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Abstract— Behavioral decision making is an important aspect
of autonomous vehicles (AV). In this work, we propose a be-
havior planning structure based on hierarchical reinforcement
learning (HRL) which is capable of performing autonomous
vehicle planning tasks in simulated environments with multiple
sub-goals. In this hierarchical structure, the network is capable
of 1) learning one task with multiple sub-goals simultaneously;
2) extracting attentions of states according to changing sub-
goals during the learning process; 3) reusing the well-trained
network of sub-goals for other tasks with the same sub-goals. A
hybrid reward mechanism is designed for different hierarchical
layers in the proposed HRL structure. Compared to traditional
RL methods, our algorithm is more sample-efficient, since its
modular design allows reusing the policies of sub-goals across
similar tasks for various transportation scenarios. The results
show that the proposed method converges to an optimal policy
faster than traditional RL methods.

I. INTRODUCTION

In a traditional AV system, after receiving the processed
observations coming from the perception system, the ego
vehicle performs behavior planning to deal with different sce-
narios. At the behavior planning level, algorithms generate
high-level decisions such as Go, Stop, etc., and a lower-level
trajectory planning system maps these high-level decisions to
trajectories. Then a lower-level controller outputs the detailed
pedal or brake inputs to allow the vehicle to follow these
trajectories.

At first glance, among algorithms generating behavior
decisions, heuristic-based rule-enumeration [1][2] appears
to describe human-like decision processes well. However,
adjusting the corresponding decisions to account for changes
in the environment is difficult if the decisions of the AV are
completely handcrafted. The rules need to be added one by
one in order to respond to various situations. The environ-
ment can vary across different dimensions, all relevant to
the task of driving, and the number of rules necessary for
planning in this nuanced setting can be unmanageable. For
example, when a vehicle is approaching a stop-line intersec-
tion with moving front vehicles, it should pay attention to
both the front vehicle and stop-line. Rules prescribing how
to stop or how to follow the front vehicle can be designed
with tuning parameters of the distance to follow, time to
decelerate, etc., and meanwhile the rules for prioritizing
following front vehicle or decelerating to stop also need extra
parameter-tuning work. A simple driving scenario for human
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Fig. 1: Heuristic-based structure vs. HRL-based structure

drivers can thus result in time-consuming design in order to
make the autonomous vehicle reach pre-defined goals.

An alternative method is reinforcement learning [3][4][5].
Suitable applications within the autonomous vehicle domain
include learning an output controller for lane-following,
merging into a roundabout, traversing an intersection and
lane changing. However, low stability and large computa-
tional requirements make RL difficult to use widely for more
general tasks with multiple sub-goals. Obviously, applying
RL to learn the behavior planning system from scratch not
only increases the difficulties of adding or deleting sub-
functions within the existing behavior planning system, but
also makes it harder to validate safety.

In traditional RL approaches it is necessary to train unique
policies for different tasks. In order to train a new task the
entire policy must be relearned regardless of how similar
the two tasks may be. As a result, a hierarchical structure
which is structurally similar to the heuristic-based algorithms
is more feasible and can save computation time by learning
different functions or tasks separately. Our goal in this work
is to construct a single planning algorithm based on hierar-
chical reinforcement learning (HRL) which can accomplish
behavior planning in an environment where the agent pursues
multiple sub-goals and to do so in such a way that sub-goal
policies can be reused for subsequent tasks in a modular
fashion (see Fig. 1). The main contributions of the work are:

« A HRL structure with embedded state attention model.

e A hybrid reward function mechanism which can effi-
ciently evaluate the performance for state-action pairs
of different hierarchical levels.

e An efficient RL exploration method with simple-
heuristic initialization.

o A hierarchical prioritized experience replay process.



II. RELATED WORK

This section summarizes previous work related to this pa-
per, which can be categorized as: 1) papers that propose self-
driving behavior planning algorithms; 2) papers that address
reinforcement learning (RL) and hierarchical reinforcement
learning (HRL) algorithms

A. Behavior Planning of Autonomous Vehicles

[6] proposed a slot-based approach to check if a situation
is safe to merge into lanes or across an intersection with
moving traffic, which is an example of a heuristic-based
rule-enumeration method. This kind of algorithm needs
significant effort by human designers to create rules that
can deal with different scenarios, especially in urban envi-
ronments. As a result, learning-based algorithms, especially
reinforcement learning [7][8], have been applied to design
policies. [9] formulated the decision-making problem for
AV under uncertain environments as a POMDP and trained
out a Bayesian Network to deal with a T-shape intersection
merging problem. [10] dealt with the traversing intersection
problem via Deep Q-Networks combined with a long-term
memory component. [11] used Deep Recurrent Q-network
(DRQN) with states from a bird’s-eye view of the intersec-
tion to learn a policy for traversing the intersection. [12]
proposed an efficient strategy to navigate through intersec-
tions with occlusion by using the DRL method. These works
focused on designing variants of the state-space and add-
on network modules in order to allow the agent to handle
different scenarios.

B. Reinforcement Learning

Algorithms with extended functions based on RL and
HRL have been proposed. [13] proposed the idea of a
meta controller, which is used to define a policy govern-
ing when the lower-level action policy is initialized and
terminated. [14] introduced the concept of hierarchical Q
learning called MAXQ, which proved the convergence of
MAXQ mathematically and could be computed faster than
the original Q learning experimentally. [15] proposed an
improved MAXQ method by combining the R-MAX [16]
algorithm with MAXQ. It has both the efficient model-based
exploration of R-MAX and the opportunities for abstraction
provided by the MAXQ framework. [17] used the idea of
the hierarchical model and transferred it into parameterized
action representations. They use a DRL algorithm to train
high-level parameterized actions and low-level actions to-
gether in order to get more stable results than by getting the
continuous actions directly.

In our work, the main idea is to combine the heuristic-
based decision-making structure with the HRL-based ap-
proaches in order to combine the advantages of both meth-
ods. We build the HRL-structure according to the heuristic
method (see Fig. 1) so that the system can more easily figure
out the local optimal policy based on local option choice and
environment state. Meanwhile, it can allow the validation of
different local policies within the hierarchical system instead
of presenting a monolithic neural-network black-box policy.

III. PRELIMINARIES

In this section, the preliminary background of the problem
is described. The fundamental algorithms including Deep
Q-Learing (DQN), Double Deep Q-Learning (DDQN) and
Hierarchical Reinforcement Learning (HRL) are introduced.

1) Deep Q-learning and Double Deep Q-learning: Since
being proposed, DQN [3] and DDQN [18] have been widely
applied in reinforcement learning problems. In Q-learning, an
action-value function Qr(s,a) is learned to get the optimal
policy m which can maximize the action-value function
Q*(s,a). s and a are current state and action, respectively.
Hence, a parameterized action-value function Q(s,a|6) is
used with a discount factor ¥, as in Equation 1 where r is
the reward achieved when performing a based on s.

0*(s,a) = mgle(s,a\G)
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2) Double Deep Q-learning: For the setting of DQN, the
network parameter 6 is optimized by minimizing the loss
function L(0), which is defined as the difference between the
predicted action-value Q and the target action-value Y<. 6
can be updated with a learning rate «, as shown in Equation
2. R; means the reward received at time .

YzQ =Ri+1+ ymax O(Si+1,a|6)
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For the DDQN, the target action-value Y9 is revised
. / .
according to another target Q-network Q with parameter 0':

Y2 =Riy1 +70(Sii1, arg max 0'(S+1,a6,)16))  (3)

During the training procedure, techniques such as e-greedy
[19] and prioritized experience replay [20] can be applied to
improve the training performance.

3) Hierarchical Reinforcement Learning: For the HRL
model [13] with sequential sub-goals, a meta controller
Q! generates the sub-goal g for the following steps and a
controller Q%outputs the actions based on this sub-goal until
the next sub-goal is generated by the meta controller. N is
the number of steps between the last time this controller was
activated and the current one.
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IV. METHODOLOGY

In this section we present our proposed model, which is
a hierarchical RL network with an explicit attention model,
hybrid reward mechanism and a hierarchical prioritized ex-
perience replay training schema. We will refer to this model
as Hybrid HRL throughout the paper.
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Fig. 2: Hierarchical RL Option and Action Q-Network. FC
stands for a fully connected layer.

A. Hierarchical RL with Attention

Hierarchical structures based on RL can be applied to learn
a task with multiple sub-goals. For a hierarchical structure
with two levels, an option set O is assigned to the first level,
whose object is to select among sub-goals. The weight 6/ is
updated according to Equation 5.

07, = argmaxQ"(S,+1,o|0”)
Y,Q R?  +70%(Si41, t+1|90) (5)
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After selecting an option o, the corresponding action set
A? represents the action candidates that can be executed on
the second level of the hierarchical structure with respect
to the selected option o. In many situations, the portion of
the state set and the amount of abstraction needed to choose
actions at different levels of this hierarchy can vary widely.
In order to avoid designing a myriad of state representations
corresponding to each hierarchy level and sub-goal, we
share one state set S for the whole hierarchical structure.
Meanwhile, an attention model is applied to define the
importance of each state element (s,0) with respect to each
hierarchical level and sub-goal and then use these weights to
reconstruct the state s'. The weight ¢ is updated accordingly
to minimize L(6“) in Equation 6.
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When implementing the attention-based HRL, we con-
struct the option network and the action network (Fig. 2),
which includes the attention mechanism as a softmax layer
in the action-value network Q¢.

Al = argmaxQ (S,

B. Hybrid Reward Mechanism

Instead of generating one reward function which is applied
to evaluate the final outputs coming from both options
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reward r°

Fig. 3: Hybrid Reward Mechanism

and actions in one step together, we designed a reward
mechanism which can evaluate the goodness of option and
action separately, as well as the goodness of the interaction
between option and action. A hybrid reward mechanism is
introduced: 1) according to the chosen option or action, the
algorithm decides which reward function should be triggered;
2) meanwhile, a positive reward which benefits both option
and action occurs if and only if the whole task and the sub-
goals in the hierarchical structure have all been completed.
Fig. 3 demonstrates the hybrid reward mechanism.

C. Exploration with simple heuristic

Some recent work [21][22] proposed to use demonstration
knowledge in the RL so that the algorithms can achieve more
efficient learning. For the AV decision-making problem,
heuristic-based methods can provide imperfect but successful
solutions to finish assigned tasks with less exploration. As
a result, inspired by the e-greedy approach, we introduce
the &-HeuristicExplore (Eq. 7) approach, which explores
the heuristic-based policies with higher probability during
the early training stage and meanwhile performs random
exploration with lower probability.

with probability €/2
with probability €/2  (7)
ax with probability 1 —¢

heuristic-based action

a = ¢ random action

ax is the action received from exploitation. With this ap-
proach, the agent can get a higher average reward at the
beginning of training and less effective policies are stored in
the training replay buffer. The agent can access both high-
quality (heuristic-based) and random explorations during the
whole training procedure. Instead of exploring an unknown
environment with totally random actions, the agent gets an
idea of what action may bring higher reward based on a
rule-based algorithm, which helps the agent to learn more
quickly.

D. Hierarchical Prioritized Experience Replay

[20] proposed a framework to efficiently replay experience
for DQN so that the stored transitions {s,a,r,s’} with higher
temporal difference error (TD-error) in the previous training
iteration result in a higher probability of being selected
in the mini-batch for the current iteration. However, in
the HRL structure, the rewards received from the whole
system not only rely on the current level, but also are
affected by the interactions among different hierarchical



Algorithm 1 Hierarchical RL with Attention State

1: procedure HRL-AHR()
2: Initialize option and action network Q°, Q¢ with weights 68°, 6% and
the target option and action network Q7 , Q% with weights 67, 64.

3: Construct an empty replay buffer B with max memory length /p.

4: for ¢ < 0 to E training epochs do

5: Get initial states sq.

6: while s is not the terminal state do

7: Select option O; = argmax,Q°(S;,0) based on ¢-
HeuristicExplore.

8: Apply attention model to state S; based on the selected option
0, St =1(5,,0,).

9: Select action A, = argmax,Q®(S!,0;,a) based on e&-
HeuristicExplore.

10: Execute A; in simulation to get S;1i.

11: R?, |,R?, | = HybridReward(S;,0;,4;).

12: Store transition 7 into B: T = {S,,O,,A,7R;’+17Rf+l7S,+1 }

13: Train the buffer ReplayBuf fer(e).

14: if ¢ mod n ==0 then

15: Test without action exploration with the weights from train-

ing results for n epochs and save the average rewards.

Algorithm 2 Hybrid Reward Mechanism

1: procedure HYBRIDREWARD()

2: Penalize RY and R for regular step penalties (e.x.: time penalty).
3 for § in sub-goals candidates do

4 if O fails then

5 if option o; == § then

6: Penalize option reward Ry
7.

8

9

0

else
Penalize action reward R{
if task success (all & success) then
Reward both Ry and R{.

—_

Algorithm 3 Hierarchical Prioritized Experience Replay

1: procedure REPLAYBUFFER(e)

2: mini-batch size k, training size N, exponents & and f3.
3: Sample k transitions for option and action mini-batch:
3 . pg ki {0,a}
MB® ~ P8 = gE€0,a
[ k) ’
Ly P
4: Compute importance-sampling weights:
[N-Pes)P
wd="1— € {o,a
max; wf g €lo.a}
S: Update transition priorities:
P = |r8 - 07(s1.0116)|
a __ o a (¢l a 0
=Y —0%S;,01,A6])| — p
6: Adjust the transition priorities: p® = p* — min(p®).

~

0f =0f + aas(oegg) according to sample weights wé, g € {0,a}.
8: Update target networks: 08 = 6%, g € {o0,a}.

layers. For the transitions {s,0,a,r°,r* s'} stored during the
HRL process, the central observation is that if the output of
the option-value network o is chosen wrongly due to high
error between predicted option-value Q° and the targeted
option-value r° + yQ°(s’,0’), then the success or failure of
the corresponding action-value network is inconsequential
to the current transition. We therefore propose the Hierar-
chical Prioritized Experience Replay (HPER) algorithm, in
which the priorities at the option-level are based on error
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Fig. 4: Autonomous vehicle (green box with A) approaching
stop-sign intersection

directly and the priorities at the lower level are based on the
difference between errors coming from two levels. Higher
priority is assigned to the action-level experience replay
if the corresponding option-level has lower priority. Based
on the described approaches, the Hybrid HRL is shown in
Algorithms 1, 2 and 3.

V. EXPERIMENTS

In this section, we apply the proposed algorithm to the be-
havior planning of a self-driving car and make comparisons
with competing methods.

A. Scenario

We tested our algorithm in MSC’s VIRES VTD. We
designed a task in which an AV (green box with A) intends
to stop at the stop-line behind a random number of front
vehicles (pink boxes with F) with random initial positions
(see Fig. 4). The two sub-goals in the scenario are designed
as stop at stop-line (SSL) and follow front vehicle (FFV).

B. Transitions

1) State: s = ve,ae,je,df,vf,af,dfc,%,dd,ddm%} is
the state space where v,, a, and j, are respectively the
velocity, acceleration and jerk of the ego car, while dy and
dy denote the distance from the ego car to the nearest front
vehicle and the stop-line, respectively. A safety distance is
introduced as a nominal distance behind the target object

which can improve safety due to different sub-goals.

1/2—\/2
e
dfs:max P f,d() s dfCde—dfs
) max (8)
14
das = 5, dge = dq —das

Here a4y and dp denote the ego car’s maximum decelera-
tion and minimum allowable distance to the front vehicle,
respectively, and dy. and dy. are safe braking distances to
the front vehicle and stop-line, respectively.

2) Option and Action: The option network outputs the
selected sub-goal: SSL or FFV. Then, according to the option
result, the action network generates the throttle or brake
choices.

3) Reward Functions: Assume that for one step, the
selected option is denoted as o, o € {d,f}. The reward
function is given by: i. For each step: a. Time penalty:
—o1; b. Unsmoothness penalty if jerk is too large: —1; -1 0;

c. Unsafe penalty: —]Iddc<oexp(—%) —deﬂ<oexp(—%).



TABLE I: Results comparisons among different behavior policies

Rewards Ste Step Penalty Performance Rate
Option Reward r  Action Reward ¢ P "Unsmoothness  Unsafe | Collision  Not Stop  Timeout  Success
Rule 1 -36.82 -9.11 112 0.38 8.05 18% 82% 0% 0%
Rule 2 -28.69 0.33 53 0.32 6.41 89% 0% 0% 11%
Rule 3 26.42 13.62 128 0.54 13.39 31% 0% 0% 69%
Rule 4 40.02 17.20 149 0.58 16.50 14% 0% 0% 86%
Hybrid HRL 43.52 28.87 178 5.32 1.23 0% 7% 0% 93%

TABLE II: Different HRL-based policies

Hybrid Reward  Hierarchical PER  Attention Model
HRL? X X X
HRL! v x x
HRL? v Vv x
HRL? v x Vv
Hybrid HRL v 4 4

ii. For the termination conditions: a. Collision penalty:
—l4;—0.03; b. Not stop at stop-line penalty: —Ig d:O_vg; c.
Timeout: —]Itimeomdﬁ; d. Success reward: I;,—.,, =004 Where
o, are constants. I, are indicator functions. I. = 1 if and
only if ¢ is satisfied, otherwise I, = 0. Assume that for one
step, the selected option is denoted as o, o € {d, f} and the
unselected option is 0~, o~ € {f,d}:

2
§r = —01 — Htirneoutdd + ]Idd:O.,ve:064

. dy-
poption — o Hdn_c<0 exp(_%) — Hdo— :().Vz
0~ s
action __ I I doc I
r = Sr— je>1.o-2 - doc<oexp(_7) - d0:0463 (9)

os
dd . d fc
Pk — sr — T, cgexp(——=<) —1Ig, coexp(——<)
dc< dds fe< d 't
—Tj,>1.02 —Lyy—0.03 — lg,—o.v2
where sr represents the portion of the reward common to
roption raction and rtask.
C. Results
We compare the proposed algorithm with four rule-based
methods and some traditional RL algorithms mentioned
before. Table I shows the quantitative results for testing the
average performance of each algorithm over 100 cases. The
competing methods include:

o Rule 1: stick to the option Follow Front Vehicle (FFV).

« Rule 2: stick to the option Stop at Stop-line (SSL).

o Rule 3:if dy > (dy+car_length), select FFV, w/o SSL.

e Rule 4: if df > dy., select FFV, w/o SSL.

o Table II shows the explanations of different HRL-based
algorithms whose results are shown in Figure 5.

Fig. 5 compares the Hybrid HRL method with different
setups of the proposed HRL algorithms. It shows the average
rewards for both task-level rewards, option-level rewards and
action-level rewards based on 1000 episodes for each epoch.
It shows that the hybrid reward mechanism performs better
with the help of HPER. Table II explains the detailed setup
for each approach in Fig. 5.

Fig. 6 depicts a typical example case of the relative speed
and position of the ego vehicle with respect to the nearest
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front vehicle as they both approach the stop-line. In the
bottom graph we see the ego vehicle will tend to close the
distance to the front vehicle until a certain threshold (about 5
meters) before lowering its speed relative to the front vehicle
to allow a certain buffer between them. In the top graph we
see that during this time the front vehicle begins to slow
rapidly for the stop-line at around 25 meters out before
taxiing to a stop. Simultaneously, the ego vehicle opts to
focus on stopping for the stop-line until it’s within a certain
threshold of the front vehicle, at which point it will attend
to the front vehicle instead. Finally, after a pause the front
vehicle accelerates through the stop-line and at this point the
ego vehicle immediately begins focusing on the stop sign
once again, as desired.

Fig. 7 shows the results extracted from the attention
softmax layer. Only the two state elements with the highest
attentions have been visualized. The upper sub-figure shows
the relationship between the distance to the nearest front
vehicle (y-axis) and the distance to the stop-line (x-axis). The
lower sub-figure is the attention value. When the ego car is
approaching the front vehicle, the attention is mainly focused
on dii When the front vehicle leaves without stopping at the
stop-line, the ego car transfers more and more attention to
%‘ during the process of approaching the stop-line.

XBy applying the proposed hybrid HRL, all the option-
level and action-level policies can be trained together and
the trained-out policy can be separated if the target task only
needs to achieve one of the sub-goals.

VI. CONCLUSIONS

In this paper, we proposed three extensions to hierarchical
deep reinforcement learning aimed at improving convergence
speed, sample efficiency and scalability over traditional RL
approaches. Preliminary results suggest our algorithm is a
promising candidate for future research as it is able to
outperform a suite of hand-engineered rules on a simulated
autonomous driving task in which the agent must pursue
multiple sub-goals in order to succeed.
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