and results. In
Sections 3.7 and 3.8, we present future and related work, respectively. Parts of this chapter
appeared previously in Mogali et al. [2020].

3.1 MAPF Problem Description
We consider the makespan constrained version of the MAPF problem in this chapter. We are
given an undirected graph G = (V,E), a set of N robots R = {r1, ..., rN}, and a makespan
upper bound T ∈ Z+, where Z+ represents the set of positive integers. Corresponding to each
robot ri ∈ R, we are given a start vertex si ∈ V , and goal vertex gi ∈ V . The task is to find a
path for each robot, such that the robot paths do not conflict, while minimizing the cumulative
sum of path costs. A path p can be viewed as a function p : {0, 1, ...,T} → V , where p(t)
returns a vertex in V corresponding to time t. If P = {p1, ..., pN} is a set of robot paths
containing a path for every robot, then P is feasible to the MAPF problem iff:

1. pi(0) = si and pi(T) = gi, ∀i ∈ {1, 2, ...,N}.
2. For each robot ri ∈ R and for all t ∈ {0, 1, ...,T− 1}, we require pi(t) = pi(t+ 1), or

(pi(t), pi(t+1)) ∈ E. The robot either stays in its current vertex or moves to a neighbor.
3. To prevent vertex collisions, we require that pi(t) 6= pj(t), for all pairwise distinct
i, j ∈ {1, ...,N} and time t ∈ {0, 1, ...,T}.

4. To prevent edge collisions, there should not exist a pair of robots ri, rj and time t ∈
{0, 1, ...,T− 1}, such that, pi(t) = pj(t+ 1) and pi(t+ 1) = pj(t).

We refer to any path pi satisfying 1 and 2 as a start-end path for robot ri. The cost of start-end
path pi is given by ci(pi) =

∑T−1
t=0 ci(pi(t), pi(t+ 1)), where

ci(pi(t), pi(t+ 1)) =

{
0, if pi(t) = pi(t+ 1) = gi

1, otherwise.
(3.1)

Equation (3.1) assigns a cost of 0 if the robot is waiting at its goal vertex, else assigns a cost of
1. The goal of MAPF is to find a set of conflict-free robot paths p1, ..., pN that minimizes the
objective

∑N
i=1 ci(pi). The objective we are minimizing is slightly different from the objective

being minimized in other literature [Felner et al., 2018; Li et al., 2019a]. The difference is

CHAPTER 3. MAPF 16

that, in the other objective, a free wait at the goal for a given time step is allowed iff the
robot remains at the goal during all later time steps until time T. The techniques presented
in this chapter can be adapted to work with the other objective, however, it complicates the
presentation of the templates, and so we prefer to work with the objective in Eqn (3.1).

3.1.1 Integer programming model for MAPF
We next provide a multi-commodity flow based Integer Programming (IP) model for the
MAPF problem, similar to [Yu and LaValle, 2013a]. The IP model will be useful in deriv-
ing valid inequalities for the lower bounding procedure we propose in later sections. Below,
for any n ∈ Z+, we will use the notation [n] to denote the set {1, 2, ..., n}.

The IP model will make use of a time expanded graph. The time expanded graph is an arc-
weighted directed acyclic graph defined for each robot, where the nodes can be partitioned
into T + 1 layers, and arcs into T layers. We shall denote the time expanded graph for robot
ri by Fi(Ni, Ai). Denote the nodes in layer t ∈ Z+ ∪ {0} by Ni(t). Corresponding to each
vertex v ∈ V , there exists a node in Ni(t) if the shortest path from si to v in G(V,E) uses
at most t edges, and the shortest path from v to gi uses at most T − t edges. With a slight
abuse of notation, we shall denote the node corresponding to the vertex v ∈ V in Ni(t) by vti .
Throughout this chapter, if a node from any of the graphs in the set {Fi}i∈[N] is specified, we
will assume that the vertex, time, and robot associated with that node can be deduced from our
notation. Arcs in Ai connect nodes between adjacent layers, with the tail of the arc connected
to the node belonging to the lower indexed layer. Denote the arcs in level t by Ai(t). If
uti ∈ Ni(t) and vt+1

i ∈ Ni(t + 1), then there exists an arc (uti, v
t+1
i) ∈ Ai(t) iff u = v, or

(u, v) ∈ E. We let ci(uti, v
t+1
i) denote the cost of the arc:

ci(u
t
i, v

t+1
i) =

{
0, if u = v = gi

1, otherwise.
(3.2)

There is a 1:1 correspondence between start-end paths for robot ri and s0
i − gTi paths in

Fi(Ni, Ai).
In describing our IP model, we use the following notation. For any node vti ∈ Ni(t),

we denote δ+
Fi

(vti) as the set of arcs in Ai whose tail is the node vti , and δ−Fi
(vti) as the set

of arcs in Ai whose head is the node vti . For any vertex u ∈ V , we introduce the set
V
t
(u) = {i ∈ [N]|uti ∈ Ni(t)} for representing vertex collision constraints. For represent-

ing edge collision constraints, we define, for (u,w) ∈ E:

E
t
(u,w) = {(i, j) ∈ [N]× [N]|(uti, wt+1

i) ∈ Ai(t), (wtj, ut+1
j) ∈ Aj(t), i 6= j}.

For each robot ri ∈ R, and each arc a ∈ Ai, we introduce a binary variable x(a) ∈ {0, 1} to
indicate whether the robot ri traverses the arc a in a feasible solution to the MAPF problem.
Let |A| =

∑
i∈[N]|Ai|, where |Ai| denotes cardinality of set Ai. The 0-1 IP formulation for the

MAPF problem is:

minimize
x∈{0,1}|A|

N∑
i=1

∑
a∈Ai

ci(a)x(a) (3.3)

CHAPTER 3. MAPF 17

s.t.
∑

a∈δ+
Fi

(s0i)

x(a) = 1, ∀i ∈ [N] (3.4)

∑
a∈δ−Fi

(uti)

x(a) =
∑

a∈δ+
Fi

(uti)

x(a), ∀i ∈ [N], ∀t ∈ [T− 1],∀uti ∈ Ni(t) (3.5)

∑
i∈V t

(u)

∑
a∈δ−1

Fi
(uti)

x(a) ≤ 1, ∀u ∈ V, ∀t ∈ [T] (3.6)

x(uti, w
t+1
i) + x(wtj, u

t+1
j) ≤ 1, ∀(u,w) ∈ E,∀t ∈ {0, 1, ...,T− 1},∀(i, j) ∈ Et

(u,w)

(3.7)

Equations (3.4) and (3.5) (a.k.a. flow balance constraints) ensure that a start-end path is
chosen for every robot, while Eqns (3.6) and (3.7) prevent vertex and edge collisions respec-
tively.

3.2 Lagrangian Relax-and-Cut
In this section, we will describe the LRC procedure for generating lower bounds in the context
of the MAPF problem, but first we require a few preliminaries. Let P denote the MAPF
polytope as shown below:

P = conv(x ∈ {0, 1}|A||x satisfies (3.4)− (3.7)), where conv denotes convex hull. (3.8)

Each vertex of P corresponds to a set of start-end paths, one for each robot inR, such that the
paths are mutually conflict-free. Denoting the objective in Eqn (3.3) by c>x, since P is the
convex hull and the objective in Eqn (3.3) is linear, we can represent the optimization problem
shown in Eqns (3.3) - (3.7) as:

Opt = min
x
{cTx|x ∈ P} (3.9)

A cut a>x ≤ b is valid for P if max
x∈P

a>x ≤ b. Given a valid cut a>x ≤ b for P and a point

y 6∈ P, the cut separates y from P if b < a>y. Given a set of start-end paths with one path
for each robot inR, such that at least one pair of robots are conflicting, we will assume in this
section that we are provided with an oracle that can generates cuts which separates such a set
of paths from P. We defer the development of such a cut generation oracle to a later section.

Next, we provide an overview of the LRC lower bounding procedure. LRC is an iterative
procedure which at the 0th iteration is provided with a relaxation P0 of P as input, i.e., P0 ⊇ P.
As the iterations progress, LRC computes tighter relaxations of P, and so P0 ⊇ P1 ⊇ · · · ⊇
Pi ⊇ · · · ⊇ P, where Pi is the relaxation constructed at iteration i. Let

Opt(i) = min
x
{cTx|x ∈ Pi} (3.10)

then clearly Opt(0) ≤ Opt(1) ≤ · · · ≤ Opt(i) ≤ · · · ≤ Opt. Opt(i) is the value of the
lower bound obtained from LRC at iteration i. For obtaining Pi, LRC generates a set of

CHAPTER 3. MAPF 18

valid inequalities Eix ≤ fi for P using the cut generation oracle, and tightens Pi−1, i.e.,
Pi = Pi−1 ∩{Eix ≤ fi}. From a computational perspective, LRC shares similarity with other
Lagrangian methods in the sense that, Opt(i) is not computed using the formulation shown in
the RHS of Eqn (3.10), instead it is computed using the Lagrangian dual. The procedure for
generating Eix ≤ fi is also based on the Lagrangian dual, both these aspects are explained
below.

The steps of the LRC procedure are provided in Algorithm 2. At iteration 0, the algorithm
is initialized with P0 = {x ∈ {0, 1}|A||x satisfies Eqns (3.4)− (3.5)}, i.e., the relaxation ob-
tained by omitting all the collision constraints in the IP formulation in Section 3.1.1. Observe
from the earlier discussion, Pi = P0 ∩

k<i
{Ekx ≤ fk}. So if we dualize all the inequalities

generated by the oracle up to iteration i, we can alternatively compute Opt(i) using the La-
grangian dual formulation shown in line 4 of Algorithm 2. Opt(i) is the optimal objective
value of the max-min problem shown. By dualizing the inequalities generated by the oracle,
the inner minimization problem in line 4 reduces to an easy to solve min-cost flow problem for
each robot, since the feasible region is just P0. In line 5 we recover x̄i by applying any shortest
path algorithm on the time expanded graph (refer to F· in Section 3.1.1) for each robot, with
the arc costs set according to the Lagrangian objective in line 4. Note that x̄i corresponds to a
set of start-end paths for the robots, and potentially contains conflicts. If x̄i contains conflicts,
the oracle is used to generate inequalities separating x̄i from P as shown in line 11, and the
inequalities generated (i.e., Eix ≤ fi) are incorporated into the Lagrangian dual problem (line
4) in subsequent iterations.

Generating inequalities that separate x̄i from P in line 11 perturbs the Lagrangian objective
and is an attempt to obtain a different minimizer in lines 4 and 5 in subsequent iterations. A
different minimizer in line 5 allows us to continue generating more separation inequalities,
since the new minimizer may also contain conflicts, and by extension help us obtain tighter
lower bounds. While all inequalities in the system Eix ≤ fi generated by the oracle in line 11
is required to be valid for P, we do not however require them all to separate x̄i from P.

In our implementation, we computed the optimal λ in line 4 using a first order gradient
method with the step sizes set according to the scheme in Baker and Sheasby [1999]. As
is common in Lagrangian implementations, we also simultaneously try to construct a valid
upper bound (see UB in Algorithm 2), see lines 6, 12. Our heuristic repair procedure tries
to modify the set of conflict-containing paths, x̄i in line 5, to a conflict-free set of paths. The
heuristic procedure is described in Section 3.2.1. If the x̄i is already conflict-free, then, we
used the solution to update the upper bound as shown in line 8. However, since our goal is
to generate lower bounds, in our implementation we tried to find a different minimizer in line
5 that contained conflicts so that we can use that solution to generate cuts as shown in line
11 and tighten the relaxation. Finally, the termination condition in Algorithm 2 was set to a
combination of time and a bound on the number of iterations.

The scheme described in Algorithm 2 is referred to as Delayed LRC in literature, since at
every iteration the Lagrangian dual problem is solved to optimality. In an alternate implemen-
tation of LRC called Non-Delay LRC [Lucena, 2005], λ̄ in line 4 is obtained by taking a step
along the direction of the sub-gradient. In Mogali et al. [2020], we previously implemented
Non-Delay LRC. We switched to Delayed LRC since the empirical performance was better.

CHAPTER 3. MAPF 19

Algorithm 2 Lagrangian Relax-and-Cut algorithm

1: Output: Inequalities Ex ≤ f , optimal Lagrangian multipliers λ̄, and upper bound(UB).
2: Initialize: i← 0, λ← ∅, UB← ∞, Ex ≤ f ← ∅
3: repeat
4: λ̄← argmax

λ≥0

min
x∈{0,1}|A|

{L(x, λ)|x satisfies Eqns (3.4)− (3.5)} , where,

L(x, λ) = cTx+
∑

0≤k<i λ
T
k (Ekx− fk).

5: x̄i ← argmin
x∈{0,1}|A|

{L(x, λ̄)|x satisfies Eqns (3.4)− (3.5)}

6: if x̄i is conflict free then
7: if c>x̄i < UB then
8: UB← c>x̄i
9: return

10: else
11: Generate cuts Eix ≤ fi separating x̄i from P using the cut generation oracle
12: Repair x̄i to generate non-conflicting paths. If the repair is successful and cost of the

repaired solution is less than UB, then update UB.
13: Augment the inequalities Eix ≤ fi to the system Ex ≤ f .
14: i← i+ 1
15: until Termination criterion is met

3.2.1 Primal repair procedure
Our procedure identifies a maximal independent set (MIS) of non-conflicting robots from the
paths provided in x̄i, and fixes the path of the robots in the MIS to as they are in x̄i (see line
5 in Algorithm 2). The paths for the remaining robots are computed sequentially in a fixed
order. For each robot that is not part of the MIS, we compute the number of available start-end
paths that do not conflict with the paths fixed for the robots in the MIS, and order the robots
in increasing order of available paths. Proceeding in that fixed order, we compute the shortest
start-end path that does not collide with any path fixed previously to some other robot. If such
a path exists, then we fix that path for that robot, and move to the next robot in the ordering.
Otherwise, the primal repair procedure returns unsuccessfully.

3.3 Projections and cut generation
In this section, we will develop the tools necessary for the cut generation oracle. Clearly, since
any conflict is either a vertex or an edge conflict, a simple oracle that satisfies our requirement
is one that simply returns the appropriate inequality violated from Eqns (3.6) and (3.7). For
designing our cut-generation oracle, we would like to go beyond the simple oracle by taking
into account additional considerations. Notice from Eqn (3.10) that the lower bound outputted
by the LRC procedure depends on both the tightness of the relaxation Pi and the MAPF
objective (i.e., c>x). For generating tight relaxations, we prefer that our oracle generates
separation inequalities that are deeper than Eqns (3.6), (3.7) when possible. While there can

CHAPTER 3. MAPF 20

(a) (b)

Figure 3.1: An MAPF instance with 3 robots. In 3.1a, the solid colored circles represent the robot’s
initial location at time 0, and the colored rings represent the goal location. In 3.1b, each dashed line
represents one of the shortest paths between start and goal. For these set of paths, robots 1 and 2 conflict
at location Y, at time 3. The yellow region is the template we have chosen.

be several candidates for such separation inequalities, we prefer that the oracle outputs those
that leads to larger improvements in the lower bound. For that purpose, we account for the
MAPF objective in the oracle’s cut generation process.

3.3.1 A motivating example
We will motivate the key ideas of our cut generation oracle using the 3 robot MAPF instance
shown in Figure 3.1. The layout shown in Figure 3.1 is a 4-connected grid, so between con-
secutive time steps a robot is allowed to either stay in its current cell or move to one of its
adjacent cells by moving vertically or horizontally. In Figure 3.1b, a shortest path for each
robot to their respective goal location is indicated. The shortest path costs are 6, 2 and 5 for
robots 1, 2 and 3 respectively, and so a lower bound on the optimal MAPF objective is 13. For
the displayed set of paths, robots 1 and 2 conflict at location Y at time 3.

Given that a set of the shortest paths for the robots are conflicting, a natural question to ask
is whether there exists a feasible solution whose objective is 13? Suppose there is a conflict-
free set of paths with objective 13, then the following conditions must hold:

I) The cost of robot 1’s path is 6. Robot 1 must be at location W at time 2, reach X or Y at
time 3, and reach Z at time 4.

II) Robot 2’s path cost is 2, and it must reach Y at time 2 and remain stationary.

III) Robot 3’s path cost is 5. Robot 3 must reach Z at time 1, reach X or Y at time 2 and W
at time 3.

If there is a conflict-free solution satisfying conditions I), II) and III), we can find such a
solution by analyzing the space of conflict-free paths that are at least partially overlapping
with the yellow region (see Figure 3.1b) in the time interval [2, 4]. We leave it as an exercise

CHAPTER 3. MAPF 21

to the reader to verify that no conflict-free paths for the robots satisfying conditions I), II) and
III) simultaneously exist. We can translate this inference into a valid inequality for P using the
conditions I), II) and III). We explain this translation process in later sections. Through this
analysis, we have inferred that a lower bound for the optimal MAPF objective for our example
is at least 14.

Observe that I), II) and III) are conditions on the robot paths that are restricted to the yel-
low region (see Figure 3.1b) for the time interval [2, 4]. So in trying to determine whether a
conflict-free solution not exceeding a certain cost exists (for our example it was 13), we trans-
lated it to a different problem which asks for the existence of a feasible solution satisfying
certain conditions specified on a spatio-temporal neighborhood. Taking this observation as a
motivation, we propose the following method. Given a conflict, the main idea of this work is
to consider a set of robots (must include those in the conflict) and a spatio-temporal neighbor-
hood around the conflict. To make inferences that potentially help improve the lower bound,
we formulate a set of queries. These queries, much like our example, typically ask for the
feasibility of a conflict-free path which satisfies certain conditions, where the conditions are
specified using the spatio-temporal neighborhood. We answer those queries by analyzing the
start-end mutually conflict-free paths for the robots projected over the spatio-temporal neigh-
borhood, and based on the answer we derive a valid inequality for P and use it in Algorithm 2
for tightening the relaxation. We take this approach, since as it will be shown later in Section
3.3.2, we are able to provide a method to analyze paths over a projection.

We give an example for the proposed scheme using the MAPF instance shown in Figure
3.1. We begin by observing the vertex conflict at location Y between robots 1 and 2 at time
3. We conjecture that the spatial region in and around Y may be a bottleneck region that
the robots need to carefully navigate to avoid collisions. For convenience, we will choose
the yellow region marked in Figure 3.1b to be that bottleneck spatial region of our interest.
Observe that the path of robot 3 also overlaps with the yellow region during that time interval,
so we conjecture that the yellow region in the interval [2, 4] is a spatio-temporal region that
sees a lot of robot movement. This makes it a candidate neighborhood from where we can
possibly understand how robots 1,2 and 3 constrain each other, and possibly lets us infer some
non-trivial information about the lower bound. Using the knowledge in I), II) and III) we
know that if there is an optimal solution whose MAPF objective is 13, then it is necessary
that at time 3, robot 1 reaches X or Y, robot 3 reaches W, and robot 2 is stationary at Y from
time 2. We turn this information into a question: at time 3 can robot 1 reach X or Y, robot
3 reach W, and robot 2 remain stationary at Y from time 2, all simultaneously? It turns out
that the answer to our query is no, and as a certificate of infeasibility we obtain the inequality
x(W 2

1 , X
3
1) + x(W 2

1 , Y
3

1) + x(Y 2
2 , Y

3
2) + x(Y 2

3 ,W
3
3) + x(X2

3 ,W
3
3) ≤ 2.

We make a few observations regarding the proposed idea:

1. Given a conflict, to perform our analysis, we may have multiple options for selecting the
robots and the spatio-temporal neighborhood. Some guidelines are needed in making
these choices. We study this problem in Section 3.3.3.

2. We need to develop a query procedure, such that, answers to those queries can help
improve the lower bound. We study this problem in Section 3.3.6.

CHAPTER 3. MAPF 22

3. For answering queries, we proposed to analyze the set of conflict-free start-end paths
projected onto the spatio-temporal neighborhood only. Analyzing paths projected onto
the neighborhood is akin to knowing the projection of P onto the dimensions of the
problem associated with that neighborhood (i.e., appropriate dimensions of x in Eqn
(3.8)). Hence, we require an efficient method to analyze the conflict-free paths in the
lower dimensional space. We study this problem in Section 3.3.2.

In the rest of this section, we will develop the necessary tools for generating and analyzing the
conflict-free paths in the lower dimensional space. The fundamental object needed to develop
these tools is the projection of the MAPF polytope P to lower dimensional spaces.

3.3.2 Projection polytopes
Recall from Section 3.1.1, A denotes the set of all arcs in the time expanded graphs, i.e.,

A =
N
∪
i=1
Ai, and P ⊂ {0, 1}|A|. Also, recall that we parameterized P in terms of x variables

in the 0-1 IP formulation. For some subset S ′ ⊆ A, let x(S ′) denote the variables of x
corresponding to the arcs in S ′. The projection of P onto dimensions spanned by x(S ′) is
defined as shown in Eqn (3.11). Projx(S′)(P) is simply the orthogonal projection of P onto the
space spanned by the variables in x(S ′).

Projx(S′)(P) = {y ∈ R|S
′| : ∃w ∈ R|A|−|S

′|, s.t. (y, w) ∈ P} (3.11)

We first show how projections are used for answering the queries mentioned in the pre-
vious section. Recall that each query asks about feasibility of conflict-free paths for a set
of robots, satisfying certain conditions specified in terms of some spatio-temporal neighbor-
hood. The robots and the spatio-temporal neighborhood in the query essentially specify a
subset of arcs S ⊆ A. In the rest of the chapter, we refer to such a subset of A, i.e., S, as a
rst-neighborhood, short for robot-spatio-temporal neighborhood. Assuming that S is the rst-
neighborhood in the query, it will be shown later that the answer to the query can be obtained
by solving an optimization problem of the form shown in Eqn (3.12), where K0 and d are
constant (vector). We explain how to specify K0 and d in Section 3.3.6.

Answer =

{
Feasible, if V al(S) ≥ K0

Infeasible, otherwise
, where V al(S) = max

x
{dTx(S) |x ∈ P} (3.12)

Notice in the objective of Eqn (3.12), the co-efficient corresponding to any variable in x(A\S)
is 0. Hence, we can alternatively compute V al(S) using Projx(S)(P) as shown in Eqn (3.13).

V al(S) = max
x(S)
{dTx(S) |x(S) ∈ Projx(S)(P)} (3.13)

Computing V al(S) using Eqn (3.12) is hard, however computing V al(S) using Eqn (3.13)
can be more tractable, especially when we have constructed Projx(S)(P).

Computing Projx(S)(P) exactly is hard due to 2 reasons: (i) P is not known, (ii) even if P
was known, computing projections is computationally expensive. If S is chosen judiciously,

CHAPTER 3. MAPF 23

however, we can construct a tight relaxation for the projection. More formally, we can con-
struct a polytope P (S) ⊂ R|S| such that Projx(S)(P) ⊆ P (S). If P (S) is tight, we can compute
a tight upper bound for V al(S) by replacing Projx(S)(P) by P (S) in Eqn (3.13) as shown in
Eqn (3.14).

max
x(S)
{dTx(S) |x(S) ∈ P (S)} (3.14)

It turns out that a tight upper bound for V al(S) is good enough, since as it will be explained
later in Section 3.3.6, we only care about the case when the answer to our query is Infeasible
(see Eqn (3.12)). If the upper bound to V al(S) is < K0, we are assured that V al(S) < K0.

Different choices for S give rise to different P (S), but computing tight relaxations for
Projx(S)(P) can be challenging. In Section 3.3.3 we describe the general guideline we fol-
lowed in selecting S for a given conflict, and in Section 3.4 we describe the process of com-
pactly representing the relaxation P (S) using decision diagrams.

Previously in Mogali et al. [2020], we used P (S) in the following way. In order to generate
the cuts that separates x̄i from P in line 11 of Algorithm 2, we presented a procedure inspired
from [Davarnia and van Hoeve, 2020; Tjandraatmadja and van Hoeve, 2019] that outputs a
face of P (S), which separates Projx(S)(x̄i) and P (S). The face generated, i.e., w̄>x ≤ h(w̄),
is obtained by solving Eqn (3.15).

w̄ = argmax
‖w‖2≤1

H(w), where H(w) = wT(Projx(S)(x̄i))− h(w), h(w) = max
y∈P (S)

{wTy} (3.15)

In this work, we propose a different cut generating scheme. We also take into account the
MAPF objective while generating the cut.

3.3.3 On selecting S for a conflict
The choice of S for a given set of start-end robot paths containing a conflict will not be made
arbitrarily. An arbitrary choice for S can lead to poor cuts, and computing a tight relaxation
to Projx(S)(P) is challenging. We parameterize S by the sets R(S), T (S), L(S). We first
introduce the sets R(S), T (S), L(S) using the notation in Section 3.1, and then describe how
to design these sets based on the conflict. R(S) ⊆ [N] is a set of indices of robots, T (S) =
{l, l + 1, ...,u} is a discrete interval where l,u ∈ Z+ and l ≤ u < T. For each i ∈ R(S) and
each time t ∈ T (S), Lti(S) is a non-empty subset ofNi(t). Denote L(S) = ∪

i∈R(S),t∈T (S)
Lti(S),

then S is defined as the set of all incoming and outgoing arcs associated with nodes in L(S)
as shown in Eqn (3.16).

S = ∪
i∈R(S),t∈T (S)

(
∪

vti∈Lt
i(S)

(
δ+
Fi

(vti) ∪ δ−Fi
(vti)
))

(3.16)

Example 1. We will illustrate the parameters of S discussed in Section 3.3.1 for the rst-
neighborhood (marked in yellow) chosen in Figure 3.1b. Clearly R(S) = {1, 2, 3} and
T (S) = {2, 3, 4}. Note that W is the only location that overlaps with the yellow region and
reachable at time 2 by robot 1, and soL2

1(S) = {W 2
1 }. Similarly, L3

1(S) = {W 3
1 , X

3
1 , Y

3
1 }, and

L4
1(S) = {W 4

1 , X
4
1 , Y

4
1 , Z

4
1}. For robot 2, L2

2(S) = {W 2
2 , X

2
2 , Y

2
2 , Z

2
2}, L3

2(S) = {W 3
2 , X

3
2 , Y

3
2 , Z

3
2},

CHAPTER 3. MAPF 24

and L4
2(S) = {W 4

2 , X
4
2 , Y

4
2 , Z

4
2}. Lastly, for robot 3, we have L2

3(S) = {X2
3 , Y

2
3 , Z

2
3},

L3
3(S) = {W 3

3 , X
3
3 , Y

3
3 , Z

3
3} and L4

3(S) = {W 4
3 , X

4
3 , Y

4
3 , Z

4
3}.

W.l.o.g let us assume that our conflict involves robots r1, r2 at time tc, and let us denote the
set of nodes from N1, N2 involved in the conflict by Zcf . So, for instance, Zcf = {Y 3

1 , Y
3

2 } for
the vertex conflict shown in Figure 3.1b. Note that if the conflict is an edge conflict, then Zcf
would contain 4 nodes. We say that S is an appropriate choice for the conflict iff 1, 2 ∈ R(S),
tc ∈ T (S) and Zcf ⊆ L(S). Loosely, our requirement can be interpreted as: S must contain
arcs relevant to the conflict location.

Different choices to S give rise to different P (S), so different cuts can be derived by vary-
ing S. From the perspective of projections, the collision avoidance constraints in Eqns (3.6),
(3.7) contain variables belonging to a small rst-neighborhood. For instance, if the conflict is an
edge conflict, i.e., Eqn (3.7) is violated, then Eqn (3.7) can be viewed as a cut generated using
the rst-neighborhood S, whereR(S) = {i, j}, T (S) = {t} Lti(S) = {uti}, Ltj(S) = {wtj}. To
generate deep cuts, we will typically choose larger rst-neighborhoods, such as the one shown
in Figure 3.1b for the vertex conflict at Y .

3.3.4 Relaxation polytope P (S)

Given a rst-neighborhood S ⊂ A parameterized by R(S), T (S), L(S) (see Section 3.3.3),
we construct the relaxation polytope P (S) by retaining as many relevant inequalities from
the IP model in Sec. 3.1.1, for providing a tight relaxation for Projx(S)(P). For defining
P (S), we will reuse the notation from Section 3.1.1 and from Section 3.3.3 for T (S), i.e.,
T (S) = {l, l + 1, ...,u}. We define the relaxation polytope P (S), as:

P (S) = conv (x(S) ∈ {0, 1}n|x satisfies (3.18)− (3.21)) (3.17)∑
a∈δ−Fi

(vti)

x(a) =
∑

a∈δ+
Fi

(vti)

x(a), ∀i ∈ R(S), ∀t ∈ T (S),∀vti ∈ Lti(S) (3.18)

∑
j∈V t

(v)∩R(S)

∑
a∈δ−1

Fj
(vtj)

1(vtj ∈ Ltj(S))x(a) ≤ 1, ∀t ∈ T (S),∀i ∈ R(S),∀vti ∈ Lti(S) (3.19)

x(uti, w
t+1
i) + x(wtj, u

t+1
j) ≤ 1,

∀t∈{l−1}∪T (S),∀(i,j)∈{(k,m)∈R(S)×R(S)|k 6=m},
∀(u,w)∈{(p,q)∈E|(pti,q

t+1
i),(qtj ,p

t+1
j)∈S} (3.20)∑

a∈S∩Ai(t)

x(a) ≤ 1, ∀i ∈ R(S),∀t ∈ {l− 1} ∪ T (S) (3.21)

Equation (3.18) ensures flow balance at all nodes in L(S). In Eqn (3.19), 1(·) denotes the
0-1 indicator function. Equation (3.19) prohibits vertex collisions on nodes in L(S). Equation
(3.20) prohibits edge collisions over arcs in S. Equation (3.21) ensures no two arcs present in
S, and belonging to the same arc layer in the time expanded graph of a robot, are simultane-
ously selected. Clearly, Eqns (3.19) and (3.21) are implied from the MAPF IP formulation,
while Eqns (3.18) and (3.20) are present in the IP formulation, hence Projx(S)(P) ⊆ P (S).

CHAPTER 3. MAPF 25

Interpret the start and goal for each robot using the
same conventions as adopted in Figure 3.1. The yel-
low region is the rst-neighborhood selected in Ex-
ample 2.

Figure 3.2

3.3.5 Cut generation through querying
Recall from Section 3.3.2 that given a set of start-end paths for the robots (such as x̄i in line 5
of Algorithm 2) containing a conflict, we proposed to generate cuts using a query procedure.
The process of obtaining the answer to the query is to first select a rst-neighborhood S ⊂ A
for the conflict, and then solve an optimization problem over P (S) as shown in Eqn (3.14).
In this section, we will explain the query procedure and the optimization problem involving
P (S) through use of an example. We will formalize the procedure in the next section.

Example 2. Consider the 2 robot problem on a 4-connected grid shown in Figure 3.2. The
unique shortest path for each robot to reach their respective goal is indicated in Figure 3.2,
and clearly at time 2 these paths conflict at W . The shortest start-end path cost for robots 1
and 2 is 4. For simplicity, let us assume these paths correspond to x̄i in line 5 of Algorithm
2, and so we are interested in generating cuts for the conflict-containing x̄i. We choose the
rst-neighborhood S (highlighted in yellow in Figure 3.2) with parameters R(S) = {1, 2},
T (S) = [1, 3], L1

1(S) = {Q1
1}, L2

1(S) = {Q2
1,W

2
1 }, L3

1(S) = {Q3
1,W

3
1 , X

3
1}, L1

2(S) = {X1
2},

L2
2(S) = {X2

2 ,W
2
2 }, L3

2(S) = {Q3
2,W

3
2 , X

3
2}.

We now generate queries for cut generation. The queries will be in terms of existence of
a non-conflicting set of start-end paths for the robots satisfying certain criterion. Throughout
this example, p1 refers to a start-end path for robot 1, and p2 refers to a start-end path for
robot 2. Since the unique set of the shortest start-end paths for the robots are conflicting, we
know that there can be no conflict-free p1, p2 satisfying cost(p1) = cost(p2) = 4, where cost(·)
simply returns cost of the input path evaluated using Eqn (3.2). Naturally, we will be interested
to know whether there exists conflict-free start-end paths p1, p2 with cost(p1) + cost(p2) = 9.
So we ask :
Q1: Is there a conflict-free p1, p2 such that cost(p1) ≤ 5, cost(p2) = 4 ?
Q2: Is there a conflict-free p1, p2 such that cost(p1) = 4, cost(p2) ≤ 5 ?
We will try to answer Q1 in A1, our approach for answering Q2 will be analogous.

A1: Observe that if a conflict-free p1, p2 satisfying the conditions in Q1 existed, then
those paths must satisfy (i) and (ii) shown below. So if we are able to show that (i) or (ii) is
infeasible, then it implies that conflict-free p1, p2 satisfying Q1 does not exist.

(i) At time 2, robot 1 must be at Q or W, and robot 2 at W .

(ii) At time 3, robot 1 must be at W or X, and robot 2 at Q.

CHAPTER 3. MAPF 26

We begin by analyzing (i). For robot 1 to reach Q at time 2, robot 1 must have either reached
Q at time 1 so that it can use the arc (Q1

1, Q
2
1) to remain at Q at time 2. Or robot 1 can remain

at O at time 1, and then use the arc (O1
1, Q

2
1) to reach Q at time 2. Similarly, it can be showed

that for robot 1 to reach W at time 2, it must use the arc (Q1
1,W

2
1). For robot 2 to reach W

at time 2, it must use the arc (X2
1 ,W

2
2). In other words, if there exists a p1, p2 satisfying (i),

then p1 must contain exactly one among the arcs (O1
1, Q

2
1), (Q1

1, Q
2
1), (Q1

1,W
2
1), and p2 must

contain the arc (X2
1 ,W

2
2). Recall from Section 3.3.2, to check the feasibility of such a conflict-

free p1, p2 we proposed to use P (S). We attempt to answer the feasibility problem through
the optimization problem shown in Eqn (3.22). If there exists conflict-free p1, p2 satisfying (i),
then the projection of p1, p2 onto the space spanned by x(S) will lie in P (S), and the optimum
value of Eqn (3.22) will be≥ 2. Instead, if the optimal value of Eqn (3.22) is < 2, then we can
safely conclude that no p1, p2 satisfying (i) exists. Note that the paths q1 = (O0

1, Q
1
1, Q

2
1, Q

3
1),

q2 = (P 0
2 , X

1
2 ,W

2
2 ,W

3
2) are conflict-free paths for robots 1 and 2, and feasible to the problem

in Eqn (3.22) with objective 2. The optimal value of Eqn (3.22) is indeed ≥ 2, and so we
cannot conclude that (i) is infeasible.

maximize
x(S)∈P (S)

x(O1
1, Q

2
1) + x(Q1

1, Q
2
1) + x(Q1

1,W
2
1) + x(X1

2 ,W
2
2) (3.22)

We next check if we can find paths in P (S) that satisfy (ii). Using similar arguments as be-
fore, the feasibility problem can be turned into the optimization problem shown in Eqn (3.23).
Observe that all the variables in the objective of Eqn (3.23) corresponds to arcs between time
steps 2 and 3, and so by Eqn (3.21), we can deduce that the optimal objective value of Eqn
(3.23) is ≤ 2. Further, if there exists p1, p2 satisfying (ii), then an objective value of 2 in Eqn
(3.23) is attainable by the projection of p1, p2 onto x(S).

maximize
x(S)∈P (S)

x(W 2
1 ,W

3
1) + x(Q2

1,W
3
1) + x(W 2

1 , X
3
1) + x(W 2

2 , Q
3
2) (3.23)

Note that there is at least one vertex of P (S) at which the optimum of (3.23) is attained.
The reader can verify from Eqn (3.23) that to achieve an objective of 2 at a vertex of P (S),
x(W 2

2 , Q
3
2) must be 1, and exactly one among x(W 2

1 ,W
3
1), x(Q2

1,W
3
1), x(W 2

1 , X
3
1) must be a

1 at the vertex. If there is a vertex with x(W 2
2 , Q

3
2) = 1, and exactly one among x(W 2

1 ,W
3
1),

x(W 2
1 , X

3
1) is also equal to 1, then trivially we have a vertex conflict on W at time 2, violating

Eqns (3.18), (3.19). Similarly, it can be argued that Eqn (3.20) excludes points from P (S)
where x(W 2

2 , Q
3
2) and x(Q2

1,W
3
1) are both 1. Hence, the optimal value for Eqn (3.23) cannot

be 2, in fact the optimal value is 1. The optimal value of 1 implies that no conflict-free paths
p1, p2 can satisfy (ii). Using the objective and the optimal value of Eqn (3.23), we derived Eqn
(3.24). Although Eqn (3.24) was derived from P (S), any conflict-free set of start-end robot
paths for our problem must obey Eqn (3.24) since Projx(S)(P) ⊆ P (S).

x(W 2
1 ,W

3
1) + x(Q2

1,W
3
1) + x(W 2

1 , X
3
1) + x(W 2

2 , Q
3
2) ≤ 1 (3.24)

Note that the shortest paths shown in Figure 3.2 clearly violates Eqn (3.24) because both
arcs (W 2

1 , X
3
1) and (W 2

2 , Q
3
2) are present. Hence, Eqn (3.24) is can be viewed as a cut that

separates the shortest paths from the feasible region, i.e., the polytope P.

CHAPTER 3. MAPF 27

By showing that condition (ii) is infeasible using P (S), we inferred that the answer to Q1
is false, and the certificate for infeasibility is given by Eqn (3.24). Similarly, by symmetry we
can deduce that the answer to Q2 is also false, and the certificate for infeasibility is given
by Eqn (3.25). Like Eqn (3.24), Eqn (3.25) is also a valid inequality for the problem that
separates the shortest paths from P. We leave it as an exercise to the reader to derive Eqn
(3.25).

x(W 2
1 , X

3
1) + x(W 2

2 ,W
3
2) + x(X2

2 ,W
3
2) + x(W 2

2 , Q
3
2) ≤ 1 (3.25)

Based on our answers to Q1 and Q2, we can conclude that there are no conflict-free paths
p1, p2 such that cost(p1) + cost(p2) = 9. While Eqns (3.24), (3.25) separate the paths shown
in Figure 3.2 from P, we can possibly derive stronger separation inequalities by querying
about the existence of conflict-free paths p1, p2 such that cost(p1) + cost(p2) = 10. Through
queries Q3, Q4, Q5 shown below, we ask is there a conflict-free p1, p2 such that:
Q3: cost(p1) ≤ 5, cost(p2) ≤ 5 ? Q4: cost(p1) ≤ 6, cost(p2) = 4 ? Q5: cost(p1) = 4,
cost(p2) ≤ 6 ?
We will address Q4 in A4 to highlight an important detail that was not seen in A1. The
procedure for answering Q3 and Q5 will be analogous, which we will skip.

A4: If a conflict-free p1, p2 satisfying the conditions in Q4 exists, then they must satisfy:

(iii) At time 2, robot 1 must be at O or Q or W, and robot 2 at W .

(iv) At time 3, robot 1 must be at Q or W or X, and robot 2 at Q.

For robot 1 to reach Q or W at time 2, we know from A1 which arcs need to be used between
times 1 and 2. For robot 1 to reach O at time 2, it must use either (O1

1, O
2
1) or (Q1

1, O
2
1).

However, note that O2
1 6∈ L2

1(S), and so the arc (O1
1, O

2
1) 6∈ S. Like earlier, we can pose the

feasibility problem for p1, p2 satisfying (iii) as the optimization problem shown in Eqn (3.26),
albeit x(O1

1, O
2
1) is absent from the objective. Denoting the optimal objective value of Eqn

(3.26) by opt_cost, Eqn (3.21) implies that opt_cost ≤ 2.

opt_cost = maximize
x(S)∈P (S)

x(Q1
1, O

2
1)+x(O1

1, Q
2
1)+x(Q1

1, Q
2
1)+x(Q1

1,W
2
1)+x(X1

2 ,W
2
2) (3.26)

If opt_cost is< 2, unlike arguments used in A1, we cannot however claim that Q4 is infeasible.
The claim cannot be made because there may be a conflict-free p1, p2 satisfying (iii), with p1

passing through the arc (O1
1, O

2
1), but the answer obtained by solving Eqn (3.26) does not

account for such a possibility due to the limitations of the chosen S. Despite this limitation,
the inequality x(Q1

1, O
2
1) + x(O1

1, Q
2
1) + x(Q1

1, Q
2
1) + x(Q1

1,W
2
1) + x(X1

2 ,W
2
2) ≤ opt_cost,

may still be useful. If opt_cost < 2, then the inequality is not implied by the flow balance
inequalities of the MAPF problem (i.e., Eqns (3.4) and (3.5)), and so including it in Algorithm
2 for tightening the relaxation of P is beneficial. Unfortunately, in this example, it turns
out that opt_cost is 2, and hence not useful for tightening the relaxation. The paths q1, q2

mentioned in A1 attains the optimum value of 2 in Eqn (3.26). Next, moving onto (iv), using
arguments similar to those in A1 for the time 3 case, it can be shown that (iv) is infeasible. By
proving infeasibility of (iv), we also obtain the following separation inequality:

x(O2
1, Q

3
1)+x(Z2

1 , Q
3
1)+x(Q2

1, Q
3
1)+x(W 2

1 , Q
3
1)+x(W 2

1 ,W
3
1)+x(Q2

1,W
3
1)+x(W 2

1 , X
3
1)+x(W 2

2 , Q
3
2) ≤ 1

(3.27)

CHAPTER 3. MAPF 28

Equation (3.27) is a certificate for infeasibility of Q4, and note that the separation inequality
Eqn (3.24) derived earlier is implied by Eqn (3.27). We skip the proofs for infeasibility of Q3,
Q5 using P (S) here.

It is worth noting that the complexity (size) of the optimization problems generated for
each query, i.e., Eqns (3.22), (3.23) and (3.26), are each only dependent on the size of the
rst-neighborhood S, and so the complexity does not scale with the makespan constraint T.

3.3.6 Objective Cuts
We next formalize the cut generation procedure from the previous section in Algorithm 3, and
frequently refer to Example 2 while explaining the steps of the algorithm. Algorithm 3 takes
as input the set of start-end paths x̄i from line 5 in Algorithm 2, and a positive integer Max
Offset, and outputs inequalities for use in line 11 of Algorithm 2.

Algorithm 3 considers conflicts in x̄i one after the other, and generates cuts for each con-
flict separately. For each conflict, we first select an appropriate rst-neighborhood S (see line
4) satisfying the conditions mentioned in Section 3.3.3. For the robots associated to R(S),
through lines 5 - 12, we emulate the process of querying and generating cuts that we saw
earlier in Example 2 (compare to Q1 - Q5).

To explain lines 5 - 8, we first recall a few facts from Example 2. Observe that we pro-
gressively queried for existence of solutions with increasing sum of start-end path costs for
the robots. Through queries Q1 and Q2, we asked for the existence of solutions where the
sum of path costs was 9. Since the start-end path cost for any robot cannot be lower than 4 in
Example 2, there are only 2 legal ways to partition 9 into individual path costs for the robots,
and these are the costs considered in Q1 and Q2. We then extended this process where the sum
of start-end path costs was 10. There are only 3 legal ways to partition 10 into individual robot
start-end path costs, and these were the costs considered in Q3 - Q5. To replicate this process
from Example 2 in Algorithm 3, we introduce a variable offset. Within the loop spanning
lines 5 - 12, we are interested in querying about conflict-free paths for robots associated to
R(S), where the sum of the individual robot path costs does not exceed SP (R(S)) + offset.
SP (R(S)) is the sum of the shortest start-end path cost for the robots associated to R(S).
Previously in Example 2, we had R(S) = {1, 2}, SP (R(S)) = 4 + 4, and Max Offset was
2. In line 6, we generate all the legal ways to partition the cost SP (R(S)) + offset among the
robots associated to R(S). In line 7, we iterate over all the partitions, and for each partition
we generate a query as shown in line 8. These queries are comparable to Q1 - Q5 in Example
2. For instance, Q1 is the query concerning existence of conflict-free solutions corresponding
to the partition 9 = 5 + 4.

Cuts are generated in the innermost loop (lines 9 - 11) of Algorithm 3. Recall from Ex-
ample 2, after formulating a query, we tried to disprove the existence of a feasible solution
satisfying the costs in the query by further breaking it down into a set of feasibility problems
(compare to (i), (ii) in A1, or (iii), (iv) in A4). Recall, each of those feasibility problems asks
if there is a way for the robots to reach any one location from a set of locations at a particular
time without conflicting, and depending on the answer, a cut may be generated. The earliest
time corresponding to which there is a feasibility problem is the conflict time, and the last time

CHAPTER 3. MAPF 29

Algorithm 3 Pseudo-code for objective-based cuts
1: Given: Start-end paths for robots x̄i, containing at least one conflict, Max Offset
2: Initialize: offset = 0, Cut_Container = ∅
3: for each conflict in x̄i do
4: Select rst-neighborhood S for conflict.
5: for offset < Max Offset do
6: Partitions← Compute_legal_partitions(R(S), offset).
7: for each partition ∈ Partitions do
8: Generate query based on partition
9: for time t ∈ T (S) and t ≥ conflict time do

10: Translate query into optimization problem at time t:

opt_cost = max
x(S)∈P (S)

∑
j∈R(S)

∑
a∈S∩Aj(t−1)

d(a)x(a) (3.28)

where d(a) is set according to Eqn (3.29).
11: If the inequality

∑
j∈R(S)

∑
a∈S∩Aj(t−1) d(a)x(a) ≤ opt_cost is not implied by

Eqn (3.21), then store the inequality in Cut_Container.
12: offset← offset + 1.
13: Discard redundant inequalities from Cut_Container.
14: return Cut_Container

corresponding to which there is a feasibility problem is the largest time in T (S). In Algorithm
3, the loop in line 9 iterates over the times for which we generate feasibility problems. The
feasibility problem for a particular time and the cut generation step is set up in lines 10 - 11.

We will explain the process of setting up the feasibility problem from the query in line 8
at time t, and the process of extracting a cut in this paragraph. Assume that the query asks
whether there is conflict free solution for robots associated to R(S), where the path cost for
robot rj (where j ∈ R(S)) does not exceed lenj . We first translate the question into an
optimization problem of the form shown in Eqn (3.28) (compare to Eqns (3.22), (3.23), (3.26)
in Example 2). The co-efficient d(a) in Eqn (3.28) is defined as shown below:

d(a) =

{
1, if Sh(a) ≤ lenj

0, otherwise.
(3.29)

where, Sh(a) in Eqn (3.29) returns the cost of the shortest s0
j − gTj path in Fj(Nj, Aj) passing

through arc a. Based on the optimal objective value of Eqn (3.28), we derive the inequality
shown in line 11 (compare to Eqns (3.24), (3.25) and (3.27) in Example 2). Recall from
Example 2, the inequality may or may not be a certificate for proving that a solution satisfying
the robot path costs in the query is infeasible, mainly due to the limitations of the chosen S.
However, the inequality derived may still be useful for tightening the relaxation in Algorithm
2. Recall from Section 3.2, Algorithm 2 progressively tightens the flow balance constraints
polytope P0, and so the inequality derived in line 11 is useful for tightening if it is not valid for
P0. Inequalities valid for P0 are inconsequential to Algorithm 2 for generating strong lower

CHAPTER 3. MAPF 30

The loop on the path of robot 2 at loca-
tion U is to indicate that robot 2 waits for
2 time units at U, before moving to Y at
time 4. A vertex conflict occurs at loca-
tion W at time 6. The yellow region is
the chosen rst-neighborhood.

Figure 3.3

bounds, and so in line 11 we used the following procedures for identifying and discarding
such inequalities. The check is similar to our procedure from Example 2, where we compute
an upper bound for the LHS of the inequality in line 11 using Eqn (3.21). If the upper bound
computed equals opt_cost, then we discard the inequality. Otherwise, we store the inequality
in the Cut_Container as shown in line 11.

Not all the inequalities derived during Algorithm 3 are expected to form an irredundant
system. We previously saw such a case in Example 2, where Eqn (3.27) implies Eqn (3.24).
Depending on the parameter L(S) of neighborhood S, inequalities generated for different
values of time t (see line 9) but corresponding to the same query may also be redundant.
Although not essential, we recommend discarding redundant inequalities from Cut_Container
before using them in Algorithm 2.

We make a few observations regarding Algorithm 3. Note that the inequalities derived in
Algorithm 3 are based on querying for solutions satisfying certain costs (objective). Owing to
this flavor, we call the inequalities generated by Algorithm 3 as objective cuts. Note that there
is no guarantee that the objective cuts for a conflict separate the input conflict-containing start-
end robot paths x̄i from P. The most expensive step of Algorithm 3 is computing opt_cost in
line 10. It remains to be shown how the optimization problem shown in Eqn (3.28) is solved.
In Section 3.4, we will provide a compact construction for P (S) using a DD, and using the
DD we will provide a simple optimization procedure.

3.3.7 Delay-and-Long Inequalities
In this section, we will present another method to generate valid inequalities for P, for the
purposes of tightening the relaxation in Algorithm 2. Similar to the approach in Section 3.3.6,
we will generate each inequality by making use of a conflict. Previously in objective cuts, we
generated inequalities by making use of the conflict time, and the robots involved in the con-
flict. In this section, we will use some additional information present in the conflict-containing
start-end robot paths while generating cuts. The inequalities that will be presented in this sec-
tion will be called the delay-and-long inequalities for reasons that will become clear shortly.
We will motivate the need for these inequalities and explain the inequality generation proce-
dure with the help of Example 3.

CHAPTER 3. MAPF 31

Example 3. Consider the scenario shown in Figure 3.3. The shortest start-end path cost for
robot 1 is 4, and for robot 2 it is 6. In the scenario shown, instead of taking the shortest path
from X to Y, robot 1 takes a longer path of cost 8. On the other hand, robot 2 waits for 2
seconds at location U en route to its goal, thus resulting in a vertex conflict at W involving
robots 1 and 2 at time 6. Let us assume that the paths shown in Figure 3.3 correspond to x̄i in
line 5 of Algorithm 2, and so we are interested in generating cuts for the conflict-containing
x̄i. We choose the rst-neighborhood S (highlighted in yellow in Figure 3.3) with parameters
R(S) = {1, 2}, T (S) = [4, 7], L4

1(S) = {P 4
1 }, L5

1(S) = {P 5
1 , Q

5
1}, L6

1(S) = {P 6
1 , Q

6
1,W

6
1 },

L7
1(S) = {P 7

1 , Q
7
1,W

7
1 }, L4

2(S) = {W 4
2 }, L5

2(S) = {Q5
2,W

5
2 }, L6

2(S) = {P 6
2 , Q

6
2,W

6
2 }, and

L7
2(S) = {P 7

2 , Q
7
2,W

7
2 }.

For the chosen S, suppose we choose to generate objective cuts using Algorithm 3 with
Max Offset set to 2, then note we could not have derived any cut that separates the paths
shown in Figure 3.3 from the polytope P. To see why, observe that there are no start-end
paths for robot 1 which uses at least one arc in S, and the path cost not exceeding 6 (i.e.,
SP ({1}) + Max Offset). Hence, when we construct each query and formulate the optimization
problem shown in Eqn (3.28), the objective will not contain any terms corresponding to robot
1. Although one work-around is to expand S, we will show in Section 3.4 that increasing the
size of S is computationally unattractive. Taking into cognizance the limitations on the size of
S, we need an alternate method to generate cuts for these types of scenarios.

To generate a cut for the scenario shown in Figure 3.3, we will first formulate a 3 part
hypothesis concerning the conflict, and then generate queries assuming all the 3 parts of the
hypothesis to be true. We will then follow the same strategy of using these queries to recover
inequalities as we did earlier with objective cuts. Our first part of the hypothesis is that, in
order to avoid conflicts with robots omitted in Figure 3.3, robot 1 was initially forced to take a
longer route to reach its goal, but along this longer route, robot 1 encounters a vertex conflict
at time 6 with robot 2. The second part of our hypothesis is that, robot 2 was initially forced to
wait at some location along its shortest path to its goal, to avoid collisions with other robots.
This wait delays robot 2’s arrival atW , leading to a vertex conflict with robot 1. Our third part
of the hypothesis is that, there exists an optimal solution where robots 1 and 2 have to navigate
through the rst-neighborhood S (i.e., there exists an optimal solution where some arcs of S
are used). Based on this 3-part hypothesis, through our queries, we wish to understand how
robots 1 and 2 constrain each other in the rst-neighborhood S, for strengthening the lower
bound.

We next motivate our query methodology for understanding how robots 1 and 2 constrain
each other. If we assumed that robot 2 was absent from the problem, and the first part of the
hypothesis is true, we may expect that robot 1 passes through W , and that robot 1 follows the
shortest path from W to its goal location Y . Similarly, if the 2nd part of our hypothesis is true,
and robot 1 was removed from the problem, then beginning from time 6, we may expect robot
2 to trace a path that is the shortest from W to J . Intuitively, our queries will be indirectly
asking whether those expectations on the robot’s paths still hold when robots 1 and 2 are both
present in the problem. If we can prove that our expectation is false, we obtain a cut as a
certificate of infeasibility. We generate more queries by relaxing the requirement that robots
follow the shortest path to their goal starting from the conflict time, and check whether more
cuts can be generated.

CHAPTER 3. MAPF 32

We next specify how to generate delay-and-long inequalities for a given conflict. Let r1

and r2 denote the robots in the conflict, and let tcon denote the conflict time. Let loc1 ∈ V
(resp. loc2 ∈ V) denote the location of robot r1 (resp. r2) at time tcon. Let sh1 (resp. sh2)
denote the length of the shortest start-end path for r1 (resp. r2) passing through loc1 (resp.
loc2). Let del1 (resp. del2) denote the difference in time between tcon and the earliest time
r1 (resp. r2) can reach location loc1 (resp. loc2) from its respective start location at time
0. The delay-and-long inequality generation process will be identical to Algorithm 3, except
for the way line 6 is implemented to generate partitions, and how we interpret the query in
line 8, which ultimately affects how the objective function in Eqn (3.28) is defined. Since
we assumed that the conflicting robots are r1, r2, note that {1, 2} ⊆ R(S), where S is the
rst-neighborhood for the conflict chosen in line 4. Previously, for objective cuts, we computed
legal partitions of SP (R(S))+offset in line 6 of Algorithm 3. For delay-and-long inequalities,
we will instead compute partitions of SP (R(S))+offset+(sh1−SP ({1}))+(sh2−SP ({2}))
in line 6. For conflicting robot indices i.e j ∈ {1, 2} (resp. robots in R(S) other than those
in the conflict, i.e., j ∈ R(S)\{1, 2}), a partition is said to be illegal for robot rj , if the
cost associated to the robot in the partition is < shj (resp. < SP ({j})). Analogous to Eqn
(3.29), we next describe how d(a) in Eqn (3.28) is specified. In line 8 of Algorithm 3, assume
that the path cost specified for robot rj (where j ∈ R(S)) in the partition is lenj . For arc
a = (ut−1

j , vtj) ∈ Aj(t− 1) ∩ S, we define the co-efficient d(a) in Eqn (3.28) as:

d(a) =


1, if j ∈ {1, 2}, & a′ = (u

t−1−delj
j , v

t−delj
j) ∈ Aj(t− 1− delj), & Sh(a′) ≤ lenj

1, if j ∈ R(S)\{1, 2} & Sh(a) ≤ lenj.

0, otherwise.
(3.30)

Example 3 (continued). In the example shown in Figure 3.3, we have tcon = 6, loc1 = loc2 =
W , sh1 = 8, sh2 = 6, del1 = 0, and del2 = 2. For the case offset = 0, and t = 7, we will
explain the construction of the objective function in Eqn (3.28) in accordance with Eqn (3.30).
Note that, SP (R(S)) = 4 + 6, and so in line 6 of Algorithm 3, we need to compute partitions
for 10 (i.e., SP (R(S))) + 0 (i.e., offset) + (8 (i.e., sh1) - 4 (i.e., SP (1))) + (6 (i.e., sh2) - 6
(i.e., SP (2))). There is only 1 legal way to partition such a cost between the 2 robots, and that
is 8 for robot 1 and 6 for robot 2. We will construct the objective function using Eqn (3.30),
beginning with the variables for robot 2. From L6

2(S), L7
2(S), it can be verified that the arcs in

A2(6)∩S are (O6
2, P

7
2), (P 6

2 , O
7
2), (P 6

2 , P
7
2), (P 6

2 , Q
7
2), (Q6

2, J
7
2), (Q6

2, P
7
2), (Q6

2, Q
7
2), (Q6

2,W
7
2),

(J6
2 , Q

7
2) (W 6

2 ,W
7
2), (W 6

2 , Q
7
2), (W 6

2 , I
7
2), (I6

2 ,W
7
2). Of the arcs in A2(6) ∩ S, we next have

to identify those arcs for which the co-efficient is 1 in the objective function. Since robot 2 is
part of the conflict, according to the top row in Eqn (3.30), first we need to check if these arcs
are present 2 (i.e., del2) time steps earlier. So for instance, for the coefficient of (O6

2, P
7
2) to

be 1, we first require the arc’s time-shifted counterpart, i.e., (O4
2, P

5
2), to be present in A2(4).

Since O is not reachable to robot 2 earlier than time 5, the arc (O4
2, P

5
2) 6∈ A2(4). Using

similar arguments, we can argue that the only time shifted counterparts of A2(6) ∩ S that are
present in A2(4) are (W 4

2 ,W
5
2), (W 4

2 , Q
5
2), (W 4

2 , I
5
2), and (I4

2 ,W
5
2). According to top row of

Eqn (3.30), we need to check whether the shortest start-end path for robot 2 through these
arcs are ≤ 6 (i.e., len2). It turns out that (W 4

2 , Q
5
2) is the only arc that satisfies this criterion,

CHAPTER 3. MAPF 33

and so among the arcs in A2(6) ∩ S, the co-efficient of (W 6
2 , Q

7
2) in the objective is set to 1,

and the rest to 0. Repeating this exercise with robot 1, the reader can verify that the only arc
in A1(6) ∩ S with co-efficient 1 in the objective is (W 6

1 , I
7
1). So the optimization problem is

given by:
maximize
x(S)∈P (S)

x(W 6
1 , I

7
1) + x(W 6

2 , Q
7
2) (3.31)

Clearly P (S) cannot contain a point where x(W 6
1 , I

7
1) and x(W 6

2 , Q
7
2) are both 1, since other-

wise, we will trivially have a vertex collision on W at time 6, thus contradicting Eqn (3.19). It
can be shown that the optimal objective value of Eqn (3.31) is 1, and the inequality we derive
is : x(W 6

1 , I
7
1) + x(W 6

2 , Q
7
2) ≤ 1. Although in this example, the cut derived is weaker than the

simple vertex conflict inequality (i.e. Eqn (3.6)) at W , in many cases we may be able to obtain
tighter inequalities.

3.4 Decision Diagrams for P (S)
In sections 3.3.6 and 3.3.7, we obtained our cuts by solving a maximization problem over
P (S), see Eqn (3.28). In this section, we will present a simple procedure to perform the
maximization. We will represent P (S) using a decision diagram (DD). A DD is simply a
layered directed acyclic multigraph. We will show that our task of maximizing over P (S) is
equivalent to computing the longest path cost on the DD, which is procedurally simple.

We begin with an outline of DD data structure. Borrowing notation from Davarnia and van
Hoeve [2020], we denote the DD for P (S) by D(S) = (U ,A, f), where U represents a set
of nodes, A represents arcs in a top-down multi-graph, f labels each arc in A to some subset
of arcs in S. Given an arc a ∈ A, for convenience, we will refer to the arcs from S in the
set f(a) as the labels of a. U can be decomposed into |T (S)| + 2 layers U0,U1, ...,U|T (S)|+1,
and A into |T (S)| + 1 layers A0,A1, ...,A|T (S)|. U0 contains a single node sr called source,
and U|T (S)|+1 contains a single node sk called sink. For any arc in layer j, its tail is connected
to a node in Uj , and its head to a node in Uj+1. Consequently, any arc directed path from the
source to the sink node (a.k.a. sr - sk path) in the DD encodes a subset of arcs from S.

At a high level, we will be representing the vertices of P (S) as sr−sk paths inD(S). The
graphical representation of D(S) will enable us to compactly represent the vertices of P (S).
In Section 3.4.3, we will explain how the compact representation of the vertices throughD(S)
helps us to solve the maximization problem in Eqn (3.28) efficiently. We will begin this section
by describing our strategy for constructing D(S).

3.4.1 Strategy for constructing D(S)

In constructing D(S), since our goal is to compactly represent the vertices of P (S), we
will first make some observations regarding those vertices. Let us assume that T (S) =
{l, l + 1, ...,u}. Given any vertex xp of P (S), we can infer the following information from
xp. For each i ∈ R(S) and t ∈ {l− 1} ∪ T (S), there is at most one arc a ∈ S ∩ Ai(t), such
that, xp(a) = 1, due to Eqn (3.21). If t ∈ {l− 1, l, ...,u− 1}, we can observe that:

CHAPTER 3. MAPF 34

A) If head(a) ∈ Lt+1
i (S), then because of Eqn (3.18), there must have been an arc b ∈

Ai(t+ 1) ∩ S, such that, xp(b) = 1 and tail(b) = head(a).

B) If head(a) 6∈ Lt+1
i (S), then exactly one of the following is true:

(a) No arc b ∈ Ai(t+ 1) ∩ S can be found, such that, xp(b) = 1.

(b) There exists an arc b ∈ Ai(t + 1) ∩ S, such that, xp(b) = 1 and tail(b) ∈ Ni(t +
1)\Lt+1

i (S).

So our first observation is that, for each robot ri (where i ∈ R(S)), we can extract a set of
arcs from the vertex xp, with at most one arc for every time step. If these arcs are arranged
temporally, then they form a traversable path for ri if situation A) occurs ∀t ∈ {l− 1}∪T (S).
Otherwise, if B) occurs for some t ∈ {l− 1} ∪ T (S), nevertheless the arranged arcs can be
interpreted as a set of broken paths for ri. Our second observation is that, the set of (possibly)
broken paths for the robots associated toR(S) do not contain vertex and edge conflicts of the
kind prohibited by Eqns (3.19) and (3.20). So the problem of constructing D(S) to compactly
represent the vertices of P (S), can instead be viewed as a problem of compactly representing
a set of non-conflicting (in a certain sense) robot paths.

A popular method for compactly representing the set of all non-conflicting robot paths
is through the use of a state diagram. The main challenge with interpreting D(S) as a state
diagram is that, since some vertices of P (S) may correspond to broken robot paths, we may be
unable to pin down the state of the robot. For e.g., if B)b occurs, then the vertex xp implies that
robot ri is simultaneously in 2 different states, namely head(a) and tail(b) at time t+ 1. Such
a dual state representation is not permissible using a state diagram. Below, we will show that
we can address this difficulty by introducing an auxiliary state for a robot, while continuing
to interpret D(S) as a state diagram. We will label each arc in the DD using arcs from S, that
enable the robots to transition from the arc’s tail to its head state. This labeling allows us to
read off vertices of P (S) from the labels on the sr − sk paths of D(S). Interpreting the DD
as a state diagram is not new, see [Bergman et al., 2016] for more examples.

3.4.2 Construction of D(S)

To construct D(S), we will interpret each node in U as a state. Formally, a state specifies a
time t and maps each i ∈ R(S) to a robot-state. For i ∈ R(S), a robot ri occupying location
v ∈ V at time t, is said to be in the robot-state:{

vti , if t ∈ T (S) and vti ∈ Lti(S)

o , otherwise
(3.32)

Throughout this section, if k 6∈ T (S), all references to Lki (S) should be interpreted as the
empty set. We provide an example demonstrating the utility of the robot-state o shortly.

Construction of U: We intend to construct U , such that, there is a 1:1 correspondence be-
tween nodes in U and states that are realizable by P (S). Intuitively, a state at time t is said to

CHAPTER 3. MAPF 35

be realizable by P (S) if there exists a vertex xv of P (S), such that, for every robot associated
to R(S), the location (in V) occupied by the robot as implied by xv at time t, coincides with
the location implied by the state 1.

Recall that T (S) = {l, l + 1, ...,u}. At time t ∈ T (S), observe, there are at most∏
i∈R(S)

(|Lti(S)|+ 1) distinct states realizable as a consequence of Eqn (3.32). For each one

of those
∏

i∈R(S)

(|Lti(S)|+ 1) states at time t ∈ T (S), we introduce a node in the layer t− l+ 1

of D(S), i.e., Ut−l+1. For node u ∈ U , we shall use the notation u[i] to denote the robot-state
of ri in u. The node sr in layer U0 and node sk in layer UT (S)+1, both correspond to the state
sr[i] = sk[i] = o, ∀i ∈ R(S). Some nodes (states) populated in U , may contain vertex col-
lisions. A node u ∈ U is said to contain a vertex collision iff ∃i, j ∈ R(S), such that, both,
u[i] and u[j] are different from o (i.e., u[i], u[j] ∈ L(S)), and u[i], u[j] correspond to the same
location in V . We remove all nodes that contain such vertex collisions from U , as those states
are not realizable by any vertex of P (S) owing to Eqn (3.19).

Motivation for o as a robot-state: Say robot r1 traverses from location a at time 1 to b at
time 2, i.e., r1 traverses the arc (a1

1, b
2
1) ∈ A1(1) (refer Ai(t) notation from Section 3.1.1),

and then the arc (c2
1, d

3
1) ∈ A1(2). Firstly, observe that such a path for r1 is infeasible for

the MAPF problem. However, if b2
1, c

2
1 6∈ L2

1(S), then recall that P (S) does not enforce flow
balance at the nodes b2

1, c
2
1. Consequently, it is possible for P (S) to contain a vertex xv, where,

xv(a
1
1, b

2
1) = xv(c

2
1, d

3
1) = 1. Since xv implies that r1 is at two different locations at time 2, it

is not possible to capture this situation as a state. To reconcile this possibility with our state
space approach, by introducing o, it allows us to interpret the situation as: r1 traverses robot-
state a1

1 to robot-state o using the arc (a1
1, b

2
1), and then transitions from o to robot-state d3

1

using the arc (c2
1, d

3
1).

Construction of A: Continuing with the state diagram interpretation of D(S), arcs in A
represent feasible state transitions. The labels on each arc indicate which subset from S enable
the robots associated toR(S) to transition between the pair of states connected to the arc. The
state (node) u1 ∈ U is connected to a state u2 ∈ U by an arc in A iff the state transition
from u1 to u2 is legal. For the transition from u1 to u2 to be legal, it is required that for every
i ∈ R(S), transitioning from the robot-state of ri in u1 to the robot-state of ri in u2 is legal,
and the transition does not cause an edge collision between robots. We begin by specifying
the legal robot-state transitions, and we also specify which arc in S enables the transition, so
that we can use this information for labeling the arcs of A.

Feasible robot-state transitions: The conditions listed in A) and B) characterize the robot
paths (vertices) of P (S), so we use them for identifying legal robot-state transitions.

• At time t ∈ T (S), the robot ri, in the robot-state vti ∈ Lti(S), is restricted to use only an
arc from δ+

Fi
(vti) for transitioning, refer A) for the reason. Suppose ri transitions using the arc

1When the robot-state is o, the location in V implied by the robot-state is unspecified. We will ignore this
fact for the moment.

CHAPTER 3. MAPF 36

One possible choice of S for the edge conflict be-
tween r1 and r2 is: R(S) = {1, 2}, and T (S) =
{3, 4, 5}. For all i ∈ [1, 2] and ∀t ∈ T (S), Lti(S) is
populated using the nodes in Ni(t) corresponding
to all locations in the 3 × 3 grid centered at (3, 3)
(yellow and red squares). S for our example can be
obtained from the parameters specified by applying
Eqn (3.16). Clearly, the arcs in the edge conflict are
present in S.

Figure 3.4

Figure 3.5: A portion of the DD for the choice of S in Fig. 1 is shown above, where
→
A= ((2, 2)3

1, (2, 1)4
1),

→
B= ((2, 3)3

2, (2, 3)4
2),

→
C= ((2, 2)3

1, (1, 2)4
1),

→
D= ((2, 2)3

1, (3, 2)4
1),

→
E=

((2, 3)3
2, (2, 4)4

2),
→
F= ((2, 3)3

2, (1, 3)4
2),
→
G= ((3, 1)3

1, (3, 2)4
1).

(vti , w
t+1
i), then the robot can transition to the robot-state:{

wt+1
i , if wt+1

i ∈ Lt+1
i (S).

o, otherwise.

• At time t, the robot ri in the robot-state o, using arc (vti , w
t+1
i) ∈ Ai(t) ∩ S, where vti 6∈

Lti(S), can transition to the robot-state wt+1
i , if wt+1

i ∈ Lt+1
i (S). Otherwise, without using any

arc in Ai(t) ∩ S, the robot ri can transition into the robot-state o at time t + 1. Refer B) for
why both these cases are possible. By our choice of designing S using R(S), T (S), L(S) as
shown in Eqn (3.16), the reader can verify that there is no arc in Ai(t)∩ S that takes the robot
ri from robot-state o at time t to o at time t+ 1.

Example 4. Before continuing with the construction of A, we take a brief detour. For the
choice of parameters of S in Figure 3.4, a portion of the corresponding DD that we want to
construct using our procedure is depicted in Figure 3.5. Only a few states in layers U1,U2,
and a few arcs in A1 with their labels, are illustrated. For robot r1 to transition from location

CHAPTER 3. MAPF 37

(2, 2) at time 3 (denoted by state (2, 2)3
1) to (3, 2) at time 4, r1 needs to transition using the arc

→
D (refer Figure 3.5 for definition of

→
D). Likewise, for transitioning from robot-state (2, 3)3

2 to
(2, 4)4

2, r2 needs to transition using arc
→
E. Since transitioning between those robot-states for

r1 and r2 does not cause a collision, we connect states S0, S2 with an arc in A1 and label the
arc with the set {

→
D,
→
E} as shown in Figure 3.5. From the definition of L4

1(S) provided in the
caption of Figure 3.4, the reader can verify that both, (2, 1)4

1 and (1, 2)4
1 are 6∈ L4

1(S). So r1

can transition to robot-state o at time 4 from (2, 2)3
1 using either

→
A or

→
C. Consequently, r1, r2

can transition from S0 to S1 in 2 different ways as shown in Figure 3.5.

With the help of the feasible robot-state transition rules, we are now equipped to populate
A. Consider any node v ∈ Uk and any node w ∈ Uk+1. To decide whether we should connect
v to w by arcs in Ak, we need to first determine whether w is a feasible (legal) state transition
of v. We determine this by first checking, for each i ∈ R(S), whether the transition from v[i]
to w[i] is legal. If the transition from v[i] to w[i] is illegal for any i ∈ R(S), then we can skip
introducing any arc connecting v to w inAk. Otherwise, if we find all robot state transitions to
be feasible, we will determine all the different ways in which the robots may transition from
v to w, and for each such possibility, we will consider introducing an arc in Ak connecting
v to w. By repeating this process for all pairs of nodes in U occurring between consecutive
layers, we can populateA. For i ∈ R(S), we will use the set h(v, w, i) ⊂ S to establish all the
different ways in which robot ri, can transition from the robot-state v[i] to w[i] by traversing
some arc in S. We can populate the set h(v, w, i), by following the rules shown below:

1. If k = 0 and w[i] ∈ Ll
i(S), then first observe that v[i] = o since v is the sr node. Robot

ri, can use any one of the arcs from the set δ−Fi
(w[i]) to transition to w[i], and so h(v, w, i) =

δ−Fi
(w[i]).

2. If 1 ≤ k < |T (S)| , we consider separately the following 3 cases:

• If v[i] ∈ Lk+l−1
i (S), w[i] ∈ Lk+l

i (S) and (v[i], w[i]) ∈ δ+
Fi

(v[i]), then: h(v, w, i) =
{(v[i], w[i])}.
• If v[i] = o andw[i] ∈ Lk+l

i (S), then: h(v, w, i) = {(pk+l−1
i , w[i]) ∈ δ−Fi

(w[i])|pk+l−1
i 6∈ Lk+l−1

i (S)}.

• If v[i] ∈ Lk+l−1
i (S) andw[i] = o, then: h(v, w, i) = {(v[i], pk+l

i) ∈ δ+
Fi

(v[i])|pk+l
i 6∈ Lk+l

i (S)}.
3. If k = |T (S)| (i.e., the penultimate layer of D(S)) and v[i] ∈ Lki (S), then h(v, w, i) =
δ+
Fi

(v[i]). Also note that w is sk node, and so w[i] = o.
4. If v[i] = w[i] = o, then h(v, w, i) = ∅.

As h(v, w, i) corresponds to the different ways in which the robot ri transitions from state
v[i] tow[i], it is only natural that the elements of the setH(v, w) =

∏
i∈R(S)

h(v, w, i) correspond

to all the different ways in which robots associated to R(S) can transition from v to w. Note
that H(v, w) is a Cartesian product of sets, and so each element of H(v, w) is itself a subset
(the empty set is also a subset) of S. For any i ∈ R(S), note that each element of H(v, w) can
contain at most one arc from Ai. Some elements of H(v, w) may contain arcs from S, such
that, robots transitioning using those arcs will result in an edge collision, and hence needs to
be removed due to Eqn (3.20). Corresponding to each element remaining in H(v, w) after the

CHAPTER 3. MAPF 38

previous edge collision filtration step, we add an arc a from v to w in Ak and label (cf. f
function in definition of D(S)) a by the arcs from S present in the element of H(v, w).

The relationship between the DD D(S) we constructed, and P (S), can be characterized
as shown in Theorem 1. The 1:1 correspondence in the Theorem means that, if xv is a vertex
of P (S) and let Q = {a ∈ S|xv(a) = 1}, then there is a sr − sk path in D(S) such that the
labels occurring on the path coincide exactly with Q. Conversely, for any sr − sk path, if
S̄ ⊂ S are labels occurring on the path, then there is a vertex xv in P (S) such that xv(S̄) =
1, xv(S\S̄) = 0. We can easily prove Theorem 1, so we skip the formal derivation.

Theorem 1. There is a 1:1 correspondence between vertices of P (S), and sr − sk paths in
D(S).

3.4.3 Performing the maximization in Eqn (3.28) over P (S) using D(S)

The problem in Eqn (3.28) is a linear optimization problem, so we know that at least one
optimal solution lies at a vertex of P (S). To compute the optimal objective value efficiently,
we can exploit the correspondence between vertices of P (S) and sr − sk paths in D(S).
Algorithmically, we assign a cost to each arc in A depending on the labels on the arc. For
instance, if arc a ∈ A is labelled with b1, b2, where b1, b2 ∈ S, then we simply assign a cost of
d(b1) + d(b2) to a, where d(bi) is the co-efficient of bi ∈ S in the objective d of Eqn (3.28).
If a is not labeled with any arcs from S, then we assign a cost of 0. After setting costs to all
arcs inA in the manner just described, computing the maximum is equivalent to obtaining the
longest sr−sk path cost in this weighted DDD(S). The complexity for obtaining the longest
path cost is O (|A|), since D(S) is a directed acyclic graph.

3.4.4 Tightening the construction of D(S):
While our goal in constructing D(S) was to compactly represent the vertices of P (S), recall
that our interest in P (S) was in providing a tight relaxation for Projx(S)(P). Observe that
Projx(S)(P) ⊆ P (S), and since both P (S) and Projx(S)(P) are 0− 1 polytopes, consequently,
all vertices of Projx(S)(P) are also vertices of P (S). So we can obtain a tighter relaxation
for Projx(S)(P), by removing vertices of P (S) lying outside Projx(S)(P). In this section, we
will perform such a tightening, but directly operating on D(S), by suitably removing some
arcs from A and nodes from U . We can then use the pruned D(S), instead, for performing
the maximization in Section 3.4.3. Our strategy for pruning D(S) is as follows. Recall,
from Theorem 1, we know that every vertex of P (S) corresponds to some sr − sk path in
D(S). Given an arc a ∈ A, consider the set of all vertices of P (S) corresponding to sr − sk
passing through a, and suppose we can argue that all those vertices lie outside Projx(S)(P),
then eliminating those vertices from P (S) is equivalent to removing a from D(S).

We can prune the arc a from A, if it satisfies at least one of the conditions shown below:

AA) a contains labels of the form (vt−1
i , wti), (ut−1

j , wtj), where i, j ∈ R(S) are pairwise
distinct. Note, v, u are not restricted to correspond to different locations in V .

AB) a contains labels of the form (wt−1
i , vti), (wt−1

j , utj), where i, j ∈ R(S) are pairwise
distinct. Note, v, u are not restricted to correspond to different locations in V .

CHAPTER 3. MAPF 39

If arc a satisfies AA), we will explain why a can be pruned from A. The validity of AB)
as a pruning criterion is analogous to AA). Observe that there can be no feasible point xp in
Projx(S)(P), such that, xp(vt−1

i , wti) = 1, xp(ut−1
j , wtj) = 1, since it will trivially violate the

vertex collision constraint (i.e., Eqn (3.6)) at w at time t. Hence, any sr − sk path in D(S)
that contains the labels (vt−1

i , wti), (ut−1
j , wtj), will correspond to a vertex of P (S) that lies

outside Projx(S)(P), and so a can be pruned. Despite the obvious vertex collision implied by
the labels in a, we briefly mention why arc a may have been included in the construction of
D(S). P (S) may have contained a vertex xq, where, xq(vt−1

i , wti) = 1, xq(ut−1
j , wtj) = 1, and

xq does not violate Eqn (3.19), if wti 6∈ Lti(S) or wtj 6∈ Ltj(S).
For i ∈ R(S) and t ∈ T (S), consider the case when Lti(S) = Ni(t). Then, recalling Eqn

(3.32), observe that all the sr − sk paths in D(S) corresponding to vertices of Projx(S)(P)
do not pass through the robot-state o of robot ri at time t. Hence, if Lti(S) = Ni(t), we
can remove all those nodes (states) from the layer of U corresponding to time t, where the
robot-state of ri in the node is o.

3.5 Integration in Conflict Based Search
In this section, we will briefly introduce the conflict-based search (CBS) method, which is
currently amongst the state-of-the-art algorithms for solving the MAPF problem optimally.
Then, we will demonstrate how we can incorporate the Lagrangian Relax-and-Cut (LRC)
scheme (refer Section 3.2) into CBS, to boost the performance of CBS.

3.5.1 Conflict-based search
CBS [Sharon et al., 2015] is an algorithm to compute the optimal solution for the MAPF
problem. CBS performs best first search on a search tree. Each node in the search tree is
characterized by a set of arcs in A (refer Section 3.1.1) that the robots are prohibited from
using, and considered as constraints in the search tree node. The shortest path for each robot
obeying the constraints in the search tree node is either computed or inherited from its parent,
and based on those paths, the pairwise conflicts between robots are identified and stored in the
tree node. During search, the leaf nodes in the search tree are evaluated using an evaluation
function, and the most promising node is selected for exploration. Once a leaf node is selected
for exploration, one of the pairwise conflicts in the node is chosen by the algorithm with the
hope of resolving it. In case the conflict chosen for resolution is a vertex conflict (resp. edge
conflict), we know that at least one of the conflicting robots must be prohibited from accessing
the conflict location (resp. conflict edge) at the conflict time in the optimal solution. So the
optimal solution must satisfy the 2 term disjunctive constraint, where each term (constraint)
prohibits exactly one of the conflicting robots from accessing the conflict location (resp. edge)
at the conflict time. Two child nodes, one for each constraint, is created in the search tree.
Additionally, the child nodes inherit all the constraints from their parent also. The search ends
when the search tree node chosen for exploration contains no conflicts.

Several innovations have been proposed to improve the performance of the CBS scheme
described above. The first improvement is to the node evaluation function. The node evalu-

CHAPTER 3. MAPF 40

ation function takes a search tree node as input, and basically outputs a lower bound to the
cost of the optimal MAPF solution, but also subject to the constraints in the search tree node.
The expectation is that, if the output of the node evaluation function closely matches the true
lower bound at every search tree node, then the search would expand fewer nodes in the search
tree. Many node evaluation functions have been proposed, see [Felner et al., 2018; Li et al.,
2019a]. Amongst them, the WDG measure proposed in Li et al. [2019a] outputs the tightest
lower bound. In this work, we incorporate LRC into CBS as a node evaluation function, so
that in combination with WDG, the ensemble is a stronger node evaluation function. More
details concerning WDG and the LRC based evaluation function is presented in Section 3.5.2.

In the basic version of CBS, an arbitrary pairwise conflict stored in the node was chosen for
branching. A better strategy was proposed in Boyarski et al. [2015], where before branching,
they classify the conflicts in the search tree node into different priorities. The idea is to assign
a higher priority to those conflicts, that generate child nodes that can help improve the lower
bound at a faster rate. In this work, we derive additional conflicts from start-end robot paths
minimizing a Lagrangian objective, and consider them also during branching. Details are
presented in Section 3.5.2.

The third type of improvement to CBS falls in the category of constraint generation schemes
for resolving conflicts. In the basic scheme, depending on whether the conflict was an edge
or a vertex conflict, a disjunctive constraint was generated. In Li et al. [2020a], for the case
when a conflict occurs at the goal location of one of the conflicting robots, or at a corridor
location, the authors demonstrate that the conflict resolution scheme of CBS would generate
a very large number of conflicts, and create a very large search tree. The authors in Li et al.
[2020a] propose a more sophisticated constraint generation scheme for both these cases, that
effectively preempts the explosion in the number of conflicts. In Section 3.7.3, we will show
some preliminary work on a constraint generation scheme that makes use of the information
present in the objective cuts, and delay-and-long cuts.

3.5.2 Integrating Lagrangian Relax-and-Cut with CBS
There are 3 steps to integrating the LRC scheme introduced in Section 3.2 into CBS. We will
begin with a high level description of these steps.

1. Before we apply CBS to our problem, we apply Algorithm 2, and let inequalities Êx ≤ f̂ ,
optimal Lagrangian multipliers λ̂, and upper bound UB denote the outputs of the algorithm.

2. We will formulate a new node evaluation function called LR-WDG, which makes use of
the output from Algorithm 2. LR-WDG is described below. Given a search tree node sn, we
use LR-WDG in conjunction with WDG to evaluate the node, so the evaluation of sn is given
by max(WDG(sn), dLR-WDG(sn)e), where d·e denotes the ceiling function.

3. In each search tree node, note that the basic CBS procedure stores the shortest start-end path
for each robot subject to the constraints in the node. Pairwise conflicts are derived by analyzing
these shortest paths. We will store an additional start-end path for each robot, subject to the
constraints in the search tree node, that instead minimizes the Lagrangian objective L(x, λ)
shown in Algorithm 2. Given a search node sn in the search tree, let us denote the set of arcs

CHAPTER 3. MAPF 41

that are prohibited in sn by Āsn ⊂ ∪i∈[N]Ai, then the paths for the robots minimizing the
Lagrangian objective is obtained by solving:

ĥ1(sn) = min
x∈{0,1}|A|

x(a)=0,∀a∈Āsn

{cTx+ λ̂T(Êx− f̂)|x satisfies Eqns (3.4)− (3.5)} (3.33)

We compute conflicts from the Lagrangian optimal paths, and add them to the set of con-
flicts that we will consider for branching. Note that ĥ1(·) in Eqn (3.33) is itself also a valid
node evaluation function. In Boyarski et al. [2015], conflicts for branching were classified
by quickly evaluating the child nodes that would have been created by branching on a con-
flict using the node evaluation function h(·). ĥ(·) and h(·) differ only in the objective that is
minimized, h(·) optimizes only for cTx in the objective of Eqn (3.33). The idea to include
conflicts from the Lagrangian optimal paths is that, in case we are unable to identify conflicts
that generate child nodes with a higher h(·) value than h(sn), we may still be able to identify
a conflict that generates child nodes with a higher ĥ(·) than ĥ(sn).

Lagrangian based node evaluation function

As motivated earlier in Section 3.2, we can use the Lagrangian information to derive strong
lower bounds for our problem. In a similar vein, we will use it to devise a node evaluation
function in this section. Such an approach is not new in Constraint Programming literature,
see [Benoist et al., 2001; Bergman et al., 2015; Khemmoudj et al., 2005] for other examples.
While ĥ1(·) is an example of such a Lagrangian based node evaluation function, in this section,
we will present a stronger node evaluation function, inspired directly from the minimum vertex
cover (MVC) function of [Felner et al., 2018] and WDG function of [Li et al., 2019a]. We
first explain the WDG function, and then present our node evaluation function.

For a given search tree node sn, the WDG function from Li et al. [2019a], is based on
pairwise costs for the robots. For each pair of robots we can solve a 2-Agent MAPF problem
disregarding all other robots. For i, j ∈ [N], let us denote lsn(i, j) to be the sum of the shortest
conflict-free path costs of robots ri, rj that also satisfy the constraints in the search tree node
sn. We can compute lsn(i, j) using the formulation shown below.

lsn(i, j)

min
x∈{0,1}|A|

∑
a∈Ai∪Aj

c(a)x(a) (3.34)

s.t.
∑

a∈δ+
Fk

(s0k)

x(a) = 1, k ∈ {i, j} (3.35)

x satisfies Eqns (3.5) - (3.7) (3.36)

x(a) = 0, ∀a ∈ ∪
k∈[N]\{i,j}

Ak (3.37)

x(a) = 0, ∀a ∈ Āsn ∩ {Ai ∪Aj}
(3.38)

WDG(sn)

min
cost(k)∈Z+

∑
k∈[N]

cost(k) (3.39)

s.t. cost(i) + cost(j) ≥ lsn(i, j),

∀i, j ∈ [N], and i < j (3.40)

cost(k) ≥ LB(k, sn), ∀k ∈ [N]
(3.41)

CHAPTER 3. MAPF 42

For search tree node sn, any valid node evaluation function must output a lower bound to
the problem shown in Eqn (3.42).

min
x∈P
{cTx|x(a) = 0, ∀a ∈ Āsn} (3.42)

Given an optimal solution for the problem shown in Eqn (3.42), for each k ∈ [N], denote
the cost of the start-end path for robot rk in the optimal solution by cost(k), then these costs
must satisfy Eqn (3.40). LB(k, sn) in Eqn (3.41) denotes the shortest start-end path cost for
robot rk subject to the constraints in sn, and so cost(k) must trivially satisfy Eqn (3.41). The
WDG function value evaluated at sn is obtained by finding integer assignments for the cost(·)
variables, subject to Eqns (3.40) - (3.41), that minimizes the sum of the cost variables in Eqn
(3.39). Computing WDG(sn) is known to be NP-Hard, since it is at least as hard as solving a
minimum vertex cover problem.

We next present our node evaluation function, which will refer to as LR-WDG, short for
Lagrangian relaxation WDG. Similar to the approach taken in deriving the WDG bound, for
each pair of robots we can solve a 2-Agent MAPF problem, but instead of minimizing the
MAPF objective c as we did in Eqn (3.34), we will instead minimize the Lagrangian objec-
tive. For i, j ∈ [N], analogous to lsn(i, j), we will denote the pairwise cost for robots ri, rj
minimizing the Lagrangian objective by lλ̂sn(i, j). We can use a 2-Agent MAPF solver to com-
pute lλ̂sn(i, j). We simply have to modify the cost of each arc in Ai, Aj to the arc’s co-efficient
in cTx+ λ̂TÊx, and then apply the solver to retrieve the optimal objective value.

lλ̂sn(i, j)

min
x∈{0,1}|A|

cTx+ λ̂TÊx (3.43)

s.t. x satisfies Eqns (3.35) - (3.38)
(3.44)

LR-WDG(sn)

min
y∈RN

− f̂Tλ̂+
∑
k∈[N]

yk

s.t. yi + yj ≥ lij(λ̂, sn),

∀i, j ∈ [N] and i < j (3.45)
yk ≥ LBλ̂(k, sn),∀k ∈ [N] (3.46)

Using the pairwise Lagrangian costs lij(λ̂, sn), we specify LR-WDG(sn). Analogous to
LB(k, sn), let LBλ̂(k, sn) denote the shortest start-end path cost for robot rk, subject to the
constraints in the search node sn, where the cost of using an arc a ∈ Ak is given by the
coefficient of x(a) in cTx + λ̂TÊx. We get LR-WDG(sn) by solving the linear program
shown above. Note that since the optimal value of Eqn (3.42) is integral, Proposition 1 still
holds if we replace LR-WDG(sn) by dLR-WDG(sn)e. Finally, note that ĥ1(sn) = −f̂Tλ̂ +∑

k∈[N] LBλ̂(k, sn), and so LR-WDG(sn) is ≥ ĥ1(sn), owing to Eqn (3.46).

Proposition 1. LR-WDG(sn) is a valid lower bound to the problem shown in Eqn (3.42).

Proof. Proof in Appendix, refer Section A.1.

Example 5. We show some examples comparing WDG and ĥ1(·) evaluated at the root node of
the search tree. In Figure 3.6a, note that locations J, K act as bottleneck regions. Robot 1 has 2
shortest routes, one via J and the other via K, while robots 2’s (resp. 3’s) shortest route is via J

CHAPTER 3. MAPF 43

(a) (b)

cost(1) + cost(3) ≥ 10 (3.47)

cost(2) + cost(4) ≥ 10 (3.48)

cost(2) + cost(5) ≥ 9 (3.49)

cost(2) + cost(6) ≥ 9 (3.50)

cost(3) + cost(5) ≥ 9 (3.51)

cost(3) + cost(6) ≥ 9 (3.52)

cost(1) + cost(3) + cost(6) ≥ 13 (3.53)

cost(2) + cost(4) + cost(5) ≥ 13 (3.54)

Figure 3.6: The grids in both figures are 4-connected. Solid circles indicate start locations, and
rings indicate goal locations. The yellow regions in 3.6a are representative of the rst-neighborhoods
regions used for generating cuts. The neighborhood on top was parameterized with robots 1 and 2,
while the neighborhood below was parameterized using robots 1 and 3. In Figure 3.6b, neighborhoods
parameterized by 2 and 3 robots were used for generating cuts.

(resp. K). Due to multiple shortest routes available for robot 1, it is easy to see that the WDG
bound coincides with the sum of the shortest route costs for the robots, which is 18, whereas
the ĥ1(·) bound is 20, which is also the optimal solution cost to this problem. Intuitively, the
cut generated by the rst-neighborhood centered at J, tells us that, if in the optimal solution
robots 1 and 2 passes through J, then one among those robots must have waited for the other
robot to pass through first. From the cut generated by the rst-neighborhood centered at K,
a similar observation can be made for robots 1 and 3. Note that WDG is unable to make a
similar such inference on this problem, and so the WDG bound is weaker than ĥ1(·).

For the case shown in Figure 3.6b, the optimal cost for the problem is 30. The WDG value
for the root node is 28, while the ĥ1(·) value is 29. Since WDG is based on pairwise robot
costs, the WDG value is based on Eqns (3.47) - (3.52). Refer to the description of WDG for
the definition of cost(·) in those equations. When we applied LRC (i.e., Algorithm 2) to the
problem in Figure 3.6b, some cuts (i.e., Êx ≤ f̂) used in Eqn (3.33) were generated from
rst-neighborhoods parameterized with 3 robots, to obtain better bounds. Using those cuts,
we were also able to infer Eqns (3.53) - (3.54). The procedure to make such inferences is
described in the next section. Intuitively, the ĥ1(·) value was based on more information than
WDG in this case, and so, ĥ1(·) was stronger.

Strengthening WDG via Lagrangians

Recall from Eqn (3.40), the WDG bound was based on pairwise robot costs. In this section,
we will generate inequalities of the form shown in Eqn (3.55), and add them to the WDG(sn)
formulation, with the hope of strengthening it. To strengthen WDG(sn), we present a simple
greedy procedure to identify subsets Cl in Eqn (3.55), such that, Eqn (3.55) is not implied by
Eqns (3.40), (3.41). In Example 5, Eqns (3.53) - (3.54) were examples of such inequalities,
with Cl = {1, 3, 6} in Eqn (3.53). For convenience, we shall refer to Cl as a cluster.∑

k∈Cl

cost(k) ≥ val, where Cl ⊆ [N], |Cl| > 2, and val ∈ Z+ (3.55)

CHAPTER 3. MAPF 44

Before presenting the algorithm, we introduce some notation. Given an inequality∑
a∈A e(a)x(a) ≤ f , let Rob(eTx ≤ f) ⊆ [N] denote the cluster, such that, k ∈ Rob(eTx ≤

f), iff, ∃ a ∈ Ak with e(a) 6= 0. Observe that Eqn (3.33) provides a lower bound for the
optimal sum of conflict-free start-end path costs of all N robots. In Eqn (3.55), we are inter-
ested in a lower bound for the optimal sum of conflict-free start-end path costs for a cluster of
robots {rk}k∈[Cl′], where Cl′ ⊆ [N]. A straightforward way to compute such a lower bound,
is to modify the optimization problem shown in Eqn (3.33). We discard from its objective all
those inequalities eTx ≤ f from Êx ≤ f̂ , such that, Rob(eTx ≤ f) 6⊆ Cl′. We also add the
constraint x(a) = 0,∀ a ∈ ∪

k∈[N]\Cl′
Ak. With those changes to the optimization problem in

Eqn (3.33), we denote its optimal value by ĥ1(sn, Cl′).
Algorithm 4 provides a simple iterative procedure for identifying clusters. The algorithm

takes a search node sn, the number of iterations, and the output of Algorithm 2 as inputs. The
algorithm starts with a set of clusters, stored in Gr, and as the iterations progress, each cluster
in Gr is enlarged by at most one element at every iteration. An obvious set of clusters to
initialize Gr, is the set of robots associated with each cut that was generated in Algorithm 2,
as shown in lines 4 - 5. In line 10, to check if a cluster Cl can be enlarged by including some
robot rk, we compute the difference between the lower bounds computed using Lagrangians
and the sum of the shortest start-end paths. If the difference is non-negative, then we know
that Eqn (3.55) generated for cluster Cl ∪ {k} will not be implied by Eqn (3.41), and so we
choose to enlarge Cl by adding k as shown in line 12.

Example 6. In Example 5, the rst-neighborhood centered at J (resp. K) gave us a cut involving
robots 1 and 2 (resp. 1 and 3). If we apply Algorithm 4 to that problem, Gr in line 4 would
have been initialized with the clusters {1, 2} and {1, 3}. In the first iteration of Algorithm 4,
both these clusters would have been enlarged to form the same cluster, i.e., {1, 2, 3}, since we
previously noted in Example 5 that ĥ(rn) = 20 > (7 + 6 + 5), where rn is the root node,
LB(1, rn) = 7, LB(2, rn) = 6 and LB(3, rn) = 5.

A noticeable limitation of Algorithm 4 is that, owing to the greedy nature of our proce-
dure, there may be a high degree of overlap between clusters, and its effect is detrimental to
strengthening the WDG bound. To mitigate this behavior, in our implementation, we enforce
the constraint that no two clusters in Gr are permitted to overlap greater than a certain cardi-
nality, where the threshold is specified as an input to Algorithm 4. This feature can be easily
implemented by restricting the domain of k in lines 10 and 12 appropriately.

Finally, observe that extracting clusters by executing Algorithm 4 at every node of the
search tree is computationally prohibitive. Instead, in our implementation, we applied Algo-
rithm 4 only to the root node rn of the search tree, and extracted clusters. The inequalities
of the form shown in Eqn (3.55) generated from each of these clusters, was then added to
the constraints in the computation of WDG(sn), at every node sn in the search tree. Notice
that for the problem shown in Figure 3.6a, the inequality cost(1) + cost(2) + cost(3) ≥ 20
generated from the cluster {1, 2, 3}, when added to formulation of WDG(rn), lifts the WDG
bound for the root node from 18 to the optimal MAPF cost which is 20.

CHAPTER 3. MAPF 45

Algorithm 4 Cluster computation for strengthening WDG

1: Given: Search node sn, Max Iter, Output of Algorithm 2, i.e., Êx ≤ f̂ , λ̂
2: Initialize: Gr← ∅
3: for each inequality eTx ≤ f ∈ Êx ≤ f̂ do
4: Cl← Rob(eTx ≤ f)
5: Gr ← Gr ∪ Cl { Gr is a set of clusters}
6: for iter = 1 : Max Iter do
7: Gr′ ← ∅
8: for each Cl ∈ Gr do
9: Cl′ ← Cl

10: ∆ ← max
k∈[N]\Cl

In(sn, Cl, k), where In(sn, Cl, k) = ĥ1(sn, Cl ∪ k) −∑
j∈{Cl∪k}

LB(j, sn)

11: if ∆ ≥ 0 then
12: Cl′ ← Cl ∪ {arg max

k∈[N]\Cl
In(sn, Cl, k)}

13: Gr′ ← Gr′ ∪ Cl′
14: Gr ← Gr′

15: return Gr

3.6 Experimental Evaluation

3.6.1 Experimental Setup
In this section, we provide the description of the algorithms with their parameters that we
tested, and the layouts on which the experiments were performed.

Algorithms and their parameters

We implemented and tested 4 variants of the CBS algorithm, namely WDG-CBS, LR-WDG,
WDG-G, and LR-WDG-G. We explain what each of these variants mean separately below.

In the variant WDG-CBS, we implemented the basic version of the CBS i.e., [Sharon
et al., 2015], with the following enhancements. We implemented the conflict classification
and branching rules from the ICBS algorithm proposed in Boyarski et al. [2015]. In case
of ties in the conflict classification rule, following the suggestion in Li et al. [2020a], we
prioritized corridor conflicts over other conflict types. From Li et al. [2019a], we implemented
the WDG node evaluation function (see Section 3.5.2 for description) with memoization. We
included the constraint generation scheme for corridor conflicts from Li et al. [2020a]. Recall
that the MAPF objective we consider allows a robot to freely wait at its goal. This property
rendered the target conflict constraint generation scheme from Li et al. [2020a] inapplicable
for this work. With these enhancements to CBS, we believe our implementation of WDG-
CBS is representative of the current state-of-the-art variant for CBS. For our experimental
results comparison, WDG-CBS will serve as the baseline method, and we will compare the

CHAPTER 3. MAPF 46

performance of the other three algorithms against this variant.
For the LR-WDG variant, we integrated the LRC scheme into WDG-CBS, by following

the three steps mentioned in Section 3.5.2, with one small modification to step 3. For any
search node sn, we consider branching on conflicts derived from the Lagrangian optimal paths,
only when LR-WDG(sn) > WDG(sn). Since the cuts from Algorithm 2 were derived at
the root node of the search tree, the utility of the cuts in determining the lower bound for
a search tree node diminishes as the depth of the search tree node increases. Consequently,
the gap between LR-WDG(sn) and WDG(sn) decreases as the depth of sn increases. We
also strengthened the WDG function using the procedure presented in Section 3.5.2. The
rst-neighborhoods used for generating cuts are described in Section 3.6.1.

The WDG-G and LR-WDG-G variants are simple extensions of WDG-CBS and LR-WDG
respectively. We introduce this algorithm to mitigate a limitation of CBS. In certain situations,
during CBS, the same pair of agents generates a large number of conflicts, thereby resulting
in a large search tree, see Target Conflicts in Li et al. [2020b] for an example. To mitigate
this issue, in WDG-G and LR-WDG-G, we pair some robots and treat each pair as a single
meta-agent. When planning a path for a meta-agent, we compute paths for both the robots
in the pair, such that, the paths are mutually conflict-free. We compute this pairing of robots
only once, and use the same pairing throughout the search. The pairing procedure is explained
in the next paragraph. Our idea of pairing can be seen as a special case of meta-agent al-
gorithms. Coupling groups of robots into meta-agents is not new in CBS, see Sharon et al.
[2012]. To keep computational costs of WDG-G and LR-WDG-G comparable to WDG-CBS
and LR-WDG, the node evaluation (i.e. WDG(·) and LR-WDG(·)) for each search tree node
was performed identically to the way we evaluated in WDG-CBS and LR-WDG, i.e., instead
of computing Eqns (3.40), (3.45) for pairs of (possibly) meta-agents, we compute them for
only pairs of robots. Consequently, WDG-G is not naturally better that WDG-CBS in terms
of lower bound. However, the same is not true between LR-WDG and LR-WDG-G. When
performing the LRC step in LR-WDG-G, in lines 4, 5 of Algorithm 2, we have to additionally
ensure that the paths computed for robots mapped to the same meta-agent, must be mutually
conflict free. We give a geometric interpretation to understand the consequences. Recall from
Section 3.2, in the LRC phase of LR-WDG, we are computing a tight relaxation to P by it-
eratively adding cuts to P0 (refer Section 3.2 for definition) and tightening it. In LR-WDG-G
however, we start with a tighter relaxation Q0 ⊆ P0, and in Algorithm 2 we are adding cuts to
tightenQ0. Empirically, the lower bound after the LRC step is generally higher in LR-WDG-G
than compared to LR-WDG.

The pairs are obtained by first constructing a graph, where each node in the graph rep-
resents a robot. Nodes (robots) i, j (where i, j ∈ [N], i 6= j) are connected by an edge if
diff(i, j) > 0, where diff(i, j) = lrn(i, j) − (LB(i, rn) + LB(j, rn)), and rn refers to
the root node of the search tree. The reader can refer to Section 3.5.2 for the definitions of
l·(·, ·), LB(·, ·). The value diff(i, j) represents how much robots i, j constrain each other.
After constructing the graph, we compute a maximum weighted matching. Robots that are not
connected to any edge in the optimal matching are treated as singleton agents, while robots
connected to an edge in the optimal matching are paired together to form a meta-agent. The
motivation behind this pairing is that, a robot pair with a high diff(·, ·) score is likely to pro-
duce numerous conflicts during CBS involving each other, and so by pairing those robots, we

CHAPTER 3. MAPF 47

can avoid branching on those conflicts during CBS.

Layouts and Problem Instances

For testing the algorithms, we considered 4 types of layouts, namely Random, Empty Room,
and Maze. For generating the Random layouts, we considered a 30 × 30 4-connected grid,
and some % of locations on the grid were randomly chosen to be stationary obstacles. The
obstacle percentages considered were 10, 15, 20 and 25. For the Empty layout, we tested on
the layout empty-32-32.map, for the Room layout, we tested on the layout room-32-32-4.map,
and for the Maze layout, we tested on the layout maze-32-32-2.map. Note that all 3 of those
named layouts are 4-connected grids, and taken from Stern et al. [2019].

For all layout types, we considered problem instances with a varying number of robots.
For the Random layout type, we generated 25 problem instances for a given number of robots
and obstacle %. The layouts across the 25 instances differ, and on each instance the start and
goal locations for the robots are randomly chosen independently of other instances. For the
Empty, Room, and Maze layout types, we considered the problem instances provided in [Stern
et al., 2019], in particular we performed testing on the even scenarios.

For every problem instance, we computed the shortest time it takes for every robot to reach
its goal location, assuming all other robots are absent. We then set the makespan constraint T
to be 3 more than the time it took for the robot which took the longest to reach its goal. We
confirmed that all the Random problem instances generated are feasible.

Templates for 4-connected grids

Recall, that to generate cuts from a conflict, we need to specify a rst-neighborhood and con-
struct the corresponding DD for the neighborhood. Constructing a DD is expensive, but fortu-
nately, since all the layouts that we consider in our experiments are 4-connected grids, we can
exploit some structure. When the underlying layoutG (refer Section 3.1) is a 4 or 8-connected
grid, the neighborhood relative to any location on the grid is same across all locations on the
grid, a property that allows us to build Templates.

To understand what we mean by Templates, consider the following. Let us denote the
polytope P (S) described in Figure 3.4 by P1. Now consider the vertex conflict for robots r3

and r4 at time 14 shown in Figure 3.4. For this conflict, we can create a polytope P (S2) with
parameters : R(S2) = {3, 4}, and T (S2) = {13, 14, 15}. For all i ∈ [3, 4] and ∀t ∈ T (S2),
Lti(S2) is set to nodes inNi(t) corresponding to all locations in the 3×3 grid centered at (6, 5).
Clearly, P (S2) can also output a cut for the conflict between r3, r4. While polytopes P1, P (S2)
lie in different dimensions, the facial structure of both polytopes are identical. If we substitute
r1 for r3, r2 for r4, advance the interval T (S2) by 10 time units, and translate all locations in
L··(S2) by 3 units along the negative X-axis and by 2 units along the negative Y-axis, we get
back all the parameters for S described in Figure 3.4. Hence, we claim that both P1 and P (S2)
are manifestations of the same base template polytope, and the base template can be visualized
as the square shaped yellow region in Figure 3.4. So suppose we previously constructed the
DD D(S1) for P1, we can simply spatio-temporally shift the parameters of D(S1) to get the
DD D(S2) for P (S2), without computing D(S2) from scratch.

CHAPTER 3. MAPF 48

While working with structured graphs such as grids, we can precompute a library of dif-
ferent templates, along with their corresponding DDs. Given a conflict, we can simply choose
one of the templates from the library for generating cuts. By spatio-temporally shifting the pa-
rameters of the template about the conflict, multiple cuts can be generated using the same base
template. Note that some locations around the conflict location(s) may be physically blocked.
For example, assume location (7, 6) in Figure 3.4 is blocked. For the conflict between r3, r4,
we can still use the yellow template in Figure 3.4 with the following adjustment to the cut
generation procedure. When computing the RHS of a cut, i.e., when computing the longest
sr − sk path on the DD, we have to avoid arcs on the path that pass through infeasible states
in the DD. A state in the DD is said to be infeasible if it corresponds to a location for a robot
that is physically blocked.

For generating the results in Section 3.6.2, our template library consisted of 65 templates,
of which one of the templates was parameterized by 2 robots. Denoting the 2 robot template
by S1, the parameters of the template were, |T (S1)| = 7, |Lti(S1)| = 25, ∀i ∈ R(S1), and ∀t ∈
T (S1). This translated roughly into 80,000 arcs in the DD for the template. The remaining 64
templates were parameterized by 3 robots, where each template S was designed with |T (S)| =
5, and |Lti(S)| = 6, ∀i ∈ R(S), and ∀t ∈ T (S). Per template, this translated roughly into
0.2 million arcs in the DD. In the appendix section, we provide a visual representation of the
templates in the library.

3.6.2 Experimental Results
All experiment results reported in this chapter were carried out on an Intel 4 core i7-4790
processor running at 3.6 GHz with 16 GB RAM, and the code was written in C++ as a single-
threaded application. For generating objective and delay-and-long cuts, we set Max Offset in
Algorithm 3 to 9. For a given a conflict, we used both 2 and 3 robot templates in line 4 of
Algorithm 3 to generate objective cuts. For generating delay-and-long cuts, we only used the
2 robot template. The parameter T (S) for the S chosen in line 4 was such that, the conflict
time in line 9 lies in the middle of the interval T (S). While solving the optimization problem
in line 4 of Algorithm 2 using projected subgradient ascent, we used A* to solve the inner
min-cost flow problem efficiently. We allocated 15 minutes to each of the 4 algorithms for
every problem instance. In case of LR-WDG and LR-WDG-CBS, the 15 minutes was further
divided as follows. We set the termination criterion in Algorithm 2 to 20 iterations, and a time
limit of 10 minutes, whichever terminated earlier.

Results on Random Instances

In terms of the number of problems that are solved to optimality, Figure 3.7 provides a com-
parison of the 4 algorithms with WDG-CBS treated as the baseline. We make the following
observations from these plots. When the obstacle % is > 10, in most cases, LR-WDG dom-
inates WDG-CBS, and LR-WDG-G dominates WDG-G. Further, as the number of robots
increases, we generally find that LR-WDG performs better than both WDG-G and WDG.
Although there is no algorithm that always dominates the other algorithms, on the whole, LR-
WDG-G appears to be the best performing algorithm across all obstacle percentages. These

CHAPTER 3. MAPF 49

Robots
Opt
(%)

30 100
40 92
50 76
60 40
70 48
80 12

(a) 10% Obstacles

Robots
Opt
(%)

25 100
35 92
45 68
50 72
55 44
60 24
65 8

(b) 15% Obstacles

Robots
Opt
(%)

30 96
35 72
40 60
45 56
50 24
55 8

(c) 20% Obstacles

Robots
Opt
(%)

25 88
30 60
34 68
37 40
40 24
43 12

(d) 25% Obstacles

Figure 3.7: For each obstacle %, the table on the left indicates the % of problems solved to optimality
by WDG-CBS. In each graph, for each algorithm, we plot the difference between the % of problems
solved to optimality by the algorithm and the % of problems solved to optimality by WDG-CBS.

trends indicate that as the level of congestion increases, integrating LRC with CBS can help
increase the number of problems that are solved to optimality.

In Figure 3.8, we provide a summary of the runtimes and the optimality gaps with each
algorithm on the 20% obstacle problem instances, and we analyze them. To save space, the
analogous plots for the other % obstacle instances are provided in Appendix A, see Figures
A.3 - A.5. Each graph in Figure 3.8 is split into 2 parts, we will start with the left half. The hor-
izontal axis indicates time, and the vertical axis indicates the number of problem instances. A
point (p, q) on the curve corresponding to some algorithm in the left half should be interpreted
as: q out of the 25 instances were solved to optimality within p seconds by the algorithm. We
observe that, generally, the curve corresponding to LR-WDG (shown in yellow) lies above the
curve corresponding to WDG-CBS (shown in blue), which indicates LR-WDG performs bet-
ter than WDG-CBS. A similar trend is true between LR-WDG-G and WDG-G. In the initial
0-150 seconds or so, we observe that WDG-CBS and WDG-G lies higher than LR-WDG and
LR-WDG-G. This behavior is consistent with the fact that, on easy problems, both WDG-CBS
and WDG-G are able to quickly find the optimal solution, while LR-WDG and LR-WDG-G
initially spends time executing Algorithm 2. Since in most cases, we find that LR-WDG and
LR-WDG-G curves dominate WDG-CBS and WDG-G curves after 150 seconds, we can infer
that Algorithm 2 terminates quickly despite its conservative termination criterion.

CHAPTER 3. MAPF 50

Figure 3.8: Runtime plots and gaps for 20% obstacle instances.

The right half of each plot in Figure 3.8, is meant to give a sense of the quality of the lower
bound obtained with each algorithm. To measure the quality of the lower bound achieved by
an algorithm for a given MAPF problem instance we designed the following measure. Let
lb be the lower bound to the optimal objective value obtained by the algorithm, and let ub
be the tightest known upper bound for the problem instance. The quality of the lower bound
is computed as

(
1− lb−SP ([N])

ub−SP ([N])

)
× 100, where, recall from Section 3.3.6, SP ([N]) denotes

the sum of the shortest start-end paths for all N robots in the problem. As a consequence of
Eqn (3.41), notice that lb ≥ SP [N], and so this measure is guaranteed to be non-negative
for all four algorithms. A lower value of this measure indicates that the algorithm has made
greater progress in closing the gap to the optimal solution, and so we refer to this measure
as the gap. We came up with this non-standard measure called gap, because, in most of the
experiments, SP [N] and the optimal objective value for a problem instance are very close,
and so more standard measures such as the optimality-gap (computed as 100×

(
ub−lb
lb

)
) turned

out to be within 2−3%. If we use optimality-gap instead to compare the four algorithms, then
the differences in the optimality-gap will be very small, owing to which, we may incorrectly
conclude that the performance of all four algorithms are very similar. Hence we wanted a
better measure to compare the 4 algorithms. When applying this measure on a given problem
instance, we used the same ub value in the computation of gap for all four algorithms. We
obtained the ub value by recording the best primal solution found for the problem instance
across all 4 algorithms.

We next describe how to interpret the right hand side of the plots shown in Figure 3.8. A
point (p, q) on the curve corresponding to some algorithm in the right half of each plot should
be interpreted as: on q out of the 25 instances, the algorithm was able to achieve a gap to within
p% at the time of termination. We see that on problems with fewer robots, all algorithms are
able to close the gap to within 25%, and for the larger problems this number increases to 50%.

CHAPTER 3. MAPF 51

Alg. Comp
Robots

30 35 40 45 50 55

LR-WDG 95.6, 18.4 100, 24.9 92.3, 19.8 100, 26.5 83.3, 29.1 100, 26.3

LR-WDG-G 95.8, 14.5 95.2, 24 100, 19.6 92.8, 14.6 100, 11.7 100, 99.8

Table 3.1: Comparison of number of search nodes expanded in the conflict tree before proving optimality
on 20% obstacle instances. The middle row measures the performance of LR-WDG relative to WDG-CBS. We
explain how to interpret the entries in the table with an example. Consider the entry in the middle row under
column 40. The first entry, i.e., 92.3, means that among the 40 robot instances that are solved to optimality by
both methods, LR-WDG expanded fewer search nodes than WDG-CBS on 92.3% of those instances. The second
entry gives us a sense of the magnitude of the pruning capability of LR-WDG relative to WDG-CBS. Among
those 40 robot instances solved to optimality by both methods, for instances where LR-WDG expanded fewer
search tree nodes than WDG-CBS, we computed the number of search tree nodes expanded by LR-WDG as a
percentage of the number of search tree nodes expanded by WDG-CBS, and the average of those percentages
is shown as the second entry, i.e., 19.8. The bottom row compares the performance of LR-WDG-G relative to
WDG-G.

Since the areas under the curves of LR-WDG and LR-WDG-G are larger than those under
WDG-CBS and WDG-G, we can infer that LR-WDG and LR-WDG-G make greater progress
than WDG-CBS and WDG-G lower bound wise.

We next compare the number of search tree nodes expanded by WDG-CBS and LR-WDG
(resp. WDG-G and LR-WDG-G) on problem instances that are solved to optimality by both
algorithms. The results for the 20% obstacle instances are summarized in Table 3.1. Refer to
the caption of Figure 3.1 to interpret the entries in the table. We can generally observe from
the entries in the table that on instances where both algorithms solve the problem to optimality,
on a vast majority of those instances LR-WDG (resp. LR-WDG-G) expands far fewer number
of search nodes than WDG-CBS (resp. WDG-G). We also observed that for many problem
instances, LR-WDG and LR-WDG-G are both able to obtain the optimal solution in the root
node of the search tree itself. This observation should not be surprising, since, in many cases,
LR-WDG and LR-WDG-G are both able to close the optimality gap to 0 during the LRC
phase itself (i.e., Algorithm 2). Analogous results comparing the number of search tree nodes
for the other obstacle % instances are provided in Section A.5, see Tables A.1 - A.3. From
those tables, we once again observe that LR-WDG (resp. LR-WDG-G) expands fewer search
tree nodes than WDG-CBS (resp. WDG-G) for proving optimality.

Results on Empty, Room, and Maze Instances

Analogous to Figure 3.7, Figures 3.9a - 3.9c provides a comparison of the 4 algorithms in
terms of the number of problems solved to optimality. On the Empty layout, observe that the
performance of WDG-CBS and LR-WDG begins to diverge only for problem instances with
more than 70 robots. On the contrary, for the Random instances, we saw the performance of the
two algorithms diverge on problems with fewer robots. When the start and goal location for a
robot are chosen randomly on the layout, with high probability there will be many alternative
routes with the same cost available for each robot on the layout. Consequently, very few
opportunities arise where at least one robot may be forced to take a longer path or wait to

CHAPTER 3. MAPF 52

Robots
Opt
(%)

50 100
60 99
70 88
75 80
80 68
90 44

Figure 3.9(a) Empty

Robots
Opt
(%)

15 100
20 100
25 76
30 32
35 12

Figure 3.9(b) Room

Robots
Opt
(%)

15 88
18 64
21 32
24 20

Figure 3.9(c) Maze

Figure 3.9(d) Room
Layout

Figure 3.9(e) Maze
Layout

avoid collisions. Only when the number of robots in the problem increases, the frequency of
such opportunities occurring increases for our template based approach to be effective. This
probably explains the results on the Empty layout.

On the Room and Maze layouts, observe that the performance of all 4 algorithms deterio-
rates very rapidly as the number of robots increases. On these layouts, low cost start-end paths
for the robots tend to lie adjacent to the obstacles, see Figure 3.10a for an example of such
paths on the Maze layout. Consequently, conflicts are expected to occur at locations besides
obstacles. However, what makes these problems especially challenging is that, when planning
a path for a robot using CBS, we may have to deal with multiple conflicts for a robot, and they
may be spatio-temporally well separated from each other. For visualizing such conflicts, see
the conflicts for robot 1 on the Maze layout in Figure 3.10a. Both the WDG node evaluation
function, and our Template based Lagrangian node evaluation function are not very effective
in these types of conflict scenarios. To understand why, for the example shown in Figure
3.10a, WDG treats the two conflicts as if they are independent of each other, while clearly the
action of robot 1 around robot 2 determines when and where robot 1 will come in the vicinity
of robot 3 later. Furthermore, since the two conflicts are spatio-temporally well separated,
it is computationally prohibitive to build a single large template that captures both conflicts.
Owing to this computational bottleneck, our template based approach generates cuts for each
conflict separetely. Consequently, the algorithms considered in this work struggle to derive
strong lower bounds for these types of scenarios. The runtime and gap plots are provided in
in the Appendix, see Figures A.6 - A.8. The reader can observe that as the number of robots
in the problem increase, the gap increases at a higher rate for the Maze and Room problem

CHAPTER 3. MAPF 53

instances, in comparison to the gap we reported for the other layout types. Analogous to Table
3.1, the tables for comparing the number of search tree nodes expanded for the Empty, Maze
and Room instances are provided in Section A.5, see Tables A.4 - A.6. From those tables, we
once again observe that LR-WDG (resp. LR-WDG-G) expands fewer search tree nodes than
WDG-CBS (resp. WDG-G)

3.7 Future Work
In this section, we present three future directions for our work, centered around rst-neighborhoods.

3.7.1 Cuts from multiple rst-neighborhoods (Consensus cuts)
For a given rst-neighborhood S, observe that the size of the DD D(S) scales exponentially
with |R(S)|, which makes it computationally intractable to build DDs with a large |R(S)|.
Since the strength of our cut-generation method crucially relies on analyzing the paths of mul-
tiple robots within a rst-neighborhood, addressing this computational bottleneck in a tractable
manner is beneficial. Instead of considering a large rst-neighborhood, one idea is to con-
sider multiple smaller rst-neighborhoods, where each of those smaller rst-neighborhoods are
parameterized with fewer robots, such that, the set of all robots considered in these smaller
rst-neighborhoods together cover the robots in the larger rst-neighborhood. These smaller
rst-neighborhoods can then be linked together using the familiar idea of consensus.

We illustrate the idea in the previous paragraph with the help of the problem shown in
Figure 3.1. Instead of a single rst-neighborhood S parameterized with all three robots as
considered in Example 1, we can consider 2 smaller rst-neighborhoods S1, S2, such that,
S1 ∪ S2 = S, with R(S1) = {1, 2}, and R(S2) = {1, 3}. The other parameters L(S1), T (S1)
L(S2), T (S2) can be chosen similar to how they were chosen in Example 1. Recall from Eqn
(3.14), for generating valid inequalities for P using neighborhood S, we solved problems of
the form shown in Eqn (3.14). Since we assumed that constructing the DD D(S) for P (S) is
expensive, we will instead maximize the objective of Eqn (3.14) over the constraints x(S1) ∈
P (S1), and x(S2) ∈ P (S2). The corresponding formulation is represented as the Primal
consensus problem shown below, and we denote its optimal objective value by opt_val.

Primal consensus

opt_val = max
x(S),y,z

dTx(S)

s.t. y ∈ P (S1), z ∈ P (S2)

y = x(S1), z = x(S2) (3.56)∑
a∈S∩Ai(t)

x(a) ≤ 1, ∀i ∈ R(S1) ∪R(S2),∀t ∈ T (S1) ∪ T (S2) (3.57)

The inequality that gets generated by solving the Primal consensus problem is given in Eqn
(3.58). Equation (3.58) is valid for P, since, Projx(S1)(P) ⊆ P (S1), Projx(S2)(P) ⊆ P (S2),

CHAPTER 3. MAPF 54

Figure 3.10(a) Figure 3.10(b)

In 3.10a, the shortest paths
for the robots are indicated.
The paths for robots 1 and
2 collide, and the paths for
robots 1 and 3 collide. The
yellow regions indicate the
rst-neighborhoods S1 and
S2.

Figure 3.10

and Eqn (3.57) is also valid for P. We refer to the cuts of this type as consensus cuts.

dTx(S) ≤ bopt_valc (3.58)

For computational ease, we can obtain opt_val in Eqn (3.58) by solving the dual to the Primal
Consensus problem. We can obtain the dual by simply dualizing Eqns (3.56), (3.57). The
resulting dual problem can be efficiently solved using projected first order gradient methods,
we skip those details here. For the example from Figure 3.1, we performed an experiment
where we applied Algorithm 2 and only included a single cut generated by solving the Primal
consensus problem with two robot templates, i.e., |R(S1)| = |R(S2)| = 2. In that experi-
ment, Algorithm 2 terminated with the optimal objective value, thus demonstrating a positive
example for this approach.

3.7.2 Serial cuts
When the conflicts are spatio-temporally well separated, as shown in Figure 3.10a, we earlier
mentioned in Section 3.6.2 that these situations are challenging to derive strong lower bounds.
So we propose the following the idea. Consider the rst-neighborhoods S1, S2 for the con-
flicts in Figure 3.10b, where S1 is parameterized by robots 1 and 2, and S2 by robots 1 and
3. Instead of generating cuts for the 2 conflicts independently, i.e., by optimizing over the re-
laxation polytopes P (S1) and P (S2) separately, we can instead consider building a relaxation
P ′ to Projx(S1∪S2)(P), and generate cuts by optimizing over P ′. By doing so, we are jointly
analyzing the paths of robots 1, 2 and 3, and this may help us generate better cuts.

For rst-neighborhoods S1, S2, assume that T (S1) = {l1, l1 + 1, . . . ,u1}, and T (S2) =
{l2, l2 + 1, . . . ,u2}. For serial cuts, S1, S2 are chosen such that u1 < l2. Define S ′1 =
S1\{ ∪

i∈R(S1)
Ai(u1)}, and S ′2 = S2\{ ∪

i∈R(S2)
Ai(l2 − 1)}. We will construct P ′ such that it is a

relaxation for Projx(S
′
1∪S

′
2)(P). Let D(S1) (resp. D(S2)) be the DD representation of P (S1)

(resp. P (S2)). Instead of providing the polyhedral description for P ′, we will directly explain
the DD for P ′, denote the DD by DP ′ . We will construct DP ′ by connecting the states in the
penultimate layer (i.e., corresponding to time u1) of D(S1), to the states in the second layer
(i.e., corresponding to l2) of D(S2). Before we connect the states, we first remove the sink
node and all arcs from the last layer of D(S1). Likewise, we remove the source node and all

CHAPTER 3. MAPF 55

arcs from the first layer of D(S2). A state s1 in D(S1) is connected to a state s2 in D(S2) by
an arc with no labels, iff, ∀i ∈ R(S1) ∩R(S2), one of the following condition holds:

• s1[i] 6= o, s2[i] 6= o, and there is a path from s1[i] to s2[i] in the flow graph Fi(Ni, Ai).

• s1[i] 6= o, s2[i] = o, and ∃wl2
i ∈ Ni(l2)\Ll2

i (S2), such that, there is a path from s1[i] to
wl2
i in Fi(Ni, Ai).

• s1[i] = o, s2[i] 6= o, and ∃wu1
i ∈ Ni(u1)\Lu1

i (S1), such that, there is a path from wu1
i

to s2[i] in Fi(Ni, Ai).

• s1[i] = o, s2[i] = o, ∃wu1
i ∈ Ni(u1)\Lu1

i (S1), and ∃vl2i ∈ Ni(l2)\Ll2
i (S2), such that,

there is a path from wu1
i to vl2i in Fi(Ni, Ai).

It is not hard to see that every vertex of Projx(S
′
1∪S

′
2)(P) is encoded by a sr − sk path in DP ′ .

3.7.3 Branching on cuts
In previous sections, we used objective cuts and delay-and-long cuts entirely for the purpose
of designing the node evaluation function via the Lagrangian. In this section, we show that the
information present in each cut, can alternatively be used for branching on a conflict in CBS.
For the vertex conflict shown in Figure 3.2, we derived Eqn (3.27). From this inequality, we
can infer that in any feasible solution to the problem, the disjunction shown in Eqn (3.59) must
be satisfied. So we can consider using the disjunction in Eqn (3.59) instead for branching on
the conflict. The key feature that allows us to branch on objective cuts and delay-and-long cuts
is that all the non-zero coefficients in the cut are 1, and all variables with non-zero coefficients
in the cut correspond to the same time.

 x(O2
1, Q

3
1) = 0 x(Z2

1 , Q
3
1) = 0 x(Q2

1, Q
3
1) = 0

x(W 2
1 , Q

3
1) = 0 x(W 2

1 ,W
3
1) = 0 x(Q2

1,W
3
1) = 0

x(W 2
1 , X

3
1) = 0

 ∨ (x(W 2
2 , Q

3
2) = 0

)
(3.59)

The observation made in the previous paragraph suggests a very simple modification to
the branching rule of CBS. For branching on a conflict, we check whether an inequality that
contains the conflict edges exists among Êx ≤ f̂ (i.e. cuts from Algorithm 2). If there are
no such inequalities, we apply the usual branching rules that we used for the experiments in
Section 3.6.2. Otherwise, amongst those inequalities containing the conflict edges, we pick
the inequality which is violated the most by the conflict-containing shortest start-end paths
stored in the search tree node, and then we branch on the conflict similar to how we did earlier
for the example from Figure 3.2. In case of ties in picking the most violated inequality, we
arbitrarily select an inequality that is not dominated by the other inequalities. To illustrate the
benefit of branching on cuts, we tested this new branching rule for the highly congested set
of scenarios represented in Figure 3.11. Averaged across the 16 instances, relative to WDG-
CBS, we observed a 23% reduction in the number of search nodes expanded before finding the
optimal solution with LR-WDG. In contrast, without our branching rule, LR-WDG expanded
only 8% fewer nodes relative to WDG-CBS. These experimental results suggest that there
may be potential with this approach, or some variant of it, for branching.

CHAPTER 3. MAPF 56

Figure 3.11: We show a partial view of a 10 × 10 4-
connected grid. The solid circles represent start locations for
the 8 robots in the problem. Using these start locations we
generated 16 problems by varying the destination locations as
follows. Robots of the same color can only be assigned to a
ring of the same color as its destination. So the destination of
robots 1 and 2 can either be A or B, and so if A is assigned
to robot 1, B must be assigned to robot 2. The makespan con-
straint for the problem, i.e, T, was set to 16.

3.8 Related Work and Discussions
As our work derives valid inequalities from DDs, we begin this section by discussing how our
work relates to prior methodologies on obtaining cuts from DDs. For solving 0-1 IPs using
a cutting plane approach, the authors in Tjandraatmadja and van Hoeve [2019] construct a
relaxed DD for the entire feasible region. For performing separation, they propose a method
that returns a facet of the relaxation. In Davarnia and van Hoeve [2020], the authors proposed
a computationally simpler procedure for obtaining separation inequalities using relaxed DDs,
that are not necessarily facet-defining. Their procedure outputs the farthest separation inequal-
ity for a point lying outside the relaxation. In Mogali et al. [2020], we adopted the procedure
from Davarnia and van Hoeve [2020] to generate cuts. The cuts proposed in this chapter, i.e.,
objective and delay-and-long inequalities, are fundamentally different from the cuts in [Tjan-
draatmadja and van Hoeve, 2019; Davarnia and van Hoeve, 2020]. Unlike Tjandraatmadja and
van Hoeve [2019]; Davarnia and van Hoeve [2020], in our approach, we used the objective in
the problem that is being optimized to specify the LHS of the inequality, and optimized over
the DD only to compute the RHS of the inequality.

Using Lagrangians to obtain lower bounds is a well known and widely used idea in Math-
ematical programming [Geoffrion, 1974] and Constraint Programming [Benoist et al., 2001],
and the references are too many to list. Prior works [Bergman et al., 2015; Castro et al., 2020]
have combined Lagrangians and DDs to generate lower bounds. Typically, they consider each
combinatorial constraint in the problem separately, and for each constraint, they construct a
relaxation to the feasible region defined by that constraint using a DD. The relaxations for
the different constraints are then suitably combined. In contrast, we used DDs to construct
relaxations to projections of the feasible region. We are not aware of any prior works that im-
plements LRC, where the cuts are generated from DDs. Lagrangian decomposition has been
applied for search based methods in the context of cost partitioning of abstraction heuristics
[Pommerening et al., 2019]. There is no concept of a cut or the construction of a relaxation
to the projection of the feasible region, or the use of LRC in Pommerening et al. [2019]. The
only commonality our paper shares with Pommerening et al. [2019] is in the use of Lagrangian
decomposition.

We next move onto prior related woks on MAPF. In Gange et al. [2019], the authors
present a Constraint Programming approach for MAPF with nogood learning. Their approach
extracts nogoods during the search process, and uses those nogoods to avoid duplicated search

CHAPTER 3. MAPF 57

effort in the search tree. Each nogood can be viewed as specifying a set of path costs for some
subset of robots inR, that cannot occur in any feasible solution.

These nogoods are then utilized to guide the search in a core-guided strategy. Objective
cuts can be viewed as being analogous to nogoods, since, recall from Example 2, these cuts
are also able to provide similar certificates of infeasibility globally for the search space. How-
ever, the methodologies to obtain these inferences on the path costs are different in the two
approaches.

In [Lam et al., 2019; Lam and Le Bodic, 2020], the authors present a branch-cut-and-
price (BCP) approach for solving the MAPF problem. As it is typical of BCP approaches,
the IP formulation works in the space of start-end paths for the robots, and for every start-end
path there is a decision variable to decide whether to include the path or not in the optimal
solution. Many types of cuts were introduced, some of which cut off a fractional solution,
and some of which are based on the conflicts present in the fractional solution. In Lam and
Le Bodic [2020], six types of conflict classes were identified, and cuts specific to each class
were proposed. These classes are based on characterizing the conflicting robot paths. For the
sum of completion times objective, the current best results available for the problem instances
from Stern et al. [2019] are due to Lam and Le Bodic [2020]. While the approach taken in our
work is fundamentally different to this BCP approach, we speculate that the cuts presented in
our work may be useful for the BCP approach, because our template based approach provides
a generic way to analyze the paths of multiple robots concurrently for generating cuts.

CBS is amongst the state-of-the-art methods for MAPF. In Section 3.5.1, we described
CBS and summarized the literature related to CBS. We next mention in passing some older
approaches for solving the MAPF problem. One such group of methods are those that rely
on solvers. Some representative publications are SAT [Surynek et al., 2016], Answer Set
Programming [Erdem et al., 2013], and Integer Linear Programming [Yu and LaValle, 2013a].
These approaches have typically modeled the MAPF problem using simple time-expanded
models, and rely entirely on the power of the solver. These approaches are only competitive
for problems with small number of agents.

We next discuss the dependence of our cut generation procedure on the MAPF objective
being minimized. To apply our cut generation scheme shown in Algorithm 3, our MAPF
objective should allow us to do the following operation:

• Given a set of robots and a combined cost (objective) for the set of robots, we should
be able to partition the combined cost individually between robots as shown in line 8
of Algorithm 3. Further, we should be able to translate the cost for each robot into
arcs within a rst-neighborhood. What we mean by that is, in order to formulate the
objective in the optimization problem (shown in Eqn (3.28)) for generating cuts, we
should be able to identify all those arcs within the rst-neighborhood through which the
shortest start-end path for the robot does not exceed the cost specified for the robot in
the partition.

In Example 2, we provided a demonstration of the operation shown above with the MAPF
objective described in Section 3.1. More generally, it is not hard to see that the operation
described above can also be performed with objective functions where the cost of a solution
can be decomposed into a sum of robot start-end path costs, where the cost of a start-end

CHAPTER 3. MAPF 58

path is given by the sum of cost of the arcs used in the path. Examples of other scheduling
objectives that satisfy the above requirement include weighted sum of completion times and
max tardiness. So our cut generation procedure can be adapted to other MAPF objectives.

In the remainder of this section, we will describe how our work may be useful to variants
of the MAPF problem. In Atzmon et al. [2018], the authors introduced a new notion of ro-
bustness, called k-robustness, which we state verbatim: A plan that is robust to k delays per
agent during plan execution, i.e., each agent may be delayed up to k times during plan exe-
cution and the plan would still be safe (no collisions). The authors demonstrate how existing
algorithms for MAPF, such as A* and CBS, can be adapted to solve the k-robust variant of
the MAPF problem. In Li et al. [2019b], the authors consider the MAPF variant where some
agents need to occupy multiple locations on the grid simultaneously. They presented a gener-
alized version of CBS, called Multi-Constraint CBS, which adds multiple constraints (instead
of one constraint) in the constraint generation step, while generating the child nodes. We can
adapt the LRC lower bounding scheme described in Algorithm 2 to both these variants of the
MAPF problem. We simply have to add more constraints to the relaxation polytope P (S)
described in Section 3.3.4, to generate tighter inequalities. The details are beyond the scope
of this thesis.

3.9 Summary
In this chapter, we presented a Lagrangian Relax-and-Cut scheme for generating tight lower
bounds for the MAPF problem. Cuts were generated from a novel cut generation scheme. At
a high level, tight polyhedral relaxations to projections of the feasible region are computed
in our cut generation scheme. We developed a query procedure, that probes the existence
of feasible solutions satisfying certain criterion. We attempt to answer those queries by only
analyzing the relaxation polytopes, and whenever the answer to a query is found to be negative,
we obtain a cut. Decision diagrams were used to compactly represent the relaxation, allowing
us to efficiently obtain answers to our queries. We incorporated the lower bound from the LRC
scheme into a state-of-the-art variant of conflict-based search as a node evaluation function.
Our experimental results demonstrate that incorporating our lower bounding scheme improves
the performance of CBS by reducing the optimality gap, and also increases the number of
problems that are solved optimally.

3.10 Summary of contributions
• A new polyhedral cutting plane approach for the MAPF problem. Our approach is

eclectic in the sense that, it combines LRC, projections and DDs. Cuts from relaxations
to projections are used for tightening the linear description.

• The projections considered in this work are specified using Templates. The use of tem-
plates enabled us to capture the facial structure of the projection polytope, which al-
lowed us to reuse this structural information for obtaining other projections. The idea

CHAPTER 3. MAPF 59

of using templates for specifying projections may be more broadly applicable to other
combinatorial problems.

• The cuts from templates presented in this chapter are somewhat novel in nature. A query
procedure that accounts for the objective being minimized is used to specify the LHS of
the cut, and an optimization problem over a relaxation to the projection of the feasible
region is solved to compute the RHS of the cut. The optimization problem is solved
efficiently with the help of a DD.

• We demonstrated how the Lagrangian information can be used to strengthen the WDG
node evaluation function.

Part II

60

Chapter 4

Blocking Job Shop problem

4.1 Introduction
The classical job shop (JS) problem [Conway et al., 2003] is a difficult combinatorial opti-
mization problem that has been widely studied. A set of jobs have to be executed on a set of
machines, where each job is defined as a sequence of operations, and each operation specifies
the machine on which it has to be processed. A machine can process at most one job operation
at a time, a processing time is defined for each operation and, once started, an operation cannot
be interrupted (non-preemptive). The goal is to find a particular sequencing of operations on
each of the machines and a schedule (i.e., start time for each operation) for the sequencing that
minimizes an objective function. A number of possible objectives have been investigated for
the classical job shop problem. A prominent one is makespan minimization, where the time it
takes to completely service all job operations has to be minimized.

One of the assumptions in the classical JS problem is that as soon as an operation finishes
executing on a machine, the machine becomes available. Basically, this means that there
exists a buffer to store the job (product) between successive operations, and that this buffer
has sufficient capacity to store all partially serviced jobs. In most real-world settings, this
is not a realistic expectation as there may be physical limits on the capacity of the buffer.
Different versions of the job shop problem have been defined in the literature, to include more
realistic features in the problem formulation. In the blocking job shop (BJS) [Mascis and
Pacciarelli, 2002], when a job operation finishes executing on a machine, it remains on this
machine (blocks the machine) until the downstream machine required to continue processing
the job becomes available. BJS is a useful model for flexible manufacturing systems with
limited storage space between operations and limited capacity to move the materials from one
machine to the next one [Hall and Sriskandarajah, 1996]. Complexity results published in Hall
and Sriskandarajah [1996] show that makespan minimization of the BJS problem is difficult
to solve; in particular, the BJS problem with only two machines is strongly NP-hard.

There are two versions of blocking researched in the literature: blocking with swap al-
lowed and blocking without swap. These two versions differ in the way a “deadlock situation"
is handled, where a deadlock situation is a state of the system where there exists a set of jobs
such that each job in the set is waiting for a machine that is blocked by some other job from

61

CHAPTER 4. BJS 62

the same set. When swaps are allowed, once every job in the deadlocked set is serviced by
the machine they currently occupy, all jobs in the deadlocked set are simultaneously moved to
their respective downstream machines. In the no swap allowed case, the simultaneous move-
ment of jobs in the deadlocked set is not allowed, so any solution for which a deadlock state
is present is infeasible. The blocking job shop problem has found many applications in ar-
eas such as train scheduling [D’ariano et al., 2007; Lange and Werner, 2018; Liu and Kozan,
2009; Strotmann, 2008], production of steel, transportation and material handling in manu-
facturing [Lange and Werner, 2019; Mati and Xie, 2011; Poppenborg et al., 2012], automated
warehouse [Klinkert, 2001; Mati et al., 2001a], a store-and-forward 1-network [Mascis and
Pacciarelli, 2002], and cyclic scheduling [Brucker and Kampmeyer, 2008]. Blocking con-
straints have also appeared in applications such as truck scheduling at tank terminals [Van den
Bossche et al., 2020], some variants of railway scheduling [Meng and Zhou, 2014; Törnquist
and Persson, 2007], and aircraft scheduling [Sama et al., 2017].

Local search methods for JS problems typically employ a metaheuristic procedure to en-
hance the search performance. In particular, tabu search approaches are currently among the
state of the art [Dabah et al., 2017; Nowicki and Smutnicki, 2005] for both JS and BJS. In this
work, we establish a number of theoretical results and use them to implement an efficient tabu
search approach for the BJS problem. Typical neighborhoods used for solving job-shop prob-
lems are based on the critical path of the current solution; our approach employs the N4 and
N5 neighborhoods [Błażewicz et al., 1996] originally proposed for JS problems, adapted for
BJS problems with some modifications. The neighbors generated for a solution are not always
guaranteed to be feasible – this does not seem to critically affect the practical performance of
local search methods for JS problems. However, for BJS problems this is not the case and
so various procedures are routinely used to restore feasibility for infeasible neighbors, at an
additional computation cost. In this work, we propose new theoretical results that can be used
(1) to quickly determine which neighbors are infeasible, and (2) to provide computationally
efficient procedures to restore feasibility. We also present empirical results that show how our
work advances the current state of the art. Although this work focuses on the BJS problem, we
believe our work may be of interest to a broader audience interested in local search procedures
for problems with blocking constraints. Finally, parts of this chapter previously appeared in
Mogali et al. [2021a].

4.2 Literature review
Mascis and Pacciarelli [2002] present a detailed study of the BJS problem and its variants;
they introduce the Alternative Graph model (refer Section 2.2.2 in Chapter 2) which is an ex-
tension of the Disjunctive Graph representation widely used for the JS problem, and present
complexity results for the BJS problem with no swap. They also show that popular heuristics
for the JS problem, like the “Shifting Bottleneck Heuristic" [Adams et al., 1988] and dispatch
based rules, often fail to produce a feasible solution when applied to BJS problems, and de-
scribe four greedy constructive heuristics for obtaining a feasible solution in these situations.
Meloni et al. [2004] present a constructive procedure that combines the heuristics proposed in
Mascis and Pacciarelli [2002] with a rollout scheme. Pranzo and Pacciarelli [2016] present an

CHAPTER 4. BJS 63

Iterative Greedy approach, embedded within a metaheuristic (Simulated Annealing or Ran-
dom Walk). During the destruction phase, a randomly-chosen part of a solution is destroyed;
in the constructive phase, procedures introduced in [Mascis and Pacciarelli, 2002] are used
to complete the solution. Oddi et al. [2012] present an Iterative Flattening Search approach
for BJS problem with swap, which similarly to Pranzo and Pacciarelli [2016], uses a destruc-
tion and construction phase at each iteration. The destruction phase selects a portion of the
solution to destroy either randomly or based on temporal slack, while the constructive phase
uses a precedence constraint posting procedure. Empirical results from Oddi et al. [2012]
show that the Iterative Flattening Search outperforms the Self-Adapting Large Neighborhood
Search implemented in IBM’s ILOG CP Optimizer.

The constructive procedures described in Mascis and Pacciarelli [2002]; Meloni et al.
[2004]; Pranzo and Pacciarelli [2016]; Oddi et al. [2012] do not guarantee that a feasible
solution is generated at each iteration. Moreover, these constructive heuristics require a de-
struction phase, where the part of the solution that is destroyed is randomly selected. There is
a very strong randomness component in these procedures, and the experimental results for this
random exploration of the search space generally have not been competitive when compared
with some later papers (discussed below) addressing the BJS problem. In addition, some of
these methods require temporal propagation, which can be quite expensive and almost pro-
hibitive for large problems instances.

Another type of constructive approach can be broadly classified as a job insertion based
procedure. One of the earliest examples is Mati et al. [2001b], where a geometry based job
insertion procedure embedded within tabu search is described. A method to solve the two job
problem optimally, and a heuristic to sequentially expand a partial solution by introducing one
job at a time are proposed. All jobs present in the partial solution are combined to form a
single job, and the new job is inserted using the optimal two job insertion procedure.

A larger number of studies [Bürgy, 2017; Dabah et al., 2017; Gröflin and Klinkert, 2009;
Gröflin et al., 2011], use Job Insertion methods somewhat differently to the approach taken
in [Mati et al., 2001b]; these are perhaps among the most successful methods so far for the
BJS problem. All these studies use a JS local search neighborhood (such as N1, NA, NB, N2,
N4, N5 [Błażewicz et al., 1996]), to generate neighbors of the current solution. Unfortunately,
the neighbors produced by these neighborhood moves are not always feasible. A job insertion
based feasibility recovery (JIFR) mechanism is used to convert an infeasible solution to a
feasible one. Basically, JIFR heuristics operate by selecting one of the jobs in the infeasible
solution and altering the position where its operations are executed on each machine.

The theory around job insertion based feasibility recovery has been a natural outgrowth
from studies of the job insertion polytope. The job insertion polytope is a polyhedral charac-
terization of the space of feasible insertions of a job, given a feasible solution for the remaining
jobs. The job insertion polytope was first published in the context of JS problems by Kis and
Hertz [Kis and Hertz, 2003], showing that the job insertion polytope is an integral polytope.
On the problem of optimally reinserting a job (with makespan as the objective to minimize),
they present a novel lower bounding procedure. In Gröflin and Klinkert [2007], using a differ-
ent parameterization of the unknowns in the problem, an alternative characterization of the job
insertion polytope is provided; this procedure is applicable to many variants of the JS problem.

Building on the theoretical work presented in [Gröflin and Klinkert, 2007], Gröflin and

CHAPTER 4. BJS 64

Klinkert [2009] present a JIFR procedure referred to as “closure". A salient feature of clo-
sure is that it performs the fewest number of pairwise swaps of operations on machines to
restore feasibility, where every swap action involves an operation belonging to the job that is
being inserted. Closure has subsequently been applied to problems with objectives other than
makespan for several variants of JS problems, for example, closure embedded in a tabu search
framework has been used in [Bürgy, 2017; Gröflin et al., 2011].

Dabah et al. [2017] also uses a JIFR procedure, where AMCC (Avoid Most Critical Com-
pletion time) ranking is the criterion guiding the job insertion procedure. AMCC [Mascis and
Pacciarelli, 2002] is a greedy heuristic that avoids a sequencing decision that causes the largest
increase in makespan in the partial solution. The empirical results in Dabah et al. [2017] sug-
gest that job insertion with AMCC leads to solutions with lower makespan than those obtained
using closure. Dabah et al. extend their algorithm to be suitable for parallelism [Dabah et al.,
2019]; this approach has produced many of the best known results for problem instances in
the BJS problem datasets.

4.2.1 Current challenges
Our approach, similar to most successful algorithms published for the BJS problem, is a local
search heuristic that uses a JS neighborhood with a JIFR procedure, embedded in a tabu search
metaheuristic. The practical performance of such an algorithm is affected by two factors: (i)
The properties of the chosen neighborhood, and (ii) the computational efficiency of the pro-
cedures used to enumerate and evaluate all neighbors at each step of the search. For the first
factor, ideally one would prefer to have a neighborhood that specifies only few neighbors, and
yet possesses the opt-connectivity property. A neighborhood is opt-connected if given any
arbitrary start solution, there exists a sequence of solutions terminating with an optimal solu-
tion, such that any solution in the sequence is a neighbor of its predecessor in the sequence.
Currently, very little is known about the properties of commonly used BJS neighborhoods in
general, and their opt-connectivity in particular. For the second factor, the propensity for gen-
erating infeasible neighbors when expanding a BJS neighborhood and the consequent need to
recover feasible solutions adds considerable computational expense to the basic search cycles.
This work primarily addresses the computational challenges associated to (ii).

4.2.2 Our work and contributions
In this work, we adapt the N4 neighborhood for the BJS problem, by combining the N4 JS
neighborhood Błażewicz et al. [1996] with JIFR. Briefly, the N4 neighborhood partitions the
critical path into contiguous blocks of operations that require the same machine, and generates
each neighbor by relocating an operation in the critical block to either the beginning or the end
of the block, thereby reordering operations on the machine associated with the critical block
to generate each neighbor. The precise definition of the N4 neighborhood adapted for the BJS
problem is provided in Section 4.4. We chose to adapt N4 because it is a fairly large neighbor-
hood, subsuming most popular JS neighborhoods. Neighbors within the N4 neighborhood of
a solution can be classified into two types, feasible and infeasible. For infeasible neighbors,
JIFR procedures are applied to convert them into feasible solutions. The techniques proposed

CHAPTER 4. BJS 65

in this work assume the BJS no-swap version. Some of these techniques can be modified to
make them applicable to the other BJS variants, see discussions in Section 4.11.

The main contributions of this work include the following:
1. We propose an algorithm that enumerates all the feasible N4 neighbors in complexity that,
in practice, scales linearly with the number of operations, i.e., MJ, where M,J are the number
of machines and jobs respectively.

2. We describe an efficient algorithm for computing the makespan of all feasible N4 neigh-
bors.

3. We provide an efficient computational procedure for obtaining the polyhedral description
of the Job Insertion Polytope JIP (in the context of BJS). Many papers, Bürgy [2017]; Gröflin
and Klinkert [2009]; Gröflin et al. [2011], have previously exploited the structure of the (JIP)
for developing Job insertion algorithms (see, e.g., the concept of closure [Gröflin and Klinkert,
2009]) for complex variants of JS problems. However, the computational aspect of efficiently
implementing such schemes for feasibility recovery has not received any attention to the best
of our knowledge, and nor has the complexity of existing procedures been analyzed. We
describe the JIP with at most M2J + 2MJ linear constraints by exploiting structure in the
BJS problem, and provide a method for generating those constraints in O(M2J) complexity.
Our contribution helps in implementing job insertion procedures efficiently by making use of
the procedure for obtaining the JIP.

4. We introduce a new feasibility recovery procedure that can be used to expand the set of
neighbors that are generated, in the hope that the expanded neighborhood leads the search to
regions in the search space that are currently unreachable with existing JIFR methods. The
size of the expanded neighborhood is controllable for computational tractability.

5. In Section 4.9, we report the performance of local search with N4 neighborhood and
tabu search as our metaheuristic for BJS no-swap instances that incorporates all the above-
mentioned procedures. An experimental analysis was conducted using instances from the
Lawrence [Lawrence, 1984], and Taillard [Taillard, 1993] benchmarks. For the purposes of
comparison, previously published results only exist for the Lawrence instances. On those in-
stances, we are able to obtain new best results on 28 out of the 40 instances. The average best
solution we obtained across multiple runs after just 10 minutes of simulation time is better
than the previous best known results on 21 out of the 40 instances. We also present results
on BJS problem instances as large as 100 × 20 (number of jobs × the number of machines)
in Taillard’s benchmark dataset for the first time in BJS literature. Prior to the work reported
here, the largest J×M BJS instances for which results have been published was 30× 10 and
15× 15.

6. For cases where J > M, we present a structural result that is satisfied by any feasible
schedule for a BJS instance. The new result reveals an important structural difference in
schedules for pure blocking and non-blocking problems. As real world problems typically
tend to have J ≥ M, discussing these structural characterizations is insightful. We discuss
the utility of such results in improving the implementation of job insertion based local search
procedures.

CHAPTER 4. BJS 66

Throughout this chapter we will assume that all jobs require service from every machine
exactly once, a common assumption made in literature. Note however, that all the local search
procedures presented in this work can be easily adapted to cases where jobs require services
from different subsets of machines or jobs may require a specific machine more than once.

4.3 Blocking Job Shop problem
In this section, we introduce the notation used in the rest of the chapter and formally de-
scribe the BJS problem. Our notation is based on the notation introduced in Balas and Vaza-
copoulos [1998] for the JS problem. For a BJS problem with M machines and J jobs, let
O = {oi|i = 1, . . . ,J ·M}, represent the set of all operations. For any operation o ∈ O, let
α(o) denote the job predecessor of o and γ(o) denote the job successor of o. The order in
which machines are accessed by each job is sometimes referred to as the technological order
of the job in literature. If o is the last operation in the technological order of the job, then γ(o)
should be interpreted as a dummy operation. Let Ō denote the set of all operations, including
the dummy operations at the end of each job. The processing duration of o, is denoted by p(o).
Let M : O → [1,M] output the machine required by operation o, and let J : Ō → [1,J]
output the job to which o belongs to. For o ∈ Ō, if we let to denote the start time of o, then
the makespan minimization formulation for the BJS problem is shown below.

min
T,to∈R+ ∀o∈Ō

T

subject to tγ(o) ≥ to + p(o) ∀o ∈ O, to ≤ T ∀o ∈ Ō,(
tu ≥ tγ(v)

)
∨
(
tv ≥ tγ(u)

)
∀u, v ∈ O such that M(u) = M(v) and u 6= v

A schedule generated for the BJS problem using the disjunctive formulation shown above may
contain swaps, refer to Section 4.1 for the definition of a swap. Unfortunately, a schedule with
swaps is infeasible for the BJS no-swap problem. To best model the no-swap constraint we
will instead work with a graphical representation of the BJS problem called the alternative
graph representation [Mascis and Pacciarelli, 2002].

The alternative graph G = (Ō, F,A) for the BJS problem is a triple, where Ō is the set
of nodes in G. F is the set of fixed directed arcs, i.e., F = {(o, γ(o))|o ∈ O}. The weight of
each arc (o, γ(o)) ∈ F is set to p(o). A is a set of directed alternative arc pairs. There is a
1:1 correspondence between pairs of operations in O that require the same machine and the
pairs of alternative arcs in A. For example, suppose oi, oj ∈ O with M(oi) = M(oj), then A
contains an arc pair ((γ(oi), oj), (γ(oj), oi)), modeling the fact that either oi is before oj , or oj
is before oi. Alternative arcs represent the blocking constraints and have 0 weight. Figure 4.1
shows a simple BJS problem expressed as an alternative graph.

A selection S is a subset of the alternative arcs in A, containing at most one arc from each
arc pair in A. Given a selection S and alternative arc pair e = (a1, a2) ∈ A, if S does not
contain either of the arcs in e, then following the notation in Mascis and Pacciarelli [2002] we
say that e is unselected in S. If a1 is present in S, then we say a1 is selected in S. Likewise,
we say that a1 is forbidden in S if a2 is present in S, i.e., a2 is selected in S. A selection

CHAPTER 4. BJS 67

(a) (b)

Figure 4.1: In Figure 4.1a, we show a problem with 2 jobs and 2 machines. The operations
corresponding to Job-1 (resp. Job-2) are o11, o12 (resp. o21, o22) and so o12 = γ(o11) (resp.
o22 = γ(o21)). In this example M(o11) = M(o22) and M(o12) = M(o21). In Figure 4.1b we
show the alternative graph representation of the problem. Nodes o13, o23 are dummy nodes. The un-
broken arcs in Figure 4.1b (shown in black) are the arcs in F . SinceM(o11) = M(o22), corresponding
to the pair o11, o22, we have alternative arcs (o12, o22) and (o23, o11) which are shown as dashed or-
ange arcs. Analogously, since M(o12) = M(o21), we have alternative arcs (o13, o21) and (o22, o12),
both shown in red. So in this example A = {((o12, o22), (o23, o11)) , ((o13, o21), (o22, o12))}. The
selection corresponding to the solution where o11 is serviced earlier than o22 and o12 is serviced earlier
than o21 is given by the set {(o12, o22), (o13, o21)}. Alternatively, if o22 is chosen to be the machine
successor of o11, and o12 as the machine successor of o21, then such a selection creates a 0 length
cycle involving nodes o12, o22. After o11 and o21 are serviced, the only way to continue servicing the
jobs is to swap the two jobs on the machines. For the BJS no-swap problem, such a resolution is not
permitted and represents a deadlock [Mascis and Pacciarelli, 2002].

S is complete if exactly one arc from each alternative arc pair is selected in S, and partial
otherwise.

Given a selection S, G(Ō, F ∪S) is the graph containing only arcs F ∪S. GivenG(Ō, F ∪
S), temporal relations between nodes can be inferred. If (u, v) ∈ F ∪ S and l(u, v) is the
length of the arc (u, v), then the relation tv ≥ tu+ l(u, v) is true, and hence one can compute a
complete (partial) schedule iffG(Ō, F∪S) does not contain positive length cycles. A selection
S is said to be consistent for the BJS no-swap problem iff G(Ō, F ∪ S) does not contain any
directed cycles, including 0 length cycles. 0 length cycles are prohibited to prevent deadlock
situations (refer Figure 4.1 for an example). We refer to a complete consistent selection as a
feasible selection.

Given a feasible selection S, a well known technique to derive a schedule using S makes
use of the longest path computations on the graph G(Ō, F ∪ S). Following standard practice
to facilitate this computation, we introduce dummy nodes θ,Λ, and introduce 0 length arcs
from θ to the first operation (node) in the technological order of each job, and 0 length arcs
from the dummy node (operation) of each job to Λ. Denote the graph with new nodes and arcs
included by G(Õ, F ∪S), where Õ = Ō∪ θ∪Λ. The notation LS(oi, oj) is used to denote the
cost of the longest path from node oi to node oj in G(Õ, F ∪ S). If a path does not exist from
oi to oj in G(Õ, F ∪ S), then we will assume LS(oi, oj) = −∞. A schedule from selection S
is obtained by setting the start time of each node o to LS(θ, o). The makespan of the schedule
associated to selection S is given by LS(θ,Λ). For brevity, in the rest of the chapter we will
abbreviate G(Õ, F ∪ S) as G(F ∪ S).

CHAPTER 4. BJS 68

Given a feasible selection S and operation o, let βS(o) denote the machine predecessor of o
in S, i.e., the operation preceding o onM(o). Let δS(o) denote the machine successor of o in S.
We define a minimal representation of a complete consistent selection S as the set of directed
arcs {(γ(o), δS(o)) |o ∈ O}. Denoting the minimal representation of S by Smin, observe that
although Smin is a selection containing fewer arcs than S, the longest paths between any
pair of nodes in G(F ∪ S) is preserved in G(F ∪ Smin) also. Often in this chapter, we present
algorithms that work by directly manipulating a minimal representation instead of its complete
selection counterpart.

For a consistent selection S, ifA is a subset of S, then the longest path cost from oi to oj in
G(F ∪ S) that does not use any arc in A is denoted by LS\A(oi, oj). We denote RS(o) ⊆ Õ as
the set of nodes reachable by a directed path originating from o ∈ Õ in G(F ∪ S). Likewise,
R̄S(o) ⊆ Õ denotes the set of nodes from which o is reachable by some directed path in
G(F ∪ S). PS(o) is the set of all directed paths originating from o ∈ Õ in G(F ∪ S), and
P̄S(o) is the set of all directed paths in G(F ∪ S) that terminate at o.

Techniques developed in this work extensively use the concept of topological ordering of
nodes in a graph. For a consistent selection S, a topological ordering of nodes in G(F ∪ S) is
a linear ordering of the nodes, such that, if (u, v) is an arc in G(F ∪ S), then u is before v in
the ordering. If TS is some valid topological order for nodes in G(F ∪ S), TS[i] denotes the
node at position i in TS , and T−1

S (o) denotes the position of node o in TS .

4.4 Critical blocks and N4 neighborhood

Given a feasible selection S for the BJS instance, a critical path cp(S) refers to any one of
the longest paths from θ to Λ in G(F ∪ S). Critical blocks, first introduced in the context
of JS problems, can be intuitively thought of as a maximal sequence of operations on cp(S)
that are executed on the same machine [Nowicki and Smutnicki, 1996]. Critical blocks play
a crucial role in the definition of local search neighborhoods for JS problems and its variants.
In the context of the BJS problem, the simple, intuitive definition for critical blocks needs to
be amended to handle complexities introduced due to blocking.

In BJS, any two consecutive operations ui, uj on the same machine are connected indi-
rectly in G(F ∪ S), via a job arc from ui to its successor γ(ui), and then an alternative arc
from γ(ui) to uj , i.e., the job successor of ui to the machine successor of ui. Thus, for any
consecutive sequence of operations (u1, . . . , un) (n ≥ 2) on the same machine m that lie on
cp(S), there will be a sub-path in cp(S) of the form u1, γ(u1), u2, γ(u2), · · · · · un. Analogous
to the JS definition of critical block, we define each such maximal sequence (u1, . . . , un) as a
type-1 critical block.

After extracting all type-1 critical blocks from cp(S), there can still be critical blocks in
cp(S) that have not been accounted for. In particular, there may still be additional alternative
arcs on cp(S), corresponding to situations where there are two consecutive operations on the
same machine but only the second operation of the pair is on cp(S). For every such additional
alternative arc (γ(u1), u2) on cp(S), we define (u1, u2) as a type-2 critical block.

Example 7. Consider the example in Figure 4.2. Looking at the critical path in Figure 4.2b,

CHAPTER 4. BJS 69

observe that (19, 1) is a maximal sequence of operations for the red machine, and the corre-
sponding sub-path on the critical path is 19, 20, 1. The corresponding type-1 critical block is
19 and 1, denoted by (19, 1) in Figure 4.2c. Similarly, (2,7), (8,5) and (16,10) are also type-1
critical blocks. The alternative arc (5,16) is not included in any of the sub-paths correspond-
ing to the type-1 critical blocks, so it defines the type-2 critical block (4,16). Note that all the
other arcs not included in type-1 critical blocks are job arcs (from operation 1 to operation
2, from 7 to 8, and from 10 to 11). Also, a type-1 critical block must contain at least two
operations, so 11 by itself is not considered as a critical block.

Using these critical block definitions, we can now describe the N4 neighborhood for BJS.
The moves that define the N4 neighborhood involve selecting a single operation in a critical
block cB, and moving the operation either before or after cB (referred to respectively as
either a forward and backward move). More precisely, assume we are given a critical block
cB = (u1, . . . , un). Then:

• A forward N4 move selects an operation w ∈ {u1, . . . , un−1} (n ≥ 2) and makes w
the machine successor of un (i.e., w is shifted to the end of cB). A forward move is
applicable to both the types of critical blocks.

• A backward move N4, alternatively, is applicable only to a type-1 critical block. There
are two cases:

– If the incoming arc to u1 on cp(S) is a job arc (i.e., arc in F), then an operation
w ∈ {u2, . . . , un} (n ≥ 2) is selected and made the machine predecessor of u1

(i.e., w is shifted to the beginning of cB, as is the case with backward moves in the
JS problem).

– If the incoming arc to u1 on cp(S) is an alternative arc (i.e., arc in S), then an
operation w ∈ {u2, . . . , un} (n ≥ 2) is made the machine predecessor of βS(u1)
This is because moving an operation to the block’s beginning in this case will not
result in a neighbor with lower makespan than that of S. The blocking time on the
machine cannot be reduced by such a move, since the blocking time is independent
of which operation is the first one in the block. This fact was also recognized in
Heitmann [2007] (see Theorem 6.2).

The set of all solutions that can be generated by applying these forward and backward
moves to all critical blocks of S is defined as the N4 neighborhood of S. The general motivat-
ing principle, as just alluded to, is to generate neighbors that move one or more operations on
cp(S), since only changes to the critical path can result in a solution with a smaller makespan
than S. In Section 4.5 we provide an efficient method for determining which N4 neighbors
are feasible. In Section 4.6, we discuss JIFR procedures for transforming infeasible N4 moves
into feasible solutions.

Example 8. To illustrate N4 neighborhood generation, recall the example shown in Fig-
ure 4.2. For the type-1 critical block (19, 1), both the forward and the backward move pro-
cedures create the same neighbor where 19 becomes the machine successor of 1. The next
two critical blocks, (2, 7) and (8, 5), are also type-1 critical blocks and yield analogous single

CHAPTER 4. BJS 70

(a) Topological order of operations

(b) Critical path

(c) Critical blocks

Figure 4.2: Consider a 4×5 BJS problem where operations belonging to job i are {6(i− 1) + k}6k=1,
and operation 6i is the dummy operation of job i. The technological order for each job can be inferred
from Figure 4.2a. Operations marked with the same color require the same machine, dummy operations
are marked gray. Figure 4.2a also represents a solution to the problem instance. In Figure 4.2a, the
operations are arranged according to a topological ordering of the solution and so the sequence of
operations on each machine can be inferred. For e.g. on the yellow machine, the order is 20, 2, 7, 17.
In Figure 4.2b, we show the critical path for our solution. In Figure 4.2c, each pair provides information
for a critical block. In each pair, the item on the left is the critical block and the figure to its right is the
sub-path on the critical path from which the critical block was derived.

neighbor results. The block (4, 16) is a type-2 critical block. In this case, the forward move
makes 4 the machine successor of 16. Finally, the block (16, 10) is a type-1 critical block so
the forward move makes 16 the successor of 10. However, in this case the incoming arc into
16 on the critical path is the alternative arc (5, 16), and consequently the backward move for
the block (16, 10) makes 10 the predecessor of 4.

4.5 Enumerating all N4 neighbors
In this section, we describe an efficient procedure for determining the feasibility of solutions
generated by N4 moves. Let S be a feasible selection, and cB = (u1, u2, . . . , un, l) be a
critical block in the critical path of G(F ∪ S). Recall from the definition of a critical block
that ui+1 = δS(ui), i = 1, . . . , n − 1 and δS(un) = l. The forward N4 move corresponding
to ui makes ui the machine successor of l. We present theoretical results showing that if the
forward move results in a cycle in the graph (meaning the move is infeasible), then the cycle
must contain the arc from the job successor of l to ui (Lemma 2). We use this result (in
Theorem 2) to prove that the feasibility of a forward move can be determined by checking for
the existence of a path in the initial G(F ∪ S), from ui to the job successor of l, that does not
contain the arc from the job successor of ui to the machine successor of ui (which is deleted by
the forward move). In Lemma 3 and Theorem 3, analogous results are shown for the backward
move.

Let Si be the selection obtained by making ui the machine successor of l. Based on
the theoretical results, we present an algorithm (Algorithm 1) that checks the feasibility of a
forward move by considering the outgoing arcs from ui and looking for a path in G(F ∪S) to
the job successor of l containing these arcs (and not containing the arc from the job successor

CHAPTER 4. BJS 71

of ui to the machine successor of ui). The path’s existence is a certificate for the inconsistency
of Si (as stated in Theorem 2). The algorithm uses a topological ordering of the nodes. For
nodes in the topological order between the first one in the critical block and ending with the
job successor of l, starting with the node before the job successor of l, and moving to the left,
the algorithm computes the longest path to the job successor of l. The longest path quantities
computed are then used to determine the subset of forward N4 moves associated with the
critical block that result in a feasible neighbor.

Next, we separately consider consistency checking for the forward and backward move.
We emphasize that the algorithms presented for consistency checking below work with the
minimal representations of feasible selections.

4.5.1 Consistency checking for the forward move
Given the minimal representation S of some feasible selection, consider the forward move
in which operation u is made the machine successor of operation l, and let S ′ be the result-
ing selection. To generate S ′, the arcs (γ(βS(u)), u), (γ(u), δS(u)) and (γ(l), δS(l)) must be
removed from S, and arcs (γ(βS(u)), δS(u)), (γ(l), u) and (γ(u), δS(l)) must be added. We
will recall this fact repeatedly in the proofs presented in this section. Portions of the graphs
G(F ∪ S), G(F ∪ S ′) that are affected by the move are shown in Figures 4.3a, 4.3b.

We begin with a lemma. If TS is a topological ordering of the nodes in G(F ∪ S), Lemma
1 (below) identifies paths in graphsG(F ∪S) andG(F ∪S ′) that are identical. First, a forward
move will not change either the reachable nodes or any of the possible paths originating in a
node that appears in TS after the position of the job successor of l, i.e., γ(l). Second, for any
of the nodes appearing before the position of u in TS , the forward move of u will not change
either the set of paths terminating in that node, or the set of nodes from which that node can
be reached.

Lemma 1. 1. For o ∈ Õ such that T−1
S (o) > T−1

S (γ(l)), we have PS(o) = PS′(o) and
RS(o) = RS′(o).

2. For o ∈ Õ such that T−1
S (o) < T−1

S (u), we have P̄S(o) = P̄S′(o) and R̄S(o) = R̄S′(o).

Proof. We prove 1; the proof of 2 is analogous. Let X = {o | o ∈ Õ, T−1
S (o) > T−1

S (γ(l))}.
For every o ∈ X , the definition of TS implies that RS(o) ⊆ X . While manipulating S to
get S ′, observe that no arc whose tail is a node present in X is added or removed. Since
RS(o) ⊆ X ∀o ∈ X , any path in G(F ∪ S) originating from a node in X can only contain
nodes in X , by the previous observation it follows then that such a path must also be present
in G(F ∪ S ′). Conversely, suppose G(F ∪ S ′) contains a path originating from a node in X
but absent in G(F ∪ S), then it must be the case that S ′ contains an arc (v, w), where v ∈ X
and w 6∈ X . Since v ∈ X , by our previous observation it implies (v, w) is also present in S.
However this contradicts the earlier established fact RS(v) ⊆ X since w ∈ RS(v) but w 6∈ X .
So no such (v, w) arc could have been present in S ′ to begin with.

Lemma 2 (below) states that if the forward move of u results in an inconsistent selection,
then the cycle in the graph is caused by the new (alternative) arc (γ(l), u) added to get S ′.

Lemma 2. If S ′ is inconsistent, then every cycle in G(F ∪ S ′) contains the arc (γ(l), u) .

CHAPTER 4. BJS 72

(a)

(b)

(c)

(d)

Figure 4.3: Figures (4.3a) (resp. (4.3c)) show a partial portion of G(F ∪ S). Red crosses
indicate that those arcs will be removed by the forward move (resp. backward move). Figures
(4.3b) (resp. (4.3d)) show a partial portion ofG(F ∪S ′). Green arrows indicate that those arcs
were added by the forward move (resp. backward move). In figures (4.3a), (4.3c), (4.3b) and
(4.3d), only arcs that are referenced in the makespan computation of G(F ∪ S ′) are shown.

CHAPTER 4. BJS 73

Proof. If S ′ is inconsistent, then G(F ∪ S ′) contains a cycle. Suppose the cycle in G(F ∪
S ′) does not contain any of the following arcs: (γ(l), u), (γ(βS(u)), δS(u)), (γ(u), δS(l)),
then observe that such a cycle necessarily passes through arcs present in G(F ∪ S) also, but
since we know that S is consistent this case cannot happen. So the cycle must necessarily
contain at least one of those 3 arcs mentioned earlier. Suppose the cycle contains the arc
(γ(βS(u)), δS(u)), then it must have been the case that δS(u) ∈ R̄S′(γ(βS(u))). Clearly
δS(u) /∈ R̄S(γ(βS(u))), since otherwise S could not have been consistent. So by extension
δS(u) /∈ R̄S′(γ(βS(u))), since R̄S′(γ(βS(u)) = R̄S(γ(βS(u)) by Lemma 1. Hence, we have
reached a contradiction. Similarly using Lemma 1, we can show that the cycle cannot contain
the arc (γ(u), δS(l)) either. So every cycle in G(F ∪ S ′) contains the arc (γ(l), u).

Lemma 2 implies that if S ′ is inconsistent, then there must exist a path from u to γ(l) in
G(F∪S ′). Theorem 2 provides a procedure to check consistency of S ′ by examining the graph
G(F ∪ S), and looking for a path from u to γ(l) that does not contain the arc (γ(u), δS(u))
(this arc is deleted when moving u forward, i.e., (γ(u), δS(u)) 6∈ S ′).

Theorem 2. If S ′ is inconsistent, then any path P from u to γ(l) in G(F ∪ S ′) is also present
in G(F ∪ S). Conversely, any path P ′ from u to γ(l) in G(F ∪ S) that does not pass through
the arc (γ(u), δS(u)) can be found in G(F ∪ S ′).

Proof. In the proof of Lemma 2, we have implicitly shown that any path P from u to γ(l) in
G(F ∪ S ′) cannot pass through the arcs (γ(βS(u)), δS(u)), (γ(u), δS(l)). Further, P does not
pass through the arc (γ(l), u) since P is a path from u to γ(l) in G(F ∪ S ′). Hence, P only
passes through arcs that are also present in G(F ∪ S), so P can be found in G(F ∪ S) also.
Note that P cannot pass through the arc (γ(u), δS(u)), since it is absent in G(F ∪ S ′).

To prove the second statement, observe that given some topological ordering TS for the
nodes in G(F ∪ S), the portion of P ′ to γ(l) in G(F ∪ S) can only contain nodes from the
set W = {o|o ∈ Õ, T−1

S (u) ≤ T−1
S (o) < T−1

S (γ(l))}. Notice that γ(u) is the only node in
W with an outgoing alternative arc that is different in S and S ′, i.e., (γ(u), δS(u)) ∈ S but
(γ(u), δS(u)) 6∈ S ′. The outgoing arcs of the remaining nodes in W are identical to those
in G(F ∪ S ′). So we conclude that P ′ only passes through arcs which are also present in
G(F ∪ S ′).

Example 9. Let’s apply Theorem 2 to determine the feasibility of the neighbors generated
by the forward move for the case shown in Example 8. Consider the neighbor generated by
applying the forward move to the critical block (16, 10) in which 16 (i.e., u) becomes the
machine successor of 10 (i.e., l). Since 11 is the machine successor of 15, G(F ∪S) (where S
corresponds to the solution shown in Figure 4.2) contains the arc (16, 11) (and by extension
a path from u to γ(l)), and so Theorem 2 would predict that the forward move will generate
an infeasible neighbor. Let us verify this claim. First note that both in the old solution and the
neighbor, 15 is the machine predecessor of 11, and the forward move makes 16 the machine
successor of 10 in the neighbor. Clearly the neighbor generated contains a deadlock situation
involving operations 10,11,15 and 16 (substitute them for o11, o12, o21, o22 in Figure 4.1 for
visualizing the deadlock), and so the neighbor is indeed infeasible. We leave it as an exercise
for the reader to verify that the only feasible neighbors in Example 8 generated by applying
forward moves are those obtained from critical blocks (8, 5) and (4, 16).

CHAPTER 4. BJS 74

Analogous results relating feasibility of a neighbor and the existence of certain paths in
G(F ∪ S) (such as path P defined in Theorem 2) have been published in Balas and Vaza-
copoulos [1998] for the JS problem. In this work we extend these results for the BJS problem.
Further, we exploit these results to propose an efficient algorithm for enumerating all feasible
neighbors that are generated by applying N4 moves to a critical block.

Algorithm to determine feasibility of forward moves

Algorithm 5 determines the subset of forward N4 moves associated with a critical block that
result in a feasible neighbor. Consider the critical block cB = (u1, . . . , un, l) (n ≥ 1). To
determine whether any given forward move for operation ui is feasible, the algorithm checks
for the existence of a path from ui to γ(l) in G(F ∪ S) that does not go through the arc
(γ(ui), δS(ui)). If such a path exists, then by Theorem 2 we know that Si is inconsistent. The
only outgoing arcs from ui in G(F ∪S) are (ui, γ(ui)) and (ui, δS(α(ui))). The only outgoing
arcs from γ(ui) are to γ(γ(ui)) and δS(ui), and also recall that (γ(ui), δS(ui)) is removed by
the forward move (see Figure 4.3a). Consequently, determination of forward move feasibility
checking for ui reduces to checking two conditions:

1. Whether there is a path from γ(γ(ui)) to γ(l) in G(F ∪ S). If a path exists, i.e., if
LS(γ(γ(ui)), γ(l)) > −∞, then the forward move is infeasible.

2. Whether there is a path from δS(α(ui)) to γ(l) in G(F ∪ S) that does not pass through the
arc (γ(ui), δS(ui)), in which case the forward move is infeasible. Contrary to the previous
case, this check is not equivalent to determining if LS(δS(α(ui)), γ(l)) > −∞, since the
longest path (if any) may have passed through the arc (γ(ui), δS(ui)) (which is removed by
the forward move of ui).

If neither of these checks yield a path, then the forward move of ui is feasible.
To perform these checks, Algorithm 5 uses two arrays A,B of length |Õ| to store longest

path costs:1

• For i ∈
[
T−1
S (u1), T−1

S (γ(l)
]
, we compute LS(TS[i], γ(l)) and store it in A[i].

• For i ∈ [1, n] and j ∈
(
T−1
S (ui), T

−1
S (γ(ui))

]
, we compute the longest path cost from

TS[j] to γ(l) that does not pass through the arc (γ(ui), δS(ui)) and store it in B[j], i.e.,
B[j] = LS\(γ(ui),δS(ui))(TS[j], γ(l)).

To facilitate computation of these checks, we define an operator
TS
� (shown in Eqn (4.1))

that compares nodes in Õ based on their position in TS . Similarly,
TS� is the operator obtained

by replacing ≥ in Eqn (4.1) with >.

o1

TS
� o2 :=

{
true, if T−1

S (o1) ≥ T−1
S (o2)

false, otherwise
(4.1)

1Note that while our algorithm computes longest path costs to determine the existence of paths, the same
results could be obtained by simply computing reachability. The computational cost is the same either way.

CHAPTER 4. BJS 75

Algorithm 5 Feasibility Check(TS , cB = (u1, . . . , un, l))

1: for i ∈
[
T−1
S (u1), T−1

S (γ(l))
)

do
2: A[i]← −∞, B[i]← −∞
3: i← T−1

S (γ(l)), k ← n, A[i]← 0
4: while i > T−1

S (u1) do
5: i← i− 1, o← Ts[i]

6: if γ(l)
TS
� γ(o) and A[T−1

S (γ(o))] 6= −∞ then
7: A[i]← A[T−1

S (γ(o))] + p(o)

8: if γ(l)
TS
� δS(α(o)) then

9: A[i]← max(A[i], A[T−1
S (δS(α(o)))])

10: if γ(un)
TS
� o then

11: if o = γ(uk) and γ(l)
TS
� γ(γ(uk)) then

12: if A[T−1
S (γ(γ(uk)))] 6= −∞ then

13: B[i]← p(o) + A[T−1
S (γ(γ(uk)))]

14: if γ(uk)
TS� o and o 6= uk then

15: if γ(uk)
TS� γ(o) and B[T−1

S (γ(o))] 6= −∞ then
16: B[i]← p(o) +B[T−1

S (γ(o))]

17: else if γ(l)
TS
� γ(o)

TS� γ(uk) and A[T−1
S (γ(o))] 6= −∞ then

18: B[i]← p(o) + A[T−1
S (γ(o))]

19: if γ(uk)
TS
� δS(α(o)) then

20: B[i]← max(B[i], B[δS(α(o))])

21: else if γ(l)
TS
� δS(α(o))

TS� γ(uk) then
22: B[i]← max(B[i], A[T−1

S (δS(α(o))])
23: if o = uk then
24: k ← k − 1

For critical block cB, the steps to compute A and B are specified in Algorithm 5. The
algorithm proceeds by iterating over the nodes in reverse topological order from γ(l) to u1.
For each node o encountered, lines 6 through 9 compute LS(o, γ(l)) as the longest path be-
tween o and γ(l) through the outgoing arcs from o, i.e., (o, γ(o)) and (o, δS(α(o))) and store
it in buffer A. By traversing TS in the reverse topological order, both LS(γ(o), γ(l)) and
LS(δS(α(o)), γ(l)) have been previously computed and stored in A; and these values are used
to compute LS(o, γ(l)).

Buffer B is populated in lines 11 through 22. Since un is the last operation in cB for
which feasibility of the forward move needs to be determined, T−1

S (γ(un)) is the last index
of B needed (line 10). Recall from the definition of buffer B, for u ∈ {u1, . . . , un} and
j ∈

(
T−1
S (u), T−1

S (γ(u))
]
, B[j] needs to be set to LS\(γ(u),δS(u))(TS[j], γ(l)). In lines 11

through 13, we compute the longest such path from γ(u) to γ(l) passing through the arc
(γ(u), γ(γ(u))). In lines 14 through 22, nodes occurring between T−1

S (u) and T−1
S (γ(u))

CHAPTER 4. BJS 76

are encountered in reverse topological order. The two outgoing neighbors for each node are
considered separately. If the outgoing node occurs later than γ(u) in TS , then a path to γ(l) is
unaffected by the arc (γ(u), δS(u)), and the corresponding path cost can be computed using
values in A, as shown in lines 17-18 and 21-22. If the outgoing node occurs no later than γ(u)
in TS , then the longest path cost from that outgoing node to γ(l) not passing through the arc
(γ(u), δS(u)) was already computed and stored in buffer B, and can be used as shown in lines
15-16 and 19-20.

Once buffers A,B are populated using Algorithm 5, Proposition 2 identifies all the fea-
sible forward moves for critical block cB. The complexity of executing Algorithm 5 is
O (TL(cB)), where TL(cB) = T−1

S (γ(l))− T−1
S (u1).

Proposition 2. The forward move that makes ui the machine successor of l results in a feasible
selection iff none of these conditions are true:

(i) B[T−1
S (γS(ui))] 6= −∞

(ii) (γ(ui)
TS� δS(α(o))) and B[T−1

S (δS(α(o)))] 6= −∞

(iii) γ(l)
TS
� δS(α(o))

TS� γ(ui) and A[T−1
S (δS(α(o)))] 6= −∞

Proof. Condition (i) checks the existence of a path from ui to γ(l) through the arc (γ(ui), γ(γ(ui))).
Conditions (ii) and (iii) check the existence of a path from ui to γ(l) through arc (ui, δS(α(ui))),
that does not pass through (γ(ui), δS(ui)).

Given buffers A,B, the complexity of checking the conditions mentioned in Proposition
2 for each forward move is O(1). So the overall complexity of checking feasibility of the
outputs of all forward moves in the critical block cB is O(TL(cB)).

4.5.2 Consistency checking for backward moves
Let S be the minimal representation of a feasible selection. Consider the backward move
in which u becomes the machine predecessor of operation f , and denote the output of the
move by S ′. To generate S ′, the arcs (γ(βS(f)), f), (γ(βS(u)), u) and (γ(u), δS(u)) must be
removed from S, and arcs (γ(βS(f)), u), (γ(u), f) and (γ(βS(u)), δS(u)) must be added.

We state a Lemma analogous to Lemma 1 and a theorem analogous to Theorem 2.

Lemma 3. 1. For o ∈ Õ such that T−1
S (o) < T−1

S (f), we have P̄S(o) = P̄S′(o) and
R̄S(o) = R̄S′(o).

2. For o ∈ Õ such that T−1
S (o) > T−1

S (γ(u)), we have PS(o) = PS′(o) and RS(o) =
RS′(o).

Lemma 3 states that a backward move will not change the paths to any node that appears
in the topological order TS before f , and it will also not change the paths originating from a
node that appears in TS after the job successor of the operation u that is moved.

CHAPTER 4. BJS 77

Theorem 3. If S ′ is inconsistent, then there exists a path from f to γ(u) in G(F ∪ S ′). Any
such path P from f to γ(u) in G(F ∪S ′) is also present in G(F ∪S). Conversely, any path P ′

from f to γ(u) in G(F ∪ S) which does not pass through the arc (γ(βS(u)), u) is also found
in G(F ∪ S ′).

The proof of Theorem 3 is similar to the proof for Theorem 2. Based on Theorem 3, an
algorithm analogous to Algorithm 5 and Proposition 2 can be formulated; these are not shown.

We have also developed a theoretical basis for efficiently computing the makespan of the
feasible neighbors and these results are also incorporated into the tabu search procedure de-
scribed later in Section 4.8. However, given the high percentage of infeasible solutions that
are typically produced using the N4 neighborhood in the BJS context, the key determiner of
solving efficiency is the procedure for recovering feasibility. So we consider feasibility recov-
ery in Section 4.6. For completeness, the makespan computation for feasible N4 neighbors is
included in the Appendix, see Section B.

4.6 Job insertion feasibility recovery (JIFR)
For any generated move that is determined to be inconsistent, the next step is to transform it
into a feasible neighbor solution. In this section, we describe two JIFR algorithms that can
be applied to accomplish this. Before describing the algorithms, we briefly introduce some
terminology. An alternative arc a is said to be associated to a job J if either J(tail(a)) or
J(head(a)) is J , where head(a) (resp. tail(a)) refers to the head (resp. tail) of arc a. An
alternative arc pair is said to be associated with a job J if the arcs in the pair are associated
to J . At a high level, a JIFR algorithm takes as input an inconsistent selection generated by
a N4 move, and then chooses a job whose operations can be rearranged to produce a feasible
selection. All the alternative arcs associated to the chosen job are removed from the incon-
sistent selection and the resulting consistent partial selection is then extended to a complete
consistent (feasible) selection by reinserting the job. The two JIFR algorithms that will be
presented in this section differ in the way that the retracted job is chosen; both use the same
job insertion algorithm presented in Section 4.7. The job insertion procedure takes as inputs a
job J , a consistent selection SJ with all alternative arc pairs associated with J unselected in
SJ , and an alternative arc a associated with J , and the procedure outputs a feasible selection
S̄ with S̄ containing a.

4.6.1 JIFR-1
JIFR-1 (Algorithm 6) is similar to approaches from earlier work [Bürgy, 2017; Dabah et

al., 2017]. By removing all alternative arcs associated with job J in line 4, any cycle that
was present in S ′ earlier can no longer remain after the arcs have been removed, a fact that is
deducible from Lemma 2. In line 5, setting a = (γ(l), u) means that we are searching for a
feasible selection S̄ where u is processed after l, but u is not constrained to be the machine
successor of l. A feasible selection S̄ can always be recovered in line 5. An example of such
a selection is to construct S ′ by adding arcs from the unselected arc pairs, such that, the last

CHAPTER 4. BJS 78

Algorithm 6 JIFR-1 for the N4 forward move
1: Given: Inconsistent selection S ′, generated from solution S by making u the machine

successor of l.
2: Output: A feasible selection S̄.
3: Select job J from the set {J(u), J(l)}.
4: Remove all arcs associated with J from S ′

5: Apply Job Insertion (i.e., Algorithm 8) with J , S ′ and a = (γ(l), u) as input to obtain S̄.
6: return S̄

operation on every machine belongs to job J . The complexity of Algorithm 6 is dominated
by the complexity of the Job Insertion procedure.

Algorithm 6 assumes that the infeasible selection was generated by a N4 forward move;
adapting it to the backward move is easy. Suppose the backward move makes operation u
the machine predecessor of f , then the changes to make to Algorithm 6 are: in line 3, J is
selected from the set {J(u), J(f)}, and arc a in line 5 is set to (γ(u), f).

4.6.2 JIFR-2
JIFR-2 provides an alternative way to convert the inconsistent selection S ′ into a consistent
selection. At a high level for the output of a forward move, JIFR-2 finds a job J other than
J(l), J(u), and removes all arcs associated with J from S ′. A job insertion procedure is then
invoked to reinsert J and extend S ′ to a feasible selection. When performing the N4 for-
ward move on the minimal selection, the new selection obtained by omitting a job J can be
constructed by following three steps shown below. We present theoretical results for deter-
mining whether job J (different from J(l) or J(u)) disconnects γ(l) and u, meaning that the
new selection is consistent; the proofs are based on the minimal representation of the feasible
selection S.

Let Smin denote the minimal representation of the feasible selection S, and let S ′min denote
the selection obtained by performing the N4 forward move on Smin. Since S ′ is inconsistent,
by Lemma 2 we know that all cycles in G(F ∪ S ′min) pass through the arc (γ(l), u). JIFR-2
identifies a job such that the removal of this job breaks all paths from u to γ(l), disconnecting
all cycles. For any job J other than J(l), J(u), let S ′J denote the selection obtained by
omitting job J from S

′
min. S ′J can be constructed as follows:

1. Copy all arcs in S ′min to S ′J .

2. To skip jobJ we add all arcs from setHJ to S ′J , whereHJ = {(γ(βS′(o)), δS′(o)) |o ∈ O,
J(o) = J }.

3. Remove all arcs associated with job J from S
′
J .

If G(F ∪ S ′J) is consistent, then J is a job that disconnects γ(l) and u. If J disconnects γ(l)
and u, we can use the Job Insertion procedure to reinsert J .

CHAPTER 4. BJS 79

Example 10. Note that the forward move applied to the critical block (2, 7) in Example 8
generates an infeasible neighbor. G(F ∪ S) (where S corresponds to the solution shown in
the top row of Figure 4.2) contains the path 2, 15, 23, 8 which by Theorem 2 is a certificate
of infeasibility for the forward move. We will apply JIFR-2 to restore feasibility. Since by
Theorem 2 one of the cycles that is present in the infeasible neighbor (i.e., G(F ∪ S ′)) is
2, 15, 23, 8, 2, one possibility to disconnect the cycle is to remove operations belonging to
either job J(15) (i.e., 3) or J(23) (i.e., 4) (note JIFR-1 would have selected J(2) = 1 or
J(7) = 2 instead). We will leave at as an exercise for the reader to verify that G(F ∪ S ′J) is
indeed consistent if J is 3 or 4.

Determining whether J disconnects γ(l) and u

Checking whether J disconnects γ(l) and u is equivalent to determining whether G(F ∪ S ′J)
does not contain any cycles. By exploiting the fact if S ′J is inconsistent then every cycle in
G(F ∪ S ′J) contains the arc (γ(l), u), Theorem 4 provides a simple procedure to determine
consistency of S ′J .

Lemma 4. If S
′
J is inconsistent, then every cycle in G(F ∪ S ′J) contains the arc (γ(l), u).

Proof. Suppose o1, o2 are a pair of nodes which are not connected by a path in G(F ∪ S ′min),
then observe that o1 and o2 could not have been connected by a path in G(F ∪ S ′J) either.
The reader can verify this fact from the definition of HJ , since every arc in HJ is between
a pair of nodes which is connected by a path in G(F ∪ S ′min). So by extension, any cycle in
G(F ∪ S ′J) is at best a shorter version of some cycle that already exists in G(F ∪ S ′min).

By Lemma 2, every cycle in G(F ∪ S ′min) contains the arc (γ(l), u). From Theorem 2, we
know that every path from u to γ(l) in G(F ∪ S ′min) is present in G(F ∪ Smin). Hence, all
nodes involved in any cycle present in G(F ∪ S ′min) must belong to the set
{o|o ∈ Õ, T−1

S (u) ≤ T−1
S (o) ≤ T−1

S (γ(l))}. Based on the above arguments, for a (short) cycle
by-passing the arc (γ(l), u) to exist in G(F ∪ S ′J), it must be the case that S ′J contains an
arc (x, y) (other than (γ(l), u)) with T−1

S (u) ≤ T−1
S (y) < T−1

S (x) ≤ T−1
S (γ(l)). Clearly

G(F ∪ Smin) contains no such arc (x, y), since otherwise TS is not a valid topological order
for G(F ∪ S). Further, observe that no such arc (x, y) was included while constructing S ′min
from Smin, and S ′J from S

′
min. Hence no such arc (x, y) is present in G(F ∪ S ′J). Hence, all

cycles in G(F ∪ S ′J) contains the arc (γ(l), u).

Theorem 4. If S
′
J is inconsistent, then every path from u to γ(l) in G(F ∪ S ′J) can be found

by searching for a path from u to γ(l) in G(F ∪ Smin ∪ HJ) such that the path does not
contain the arc (γ(u), δS(u)) nor any node that belongs to job J . Conversely every path from
u to γ(l) in G(F ∪ Smin ∪HJ) that does not contain the arc (γ(u), δS(u)) nor any node that
belongs to job J can also be found in G(F ∪ S ′J).

Proof. By Lemma 4, consistency checking of G(F ∪ S ′J) is equivalent to checking for the
existence of a path from u to γ(l) in G(F ∪ S ′J). Checking for a path from u to γ(l) in
G(F ∪ S ′J) is the same as checking for a path from u to γ(l) in G(F ∪ S ′min ∪ HJ) which
does not contain any node belonging to job J . Nodes belonging to job J need to be skipped
because arcs associated with J were removed in step 3 while constructing S ′J from S

′
min.

CHAPTER 4. BJS 80

Observe that both in the case of G(F ∪S ′min) and G(F ∪Smin), all arcs in HJ are between
nodes that are previously connected by a path in those graphs. So adding arcs from HJ to
G(F ∪ S ′min) or G(F ∪ Smin) cannot lead to the creation of a path between a pair of nodes
if the pair of nodes was not connected by a path prior to the addition of arcs from HJ . We
know from Theorem 2 that the set of all paths from u to γ(l) in G(F ∪ S ′min) is identical
to the set of all paths from u to γ(l) in G(F ∪ Smin) where every path in the latter set must
not contain the arc (γ(u), δS(u)). So we can deduce that the set of all paths from u to γ(l) in
G(F ∪S ′min∪HJ) is identical to the set of all paths from u to γ(l) inG(F ∪Smin∪HJ) where
every path in the latter set must not contain the arc (γ(u), δS(u)). So consistency checking of
G(F ∪S ′J) is the same as checking the existence of a path from u to γ(l) inG(F ∪Smin∪HJ)
that does not contain the arc (γ(u), δS(u)) nor any node that belongs to job J .

Theorem 4 tells us that consistency checking of S ′J can be performed using Smin in com-
plexity O(T−1

S (γ(l))− T−1
S (u)), simply by determining whether there exists a path from u to

γ(l) that does not contain the arc (γ(u), δS(u)), nor any node that belongs to job J .

4.6.3 Algorithm to perform JIFR-2

Algorithm 7 JIFR-2 for the N4 forward move
1: Given: Inconsistent selection S ′, generated from solution S by making u the machine

successor of l.
2: Output: A feasible selection S̄.
3: Select a job J other than J(u), J(l) that disconnects γ(l) and u. If no such job can be

found, then return.
4: Select any arc a associated with J in G(F ∪ S) such that a occurs on a path from u to
γ(l) in G(F ∪ S).

5: Remove all arcs associated with J from S ′.
6: Apply Algorithm 8 with J , S ′ and ā as input to obtain S̄, where ā is the paired arc of a

that was forbidden in S.
7: return S̄.

Algorithm 7 describes JIFR-2. Note that there can be more than one eligible candidate
for job J in line 3, and more than one candidate arc a in line 4 for the chosen job J . While
Algorithm 7 shows how to generate a single neighbor, we can generate more neighbors by
considering all combinations of job and arc pairs satisfying the conditions in lines 3 and 4.
The size of the neighborhood can be controlled by the user by omitting some of those combi-
nations. The overall complexity of executing Algorithm 7 is dominated by the Job Insertion
procedure.

The rationale to select ā (i.e., the paired alternative arc of a) for inclusion in S̄ in line 6
is: if we blame arc a as the reason why S ′ is inconsistent, then to make S ′ consistent we need
to disconnect the path from u to γ(l) in G(F ∪ S ′). One way to disconnect the path would
be to remove a from S ′. In other words, we are interested in a feasible selection S̄ containing
ā. Finally, unlike JIFR-1, J selected in line 7 is different from J(u), J(l). However, there is

CHAPTER 4. BJS 81

Algorithm 8 Job Insertion Algorithm
1: Given: Job J to be inserted, consistent selection SJ with all arc pairs in AJ unselected.

Arc a to be included in S̄.
2: Output: A complete consistent selection S̄.
3: S̄ ← SJ .
4: q ← a.
5: repeat
6: S̄ ← S̄ ∪ q.
7: Bq ← ∅
8: Gather inferred arcs in set Bq.
9: for each arc g ∈ Bq do

10: S̄ ← S̄ ∪ g
11: if No arc pair in AJ is unselected in S̄ then
12: return S̄
13: else
14: Apply SMCP to get the next arc q to include in S̄ from the unselected arc pairs in

AJ .
15: until No arc pair from AJ is unselected in S̄.

no guarantee there is a job J that disconnects γ(l) and u in line 3. While with JIFR-1 we are
always able to recover a feasible solution, there is no such guarantee with JIFR-2.

4.7 Job insertion
In this section, we describe the Job Insertion procedure. The inputs to the procedure are: a job
J to be inserted, an alternative arc a associated to J , and a consistent selection SJ containing
selections for all alternative arc pairs in A other than the arc pairs associated with J . The set
of arc pairs in A associated to J is denoted by AJ ; note all arc pairs in AJ are unselected in
SJ . Algorithm 8 extends SJ to a complete consistent selection S̄ which includes a.

Algorithm 8 is a simple temporal propagation type procedure. In line 8, as a consequence
of including arc q in line 6, additional arcs that need to be included in S̄ from the unselected
arc pairs inAJ can be inferred. The inferred arcs are included in S̄ in line 10. In line 11, if no
more unselected arc pairs remain in AJ , then the algorithm terminates, and we simply return
the feasible selection S̄ as the output. Else, we use a heuristic to select the next arc from the
remaining unselected arc pairs in AJ to include in S̄, and go back to line 6. The heuristic we
use to choose the arc to include is the Select Most Critical Pair heuristic (SMCP) [Mascis and
Pacciarelli, 2002].

For each unselected alternative arc pair e = 〈g1, g2〉 in AJ remaining in line 14, SMCP
first computes the value She = min(LS̄∪g1

(θ,Λ) , LS̄∪g2
(θ,Λ)), and selects the arc pair with

the maximum She value. Say the selected arc pair is ē = 〈ḡ1, ḡ2〉, SMCP assigns arc q in line
14 to argmin

ḡ1,ḡ2

(LS̄∪ḡ1
(θ,Λ) , LS̄∪ḡ2

(θ,Λ)).

Identifying the inferred arcs is one of the computationally expensive parts of the Job In-

CHAPTER 4. BJS 82

sertion procedure. While generic ways to perform inference exist in scheduling literature
(see Oddi et al. [2012]), computationally efficient methods specialized for BJS problems have
not received sufficient attention. To perform the “inference" step efficiently, we revisit the Job
Insertion polytope introduced in [Gröflin and Klinkert, 2007] and employ the polytope’s struc-
tural properties to develop an efficient algorithm. These structural properties allow us to build
a data structure in terms of a conflict graph, on which we can perform inference efficiently.
We also point out that this insight has been previously used (see Gröflin and Klinkert [2009];
Bürgy [2017]), however we make some additional contributions of our own to improve the
efficiency and these are summarized in Section 4.7.5.

4.7.1 Job insertion polytope
We are given as input J , SJ ,AJ as defined in the beginning of Section 4.7. A feasible se-
lection S̄ to the job insertion problem is a complete consistent selection s.t. SJ ⊂ S̄. The
Job insertion polytope (JIP) provides a polyhedral characterization of the space of feasible
selections to the job insertion problem, we review the JIP in this section.

Notice that any feasible selection S̄ to the job insertion problem can be completely de-
scribed by specifying which alternative arc from each alternative pair in AJ is selected in S̄.
For each alternative arc pair 〈a1, a2〉 ∈ AJ , binary variables xa1 , xa2 ∈ {0, 1} are introduced
to indicate whether arcs a1, a2 are present in S̄. Using these binary variables, a set of linear
constraints that any feasible selection to the Job Insertion problem must satisfy is presented.

To specify the constraints, we adopt the following notations. For any directed arc g, recall
the head of g is denoted by head(g) and the tail of g by tail(g). Given an alternative arc
pair from AJ , it will be important to distinguish the alternative arc from the pair whose head
belongs to J from the arc in the pair whose tail belongs to J . Without loss of generality,
for any alternative arc pair 〈a1, a2〉 ∈ AJ , we assume that head(a1) is a node belonging to
J , consequently tail(a2) also belongs to J . Finally, we introduce a function pos : Ō → N,
which takes as input a node (say o) from the graph G(F ∪ SJ), and returns the position of o
within sequence of nodes belonging to job J(o).

Suppose 〈g1, g2〉, 〈h1, h2〉 ∈ AJ are distinct arc pairs satisfying the following conditions:

(I) pos(head(g1)) ≤ pos(tail(h2)),
(II) A path exists from head(h2) to tail(g1) in G(F ∪ SJ).

then, notice that S̄ cannot contain both g1 and h2 simultaneously, since G(F ∪ S̄) will contain
a non-negative length cycle. So the constraints that are introduced to ensure consistency of S̄
(i.e., the cycle elimination constraints) are:

xg1 + xh2 ≤ 1, ∀〈g1, g2〉, 〈h1, h2〉 ∈ AJ s.t.〈g1, g2〉, 〈h1, h2〉 are distinct pairs and (I), (II) are satisfied
(4.2)

xa1 + xa2 = 1 ∀〈a1, a2〉 ∈ AJ (4.3)

Theorem 2 from Gröflin and Klinkert [2009] implies that constraints in Eqn (4.2) are sufficient
to eliminate all cycles and thus ensure consistency of S̄. Eqn (4.3) is the assignment constraint,

CHAPTER 4. BJS 83

which ensures that exactly one arc is chosen from any arc pair in AJ . Putting them together,
the Job insertion polytope is:

(JIP): conv
(
x ∈ {0, 1}2|AJ ||x satisfies Eqns (4.2) and (4.3)

)
, where conv denotes convex hull.

(4.4)
According to Gröflin and Klinkert [2007], there is a 1:1 correspondence between the vertices
of JIP and feasible selections to the Job Insertion problem. The JIP in Eqn (4.4) is described
by M(J − 1) assignment constraints in (4.3), and at most O(M2J2) cycle elimination con-
straints corresponding to Eqn (4.2).

4.7.2 Conflict Bipartite graph representation of the JIP
As Gröflin and Klinkert [2007] have shown, the JIP can be conveniently represented as a
bipartite graph. Following standard convention, letGJc = (U1, U2, E) denote a bipartite graph,
where U1, U2 are vertex sets and E is an edge set. Each edge in E connects a vertex in
U1 to a vertex in U2. Slightly abusing notation, we define U1 = {va1|〈a1, a2〉 ∈ AJ }, and
U2 = {va2|〈a1, a2〉 ∈ AJ }. So U1 contains vertices corresponding to all alternative arcs whose
head lies in J , while U2 contains vertices corresponding to all alternative arcs whose tail lies
in J . The edges in E represent all pair-wise conflicts between alternative arcs. By pair-wise
conflicts, we mean that E contains the edge (vg1 , vh2), if including both alternative arcs g1 and
h2 in S̄ will result in S̄ being inconsistent. Notice that Eqns (4.2), (4.3) precisely prohibits
all pair-wise edge conflicts from occurring in S̄. So, corresponding to each constraint in Eqns
(4.2) and (4.3), E contains an edge between the appropriate pair of vertices. Formally:

E ={(va1 , va2)|〈a1, a2〉 ∈ AJ }
∪ {(vg1 , vh2)|〈g1, g2〉, 〈h1, h2〉 ∈ AJ s.t.〈g1, g2〉, 〈h1, h2〉 are pair-wise distinct and (I), (II)

are satisfied.}

It was shown in Gröflin and Klinkert [2007] that there is a 1:1 correspondence between
maximum stable sets of GJc and vertices of JIP. Any maximum stable set of GJc has cardi-
nality |AJ | = M(J− 1). Since GJc was constructed using selection SJ , for convenience, we
also refer to GJc as the conflict graph for SJ .

4.7.3 Performing Algorithm 8 using the conflict graph
Given the above background, we can make the Job Insertion algorithm provided in Algo-
rithm 8 more precise by modifying it to employ the conflict graph. In addition to the inputs
of Algorithm 8, we assume that the conflict graph GJc (U1, U2, E) for SJ is also provided as
input; the output (as before) will be a feasible selection S̄ s.t. SJ ∪ {a} ⊂ S̄. The resulting
algorithm is a temporal propagation procedure coupled with SMCP, where the propagation
portion is reminiscent of the closure procedure from Bürgy [2017].

We use the following notations for describing Algorithm 9. For vertex v ∈ U1 ∪ U2,
let ∆GJc

(v) denote the set of all vertices in GJc connected to v by an edge in E. Define a
function V (·) which takes as input an alternative arc belonging to some alternative arc pair in

CHAPTER 4. BJS 84

Algorithm 9 Job Insertion With Conflict Graph
1: Given: Job J to be inserted, consistent selection SJ with all arc pairs in AJ unselected,

and conflict graph GJc . Arc a to be included.
2: Output: A complete consistent selection S̄
3: Initialize: Stack K ← {V (a)}, sets Q, Q̄← ∅, selection S̄ ← SJ .
4: repeat
5: repeat
6: w ← K.pop()
7: if w ∈ Q then
8: continue
9: Q.insert(w)

10: S̄ ← S̄ ∪ V −1(w)
11: for all u ∈ ∆GJc

(w) do
12: if u 6∈ Q̄ then
13: Q̄.insert(u) { u excluded from the stable set since an edge connecting u and w

exists in GJc .}
14: ū← V (Pa(V −1(u)))
15: if ū 6∈ Q then
16: K.push(ū) {Since V −1(u) will be excluded from S̄, V −1(ū) must be included

in S̄ due to Eqn (4.3).}
17: until K is empty
18: if |Q| = |AJ | then
19: return S̄
20: else
21: Apply SMCP to get the next arc q to include in S̄ from unselected arc pairs in AJ
22: K.push(V (q))
23: until No arc pair from AJ is unselected in S̄.

AJ , and returns the vertex in GJc corresponding to the input alternative arc. We define the
inverse function V −1(·) which takes as input a vertex from U1∪U2, and returns the alternative
arc corresponding to the vertex. Finally, we introduce a function Pa(·), which takes as input
an alternative arc, and returns its paired arc. So if 〈a1, a2〉 ∈ AJ , then Pa(a1) = a2 (resp.
Pa(a2) = a1).

Algorithm 9 constructs the feasible selection S̄ by computing a maximum stable set Q
on GJc . The alternative arcs corresponding to vertices in Q are included in the selection S̄.
Algorithm 9 consists of 2 nested loops, where the inner loop (lines 5 - 17) essentially performs
the inference step mentioned earlier in Algorithm 8. In this inference step, the effect of adding
a vertex w into the stable set is propagated to infer other vertices that must also be included in
(or excluded from) the stable set as a consequence. SMCP is applied to obtain the next arc q
to include in S̄ on each iteration of the outer loop, and the overall process terminates when a
maximum stable set of GJc is found (line 18).

CHAPTER 4. BJS 85

4.7.4 Complexity of executing Algorithm 9
We can decompose the execution of Algorithm 9 into an inference by propagation step (inner
loop) and the SMCP step (line 21). We first analyze the complexity of the propagation step.
In this step, the vertices that need to be included (or excluded) in the stable set are discovered
by examining edges in E through lines 11 - 16. Algorithm 9 examines each edge in E at most
twice, and so the complexity of the propagation step for the entire execution of Algorithm 9
is bounded by O(|E|). A single execution of the SMCP step in line 21 requires O(MJ)
computations, and so if the outer loop in Algorithm 9 executes r times, the overall run time of
Algorithm 9 is bounded by O(|E|) + rO (MJ). While M(J− 1) is a trivial upper bound for
r, empirically we observe that r is often significantly smaller than M(J− 1) for SMCP.

Algorithm 9 requires the conflict graph as an input to the algorithm. Obtaining all the edges
in the conflict graph is expensive, since for every pair of alternative pairs 〈g1, g2〉, 〈h1, h2〉 ∈
AJ satisfying condition (I), we need to check if condition (II) is also true. Note that we need
to verify this condition for O(M2J2) pairs. Checking condition (II) for each pair can be done
using simple path-finding algorithms like depth-first search, or through the use of the Floyd-
Warshall algorithm. The complexity of constructing the conflict graph with such procedures
is O(M3J3).

4.7.5 Improving the complexity of job insertion
From Section 4.7.4 we can generally conclude that the complexity of performing job inser-
tion using an expensive procedure to construct a dense conflict graph is detrimental to the
performance of local search, since these conflict graphs need to be constructed at every iter-
ation of the search, and in the worst case up to J conflict graphs (one for each job) at any
given iteration may need to be constructed. In the following section, we show that using at
most O(M2J) cycle elimination constraints along with the constraints in Eqn (4.3) suffices
for representing the JIP. Note that by reducing the number of cycle elimination constraints
needed to represent JIP, we can prune the edges in the conflict graph. In sections 4.7.6 and
4.7.7 we enumerate the pruned set of cycle elimination constraints and also provide a method
to generate the pruned set of constraints in O(M2J) complexity. With these improvements,
the complexity of performing Job Insertion with Algorithm 9 on the sparser conflict graph is
upper bounded byO (M2J) + rO (MJ), where r recall is the number of times the outer loop
in Algorithm 9 is executed.

Before moving on to the proposed improvements, we briefly explain how our work ad-
vances the current state of the art. In Gröflin and Klinkert [2007], the authors implicitly
recognized that some constraints in Eqn (4.2) were redundant, so they only included the ir-
redundant cycle elimination constraints in their description of the JIP. However, they do not
specify the irredundant set from the constraints shown in Eqn (4.2), nor do they provide an
efficient method for generating these constraints. Our work proposes an efficient procedure
for obtaining the JIP.

Algorithm 9 can also be used to obtain the output of the closure procedure [Gröflin and
Klinkert, 2009]. We restrict Algorithm 9 to one complete execution of the inner loop. For
all unselected arc pairs remaining after the previous step, we retain the same selection that

CHAPTER 4. BJS 86

is present in S for each of those arc pairs. This scheme has a complexity of O(M2J), since
r = 1. Bürgy [2017] conceptually describes closure on a conflict graph, but a method for con-
structing the conflict graph is not mentioned. Our work provides an efficient implementation
for closure in the context of BJS.

Finally, the current state-of-the-art results for the BJS problem are due to Dabah et al.
[2017, 2019], and their approach for feasibility recovery is similar to JIFR-1. A partial selec-
tion is iteratively expanded, and every time a new selection is made, it is followed by a check
to determine if there exists an unselected arc pair for which a selection cannot be made without
leading to inconsistency. A complexity analysis for their procedure is not provided, but they
remark that it is expensive. In comparison, the empirical results in Section 4.9.3 suggests that
our procedure is cheaper.

4.7.6 Pruning redundant cycle elimination constraints

Let ŌJ denote the set of nodes in Ō other than those that belong to job J . Given SJ , some
topological order TSJ for nodes in G(F ∪ SJ), we define fmo for each o ∈ ŌJ and each ma-
chine m as shown below in Eqn (4.5).

fmo =

θ, if no path to o from any node in ŌJ requiring machine m exists in G(F ∪ SJ){
arg max

u
T−1
SJ

(u) s.t. u∈ŌJ∩O,M(u)=m and a path
from u to o exists in G(F∪SJ)

}
, otherwise

(4.5)

Definition 1. For o ∈ ŌJ , Ho = {fmo |m ∈ {1, 2, . . . ,M}} denotes the predecessor map for
o in SJ .

The predecessor map of o provides a compact representation of the set of other nodes whose
start times can be no later than the start time of o in any feasible schedule obeying the same
relative ordering of operations on machines as also implied in SJ .

Definition 2. {Ho}o∈ŌJ will be referred to as the predecessor buffer for SJ , where Ho is as
defined in Definition 1.

Assuming we have computed fmo for all nodes in ŌJ , we can specify the pruned set of
cycle elimination constraints by making use of conditions (I) and (II) from Section 4.7.1. The
first set of constraints in the pruned set are:

xg1 + xh2 ≤ 1, ∀ pairwise distinct 〈g1, g2〉, 〈h1, h2〉 ∈ AJ s.t. condition (I) is satisfied

and fM(head(h2))
tail(g1) = head(h2) (4.6)

Note that if fM(head(h2))
tail(g1) = head(h2), then condition (II) is satisfied by 〈g1, g2〉, 〈h1, h2〉, which

automatically implies validity of Eqn (4.6) as a cycle elimination constraint. There are no more
than (J−1)M(M+3)

2
constraints corresponding to Eqn (4.6). To see why, note there are exactly

M(J − 1) candidates for g1. For any given g1, there are at most M + 1 − pos(head(g1))
candidates for h2 satisfying the conditions in Eqn (4.6).

CHAPTER 4. BJS 87

We move on to the second set of constraints in the pruned set. For any o ∈ O∩ŌJ (i.e., all
dummy nodes and job J ′s nodes are excluded), let u(o) ∈ O denote the node belonging to job
J which requires the same machine as o, i.e., J(u(o)) = J and M(u(o)) = M(o). Consider
the arcs g(o) = (γ(u(o)), o), and h(o) =

(
γ(u(o)), δSJ (o)

)
. g(o) is an alternative arc to node

o, and h(o) is an alternative arc to the machine successor of o according to SJ . δSJ (o) in the
strictest sense is an abuse of notation since SJ is not a complete selection, nonetheless SJ
defines a complete consistent selection for the system of jobs other than J , hence δSJ (o) can
be computed relative to those jobs from SJ . The other constraints in the pruned set are:

xg(o) ≤ xh(o) ∀o ∈ O ∩ ŌJ (4.7)

Equation (4.7) is equivalent to the logical implication (xg(o) =⇒ xh(o)). The validity of Eqn
(4.7) follows from the fact that any complete consistent selection containing SJ and arc g(o)
must also contain h(o), since if u(o) is serviced before o, it also implies that u(o) is serviced
before δSJ (o). There are M(J− 2) constraints corresponding to Eqn (4.7).

Proposition 3. Every constraint in Eqn (4.2) is implied by the set of constraints in Eqns (4.6)
and (4.7).

Proof. Let 〈g1, g2〉, 〈h1, h2〉 ∈ AJ denote a pair of distinct alternative arc pairs corresponding
to which there is a cycle elimination constraint in Eqn (4.2), and let w = f

M(head(h2))
tail(g1) . If

head(h2) = w, then there is already an identical constraint in the system of inequalities
specified in Eqn (4.6), and so there is nothing to prove in this case. Recall thatM(head(h2)) =

M(w), so if head(h2)
TSJ
� w, then the existence of a path from head(h2) to tail(g1) in G(F ∪

SJ) trivially contradicts the definition ofw. So we can assume thatw
TSJ
� head(h2). We know

that the constraint xg1 +x(tail(h2),w) ≤ 1 is specified in the system of inequalities corresponding

to Eqn (4.6). Since w
TSJ
� head(h2) and M(w) = M(head(h2)), by transitivity on the

system of inequalities in (4.7), we know that the constraint xh2 ≤ x(tail(h2),w) is implied.
Adding the previous two constraints gives us the cycle elimination constraint for the pair
〈g1, g2〉, 〈h1, h2〉.

As a consequence of Proposition 3, an alternate representation for JIP is shown in Eqn
(4.8). For constructing the conflict graph for SJ based on the JIP representation in Eqn (4.8),
we can reuse the procedure from Section 4.7.2. In order to do so, we need to convert Eqn (4.7)
into an inequality of the form as shown in Eqn (4.6). Notice that we could have alternatively
written Eqn (4.7) as xg(o) + xPa(h(o)) ≤ 1, where Pa(·) returns the paired alternative arc as
defined in Section 4.7.3. Finally, observe that the conflict graph GJc corresponding to the JIP
in Eqn (4.8) is sparser than the version described in Section 4.7.2, since the JIP in Eqn (4.8)
is described by roughly a factor of J fewer constraints.

conv(x ∈ {0, 1}2|AJ ||x satisfies Eqns (4.3), (4.6) and (4.7)) (4.8)

CHAPTER 4. BJS 88

4.7.7 Computation of fmo
Algorithm 10 computes fmo for all o ∈ ŌJ , based on the following idea. Let the selection
Smin denote the minimal representation of SJ . Then, observe that we could have replaced SJ
in Eqn (4.5) by Smin, since if there exists a path between some pair of nodes in G(F ∪ SJ),
then the same pair of nodes are connected by a path in G(F ∪ Smin) as well. Given any node
v ∈ ŌJ , notice that any path to v in G(F ∪Smin) passes through either α(v) or γ(βSJ (v)). So
suppose we have fmα(v) and fmγ(βSJ (v)), then obtaining fmv can be done as shown in lines 7 - 10.

Algorithm 10 traverses the nodes in ŌJ in some topological order TSJ (say) of G(F ∪ SJ),
and computes the desired f ·· for each node by comparing with the f ·· values of the node’s
predecessors. The complexity of computing TSJ is O(MJ), and the complexity of executing
Algorithm 10 isO(M2J), since for each node in ŌJ we make 2M comparisons (lines 7 - 10).

Algorithm 10 Computing fmo
1: Input: G(F ∪ SJ), TSJ

2: fmo =

{
o if o ∈ O and m = M(o)

θ otherwise
, ∀o ∈ ŌJ

3: for i← 1 : |TSJ | do
4: v ← TSJ [i] {v is the node in position i of TSJ }
5: if J(v) = J then
6: continue
7: for all w ∈ {α(v), γ(βSJ (v))} do
8: for all m ∈ {1, 2, . . . ,M} do

9: if fmw
TSJ
� fmv then

10: fmv ← fmw

4.8 Tabu search metaheuristic implementation
We implemented our local search procedure using tabu search, a popular metaheuristic

choice for JS and BJS problems. The tabu search implementation is described in Algorithm 11.
A tabu list of fixed length L stores attributes of solutions that occurred in the previous L
iterations. The search discourages revisiting solutions by checking if they contain attributes
that are stored in the tabu list. The algorithm chooses the neighbor with the lowest cost in
the neighborhood as the solution for the next iteration. Following Bürgy [2017], the cost of
a neighbor is computed as the sum of the neighbor’s makespan plus a correction term. The
correction term is set to 0 if the neighbor does not contain an attribute present in the list,
else it is set to k B, where k is the earliest position in the tabu list of an attribute present
in the neighbor, and B is a large constant to discourage tabu solutions being selected over
non-tabu neighbors. The progress of the search is monitored, and if for some user defined
maxNonImprov iterations no new best solution is found, the search is restarted with a new
seed.

CHAPTER 4. BJS 89

Algorithm 11 Tabu Search Framework
1: Given:
2: Initial feasible solution with selection S.
3: Initial tabu list TL.
4: best iteration← 0, iteration← 0,
5: best solution← makespan(S).
6: repeat
7: Set S ′ to be the best neighbor of S
8: Update tabu list with attributes of S ′

9: if makespan(S ′) < best solution then
10: best solution← makespan(S ′)
11: best iteration← iteration
12: else
13: if iteration - best iteration > maxNonImprov then
14: return best solution
15: else if objectives cycling then
16: return best solution
17: S ← S ′

18: iteration← iteration + 1
19: until Termination Criterion
20: return best solution

With respect to maintaining and updating the tabu list (line 8), the basic idea is to treat
a move as a sequence of machine swap operations and add an entry into the tabu list corre-
sponding to each swap. This idea was adopted from Dell’Amico and Trubian [1993], and we
explain our implementation with the help of an example. Let S be the selection corresponding
to the solution of the current iteration, and let operations o1, o2, o3 form a critical block on
cp(S), where o2 = δS(o1) and o3 = δS(o2). Assume the best solution in the neighborhood is
obtained by the N4 forward move for S, which makes operation o1 the machine successor of
operation o3. The tabu list is updated by deleting the oldest entry from the list, and inserting
the set H = {(o1, o2), (o1, o3)} at the end of the list. Symmetrically, to check if a neighbor
contains a tabu attribute, we check whether a swap from the sequence of swaps associated to
the N4 move that generated the neighbor is present in the tabu list. If present, such a neighbor
is considered to be tabu by the list.

Tabu search suffers from the drawback of cycling, i.e., repeatedly encountering the same
sequence of solutions during search. To detect cycles, we employ the long term memory
structures previously used in Nowicki and Smutnicki [1996]. A necessary condition to detect
cycling is the following. Denote V ec to be a vector of nonnegative reals, where V ec[i] is set
equal to the makespan value of the solution at iteration i. Assume V ec[i] = V ec[i − a] =
V ec[i− 2a] = . . . = V ec[i− ka], where a, k are some positive numbers. We characterize this
sequence of solutions as cycling with period a and having completed k cycles. If k exceeds a
certain pre-defined constant maxCycle, tabu search is restarted from a new seed/elite solution
(see next paragraph).

CHAPTER 4. BJS 90

Another common practice to enhance tabu search performance is to restart the search pro-
cess by keeping track of elite solutions [Nowicki and Smutnicki, 1996]. Elite solutions are
previously encountered promising makespan neighbors that were skipped over for some other
solution in the neighborhood for the subsequent iteration. When a restart is performed, the
most promising elite solution recorded is chosen as the starting solution, and the state of the
search (i.e., tabu list) is restored to what it was when the elite solution was first encountered.
Our implementation of elite solutions was adopted from Bürgy [2017].

4.9 Evaluation

4.9.1 Neighborhoods considered
Note that we can replace N4 with N5, and still apply all the techniques presented in Sections
4.5 - 4.7, since N4 subsumes N5. Briefly, the moves in N5 are a restricted version of the
N4 moves. In our description of the forward move in Section 4.4, N5 restricts w to just the
machine predecessor of un if the neighbor is being generated from a type-1 critical block.
Similarly, for the backward move, N5 restricts w to just the machine successor of u1. For the
solution shown in Example 8, the N4 and N5 neighbors coincide.

In Section 4.9.3, we report results with both N5 and N4 neighborhoods. Although N4
subsumes N5, there are several important pragmatic considerations when choosing a neigh-
borhood for practical applications. Given the fact that constructing a single neighbor with Job
Insertion is very expensive, one may wonder if choosing a neighborhood that is smaller would
perform better within practical computational time budgets. With a smaller neighborhood, the
search can obviously transition between many more solutions within a given time limit. Also,
since search using smaller neighborhoods are more likely to get stuck earlier in local minima,
the search will be restarted more often. Restarts can help diversify the search, thus improving
the overall performance.

4.9.2 Experimental setup
All experiments in this section were carried out on an Intel i7-4790 3.6 GHz processor.
Our code is implemented in C++ and runs on one CPU thread. For all experiments we set
maxCycle = 3, B = 100, and maxNonImprov = 200. The tabu length parameter was set
based on instance size; details are given in Section 4.9.3.

For every infeasible solution generated by a N4 move, 2 feasible solutions can be recovered
with JIFR-1 since there are 2 choices for J in line 3 of Algorithm 6. However, recalling the
discussion in Section 4.6.3, more than 2 feasible solutions can be recovered from a given
infeasible solution when using JIFR-2. Including both feasibility recovery procedures often
results in a very large neighborhood, and our experimental design was influenced by this
observation. For all experiments reported in this chapter, JIFR-1 was applied to recover 2
feasible solutions for every infeasible solution generated during the search. JIFR-2, in contrast,
was used more selectively. JIFR-2 was only used in a subset of the experiments performed
and for those that included it, JIFR-2 was applied in addition to JIFR-1 only when a new best

CHAPTER 4. BJS 91

solution has not been found for 0.7 ∗maxNonImprov consecutive search iterations. In this
case, we continued applying JIFR-2 until either a new best solution was found or a restart
occurred. Intuitively, one can think of our implementation as expanding the search space
dynamically to avoid getting stuck in a sub-optimal region.

Finally, as mentioned in Section 4.8, whenever a restart occurs during tabu search, the
starting solution is either an elite solution previously discovered during search, or a seed so-
lution is randomly generated. Restart from a randomly generated seed solution occurs iff no
unexplored elite solution remains at that stage. A seed solution is randomly generated in two
steps. First a random permutation of jobs is generated. Then the solution (selection) is ob-
tained from the permutation order as follows: Suppose job J occurs earlier than J̄ in the
permutation order, then for every machine m ∈ {1, 2, . . . ,M}, the operation in J that re-
quires m is serviced earlier by machine m than the operation in J̄ requiring m. The seed
solutions generated typically are of very poor quality in terms of makespan.

4.9.3 Experimental Results
Currently, best known solutions for the BJS problem with no swap are only available for
instances from the Lawrence benchmark. In Table 4.1 we report the results (makespan) we
obtained on these benchmark instances, and compare them with previous best known results.
For the experiments with N5 neighborhood reported under Table 4.1, only JIFR-1 was used
for feasibility recovery, while for experiments using N4 both JIFR-1 and JIFR-2 were used,
where JIFR-2 was applied selectively as described in Section 4.9.2. Note that the two chosen
configurations represent extremes in terms of neighborhood sizes, where the former is the
smallest and the latter is the largest among the set of possibilities considered in this work.
Following common practice for reporting results in BJS literature (see [Bürgy, 2017], [Gröflin
et al., 2011]), we ran our tabu search approach 10 times for each instance in the dataset, and
recorded the best solution for each of those 10 runs after 1, 5, 10, 20 and 30 minutes. We report
the best solution obtained among those 10 runs under the Best columns in Table 4.1. We also
report the average of the best solutions across the 10 runs under the Avg columns. We report
results after 5 and 20 minutes in Table 6 (see Appendix B.5). The tabu length for experiments
reported under Table 4.1 was set to 10. The solution with the best makespan across the 10 runs
for each instance can be accessed from https://github.com/jmogali/Solution_
Data/tree/master/Results_Data.

Most of the previous best known results on the Lawrence instances are due to Dabah et al.
[2019]. Out of the 40 instances, we report new best results on 28 instances. On 11 instances,
our best result matches with the previous best known result, and on only one instance, i.e.,
LA14, the previous best solution is better than the one we obtained with either neighborhood.
Note that we have obtained better solutions on most of the larger instances, i.e., instances
having more than 10 jobs or machines. Relative to the previous best known results, the average
improvement we have obtained is 2.95% for the 15 × 10 instances, 5.37% for the 20 × 10
instances, 4% for the 30 × 10 instances, and 2.35% for the 15 × 15 instances. The setting
under which the experiments were carried out in Dabah et al. [2019] is different to ours. Some
previous best results due to Dabah et al. [2019] in Table 4.1 were produced using a parallel
tabu search with 240 concurrent CPU threads on a supercomputer. Unfortunately, the average

https://github.com/jmogali/Solution_Data/tree/master/Results_Data
https://github.com/jmogali/Solution_Data/tree/master/Results_Data

CHAPTER 4. BJS 92

Table 4.1: Performance comparison against previous best known on Lawrence instances using
N5, and N4 neighborhoods. Numbers in bold font indicate the makespan of the best solution
for that instance. Underlined instances are those for which a new best solution is reported by
an experiment conducted in this work.

Previous N5 with JIFR-1 N4 with JIFR-1 & 2
Inst. Size best 60 sec 600 sec 1800 sec 60 sec 600 sec 1800 sec

known Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg
LA01 10 × 5 881a,b,c 881 881 881 881 881 881 881 881 881 881 881 881
LA02 10 × 5 900a,b,c 900 900 900 900 900 900 900 900 900 900 900 900
LA03 10 × 5 808a,b,c 808 808 808 808 808 808 808 808 808 808 808 808
LA04 10 × 5 859a,b,c 859 859 859 859 859 859 859 859 859 859 859 859
LA05 10 × 5 732a,b,c 732 732 732 732 732 732 732 732 732 732 732 732
LA06 15 × 5 1199c 1195 1203.2 1194 1195.2 1194 1194.4 1194 1205.1 1194 1195 1194 1194.2
LA07 15 × 5 1130c 1127 1132.1 1127 1127.2 1127 1127 1127 1132.4 1127 1127 1127 1127
LA08 15 × 5 1173c 1173 1190.2 1173 1175.3 1173 1173 1173 1189.4 1173 1173.8 1173 1173
LA09 15 × 5 1311b,c 1305 1312.3 1305 1305 1305 1305 1305 1316 1305 1305.5 1305 1305.1
LA10 15 × 5 1222c 1222 1226.9 1218 1221.2 1218 1220 1218 1228.3 1218 1220.8 1218 1220
LA11 20 × 5 1591c 1563 1588.2 1522 1557.3 1501 1538.7 1558 1596 1522 1557.3 1522 1543.6
LA12 20 × 5 1399c 1388 1414.1 1353 1382.1 1353 1375.9 1397 1417.6 1353 1391.1 1353 1383.7
LA13 20 × 5 1538c 1523 1545.6 1508 1531.6 1508 1518.7 1554 1569.5 1508 1527.7 1508 1523.4
LA14 20 × 5 1544c 1582 1602.5 1568 1586 1557 1571.6 1575 1615.2 1548 1574 1548 1564.9
LA15 20 × 5 1616c 1565 1621.8 1565 1591.5 1565 1586.4 1605 1626.8 1587 1596.4 1578 1591.2
LA16 10 × 10 1148a,b,c 1148 1148.6 1148 1148 1148 1148 1148 1148.6 1148 1148 1148 1148
LA17 10 × 10 968a,b,c 968 968 968 968 968 968 968 969.9 968 968 968 968
LA18 10 × 10 1077a,b,c 1077 1082.4 1077 1077 1077 1077 1077 1090.9 1077 1077 1077 1077
LA19 10 × 10 1102a,b,c 1102 1110.5 1102 1102 1102 1102 1102 1114.1 1102 1102.4 1102 1102
LA20 10 × 10 1118a,b,c 1118 1118 1118 1118 1118 1118 1118 1123.6 1118 1118 1118 1118
LA21 15 × 10 1501c 1518 1556.6 1483 1514.2 1483 1499 1508 1547.8 1483 1516.7 1483 1505
LA22 15 × 10 1368c 1328 1376.2 1328 1355.1 1328 1341 1328 1399.3 1328 1363.2 1328 1342.9
LA23 15 × 10 1534c 1475 1525.2 1475 1505.6 1475 1483.9 1524 1564.9 1475 1513.1 1475 1497.4
LA24 15 × 10 1447c 1439 1482.8 1402 1441.2 1402 1408.1 1402 1466.2 1402 1432.5 1402 1419.4
LA25 15 × 10 1453c 1445 1466.7 1409 1420.1 1409 1418.3 1422 1465.9 1406 1428.9 1406 1420.9
LA26 20 × 10 1968c 1928 1980.8 1906 1957 1885 1928.2 1920 2002.1 1870 1929.6 1870 1920.3
LA27 20 × 10 2047c 2006 2064.8 1957 2025 1933 2007.4 2041 2092.5 1992 2045.2 1987 2028
LA28 20 × 10 2046c 1993 2016.7 1973 1997.2 1937 1972.8 1972 2051.1 1972 2016.5 1971 1989.8
LA29 20 × 10 1857c 1844 1898.3 1819 1862.8 1764 1825.9 1819 1898 1808 1869.6 1808 1850.3
LA30 20 × 10 2033c 1944 2024.6 1944 1991 1939 1965.3 2005 2050.6 1953 2008.6 1953 1987.8
LA31 30 × 10 2866c 2760 2842.8 2746 2784.5 2746 2780.8 2815 2893.5 2760 2824.7 2714 2811.6
LA32 30 × 10 3040c 2994 3106.6 2982 3038.2 2982 3029.2 3004 3124.5 2962 3010.9 2928 2995.2
LA33 30 × 10 2803c 2738 2843.1 2717 2783.2 2717 2770.6 2779 2866.2 2732 2768.7 2732 2765.7
LA34 30 × 10 2862c 2843 2905.7 2769 2831.9 2769 2831.9 2838 2937.7 2812 2858.6 2812 2855.6
LA35 30 × 10 2871c 2880 2938.4 2762 2850.4 2762 2849.8 2889 2953.8 2806 2886.8 2757 2855.2
LA36 15 × 15 1757c 1733 1804.3 1697 1763.5 1683 1731.3 1733 1804.5 1701 1762.3 1700 1742.8
LA37 15 × 15 1871c 1887 1929.4 1862 1903.8 1856 1879.7 1881 1943.5 1881 1912.8 1867 1907.9
LA38 15 × 15 1716c 1675 1734.5 1665 1725.2 1665 1697.4 1726 1761.9 1692 1726.8 1670 1707.6
LA39 15 × 15 1750c 1750 1792.2 1728 1758.5 1728 1745.2 1725 1782.7 1720 1749.8 1720 1741.1
LA40 15 × 15 1742c 1737 1785.4 1712 1755.5 1712 1743.3 1766 1798.4 1747 1769.7 1735 1760.9

a = Mati et al. [Mati and Xie, 2011], b = Pranzo and Pacciarelli [Pranzo and Pacciarelli,
2016], c = Dabah et al. [Dabah et al., 2019]

CHAPTER 4. BJS 93

Instance Size # Iterations for # Iterations for
N5 with JIFR-1 N4 with JIFR -1 & 2

10×5 2186983 1831003
15×5 898528.5 738437.6
20×5 495716.7 375890.1
10×10 716766.8 385476.4
15×10 265798.2 138097.8
20×10 150163.7 71599.6
30×10 63237.1 28826.6
15×15 142547.4 58196.1

Table 4.2: Average # of tabu search iterations within 30 min-
utes for experiments conducted corresponding to Table 4.1.

Instance size # Iterations
15 × 10 277012.1
20 × 10 179871.5
30 × 10 62709.3
15 × 15 145515.9

Table 4.3: The number of
tabu search iterations on LA
instances in 30 minutes av-
eraged across 10 runs with
N4 neighborhood and JIFR-
1.

time it takes to obtain solutions is not provided in Dabah et al. [2019]. We computed the
average of the best solution makespan obtained using our approach after 10 minutes across
the 10 runs, and found that this value was strictly better than the previous best known solution
on 21 out of the 40 instances for both N5 and N4 neighborhoods.

The best solution found using N4 was better than the best solution using N5 on 7 instances,
whereas the best solution found using N5 was better than the best solution using N4 on 12
instances. In terms of the best solution makespan averages, the results were better with N5
on 21 instances, while the results were better using N4 on only 6 instances. The number of
tabu search iterations within 30 minutes averaged across the 10 runs for each neighborhood
is provided in Table 4.2. On at least 4 out of the 5 instances for each of the problem sizes:
20×5, 15×10, 20×10 and 15×5, we observed that the best solution makespan average after
30 minutes with N5 is better than with N4. For those problems sizes, we can observe that we
are able to roughly perform twice the number of tabu search iterations with N5 as compared
to N4, which perhaps explains the strong performance with N5.

Gauging the computational speedup

The main contributing factors to the strong performance of our approach over prior approaches
are the efficiency improvements we proposed, namely for feasibility detection of N4/N5 neigh-
bors, makespan computations and the Job Insertion procedure. We observed that generally be-
tween 40-45% of the N4 neighbors generated were feasible, thus allowing us to skip invoking
any feasibility recovery procedure for those neighbors. None of the papers using Job Insertion
for feasibility recovery include details on the implementation of the recovery procedure, so
making a quantitative statement about improvement in complexity is not possible. For a sense
of the speed-up achieved with our approach, we compare the number of tabu search iterations
completed within a given time limit using other approaches.

Among the papers that have reported results for BJS with no swap, only Dabah et al. [2017,
2019] use Job Insertion for feasibility recovery. All experiments in Dabah et al. [2017] were
performed with the N1 neighborhood, and the procedure they applied for feasibility recovery
is described in Section 4.7.5. Note that their feasibility recovery procedure is very similar in

CHAPTER 4. BJS 94

spirit to JIFR-1. They performed 100,000 Tabu search iterations on the 10× 5, 15× 5, 20×
5, 10 × 10 Lawrence (LA) instances and 50,000 iterations for the larger LA instances (on a
2GHz CPU). While the average time to complete those iterations was not provided in Dabah et
al. [2017], the authors remark that it takes roughly 5 minutes for small instances and between
2-3 hours for the larger instances. In Table 2 of Dabah et al. [2019], the same group of authors
as Dabah et al. [2017] provide the average time it takes to complete 1000 iterations of Tabu
search for the 30 × 10 LA instances with N1 neighborhood. The average timings they report
are no less than 1000 seconds for all instances.

To understand how much speed up has been gained with our efficiency improvements,
we performed the following experiment. We recorded the average number of tabu search
iterations we were able to perform within 30 minutes on the LA instances using N4 neighbor-
hood and JIFR-1. We choose N4 for comparison because the number of neighbors in the N4
neighborhood is (roughly) twice the size of N1 neighborhood, so the number of times the Job
Insertion procedure is invoked during search is roughly proportional for the two approaches.
The average number of tabu search iterations within 30 minutes across 10 runs for the larger
LA instances is reported in Table. 4.3.

Impact of JIFR-2 on search performance

The inclusion of JIFR-2 helps to increase the neighborhood size, but it may lead to fewer
restarts thus limiting search diversity, or the additional computational cost may limit the over-
all exploration of the search space. We conducted an experiment on the larger Lawrence
instances LA21- LA40, where we studied the impact of including JIFR-2 with N4 and N5. We
conducted 5 independent runs of 20 minutes on each of those LA instances for both neigh-
borhoods with and without JIFR-2, and recorded the makespan of the best solution obtained
in each run. For the experiments involving the N5 (resp. N4) neighborhood with and with-
out JIFR-2, we ensured that the randomly generated seeds were identical, to remove any bias
caused by these seed solutions. We summarize the results below.

We observed that with the N5 neighborhood, the solution with the lowest makespan across
the 5 runs was obtained with JIFR-2 included on 8 out of the 20 instances, and without JIFR-2
on 7 out of the 20 instances. However, the value of the best solution makespan after 20 minutes
averaged across the 5 runs was better without JIFR-2 on 15 out of the 20 instances. For the N4
neighborhood, similar trends were observed. Best results with JIFR-2 included were produced
on 8 out of the 20 instances, and without JIFR-2 on 5 out of the 20 instances. The best result
averages across the 5 runs was better without JIFR-2 on 11 out of the 20 instances.

While the results in the previous paragraph demonstrate the utility of expanding the neigh-
borhood with JIFR-2 in achieving better best results, the average best results tell a different
story. It is not all that frequent that JIFR-2 is able to guide the search to more promising re-
gions during search. The problem can be attributed to the fact that including JIFR-2 results in
a very large neighborhood. This observation suggests that alternative schemes that enumerate
fewer neighbors generated with JIFR-2 may be beneficial in balancing the trade-off between
solution quality and an enlarged neighborhood. Such schemes are an interesting direction for
future research.

CHAPTER 4. BJS 95

Table 4.4: Best and average result after 60 seconds with N4 and JIFR-1 & 2 compared against
results reported in a = Mati and Xie [2011], b = Pranzo and Pacciarelli [2016]

Instance Previous Best Avg
best result (60 sec) (60 sec)
from a, b

LA01 881a , b 881 881
LA02 900a , b 900 900
LA03 808a , b 808 808
LA04 859b 859 859
LA05 732b 732 732
LA06 1243a 1194 1205.1
LA07 1143b 1127 1132.4
LA08 1213b 1173 1189.4
LA09 1311b 1305 1316
LA10 1237b 1218 1228.3
LA11 1683b 1558 1596
LA12 1479a 1397 1417.6
LA13 1642b 1554 1569.5
LA14 1686b 1575 1615.2

Instance Previous Best Avg
best result (60 sec) (60 sec)
from a, b

LA15 1682b 1605 1626.8
LA16 1148b 1148 1148.6
LA17 968b 968 969.9
LA18 1077b 1077 1090.9
LA19 1124b 1102 1114.1
LA20 1164b 1118 1123.6
LA21 1627b 1508 1547.8
LA22 1435b 1328 1399.3
LA23 1574b 1524 1564.9
LA24 1530b 1402 1466.2
LA25 1558b 1422 1465.9
LA26 2159b 1920 2002.1
LA27 2191b 2041 2092.5
LA28 2319b 1972 2051.1

Instance Previous Best Avg
best result (60 sec) (60 sec)
from a, b

LA29 2054b 1819 1898
LA30 2263b 2005 2050.6
LA31 3403a 2815 2893.5
LA32 3576b 3004 3124.5
LA33 3255b 2779 2866.2
LA34 3306b 2838 2937.7
LA35 3373a 2889 2953.8
LA36 1835b 1733 1804.5
LA37 1931b 1881 1943.5
LA38 1813b 1726 1761.9
LA39 1811b 1725 1782.7
LA40 1815b 1766 1798.4

Search performance under low computation time regimes

Many papers describe BJS applications where the computation time available for applying the
BJS heuristic is short. In such situations, it may be preferable to design the BJS heuristic as
a form of VLNS (very large neighborhood search) approach as opposed to a tabu search ap-
proach, since tabu search approaches may spend an unreasonable proportion of computational
time in evaluating all the neighbors of each solution. Mati and Xie [2011], Pranzo and Pac-
ciarelli [2016] have pursued constructive VLNS approaches and reported results with short
computation times.

We compare the results under the Best and Avg column under 60 seconds reported in Table
4.1 for the N4 neighborhood with JIFR - 1 & 2 against the results provided in Mati and Xie
[2011], Pranzo and Pacciarelli [2016]. Such a comparison helps determine if our approach
is competitive against existing VLNS approaches for low computation time regimes. The
comparison is provided in Table 4.4. The results in Mati and Xie [2011] were obtained after
performing 10 independent runs of 200 seconds on each instance, while results corresponding
to Pranzo and Pacciarelli [2016] were obtained from 10 independent runs of 60 seconds each.
On 30 out of the 40 LA instances, the value under the Avg column is better than the value
under the previous best column. To get a sense of the relative improvement with our approach,
for each row in Table 4.4 we computed the quantity (Previous best result - Best (60 sec)) ∗
100/Previous best result. For the 20 × 10 instances the relative improvement is 11.14%, for
the 30× 10 instances it is 15.28%, and for the 15× 15 instances it is 4.07%.

First results for Taillard instances

Based on the observations drawn from experiments in Section 4.9.3, we conclude that the best
performing configuration in terms of obtaining best results on the Lawrence instances was
the N5 neighborhood along with JIFR - 1 & 2. Using the same configuration, we ran our
heuristic 5 times on all Taillard instances. The results on the largest Taillard instances are
shown in Table 4.5. The reader can find results for the remaining Taillard instances in Table

CHAPTER 4. BJS 96

Table 4.5: Results on the largest Taillard instances

Instance Size 60 sec 300 sec 600 sec 1200 sec 1800 sec Avg # Iter
Best Avg Best Avg Best Avg Best Avg Best Avg (1800 sec)

TA71 100 × 20 16560 17426.6 13372 13485.4 12744 12882.6 12231 12568.4 12153 12369.4 2275.6
TA72 100 × 20 15445 16225.8 12901 13076.4 12182 12387.2 11688 11907.4 11444 11745.6 2437.8
TA73 100 × 20 16444 17370.4 13375 13533.4 12602 12792.8 11991 12269.4 11766 12078.6 2391.6
TA74 100 × 20 16266 16963.6 13354 13526.4 12702 12791.6 12038 12285.2 11897 12044.8 2569.8
TA75 100 × 20 16189 17127.6 13288 13497.6 12451 12729.8 12002 12181.8 11476 11911.4 2287.6
TA76 100 × 20 15532 16578 13081 13447.8 12543 12865.8 12067 12388.2 12067 12223.8 2352
TA77 100 × 20 16369 17674.8 13436 13640.4 12813 13037.6 12457 12543.8 12265 12412.2 2383.4
TA78 100 × 20 16649 17007.8 13198 13506.4 12596 12756 11793 12074.6 11697 11898.6 2329.8
TA79 100 × 20 15834 17145.8 13243 13439 12508 12820.6 11999 12281 11870 12118.4 2236.6
TA80 100 × 20 15227 16186.4 12640 12943.6 12042 12310.2 11654 11869.8 11405 11729 2253.4

B.10 , see Appendix B.5. The tabu length parameter for the smaller Taillard instances TA01 -
TA40 was set to 10, and 15 for the remaining instances. The problem dimensions in the Tail-
lard dataset are significantly larger than those in the Lawrence dataset, and to the best of our
knowledge the results shown in Table B.10 are the first results for the Taillard instances. The
solution corresponding to the best makespan for each instance can be accessed from https:
//github.com/jmogali/Solution_Data/tree/master/Results_Data. In
the last column of Tables 4.5 and B.10 we report the number of tabu search iterations within
30 minutes averaged across the 5 runs on each instance.

4.10 Structural characterization of feasible schedules and
implications for local search

Despite the impressive results in the previous section, we believe there remains room for fur-
ther improvement. Specifically, there are structural characteristics unique to the BJS problem
that, to our knowledge, have not heretofore been acknowledged that offer additional opportu-
nities for improving BJS solving efficiency. In this section, we identify these structural prop-
erties and suggest how they can be exploited. We believe this to be one interesting direction
for future research.

We begin with a simple observation: in any feasible schedule for the BJS problem, at any
instant in time, job J can be in exactly one of the following 3 states:

STATE 1: The first operation of J has not yet been serviced.

STATE 2: All the operations in J have been serviced.

STATE 3: J is currently occupying (blocking) some machine.

By contrast, for the JS problem, in addition to the three states mentioned above there is a fourth
state, where only some operations of J have been serviced and job J is currently waiting in
a buffer area, i.e., job J is in-progress but not blocking any machine from being accessed by
the other jobs.

https://github.com/jmogali/Solution_Data/tree/master/Results_Data
https://github.com/jmogali/Solution_Data/tree/master/Results_Data

CHAPTER 4. BJS 97

This distinction has interesting consequences with respect to the structure of feasible so-
lutions. Consider a BJS problem instance where J�M, and let Sch be a feasible schedule
for the problem instance. Let StJ (Sch) denote the start time of the first operation of job J
in Sch, and let CoJ (Sch) denote the completion time of the last operation of job J in Sch.
Then [StJ (Sch), CoJ (Sch)] represents the interval in which job J occupies some machine
(i.e., state 3 in the description above), which we refer to as job J ’s service interval in schedule
Sch. Theorem 5 shows that the service interval of a given job J ’s in Sch will overlap with
the service intervals of a bounded subset of other jobs in Sch, where two job service intervals
are considered to be overlapping iff the length of the overlap is greater than zero. To prove
Theorem 5, we make use of Lemma 5, and both proofs are provided in Appendix B.4. The
bound stated in Lemma 5 (by extension the bound established in Theorem 5) can be shown to
be tight, an example revealing tightness is shown in Appendix B.4. Note that in the absence of
blocking (i.e., JS problem), the service interval of a job can overlap with the service interval
of all other jobs, so for the JS problem the corresponding bound in Theorem 5 is J− 1, where
the service interval of a job is the time interval in which the job is in either state 3 or 4 in this
case.

Lemma 5. Given job J and a feasible schedule Sch to the BJS problem instance, letQ denote
the set of all jobs that have a service interval strictly contained within the service interval of
J , then |Q| ≤ (M− 1)2.

Theorem 5. A job’s service interval can overlap with the service interval of at most M2 − 1
other jobs.

Let us denote the set of all jobs in our problem by Jo. For feasible selection S, the
following corollary reveals some structural insight into the graph G(F ∪ S).

Corollary 1. For a job J , define a set W S
J = {J̄ |J̄ ∈ Jo\J s.t. there exist alternative arcs

(u1, v1), (u2, v2) in S where u1, v2 belong to J and v1, u2 belong to J̄ }. Intuitively, W S
J is

the set of jobs in which, for each J̄ ∈ W S
J we can identify a pair of machines m1,m2 s.t. J

is serviced earlier than J̄ by m1, and J̄ is serviced earlier than J by m2. In any feasible
schedule obeying the sequence of operations on machines implied by S, the service interval
of a job in W S

J overlaps with the service interval of J , so it follows from Theorem 5 that
|W S
J | ≤M2 − 1.

4.10.1 Streamlining job insertion
The above structural properties can be exploited in at least a couple of ways to further improve
the efficiency of BJS solving procedures. First, they provide constraints for reducing the cost
of job insertion for problems with large job to machine ratios. Notice that any job J̄ ∈
Jo\{W S

J ∪ J } (i.e., the complement of W S
J), falls under one of the following categories:

1. For all m ∈ {1, 2, . . . ,M}, the operation belonging to J̄ that requires m is serviced
earlier than the operation belonging to J which also requires m. Denote the set of jobs
under this category by W S−

J .

CHAPTER 4. BJS 98

2. For all m ∈ {1, 2, . . . ,M}, the operation belonging to J̄ that requires m is serviced
later than the operation belonging to J which also requires m. Denote the set of jobs
under this category by W S+

J .

One way to interpret the definitions of W S
J ,W

S−
J ,W S+

J is that the service interval of job
J in selection S is sandwiched between the service intervals of jobs in the sets W S−

J and
W S+
J . Suppose the sets W S−

J , W S+
J were known for a given input job J before applying

Algorithm 9 to obtain a feasible selection S. Then Algorithm 9 could be restricted to only
consider insertion options involving jobs in W S

J . The modification to Algorithm 9 is to simply
pre-initialize the sets Q, Q̄ (refer Algorithm 9 for definition) to account for the information
provided in W S−

J ,W S+
J . With this modification, the dependence on J in the complexity of

Algorithm 9 gets replaced by the size of the set W S
J , and recall that |W S

J | ≤ M2 − 1 (by
Corollary 1).

Of course, we do not know W S−
J or W S+

J in advance, but instead we can approximate the
setW S

J in advance and modify Algorithm 9 to use this approximation in an analogous manner.
In any feasible schedule obeying the ordering of operations on machines implied by S, observe
that the jobs in the set W S

J will be temporally close to each other since their respective service
intervals overlap with the service interval of job J . Given this, a natural idea for choosing
W S
J is to select at most M2 − 1 jobs that are temporally close to each other in any schedule

computed using G(F ∪ SJ) for the jobs in the set Jo\J , where SJ is the selection obtained
by removing all arc pairs associated to job J from S.

4.10.2 Incrementally computing the conflict graph when using JIFR-1
during local search

The insights gained from Theorem 5 can also be used to reduce the costs associated with the
construction of a conflict graph during local search. Recall that the job insertion procedure
from Section 4.7 is a 2-step procedure. The first step involves computing the predecessor
buffer for populating edges in the conflict graph, and the second is to execute Algorithm 9 with
the resulting conflict graph. Although the second step cost may be larger than the first step by
a factor no larger than J, the complexity of both steps is the same if we configure Algorithm 9
to execute “closure" by omitting the SMCP component as described earlier in Section 4.7.5.
When M,J are very large, it may be more attractive to omit SMCP and perform local search
with just closure, since it is inherently cheaper. In such situations, optimizing the first step
becomes an important consideration.

To this end, assume S, S̄ are feasible selections where S̄ is obtained by applying JIFR-1,
and so S̄ is the output of Algorithm 9 with SJ and job J as inputs. For enumerating neighbors
of S̄ using JIFR-1, depending on the jobs associated with the operations in the N4 (resp. N5)
moves, we may need to compute several conflict graphs, one for each job. For some job J̄ ,
we use an implication of Theorem 5 to develop an incremental procedure for constructing the
conflict graph for S̄J̄ (i.e., selection obtained by removing all arc pairs associated to job J̄
from S̄) by maximally reusing edges from the conflict graph computed for SJ̄ , if that conflict
graph was computed earlier.

CHAPTER 4. BJS 99

For convenience, let us denote the edges in the conflict graph for SJ̄ (resp. S̄J̄) byE (resp.
Ē). If J = J̄ , note that E and Ē are identical since S̄ was obtained by inserting J , and so we
will assume that J 6= J̄ . Recall from Section 4.7.2 that any edge in a conflict graph can be
mapped to one of the Eqns (4.3), (4.6), or (4.7). Most of the differences in the edges between
E and Ē are those that correspond to Eqn (4.6). Let Ol denote the predecessor buffer for SJ̄ ,
and let Ne denote the predecessor buffer for S̄J̄ . Observe the direct correspondence between
the entries in the predecessor buffer and edges corresponding to Eqn (4.6). Consequently, by
analyzing changes between Ol and Ne, we can complete our understanding of how the edges
corresponding to Eqn (4.6) in E and Ē differ.

We can intuitively think of S̄J̄ as being obtained from SJ̄ by a 2-step procedure. In
the first step, we remove the alternative arcs associated to job J from SJ̄ , and denote the
intermediate selection as Sim. To Sim, we then add just those alternative arcs present in S̄
which are associated to job J but not also with J̄ to obtain S̄J̄ . The observation suggests a
2-step procedure for computing Ne from Ol. In the first step, we compute the predecessor
set buffer Im for Sim by incrementally modifying the entries of Ol. In the second step, we
incrementally modify Im to obtain Ne. Next we discuss the computation of Im from Ol,
computing Ne from Im is analogous.

In the buffer Ol, operations belonging to job J can appear in the predecessor maps for
nodes belonging to other jobs, denote the set of those other jobs by Q. For nodes belonging
to jobs other than those in Q, the predecessor maps will be identical in both Ol and Im, a
property we can exploit. Using Theorem 5, we prove in Proposition 11 (shown in Appendix
B.4) that |Q| ≤ M2 + M − 1. Suppose we compute a schedule for jobs in Jo\J̄ using
the same ordering of operations on machines as implied by SJ̄ , the proof of Proposition 11
characterizes a job in Q as either one whose service interval overlaps with the service interval
of J , or is among the earliest set of jobs that occupies a machine once job J vacates all
machines. Given the temporal proximity of the service intervals of jobs in Q with the service
interval of job J , the key observation is that the service intervals of jobs in Q are mutually
close to each other. Consequently, nodes belonging to jobs in Q won’t be spread far apart
in any topological ordering TSJ̄ of G(F ∪ SJ̄). For obtaining Im using Algorithm 10 with
G(F ∪Sim) and TSJ̄ as inputs, Ol takes the role of f in Algorithm 10. We then simply update
the entries in Ol by restricting the loop counter i in line 3 to take values between the smallest
and largest topological index (TI) corresponding to nodes belonging to jobs in Q. Using the
bound on |Q|, we can expect the range of i that gets updated to be ≈ O(M3), as there are
M + 1 nodes in G(F ∪ Sim) for every job.

We now turn our attention to computing Ne from, Im, and overall strategy will be very
similar to computing Im from Ol. Recall that the selection S̄J̄ is obtained by inserting job
J into Sim . From Proposition 11, we know that operations belonging to job J can appear
in the predecessor maps for nodes belonging to at most M2 + M − 1 jobs other than J in
Ne, and once again note that these jobs will not be spread very far apart in any topological
ordering TS̄J̄ for nodes in the graph G(F ∪ S̄J̄). Denote those M2 + M − 1 set of jobs by
R. For nodes belonging to jobs other than those in R ∪ J , the predecessor maps will be
identical in both Im and Ne. The set R however is unknown in advance, unlike Q. To use
the previous strategy of incrementally updating the data in the predecessor buffer, we need
a way to determine a range enclosing the topological indices spanned by nodes belonging to

CHAPTER 4. BJS 100

jobs in R∪J . We can estimate this range dynamically. We know that the node corresponding
to the first TI in TS̄J̄ for which the predecessor maps differs between Im and Ne is the TI
corresponding to the first node belonging to job J , denote that TI by first. We also know
that the last TI (denoted by last) for which the maps differ is no lesser than the TI of the
last node belonging to job J in TS̄J̄ . We can dynamically update the estimate for last based
on the following natural idea. Suppose the predecessor map for node v is different in Im
and Ne, then since γ(v), δS̄J̄ (v) are the outgoing neighbors of v, the predecessor maps for
those pair of nodes may also be different in Im and Ne. So our estimate of last will be
updated to max(last, T−1

S̄J̄
(γ(v))), T−1

S̄J̄

(
δS̄J̄ (v)

)
. We can convert this idea into an algorithm

by updating the entries in Im to get the correct values for Ne. This is accomplished by
executing Algorithm 10 between the range [first, last] (for variable i in line 3), where last is
updated dynamically as execution progresses. At some stage last will no longer be updated.
Based on the bound on |R|, last− first will be ≈ O(M3).

Overall this approach that we have outlined for computing Ne from Ol is more efficient
than executing Algorithm 10 on all M(J+ 1) indices in line 3. Although we leave quantifica-
tion of the benefits of exploiting these structural characteristics of the BJS for future research,
we do not expect a significant increase in number of iterations in our experiments since the
SMCP cost component in Algorithm 9 may far exceed the cost of constructing a conflict graph.

4.11 Summary and discussion
In this work, we presented an efficient local search heuristic to obtain feasible solutions for
the Blocking Job Shop (BJS) problem with no swap. The local search heuristic is based on
the popular N4 neighborhood for the Job Shop (JS) problem, and is embedded within a tabu
search framework. One important distinction in the use of the N4 neighborhood for solving
the BJS problem (as opposed to the JS problem) is that the constraints associated with BJS
lead to generation of substantial numbers of infeasible solutions, and mechanisms are needed
for recovering feasible solutions from these generated starting points for good search perfor-
mance. An efficient procedure to quickly identify infeasible solutions was presented. Two
different methods for recovering a feasible solution from an infeasible one were described,
and one of those two methods is novel. Both methods employ a job insertion mechanism from
the literature, and an efficient algorithm for realizing this mechanism was proposed. Critical
to the performance of this job insertion procedure was an efficient computational procedure
that was presented for obtaining the job insertion polytope. To demonstrate the efficacy of
the approach, an experimental analysis was performed using existing benchmark problem in-
stances provided by Lawrence and Taillard. On the Lawrence instances, we obtained new best
results on 28 out of the 40 instances. Our approach matches the previous best result on 11 out
of the remaining 12 instances. To the best of our knowledge, we are the first to report results
on the Taillard instances. Improvements in speed and solution quality with our method over
previously published work were analyzed, and given that one of the two methods employed
in this work for converting an infeasible neighbor into a feasible solution has not been stud-
ied before, a short analysis to understand its impact was included. Finally, for instances with
more jobs than machines, a structural property obeyed by all solutions to the BJS problem was

CHAPTER 4. BJS 101

identified. Based on the insight gained from the structural property, ways to improve the local
search implementation were outlined. A precise description of the contributions made in this
chapter are listed in Section 4.2.2.

Although this work has focused on the BJS no-swap case, the techniques presented here
can be adapted for broader applicability. For example, the procedure presented for determining
feasibility of neighbors can be easily adapted for applicability to the JS problem (i.e., job shop
problem without blocking). Our algorithm for job insertion in Section 4.7 works with the
alternative graph representation of a given solution, and relies on the existence of a topological
ordering of the nodes in the alternative graph. In the case of BJS problem with swap, a
topological ordering may not exist, since the corresponding alternative graph may contain zero
length cycles. However, the presence of zero length cycles can be handled by compressing
every maximal zero length cycle into a single node, and producing a new graph that does
admit a topological ordering. On this new graph, one can then directly apply all job insertion
techniques presented in Section 4.7 to the BJS problem with swap. Finally, we believe that
the techniques presented in Section 4.7 for obtaining the Job insertion polytope in O(M2J)
complexity can be extended with minor modifications so that the polytope based approach
can be used to perform job insertion for other complex JS variants (e.g. flexible BJS problem
[Gröflin et al., 2011]) efficiently.

4.12 Summary of contributions
• Presented an efficient algorithm for identifying feasible N4 neighbors. Presented an ef-

ficient algorithm to compute the makespan of the feasible N4 neighbors. Our algorithm
can be easily adapted to the JS problem.

• Presented an efficient algorithm for obtaining the H-representation of the Job insertion
polytope in O(M2J) complexity. We demonstrated how our compact representation
can be used to perform job insertion efficiently. Our algorithm can be easily extended
to other variants of the JS problem.

• We presented a novel Job insertion based feasibility recovery procedure, see JIFR-2.

• When J > M, we identified new structural properties that all feasible schedules to the
BJS problem needs to satisfy. Based on the insight gained from the structural property,
ways to improve the local search implementation were outlined.

Part III

102

Chapter 5

Scheduling for Multi-Robot Routing with
Blocking And Enabling Constraints

Many multi-robot planning and scheduling applications can be abstracted as a problem of as-
signing a set of located tasks to a set of homogeneous robots, and developing task processing
itineraries for each robot so that the overall time required to accomplish all tasks is minimized.
Such applications include multi-robot search and rescue in tight spaces, multi-robot painting
of large surfaces, and the application that motivates this work - a multi-robot system used by
a major aerospace manufacturer for attaching the skin to the fuselage while building an air-
craft. In all of these contexts, individual tasks can be specified as visits to specific locations
for specific periods of time (e.g., a hole into which a fastener must be inserted, a spatial lo-
cation that must be surveyed for surveyors). Generating optimal robot tours for a given set
of task assignments is itself NP-Hard, as the problem is equivalent to a multiple Traveling
Salesman problem (mTSP). However, the problems of interest here are complicated by addi-
tional factors: (1) enabling constraints between tasks that restrict when specific locations can
be visited (e.g., at least one adjacent hole must be fastened prior to fastening a given hole),
and (2) collision constraints that limit movements of robots contending for the same space.

We refer to this general class of problems as Multi-Robot Scheduling with Blocking and
Enabling constraints (MRSBE). The MRSBE problem combines aspects of previously stud-
ied vehicle routing and robot path planning problems. Figure 5.1a shows a simple example,
in which two robot arms are positioned behind a structure consisting of roughly 100 task lo-
cations to be visited (indicated by the colored circles). Each robot can reach 3 columns of
locations out of four, and hence they must collaborate to visit all locations. The problem is
to determine location task assignments, routes, and schedules for both robots such that (1) all
task locations are visited, (2) all enabling and collision constraints are satisfied, and (3) the
time required to complete all tasks (overall makespan) is minimized.

Given the complexity of the MRSBE problem, we make a few simplifying assumptions.
We abstract the continuous (geometric) representation of the problem into a full (discrete)
representation. We do not explicitly consider the robot motion planning problem as part of the
optimization procedure. Instead, we assume that the time taken for a robot to move between
a pair of task locations is specified as input to the problem. We describe how collisions are
modeled in the next section.

103

CHAPTER 5. MRSBE 104

We present a system for obtaining good quality feasible solutions to the MRSBE problem.
In particular,

1. We introduce and formalize the MRSBE problem as a new challenge problem for the
research community.

2. We show that generation of a feasible solution to MRSBE is NP-complete, as are several
relaxations of the full MRSBE problem.

3. We develop a local-search heuristic procedure for quickly obtaining good quality fea-
sible solutions to the MRSBE problem. The heuristic should be regarded as the main
technical contribution of this work.

To analyze the performance of our heuristic, we publish a set of benchmark problems, some of
which capture the structure of our multi-robot fastening application and others that generalize
to other application settings. We provide initial performance results on these problems, and
develop lower-bound solutions for comparison. This chapter previously appeared in Mogali
et al. [2021b].

5.1 Problem description

The MRSBE problem consists of a set of N task locations H = {1, 2, . . . , N} that have to
be serviced by a set of M robots R = {1, 2, . . . ,M}. Each robot r ∈ R starts its tour at
a unique starting location or, services without preemption one or more locations, and finally
returns to a unique terminal location dr. To traverse from one location hi to another location
hj , where hi, hj ∈ H, each robot r ∈ R follows a unique trajectory P r

ij , which is typically
a function of the robot’s starting and ending pose, constrained by dynamics, kinematics, and
its environment. A trajectory can be interpreted as a polyline in a 2 or 3 dimensional space.
As is customary in related motion planning research (e.g., see path planning problems on
Maklink graphs [Habib and Asama, 1991]), we assume that a trajectory P r

ij for a robot r ∈ R
is modeled as a directed path from vertex hi to vertex hj which passes through an ordered
sequence of one or more Intermediate Nodes (INs). The accuracy with which a trajectory P r

ij

is represented is determined by the number of INs used to model the corresponding path, i.e.,
increasing the number of INs results in a more fine-grained representation, but increases the
problem size. Without loss of generality, we assume that an IN is unique to a trajectory P r

ij ,
i.e., trajectories for different combinations of i, j, r do not share INs.

The MRSBE problem can be modeled on a simple directed routing graph G(V,A), where
V = O ∪D ∪H ∪ I, O =

⋃
r∈R{or} is the set of starting locations, D =

⋃
r∈R{dr} is the

set of terminal locations, H is the set of locations that must be serviced by a robot, I is the set
of INs, and A ⊂ V × V is the set of arcs. Some locations cannot be reached by all robots.
Ri ⊆ R denotes the subset of robots that can reach location i ∈ V. Throughout this work,
the subscript r will be used to denote subsets of vertices (or arcs) reachable by a robot r ∈ R.
For example, Hr denotes the subset of task locations in H accessible to r. Likewise, Gr is the
sub-graph induced in G by locations Vr reachable by r.

CHAPTER 5. MRSBE 105

With each vertex i ∈ V, we associate a positive, robot-dependent processing time pri .
Robot-dependent traversal times from one vertex to another are not explicitly encoded as cost
on the arcs. Instead, traversal times are assumed to be included in the processing times of the
vertices: the travel time for a robot r ∈ R from i to j, where i, j ∈ V \ I, can simply be
incorporated in the processing times of the INs encountered along the unique path P r

ij .
In addition to the routing constraints implicitly defined by the routing graph G(V,A), the

MRSBE problem includes two general types of scheduling constraints:

• Enabling constraints (ECs) - ECs specify a special type of precedence relation that define a
(partial) ordering over the set of locations to be visited. Specifically, for each vertex i ∈ H,
a subset Ei ⊂ H ∪ O of vertices, also referred to as enablers, is defined. An EC requires
that, prior to servicing a task location i ∈ H, at least one of the task locations in the set Ei is
serviced. In the context of our fastening application, ECs are used to ensure that some holes
are bolted (secured) or drilled prior to some other holes.

• Collision constraints (CCs) - Collisions occur when a pair of robots try to occupy the same
physical space simultaneously. To determine when a collision occurs, for any node w ∈
Vr, we associate a physical space that is required by the robot r for servicing or waiting at
w. Through this representation, CCs are expressed as a set of tuples C, where each tuple
(u, ri, v, rj) ∈ C represents an illegal state: robot ri cannot occupy the space associated with
vertex u ∈ Vr1 when robot rj occupies the space associated with vertex v ∈ Vr2 . Note that
CCs can be expressed for collisions that may arise when robots move between locations, e.g.,
by expressing CCs between INs. We call these collision constraints blocking because, when a
robot r has processed w ∈ Vr, and is waiting at w before it can move to a different node in
Vr, then so long as r waits idly at w, r does not relinquish the space associated with w.

A solution to the MRSBE problem consists of (1) an assignment of all locations i ∈ H to
robots, and (2) a feasible route and corresponding schedule for each robot. The latter requires
sequencing the locations assigned to each robot and determining feasible start and end times
for each of the servicing operations. Naturally, the schedules must adhere to all routing and
scheduling constraints. The goal is to minimize the length of the schedule (makespan).

Example 11. The problem in Figure 5.1 contains 2 robots, task locations are shown as shaded
circles. Let task locations P and Q (shown in Figure) be accessible to robot r1, so we have
P,Q ∈ Hr1 . For modeling the movement of r1 from P toQ, an intermediate node F1 is present
in Vr1 , and directed arcs (P → F1), (F1 → Q) are present in Ar1 . The space traversed by
the robot r1, if it were to move from P to Q, is indicated by the shaded triangular region.
The triangular region is the space we associate with the intermediate node F1. Analogously,
let task locations R and S be accessible to the robot r2, so an IN F2 associated with the
movement of r2 from R to S is present in Vr2 , and arcs (R → F2), (F2 → S) is present
in Ar2 . As the physical spaces associated with F1 and F2 overlap, a CC (F1, r1, F2, r2) is
present in C. Note that in our model F1 is only accessible to r1, and F2 is only accessible to
r2. However, we should not conclude that P,Q 6∈ Hr2 and R, S 6∈ Hr1 . A different IN would
have been specified in Vr2 for moving from P to Q if P,Q ∈ Hr2 . However, note that the
physical space associated with this IN for r2 may be different from the space associated to F1,

CHAPTER 5. MRSBE 106

(a) (b) (c)

Figure 5.1: In Figure 5.1a, robots are at work. In Figure 5.1b, we show an abstraction of Figure 5.1a
and one possible movement between task locations for the robots. In Figure 5.1c, we show the move-
ment of r1 from P to Q. F1 (region shaded in green) is the space needed by r1 for moving from P to
Q. Similarly, F2 is the space needed for r2 to move from R to S.

and so the corresponding collision constraint profiles for those two INs may also be different.
Also note from this example, as we need to check collisions for all robot pairs and all possible
movements between task locations reachable by the robots, the total number of CCs in the
problem can roughly scale as O(M2N4).

Continuing with the example, now suppose we are given a set of robot tours in which r1

traverses from P to Q, and r2 traverses from R to S. Say we are also given a schedule Sch
for those tours, where the start time of the node v ∈ V is denoted by Sv. The service interval
for the node P is [SP , SF1] and not, [SP , SP +prP], i.e., the service duration of a node includes
any wait time the robot incurs until it can begin servicing the next node on its tour. The CC
between F1, F2 is not violated in Sch iff the intervals [SF1 , SQ] and [SF2 , SS] do not overlap.

We next provide some user guidance for selecting the number of INs while modeling the
problem. In Example 11, we only included a single IN between each pair of task locations.
Ideally, selecting the number of INs should be based on the specific situation. As a general
guideline, it is helpful to think of the trade-off between the impact that the choice of introduc-
ing more INs will have on the objective being optimized and model complexity. Consider the
following two situations, (a) the robot’s footprint is small and the time it takes to move be-
tween a pair of task locations is large, (b) the robot is moving through a region that one would
expect to see a lot of traffic due to other robots also requiring that space or in the vicinity.
In both situations, it may be beneficial to include more INs between the specific task loca-
tion pairs, since including more INs allows a robot to relinquish physical space it no longer
requires to other robots at a finer granularity, which in turn can help reduce wait times for
other robots. However, when the processing duration of task locations dominates travel times
between task locations, then one would not expect significant improvement in the solution
quality by increasing the number of INs, as in such a scenario the contribution of the travel
times to the objective is relatively small. In this case, increasing the number of INs increases
problem complexity for little gain.

CHAPTER 5. MRSBE 107

5.2 Problem formulation
The MRSBE problem can be formulated as a constraint programming (CP) model, defined on
the routing graph G(V,A) introduced previously. The model uses successor variables nexti
representing the node that is visited immediately after node i for all i ∈ V \D. Assignment
variables robi, i ∈ V assign each vertex to a robot. Variables Si, i ∈ V, record the time at
which servicing of the node i starts. To simplify notation, a new parameter drij is introduced:
drij = pri if (i, j) ∈ Ar, drij = 0 otherwise. The complete CP model is stated in Algorithm 12,
where N+(i) denotes the set of nodes that can be reached from i by an arc G(V,A) whose
tail is i.

In this formulation, the objective function (line 6) minimizes the makespan. The allDif-
ferent constraint (line 7) is a global constraint that forces every decision variable in a given
group to assume pairwise different values [Gervet, 1993]. Here, the allDifferent constraint
ensures that every location i ∈ H is serviced and that proper sequences are formed for each
robot. Whenever an IN i ∈ I is not used in any route, nexti = i will hold, i.e., the node is
assigned to itself. If, in contrast, IN i is used in some route, then there must exist some other
node j ∈ V for which nextj = i. Due to the allDifferent constraint, it follows that nexti 6= i,
thereby certifying that no subtours involving a single IN are formed. The constraint on line 9,
together with the domain specifications of variables robi ensure that a node i is serviced by a
robot in Ri, and that all nodes belonging to the same sequence are serviced by the same robot.
These constraints are implemented as global Element constraints in CP. The constraint on line
10 assures that the servicing of a node i ∈ V \O does not commence before the servicing of
its predecessor is completed, thereby ensuring that no subtours are formed. Whenever an IN
i ∈ I, is not used in any route, we noted earlier that nexti = i will hold, but also notice that
drii = 0, so the constraint in line 10 will not make the model infeasible. Notice that the inequal-
ity sign on line 10, as opposed to an equality sign, allows a robot to wait at a location before
moving to the next location to avoid potential collisions. The constraints on lines 11 and 12
implement ECs and CCs, respectively. Implicit in the formulation is the fact that the robot
servicing node u, i.e., robu, blocks u for the duration [Su, Snextu] instead of

[
Su, Su + probuu

]
.

The ≥ symbol in the disjunctions of line 12 carries a special significance. Consider the
scenario shown in Figure 5.1d, where tours for each robot are provided, and all that remains
is to compute a schedule for those tours. Say, robot r1 (resp. robot r2) is currently located at
node V 11 (resp. V 21), and the node it needs to service next on its tour is V 12 (resp. V 22).
Due to the CCs (V 11, r1, V 22, r2) and (V 12, r1, V 21, r2), if only one robot advances to the
next node on its tour, while the other robot remains on its current node, a collision will occur.
If, however, we allow both robots to progress to their respective next nodes at the same time,
i.e., set start times SV 12 = SV 22, then the constraint in line 12 will not be violated.

5.2.1 Scheduling subproblem
MRSBE exhibits two strongly connected problems: a routing problem, similar to the Multiple
TSP (mTSP), and a scheduling problem which bears resemblance to a machine scheduling
problem. Even when the routes for each of the robots have been fixed, i.e., all assignment
(robi) and sequencing (nexti) variables in Algorithm 12 have been fixed to some value satis-

CHAPTER 5. MRSBE 108

Algorithm 12 MRSBE problem description as a CP
formulation

1: nexti ∈ N+(i) ∀i ∈ O ∪H
2: nexti ∈ N+(i) ∪ {i} ∀i ∈ I
3: Si ∈ Z≥0 ∀i ∈ V
4: Si = 0 ∀i ∈ O
5: robi ∈ Ri ∀i ∈ H
6: min max

i∈D
Si

7: allDifferent
(
nexti|i ∈ V \D

)
8: for all i ∈ V \D do
9: robnexti = robi

10: Snexti ≥ Si + drobii,nexti
11: Si ≥ min

w∈Ei

Snextw ∀i ∈ H

12: robv = r1 ∧ robw = r2 =⇒ Sw ≥ Snextv ∨ Sv ≥
Snextw ∀(v, r1, w, r2) ∈ C

(d) Green arrow indicates the sequence
of nodes each robot traverses. Brown
double arrows indicate CCs.

fying constraints 7 and 9, the challenge to find starting times (Si) that satisfy the scheduling
constraints in lines 10, 11 and 12 remains. We refer to this problem as the Scheduling Sub-
problem (SSp). We will briefly digress away from the MRSBE problem to the SSp problem.
Understanding the complexity of solving SSp will be helpful in understanding the complexity
of MRSBE (Section 5.3), and help us in developing techniques to solve the MRSBE problem
(Section 5.4).

Let Seqr1 , . . . , SeqrM denote the set of robot tours satisfying constraints 7 and 9, where

each tour is an ordered sequence of nodes, N =
M
∪
i=1
Seqri the set of nodes visited, F =

{(v, nextv)|v ∈ N\D} the set of arcs traversed, and pos(u) the position (index) of node u in
sequence Seqrobu . Generally, in this section, a node in a sequence can refer to either a task
location or an IN. Throughout our discussions for SSp, we will not distinguish the node type.
A feasible schedule S assigns a start time to each node in N such that

Su + probuu ≤ Sv, ∀(u, v) ∈ F (5.1)
Sv ≥ min

w∈Ev

Snextw , ∀v ∈ N (5.2)

(Sw ≥ Snextv) ∨ (Sv ≥ Snextw) , ∀v, w ∈ N s.t. (v, robv, w, robw) ∈ C (5.3)

The ability to solve the SSp efficiently is essential to the performance of the local search
procedure we will propose for MRSBE. To facilitate the development of an efficient solu-
tion method for SSp, we model this problem on a directed, acyclic state transition graph
Gsp(V sp, Asp). A state s ∈ V sp records the location of each robot. As such, a state s can
be represented by a vector of length |M |, where s[i] ∈ N denotes the location (node) of the
ith robot in state s. Two special states representing the starting state sO = [or1 , . . . , orM] and
the terminal state sD = [dr1 , . . . , drM] are included in V sp. The arc set Asp represents the set
of feasible state transitions. During each state transition, one or more robots advance their

CHAPTER 5. MRSBE 109

positions along their respective tours. There exists an arc (s, s′) ∈ Asp between a pair of states
s, s′ ∈ V sp, s 6= s′, if s′[i] = s[i] or s′[i] = nexts[i] for all i ∈ [1,M]. Corresponding to any
arc (s, s′) ∈ Asp, we will refer to state s′ as a successor of s. An example of an SSp instance
is given in Figure 5.2a and a corresponding State Space Graph (SSG) is given in Figure 5.2b.
Note that the SSG only includes feasible states, i.e., states that satisfy ECs, CCs, and reach-
able from sO by transitioning arcs in Asp. We denote the set of nodes that must have been
serviced by the robots in order to reach state s together with those that are being serviced at s,
by s−1 ⊆ N . A state s is collision free and enabling feasible iff:

• Collision Free: (s[i], ri, s[j], rj) 6∈ C, i, j ∈ [1,M].

• Enabling Feasible: For each i ∈ [1,M], ∃u ∈ Es[i] such that nextu ∈ s−1.

The sequence of states on any path from sO to state s in Gsp will be referred to as a state
transition path (STP) to s. Intuitively, to find a feasible solution to a given SSp, we must find
an STP P to terminal state sD in the SSG. We will refer to such a P as a complete STP. If
no complete STP exists, then the SSp instance is infeasible. Conversely, if a complete STP
P exists, we can compute the earliest time that each state s along the path P could occur. In
turn, we can use this information to derive the service starting times Sv for each individual
node v ∈ N , thereby obtaining a complete schedule. We formalize the relation between the
SSp and its corresponding SSG through the following proposition.

Proposition 4. An SSp instance admits a feasible schedule iff there exists a complete STP
P = (s0 = sO, s1, . . . , sl = sD) in its corresponding SSG.

Proof. (⇒) Given a feasible schedule (Sch′) to the SSp instance, we can construct the desired
complete STP as follows. Sort the start times of the nodes and iterate over those times in
an ascending manner. At each new start time t, introduce a state s such that s[i] = v where
v ∈ {Seqri}, t ∈

[
SSch

′
v , SSch

′
nextv

)
and SSch′v denotes the start time of v in schedule Sch′.

(⇐) Given a complete STP, we can construct a valid schedule (Sch) to the SSp instance
as follows. Initialize SSchor = 0,∀r ∈ R. Assume we have already assigned start times for
all the nodes up to state sk (i.e., nodes in s−1k), then we use those times to assign start times
for nodes in sk+1. Let T = max

i∈[1,M]
SSchsk[i], then, observe that T denotes the earliest time state sk

could have occurred. Let J = {j|j ∈ [1,M] , sk[j] 6= sk+1[j]} denote the set of robot indices
that have advanced their position, then Eqn (5.4) can be used to assign start times for nodes
corresponding to J .

SSchsk+1[j] = max
(
T,max

i∈J
SSchsk[i] + probisk[i]

)
∀j ∈ J (5.4)

Equation (5.4) assigns the earliest permissible start time for each node by the given complete
STP.

CHAPTER 5. MRSBE 110

(a)
(b)

Figure 5.2: In Figure 5.2a, we show a graphical representation of SSp instance. (V 12, r1, V 23, r2),
and (V 14, r1, V 23, r2) are the only CCs. EV 22 = {V 12} is the only EC, i.e., V 22 can be serviced no
earlier than servicing of V 13 begins. In Figure 5.2b, the SSG for the SSp instance is shown. To help
the reader understand CCs and ECs, we have also included infeasible states. A complete STP from
starting state sO = (V 11, V 21) to terminal state sD = (V 14, V 24) is indicated in blue.

5.3 Problem complexity
Problem MRSBE is strongly NP-Hard, since in the absence of ECs and CCs, the MRSBE
problem is simply the mTSP problem [Bektas, 2006]. More remarkable, however, is that de-
termining whether the SSp (Section 5.2.1) permits a feasible solution is also an NP-Complete
problem. We establish this result by reduction from the NP-Complete Deadlock Avoidance
problem under the restriction “straight line", “single unit" and “single parameter" as stated in
Araki et al. [1977]. Below, we provide an informal description of DA adapted from Garey and
Johnson [1979], for a rigorous statement, see [Araki et al., 1977].

Deadlock avoidance. Assume a set {P1, P2, . . . , Pm} of “process flow diagrams" (line graphs),
and a set Q of “resources", where only a single unit of each resource type is present. The ver-
tices of a process can either issue an allocation request for a single resource, or a deallocation
request for a single resource allocated in a previous vertex of that process. A state S of the
system is given, where the current active vertex in each process describes S. The deadlock
avoidance problem asks “Is S ‘safe’?”, i.e., is there a sequence of resource allocations and
deallocations that can enable the system to reach a “final" state starting from S?

Theorem 6. Determining whether SSp permits a feasible schedule is NP-Complete.

Proof. In Appendix, see Section C.1.

Even when the SSp instance is known to admit a feasible schedule, the complexity of
computing a schedule with minimum makespan is strongly NP-Hard. We show the decision
variant of this problem to be strongly NP-Complete by reducing the strongly NP-Complete
Single Machine Scheduling with release times and deadlines problem [Garey and Johnson,
1977].

CHAPTER 5. MRSBE 111

s'

Initialize

VBSS

scheduler
until 1st
feasible

seq

scheduler

Deterministic Move

s

YES
s:=s'

NO
s

accept?

Restart

Stochastic Move

s''

FALSE
s ≠ s''

TRUE
s:=s''

Relocate
(scheduling)

Reorder
(routing)

seq seq

Perturb

scheduler
Repeatseq

Figure 5.3: Heuristic Strategy

Single machine scheduling with release times and deadlines [Garey and Johnson, 1977].
Set T = {t1, . . . , tM} of tasks and for each task t ∈ T , a length l(t) ∈ Z+, a release time
r(t) ∈ Z+

0 , and a deadline d(t) ∈ Z+. Is there a one processor schedule for T that satisfies the
release time constraints and meets all the deadlines, i.e., a one-to-one function σ : T → Z+

0

with σ(t) > σ(t′) =⇒ σ(t) ≥ σ(t′) + l(t′), such that, σ(t) ≥ r(t) and σ(t) + l(t) ≤ d(t) for
all t ∈ T?

Theorem 7. Given a SSp instance and time bound B, determining whether there exists a fea-
sible schedule with makespan at most B for the given SSp instance is strongly NP-Complete.

Proof. In Appendix, see Section C.1.

5.4 Overview of solution approach for MRSBE
Owing to the complexity results presented in the previous section, we propose a heuristic
search procedure to obtain high quality MRSBE solutions in reasonable time. Within this
search procedure, new feasible solutions are iteratively generated at each step, by (1) gener-
ating a new set of robot tours that visit all locations and (2) solving the SSp instance corre-
sponding to those tours.

A schematic overview of the search is provided in Figure 5.3. An initial feasible solution
s is generated through a randomized constructive heuristic based on Value-Biased Stochastic
Sampling (VBSS) [Cicirello and Smith, 2005]. A detailed description of this procedure is
provided in Section 5.6. In short, the constructive heuristic first produces a set of robot routes,
after which a scheduler is invoked to solve the corresponding SSp. The constructive heuristic
is repeatedly invoked until a feasible solution is found. Next, our MRSBE heuristic attempts to
improve upon this solution until some stopping criteria is met (e.g., a time limit). The details
of the scheduler is provided in Section 5.5.

CHAPTER 5. MRSBE 112

Conventional metaheuristic approaches often explore large, complex search spaces by ran-
domly moving from one solution to the next, where new solutions are generated at random
from some stochastic neighborhood structure. Preliminary experiments revealed that such
random moves did not yield satisfactory results, as many of the random moves led to infeasi-
ble SSps. So instead of random neighborhood operators, we use 2 unique deterministic local
search operators (REORDER, RELOCATE) to generate a new solution s′. These operators are
designed to make well-informed, targeted moves and are more likely to yield feasible solutions
than random moves. The moves are deterministic in the sense that the same input solution s
always leads to the same output solution s′, i.e., no randomness is involved.

After s′ has been generated, an acceptance criterion is used to determine whether s′ will
be the starting solution for the next iteration (accept), or whether s′ will be discarded (reject).
Here we use Late Acceptance (LA) [Burke and Bykov, 2017], a metaheuristic to determine
whether a solution is accepted. Briefly, LA accepts a solution if the objective value of the
solution (makespan) is better than the objective value of the solution obtained L iterations
ago, where L is a fixed input parameter. To prevent cycling, s′ is rejected if it is identical to s.

If s′ is rejected, we generate a new solution s′′ from a stochastic neighborhood of s which
becomes the starting solution for the next iteration. The stochastic neighborhood simply per-
turbs s (comparable to a mutation in a Genetic Algorithm, where robots swap task locations).
If the perturbation is successful, i.e., a new feasible solution s′′ different from s is obtained,
then s′′ becomes the starting point for the next iteration. If unsuccessful, a different permu-
tation is attempted. A restart is performed to prevent the search from getting stuck when the
Stochastic Move fails to produce a new feasible solution s′′ after a fixed number of re-attempts.

In the subsections that follow, we discuss the principal components of our MRSBE proce-
dure in detail. We begin by describing the scheduler to solve the SSp. In Sections 5.6 and 5.7,
we describe the constructive heuristic and deterministic local search operators respectively.

5.5 Solving the scheduling sub-problem
The CP model introduced in Section 5.2 can be used to solve the SSp, but is generally too
slow for this purpose. Since our MRSBE procedure (Figure 5.3) frequently solves SSp in-
stances, we developed a fast but inexact scheduler for the SSp instead. The scheduler attempts
to quickly find a path from the source to the terminal state in the SSG introduced in Sec-
tion 5.2.1, or asserts that no such path exists, in which case the SSp instance is shown to be
infeasible (Proposition 4). If the SSp instance is feasible, the STP returned from the scheduler
is transformed into a feasible schedule using the procedure in Proposition 4.

The scheduler performs Depth First Search (DFS) on the SSG. A recursive implementation
of DFS on the SSG is provided in Algorithm 13. Algorithm 13 takes as input a state s, a STP
P and start time of state s denoted by ts. If the SSp instance is feasible then Algorithm 13
returns a complete STP P , otherwise P returned will be empty. The scheduler initiates the
DFS search by passing sO, an empty list P , and 0 as the arguments. In line 2, we mark a
state as discovered once it is expanded by the algorithm. We keep track of discovery status of
each state so that we do not explore its successors more than once. In line 6, we enumerate the
successors of each state, and compute the start time of each successor conditioned on the value

CHAPTER 5. MRSBE 113

Algorithm 13 Depth first search for SSp
1: DFS(s, P, ts)
2: Mark s as discovered
3: P .push_back(s)
4: if s = sD then
5: return 1;
6: Enumerate successors of s in the state space graph of the SSp, and compute the start time of

each successor
7: Sort the successors states according to their start times computed using the procedure in Propo-

sition 4, and store the sorted successors in vector vecs
8: for i = 1 : len(vecs) do
9: if v is not marked discovered then

10: if 1 = DFS(v, P, tv) then
11: return 1;
12: P .pop_back()
13: return 0;

ts, using the procedure in Proposition 4. In order to increase the likelihood that a schedule with
short makespan is obtained at the end of the search, in line 7 we rank all the successors. A state
with an earlier start time is ranked higher. In line 8, we only explore previously undiscovered
successors, and in line 9 we recursively call DFS for the chosen successor. Finally in line 4,
once we have found a path to the terminal state, the DFS procedure terminates and returns the
complete STP. Using the start times computed for each state, the start times are obtained for
each node in the SSp instance.

To improve the efficiency of this basic DFS procedure, we introduce two extensions. First,
we specify and exploit conditions that allow us to restrict the number of successors that are
enumerated at each step of the search (which could be no smaller than O

(
2

M
2

)
in the worst

case) while continuing to ensure completeness of the search. Second, we specify techniques
that reduce the search space by attempting to pruning states from which no path to the terminal
state exists in SSG.

To facilitate the above extensions, we make use of the Alternative Graph (AG) introduced
earlier in Section 2.2.2. Notice that the SSp problem specified in Section 5.2.1 is semanti-
cally identical to BJ-OPT problem in Section 2.2.2, so we can represent the SSp on an AG
instead. The AG helps capture problem structure that is not reflected in the SSG. Particularly,
an AG provides a basis for representing and reasoning about temporal constraints, which is
useful both in performing look-ahead analysis of possible alternatives, and in pruning infea-
sible states. We first introduce the AG representation and then consider our DFS efficiency
enhancements.

5.5.1 Alternative graph representation of SSp.
Both collision and enabling constraints in Eqns (5.2) and (5.3) are logical disjunctions. For
instance, the EC in Eqn (5.2) can be written as

∨
w∈Ei

(Si ≥ Snextw) for i ∈ N . A solution

CHAPTER 5. MRSBE 114

(a) Alternative graph for the SSp instance
shown in Figure 5.1d. The grey broken
arrows represent the alternative arcs cor-
responding to the CC (V 11, r1, V 22, r2),
and the blue broken arrows represent
the alternative arcs corresponding to CC
(V 12, r1, V 21, r2).

(b) Benefit of using AG with SSG, the blue arc is an EAA.

Figure 5.4

to the SSp can only be feasible if exactly one clause of each CC and at-least one clause for
each EC disjunction evaluates to true. An AG can be interpreted as a special kind of temporal
network which encodes these disjunctions. Arcs in a temporal network model temporal rela-
tions between pairs of nodes. For instance, an arc (u, v) with length l(u, v) corresponds to the
constraint Sv ≥ Su + l(u, v). Formally, an AG is a directed, weighted graph G (N , F,A, En)
whereN resp. F are the sets of nodes and arcs visited resp. traversed by the robots as defined
in Section 5.2.1. A and En are sets of arcs that relate to the collision and enabling constraints.
For every CC c = (v, robv, w, robw) ∈ C that is relevant to the SSp instance, we define
Ac = {(nextv, w), (nextw, v)}, and A = {Ac|c ∈ C s.t. c is relevant to the SSp instance}.
Similarly, for every v ∈ N for which there does not exist a vertex w ∈ Ev with robw = robv
and pos(w) < pos(v), that is, for every vertex v that is not enabled by another vertex serviced
earlier in its own tour, we define:

Env = {(u, v)|w ∈ Ev, u = nextw, robw 6= robv}

Let En = {Env}v∈N . An arc (u, v) ∈ F has length probuu , whereas arcs in A and En have
length 0. The AG for the SSp instance in Figure 5.1d is shown in Figure 5.4a.

Following from the disjunctive representation of a CC, let the set of arcs Ac correspond
to the set of alternative temporal constraints which can satisfy a particular CC c. A single arc
(constraint) chosen from this set is said to be a selection for CC c. Analogously, an arc selected
from Env is a selection for the EC for node v. As both CCs and ECs offer a set of alternatives
to choose from, those arcs will be referred to as alternative arcs. When we want to distinguish
the type, we will refer to them as Enabling Alternative Arc (EAA) or Collision Alternative Arc
(CAA). A complete selection Cs is a set of alternative arcs containing a selection for every
member in En andA. A partial selection Ps is a set of alternative arcs which does not contain
a selection for at least one member in the sets En,A.

Given the above definition of an AG, computing a feasible solution to an SSp instance
reduces to the problem of identifying a complete selection Cs such that the AG with se-
lection Cs, does not contain a positive-length cycle [Mascis and Pacciarelli, 2002]. Such a

CHAPTER 5. MRSBE 115

selection is said to be a complete consistent selection. We denote the AG with selection Cs by
G (N , F ∪ Cs), i.e., the arcs inG are specified by the set F ∪Cs. Given a complete consistent
selection Cs, it is possible to compute a schedule for the SSp instance by setting the start time
of a node v ∈ N to the length of the longest path to that node in the graph G (N , F ∪ Cs). In
the absence of positive-length cycles, computing these longest paths can be accomplished in
linear time. Finally, the problem of computing the optimal solution to an SSp instance, i.e., a
schedule with minimum makespan, is equivalent to identifying a complete selection Cs such
that the length of the longest path in G (N , F ∪ Cs) is least among all complete consistent
selections.

Performing DFS on the SSG is equivalent to making selections in the AG by utilizing a
search tree with backtracking. At each node of the search tree, we have a partial selection Ps,
and a heuristic chooses the next alternative arc to include in Ps. To see the potential benefit of
including the AG representation in our search procedure for finding a feasible solution to the
SSp instance, consider the three robot SSp instance shown in Figure 5.4b. CCs are marked by
brown double arrows. We include an EC EV 15 = {V 22}, and so EnV 15 = {(V 23, V 15)}.

If we are using a SSG representation, then we are forced to reason forward in time. Say
the robots are at state s0 = (V 11, V 21, V 31). From this state there are only two collision
free successor states, namely s1 = (V 12, V 21, V 32), and s2 = (V 11, V 22, V 31). If say DFS
chooses to explore the state s1 first, then notice that there can be no path to the terminal state
from s1 in the SSG. To see why, notice that once robot r1 reaches V 14, the only way it can start
servicing V 15 is if robot r2 begins servicing V 23, due to the enabling relationship. However,
as long as robot r1 is at any node in the set {V 12, V 13, V 14}, r2 cannot begin servicing V 22.
In this case, DFS would enumerate twelve states before backtracking from s1.

Looking at the problem from an AG perspective, however, it is possible to avoid enu-
merating the state s1 in the first place. Since EnV 15 is a singleton, notice that any consis-
tent selection for the given SSp instance must include the arc (V 23, V 15) (shown in blue).
Corresponding to CC between V 14 and V 22, we have the following CAAs {(V 23, V 14),
(V 15, V 22)}. If the CAA (V 15, V 22) was included in our selection, then a cycle is created
through the arcs (V 15, V 22), (V 22, V 23), (V 23, V 15). Hence, it is implied that the paired
CAA of (V 15, V 22), which is (V 23, V 14), must be included in the selection.

After including (V 23, V 14) in the selection, and by repeating arguments similar to those
made above for other CCs involving only r1 and r2, it can be inferred that the CAA (V 23, V 12)
must be present in any consistent selection for the given SSp instance. The presence of
(V 23, V 12) in any selection implies that the start time of V 12 can occur no earlier than the
start time of V 23 (and by extension V 22) in any feasible schedule. Clearly, state s1 violates
the temporal relationship between V 12 and V 22.

By making selections on the AG similar to those shown for the CCs between r1 and r2

in the example, we can provide better guidance to the DFS search procedure. Alternative
selections enable us to cut-off portions of the SSG that do not lead to a feasible solution.

5.5.2 Linking the SSG and AG
To use the AG as a means of eliminating states from the SSG, we must synchronize the SSG
and the AG. This is accomplished by simultaneously updating the alternative arc selections

CHAPTER 5. MRSBE 116

in the AG each time the DFS procedure traverses to a new state in the SSG. Assume that the
DFS has produced a STP P to some state scurr, and let Ps denote the selections on the AG
that have been updated during the search thus far. Then synchronization of P and Ps involves
enforcement of two basic conditions. First, since P contains decisions for all CCs involving at
least one node in s−1curr and all ECs for nodes in s−1curr, then for each of these CCs and ECs, Ps
must contain a selection which does not contradict P . This property of Ps can be confirmed
by carrying out the following set of checks:

1. Corresponding to each CC c = (u, robu, v, robv) where u, v ∈ s−1curr, Ps has a selection for
c. We can compute the start times of Su, Sv from P using the procedure in Proposition 4. If
Su < Sv then Ps must contain the CAA (nextu, v), else the CAA (nextv, u) must be present
in Ps. Similarly, for each node in u ∈ s−1curr, we can determine which node among the enablers
of Eu has the earliest start time. The EAA in Enu corresponding to the earliest enabler must
be present in Ps.

2. Start times of all nodes in s+1
curr cannot occur earlier than start time of any node in s−1curr.

This implies that any alternative arc (h, k) with h ∈ s+1
curr and k ∈ s−1curr must be absent from

Ps. Further, if (h, k) is of type CAA, then the paired CAA of (h, k) must be present in Ps.

Any selection in Ps satisfying 1 and 2 will be referred as a consistent positional selection
for STP P , a terminology borrowed from Mascis and Pacciarelli [2002]. Notice that 1 and 2
do not preclude Ps from containing arcs of the form (h, k) where h, k ∈ s+1

curr, even when a
relation between Sh and Sk could not have been derived using P . In fact it is precisely these
kinds of arcs that will be used to eliminate states from being explored in the future by DFS. In
Section 5.5.4, we provide methods to obtain such arcs. The arc (V 23, V 12) from our previous
example, is an arc that could not have been inferred from the STP to state (V 11, V 21, V 31).

The second basic aspect of synchronizing P and Ps is ensuring that DFS successor enu-
meration step does not generate successors that violate previously made selections in Ps. For
instance, in the previous example, while enumerating successors of s0, we should not generate
s1 if Ps already contains the CAA (V 23, V 12). Furthermore, Ps must be properly updated
whenever a new state is added to P during DFS. Mechanisms for this are defined below.

5.5.3 State enumeration procedure
In this section, we describe our procedure for generating all feasible successors of a state to
explore during DFS. Assume that at the current stage of the search there is a STP P to state
scurr, and a consistent positional selection Ps for P . Further, let Bscurr denote the set of all
nodes in N , immediately following those in state scurr in their respective robot tours (i.e.,
Bscurr = {w|i ∈ [1,M], w = nextscurr[i]}). The problem of generating successors to scurr
then is that of determining which subsets of nodes in Bcurr define feasible extensions of P .

To illustrate, consider the example given in Figure 5.5a. Figure 5.5a shows state scurr and
the CCs between nodes in scurr and Bscurr . (All nodes in s−1curr\scurr have been omitted, as
CCs associated with those nodes are inconsequential in determining the successors of scurr).
In Figure 5.5b the corresponding selections in Ps are shown using red and black arcs. Notice
that Ps is indeed a consistent positional selection for P and that all selections in Figure 5.5b

CHAPTER 5. MRSBE 117

Figure 5.5(a) Brown double arrows indicate
CCs.

Figure 5.5(b) Alternative Graph with arcs in
Ps shown.

apart from the CAA (V 13, V 22) are derived from P . Note also that no selection has been
made for CC (V 12, r1, V 42, r4).

Consider the situation in Figure 5.5a for robots r4, r5 in scurr, which is similar to the
deadlock situation in Figure 5.1d. Owing to presence of CAAs (V 42, V 52), (V 52, V 42) in Ps,
the start time of V 42, V 52 must be the same in any complete consistent selection containing
Ps. So, if V 42 occurs in a successor of scurr, then so must V 52. Generalizing from this
example, notice that V 42, V 52 forms a maximal strongly connected component (scc) in the
induced sub-graph GPs [Bscurr] (i.e. the subgraph induced in G(N , F ∪ Ps) by the nodes in
Bscurr). Since all nodes in an identified maximal scc will either all occur or all not occur in
any feasible successor, we can potentially reduce the size of the search for feasible successors
by reasoning about which maximal sccs of GPs [Bscurr] occur instead of which nodes in Bscurr

occur. For our example, the maximal sccs of GPs [Bscurr] are c1 = {V 12}, c2 = {V 22}, c3 =
{V 32}, c4 = {V 42, V 52}, and c5 = {V 62}.

Equipped with this insight, we focus on specifying the set of constraints that dictate the
feasible co-occurrence of maximal sscs in GPs [Bscurr] due to CCs and ECs. (We assume
without loss of generality that such CCs will not appear between nodes in a given scc, because
otherwise we know that P cannot be extended to a complete STP). Let SCC = {c1, . . . , ck}
denote the set of all maximal SCCs in GPs [Bscurr]. For each maximal scc c in SCC, we
introduce a binary literal yc ∈ {0, 1} to indicate whether nodes in the maximal scc c occur in
the successor of scurr. If yc = 1, then all nodes in scc c occur in the successor. Else if yc = 0,
then robots corresponding to the nodes in c do not advance their position i.e. they continue to
remain on the node they occupied in state scurr. We then construct a SAT formula (denoted
by CFscurr) using these binary literals that every feasible successor of scurr must satisfy. We
develop the formula incrementally by considering different cases.

Case 1: The first clause ensures that for scc c to appear in a successor, then all sccs on
which c depends on must also appear. In Figure 5.5b, the CAA (V 22, V 32) in Ps illustrates
this case. We know that the start time of V 23 cannot occur earlier than the start time of V 22
in any complete consistent selection containing Ps. So for scc c3 = {V 32} to appear in the

CHAPTER 5. MRSBE 118

successor of scurr, scc c2 = {V 22} must also appear.
To specify this case more precisely, let PredPs(c) ⊆ {SCC\c} denote a set of maximal

sccs, where scc d ∈ PredPs(c) iff there exists an arc a in GPs [Bscurr], whose tail belongs
to some node in the scc d, and head belongs to some node in the scc c. For our example
PredPs(c3) = c2. We use the clause CF1Psc to impose the condition that for scc c with
PredPs(c) 6= ∅ to appear in the successor of scurr, then all sccs in PredPs(c) must also be
included in the successor. The condition can be enforced as shown below:

CF1Psc = ∧
{j|cj∈PredPs(c)}

(
yc → ycj

)
(5.5)

where→ is the logical implication operator.
Case 2: The second clause we introduce ensures that no scc c in the successor contains

a node that violates an enabling constraint. To formalize, define the following sets for any
node u belonging to scc c for which Enu 6= ∅ (i.e., u’s set of enablers is non-empty, refer
Section 5.5.1 for definition):

EnT (u) = {w|(w, u) ∈ Enu} (5.6)
K(u) = {d|d ∈ SCC s.t. d contains a node also present in EnT (u)} (5.7)
Uc = {u|u ∈ c, Enu 6= ∅,s−1curr ∩ EnT (u) = ∅} (5.8)

where Uc denotes the set of nodes in c that each need to be enabled if they are to appear in a
successor. We introduce a conjunction of clauses in CF2Psc , one for each node in Uc to ensure
they are enabled as shown below:

CF2Psc = ∧
u∈Uc

(
yc → 0 ∨ ∨

cj∈K(u)
ycj

)
(5.9)

In Equation (5.9), if there exists a node u ∈ Uc that cannot be enabled by any other node in
Bscurr i.e. K(u) = ∅, then we need to enforce yc = 0. To do so, we include 0 as shown in
Equation (5.9).

Case 3: The third clause ensures that states with collisions are avoided. Consider the set
CO, where

CO ={(ci, cj)|ci, cj ∈ SCC, ci 6= cj and ∃ (u, robu, v, robv) ∈ C,

where node u is part of ci, node v is part of cj.}

Each member of CO is a pair of sccs both belonging to SCC, such that, if both sccs occur in a
successor then the successor state will contain a collision. To avoid simultaneously including
nodes from sccs that can lead to collisions, we define CF3Ps as:

CF3Ps = ∧
(ci,cj)∈CO

(
yci → (1− ycj)

)
(5.10)

The clause
(
yci → (1− ycj)

)
means that if nodes from ci occurs in the successor then nodes

from cj cannot occur and vice versa.

CHAPTER 5. MRSBE 119

Case 4: The fourth clause ensures that an scc c whose start depends on the start of an
unvisited node not in Bscurr cannot occur. Consider the example in Figure 5.5b once more.
Due to CAA (V 13, V 22) in Ps, we know that the start time of V 22 cannot occur earlier than
the start time of V 13 in any complete consistent selection containing Ps. V 13 cannot occur
in any successor of scurr since it does not belong to Bscurr , and consequently, we know that
V 22 cannot occur in any successor of scurr either.

To incorporate this constraint, Let Yc ∈ {0, 1} be 0 if there exists a path in G(N , F ∪ Ps)
from some node in s+1

curr\Bscurr to nodes in c, and 1 otherwise. Then, to eliminate nodes that
are part of scc c with Yc = 0 from occurring in the successor, we introduce a clause CF4Psc :

CF4Psc = (yc → 0) (5.11)

Case 5: Finally, we define CF Ps
scurr , our target construction, by aggregating all clauses

defined for each of the above cases with a clause that ensures that at least one of the sccs from
SCC appears in the successor.

CF Ps
scurr =

(
∨

c∈SCC
yc

)
∧ CF3Ps (5.12)

∧
c∈SCC

(
CF1Psc ∧ CF2Psc ∧ CF4Psc

)
For the example considered, if we assume the presence of one additional EC EV 62 =

{V 11, V 51}, then the clauses introduced to construct CF Ps
scurr are the following:

CF Ps
scurr = (yc5 → yc4) ∧ (yc3 → yc2) ∧ (yc5 → yc4 ∨ yc1)

∧(yc1 → (1− yc4)) ∧ (yc2 → 0) ∧
(

5
∨
i=1
yci

)
(5.13)

Any feasible successor represented in terms of the Boolean literals y· must satisfy Equa-
tion (5.12). Conversely, from any solution to Equation (5.12), we can derive a successor. So
a basic strategy for deriving all feasible successors of scurr is to simply enumerate all solu-
tions to CF Ps

scurr . For the clauses listed in Eqn (5.13), there are three solutions to CF Ps
scurr .

If we denote a solution as the list of the literals corresponding to those sccs ci for which
yci = 1, the three solutions are: (a) yc1 , (b) yc4 and (c) yc4 , yc5 . However, it is not neces-
sary to enumerate all feasible solutions of CF Ps

scurr to ensure completeness of search. It is
sufficient to just enumerate the minimal models of Equation (5.12) to ensure completeness of
search. The minimal solutions for our example are (a) yc1 , (b) yc4 and the successors derived
corresponding to each of those minimal solutions are (V 12, V 21, V 31, V 41, V 51, V 61) and
(V 11, V 21, V 31, V 42, V 52, V 61).

Further, although the number of minimal models (solutions) is still exponential in the
number of robots in the worst case (an example is provided in Appendix C.2), it is also possible
to establish conditions where it is not.

Proposition 5. For state scurr, if for each scc c ∈ SCC and each node u ∈ Uc (refer Equa-
tion (5.8)) we have |K(u)| ≤ 1 (refer Equation (5.7)), then CF Ps

scurr has at most M minimal
solutions.

CHAPTER 5. MRSBE 120

Proof. In Appendix C.1.

Informally Proposition 5 says that if for every node that needs to be enabled in order to
appear in the successor (i.e. nodes in the set ∪

c∈SCC
Uc), there is at most one enabler for each

node, then the number of minimal solutions is at most M . Clearly if there are no ECs in the
problem, the statement in Proposition 5 holds true at every state that DFS expands. The proof
given in the appendix also provides an efficient algorithm for enumerating minimal solutions
in this case.

Selection update step

Once we have generated successors and selected a particular successor to continue the search,
we need to update the AG with selections for the updated STP P . Let ȳ denote a feasible
solution to CF Ps

scurr , and let state snext be the successor generated using ȳ. Let W denote the
set of nodes appearing in snext that do not appear in scurr. Let ĀPs denote members of A
for which Ps does not contain a selection. Let DFS choose to transition to snext from scurr.
Selections added to Ps are:

1. Since Ps already includes previous selections for CCs involving nodes in s−1curr, it is suffi-
cient to include only selections for CCs involving at least one node in W . If a CAA a with its
head to a node in W exists among members of ĀPs, then CAA a is excluded from Ps and the
paired CAA of a is included in Ps.

2. Corresponding to each node u in W for which an enabling clause was added in CF2Psc in
Eqn (5.9), we would have to append the corresponding selection from Enu into Ps.

If it becomes necessary to subsequently backtrack from snext back to scurr, then Ps is updated
by simply removing all arcs that were added to Ps during the transition from scurr to snext.

5.5.4 Simplifying the SSp formulation through logical inference
Complementary to our use of the AG to improve the efficiency of state enumeration, the size
of the SSp formulation can also be reduced (sometimes dramatically) by filtering the con-
straints in the AG. Specifically, both redundant constraints and infeasible alternative arcs can
be removed from the AG through logical inference, and as these constraints are removed it
becomes possible to merge nodes in the original AG, and as the number of nodes in the AG
decreases, the number of states DFS needs to explore also decreases. We illustrate this with
an example.

Example 12. Consider the 2 robot example in Figure 5.6, and assume that EV 22 = {V 12, V 23},
EV 24 = {V 11}, and c = (V 12, r1, V 23, r2) = C. With respect to EV 22 = {V 12, V 23}, notice
that for these specific robot tours V 22 can only be enabled by V 12, so the start time of V 22 in
any feasible schedule can be no earlier than the completion time of V 12. Hence {(V 13, V 22)}
is selected for EnV 22 (indicated by the blue arrow), and Ps is initialized with that selection.

CHAPTER 5. MRSBE 121

Figure 5.6: Collision constraint filtering, the blue arc represents the EAA (V 13, V 22).

In G(N , F ∪ Ps), presence of the path V 12→ V 13→ V 22→ V 23→ V 24 implies the
following temporal relations between start times of service locations:

SV 12 < SV 13 ≤ SV 22 < SV 23 < SV 24 (5.14)

For CC c, Eqn (5.14) excludes the choice of CAA (V 24, V 12).
So the only feasible selection for CC c is the arc ac = (V 13, V 23). However, notice that

G(N , F ∪ Ps) already contains a path from V 13 to V 23 (V 13, V 22, V 23) whose length is at
least as long as the 0 length arc ac. Hence, adding arc ac is redundant and by extension CC c
is also redundant in G(N , F ∪ Ps). So the pair of alternative arcs associated with CC c can
be removed. Finally, observe that V 11 ∈ EV 24, and that V 11 is serviced prior to V 24 in any
feasible solution. As such, we can infer that V 24 is guaranteed to be enabled, and any EAAs
associated with EV 24 can be removed from the AG.

Once CC c is shown to be redundant, notice that there are no CCs involving any node from
V 11, V 12, V 23, V 24. Further, only the start time of V 13 is needed to ensure that EC for V 22
is satisfied. Hence, we can contract the arc (V 11, V 12), thereby merging nodes V 11 and V 12
into a single node with a processing time equal to the sum of processing times of V 11 and
V 12. Similarly, we can merge nodes V 23 and V 24.

To be able to make inferences like the one in our example, we must first deduce precedence
relations between nodes in the AG. While any transitive reduction algorithms for DAGs can
be used to deduce transitive relations between nodes, we propose an algorithm that exploits
the fact that the nodes within the AG can be associated with a membership to a robot. Given
a partial selection Ps and graph G(N , F ∪Ps), we define f rv ∈ N as the last node in the tour
of robot r ∈ R that must be serviced no later than node v ∈ N . f rv is defined in Eqn (5.15).

By definition of f rv , we have Sv ≥ Sfrv in all feasible schedules of the SSp instance whose
corresponding complete selection contains Ps. Algorithm 14 shows how to compute f rv effi-
ciently. This algorithm takes as input graph G(N , F ∪ Ps) and the set TOP containing the
vertices in N stored in topological order. The values of f rv are computed by iterating over the
nodes in topological order, and by comparing the value of f rv for node v to the corresponding
values of its immediate predecessors (N−G (v)) in graph G(N , F ∪Ps). The runtime complex-
ity of Algorithm 14 is bounded by O (M2|N |). This follows from the fact that every node in
v ∈ N has at most one non-redundant incoming arc from a different robot, i.e., |N−G (v)| ≤M .

CHAPTER 5. MRSBE 122

f rv =



v if r = robv

or if no path exists from a node in
Seqr to v{

arg max
w∈Seqi

pos(w)

∣∣∣∣∣ ∃ a path from
w to v

in G(N ,F∪Ps)

}
,

otherwise
(5.15)

Algorithm 14 Computing f rv
Data: G(N , F ∪ Ps), TOP

f rv =

{
v if r = robv

or otherwise
for all v ∈ TOP do

for all w ∈ N−G (v) do
for all r ∈ R do

if pos(f rw) > pos(f rv) then
f rv = f rw

Using the definition of f rv , we state the following two propositions to filter redundant
alternative arcs from the AG.

Proposition 6. Given a feasible partial selection Ps, and assume Ps does not contain a
selection for CC c = (u, robu, v, robv). CC c is redundant if:

(pos(f robuv) ≥ pos(nextu)) ∨ (pos(f robvu) ≥ pos(nextv)) (5.16)

Proof. Corresponding to CC c, exactly one arc from the set Ac = {(nextu, v), (nextv, u)}
must be selected. W.l.o.g assume that pos(f robuv) ≥ pos(nextu) is satisfied. This implies that
there already exists a path between nextu to v in G(N , F ∪ Ps), i.e., nextu precedes v, so a
collision between u and v can never occur. As such, CC c can be safely removed.

Proposition 7. Given a feasible partial selection Ps, the ECs for node v ∈ N are redundant
if w ∈ Ev and pos(fv[robw]) ≥ pos(nextw).

Proof. There exists a path from newtw to v inG(N , F ∪Ps), so v is guaranteed to be enabled
by the time it is serviced.

In addition to identifying redundant alternative arcs, it is also possible to infer compulsory
selections for some alternative arcs. In particular, selecting a specific alternative arc (u, v)
often implies that some other alternative arcs must also be selected to ensure that the selection
remains feasible and does not introduce a positive-length cycle in G(N , F ∪ Ps). Simple
conditions can be derived for inferring such compulsory selections, we skip those details here.
When selecting an alternative arc (u, v) for inclusion in the set Ps, we can infer that:

• If there exists a c = (u, robu, v, robv) ∈ C, then from its alternative arc set

Ac = {(nextu, v), (nextv, u)} arc (nextu, v) must be selected, because selecting (nextv, u)
would induce the positive length cycle u→ v → nextv → u.

By similar reasoning:

• If c = (u, robu, w, robw) with robw = robv and pos(w) > pos(v), then arc (nextu, w) must
be selected from Ac.

CHAPTER 5. MRSBE 123

• Let prevv be the node previous to v in sequence Seqrobv . If c = (w, robw, prevv, robv) where
robw = robu and pos(w) < pos(u), then arc (nextw, prevv) must be selected.

The AG filtering techniques for removal of redundant constraints and for selection of un-
conditional alternative arcs, are applied by the SSp solver in a preprocessing step, prior to
conducting the DFS. This preprocessing step terminates only when no more filtering and arc
selections can be made. If at any stage during the preprocessing step, the graphG(N , F ∪Ps)
contains a positive-length cycle, the scheduler terminates since the instance is infeasible.

5.6 Initial solution generator
Having presented the SSp solver, we turn our attention to the other components making up
the MRSBE metaheuristic procedure. In this section, we summarize the approach taken to
seeding the metaheuristic local search procedure with a feasible solution.

We generate an initial feasible solution though use of a constructive heuristic that is ran-
domized via Value Biased Stochastic Sampling (VBSS) [Cicirello and Smith, 2005]. VBSS
assumes that the heuristic adopted is a good one (although not infallible), and thus modulates
the degree of randomness introduced to make any given choice to the heuristic’s discrimina-
tory power in that decision context. In the procedure to be described, the degree of randomness
is controlled by a single positive parameter called the weight factor, denoted by wt.

The search starts with a set of empty robot itineraries, and each robot residing at its the
starting location. In the first step, task locations are assigned to the robots randomly, with the
probability of assigning a task location to a robot proportional to exp(−wt‖d‖), where ‖d‖ is
the distance of the task location from the start location of the robot. If in case a task location
is not reachable by the robot, then the corresponding probability of being selected is set to 0.

The task locations assigned to the robots are then sequenced in an iterative manner. At
each iteration for each robot, one of the task locations assigned to it that is not yet sequenced
is appended to the end of the robot’s partial route. Only those task locations that have at
least one of its enablers previously sequenced by some robot are considered as candidates for
insertion. A task location is selected for insertion with probability ∝ exp(−wt‖d‖), where
‖d‖ is the distance between the task in question and the last location in the robot’s partial route.
If there are multiple selections of near-equal distance from a given robot’s last selection, then
the choice is made with greater randomization. If, however, there is a particular selection
for a given robot that is much closer than all other alternatives, then the decision is made
more deterministically. This process continues until all task locations have been sequenced,
after which the SSp is solved to determine feasibility of the resulting routes. Since there is
no guarantee of feasibility when all scheduling constraints are considered, this constructive
search is repeated until a feasible initial solution is found. As generation of a feasible set of
robot tours is NP-Hard, it can take several iterations to establish an initial feasible solution.

CHAPTER 5. MRSBE 124

5.7 Deterministic moves for local search
We define two complementary heuristic moves for improving a given feasible solution. The
first, called RELOCATE, selects a task location from some robot’s current tour for relocation
and either places it in a different position within the same tour or inserts it into the tour of
a different robot. The second move, called REORDER, selects a particular robot and locally
optimizes the order in which the robot visits the task locations currently assigned to it. Both
moves assume as input a set of valid robot tours for which the corresponding SSp problem
has previously been determined to be feasible, and with the assistance of the SSp solver,
both moves output a feasible solution. The first move, RELOCATE, attempts to improve the
schedulability of the tours; the second move, REORDER, emphasizes routing improvements
by locally optimizing the sequence of locations visited by some robot. Both these moves are
designed to produce new tours that are more likely to be feasible than would be the case with
simple randomized moves.

5.7.1 RELOCATE move
The RELOCATE move is inspired by previously developed local search operators for ex-
changing tasks between tours [Van Breedam, 1994]. Each RELOCATE move consists of the
following procedural steps. In the first step, a set of candidate task locations is identified for
relocation, and the candidates are ranked according to some metric. Then, starting from the
highest ranked candidate, we try to relocate the candidate and solve the SSp problem corre-
sponding to the modified routes that have been generated. If the makespan of the new solution
generated is accepted by the Late Acceptance meta-heuristic, the RELOCATE move success-
fully ends here for the current iteration. Otherwise, we try to relocate the next highest ranked
candidate, and process repeats until all candidates are exhausted. In the following subsections
we discuss which task locations are selected as candidates for relocation, how we decide where
to attempt insertion of the candidate, and finally how to obtain a feasible schedule (assuming
one exists) for the modified tours after insertion.

Candidate nodes for RELOCATION

Let RSeq = {Seq1, . . . , SeqM} denote the set of robot tours given as input to RELOCATE
at the current iteration of our meta-heuristic search procedure. Let Sch be the feasible sch-
edule forRSeq previously computed, and letG denote the AG containing a complete consistent
selection for SSp instance corresponding toRSeq and schedule Sch. To select a candidate node
hrel ∈ H for relocation, only nodes in the current Critical Path of G are considered in this
work. Given the presence of ECs, we rank these nodes based on their movement flexibility,
which for node v is defined as: min

{w|v∈Ew,v→w}
(∞, Sw) − max

{x|x∈Ev ,x→v}
(Snextx , 0) , where, →

designates an active EC in Sch. v → w is said to be active, if among all enablers of w,
the start time of v in Sch is least. Snextx denotes completion time of x in Sch. We rank
all task location nodes on the critical path based on the movement flexibility, with a location
having higher movement flexibility ranked higher. Intuitively movement flexibility gives us a

CHAPTER 5. MRSBE 125

conservative estimate of how much temporal flexibility we have in translating the start time of
hrel without causing disruption to previously computed active ECs.

Determining a location for insertion

Once hrel has been selected for relocation in the previous step, let R′Seq denote the set of
robot tours after hrel has been removed from RSeq. The task of selecting an insertion location
for hrel, is equivalent to identifying a robot r and successive task locations (say h1, h2) on
the tour of r in R

′
Seq between which hrel can be inserted. Let RNewSeq denote the set of

robot tours obtained after inserting hrel into R′Seq. In the following subsection where we
show how we generate a feasible schedule for RNewSeq, it will be mentioned that the first
step involves generating a feasible schedule for R′Seq. Denote the feasible schedule to be
computed for R′Seq by Sch′. Our approach to identifying h1, h2 for inserting hrel is motivated
from CSP scheduling research [Rubinstein et al., 2012], where the value associated with some
insertion location h1, h2 is measured by the slack associated with h1 in Sch′. Intuitively, slack
is the duration by which the processing duration of h1 can be increased without increasing the
makespan. So, selecting h1 with the highest amount of slack is a sensible choice for insertion.

Confirming feasibility of new tours

After relocating a node, the SSp instance corresponding to RNewSeq must be solved. Obvi-
ously, this could be accomplished through the scheduler outlined in Section 5.5, but we can
actually exploit the close similarity between RSeq and RNewSeq to define a cheaper feasibility
check. Specifically, most of the selections made in the AG G for RSeq and Sch can be reused,
while repairing just the portions affected by the relocation.

Our incremental procedure for generating a schedule proceeds in two steps, as hrel is
retracted and then reinserted. Let P denote the complete STP corresponding to schedule Sch
forRSeq. When hrel is retracted, P is used to establish whether the SSp instance corresponding
to R

′
Seq is feasible. If it is determined to be infeasible, then candidate hrel is rejected and

RELOCATE proceeds to consider the next identified move candidate. Otherwise, a feasible
schedule for R′Seq is generated. Let P ′ denote the complete STP corresponding to this feasible
schedule.

After subsequently inserting hrel into its new location, P ′ is used to determine the feasibil-
ity status ofRNewSeq. As before, ifRNewSeq is found to be infeasible, candidate hrel is rejected
and RELOCATE proceeds to the next candidate. Otherwise, a feasible schedule is generated
for RNewSeq, and a complete STP PNewSeq is returned.

To construct P ′ from P (and subsequently to construct PNewSeq from P
′), we focus on

partitioning P into three sub-sequences: P1, corresponding to the segment of Sch preceding
hrel’s original location that is unaffected by the move, P2, corresponding to the segment of Sch
that has been disrupted by the retraction of hrel and must be resolved, and P3, corresponding
to the segment of Sch following hrel’s original location that is unaffected by the move. We
hypothesize the smallest possible P2 SSp whose solution could confirm the feasibility of P ′ ,
and then iteratively expand the number of states contained in P2 as necessary to establish
feasibility or infeasibility.

CHAPTER 5. MRSBE 126

(a) Retraction Example: Brown double arrows indicate CCs. Node V 12 is chosen for
relocation.

(b) Feasibility certificate for retraction. The smaller SSp instance is shown
graphically in the middle.

(c) The black double arrow indicates a CC that was absent between nodes in
RSeq.

(d) The concatenation of P1, P
′
2, P3 is the feasibility certificate for RNewSeq.

Figure 5.7: RELOCATE example

CHAPTER 5. MRSBE 127

Consider the two robot example shown in Figure 5.7a, where RSeq and STP P are graph-
ically represented, and node V 12 indicated in blue is chosen for relocation. Assume for now
there is no active EC of the form V 12 → · in G. To determine feasibility of R′Seq, we first
construct a small SSp instance containing only a subset of nodes appearing in R′Seq. If this
SSp instance is feasible, we stitch the state transition path of the smaller SSp instance into P
such that, the resulting state transition path is a complete STP for R′Seq.

To formulate the initial SSp, a continuous block of states P2 in P is selected such that all
states in which V 12 appears in P are contained within P2. P2 is said to satisfy the containment
requirement of V 12. Denote the block of states on P which occur before the first state in P2

by P1, denote the block of states on P which occur after the last state on P2 as P3. Construct
an SSp instance induced only by the nodes appearing in P2 other than V 12 with the following
additional modifications:

• If the node appears in both P1 and P2 then its processing time in the SSp instance should be
set to the processing time remaining at the start time of the first state in P2.

• Nodes which have an enabler that does not appear in any state belonging to P2, P3 are
considered to be enabled. Hence ECs for such nodes are removed from the SSp formulation.

We apply our SSp scheduler to this small-sized P2 SSp instance to determine the feasibility
status. Depending on the outcome we consider two cases. If feasible, let P ′2 denote the STP
of the SSp instance constructed and denote the concatenation of P1, P

′
2, P3 by Pfeas. Note that

Pfeas is a certificate of feasibility for R′Seq in this case as it is a complete STP. We illustrate
this part for our example in Figure 5.7b.

If alternatively the status is infeasible, we consider a larger block of states for P2 satisfying
containment of V 12 and repeat the process of obtaining a feasibility certificate for R′Seq. By
increasing the size of P2 we are considering a larger (state) search space, the hope being that
a feasible solution might be found in the larger search space.

The assumption that there was no active EC of the form V 12 → · in Sch is needed to as-
sert that Pfeas is a feasibility certificate for R′Seq. If this assumption is not satisfied, then some
states in Pfeas may violate some EC. If there exists a violated EC, then if we presume the
existence of a feasible schedule for R′Seq, we can obtain one such schedule by progressively
increasing the block size of P2 (correspondingly shrinking P1 and P3) and recomputing P ′2
until we obtain a feasibility certificate Pfeas that does not violate any EC. In our actual imple-
mentation we initially start with a block size for P2 that is somewhat larger than the smallest
STP block satisfying containment, and we terminate the removal step if the block size for P2

exceeds a user defined threshold, since solving SSp instances corresponding to large block
sizes is expensive and defeats the purpose of local search.

The insertion step is exactly analogous to the retraction step, in this case using P
′ to

construct PNewSeq. Given a robot and a position within its tour to insert hrel as input, the con-
tainment requirement for P2 in the insertion step is that the nodes within which the insertion
takes place must each appear in some state of P2. Continuing with our earlier example, we
chose to insert V 12 between V 23 and V 24. Figures 5.7c and 5.7d shows the SSp problem that
is solved and the complete STP generated after insertion.

CHAPTER 5. MRSBE 128

5.7.2 REORDER move
The REORDER move is designed to focus on the routing component of the problem. Similar
to the RELOCATE move, the REORDER move takes as input a set of robot tours RSeq and a
feasible schedule Sch for those tours. The REORDER move selects a robot r, and reorders
its visit sequence of task locations while simultaneously keeping the sequences of all other
robots fixed and all the interdependent scheduling constraints satisfied.

REORDER is based on a Traveling Salesperson Problem (TSP) heuristic of [Balas, 1999]
which we modified to accommodate ECs and CCs. We first state the TSP heuristic of Balas
exactly as it appeared in Balas [1999]:
Consider the n-city TSP defined on a complete directed or undirected graph, and fix city 1 as
the home city, where all tours start and end. Suppose now that we are given an integer k,
1 ≤ k < n, and an ordering (1, . . . , n) of the set N of cities, and we want to find a minimum
cost permutation π of (1, . . . , n) (and associated tour) subject to the condition:

∀ i, j ∈ (1, . . . , n) , j ≥ i+ k =⇒ π(i) < π(j) (5.17)

then the TSP with condition in Eqn (5.17) can be solved in time O
(
k22k−2n

)
.

Remarkably, the TSP heuristic searches a neighborhood of size O (kn) in time complex-
ity which depends only linearly on n. We chose to adopt this heuristic due to its attractive
complexity [Balas, 1999; Simonetti and Balas, 1996], and the ease of adaptation for our ap-
plication.

Adapting the TSP heuristic for REORDER

Denote the tour of robot r in RSeq by Seqr. The task locations belonging to Hr (refer Section
5.1 for definition) that occur on Seqr take the role of cities in the description of the TSP
heuristic. Processing time of nodes belonging to Ir that occur between task locations define
the cost between cities. For a given k, the routing heuristic of Balas reorders the sequence
of task locations in Seqr subject to the condition in Eqn (5.17). We cannot guarantee that
replacing Seqr in RSeq by the tour generated by applying Balas’s heuristic on Seqr will admit
a feasible schedule. To increase the likelihood of generating a feasible schedule, we must
account for the inter-dependencies between robots (CCs and ECs) while generating the new
tour for robot r.

A natural idea to account for the inter-robot dependencies is to generate constraints based
on the schedules available in Sch for robots other than r, and incorporate them into the opti-
mization procedure of the TSP heuristic. In other words, instead of solving a purely routing
problem to generate the new tour for r, we will solve a routing problem with additional con-
straints included, where some constraints are temporal and others are precedence. In the fol-
lowing section, we identify these constraints and explain modifications to Balas’s procedure
to handle these constraints.

Constraints for inter-robot dependencies

Let Seq′r denote the new tour to be generated for r by reordering the task locations in Seqr. To
incorporate temporal constraints during the optimization procedure for generating Seq′r, we

CHAPTER 5. MRSBE 129

need to introduce variables for the start times of nodes in Seq′r. Let us denote the schedule
to be determined for Seq′r by Sch′r. The inter-robot dependency constraints that we introduce
are:
Collision free time intervals: For each candidate node u that must appear in Seq′r in case
u ∈ Hr or can appear in case u ∈ Ir (refer Section 5.1 for definition), compute the union
of collision free time intervals (CFu) based on the schedules available for the other robots.
Let Su denote the start time of u in Sch′r. The intervals in CFu represent the duration within
which we can assign a value to Su with the assurance that r will not collide with other robots
for the entire processing duration of u, i.e., the interval [Su, Su + pru].
Service time deadline: In the previous MRSBE schedule Sch, it may be the case that robots
in R\r contain nodes which are enabled by a task location in Seqr. In this work, we prefer
to preserve the enabling relationship, so a deadline can be imposed for the completion time of
the enabler node using the start time of the node it enables. Denote the deadline for a node u
by Dlu.
Enabling constraint: The enablers for any task location in Seqr may occur in Seqr itself or
be present in the tour of a different robot. For instance, if locations u, v, w ∈ Seqr, x 6∈ Seqr
and Eu = {v, w, x}, then the following disjunctive constraint can be imposed:

(π(u) > min (π(v), π(w))) ∨
(
Su ≥ SSch

nextx

)
(5.18)

where π(·) represents the position of the location in Seq′r, Su represents the start time of u in
Sch

′
r and SSch

nextx is the completion time of x in Sch. Note, π(·) and S· are unknowns that need
to be determined during the procedure for generating Seq′r, Sch

′
r.

Handling inter-robot dependency constraints

We first briefly describe Balas’s procedure which takes Seqr as input and outputs the optimal
tour satisfying Eqn (5.17). We then describe modifications to Balas’s procedure in order to
handle the inter-robot dependency constraints. Assume without loss of generality that the
task locations in Seqr are given by the sequence of locations (1, . . . , n). Balas’s heuristic
defines a DAG G∗. G∗ contains a 1:1 correspondence between source-sink paths in G∗ and
permutations of Seqr satisfying Eqn (5.17). Every node in layer i of G∗ can be characterized
by a tuple (i, j, Q−ijm, Q

+
ijm), where j is a location andQ−ijm, Q

+
ijm are a set of locations both not

containing j such that |Q−ijm| = |Q+
ijm| ≤ |k2 |; the precise definition of Q−ijm, Q

+
ijm is involved.

It suffices to know that all source-sink paths in G∗ corresponding to tours satisfying Eqn
(5.17) with location j at position i in the tour and locations in the set

(
[i− 1] \Q+

ijm

)
∪ Q−ijm

occupying all positions before i in the tour pass through the node (i, j, Q−ijm, Q
+
ijm), where

[i− 1] = {1, 2, . . . , i− 1}.
The shortest tour satisfying Eqn (5.17) corresponds to the sequence of task locations oc-

curring on the shortest source-sink path in G∗. The shortest path is computed by recursively
computing the shortest path to each node in G∗ in a layer wise fashion. The shortest path
cost to node (i, j, Q−ijm, Q

+
ijm) on G∗ is to be interpreted as the earliest start time of loca-

tion j at position i on any robot tour satisfying Eqn (5.17) with task locations in the set(
[i− 1] \Q+

ijm

)
∪Q−ijm occupying all positions before i.

CHAPTER 5. MRSBE 130

Handling inter-robot dependencies while generating the optimal tour essentially reduces
to increasing arc costs of G∗ dynamically. Consider some node n2 = (i, v, Q−ivm2

, Q+
ivm2

)
in layer i of G∗. Recall from the previous paragraph that the shortest path cost to node n2

provides a start time value for location v. If the start time of location v needs to satisfy the
constraints generated in section 5.7.2, the length of every incoming arc a into node n2 is
increased by the smallest amount such that the shortest path cost to node n2 through arc a
satisfies the constraints generated for location v in section 5.7.2. To be collision free, the new
arc length of a must be set such that the path cost to n2 through a falls within an interval of
CFv and does not exceed Dlv. To check whether the enabling constraint for v is satisfied at
node n2, we first check if an enabler of v appears in the set

(
[i− 1] \Q+

ivm2

)
∪ Q−ivm2

. This
check can be computed in O(k + |Env|), through the use of pre-computed sorted lists. If an
enabler is present then Eqn (5.18) is satisfied since an enabler of v is serviced by robot r before
servicing v, if not the length of a needs to be increased such that the path cost to n2 through a
satisfies the temporal constraint in Eqn (5.18). If no feasible arc length exists that satisfies our
requirements above we remove a from G∗. This idea of dynamically increasing the arc cost
to handle temporal constraints was previously also done in Balas et al. [2008], where the TSP
heuristic of Balas was adapted to solve job shop problems with time windows.

After computing the shortest path to all nodes in G∗ with the modified arc costs, the new
tour for r and Sch′r is extracted from the shortest source-sink path in G∗. Replacing Schr with
Sch

′
r in Sch is not guaranteed to yield a feasible schedule to the MRSBE problem. This is

because, in our definition of collision free interval (CF·) for a node that may appear in Seq′r,
the intervals guaranteed no collisions only for the processing duration of the node if the start
time for that node falls within one of its intervals, which however does not include any waiting
time a robot incurs at that node before it can move to the next node in Seq′r. While the robot
waits a collision can still occur. So we discard Sch′r and only retain Seq′r. We replace the tour
for r inRSeq by Seq′r and solve the corresponding SSp instance to generate a feasible schedule
(if one exists).

5.8 Experimental evaluation
In Section 5.8.1 we describe the procedure used to synthesize problem instances that match
closely with our real world problem, and introduce a closely related application. In Sec-
tion 5.8.3, we report the performance of our heuristic on those instances.

5.8.1 Benchmark data

Two robot benchmark data

We generated four benchmark sets, covering a total of 80 instances. All instances have two
robots. Robots are represented as rectangular polygons attached to a pivot point, similar to the
case shown in Figure 5.1. This abstraction resembles closely the motivating application shown
in Figure 5.1a. For checking if a collision occurs when robot i services node v and robot j
services node w simultaneously, we approximate the space occupied by the robots using poly-

CHAPTER 5. MRSBE 131

Figure 5.8: The figure on the left is for scenario type 1. The large rectangle is the tennis court, the
green circles represent tennis balls. The initial (and final) position for the robots r1, . . . , r6 are shown.
The figure on the right is likewise for scenario type 2.

gons and check whether they both intersect. The total number of CCs in our problems roughly
scales as O(M2N4), precomputing all the CCs is intractable for most reasonably sized in-
stances. On our test instances, N varies between 44 − 764. So instead of pre-computation,
CCs were generated by performing collision checks prior to solving each SSp instance sepa-
rately. A single IN is encountered between a pair of task locations (resulting in 550590 INs for
the largest instance). A small subset of task locations T ⊂ H, |T | = 15, is marked as enabled,
i.e., Ev = ∅; the remaining locations H \ T are enabled by task locations in proximity (within
a small radius).

Each of the four benchmark sets exhibits different characteristics. The first set, ’Real’, is
derived from data provided by our partner in the aerospace industry and contains instances
having 44 − 764 task locations that are arranged in rows and columns (grid structure), are
enabled by nearby adjacent task locations, and have processing times that dominate the travel
times between them. For tours (SSp instances) generated by VBSS in the initial solution
generator module, we observed that the largest real world instance on average contained ≈
22× 103 CCs per SSp instance.

The remaining three benchmark sets generate 100 task locations for each instance by ran-
domly sampling points within a rectangular region. The first random set, Random, is identical
to the Real set, except for the randomness in the locations. The second random set, Low
Proc, has long travel times between locations, and short processing times pri , thereby putting
a stronger emphasis on the routing component. Finally, the problems in the third random
set, Perturb are similar to the Random set, except that the distances between task locations
are randomly perturbed after enablers are generated to force overlaps in tours and increase
the likelihood of collisions. The purpose of additional three benchmark sets is to analyze
the performance of our MRSBE heuristic on problems with different characteristics, thereby
providing a differential analysis of the heuristic.

Four and six robot benchmark data

These problems help understand how our algorithm scales with more robots. A motivating
application for creating these instances is a tennis ball picking problem. Say we have a 6× 4
sized rectangular tennis court, with many balls littered across the court. These balls need
to be picked which can be done by any of the robots. The problem is similar to our real
world problem, except there are no ECs. Like in Section 5.8.1, we modeled the mobile robots

CHAPTER 5. MRSBE 132

using rectangles of dimension 1× 1. The robots can traverse between task locations along the
straight line connecting those locations. CCs were generated identically to the procedure in
Section 5.8.1.

A total of ninety-six instances were generated with each instance having 100 tennis balls
(task locations) randomly distributed across the tennis court. Forty-eight of these instances
have six robots, and the remaining have four robots. The initial locations of the robots may
have a significant impact on the performance of an algorithm for the MRSBE problem. So we
experimented with two different types of scenarios to study the impact of the initial position of
the robots. The 96 test instances can be classified as belonging to one of these two scenarios.
In the first scenario, the starting locations for the robots are closer to the bottom edge, while in
the second scenario the robots are uniformly located across the perimeter of the tennis court.
The two scenarios are shown in Figure 5.8. The time it takes a robot to pick a ball (processing
time of a task location) is set to a low value as compared to the travel time. For tours (SSp
instances) generated by VBSS, we observed that for both four and six robot instances on
average the SSp instance generated contained ≈ 103 CCs.

The four and six robot test cases as well as the experimental results can be found online at
https://github.com/jmogali/MRSBE_Test_Cases.

5.8.2 mTSP bound
To obtain insight into the quality of the heuristic MRSBE solutions, we compute lower bounds
on the optimal MRSBE solutions. These bounds are obtained by solving a mTSP problem,
thereby ignoring scheduling constraints such as the ECs and CCs. In all our experiments,
the travel times are symmetric, i.e., the sum of processing times of INs from i to j (where
i, j ∈ O∪D∪H) is identical to sum of processing times of INs from j to i. So lower bounds
can be computed by solving a symmetric version of the mTSP problem, with edge weights
adjusted to include processing times of task locations. Our mTSP formulation is modeled as
an undirected, weighted graph G′(V ′, E) with V ′ = O∪D∪H and E = V ′×V ′. The weight
wre of an edge e = (i, j) ∈ E is set equal to: wre =

pri +prj
2

+
∑

u∈P r
ij
pru, where the second term

sums over the processing times of the INs encountered on the trajectory from i to j. Given
graph G′, the mTSP can be formulated as follows:

minimize max
r∈R

∑
e∈Er

wrex
r
e (5.19)

s.t.
∑
r∈Ri

yri = 1 ∀i ∈ V ′ (5.20)∑
e∈δr(i)

xre = 2yri ∀r ∈ R, i ∈ V ′r (5.21)

∑
r∈R

∑
e∈δr(S)

xre ≥ 2 ∀S ⊂ V ′, |S| ≥ 3 (5.22)

yri , x
r
e ∈ {0, 1} ∀r ∈ R, i ∈ V ′r , e ∈ Er (5.23)

Here binary variables yri (resp. xre) assign vertices (resp. edges) to robots. δr(S) is the set of

https://github.com/jmogali/MRSBE_Test_Cases

CHAPTER 5. MRSBE 133

all edges between vertices in the set V ′r \S and vertices in S. The objective function minimizes
makespan. Constraint (5.20) assigns every node to a robot. Every location must be incident
to exactly two edges (Constraint (5.21)). Constraints (5.22) address subtour elimination. A
standard separation procedure is used to separate the subtour elimination constraints. The
mTSP model is solved by IBM Cplex 12.8.1, using a time limit. The lower bound value
computed by the solver after the time limit is used as the mTSP lower bound for the problem
instance.

5.8.3 Computational results
Based on empirical tests, the following parameters were selected for the various algorithms.
The length of the LA window is set to 25. The maximum number of consecutive failed pertur-
bation moves before a restart is performed in the MRSBE heuristic is set to 40. For the 2 robot
experiments, the wt (refer Section 5.6) parameter for VBSS within the constructive procedure
was set to a value which resulted in the best performance over “Real" dataset instances. For
the 4 and 6 robot experiments, we present results with different values of wt parameter.

In each iteration of the MRSBE heuristic, we randomly select a Deterministic Neighbor-
hood. The RELOCATE (resp. REORDER) neighborhood is selected with probability 2

3
(resp.

1
3
). The choice of these probabilities is motivated by the fact that the REORDER move is

generally computationally more expensive than the RELOCATE move. For computational
reasons, the maximum length of the block P2 considered in RELOCATE was set to 30. The
k parameter in REORDER was set to 12. The collision free time intervals (refer CF·) for
nodes in Ir were set to the single time interval [−∞,+∞]. In other words, we do not take into
consideration the collision constraints for Ir when applying REORDER. We did this simplifi-
cation because, the number of nodes in Ir for which we need to compute the collision free time
intervals are too many. In cases when the processing times dominate travel times, we should
not expect to lose too much information by ignoring exact computation of those collision free
time intervals for nodes in Ir.

We set a time limit of 5 seconds for the SSp scheduler to solve a single SSp instance. If the
scheduler failed to return a solution within the time limit, we simply declared the SSp instance
to be infeasible. All experiments were carried out on an Intel i7-4790 3.6 GHz processor using
single thread, and the code was written in C++.

Results for the two robot case

To evaluate the performance of the MRSBE heuristic, various experiments are conducted us-
ing different configurations of the heuristic. In the first experiment, we repeatedly compute
initial solutions using the Constructive heuristic (described in Section 5.6). For each instance,
the best and average constructive solution were recorded over a time period of 10 minutes.
In the second experiment, we ran the complete MRSBE heuristic for 10 minutes (on each
problem instance) and compared the solutions against the mTSP bounds, where the solve time
for mTSP was set to 30 minutes. Finally two more tests were conducted to determine the
influence of REORDER and RELOCATE on the overall heuristic. In the first experiment, the
MRSBE heuristic was run without RELOCATE move; in the second, it was run without RE-

CHAPTER 5. MRSBE 134

Figure 5.9: Computational results of the four benchmark classes for 2 robot case. To fit the results
compactly in one graph, a log-modulus transformation (L(y) = sgn(y)× log(|y|+ 1) ([John and

Draper, 1980])) is applied to the y-values.

-10

-5

-2
-1

0

1
2

5

10

50

100

 0 2 4 6 8

g
a
p

(%
)

Real

 0 5 10 15 20

Random

 0 5 10 15 20

Random (Low Proc)

 0 5 10 15 20

Random (Perturb)

mTSP Bound
Reorder

Relocate
Best constructive

Average constructive
MRSBE Heuristic

ORDER move. In both these tests, the time limit was set to 10 minutes per problem instance.
Computational results using the CP model (Algorithm 12) are omitted since the mTSP solver
produced better lower bounds and the MRSBE heuristic produced better upper bounds on all
instances.

A summary of the computational experiments is provided in Figure 5.9. The problem
instances for each of the 4 benchmark sets are listed on the x-axis. The results of the complete
MRSBE Heuristic (black line) are taken as the base line for all the experiments; other results
are reported relative to this baseline (percentage gap).

When comparing the mTSP bound to the MRSBE Heuristic, we can conclude that the
MRSBE Heuristic obtains very good results, and that the mTSP provides strong lower bounds.
For a given problem instance, we computed the optimality gap as:

Optimality Gap % =
MRSBE heuristic - mTSP lower bound

mTSP lower bound
× 100

For three benchmark sets, the optimality gap is less than 2%. Only for the Low Proc bench-
mark, this gap is slightly bigger (between 3-10%). It is not surprising that the gap is larger
for this set: since we omitted computing the collision free time intervals for INs as mentioned
in Section 5.8.3 for computational reasons. As a result, the REORDER works with a less
informed model when computing the new sequence of visit task locations.

Similarly, we can observe that the MRSBE Heuristic improves dramatically over the initial
solutions. For the Real instances, the gap between the average initial solution and the MRSBE
Heuristic solution is in the range of 10-20%. However, for the Perturb and Low Proc bench-
marks, improvements in the range of 20-60% are witnessed. When comparing the impact of
the REORDER and RELOCATE moves on the overall heuristic, some interesting observations
can be made. From the Random, Real and Perturb benchmarks we can conclude that neither
move dominates the other move, and that they both complement each other, i.e., the MRSBE
heuristic utilizing both moves achieves better results than a variation of the heuristic where

CHAPTER 5. MRSBE 135

Figure 5.10: Computational results for the multi robot cases under different scenarios.

-10

-2

0

10

30
50

100

 0 5 10 15 20

g
a
p

(%
)

4 Robots - Scenario 1

 0 5 10 15 20

4 Robots - Scenario 2

 0 5 10 15 20

6 Robots - Scenario 1

 0 5 10 15 20

6 Robots - Scenario 2

mTSP Bound
Med wt

Low wt
High wt

MRSBE Heuristic

one of the moves is left out.
Only for the Low Proc benchmark, where the emphasis is on the travel times, the heuristic

variant including the RELOCATE move seems to dominate the variant with only the RE-
ORDER move. This difference may be due to the fact that we ignored computation of col-
lision free time windows for travel duration, and also may be due in part to the computation
time required by each move. RELOCATE is a magnitude faster than REORDER, allowing
for many more iterations to explore the search space in the allotted ten minutes of execution.
Furthermore, in contrast to the RELOCATE move, REORDER moves only affect the routes
of an individual robot, which makes it harder for the REORDER move alone to reach different
areas of the search space. The results suggest that the REORDER move seems to be primarily
effective when used in combination with another move, e.g., the RELOCATE move, as the
combination of the two moves yields the best results overall.

Results on 4 and 6 robot cases

For the multi-robot case, for each multiplicity of robot and scenario type, we performed 5
experiments. In the first experiment, we computed the mTSP lower bound, where solve time
for mTSP was set to 2 hours for each problem. In the second experiment, we ran the MRSBE
heuristic for 10 minutes on each problem instance. Observe that depending on the topology
of the problem, i.e., placement of initial robot locations and task locations, choosing a single
value for the wt parameter for all the different topologies is not likely to yield good overall
performance. So in experiments 3-5, we ran the Constructive procedure with 3 different values
of wt parameter. The wt parameters for the experiments was chosen in the ratio 1 : 5 : 10,
where recall higher the wt value, the more greedily VBSS performs. For convenience, we
shall refer to the 3 wt parameter values as Low, Med, High. In these experiments, a time limit
of 10 minutes was set for the constructive procedure on each problem instance, and the best
objective across all iterations was recorded. Similar to the two robot case, we take the output
of the MRSBE heuristic as the baseline, and the outputs of the remaining four experiments are
compared against this baseline. The results are summarized in Figure 5.10. Also, note that the

CHAPTER 5. MRSBE 136

wt parameter was set to Med value, when the constructive procedure was required to provide
seed solutions to the MRSBE heuristic.

From Figure 5.10, we can observe that for the 4 robot case, the average gap between
MRSBE heuristic and the mTSP lower bound is ≈ 12% for problems of scenario type 1,
and ≈ 9% for scenario 2. For the six robot case, the average gap for scenario type 1 is
≈ 15%, and that of scenario type 2 is≈ 11%. These numbers indicate as the number of robots
increase, our gaps marginally increase. Also, interestingly, the gap between mTSP solution
and MRSBE heuristic is larger for problems in scenario 1 as compared to scenario 2. As the
robots in scenario-1 are less uniformly distributed across the perimeter of the tennis court,
we can expect CCs to play a more significant role in shaping the schedules for instances in
scenario-1 as opposed to scenario-2. Our mTSP bound however completely neglects all CCs,
hence gaps are larger for scenario-1.

From Figure 5.10, we clearly see that the gap between the MRSBE heuristic solution
and the constructive solutions are substantial. For each problem instance, we took the best
objective among the three constructive solutions, and report the difference between it and the
MRSBE solution. For the 4 robot case and scenario 1, on average, the gap when measured
relative to the MRSBE solution is ≈ 46%, and for scenario 2 is ≈ 16%. For the 6 robot
case and scenario 1, the corresponding average gap for scenario 1 is ≈ 66%, and ≈ 46%
for scenario 2. These results indicate the efficacy of our heuristic, as it clearly implies that
the MRSBE heuristic is able to substantially improve over the seed solution given by the
constructive procedure.

Also, notice that the gap between the best constructive procedure and MRSBE heuristic
solution is larger for problems in scenario 1 than those in scenario 2. As we explained earlier,
CCs play a more dominant role in shaping the schedule for instances in scenario-1 as opposed
to scenario-2. The constructive procedure in Section 5.6, however completely disregards all
CCs while generating robot tours, and hence its performance is somewhat inferior for scenario-
1.

The results on these 4 and 6 robot instances indicate a slight dependence in the perfor-
mance of our MRSBE heuristic on the geometry of the instance structure.

5.8.4 Alternate approaches
In this Section, we report our computational experience when we tried to solve the MRSBE
instances exactly using CP\IP. When we tried to solve the CP formulation provided in descrip-
tion 12, for any but the smallest instance, CP went out of memory (12GB). For perspective,
the smallest instances contained ≈ 22 × 106 CCs. For the smallest instances, CP could not
find feasible solutions, unless an initial feasible solution was provided as warm-start. In the
latter case, CP could not improve upon the initial solution.

A second CP model, which utilizes Interval Variables, and omits all CCs except the ones
between task locations, was constructed to compute lower bounds (LBs). All LBs computed
with this second model were inferior to the mTSP bounds that we presented, and so were
not included in this work. We also experimented with a MIP model based on a time-indexed
formulation for mTSP. To solve the MIP model, a branch and cut framework was used: the
model was solved without CCs; whenever a solution was found, it was checked whether the

CHAPTER 5. MRSBE 137

solution violated any CCs. If so, the violated CCs were added to the model. Similar to CP,
this approach was unable to solve any of our realistically sized problem instances.

5.9 Related work
There has been a lot of work in the area of task assignment and sequencing in different settings,
and the solution approaches are varied. Traditional Operations Research (OR) literature has
primarily focused on routing (generalized TSP) and scheduling (job shops, project scheduling,
etc.) separately, due to the enormous number of real world applications for each of these
problem types. The MRSBE problem however lies at the intersection of both.

A well studied application in the OR literature that considers both routing and collision
constraints, much like our application, is the vast literature on the quay crane scheduling
problem (QCSP) in port container terminals [Bierwirth and Meisel, 2010]. The QCSP problem
is very similar to our problem, where cranes take the role of robots and enabling constraints are
replaced with precedence constraints. There are important differences, however. The QCSP
is generally not modeled with all blocking constraints, and in practice the number of CCs in
QCSP benchmarks turns out to be only a tiny fraction of the CCs considered in our work. For
solving the QCSP problem exactly, MILP approaches are currently at the forefront [Kim and
Park, 2004]. These MILP formulations are typically solved using branch and cut procedures
[Moccia et al., 2006]. While MILP approaches are currently only able to solve small sized
instances to optimality, there is also in interest in developing local search approaches for the
QCSP problem. One such representative local search approach for this problem is the work
of [Sammarra et al., 2007], where a Tabu search metaheuristic method that decomposes the
problem into a routing and scheduling problem is proposed. They model the QCSP problem
as a parallel uniform machine scheduling problem with precedence constraints, where cranes
take the role of machines. The routing heuristic they implement is task swap, which similar to
RELOCATE, swaps tasks between cranes, and the scheduling sub-problem is modeled using a
disjunctive graph. Similar to our work, the moves in the neighborhood are based on relocating
tasks on the critical path.

A very closely related work to the problem setting addressed in this chapter is that of
[Gombolay et al., 2018], where multiple heterogeneous robots working in proximity need to
be scheduled to service a set of tasks while avoiding collisions. Two key differences from
our work is that they do not model the problem using blocking constraints, and they do not
consider enabling constraints. They propose an iterative hybrid approach, where at each itera-
tion the task assignment is delegated to an IP, while sequencing and scheduling of tasks across
robots is performed together. The sequencing-scheduling module is fast but incomplete, and
draws ideas from real time processor scheduling techniques.

There has been a growing number of applications that require combining task and motion
planning. A good review of existing literature on both applications, methodologies and chal-
lenges can be found in Mansouri et al. [2021]. We next review some of these applications. In
Mansouri et al. [2016], the authors consider a multi-robot drill planning problem in open pit
mines. Similar to our approach, they decompose the problem into different subcomponents, in
which task planning, motion planning and coordination are modeled as constraint satisfaction

CHAPTER 5. MRSBE 138

problems. Interdependencies between these models are captured using meta-constraints. In
Mansouri et al. [2017], the authors model the mining problem in Mansouri et al. [2016] as a
multi-vehicle routing problem with nonholonomic constraints and dense obstacles.

Another line of work that is recently gaining popularity is manufacturing using dual-arm
robots [Behrens et al., 2019; Wessén et al., 2020]. Similar to our work, the challenges in
these applications typically include allocating tasks to each arm, sequencing the tasks, and
scheduling the robot arms such that the arms do not collide with each other, while the objective
that is typically minimized is makespan. Both [Behrens et al., 2019] and [Wessén et al., 2020]
propose a CP based approach for their respective problems. In Behrens et al. [2019], a motion
series model is proposed to handle the movement of the arms, and conflict tables are pre-
computed to handle collision checking. They, however, assume that the task sequence is
provided to them. In Wessén et al. [2020], in addition to the challenges listed earlier, they also
consider the problem of optimizing the layout design of the robot workspace. They explore
the concept of dividing the workspace into two parts, which significantly helps simplify their
CP model with respect to collision handling. Further, in this application domain, there is also
interest in integrating motion planning for the robot arms more tightly into the optimization
procedure [Kabir et al., 2020; Behrens et al., 2019].

The Multi-Agent Path Finding (MAPF) problem is yet another problem class that consid-
ers robots working in close proximity, that we studied earlier in Chapter 3. Given a start and
end location for each robot, the task in this problem is to compute conflict free paths one for
each robot, and the objective that is typically minimized is either makespan or sum of travel
costs. Solution techniques for MAPF and its variants typically are based on either branch and
bound techniques [Sharon et al., 2015], polyhedral techniques involving cutting planes [Mo-
gali et al., 2020] or variants of A* [Wagner and Choset, 2011]. Unlike MRSBE, crucially,
MAPF does not require task sequencing since each robot has only one task location to service,
i.e., its end location. On the other hand, unlike MAPF, the route between any pair of task
locations is pre-specified for each robot in MRSBE using INs.

The literature dedicated to blocking constraints has mostly focused on applications where
the underlying problem can be modeled as a Job Shop problem or a Flow Shop problem [Mas-
cis and Pacciarelli, 2002]. Typical applications include train scheduling [Lange and Werner,
2018], scheduling and material handling in flexible manufacturing systems [Mati et al., 2011].
Unlike MRSBE, these applications lack a task assignment and sequencing component, and so
the problems considered in these works are more comparable to the SSp problem. More recent
work in scheduling with blocking constraints has emphasized the use of iterative improvement
search procedures. In Groeflin and Klinkert [2009], a new neighborhood structure was cou-
pled with tabu search to produce new best known solutions for a set of reference blocking
job shop problems. Building on the work of [Groeflin and Klinkert, 2009], specialized local
search neighborhoods have been more recently proposed for solving more general structured
scheduling problems [Bürgy, 2017] with blocking requirements. However, the properties of
these neighborhoods are not well understood even for those structured problems, see Chap-
ter 4, and so whether they can recover the optimal solution to the SSp problem (assuming
feasibility) is currently unknown.

CHAPTER 5. MRSBE 139

5.10 Summary
In this chapter, we introduced and analyzed a new multi-robot planning problem called the
Multi-Robot Scheduling Problem with Blocking and Enabling Constraints (MRSBE), where
multiple robots are tasked to service an overlapping set of locations to minimize overall
makespan, while taking both enabling constraints (ECs) and collision constraints (CCs) into
account. We analyzed the complexity of MRSBE and its Scheduling Subproblem (SSp) re-
striction, and showed that even the problem of determining whether a set of robot tours is
feasible is NP-Complete. To solve MRSBE for realistically sized instances, a meta-heuristic
approach was developed that utilizes two specialized neighborhood search operators to pro-
mote exploration of the feasible solution space.

A set of benchmark problems were created to assess the performance of the approach,
including one set of benchmarks representative of the real-world application that has motivated
this research. We compared and reported the performance of our meta-heuristic against a
strong lower bound and as well as an alternative method for generating upper bound solutions.

5.11 Summary of contributions
• We introduced a new class of multi-robot routing and scheduling problem.

• We studied the complexity of the MRSBE problem, and the scheduling sub problem
where routes are specified for each robot, i.e., the SSp sub problem.

• We presented a scheduler for the SSp problem.

• We presented a meta-heuristic scheme, and developed two complementary local search
operators. One of the operators is guided by the scheduling aspect of the problem, while
the other emphasizes the routing aspect of the problem.

Part IV

140

Chapter 6

Conclusions

Problems with a spatio-temporal flavor occur frequently in industrial environments. In this
thesis, we presented heuristics for three such problems, namely, Multi-agent Path Finding
(MAPF), Blocking Job Shop (BJS), and Multi-robot routing and scheduling with collision
(Blocking) and generalized precedence (Enabling) constraints (MRSBE). Although, all three
problems can be modeled and solved using a single framework, e.g., Mixed-Integer Linear
Programming, Constraint Programming etc. We took the position that developing a special-
ized algorithm for each problem separately often yields better results.

In Chapter 3, we contributed to the MAPF problem by developing a novel cutting plane
based lower bounding procedure that combines, Lagrangian Relax-and-Cut with Decision Di-
agrams. Intuitively, our contribution can be characterized as an approach to analyze the paths
of multiple (≥ 2) robots within a spatio-temporal neighborhood. We used that analysis to
derive cuts, ultimately leading to strong lower bounds. We demonstrated that incorporating
our lower bounding procedure improves the performance of Conflict-based search, a state-of-
the-art search based approach for MAPF. The results demonstrated that our approach is more
effective in congested settings. On the Random layout instances, we reported better results on
layouts with 15, 20 and 25 obstacle %. Relative to CBS, the number of problems that we could
solve to optimality increased between 4 - 16%. Some ideas presented in this paper, such as
the projection based cut generation via Decision Diagrams, may be more broadly applicable
to other combinatorial problems.

In Chapter 4, we presented an efficient local search heuristic for the Blocking Job Shop
(BJS) problem with no swap, based on the popular N4 neighborhood. Efficient algorithms
for identifying feasible N4 neighbors and for computing their makespan were presented. For
infeasible N4 neighbors, we presented an efficient job insertion based algorithm. Critical to
the performance of this job insertion procedure was an efficient computational procedure that
we developed for obtaining the job insertion polytope. Our algorithms for identifying feasible
N4 neighbors and their makespan, and the polytope based job insertion procedure, can all be
easily extended to be applicable for other complex Job Shop variants. With these efficient
implementations, we obtained new best results on 28 out of the 40 Lawrence benchmark in-
stances, and matched the previous best on 11 out of the 12 remaining instances. Finally, we
showed new structural properties of the Job insertion polytope. Based on those properties, we
outlined ways to further improve the local search.

141

CHAPTER 6. CONCLUSIONS 142

In Chapter 5, we introduced and analyzed a new class of problems called Multi-Robot
Scheduling Problem with Blocking and Enabling Constraints (MRSBE). In this problem, mul-
tiple robots work in proximity, and are tasked to service an overlapping set of locations without
colliding. The objective to minimize is makespan. We analyzed the complexity of MRSBE
and its subproblem, namely Scheduling Subproblem (SSp). Given a tour for each robot, SSp
is the problem of computing a schedule for those tours. We showed that determining whether
the SSp admits a feasible schedule is NP-Complete. We developed an efficient scheduler for
the SSp problem, that leverages techniques that we developed akin to constraint propagation.
To solve MRSBE for realistically sized instances, we developed a meta-heuristic approach
that utilizes two specialized neighborhood search operators inspired from vehicle routing lit-
erature. One of the operators is based on exchanging tasks between robots, and the other is
based on a TSP heuristic that reorders tasks assigned to a robot. Both these operators rely on
the SSp scheduler to convert their outputs into feasible schedules. We compared our meta-
heuristic against a strong lower bound (mTSP) as well as an alternative method for generating
upper bound solutions. On the real world problems instances that motivated this chapter, we
showed that our heuristic outputs solutions within 2% of the optimal.

6.1 General Takeaways Retrospectively
We believe that several of the ideas and techniques introduced in this thesis in the context
of solving a particular problem are likely to have broader applicability in addressing other
problems. In this section, we highlight these potentially more general takeaways. We begin
with our work presented in Chapter 3 on the MAPF problem. We introduced ideas such as
reasoning through the use of polytopes and localization through templates; and coupling of
Lagrangian Relax and Cut (LRC) with Decision Diagrams (DDs). We make a few comments
about these ideas.

For the MAPF problem, through the use of projection polytopes, our aim was to gather
inferences (e.g. cutting planes) for the lower bound through a localized view of the feasible
region. By localized view, we generically mean a projection (or relaxation) of the feasible
region over a low dimensional space. We gathered inferences by posing queries and tried to
obtain answers by only considering the localized views. For the MAPF problem, this approach
allowed us to understand how robots would need to navigate within a local spatio-temporal
neighborhood to avoid collisions, and this information as it was shown in Chapter 3 proved
useful for computing the lower bound. We believe this approach may be practically useful
for solving other combinatorial problems, especially in applications where such local views
can be highly informative. A few considerations that make this approach computationally
attractive are:

• There are procedures available for representing the feasible region of 0-1 problems using
Decision Diagrams (DDs), see Bergman et al. [2016]. Obtaining a projection from
a complete DD description is straightforward, and thereby we have a generic way to
construct a local view.

• There is flexibility in the type of queries for which we can obtain answers (inferences)

CHAPTER 6. CONCLUSIONS 143

efficiently from the local views. This is because each local view is essentially a polyhe-
dra, and so we can borrow tools from Linear Programming for answering.

We used templates to specify local views of the MAPF problem. By spatio-temporally
shifting the template, we were able to obtain different local views. We were able to associate
different local views to the same templates due to the underlying symmetry in the problem
instances we considered, see Section 3.6.1. However such symmetries frequently occur in
practical use cases of many combinatorial problems and are worth exploiting. In our case,
templates were useful for cut generation because, after having constructed the relaxation to the
projection polytope associated to a template, we were able to reuse the facial structure of the
relaxation by just spatio-temporally shifting the parameters, see Section 3.6.1. For problems
where symmetries exist, and if solution methodologies that can benefit from local views are
being used, then the idea of associating local views through templates may be useful as it
can save us the computational effort of building different relaxations. While templates only
provide a local view of the problem, in Sections 3.7.1 - 3.7.2, we showed how concurrently
using multiple templates can help expand the scope of our inference procedures developed for
local views to larger regions in computationally tractable ways.

By combining LRC with DDs, we empirically showed that we are able to obtain tight lower
bounds for the MAPF problem. As we mentioned earlier, given the fact that there are generic
ways to construct DDs for combinatorial constraints, it may be promising to apply LRC with
DDs for obtaining tight lower bounds to other combinatorial problems. Since the procedure for
generating cuts from DDs is also simple, coupling LRC with DDs is computationally elegant.
Also in our work, by combining LRC with Conflict Based Search (CBS), we integrated a
polyhedral technique into a search-based method. Such integration schemes can be beneficial
for search based methods, as search methods can harness the power of polyhedral techniques.

In Chapter 4, we saw that local search for the BJS problem is expensive, i.e., the com-
plexity of the local search operators scales with problem dimensions. For the case when
the number of jobs exceeds the number of machines, we showed that blocking imposes some
structure in the schedule (see the discussion on states 1 - 4 in Section 4.10). Using that insight,
very broadly in Section 4.10, we attempted to structurally characterize feasible schedules, and
presented ideas that exploit structure to improve the complexity of local search schemes. Al-
though exploiting structural insights is a common strategy in optimization literature in general,
for the BJS problem and it’s variants however, the structure that blocking imposes has so for
not received considerable attention. We speculate an analysis similar to that of ours can lead
to interesting insights for other BJS variants, and may prove useful for developing efficient
local search schemes.

In Chapter 5, we designed our scheduler by hybridizing search on a state space graph
with Constraint Programming. For some applications, the concept of a state naturally arises
and it makes algorithm development for the application simple and intuitive. However, in
many such applications (e.g. robot task planning), the search procedure typically only reasons
forward in time when constructing a plan, and so due to the poor guidance, the search may
frequently backtrack. Constraint propagation on temporal constraint graphs can reason both
forward and backward in time [Cheng and Smith, 1997]. Adapting from such an approach, we
designed our scheduler, where at every step in the state space search procedure, the scheduling

CHAPTER 6. CONCLUSIONS 144

decisions made by search are propagated on the temporal constraint graph, and the inferences
obtained through propagation are utilized to guide the next search step. It is unclear to us
how widely this hybrid approach is currently used in applications where state space search
approaches dominate. Hybridizing search with constraint propagation for such applications
may be a worthwhile strategy.

6.2 Future Research Directions

6.2.1 Multi-Agent Path Finding
In Section 3.7, we provided a few directions for extending our work. In this section, we
mention some more future directions of research. In recent literature [Lam et al., 2019; Lam
and Le Bodic, 2020], the branch-cut-and-price (BCP) technique was shown to outperform
CBS. Although the BCP approach is fundamentally different to our approach, it shares the
commonality that cutting planes are used to derive strong lower bounds. Since our template
based approach provides a generic way to analyze the paths of multiple robots concurrently for
generating cuts, an interesting direction of future work is to incorporate our cuts to strengthen
the BCP technique.

While the original MAPF problem is somewhat idealized, there is growing interest in
extensions of the MAPF problem [Atzmon et al., 2018; Li et al., 2019b]. In Atzmon et al.
[2018], the authors introduced a new notion of robustness, called k-robustness. It is a notion to
generate conflict-free plans that are robust to execution delays up to k time units. In [Li et al.,
2019b], the authors consider the MAPF variant, where some agents need to occupy multiple
locations on the grid simultaneously. In future work, we can adapt the Lagrangian Relax-and-
Cut lower bounding scheme to both these variants of the MAPF problem. We simply have to
add more constraints to the relaxation polytope P (S) described in Section 3.3.4, to account
for the additional constraints present in these extensions of the MAPF problem.

6.2.2 Blocking Job Shop Problem
The Job insertion class of algorithms introduced in Section 4.6 has been amongst the state-of-
the-art local search algorithms for several extensions to the Job Shop (JS) problem. Previously,
through Sections 4.7.1 - 4.7.7, we introduced an efficient implementation of the Job insertion
algorithm based on a compact representation of the JIP. An interesting direction of future
work is to extend our polytope based approach for other variants of the JS problem.

Despite the efficient updates to the Job insertion class of algorithms proposed in our work,
the complexity of obtaining a neighbor is still quite high, i.e., it is at least O(M2J). In most
real world problems, M << J, and so it is beneficial if we can develop neighbor generation
schemes that are independent of J. In Section 4.10.1, we proposed one such scheme motivated
from the result presented in Theorem 5. Implementing this scheme is an interesting direction
of future work.

CHAPTER 6. CONCLUSIONS 145

6.2.3 Multi-Robot Routing and Scheduling with Blocking and Enabling
Constraints (MRSBE)

We see a couple of directions for future research. Firstly, we have treated MRSBE as a deter-
ministic problem, but in practice there is variability in the service times, and robot failures can
occur reasonably often. This suggests the utility of exploring stochastic variants of MRSBE.
Second, there are other strategies for avoiding collisions where robots take explicit evasive
actions. Such strategies could provide a better basis for coping with blocking constraints.
Thirdly, we fixed the trajectory of a robot between a pair of task locations. It would be inter-
esting to extend our work where a robot has multiple trajectory options between a pair of task
locations, as it can potentially reduce makespan. Lastly, it was sufficient for just one of the
enablers to be serviced earlier for an Enabling Constraint (EC) to be satisfied. In future work
we can extend the scope whereby k of the enablers need to be serviced earlier for the EC to be
satisfied, where k is a positive integer.

Bibliography

Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job
shop scheduling. Management science, 34(3):391–401, 1988.

Toshiro Araki, Yuji Sugiyama, Tadao Kasami, and Jun Okui. Complexity of the deadlock
avoidance problem. In In 2nd IBM Symp. on Mathematical Foundations of Computer Sci-
ence IBM, pages 229–257, 1977.

Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barták, and Neng-Fa Zhou.
Robust multi-agent path finding. In Eleventh Annual Symposium on Combinatorial Search,
2018.

Barrie M Baker and Janice Sheasby. Accelerating the convergence of subgradient optimisa-
tion. European Journal of Operational Research, 117(1):136–144, 1999.

Egon Balas and Alkis Vazacopoulos. Guided local search with shifting bottleneck for job shop
scheduling. Management science, 44(2):262–275, 1998.

Egon Balas, Neil Simonetti, and Alkis Vazacopoulos. Job shop scheduling with setup times,
deadlines and precedence constraints. Journal of Scheduling, 11(4):253–262, 2008.

Egon Balas. New classes of efficiently solvable generalized traveling salesman problems.
Annals of Operations Research, 86:529–558, 1999.

Jan Kristof Behrens, Ralph Lange, and Masoumeh Mansouri. A constraint programming
approach to simultaneous task allocation and motion scheduling for industrial dual-arm
manipulation tasks. In 2019 International Conference on Robotics and Automation (ICRA),
pages 8705–8711. IEEE, 2019.

Tolga Bektas. The multiple traveling salesman problem: an overview of formulations and
solution procedures. Omega, 34(3):209 – 219, 2006.

Thierry Benoist, François Laburthe, and Benoît Rottembourg. Lagrange relaxation and con-
straint programming collaborative schemes for travelling tournament problems. In CPAIOR,
volume 1, pages 15–26, 2001.

David Bergman, Andre A Cire, and Willem-Jan van Hoeve. Improved constraint propagation
via lagrangian decomposition. In International Conference on Principles and Practice of
Constraint Programming, pages 30–38. Springer, 2015.

146

BIBLIOGRAPHY 147

David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John Hooker. Decision Diagrams
for Optimization. Springer, 2016.

Christian Bierwirth and Frank Meisel. A survey of berth allocation and quay crane scheduling
problems in container terminals. European Journal of Operational Research, 202(3):615–
627, 2010.

Jacek Błażewicz, Wolfgang Domschke, and Erwin Pesch. The job shop scheduling prob-
lem: Conventional and new solution techniques. European journal of operational research,
93(1):1–33, 1996.

Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and Eyal
Shimony. Icbs: improved conflict-based search algorithm for multi-agent pathfinding. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

Peter Brucker and Thomas Kampmeyer. Cyclic job shop scheduling problems with blocking.
Annals of Operations Research, 159(1):161–181, 2008.

Reinhard Bürgy. A neighborhood for complex job shop scheduling problems with regular
objectives. Journal of Scheduling, 20(4):391–422, 2017.

Edmund K Burke and Yuri Bykov. The late acceptance hill-climbing heuristic. European
Journal of Operational Research, 258(1):70–78, 2017.

Margarita P Castro, Andre A Cire, and J Christopher Beck. An mdd-based lagrangian ap-
proach to the multicommodity pickup-and-delivery tsp. INFORMS Journal on Computing,
32(2):263–278, 2020.

Cheng-Chung Cheng and Stephen F Smith. Applying constraint satisfaction techniques to job
shop scheduling. Annals of Operations Research, 70:327–357, 1997.

Vincent A. Cicirello and Stephen F. Smith. Enhancing stochastic search performance by value-
biased randomization of heuristics. Journal of Heuristics, 11:5–34, 2005.

Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming, volume
271. Springer, 2014.

Richard Walter Conway, William L Maxwell, and Louis W Miller. Theory of scheduling.
Courier Corporation, 2003.

Adel Dabah, Ahcene Bendjoudi, and Abdelhakim AitZai. An efficient tabu search neighbor-
hood based on reconstruction strategy to solve the blocking job shop scheduling problem.
Journal of Industrial & Management Optimization, 13(4):2015–2031, 2017.

BIBLIOGRAPHY 148

Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai, and Nadia Nouali Taboudjemat. Effi-
cient parallel tabu search for the blocking job shop scheduling problem. Soft Computing,
2019.

Danial Davarnia and Willem-Jan van Hoeve. Outer approximation for integer nonlinear pro-
grams via decision diagrams. Mathematical Programming, pages 1–40, 2020.

Mauro Dell’Amico and Marco Trubian. Applying tabu search to the job-shop scheduling
problem. Annals of Operations research, 41(3):231–252, 1993.

Andrea D’ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of Operational Research,
183(2):643–657, 2007.

Esra Erdem, Doga Gizem Kisa, Umut Oztok, and Peter Schüller. A general formal framework
for pathfinding problems with multiple agents. In Twenty-Seventh AAAI Conference on
Artificial Intelligence, 2013.

Laureano F Escudero, Monique Guignard, and Kavindra Malik. A lagrangian relax-and-cut
approach for the sequential ordering problem with precedence relationships. Annals of
Operations Research, 50(1):219–237, 1994.

Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, TK Satish Kumar, and Sven
Koenig. Adding heuristics to conflict-based search for multi-agent path finding. In Twenty-
Eighth International Conference on Automated Planning and Scheduling, 2018.

Graeme Gange, Daniel Harabor, and Peter J Stuckey. Lazy cbs: Implicit conflict-based search
using lazy clause generation. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, pages 155–162, 2019.

Michael R Garey and David S. Johnson. Two-processor scheduling with start-times and dead-
lines. SIAM Journal on Computing, 6(3):416–426, 1977.

Michael R Garey and David S Johnson. Computers and intractability. New York: Freeman,
1979.

Arthur M Geoffrion. Lagrangean relaxation for integer programming. In Approaches to inte-
ger programming, pages 82–114. Springer, 1974.

Carmen Gervet. New structures of symbolic constraint objects: sets and graphs (extended
abstract). In Third workshop on constraint logic programming, 1993.

Fred Glover and Manuel Laguna. Tabu search. In Handbook of combinatorial optimization,
pages 2093–2229. Springer, 1998.

Matthew C Gombolay, Ronald J Wilcox, and Julie A Shah. Fast scheduling of robot teams per-
forming tasks with temporospatial constraints. IEEE Transactions on Robotics, 34(1):220–
239, 2018.

BIBLIOGRAPHY 149

H. Groeflin and A. Klinkert. A new neighborhood and tabu search for the blocking job shop.
Discrete Applied Mathematics, 157(17):3643–3655, 2009.

Heinz Gröflin and Andreas Klinkert. Feasible insertions in job shop scheduling, short cycles
and stable sets. European Journal of Operational Research, 177(2):763–785, 2007.

Heinz Gröflin and Andreas Klinkert. A new neighborhood and tabu search for the blocking
job shop. Discrete Applied Mathematics, 157(17):3643–3655, 2009.

Heinz Gröflin, Dinh Nguyen Pham, and Reinhard Bürgy. The flexible blocking job shop with
transfer and set-up times. Journal of combinatorial optimization, 22(2):121–144, 2011.

M. K. Habib and H. Asama. Efficient method to generate collision free paths for an au-
tonomous mobile robot based on new free space structuring approach. In Proceedings
IROS ’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91, pages
563–567 vol.2, Nov 1991.

Nicholas G Hall and Chelliah Sriskandarajah. A survey of machine scheduling problems with
blocking and no-wait in process. Operations research, 44(3):510–525, 1996.

Silvia Heitmann. Job-shop scheduling with limited buffer capacities. 2007.

J. A. John and N. R. Draper. An alternative family of transformations. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 29(2):190–197, 1980.

Ariyan M Kabir, Shantanu Thakar, Prahar M Bhatt, Rishi K Malhan, Pradeep Rajendran,
Brual C Shah, and Satyandra K Gupta. Incorporating motion planning feasibility consider-
ations during task-agent assignment to perform complex tasks using mobile manipulators.
In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 5663–
5670. IEEE, 2020.

Mohand Ou Idir Khemmoudj, Hachemi Bennaceur, and Anass Nagih. Combining arc-
consistency and dual lagrangean relaxation for filtering csps. In International Conference
on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in
Constraint Programming, pages 258–272. Springer, 2005.

Kap Hwan Kim and Young-Man Park. A crane scheduling method for port container terminals.
European Journal of operational research, 156(3):752–768, 2004.

Tamás Kis and Alain Hertz. A lower bound for the job insertion problem. Discrete Applied
Mathematics, 128(2-3):395–419, 2003.

Andreas Klinkert. Optimization in design and control of automated high-density warehouses.
PhD thesis, PhD thesis, University of Fribourg, Switzerland, 2001.

Edward Lam and Pierre Le Bodic. New valid inequalities in branch-and-cut-and-price for
multi-agent path finding. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, pages 184–192, 2020.

BIBLIOGRAPHY 150

Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter J Stuckey. Branch-and-cut-and-price
for multi-agent pathfinding. In Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence (IJCAI-19), International Joint Conferences on Artificial
Intelligence Organization, pages 1289–1296, 2019.

Julia Lange and Frank Werner. Approaches to modeling train scheduling problems as job-shop
problems with blocking constraints. Journal of Scheduling, 21(2):191–207, 2018.

Julia Lange and Frank Werner. A permutation-based heuristic method for the blocking job
shop scheduling problem. IFAC-PapersOnLine, 52(13):1403–1408, 2019.

Misha Lavrov. An upper bound on the number of chordless cycles in an undirected graph.
Mathematics Stack Exchange, 2018. URL:https://math.stackexchange.com/q/2811761
(version: 2018-06-07).

S Lawrence. Resouce constrained project scheduling: An experimental investigation of heuris-
tic scheduling techniques (supplement). Graduate School of Industrial Administration,
Carnegie-Mellon University, 1984.

Jiaoyang Li, Eli Boyarski, Ariel Felner, Hang Ma, and Sven Koenig. Improved heuristics for
multi-agent path finding with conflict-based search. In International Joint Conference on
Artificial Intelligence, pages 442–449, 2019.

Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, TK Satish Kumar, and Sven Koenig.
Multi-agent path finding for large agents. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pages 7627–7634, 2019.

Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J Stuckey, Hang Ma, and Sven Koenig.
New techniques for pairwise symmetry breaking in multi-agent path finding. In Proceedings
of the International Conference on Automated Planning and Scheduling, volume 30, pages
193–201, 2020.

Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig.
New techniques for pairwise symmetry breaking in multi-agent path finding. In Proceed-
ings of the 30th International Conference on Automated Planning and Scheduling (ICAPS),
2020.

Shi Qiang Liu and Erhan Kozan. Scheduling trains as a blocking parallel-machine job shop
scheduling problem. Computers & Operations Research, 36(10):2840–2852, 2009.

Abilio Lucena. Non delayed relax-and-cut algorithms. Annals of Operations Research,
140(1):375–410, 2005.

Masoumeh Mansouri, Henrik Andreasson, and Federico Pecora. Hybrid reasoning for multi-
robot drill planning in openpit mines. 2016.

BIBLIOGRAPHY 151

Masoumeh Mansouri, Fabien Lagriffoul, and Federico Pecora. Multi vehicle routing with
nonholonomic constraints and dense dynamic obstacles. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3522–3529. IEEE, 2017.

Masoumeh Mansouri, Federico Pecora, and Peter Schüller. Combining task and motion plan-
ning: Challenges and guidelines. Frontiers in Robotics and AI, 8:133, 2021.

Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3):498–517, 2002.

Yazid Mati and Xiaolan Xie. Multiresource shop scheduling with resource flexibility and
blocking. IEEE transactions on automation science and engineering, 8(1):175–189, 2011.

Yazid Mati, Nidhal Rezg, and Xiaolan Xie. Geometric approach and taboo search for schedul-
ing flexible manufacturing systems. IEEE Transactions on Robotics and Automation,
17(6):805–818, 2001.

Yazid Mati, Nidhal Rezg, and Xiaolan Xie. A taboo search approach for deadlock-free
scheduling of automated manufacturing systems. Journal of Intelligent Manufacturing,
12(5-6):535–552, 2001.

Yazid Mati, Chams Lahlou, and Stephane Dauzere-Peres. Modelling and solving a practical
flexible job-shop scheduling problem with blocking constraints. International Journal of
Production Research, 49(8):2169–2182, 2011.

Carlo Meloni, Dario Pacciarelli, and Marco Pranzo. A rollout metaheuristic for job shop
scheduling problems. Annals of Operations Research, 131(1-4):215–235, 2004.

Lingyun Meng and Xuesong Zhou. Simultaneous train rerouting and rescheduling on an
n-track network: A model reformulation with network-based cumulative flow variables.
Transportation Research Part B: Methodological, 67:208–234, 2014.

Luigi Moccia, Jean-François Cordeau, Manlio Gaudioso, and Gilbert Laporte. A branch-
and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval
Research Logistics (NRL), 53(1):45–59, 2006.

Jayanth Krishna Mogali, Willem-Jan van Hoeve, and Stephen F Smith. Template matching and
decision diagrams for multi-agent path finding. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 347–
363. Springer, 2020.

Jayanth Krishna Mogali, Laura Barbulescu, and Stephen F Smith. Efficient primal heuristic
updates for the blocking job shop problem. European Journal of Operational Research,
2021.

Jayanth Krishna Mogali, Joris Kinable, Stephen F Smith, and Zachary B Rubinstein. Schedul-
ing for multi-robot routing with blocking and enabling constraints. Journal of Scheduling,
pages 1–28, 2021.

BIBLIOGRAPHY 152

Rolf H Möhring, Martin Skutella, and Frederik Stork. Scheduling with and/or precedence
constraints. SIAM Journal on Computing, 33(2):393–415, 2004.

Eugeniusz Nowicki and Czeslaw Smutnicki. A fast taboo search algorithm for the job shop
problem. Management science, 42(6):797–813, 1996.

Eugeniusz Nowicki and Czesław Smutnicki. An advanced tabu search algorithm for the job
shop problem. Journal of Scheduling, 8(2):145–159, 2005.

Angelo Oddi, Riccardo Rasconi, Amedeo Cesta, and Stephen F Smith. Iterative improve-
ment algorithms for the blocking job shop. In Twenty-Second International Conference on
Automated Planning and Scheduling, 2012.

Florian Pommerening, Gabriele Röger, Malte Helmert, Hadrien Cambazard, Louis-Martin
Rousseau, and Domenico Salvagnin. Lagrangian decomposition for optimal cost partition-
ing. In Proceedings of the International Conference on Automated Planning and Schedul-
ing, volume 29, pages 338–347, 2019.

Jens Poppenborg, Sigrid Knust, and Joachim Hertzberg. Online scheduling of flexible job-
shops with blocking and transportation. European Journal of Industrial Engineering,
6(4):497–518, 2012.

Marco Pranzo and Dario Pacciarelli. An iterated greedy metaheuristic for the blocking job
shop scheduling problem. Journal of Heuristics, 22(4):587–611, 2016.

Zachary B Rubinstein, Stephen F Smith, and Laura Barbulescu. Incremental management of
oversubscribed vehicle schedules in dynamic dial-a-ride problems. In AAAI, 2012.

Marcella Sama, Andrea D’Ariano, Paolo D’Ariano, and Dario Pacciarelli. Scheduling models
for optimal aircraft traffic control at busy airports: tardiness, priorities, equity and violations
considerations. Omega, 67:81–98, 2017.

Marcello Sammarra, Jean-François Cordeau, Gilbert Laporte, and M Flavia Monaco. A tabu
search heuristic for the quay crane scheduling problem. Journal of Scheduling, 10(4-
5):327–336, 2007.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Meta-agent conflict-based
search for optimal multi-agent path finding. SoCS, 1:39–40, 2012.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence, 219:40–66, 2015.

David Silver. Cooperative pathfinding. Aiide, 1:117–122, 2005.

Neil Simonetti and Egon Balas. Implementation of a linear time algorithm for certain gener-
alized traveling salesman problems. In International Conference on Integer Programming
and Combinatorial Optimization, pages 316–329. Springer, 1996.

BIBLIOGRAPHY 153

Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski, and Roman
Bartak. Multi-agent pathfinding: Definitions, variants, and benchmarks. Symposium on
Combinatorial Search (SoCS), pages 151–158, 2019.

Roni Stern. Multi-Agent Path Finding – An Overview, pages 96–115. Springer International
Publishing, Cham, 2019.

Christian Strotmann. Railway scheduling problems and their decomposition. Ph.D. Disserta-
tion, 2008.

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient sat approach to multi-
agent path finding under the sum of costs objective. In Proceedings of the Twenty-second
European Conference on Artificial Intelligence, pages 810–818. IOS Press, 2016.

Eric Taillard. Benchmarks for basic scheduling problems. european journal of operational
research, 64(2):278–285, 1993.

Christian Tjandraatmadja and Willem-Jan van Hoeve. Target cuts from relaxed decision dia-
grams. INFORMS Journal on Computing, 31(2):285–301, 2019.

Johanna Törnquist and Jan A Persson. N-tracked railway traffic re-scheduling during distur-
bances. Transportation Research Part B: Methodological, 41(3):342–362, 2007.

Alex Van Breedam. An Analysis of the Behavior of Heuristics for the Vehicle Routing Prob-
lem for a Selection of Problems with Vehicle-related, Customer-related, and Time-related
Constraints. RUCA, 1994.

Thomas Van den Bossche, Hatice Çalik, Evert-Jan Jacobs, Tulio Toffolo, and Greet Van-
den Berghe. Truck scheduling in tank terminals. EURO Journal on Transportation and
Logistics, 9(1):100001, 2020.

Glenn Wagner and Howie Choset. M*: A complete multirobot path planning algorithm with
performance bounds. In 2011 IEEE/RSJ international conference on intelligent robots and
systems, pages 3260–3267. IEEE, 2011.

Johan Wessén, Mats Carlsson, and Christian Schulte. Scheduling of dual-arm multi-tool as-
sembly robots and workspace layout optimization. In International Conference on Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research, pages
511–520. Springer, 2020.

Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of coopera-
tive, autonomous vehicles in warehouses. AI magazine, 29(1):9–9, 2008.

Jingjin Yu and Steven M LaValle. Planning optimal paths for multiple robots on graphs. In
2013 IEEE International Conference on Robotics and Automation, pages 3612–3617. IEEE,
2013.

BIBLIOGRAPHY 154

Jingjin Yu and Steven M LaValle. Structure and intractability of optimal multi-robot path
planning on graphs. In Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

Appendices

155

Appendix

A Multi-agent Path Finding

A.1 Additional Proofs
Proposition 1: LR-WDG(sn) is a valid lower bound to the problem shown in Eqn (3.42).

Proof. Observe that since λ̂ ≥ 0, and Êx ≤ f̂ are valid inequalities for P, we have:

cTx+ λ̂T(Êx− f̂) ≤ cTx, ∀x ∈ P

⇒ −λ̂Tf̂ + min
x∈Psn

cTx+ λ̂TÊx ≤ min
x∈Psn

cTx, where Psn = {x ∈ P|x(a) = 0, ∀a ∈ Āsn}

(A.1)

Notice that the RHS of Eqn (A.1) is identical to Eqn (3.42). Given an optimal solution to
the minimization problem shown in the LHS of Eqn (A.1), let us denote the start-end path cost
for robot rk in the optimal solution by yk, and so we have the relation shown in Eqn (A.2).
In reality solving the minimization problem in the LHS of Eqn (A.1) is as hard as solving
the original MAPF problem, so following the approach in [Li et al., 2019a] we will instead
characterize yk, and use it to derive a lower bound for the LHS of Eqn (A.1), and by extension
we obtain a lower bound to Eqn (3.42). More specifically, we will prove that the y· values
satisfy Eqns (3.45) - (3.46). Observe that the objective in the LR-WDG bound and the LHS
of Eqn (A.1) are identical due to Eqn (A.2), and so the LR-WDG bound is trying to find an
assignment of values to y· that satisfies Eqns (3.45) - (3.46), and minimizes the objective. So
assuming correctness of Eqns (3.45) - (3.46), the LR-WDG bound will produce a lower bound
to the LHS of Eqn (A.1).

min
x∈Psn

cTx+ λ̂TÊx =
∑
k∈[N]

yk (A.2)

For i, j ∈ [N], and i < j, let us denote the convex hull of the feasible region of lλ̂sn(i, j)

by Qsn, and so Qsn = conv(x ∈ {0, 1}|A||x satisfies Eqns (3.35) - (3.38)). Observe that any
assignment of values to the variables x(Ai∪Aj) in Psn is also feasible toQsn. This is because,
unlike in Psn, all robots other than robots ri, rj are disregarded in Qsn, so an assignment of
values to x(Ai ∪ Aj) in Qsn is unaffected by the assignment to x (A\{Ai ∪ Aj}) through
conflict related constraints, since x (A\{Ai ∪ Aj}) = 0 in Qsn. So, Projx(Ai∪Aj)(Psn) ⊆

156

157

Projx(Ai∪Aj)(Qsn), and we can thereby infer:

lλ̂sn(i, j) = min
x∈Qsn

cTx+ λ̂TÊx ≤ min
x(Ai∪Aj)∈Projx(Ai∪Aj)(Psn)

x(A\{Ai∪Aj})=0

cTx+ λ̂TÊx (A.3)

Finally, note that since yi + yj is the sum of path costs for robots ri, rj , where the paths are
mutually non-conflicting, then, those paths specified in terms of the x(Ai∪Aj) variables must
belong to Projx(Ai∪Aj)(Psn). So a simple lower bound on yi + yj is given by Eqn (A.4).

min
x(Ai∪Aj)∈Projx(Ai∪Aj)(Psn)

x(A\{Ai∪Aj})=0

cTx+ λ̂TÊx ≤ yi + yj (A.4)

Equations (A.3), (A.4) imply that lλ̂sn(i, j) ≤ yi + yj . Also, it is immediate from the definition
of yk and LBλ̂(k, sn), that Eqn (3.46) must hold.

A.2 Templates for Experiments

(a) Blocks for horizontal movement (b) Blocks for vertical movement

Figure A.1

We will begin by describing how the 3 robot templates used for our experiments are generated.
Consider the following blocks of locations in the grids shown in Figure A.1:

1. LFT1 = P, Q, W, X, AD, AE
2. LFT2 = Q, R, X, Y, AE, AF
3. LFT3 = R, S, Y, Z, AF, AG
4. LFT4 = S, T, Z, AA, AG, AH.

1. TP1 = J, K, L, Q, R, S
2. TP2 = Q, R, S, X, Y, Z
3. TP3 = X, Y, Z, AE, AF, AG
4. TP4 = AE, AF, AG, AL, AM, AN.

Consider the ordered set of sets shown below. We will use them for specifying templates.

• LEFT = (LFT1, LFT2, LFT2, LFT3, LFT4)

158

• RIGHT = (LFT4, LFT3, LFT3, LFT2, LFT1)
• TOP = (TP1, TP2, TP2, TP3, TP4)
• BOTTOM = (TP4, TP3, TP3, TP2, TP1)

Consider a 3 robot template denoted by S, w.l.o.g., we will assume that R(S) = [3]
(refer Section 3.1.1 for notation of [·]), and T (S) = [5]. All the 3-robot templates used in
our experiments differ only in L(S). To generate the 64 different 3-robot templates in our
experiments, we assigned each i ∈ R(S) to one among {LEFT, RIGHT, TOP, BOTTOM}
independently. So if all i ∈ R(S) were assigned to LEFT, then for that template S, L(S)
is specified as: L1

i (S) = LFT1, L2
i (S) = LFT2, L3

i (S) = LFT2, L4
i (S) = LFT3, L5

i (S) =
LFT4. Clearly, since we have 4 choices for each i ∈ R(S), we can create 64 templates with
this approach. The spatial center for all 64 different 3-robot templates is the location Y, and
temporal center is 3, we will recall this information later in Section A.3.

The 2 robot template in our experiments is parameterized by: R(S) = [2], T (S) = [7].
Further, ∀i ∈ R(S) and ∀t ∈ T (S), we assign Lti(S) to the set of locations falling within the
5 × 5 square centered at Y in Figure A.1.

A.3 Choosing a 3-robot template for a conflict
For a given conflict, we first compute a score for each template, and then select the template
with the highest score for generating objective cuts for that conflict. The idea behind our
template selection scheme is to prefer the template that overlaps with the paths of the robots
the most. We will describe how the score is computed using an example. Assume that the
paths for the robots are as follows:

1. Robot r1 path: O20
1 , P21

1 , Q22
1 , R23

1 , S24
1 , L25

1 , E26
1 .

2. Robot r2 path: M20
2 , L21

2 , K22
2 , R23

2 , Y24
2 , Z25

2 , AA26
2 .

3. Robot r3 path: V20
3 , W21

3 , X22
3 , Q23

3 , P24
3 , I25

3 , J26
3 .

Clearly, robots r1 and r2 conflict at R at time 23. Assume, we are interested in computing the
score for the 3-robot template S that was generated by assigning LEFT, TOP, and BOTTOM.
As we previously saw in the example shown in Section 3.6.1, we will first spatio-temporally
shift the template generated in the previous section, so that the template’s spatial and temporal
center coincide with the conflict. With this spatio-temporal shift operation, L(S) needs to be
shifted, so for e.g., L21

1 (S) becomes {I21
1 , J

21
1 ,P

21
1 ,Q

21
1 ,W

21
1 ,X

21
1 }. To compute the score for

the template, we count the number of arcs in the robot paths that are present in S. So, for
example, consider the first arc (O20

1 ,P
21
1) in robot’s 1 path. Clearly, since P21

1 ∈ L21
1 (S), the

arc (O20
1 ,P

21
1) ∈ S. Consider the arc (V20

3 ,W
21
3), since W21

3 6∈ L21
3 (S), the arc (V20

3 ,W
21
3) 6∈ S.

Repeating this exercise for all other arcs in the robot paths, the score for the template S is 15.

A.4 Additional Figures
To interpret the plots in this section, refer to the discussions on Figure 3.8 in Section 3.6.2.

159

Figure A.3: Runtime plots and optimality gap for 10% obstacle instances.

Figure A.4: Runtime plots and gap for 15% obstacle instances.

160

Figure A.5: Runtime plots and gap for 25% obstacle instances.

Figure A.6: Runtime plots and gap for Empty obstacle instances.

161

Figure A.7: Runtime plots and gap for Room instances.

Figure A.8: Runtime plots and gap for Maze instances.

162

A.5 Additional Tables
To interpret the tables in this section, refer to the caption of Table 3.1 in Section 3.6.2.

Alg. Comp
Robots

30 40 50 60 70 80

LR-WDG 100, 10.9 100, 10.9 94.1, 31.2 87.5, 33.1 66.6, 53.7 66.6, 42.5

LR-WDG-G 100, 13.7 100, 7.4 73.3, 23.2 100, 44.8 90, 25.5 80, 19

Table A.1: Comparison of # of search nodes expanded in the conflict tree for 10% obstacle instances.

Alg. Comp
Robots

25 35 45 50 55 60 65

LR-WDG 100, 9.6 90.9, 18.6 94.1, 35.9 94.1, 26.8 100, 30.5 100, 26.1 100, 35.4

LR-WDG-G 100, 13.7 95.4, 17.1 93.3 34.4 85.7, 20.6 87.5, 32 100, 33.7 100, 72.7

Table A.2: Comparison of # of search nodes expanded in the conflict tree for 15% obstacle instances.

Alg. Comp
Robots

25 30 34 37 40 43

LR-WDG 90.9, 17.2 100, 18.7 94.1, 31.9 90, 8.9 100, 12.9 100, 14.7

LR-WDG-G 100, 18.4 92.8, 16.6 100, 25.8 100, 28 100, 13.5 100, 8.6

Table A.3: Comparison of # of search nodes expanded in the conflict tree for 25% obstacle instances.

Alg. Comp
Robots

50 60 70 75 80 90

LR-WDG 100, 3.5 100, 13.7 80, 22.9 42.8, 12.8 57.1, 80.9 60, 92.8

LR-WDG-G 100, 4.7 100, 2.9 100, 5.3 80, 12 75, 21.6 71.4, 53.6

Table A.4: Comparison of # of search nodes expanded in the conflict tree for Empty instances.

Alg. Comp
Robots

15 20 25 30 35

LR-WDG 87.5, 28.4 95.4, 23.7 89.4, 40.4 71.4, 37.5 66.6, 35.7

LR-WDG-G 100, 30.9 90.4, 18.9 94.7, 23.6 100, 36.6 100, 26.9

Table A.5: Comparison of # of search nodes expanded in the conflict tree for Room instances.

Alg. Comp
Robots

15 18 21 24

LR-WDG 72.7, 22 93.7, 42 75, 36.2 80, 33.4

LR-WDG-G 95, 29.2 92.8, 25.5 81.8, 30.1 60, 7.5

Table A.6: Comparison of # of search nodes expanded in the conflict tree for Maze instances.

163

B Blocking Job Shop Problem

Makespan computation of N4 neighbors
We describe an efficient procedure to compute the makespan of all feasible N4 neighbors.
Like in the case for determining feasibility of the output of the N4 moves, we will work with
the minimal representation of a feasible selection to compute the makespan of the feasible
N4 neighbors. When applying any N4 move to the selection S, three arcs are removed from
S, and three new arcs are added to obtain a new selection S ′. The efficiency in computation
of the makespan of S ′ relies on a careful analysis of changes in the selection. Let TS denote
some valid topological ordering for selection S, and further assume that LS(θ, o), LS(o,Λ) are
known for all nodes o ∈ Õ (these values can be computed in linear time, i.e. O (MJ)). The
procedure for computing the makespan of a feasible N4 neighbor uses TS, LS(θ, o), LS(o,Λ),
and a few other values computed for each critical block separately.

B.1 Makespan computation for forward move
Assume S is a consistent selection, and let cB = (u1, . . . , un, l) be a critical block in some
critical path of G(F ∪ S). For u ∈ {u1, . . . , un}, we present below an algorithm to compute
the makespan for the neighbor generated by the simple forward move which makes operation
u the machine successor of operation l (assume that S ′ is consistent). Portions of the graphs
G(F ∪ S), G(F ∪ S ′) that are affected by the move are shown in Figures 4.3a, 4.3b.

We begin by providing a θ−Λ cut for G(F ∪ S ′), which will be crucial for our makespan
computations. The cut will make use of the topological ordering TS for selection S.

Proposition 8. ES′ defined in Eqn (B.5) (see Table B.7) is a valid θ − Λ cut for G(F ∪ S ′).

Proof. Consider the θ − Λ cut ES for G(F ∪ S) defined in Eqn (B.6). Notice ES separates
nodes in G(F ∪ S) in two sets: the set of all nodes that are ordered before u in TS , and the
set containing u and all the nodes ordered after u in TS . Recall that no arcs of the form (x, y),
with T−1

S (x) > T−1
S (u) and T−1

S (y) < T−1
S (u) were added to obtain S ′ from S. Hence, the

corresponding source-sink cut for selection S ′ can be obtained by adding to ES the new arc in
S ′, (γ(βS(u)), δS(u)), and removing the arc (γ(βS(u)), u), since this arc is not in S ′. This can
be rewritten exactly as shown in Eqn (B.5).

Note that the cardinality of ES′ is at most |M| + |J|, since there can be at most one
alternative arc corresponding to each machine, and one fixed arc (i.e. arcs in F) corresponding
to each job in the cut.

The longest θ − Λ path cost (makespan) in G(F ∪ S ′) i.e. LS′(θ,Λ), can be computed by
separately considering the following 2 cases:

1. Cost of the longest path from θ to Λ passing through γ(l) in G(F ∪ S ′), denoted by
L
γ(l)
S′ (θ,Λ).

2. Cost of the longest path that does not pass through γ(l) in G(F ∪ S ′), denoted by
L
−γ(l)
S′ (θ,Λ).

164

Table B.7: Makespan computation for feasible neighbors produced by N4 forward move

ES′ = {(v, w)|(v, w) ∈ F ∪ S, T−1
S (v) < T−1

S (u), T−1
S (w) > T−1

S (u)}∪ (B.5)
{(γ(βS(u)), δS(u)) , (α(u), u)}

ES = {(v, w)|(v, w) ∈ F ∪ S, T−1
S (v) < T−1

S (u), T−1
S (w) >= T−1

S (u)} (B.6)

Makespan : LS′(θ,Λ) = max (L
γ(l)
S′ (θ,Λ), L

−γ(l)
S′ (θ,Λ)) (B.7)

LS′(θ, γ(l)) = max
(v,w)∈ES′

Cγ(l)(v, w)

=


−∞, if T−1

S (w) > T−1
S (γ(l)) or w = u or w = γ(u)

LS(θ, v) + l(v, w) + LS\(γ(u),δS(u))(w, γ(l)), if T−1
S (u) < T−1

S (w) < T−1
S (γ(u))

LS(θ, v) + l(v, w) + LS(w, γ(l)), if T−1
S (γ(u)) < T−1

S (w) ≤ T−1
S (γ(l))

(B.8)

LS′(γ(l),Λ) = max(l(γ(l), γ(γ(l))) + LS′(γ(γ(l)),Λ), l(γ(l), u) + LS′(u,Λ))

(B.9)

= max(l(γ(l), γ(γ(l))) + LS(γ(γ(l)),Λ), l(γ(l), u) + LS′(u,Λ))
(B.10)

LS′(u,Λ) = max(l(u, γ(u)) + LS(γ(u),Λ), l(u, δS(α(u))) + LS′(δS(α(u)),Λ))
(B.11)

LS′(δS(α(u)),Λ) = max(L
−γ(u)
S′ (δS(α(u)),Λ), LS(δS(α(u)), γ(u)) + LS(γ(u),Λ))

(B.12)

L
−γ(u)
S′ (δS(α(u)),Λ) =

{
LS(δS(α(u)),Λ) , if T−1

S (δS(α(u))) > T−1
S (γ(u))

L
−γ(u)
S (δS(α(u)),Λ), otherwise.

(B.13)

L
−γ(l)
S′ (θ,Λ) = max

(v,w)∈ES′
C−γ(l)(v, w) =

{
LS(θ, α(u)) + l(α(u), u) + LS′(u,Λ), if w = u.

LS(θ, v) + l(v, w) + L
−γ(l)
S′ (w,Λ), otherwise.

(B.14)

L
−γ(l)
S′ (w,Λ) ={
L
−γ(l)
S (w,Λ) , if T−1

S (w) > T−1
S (γ(u))

max
(
LS(w, γ(u)) + LS(γ(u),Λ), L

−γ(l)
S\(γ(u),δS(u))(w,Λ)

)
, if T−1

S (u) < T−1
S (w) ≤ T−1

S (γ(u))

(B.15)

165

Once we compute Lγ(l)
S′ (θ,Λ), L

−γ(l)
S′ (θ,Λ), then the makespan of S ′ i.e. LS′(θ,Λ) is given by:

LS′(θ,Λ) = max (L
γ(l)
S′ (θ,Λ), L

−γ(l)
S′ (θ,Λ))

Further, since ES′ is a θ − Λ cut, every θ − Λ path in G(F ∪ S ′) must contain exactly one of
the arcs in ES′ . The quantity Lγ(l)

S′ (θ,Λ) can be obtained by computing the longest θ−Λ path
cost through each arc in ES′ that also passes through γ(l). If no θ − Λ path passing through
γ(l) and a cut arc exists, then the corresponding path cost through the cut arc will be −∞.
We then compute the maximum across all path costs computed through each cut arc to obtain
L
γ(l)
S′ (θ,Λ). We perform a similar procedure to compute L−γ(l)

S′ (θ,Λ).

Computation of Lγ(l)
S′ (θ,Λ)

We can write Lγ(l)
S′ (θ,Λ) = LS′(θ, γ(l)) + LS′(γ(l),Λ).

To compute LS′(θ, γ(l)), first observe that θ and u both do not belong to the same partition
of nodes created by cut ES′ due to the presence of the arc (α(u), u). Further, since (γ(l), u) ∈
S ′ but (γ(l), u) 6∈ ES′ , we can conclude that γ(l) and u both belong to the same partition of
nodes created by ES′ . Hence, any θ − γ(l) path in G(F ∪ S ′) must pass through one of the
arcs in ES′ . An expression for LS′(θ, γ(l)) in terms of the arcs (v, w) ∈ ES′ is provided in
Eqn (B.8). The validity of Eqn (B.8) is shown later in this section. The expression in Eqn
(B.8) assumes that the quantity LS\{(γ(u),δS(u))}(w, γ(l)) was pre-computed. In Section B.2,
we provide details about efficiently computing this value and several others from Table B.7.

The computation of the longest γ(l) − Λ path cost in G(F ∪ S ′) can be computed by
considering the longest path through each successor of γ(l) (i.e. γ(γ(l)), u) in G(F ∪ S ′)
separately. Hence, we can write LS′(γ(l),Λ) as shown in Eqn (B.9). From Lemma 1, we
know that the set of all γ(γ(l))−Λ paths is identical for both G(F ∪S) and G(F ∪S ′), and so
we can simplify Eqn (B.9) by replacing LS′(γ(γ(l),Λ) by LS(γ(γ(l),Λ) to obtain Eqn (B.10).
To compute the longest u − Λ path cost in G(F ∪ S ′), the paths through each successor of u
(i.e. γ(u), δS(α(u))) in G(F ∪ S ′) are separately considered, and the expression for the path
cost is shown in Eqn (B.11). See validity of Eqn (B.11) is shown later in this section.

Computation of L−γ(l)
S′ (θ,Λ)

We compute L−γ(l)
S′ (θ,Λ) by analyzing the longest path through each arc in the cut ES′ which

does not pass through γ(l). The expressions required for the computation of L−γ(l)
S′ (θ,Λ) are

provided in Eqns (B.14) and (B.15).
In Eqn (B.14) we consider 2 cases. In the first case, the cut arc used is (α(u), u), and in

the second case, the cut arc used is any arc other than (α(u), u). The longest path cost passing
through a cut arc other than (α(u), u) is provided in Eqn (B.15), and its validity is shown later
in this section.

166

B.2 Complexity of makespan computations for feasible N4 neighbors
obtained from a single critical block

For any critical block cB = (u1, u2, . . . , un, l) we analyze the aggregated complexity of com-
puting the makespan of all feasible N4 neighbors generated by forward moves. Without loss of
generality, we assume that only h of the n forward moves resulted in feasible selections. Recall
that the makespan computation costs can be decomposed into 2 parts, namely, computation of
the cut ES′ for each feasible selection generated by a forward move, and the computation of
quantities mentioned in Table B.7.

The cut ES′ defined in Eqn (B.5) is with respect to operation u. So corresponding to each
u ∈ {u1, . . . , un} for which the forward move results in a feasible selection, a different θ − Λ
cut is required. ES′ can be computed in O (M log2(J) + J log2(M)) number of elementary
operations via binary search, assuming the complexity of accessing T−1

S (·) is O(1).
All expressions of the form LS(θ, o) and LS(o,Λ) in Table B.7 are already available as in-

puts. Values for expressions like LS(·, γ(l)), Lγ(l)
S (·,Λ), L−γ(l)

S (·,Λ) can be obtained by com-
puting those values once for all nodes in the set {o | o ∈ Ō, T−1

S (u1) ≤ T−1
S (o) ≤ T−1

S (γ(l))}.
Computing those values for all nodes in the set can be performed in O(TL(cB)) complexity,
where TL(cB) = T−1

S (γ(l))− T−1
S (u1) is the (topological) length of the critical block cB.

Values for longest path expressions in Table B.7 that do not pass through certain nodes
or arcs (e.g., quantities such as L−γ(l)

S\(γ(u),δS(u))(·,Λ), LS\(γ(u),δS(u))(·, γ(l))) depend on the op-
eration u that is moved. From Table B.7, it can be inferred that these quantities are only needed
when the head of an arc in the cut belongs to the set Y (u) = {o|o ∈ Ō, T−1

S (u) ≤ T−1
S (o) ≤ T−1

S (γ(u))}.
We can compute those quantities for all nodes in Y (u) upfront in O(T−1

S (γ(u)) − T−1
S (u))

complexity, and just read the appropriate value on a need basis. For critical block cB =
(u1, u2, . . . , un, l), the sets Y (ui) are pairwise disjoint since T−1

S (γ(ui)) < T−1
S (ui+1). The

aggregated complexity for computing these quantities for all the h feasible selections obtained
by forward moves can be performed in O(TL(cB)) computations.

Putting it all together, the aggregated complexity of makespan computations for all h fea-
sible neighbors is O (TL(cB) + (h (M log2(J) + J log2(M)))). The significance of this re-
sult can be understood in comparison to the complexity of feasibility recovery procedures in
Section 4.7. The complexity of recovering a feasible solution by applying the job insertion
procedure is comparable to the aggregated complexity of computing the makespan of all the
feasible N4 neighbors of a solution.

Proofs for equations in Table B.7

Lemma 6. 1. For any o ∈ Õ s.t. T−1
S (o) > T−1

S (γ(l)), we have LS′(o,Λ) = LS(o,Λ).

2. For any o ∈ Õ s.t. T−1
S (o) < T−1

S (u), we have LS′(θ, o) = LS(θ, o).

Proof. Immediate from Lemma 1.

Lemma 7. For all (v, w) ∈ ES′\(α(u), u) (ES′ defined in Eqn (B.5)), no path from w to
γ(βS(u)) exists in G(F ∪ S ′).

167

Proof. It is clear from the definition of ES′ that ∀ (v, w) ∈ ES′\(α(u), u), we have T−1
S (w) >

T−1
S (u) > T−1

S (γ(βS(u))), and so no w − γ(βS(u)) exists in G(F ∪ S). Further, notice that

RS(w) ⊆ {o ∈ Õ|o
TS
� w}. So if there exists a w−γ(βS(u)) path in G(F ∪S ′), then some arc

(x, y) with T−1
S (x) > T−1

S (u) and T−1
S (y) < T−1

S (u) needs to have been added to obtain S ′

from S in order to create a w − γ(βS(u)) path. However, no such (x, y) was added to obtain
S ′ from S. Hence, no w − γ(βS(u)) path exists in G(F ∪ S ′).

Proof for Eqn (B.8) i.e. computation of LS′(θ, γ(l))

The quantity LS′(θ, γ(l)) can be computed by computing the longest path through each arc
(v, w) ∈ ES′ , where ES′ is defined in Eqn (B.5).

First observe that if T−1
S (w) > T−1

S (γ(l)) or w = u or w = γ(u), we first show that
no path from w to γ(l) exists in G(F ∪ S ′). The conditions mentioned is the same as those
mentioned in the first case in Eqn (B.8).

• If T−1
S (w) > T−1

S (γ(l)), from Lemma 1 it follows that RS′(w) = RS(w), but γ(l) 6∈ RS(w)
and so γ(l) 6∈ RS′(w).

• If w = u or w = γ(u), observe that since u, γ(u)
TS′� γ(l) due to arc (γ(l), u) ∈ S ′, and so

γ(l) 6∈ RS′(w).

So it is sufficient to only consider arcs (v, w) in ES′ s.t. γ(l)
TS� w and w 6= u, γ(u)

for computing LS′(θ, γ(l)). Further, for any arc (v, w) ∈ ES′ satisfying γ(l)
TS� w and w 6=

u, γ(u), the reader can easily verify from the definition of ES′ that u
TS� v, and so we can apply

Lemma 6 to claim that LS′(θ, v) = LS(θ, v). We will use this result implicitly in the proof
below.

We compute LS′(θ, γ(l)) by analyzing the following 2 cases:

• T−1
S (u) < T−1

S (w) < T−1
S (γ(u))

Consider any path p in G(F ∪ S ′) from w to γ(l). Suppose p does not exist in G(F ∪ S),
then it must be the case that (γ(βS(u)), δS(u)) occurs on p 1. However, the existence of the
w − γ(βS(u)) sub-path in p will contradict Lemma 7. So p only contains arcs that are also
present in G(F ∪ S), and so p is present in G(F ∪ S) as well.

If p′′ is some w − γ(l) path in G(F ∪ S) which does not contain the arc (γ(u), δS(u)), we
argue that p′′ must also be present in G(F ∪ S ′). Suppose p′′ does not occur in G(F ∪ S ′),

then observe that the arc (γ(βS(u), u) must be present in p′′ 1. However since w
TS� γ(βS(u))

by assumption, no path from w to γ(βS(u)) exists in G(F ∪ S). hence p′′ exists in G(F ∪ S ′)
as well. From the discussions above, we can conclude that the set of all w − γ(l) paths in

1 Depending on the context, whenever arcs from the set {(γ(βS(u)), u) , (γ(u), δS(u)), (γ(l), δS(l))} in case
of S (arcs from the set {(γ(βS(u)), δS(u)), (γ(l), u), (γ(u), δS(l))} in case of S′) have been omitted from the
discussion, then the reader should be able to infer that the omitted arcs could not have occurred on the path under
consideration. The reader will be able to make that inference by noticing that the presence of any omitted arc on
the path under consideration will trivially imply that S or S′ (will be clear from context) is inconsistent

168

G(F ∪ S ′) is identical to the set of all w − γ(l) paths in G(F ∪ S) where none of the paths in
the latter set contain the arc (γ(u), δS(u)). So we can claim that:

LS′(θ, γ(l)) = LS(θ, v) + l(v, w) + LS\(γ(u),δS(u))(w, γ(l))

• If T−1
S (γ(u)) < T−1

S (w) ≤ T−1
S (γ(l)).

The cost corresponding to the longest θ − γ(l) path through arc (v, w) in G(F ∪ S ′) is:

LS′(θ, γ(l)) = LS(θ, v) + l(v, w) + LS′(w, γ(l))

We will show that LS′(w, γ(l)) can be replaced by LS(w, γ(l)). To show the result, it is
sufficient if we prove that the set of all w − γ(l) paths are identical for both G(F ∪ S) and
G(F ∪ S ′).

Suppose p is aw−γ(l) path inG(F∪S), observe that p cannot contain the arcs (γ(βS(u)), u),

(γ(u), δS(u)), since w
TS� γ(u), γ(βS(u)). Also, (γ(l), δS(l)) clearly cannot be present in p.

All arcs present in p also occur in G(F ∪ S ′), and so p is present in G(F ∪ S ′).

Suppose p′ is a w − γ(l) path in G(F ∪ S ′), then observe that p′ cannot contain the arc

(γ(u), δS(l)) since γ(u)
TS′� γ(l). As S ′ is consistent, obviously (γ(l), u) cannot occur in p′

either. If p′ contains the arc (γ(βS(u)), δS(u)), the w−γ(βS(u)) sub-path in p′ will contradict
Lemma 7. So all arcs in p′ are present in G(F ∪ S ′) too.

Lemma 8. The set of all paths from γ(γ(u)) to Λ is identical for bothG(F∪S) andG(F∪S ′).

Proof. Assume the set of all paths from γ(γ(u)) to Λ in G(F ∪ S) and G(F ∪ S ′) are not
identical. Then there exists a path p s.t. p either occurs on G(F ∪ S) or G(F ∪ S ′) but not
in both graphs simultaneously. γ(βS(u)), γ(u), γ(l) are the only nodes whose outgoing arcs
differ in G(F ∪ S) and G(F ∪ S ′), and so at least one among them should have appeared in
p. Among γ(βS(u)), γ(u), γ(l), whichever node occurs the earliest, observe that the sub-path
from γ(γ(u)) to that node must be present in both G(F ∪ S) and G(F ∪ S ′). If γ(l) occurs
the earliest on p, then it would contradict the consistency of S ′, since now there is a path from

u to γ(l), but we know that γ(l)
TS′� u (due to arc (γ(l), u) ∈ S ′). The reason why γ(u)

cannot appear in p is obvious. If γ(βS(u)) occurs the earliest on p, then we would violate the

consistency of S since γ(γ(u))
TS� u

TS� γ(βS(u)).

Lemma 9. For any o ∈ Õ, s.t. T−1
S (u) < T−1

S (o) < T−1
S (γ(u)), the set of all paths from o to

γ(u) is identical for both G(F ∪ S) and G(F ∪ S ′).

Proof. Can be shown very similar to the proof of Lemma 8.

Lemma 10. The set of all paths from δS(α(u)) to γ(u) are identical for both G(F ∪ S) and
G(F ∪ S ′).

Proof. To prove the Lemma, we consider 2 cases:

169

1. If δS(α(u))
TS� γ(u)

Observe that there is no path from δS(α(u)) to γ(u) in G(F ∪ S), since δS(α(u))
TS� γ(u) by

assumption.
Assume there exists some path p from δS(α(u)) to γ(u) in G(F ∪S ′). We know that p cannot

contain the arcs (γ(βS(u)), δS(u)), (γ(l), u) since δS(α(u))
TS′� u

TS′� γ(βS(u)). Likewise, p
cannot contain the arc (γ(u), δS(l)), due to consistency of S ′. Hence, no path from δS(α(u))
to γ(u) exists in G(F ∪ S ′), since we are left with no arcs in G(F ∪ S ′) that are absent from
G(F ∪ S).

2. If γ(u)
TS� δS(α(u))

Observe that δS(α(u))
TS� u, so we can apply Lemma 9 to claim that the set of paths from

δS(α(u)) to γ(u) are identical for both G(F ∪ S) and G(F ∪ S ′).

Proof for Eqn (B.11) i.e. computation of LS′(u,Λ)

We can decompose the set of all paths u−Λ in G(F ∪S ′) into 2 cases, paths that pass through
(u, δS(α(u))) and those that pass through (u, γ(u)). We compute the longest path for each of
those 2 cases separately:

• Longest path through (u, γ(u)):
Any u − Λ path through the arc (u, γ(u)) should either contain δS(l) or γ(γ(u)). So the cost
corresponding to the longest u − Λ path through arc (u, γ(u)) is l(u, γ(u)) + LS′(γ(u),Λ)
where:

LS′(γ(u),Λ) = max(l(γ(u), δS(l)) + LS′(δS(l),Λ), l(γ(u), γ(γ(u))) + LS′(γ(γ(u)),Λ))

From Lemma 6, we know that LS′(δS(l),Λ) = LS(δS(l),Λ).
From Lemma 8, we can conclude that LS′(γ(γ(u)),Λ) = LS(γ(γ(u)),Λ). In other words, we
can claim that:

LS′(γ(u),Λ) = LS(γ(u),Λ) (B.16)

• Longest path through (u, δS(α(u))):
To compute the longest u − Λ path through the arc (u, δS(α(u))) we consider 2 cases. In the
first case, we consider the situation when the path also contains γ(u), and in the second case,
the path does not contain γ(u).

– Passing through γ(u):
The longest u−Λ path containing the arc (u, δS(α(u))) and node γ(u) in G(F ∪S ′) can
be computed as:

l(u, δS(α(u))) + LS′(δS(α(u)), γ(u)) + LS′(γ(u),Λ)

We can apply Lemma 10, to conclude that LS′(δS(α(u)), γ(u)) = LS(δS(α(u)), γ(u)).
To obtain LS′(γ(u),Λ), we simply use the value computed in Eqn (B.16).

170

– Not passing through γ(u):
Consider any u − Λ path p in G(F ∪ S ′) containing the arc (u, δS(α(u))) and not con-

taining the node γ(u). Since u
TS′� γ(βS(u)), γ(l), none among γ(βS(u)), γ(l) can occur

on p, and so we can conclude that p passes through arcs present in both G(F ∪ S) and
G(F ∪ S ′).
Any path p′ from u to Λ in G(F ∪ S) containing the arc (u, δS(α(u))) and not contain-
ing the node γ(u) must be present in G(F ∪ S ′). p′ does not contain γ(βS(u)) since

δS(α(u))
TS� γ(βS(u)). We next show that p′ cannot also contain γ(l). Suppose p′

contains γ(l), then the u − γ(l) sub-path in p′ implies there is a path from u to γ(l)
not containing the arc (γ(u), δS(u)) in G(F ∪ S). By Theorem 2, the existence of the
u− γ(l) sub-path would have then implied that S ′ is not a consistent selection, contrary
to our assumption. Hence, p′ cannot contain γ(l). Hence, p′ only contains arcs present
in both G(F ∪ S) and G(F ∪ S ′).
From the discussions above, we conclude that the set of all u−Λ paths containing the arc
(u, δS(α(u))) and not passing through the node γ(u) is identical for both G(F ∪ S ′) and
G(F ∪ S). So we can compute the required u− Λ path satisfying our desired properties
from G(F ∪ S) directly. To compute this quantity, we consider 2 cases:

* If T−1
S (δS(α(u))) > T−1

S (γ(u)), then there can be no path from δS(α(u)) to γ(u) in
G(F ∪ S). The required path cost for this case is:

l(u, δS(α(u))) + LS(δS(α(u)),Λ)

* Otherwise, we can compute the cost for the longest δS(α(u)) − Λ path not passing
through γ(u) in G(F ∪S), and denote it by L−γ(u)

S (δS(α(u)),Λ). The required path
cost for this case is:

l(u, δS(α(u))) + L
−γ(u)
S (δS(α(u)),Λ)

Proof for Eqn (B.15) i.e. computation of the longest θ−Λ path inG(F∪S ′)
that does not pass through γ(l) and the arc (α(u), u)

We are interested in computing the longest θ − Λ path through arcs in ES′\(α(u), u), and not
passing through the node γ(l). Like in the earlier proofs, we compute the longest path by
computing the longest path through each arc (v, w) in the set ES′\(α(u), u), and not passing
through γ(l). To compute the required longest path, we perform the computation by analyzing

2 cases. But first, the reader can easily verify from the definition of ES′ that u
TS� v, and so we

can apply Lemma 6 to claim that LS′(θ, v) = LS(θ, v). The 2 cases to consider are:

• If T−1
S (u) < T−1

S (w) ≤ T−1
S (γ(u))

We compute this quantity by considering 2 cases. In the first case, we compute the longest
w − Λ path which is present in G(F ∪ S ′) but necessarily absent in G(F ∪ S). In the second
case, we compute the longest w − Λ path present in both G(F ∪ S) and G(F ∪ S ′).

171

– Suppose p is a w − Λ path which does not pass through γ(l) in G(F ∪ S ′). Since
we assumed that p does not occur on G(F ∪ S), then it must be the case p contains
the arc (γ(u), δS(l)). Clearly (γ(l), u) cannot occur on p, and by Lemma 7 the arc
(γ(βS(u)), δS(u)) cannot occur on p either. By Lemma 9, the sub-path from w to γ(u)
must be present in G(F ∪S). Hence, the longest w−Λ path cost satisfying the required
conditions is:

LS(θ, v) + l(v, w) + LS(w, γ(u)) + LS′(γ(u),Λ)

where LS′(γ(u),Λ) can be obtained from Eqn (B.16).

– Suppose p is a w−Λ path present in both G(F ∪ S ′) and G(F ∪ S) such that p does not
contain γ(l), then note that p necessarily does not contain the arc (γ(u), δS(u)) since the
arc is absent in S ′. Anyw−Λ path inG(F∪S) also does not contain the arc (γ(βS(u)), u)

since w
TS� γ(βS(u)). Hence, we can conclude that any w − Λ path in G(F ∪ S) which

does not pass through γ(l) and (γ(u), δS(u)) must be present in G(F ∪ S ′), since such a
path essentially passes only through arcs that are present in both G(F ∪ S) and G(F ∪
S ′). The cost of the longest w − Λ path satisfying the desired properties is equal to the
quantity L−γ(l)

S\(γ(u),δS(u))(w,Λ). So the cost of the longest θ−Λ path satisfying the required
conditions is:

LS(θ, v) + l(v, w) + L
−γ(l)
S\(γ(u),δS(u))(w,Λ)

• If T−1
S (w) > T−1

S (γ(u))
Notice that any w − Λ path p not passing through γ(l) in G(F ∪ S ′) cannot also contain
γ(u), γ(βS(u)). Suppose p does contain at least one among γ(u), γ(βS(u)), then the sub-
path from w to whichever node among γ(u), γ(βS(u)) occurs earliest in p must be present
in G(F ∪ S) also, which will however contradict our assumption that T−1

S (w) > T−1
S (γ(u)).

Hence, the path p exists in G(F ∪ S) as well.

Conversely, any path from w to Λ not passing through γ(l) in G(F ∪ S), passes through
arcs which are also present in G(F ∪ S ′), since such a path passes through nodes which occur
after γ(u) in TS . Among nodes in TS which occur after γ(u), only the outgoing arcs of γ(l)
differs in G(F ∪ S) and G(F ∪ S ′).

Hence, the longest w − Λ path cost not passing through γ(l) denoted by L−γ(l)
S′ (w,Λ) is

equal to L−γ(l)
S (w,Λ).

B.3 Makespan computation for the backward move
Like in the case of the forward move, we work with minimal representations of feasible selec-
tions. Assume a consistent selection S for a BJS instance, and let cB = (g, u1, . . . , un) be a
critical block in some critical path of G(F ∪ S). For any u ∈ {u1, . . . , un}, we are interested
in computing the makespan for the neighbor generated by the backward move which makes
operation u the machine predecessor of operation f , where f = g if the incoming arc into
g on the critical path is a job arc, and f = βS(g) otherwise. Denote the selection generated
by the backward move for u as S ′ and assume that S ′ is consistent. Portions of the graphs
G(F ∪ S), G(F ∪ S ′) that are affected by the move are shown in Figures 4.3c, 4.3d. Like for

172

the forward move, we begin by providing a θ − Λ cut for G(F ∪ S ′), which makes use of the
topological ordering TS and u. The complexity of makespan computation of backward moves
will be very similar to that of froward moves, and so we will skip analyzing the complexity
separately.

Proposition 9. ES′ defined in Eqn (B.17), is a valid θ − Λ cut for G(F ∪ S ′).

Proof. The proof can be shown along similar lines to that of Proposition 8, and essentially
follows from the fact that no arcs of the form (x, y), with T−1

S (x) > T−1
S (γ(u)) and T−1

S (y) <
T−1
S (γ(u)) were added to S to obtain S ′.

We decompose makespan computation for a backward move into 2 parts:

1. Cost of the longest path in G(F ∪ S ′) passing through f , denoted by LfS′(θ,Λ).

2. Cost of the longest path in G(F ∪ S ′) not passing through f , denoted by L−fS′ (θ,Λ).

Computation of LfS′(θ,Λ)

Observe that:
LfS′(θ,Λ) = LS′(θ, f) + LS′(f,Λ)

We begin with the computation of LS′(θ, f). By considering the predecessors of f in
G(F ∪S ′), LS′(θ, f) can be written as shown in Eqn (B.19). By virtue of Lemma 3, we know
that P̄S(α(f)) = P̄S′(α(f)), so we can replace LS′(θ, α(f)) in Eqn (B.19) by LS(θ, α(f)) to
obtain Eqn (B.20). The expression for LS′(θ, γ(u)) in Eqn (B.20) is provided in Eqns (B.21)
and (B.22). For computing LS′(f,Λ), we make use of the cut ES′ defined in Eqn (B.17), the
expression for LS′(f,Λ) is provided in Eqn (B.23). The proof of validity for Eqns (B.21)-
(B.23) are provided later in this section.

Computation of L−fS′ (θ,Λ)

The computation of the longest path cost that does not pass through f , is performed by an-
alyzing the longest path through each arc in the cut ES′ that does not pass through f . The
expression for L−fS′ (θ,Λ) is provided in Eqns (B.24) and (B.25). The validity of the expres-
sions are shown later in this section.

The makespan computation analysis for backward moves parallels the analysis for forward
moves. It can be shown that the aggregated complexity of makespan computations for all h
feasible selections obtained by backward moves on critical block cB is
O (TL(cB) + (h (M log2(J) + J log2(M)))), where TL(cB) = T−1

S (γ(un))− T−1
S (f).

Proofs for equations in Table B.8

Lemma 11. 1. For o ∈ Õ such that T−1
S (o) < T−1

S (f), we have LS′(θ, o) = LS(θ, o).

2. For o ∈ Õ such that T−1
S (o) > T−1

S (γ(u)), we have LS′(o,Λ) = LS(o,Λ).

173

Table B.8: Quantities for makespan computation of feasible N4 neighbors obtained by N4
backward move

ES′ = {(v, w)|(v, w) ∈ F ∪ S, T−1
S (v) < T−1

S (γ(u)), T−1
S (w) > T−1

S (γ(u))}
∪ {(γ(βS(u)), δS(u))} ∪ {(γ(u), γ(γ(u)))} (B.17)

Makespan : LS′(θ,Λ) = max (LfS′(θ,Λ), L−fS′ (θ,Λ)) (B.18)
LS′(θ, f) = max(LS′(θ, α(f)) + l(α(f), f), LS′(θ, γ(u)) + l(γ(u), f)) (B.19)
LS′(θ, f) = max(LS(θ, α(f)) + l(α(f), f), LS′(θ, γ(u)) + l(γ(u), f)) (B.20)

LS′(θ, γ(u)) = max(LS\{(γ(βS(f)),f),(γ(βS(u)),u)}(θ, γ(u)), c(u)) (B.21)
c(u) = LS(θ, γ(βS(f))) + l(γ(βS(f)), u) + max(l(u, γ(u)) , l(u, δS(α(u))) + LS(δS(α(u)), γ(u)))

(B.22)

LS′(f,Λ) = max
(v,w)∈ES′

Cf
1 (v, w)

=


LS(f, v) + l(v, w) + LS(w,Λ) , if T−1

S (f) ≤ T−1
S (v) < T−1

S (u)

LS\(γ(βS(u)),u)(f, v) + l(v, w) + LS(w,Λ) , if T−1
S (u) ≤ T−1

S (v) < T−1
S (γ(u))

−∞ , otherwise.
(B.23)

L−fS′ (θ,Λ) = max
(v,w)∈ES′

C−f2 (v, w)

=


LS(θ, v) + l(v, w) + LS(w,Λ) , if T−1

S (v) < T−1
S (f)

L−fS (θ, v) + l(v, w) + LS(w,Λ) , if T−1
S (f) < T−1

S (v) < T−1
S (u)

C3(u) , if T−1
S (u) ≤ T−1

S (v) ≤ T−1
S (γ(u))

(B.24)

C3(u) = max(LS(θ, γ(βS(f))) + l(γ(βS(f)), u) + LS(u, v) + l(v, w) + LS(w,Λ),
(B.25)

L−fS\(γ(βS(u)),u)(θ, v) + l(v, w) + LS(w,Λ))

174

Proof. Immediate from Lemma 3.

Lemma 12. For any o ∈ Õ s.t. T−1
S (u) ≤ T−1

S (o) < T−1
S (γ(u)), the set of all o− γ(u) paths

are identical for both G(F ∪ S) and G(F ∪ S ′).

Proof. Let p be any o − γ(u) path in G(F ∪ S ′). Observe that since f, δS(u)
TS′� γ(u), arcs

(γ(u), f), (γ(βS(u)), δS(u)) cannot be present in p. Suppose p contains the arc (γ(βS(f)), u),
then observe that the sub-path from o to γ(βS(f)) must occur in G(F ∪ S) as well, since we
are left with no arcs that occur in G(F ∪ S ′) but not in G(F ∪ S). However, no path from

o to γ(βS(f)) exists in G(F ∪ S), since o
TS� u

TS� γ(βS(f)). So all arcs in p are present in
G(F ∪ S) as well.

Conversely, suppose p′ is a o − γ(u) path in G(F ∪ S). Since we know that o
TS� u

TS� f ,
we can immediately conclude that the arcs (γ(βS(f)), f), (γ(βS(u)), u) cannot be present in

p′. Further, since δS(u)
TS� γ(u), the arc (γ(u), δS(u)) cannot be present in p′. Hence, we can

conclude that all arcs in p′ are also present in G(F ∪ S ′).

Lemma 13. The set of all paths from δS(α(u)) to γ(u) are identical for both G(F ∪ S) and
G(F ∪ S ′).

Proof. To prove the Lemma, we consider 2 cases:

1. If δS(α(u))
TS� γ(u)

Observe that there is no path from δS(α(u)) to γ(u) in G(F ∪ S), since δS(α(u))
TS� γ(u) by

assumption.
Assume there exists some δS(α(u)) − γ(u) path p in G(F ∪ S ′). We know that p cannot

contain the arc (γ(βS(f)), u) since δS(α(u))
TS′� u. Likewise, p cannot contain the arcs

(γ(βS(u)), δS(u)), (γ(u), f), since δS(u), f
TS′� γ(u). Hence, no path from δS(α(u)) to γ(u)

exists in G(F ∪S ′), since we are left with no arcs present in G(F ∪S ′) which are absent from
G(F ∪ S), and G(F ∪ S) has no δS(α(u))− γ(u) path.

2. If γ(u)
TS� δS(α(u))

Observe that δS(α(u))
TS� u, so we can apply Lemma 12 to claim that the set of δS(α(u))−γ(u)

paths are identical for both G(F ∪ S) and G(F ∪ S ′).

Lemma 14. For o ∈ Õ s.t. T−1
S (f) < T−1

S (o) < T−1
S (u), the set of all f−o paths are identical

for both G(F ∪ S) and G(F ∪ S ′).

Proof. Can be shown very similar to the proof of Lemma 12.

175

Proof for Eqn (B.21) i.e. computation of LS′(θ, γ(u))

To compute LS′(θ, γ(u)), we will consider 2 cases. In the first case, we compute the longest
θ−γ(u) path which is present in G(F ∪S ′) but necessarily absent in G(F ∪S). In the second
case, we compute the longest θ − γ(u) path present in both G(F ∪ S) and G(F ∪ S ′).

• Suppose p′ is a θ − γ(u) path in G(F ∪ S ′) not present in G(F ∪ S), then it must be
the case that p′ contains the arc (γ(βS(f)), u). Obviously p′ cannot contain the arcs (γ(u), f),

(γ(βS(u)), δS(u)), since f, δS(u)
TS′� γ(u). So the cost of the longest θ−γ(u) path inG(F∪S ′)

not present in G(F ∪ S) is:

LS′(θ, γ(βS(f))) + l(γ(βS(f)), u)+ (B.26)
max(l(u, γ(u)), l(u, δS(α(u))) + LS′(δS(α(u)), γ(u))

Eqn (B.26) can be further simplified as follows. By Lemma 11 we haveLS′(θ, γ(βS(f))) =
LS(θ, γ(βS(f))). By Lemma 13 we have LS′(δS(α(u)), γ(u)) = LS(δS(α(u)), γ(u)).

• Consider any θ − γ(u) path p present in both G(F ∪ S ′) and G(F ∪ S). Then, it must
be the case that p does not contain the arcs (γ(βS(f)), f), (γ(βS(u), u)), since those arcs are
not present in S ′. Observe that any θ − γ(u) path in G(F ∪ S) not passing through the arcs
(γ(βS(f)), f), (γ(βS(u), u)) must be present in G(F ∪ S ′), since all the arcs on the θ − γ(u)
path are also present in G(F ∪ S ′). Note that the arc (γ(u), δS(u)) cannot be present in any
θ− γ(u) path in G(F ∪S). So the cost of the longest θ− γ(u) path, where the path is present
in both G(F ∪ S ′) and G(F ∪ S), is equal to the quantity LS\{(γ(βS(f)),f),(γ(βS(u)),u)}(θ, γ(u)) .

Proof for Eqn (B.23) i.e. computation of LS′(f,Λ)

Observe that ∀(v, w) ∈ ES′ we have T−1
S (w) > T−1

S (γ(u)), and so LS′(w,Λ) = LS(w,Λ), by
Lemma 11. We will implicitly use this fact in the proof below.

It can be easily be shown that the cut ES′ (defined in Eqn (B.17)) separates the nodes f,Λ.
To compute LS′(f,Λ), we compute the longest path from f to Λ through each arc in the cut
ES′ . For each arc (v, w) ∈ ES′ , we compute the longest path through (v, w) by analyzing a
few cases as shown below:

• If v = f
It is not hard to show that the only possibility for w is δS(α(f)). The longest path cost in this
case is given by:

l(v, w) + LS(w,Λ)

• If T−1
S (f) < T−1

S (v) < T−1
S (u)

From Lemma 14, we can see that the set of all paths from f to v must be identical for both
G(F ∪ S) and G(F ∪ S ′). Hence, the longest f − Λ path cost through (v, w) is given by:

LS(f, v) + l(v, w) + LS(w,Λ)

176

• If T−1
S (u) ≤ T−1

S (v) < T−1
S (γ(u))

Suppose there is a path p from f to v in G(F ∪ S ′) s.t. p is absent in G(F ∪ S), then it
must be the case that arc (γ(βS(u)), δS(u)) occurs in p 2. From Lemma 3, we know that

RS′(δS(u)) = RS(δS(u)), but f 6∈ RS(δS(u)) since δS(u)
TS� f . Consequently, all f − v paths

in G(F ∪ S ′) are also present in G(F ∪ S).

Let p′ be any f−v path present in bothG(F∪S) andG(F∪S ′), then it must be the case that
p does not contain the arc (γ(βS(u)), u). Also, observe that the arcs (γ(βS(f)), f), (γ(u), δS(u))
could not have occurred on any f − v path in G(F ∪S), otherwise we will trivially contradict
the consistency of S. Hence, we can conclude that the set of all f − v paths in G(F ∪ S) that
do not pass through the arc (γ(βS(u)), u) must be present in G(F ∪ S ′), as these paths only
contain arcs present in G(F ∪ S ′) also.

From the discussions above, the cost of the longest f − Λ path through arc (v, w) can be
computed from G(F ∪ S) as:

LS\(γ(βS(u)),u)(f, v) + l(v, w) + LS(w,Λ)

• If v = γ(u) or T−1
S (v) < T−1

S (f) or T−1
S (v) > T−1

S (γ(u))
In each of the 3 cases, we claim that there is no f − v path in G(F ∪ S ′).
Observe that if v = γ(u), then the presence of a f − v path in G(F ∪ S ′) trivially contradicts

the fact that f
TS′� γ(u) due to arc (γ(u), f) ∈ S ′.

If T−1
S (v) < T−1

S (f), then observe from Lemma 3 that R̄S′(v) = R̄S(v). However since f
TS� v

by assumption, we know that f 6∈ R̄S(v), hence f 6∈ R̄S′(v).
Finally from the definition of ES′ in Eqn (B.17), we can verify that T−1

S (v) ≤ T−1
S (γ(u)).

Proof of Eqn (B.24) i.e. computation of L−fS′ (θ,Λ)

To compute L−fS′ (θ,Λ), we compute the longest path passing through each arc in the cut ES′
which does not pass through f . Observe that ∀(v, w) ∈ ES′ we have T−1

S (w) > T−1
S (γ(u)),

and so LS′(w,Λ) = LS(w,Λ), by Lemma 11. We will use this fact implicitly in the proof
below. For each (v, w) ∈ ES′ , we compute the cost of the longest path through (v, w) by
considering the following cases:

• If T−1
S (v) < T−1

S (f)
From Lemma 11, we know that LS′(θ, v) = LS(θ, v), and LS′(w,Λ) = LS(w,Λ). The longest
path through (v, w) is:

LS(θ, v) + l(v, w) + LS(w,Λ)

2 Depending on the context, whenever arcs from the set {(γ(βS(f)), f) , (γ(βS(u)), u), (γ(u), δS(u))} in
case of S (arcs from the set {(γ(βS(f)), u), (γ(u), f), (γ(βS(u)), δS(u))} in case of S′) have been omitted from
the discussion, then the reader should be able to infer that the omitted arcs could not have occurred on the path
under consideration. The reader will be able to make that inference by noticing that the presence of any omitted
arc on the path under consideration will trivially imply that S or S′ (will be clear from context) is inconsistent

177

• If T−1
S (f) < T−1

S (v) < T−1
S (u)

Consider a θ − v path p in G(F ∪ S ′) which does not pass through f . Obviously, p cannot
contain the arc (γ(u), f). Arc (γ(βS(u)), δS(u)) cannot also be present in p, since, δS(u) and
v lie in different partitions created by the cut ES′ . Suppose p did not exist in G(F ∪S), then it
must be the case that p contains the arc (γ(βS(f)), u). Hence, it implies that there must exist
a sub-path p′ from u to v in p, but p′ must also exist in G(F ∪ S) since all arcs we are left
with in G(F ∪ S ′) for p also occur in G(F ∪ S). However, p′ contradicts our assumption that
T−1
S (v) < T−1

S (u).

Now consider any θ − v path in G(F ∪ S) which does not pass through f . It can easily
be shown that the path cannot contain the arcs (γ(βS(f)), f), (γ(βS(u)), u) and (γ(u), δS(u)).
Hence the path only contains arcs that are also present in G(F ∪ S ′).

From the discussions above, we conclude that the set of all θ − Λ paths through (v, w)
not passing through f is identical for both G(F ∪ S) and G(F ∪ S ′). Hence, the longest path
through (v, w) not passing through f is given by:

L−fS (θ, v) + l(v, w) + LS(w,Λ)

• If T−1
S (u) ≤ T−1

S (v) ≤ T−1
S (γ(u))

We compute the longest θ − Λ path through (v, w) and not passing through f by considering
2 cases. Consider any θ − v path p in G(F ∪ S ′) not containing f , then:

– Suppose p does not occur in G(F ∪ S). Observe that arc (γ(u), f) cannot be present in
p. Further v and δS(u) lie on different partitions of the cut ES′ , so a path from δS(u) to v
in G(F ∪ S ′) does not exist, which thereby implies that arc (γ(βS(u)), δS(u)) is absent
from p. Consequently, it must be the case that p contains the arc (γ(βS(f)), u). So the
cost of the longest θ − Λ path through (v, w) not passing through f is:

LS(θ, γ(βS(f))) + l(γ(βS(f)), u) + L−fS′ (u, v) + l(v, w) + LS(w,Λ) (B.27)

We can replace L−fS′ (u, v) by LS(u, v) in Eqn (B.27) whose justification we provide be-
low. Observe that all u − v paths in G(F ∪ S ′) that do not contain f essentially only
contain arcs that are present in both G(F ∪ S ′) and G(F ∪ S). Conversely, any u − v
path in G(F ∪ S) cannot contain the arc (γ(βS(f)), f) since u

TS� f , and neither the arc

(γ(u), δS(u)) since δS(u)
TS� v 2.

Hence, the cost corresponding to the longest θ−Λ path through (v, w) in G(F ∪S ′) not
passing through f s.t. the path is absent from G(F ∪ S) is given by:

LS(θ, γ(βS(f))) + l(γ(βS(f)), u) + LS(u, v) + l(v, w) + LS(w,Λ)

– Suppose p also occurs inG(F∪S), then obviously p cannot contain the arc (γ(βS(u)), u).
Observe that any θ − v path in G(F ∪ S) cannot contain the arc (γ(u), δS(u)), since

δS(u)
TS� v. Further, any θ − v path in G(F ∪ S) which does not contain the arc

178

(γ(βS(u)), u) and node f must also be present in G(F ∪ S ′), since all the arcs in the
θ − v path is also present in G(F ∪ S ′). Hence, the cost corresponding to the longest
θ − Λ path through (v, w) and not passing through f , but present in both G(F ∪ S) and
G(F ∪ S ′) can be obtained from G(F ∪ S), and is given by:

L−fS\(γ(βS(u)),u)(θ, v) + l(v, w) + LS(w,Λ)

• T−1
S (v) > T−1

S (γ(u))
No arc (v, w) with T−1

S (v) > T−1
S (γ(u)) exists in ES′ .

179

B.4 Additional Proofs
Lemma 5. Given job J and a feasible schedule Sch to the BJS problem instance, letQ denote
the set of all jobs that have a service interval strictly contained within the service interval of
J , then |Q| ≤ (M− 1)2.

Proof. W.l.o.g let us assume that the technological order for job J is 1, 2 . . . ,M. Let us
denote the set of all jobs in our problem by Jo. Given a job J̄ ∈ Jo\J and a feasible
schedule Sch to the BJS problem instance, then define the following indicator function:

1(i, J̄) =

{
1, if J transitions from machine i to i+ 1 in the open interval (StJ̄ (Sch), CoJ̄ (Sch))

0, otherwise
(B.28)

If J̄ ∈ Q, then observe that had J remained stationary on any one machine m during the
entire service interval of J̄ , then J̄ could not have been serviced by m earlier than the com-
pletion time of J , so J must have transitioned at least one machine during the service interval
of J̄ . So, a trivial upper bound for the cardinality ofQ can be obtained by counting the number
of jobs during whose service interval J transitioned at least one machine. In other words,

|Q| ≤
M−1∑
i=1

∑
J̄ ∈Jo\J

1(i, J̄) (B.29)

Notice, that at the time instant in which job J transitions from machine i to i + 1, there can
be at most M− 1 other jobs occupying other machines. So

∑
J̄ ∈Jo\J 1(i, J̄) ≤M− 1, ∀i ∈

{1, . . . ,M− 1}, and hence |Q| ≤ (M− 1)2.

Example showing the tightness of the bound on |Q| in Lemma 5
W.l.o.g assume that the sequence of machines that job J traverses is in the order 1, 2, . . . ,M.
We construct a set of jobs Q1 with cardinality M − 2, such that the last machine required
by every job in Q1 is machine 1. We can set up a schedule Sch such that, the start time of
any job in Q1 is later than StJ (Sch). Further, we can set up Sch such that while J is being
serviced by machine 1, the jobs in Q1 can complete being serviced by all machines other
than machine 1, and are waiting to be serviced by machine 1. We can force the jobs in Q1

to wait by making the job J occupy machine 1 sufficiently long, thus blocking machine 1
from being accessed by jobs in Q1. When job J transitions to machine 2, all jobs in Q1 can
then transition to machine 1 one after the other, and exit the system (i.e. no longer needs to
occupy any machine), all this while job J occupies machine 2. For the no swap BJS case,
the cardinality of Q1 cannot exceed M − 2, because otherwise the only way J can advance
to machine 2 will require swapping jobs between machines. Now while job J is at machine
2, we can set up yet another set of jobs Q2 with cardinality M − 2, where the last machine
on each job in Q2 is machine 2, so Q1 and Q2 have no jobs in common. Like in the earlier
case, jobs in Q2 can exit the system only after J transitions to machine 3. We can set up Sch
for jobs in Q2 exactly analogous to the way it was set up for jobs in Q1. By repeating this

180

argument for each of the M − 1 machine to machine transitions for job J , we conclude that
Q = Q1 ∪Q2 ∪ . . . ∪QM−1, so |Q| = (M− 1)(M− 2).

Theorem 5. A job’s service interval can overlap with the service interval of at most M2 − 1
other jobs.

Proof. Let us denote the set of all jobs in our problem by Jo. Given any feasible schedule
Sch, we will partition jobs in Jo whose service interval overlaps with that of J , as follows:

W1 = {J̄ ∈ Jo\J |StJ̄ (Sch) ≤ StJ (Sch) < CoJ̄ (Sch) and CoJ̄ (Sch) ≤ CoJ (Sch)}
W2 = {J̄ ∈ Jo\J |StJ̄ (Sch) > StJ (Sch) and CoJ̄ (Sch) < CoJ (Sch)}
W3 = {J̄ ∈ Jo\J |CoJ (Sch) > StJ̄ (Sch) ≥ StJ (Sch) and CoJ̄ (Sch) ≥ CoJ (Sch)}
W4 = {J̄ ∈ Jo\J |StJ̄ (Sch) ≤ StJ (Sch) and CoJ̄ (Sch) ≥ CoJ (Sch)}

From Lemma 5 we know that |W2| ≤ (M − 1)2. Notice that the set of jobs in W1 ∪W4

are jobs other than J , that must have been occupying some machine at time StJ (Sch), so
|W1 ∪W4| ≤M − 1. Similarly, the jobs in the set W3 ∪W4 are the jobs (other than J) that
must have been occupying some machine at time CoJ (Sch), so |W3 ∪W4| ≤M− 1. So by
union bound, we have:

|W1∪W2∪W3∪W4| ≤ |W1∪W4|+ |W2|+ |W3∪W4| ≤ (M−1)2 +2(M−1) = M2−1

Proposition 10. Given any feasible selection S and a set of jobs Q s.t. |Q| > M, we can
identify a pair of jobs J1,J2 ∈ Q s.t. there is a path in G(F ∪S) from the last node belonging
to job J1 (i.e. dummy operation of job J1) to the first node (i.e. first operation) belonging to
J2.

Proof. Let Sch denote the start times computed for the nodes in G(F ∪ S) using the longest
path algorithm. Note that we can always identify a job J2 ∈ Q using selection S s.t. the
machine m required to service the first operation o in J2, services o only after servicing all
the operations belonging to the other jobs in Q\J2 that also require m. We claim that there
is some job J1 ∈ Q\J2 s.t. there is a path from the last node belonging to job J1 to the first
node belonging to J2. We will prove this fact by contradiction. Assume that no such J1 exists.
Suppose we increase the processing duration of the last operation (not to be confused with the
dummy operation) in the technological order of every job in Q\J2, and compute a schedule
Sch′ for selection S with the new processing times using the longest path algorithm, then the
increased processing duration values should have no effect on the start time of J2. In other
words, we must have StJ2(Sch′) = StJ2(Sch). For some suitably large values of processing
duration, we can ensure CoJ (Sch′) > StJ2(Sch′),∀J ∈ Q\J2. It follows directly from
our choice of J2 that StJ (Sch′) < StJ2(Sch′)∀J ∈ Q\J2. Hence, in schedule Sch′, we
have managed to show that the service intervals of all the jobs in Q strictly contains the time
instance StJ2(Sch′) + ε, for some arbitrarily small ε > 0. This contradicts the fact that in any
feasible schedule at most M jobs can simultaneously be in state 3.

Proposition 11. Given the predecessor buffer f for selection SJ̄ (i.e. selection obtained by
removing all arc pairs associated to job J̄ from a feasible selection S), operations belonging

181

to jobJ can appear in the predecessor maps for nodes in ŌJ̄ belonging to at most M2+M−1
jobs other than J , where ŌJ̄ is the set of nodes in Ō other than those belonging to job J̄ .

Proof. In buffer f , observe that operations belonging to job J can appear in the predeces-
sor maps for nodes belonging to jobs in the sets W S

J \{J̄ } and W S+
J \{J̄ }. Within the set

W S
J \{J̄ } (resp. W S+

J \{J̄ }) consider the set of jobs which contains an operation belonging
to J in the predecessor map for at least one of its nodes and denote those set of jobs by Q1

(resp. Q2). We will compute an upper bound on |Q| where Q = Q1 ∪Q2.
We claim that |Q2| cannot exceed M. If suppose |Q2| > M, then we can identify a pair

of jobs J1,J2 ∈ Q2 satisfying the condition in Proposition 10. From the definition of W S+
J

we know that J1 is serviced later than J on every machine. Combining this fact with the
definition in Eqn (4.5), the existence of the path (as mentioned in Proposition 10) from J1

to J2 implies that an operation belonging to J could not have appeared in predecessor maps
for nodes belonging to J2. Hence, we can safely conclude that |Q2| cannot exceed M. From
Corollary 1 we know that |Q1| ≤M2 − 1, hence |Q| ≤M2 + M− 1.

182

B.5 Additional Tables

Table B.9: Missing results from Table 4.1 for 5 and 20 minutes. We followed the same conventions
as we did for Table 4.1, where numbers in bold font indicate the makespan of the best solution for that
instance, and underlined instances are those for which a new best solution is reported in this paper.

Previous N5 with JIFR-1 N4 with JIFR-1 & 2
Inst. Size best 300 sec 1200 sec 1800 sec 300 sec 1200 sec 1800 sec

known Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg
LA01 10 × 5 881a,b,c 881 881 881 881 881 881 881 881 881 881 881 881
LA02 10 × 5 900a,b,c 900 900 900 900 900 900 900 900 900 900 900 900
LA03 10 × 5 808a,b,c 808 808 808 808 808 808 808 808 808 808 808 808
LA04 10 × 5 859a,b,c 859 859 859 859 859 859 859 859 859 859 859 859
LA05 10 × 5 732a,b,c 732 732 732 732 732 732 732 732 732 732 732 732
LA06 15 × 5 1199c 1194 1195.8 1194 1194.5 1194 1194.4 1194 1197.9 1194 1194.3 1194 1194.2
LA07 15 × 5 1130c 1127 1127.6 1127 1127 1127 1127 1127 1127.4 1127 1127 1127 1127
LA08 15 × 5 1173c 1173 1179.2 1173 1173 1173 1173 1173 1177.6 1173 1173 1173 1173
LA09 15 × 5 1311b,c 1305 1306 1305 1305 1305 1305 1305 1306.9 1305 1305.1 1305 1305.1
LA10 15 × 5 1222c 1218 1221.6 1218 1220.4 1218 1220 1218 1221 1218 1220.8 1218 1220
LA11 20 × 5 1591c 1522 1562 1501 1542.2 1501 1538.7 1522 1561.6 1522 1554.5 1522 1543.6
LA12 20 × 5 1399c 1385 1394.5 1353 1376 1353 1375.9 1374 1399.8 1353 1388.2 1353 1383.7
LA13 20 × 5 1538c 1518 1541.1 1508 1518.7 1508 1518.7 1508 1537.9 1508 1525.1 1508 1523.4
LA14 20 × 5 1544c 1582 1593.1 1562 1576.8 1557 1571.6 1548 1587.4 1548 1570 1548 1564.9
LA15 20 × 5 1616c 1565 1605.5 1565 1590.1 1565 1586.4 1587 1601 1578 1592.1 1578 1591.2
LA16 10 × 10 1148a,b,c 1148 1148 1148 1148 1148 1148 1148 1148 1148 1148 1148 1148
LA17 10 × 10 968a,b,c 968 968 968 968 968 968 968 968 968 968 968 968
LA18 10 × 10 1077a,b,c 1077 1078.8 1077 1077 1077 1077 1077 1078.8 1077 1077 1077 1077
LA19 10 × 10 1102a,b,c 1102 1102.4 1102 1102 1102 1102 1102 1104.3 1102 1102 1102 1102
LA20 10 × 10 1118a,b,c 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118 1118
LA21 15 × 10 1501c 1483 1521.4 1483 1506.5 1483 1499 1507 1527.1 1483 1506.6 1483 1505
LA22 15 × 10 1368c 1328 1363.5 1328 1343.5 1328 1341 1328 1368.8 1328 1355.4 1328 1342.9
LA23 15 × 10 1534c 1475 1517.2 1475 1486.9 1475 1483.9 1475 1518.8 1475 1503.4 1475 1497.4
LA24 15 × 10 1447c 1402 1450.4 1402 1424.7 1402 1408.1 1402 1437.9 1402 1429.8 1402 1419.4
LA25 15 × 10 1453c 1418 1433.9 1409 1419.8 1409 1418.3 1414 1434.7 1406 1421.3 1406 1420.9
LA26 20 × 10 1968c 1906 1962.9 1885 1937.3 1885 1928.2 1870 1948.2 1870 1925.2 1870 1920.3
LA27 20 × 10 2047c 2006 2054.4 1933 2014 1933 2007.4 1992 2060.2 1987 2031.8 1987 2028
LA28 20 × 10 2046c 1973 2001.1 1938 1984.4 1937 1972.8 1972 2026.7 1971 2001.1 1971 1989.8
LA29 20 × 10 1857c 1819 1886.5 1817 1851.9 1764 1825.9 1808 1873.2 1808 1862.8 1808 1850.3
LA30 20 × 10 2033c 1944 1996.3 1939 1967 1939 1965.3 1974 2022.6 1953 2001.6 1953 1987.8
LA31 30 × 10 2866c 2746 2790.9 2746 2784.5 2746 2780.8 2791 2851 2714 2817.3 2714 2811.6
LA32 30 × 10 3040c 2982 3038.2 2982 3038.2 2982 3029.2 2962 3024.6 2928 2997.7 2928 2995.2
LA33 30 × 10 2803c 2717 2797.1 2717 2783.2 2717 2770.6 2736 2774.1 2732 2765.7 2732 2765.7
LA34 30 × 10 2862c 2800 2848 2769 2831.9 2769 2831.9 2812 2866.4 2812 2856.8 2812 2855.6
LA35 30 × 10 2871c 2802 2861.8 2762 2850.4 2762 2849.8 2860 2901 2802 2875.7 2757 2855.2
LA36 15 × 15 1757c 1708 1782.2 1697 1744.3 1683 1731.3 1701 1771.4 1700 1746.5 1700 1742.8
LA37 15 × 15 1871c 1862 1903.8 1856 1885.9 1856 1879.7 1881 1915.4 1881 1912.8 1867 1907.9
LA38 15 × 15 1716c 1665 1725.2 1665 1709.1 1665 1697.4 1692 1732.2 1670 1717.3 1670 1707.6
LA39 15 × 15 1750c 1734 1771.1 1728 1754.3 1728 1745.2 1725 1758.3 1720 1749.8 1720 1741.1
LA40 15 × 15 1742c 1712 1760.7 1712 1746.6 1712 1743.3 1747 1779.4 1747 1768.9 1735 1760.9

a = Mati et al. [Mati and Xie, 2011], b = Pranzo and Pacciarelli [Pranzo and Pacciarelli, 2016], c = Dabah et al. [Dabah et al., 2019]

183

Table B.10: Results for TA Instances with N5 and JIFR - 1 & 2.

Instance Size 60 sec 300 sec 600 sec 1200 sec 1800 sec Avg # Iter
Best Avg Best Avg Best Avg Best Avg Best Avg (1800 sec)

TA01 15 × 15 1720 1769.4 1720 1761.2 1720 1761.2 1705 1720.8 1705 1720.8 132493
TA02 15 × 15 1679 1713.6 1678 1700 1678 1700 1665 1686.6 1665 1684.8 125637
TA03 15 × 15 1705 1750.4 1699 1715 1699 1715 1655 1676.6 1655 1675 128002.2
TA04 15 × 15 1669 1682.6 1651 1673.4 1617 1659.6 1617 1638.8 1617 1627 131116
TA05 15 × 15 1692 1729 1679 1712.2 1679 1712.2 1679 1704 1679 1696.4 124046.8
TA06 15 × 15 1720 1754.4 1720 1745 1707 1727.8 1707 1727.6 1691 1721.8 129908.8
TA07 15 × 15 1720 1780.6 1720 1768 1720 1753.6 1720 1750.8 1707 1728.4 126565
TA08 15 × 15 1719 1756.6 1701 1723.8 1701 1723.8 1701 1716.2 1701 1716.2 130917
TA09 15 × 15 1763 1814.2 1763 1797 1763 1797 1763 1779.8 1731 1765.8 129198.4
TA10 15 × 15 1705 1762.4 1705 1728.6 1705 1728.6 1687 1714.2 1687 1709 128860.4
TA11 20 × 15 2041 2127.6 2009 2084 2009 2078.4 2009 2078.4 2009 2073.2 65770.2
TA12 20 × 15 2229 2276.6 2156 2228.8 2156 2228.8 2156 2214.6 2156 2214.6 61429.6
TA13 20 × 15 2055 2134.8 2010 2099 2010 2099 2010 2094.2 2010 2083 66094.8
TA14 20 × 15 2110 2140.2 2070 2098.4 2070 2098.4 2070 2098.4 2070 2097.4 66627.2
TA15 20 × 15 2087 2152.8 2031 2106.6 2031 2106.6 2031 2106.6 2031 2087.6 67208
TA16 20 × 15 2173 2236 2168 2225.6 2168 2225.6 2168 2205.4 2168 2205.4 62628
TA17 20 × 15 2264 2296 2237 2269.2 2229 2261.8 2229 2261.8 2229 2261.8 63250.2
TA18 20 × 15 2160 2215.8 2136 2157 2136 2157 2136 2144.8 2125 2142.2 65171.6
TA19 20 × 15 2148 2190.6 2076 2129.4 2076 2129.4 2076 2129.4 2053 2108 62692.2
TA20 20 × 15 2138 2238.6 2125 2183.6 2125 2167.8 2125 2152 2125 2152 64146.6
TA21 20 × 20 2601 2637 2456 2520.4 2456 2517 2439 2509.6 2439 2509.6 42527.2
TA22 20 × 20 2485 2536.2 2402 2441.4 2402 2437 2402 2437 2402 2437 39014
TA23 20 × 20 2397 2492.6 2358 2403 2348 2396.8 2348 2396.8 2348 2396.8 38316.6
TA24 20 × 20 2503 2545 2462 2492 2431 2484.2 2431 2484.2 2431 2484.2 40505.8
TA25 20 × 20 2436 2487.8 2350 2406.8 2329 2394.4 2329 2394.4 2329 2394.4 39618.4
TA26 20 × 20 2564 2637.2 2467 2545.6 2467 2544.6 2467 2529.2 2467 2529.2 38380.6
TA27 20 × 20 2618 2667.2 2529 2582.6 2529 2577.4 2529 2577.4 2529 2577.4 41745.6
TA28 20 × 20 2500 2545.4 2445 2479 2434 2471.6 2434 2471.6 2434 2471.6 40721.4
TA29 20 × 20 2546 2615.2 2506 2548.8 2489 2537.6 2489 2534.2 2489 2534.2 40344.2
TA30 20 × 20 2483 2540.8 2427 2466.8 2427 2465.8 2374 2445 2374 2443 42781.6
TA31 30 × 15 3303 3358.8 3209 3250.4 3157 3189 3123 3177.4 3123 3177.4 24551.8
TA32 30 × 15 3313 3395.4 3193 3257.6 3184 3249.4 3159 3237.8 3159 3237.8 24714
TA33 30 × 15 3446 3501.6 3266 3385.6 3266 3362.6 3234 3324.4 3234 3289 23910
TA34 30 × 15 3391 3474.8 3335 3379 3221 3285.2 3221 3274.4 3221 3274.4 23571.4
TA35 30 × 15 3259 3334.2 3106 3184.6 3106 3160.6 3106 3153.8 3106 3153.8 24200.8
TA36 30 × 15 3301 3387.8 3210 3306.8 3169 3270.6 3146 3247.6 3146 3247.6 23884.6
TA37 30 × 15 3396 3478.2 3293 3378 3223 3324.8 3223 3318.4 3223 3318.4 24077.2
TA38 30 × 15 3241 3263.2 3094 3163.6 3071 3121.4 3071 3105.8 3071 3105.8 23838.8
TA39 30 × 15 3092 3159 3038 3074.4 3002 3036.2 3002 3034 3002 3034 26054.8
TA40 30 × 15 3122 3270 3098 3146.2 3094 3117.4 3026 3061.2 3026 3061.2 24870.8

184

Table B.10: Results for TA Instances continued

Instance Size 60 sec 300 sec 600 sec 1200 sec 1800 sec Avg # Iter
Best Avg Best Avg Best Avg Best Avg Best Avg (1800 sec)

TA41 30 × 20 3730 3890.4 3667 3714.6 3596 3638.2 3541 3602.4 3516 3593.4 13081.8
TA42 30 × 20 3656 3745.6 3478 3560.6 3478 3535.8 3476 3505.2 3474 3498.8 14202.4
TA43 30 × 20 3549 3618.8 3362 3506 3357 3460 3345 3419.6 3345 3419.6 14978.2
TA44 30 × 20 3752 3805 3575 3612.2 3516 3593 3516 3562.8 3516 3562.8 14513.8
TA45 30 × 20 3682 3888.2 3519 3651 3492 3578.6 3472 3547.4 3472 3547.4 14116.6
TA46 30 × 20 3704 3867.8 3637 3665.8 3562 3610.2 3451 3547.8 3444 3546.4 14486.6
TA47 30 × 20 3723 3776 3526 3591.6 3427 3531 3396 3508.4 3396 3486.4 15517.4
TA48 30 × 20 3651 3773.6 3487 3563.8 3445 3513.4 3428 3491.4 3427 3491.2 14053
TA49 30 × 20 3534 3694.2 3435 3527.6 3394 3480.8 3394 3458 3394 3441.2 14766.6
TA50 30 × 20 3653 3834.2 3532 3656.6 3519 3617.6 3514 3562.4 3514 3560.8 13984
TA51 50 × 15 5531 5689.4 5239 5374.8 5216 5297.2 5175 5246.6 5079 5213.8 8273.2
TA52 50 × 15 5611 5703.8 5322 5382.4 5254 5298 5151 5238 5148 5228.4 8236.8
TA53 50 × 15 5211 5515.4 5160 5280.6 5143 5242.2 5069 5132.2 5041 5113.6 8114.6
TA54 50 × 15 5375 5540.4 5237 5349 5136 5233 5115 5188.2 5074 5157.4 8376
TA55 50 × 15 5299 5577.4 5081 5212.8 5042 5157.4 4986 5118.6 4972 5080.4 8218.2
TA56 50 × 15 5428 5666 5295 5397.6 5194 5316 5170 5288.4 5113 5233.6 8182
TA57 50 × 15 5639 5731.6 5415 5509.6 5411 5454.8 5187 5306.8 5187 5301.4 8423.8
TA58 50 × 15 5698 5833 5368 5557.8 5368 5529.8 5171 5418.6 5128 5397.8 7978.8
TA59 50 × 15 5355 5488.4 5182 5269.8 5071 5211.6 4974 5140 4974 5108.6 8301.6
TA60 50 × 15 5663 5757 5397 5450 5326 5371.2 5145 5244 5119 5198 8879
TA61 50 × 20 6426 6542.6 6046 6181.8 5846 6013.2 5774 5942.4 5756 5918.2 5665
TA62 50 × 20 6703 6788.8 6298 6356.4 6042 6217.2 5948 6076.6 5890 6021.4 5526
TA63 50 × 20 6328 6441.4 5901 5995.2 5671 5843.4 5533 5704 5530 5646 5918.2
TA64 50 × 20 6222 6320.6 5754 5909 5716 5773.6 5532 5605 5523 5576.4 5718
TA65 50 × 20 6450 6512 5853 5954.6 5763 5827 5582 5718.2 5558 5675.2 5455.2
TA66 50 × 20 6383 6519.6 5949 6038.6 5879 5926.8 5761 5841.8 5723 5816.4 5517.4
TA67 50 × 20 6422 6567.6 5805 5943.2 5800 5894.2 5748 5798 5715 5745.4 5752
TA68 50 × 20 6102 6356.4 5842 6018.2 5842 5978.8 5803 5855.4 5740 5804.2 5275.4
TA69 50 × 20 6658 6699.6 6087 6126.2 5979 6062.2 5844 5934 5810 5907 5914.2
TA70 50 × 20 6599 6764 5988 6174.8 5982 6036.8 5799 5912.8 5799 5882.6 6062
TA71 100 × 20 16560 17426.6 13372 13485.4 12744 12882.6 12231 12568.4 12153 12369.4 2275.6
TA72 100 × 20 15445 16225.8 12901 13076.4 12182 12387.2 11688 11907.4 11444 11745.6 2437.8
TA73 100 × 20 16444 17370.4 13375 13533.4 12602 12792.8 11991 12269.4 11766 12078.6 2391.6
TA74 100 × 20 16266 16963.6 13354 13526.4 12702 12791.6 12038 12285.2 11897 12044.8 2569.8
TA75 100 × 20 16189 17127.6 13288 13497.6 12451 12729.8 12002 12181.8 11476 11911.4 2287.6
TA76 100 × 20 15532 16578 13081 13447.8 12543 12865.8 12067 12388.2 12067 12223.8 2352
TA77 100 × 20 16369 17674.8 13436 13640.4 12813 13037.6 12457 12543.8 12265 12412.2 2383.4
TA78 100 × 20 16649 17007.8 13198 13506.4 12596 12756 11793 12074.6 11697 11898.6 2329.8
TA79 100 × 20 15834 17145.8 13243 13439 12508 12820.6 11999 12281 11870 12118.4 2236.6
TA80 100 × 20 15227 16186.4 12640 12943.6 12042 12310.2 11654 11869.8 11405 11729 2253.4

185

C Scheduling for multi-robot routing with blocking and en-
abling constraints

C.1 Additional Proofs
Theorem 6. Determining whether SSp permits a feasible schedule is NP-Complete.

Proof. (Sketch) The deadlock avoidance (DA) problem as just stated was shown to be NP-
Complete in Theorem 2 of Araki et al. [1977]. The DA problem under those restrictions can
be transformed into an instance of SSp, by viewing processes in DA as a set of robot tours.
Resource requirements for each vertex in a process of DA can be easily computed. If resource
requirements for a pair of vertices belonging to different processes overlap, it can be viewed
as a CC between that pair of vertices in the context of SSp. This view is valid since the DA
problem is restricted to contain only a single unit of each resource type, and introducing a
CC thereby prevents the service duration of the conflicting pair of nodes to overlap in any
feasible solution of the SSp instance constructed. The processing times of the nodes in the
SSp instance can be set to any arbitrary positive number, without affecting the feasibility of
the instance.

It remains to show how one can transform a feasible solution of the DA instance (if one
exists) to a feasible solution of the SSp instance constructed, and vice-versa. Since a feasible
solution to the DA instance is by definition described as a STP, we can then use the procedure
in (⇐) direction of proposition 4 to construct a schedule valid for SSp.

Likewise, by using the procedure in (⇒) direction of proposition 4, we can obtain a STP
P from a feasible schedule of the SSp instance. However, the STP P may contain state
transitions where a swap may have occurred to overcome a deadlock situation similar to the
situation in Figure 5.1d. It can be shown that for swaps to occur, the vertices occurring on
the state immediately after the swap (e.g. nodes V 12, V 22 in Figure 5.1d) would at-least have
to issue both an allocate and deallocate request. Issuing both requests at a single vertex will
violate the “single parameter" restriction of the DA problem instance. So P can be shown to
be free of swap moves, and so is a valid STP for the DA instance.

Theorem 7. Given a SSp instance and time bound B, determining whether there exists a fea-
sible schedule with makespan at most B for the given SSp instance is strongly NP-Complete.

Proof. Given a schedule for the SSp instance, determining whether the schedule is feasible,
and it’s makespan is at most B can be easily established in polynomial time. So the problem
stated in Theorem 7 is in NP. We next show that SMRTD is polynomial time reducible to
the problem stated in Theorem 7. Given an instance of the SMRTD problem, we construct
an SSp instance as follows. For each task ti ∈ T of the machine scheduling problem, we
introduce a robot ri in the SSp instance and define a robot tour Seqri = (ori , v1

i , v
2
i , d

ri). The
processing time values for each node in the tour is set as follows, priori = r(ti), p

ri
v1
i

= l(ti) and
pr
v2
i

= B − d(ti), where

B = 1 +

(
max
i∈[1,M]

d(ti)

)
(C.30)

186

and Ev = ∅,∀v ∈ {ori , v1
i , v

2
i , d

ri}. Notice, the processing time defined above implies that in
any feasible schedule for the SSp instance, the start time for node v1

i cannot be earlier than the
release time of task ti. Further, if servicing node v2

i is started later than d(ti), the corresponding
schedule’s makespan will exceed B, thereby imposing a deadline on the completion time of
the node v1

i . Define collision constraints C for the SSp instance as:

C = {(v1
i , ri, v

1
j , rj)|i, j ∈ [1,M], i < j} (C.31)

Notice that CCs in equation (C.31) are only applied to nodes in the set V 1 = {v1
i }

M
i=1, thereby

preventing concurrent execution of any pair of nodes in V 1. These CCs emulate the behavior
that during servicing of any node in V 1, a shared resource (machine) needs to be blocked. It
is straightforward to verify that there exists a feasible solution to the SSp instance constructed
with makespan at most B iff the SMRTD scheduling problem admits a feasible solution.

Proposition 5 For state scurr, if for each scc c ∈ SCC and each node u ∈ Uc (refer Equa-
tion (5.8)) we have |K(u)| ≤ 1 (refer Equation (5.7)), then CF Ps

scurr has at most M minimal
solutions.

Proof. Under the conditions mentioned in proposition 5 we first provide a simple procedure
for enumerating the minimal models of CF Ps

scurr and then argue that the number of such min-
imal models generated by the procedure does not exceed M . Briefly, the enumeration pro-
cedure omits the collision related clauses (see Equation (5.10)) in CF Ps

scurr and outputs the
minimal models feasible for the remaining clauses. The minimal models obtained from the
previous step are then checked whether any collision related clause is violated. Our proce-
dure essentially builds a directed graph to capture the dependencies between maximal sccs in
GPs [Bscurr] and then retrieves the minimal models from the dependency graph. The descrip-
tion below interlaces the procedure with the reasons for those steps being performed. The
procedural steps are highlighted in bold italics.

1. We build the dependency graph Gdep as follows. Corresponding to each maximal scc of
GPs [Bscurr], we introduce a vertex in Gdep. If e is a maximal scc of
GPs [Bscurr], then slightly abusing notation we will denote the vertex corresponding to scc e
in Gdep by ve.

2. Under the condition mentioned in the proposition that |K(u)| ≤ 1, every clause that was
generated in CF Ps

scurr from Equations (5.5), (5.9) and (5.11) are either of the form (yc → yd)
or (yc → 0). Corresponding to each clause of the form (yc → yd) in CF Ps

scurr we introduce
an arc (vd, vc) in Gdep, to represent the dependency of scc c on scc d.

3. After introducing those arcs in the previous step, we then remove some vertices and arcs
from Gdep as follows. For each clause of the form (yc → 0) in CF Ps

scurr , we remove vertex
vc and all the other vertices that are reachable from vc by traversing arcs in Gdep from tail
to head. While nodes comprising scc c cannot appear in a successor of scurr owing to the
clause (yc → 0), sccs reachable from c can also be ignored owing to their dependency on c
by transitivity. Consequently we may remove vc and vertices dependent on vc from further
consideration in the enumeration process.

187

4. We next describe a procedure to enumerate the minimal models of CF Ps
scurr using the maxi-

mal sccs of Gdep. Compute the maximal sccs of Gdep. Observe that each maximal scc in Gdep

comprises of maximal sccs of GPs [Bscurr]. Further, if W1,W2 are maximal sccs of Gdep, such
that, there exists a path from a vertex in W1 to a vertex in W2, then vertices in W2 depend on
W1. It implies that if a member ofW2 is present in a feasible solution to CF Ps

scurr then all mem-
bers of W1 must also necessarily be present in that solution, but not necessary for the other
way around. Hence to enumerate minimal models of CF Ps

scurr , it is sufficient to consider only
those maximal sccs of Gdep that do not have an incoming arc from any other maximal scc of
Gdep

3, since occurrence of these sccs in a feasible solution is not dependent on the occurrence
other sccs.

5. Let us denote the maximal sccs of Gdep that do not have an incoming arc from any other
maximal sccs of Gdep by SCCdep. If there exists a pair of maximal sccs of GPs [Bscurr], say c
and d, such that CF Ps

scurr contains a collision related clause (yc → (1 − yd)) while vertices vc
and vd both belong to the same maximal scc of Gdep, then the STP to scurr cannot possibly be
extended to a complete STP.

6. If the condition in the previous step does not occur, then from each member (maximal
scc) of SCCdep we generate a minimal model of CF Ps

scurr . If W is a member of SCCdep, then
a minimal model of CF Ps

scurr is derived by setting the y· variables corresponding to just those
maximal sccs of GPs [Bscurr] that are present in W to 1. Since the number of maximal sccs of
Gdep is bounded by M , it follows that the number of minimal models of CF Ps

scurr is ≤M .

C.2 Example for a case where the number of minimal models for CF Ps
scurr

in Equation (5.12) is exponential in M .
Assume the SSp instance contains no CCs, the number of robots M is even and the consistent
positional selection Ps has no arc with it’s head to a node in Bscurr . For notational conve-
nience, let vi = scurr[i] and let wi = nextvi . The ECs for each wi, i ∈ [1,M] is defined as
follows:

Ewi =


{vM−1, vM} if i = 1

{v(i−2), v(i−3)} if i is odd and > 1

Ewi−1 if i is even
(C.32)

Under those assumptions, we can safely assume that
CF Ps

scurr only contains clauses for the enabling constraints
(Equation (5.9)) and of course the clause to select at least one node in Bscurr to appear in the
successor. Also observe that each node in Bscurr corresponds to a maximal scc inGPs [Bscurr].
So instead of stating which maximal sccs occur in the minimal solution, we will instead men-
tion which nodes of Bscurr occur in each minimal solution.

For M = 8 case, we illustrate the enablers provided in Equation (C.32) graphically in
Figure C.9. For e.g. ifw1 is to appear in snext (minimal successor of scurr), then from Equation

3Any directed graph must contain at least one such maximal scc

188

Figure C.9: Example for exponential branching.

(C.32) notice that at least one among w7, w8 must also appear snext. We represented this
requirement using arcs (w8, w1), (w7, w1) in Figure C.9. Similarly the enabling requirements
for all other nodes are also represented using arcs in Figure C.9.

We next enumerate the minimal models of CF Ps
scurr . We claim that nodes occurring on any

chordless cycle in the graph shown in Figure C.9 corresponds to a minimal model. To see this,
observe that the nodes occurring on any cycle of the graph shown in Figure C.9 corresponds
to a feasible model for CF Ps

scurr , as every node in the cycle is enabled by its predecessor on
the cycle. If the cycle contained a chord, then the solution is not minimal since we can form
a shorter cycle and the nodes belonging to the shorter cycle also correspond to a feasible
model of CF Ps

scurr . We can continue short cutting the cycle until we obtain a chordless cycle.
There are at least 2

M
2 chordless cycles (Lavrov [2018]) in the graph shown in Figure C.9 and

corresponding to each of those cycles we can obtain a minimal successor.

	Introduction
	Philosophy pursued in this work
	Discrete optimization view of the problems
	Solution approach

	This thesis
	Outline of the thesis

	Mathematical tools used in the heuristics
	Tools for MAPF
	Lagrangian dual
	Decision diagrams

	Concepts and tools for BJS and MRSBE
	Local search framework
	Alternative graphs

	I
	Multi-Agent Path Finding
	MAPF Problem Description
	Integer programming model for MAPF

	Lagrangian Relax-and-Cut
	Primal repair procedure

	Projections and cut generation
	A motivating example
	Projection polytopes
	On selecting S for a conflict
	Relaxation polytope P(S)
	Cut generation through querying
	Objective Cuts
	Delay-and-Long Inequalities

	Decision Diagrams for P(S)
	Strategy for constructing D(S)
	Construction of D(S)
	Performing the maximization in Eqn (3.28) over P(S) using D(S)
	Tightening the construction of D(S):

	Integration in Conflict Based Search
	Conflict-based search
	Integrating Lagrangian Relax-and-Cut with CBS

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Future Work
	Cuts from multiple rst-neighborhoods (Consensus cuts)
	Serial cuts
	Branching on cuts

	Related Work and Discussions
	Summary
	Summary of contributions

	II
	Blocking Job Shop problem
	Introduction
	Literature review
	Current challenges
	Our work and contributions

	Blocking Job Shop problem
	Critical blocks and N4 neighborhood
	Enumerating all N4 neighbors
	Consistency checking for the forward move
	Consistency checking for backward moves

	Job insertion feasibility recovery (JIFR)
	JIFR-1
	JIFR-2
	Algorithm to perform JIFR-2

	Job insertion
	Job insertion polytope
	Conflict Bipartite graph representation of the JIP
	Performing Algorithm 8 using the conflict graph
	Complexity of executing Algorithm 9
	Improving the complexity of job insertion
	Pruning redundant cycle elimination constraints
	Computation of fom

	Tabu search metaheuristic implementation
	Evaluation
	Neighborhoods considered
	Experimental setup
	Experimental Results

	Structural characterization of feasible schedules and implications for local search
	Streamlining job insertion
	Incrementally computing the conflict graph when using JIFR-1 during local search

	Summary and discussion
	Summary of contributions

	III
	Scheduling for Multi-Robot Routing with Blocking And Enabling Constraints
	Problem description
	Problem formulation
	Scheduling subproblem

	Problem complexity
	Overview of solution approach for MRSBE
	Solving the scheduling sub-problem
	Alternative graph representation of SSp.
	Linking the SSG and AG
	State enumeration procedure
	Simplifying the SSp formulation through logical inference

	Initial solution generator
	Deterministic moves for local search
	RELOCATE move
	REORDER move

	Experimental evaluation
	Benchmark data
	mTSP bound
	Computational results
	Alternate approaches

	Related work
	Summary
	Summary of contributions

	IV
	Conclusions
	General Takeaways Retrospectively
	Future Research Directions
	Multi-Agent Path Finding
	Blocking Job Shop Problem
	Multi-Robot Routing and Scheduling with Blocking and Enabling Constraints (MRSBE)

	Bibliography
	Appendices
	Appendix
	Multi-agent Path Finding
	Additional Proofs
	Templates for Experiments
	Choosing a 3-robot template for a conflict
	Additional Figures
	Additional Tables

	Blocking Job Shop Problem
	Makespan computation for forward move
	Complexity of makespan computations for feasible N4 neighbors obtained from a single critical block
	Makespan computation for the backward move
	Additional Proofs
	Additional Tables

	Scheduling for multi-robot routing with blocking and enabling constraints
	Additional Proofs
	Example for a case where the number of minimal models for CFscurrPs in Equation (5.12) is exponential in M.

