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Abstract— How autonomous vehicles and human drivers
share public transportation systems is an important problem, as
fully automatic transportation environments are still a long way
off. Understanding human drivers’ behavior can be beneficial
for autonomous vehicle decision making and planning, espe-
cially when the autonomous vehicle is surrounded by human
drivers who have various driving behaviors and patterns of
interaction with other vehicles. In this paper, we propose an
LSTM-based trajectory prediction method for human drivers
which can help the autonomous vehicle make better decisions,
especially in urban intersection scenarios. Meanwhile, in order
to collect human drivers’ driving behavior data in the urban
scenario, we describe a system called UrbanFlow which includes
the whole procedure from raw bird’s-eye view data collection
via drone to the final processed trajectories. The system is
mainly intended for urban scenarios but can be extended to
be used for any traffic scenarios.

I. INTRODUCTION

A major challenge in recent work on autonomous vehicles
is making proper decisions about how to deal with interac-
tions with human-driven vehicles [1]. However, interactions
among human drivers are hard to model via equations
directly [2]. To address this problem, learning-based methods
[3] for characterizing human-driver behavior become good
choices and make it easier to simulate a human driver’s
behavior in simulations such as CARLA [4], VTD [5], etc.
However, such methods require a large amount of driving
data in order to learn human drivers’ diverse behavior. For
a long time, NGSIM [6] was the only public trajectory-
based dataset from which human driver behavior could be
extracted. In 2018, highD [7] became available, but it only
includes highway scenarios. Moreover, how to extract and
classify the human driver behavior without manually labeling
a large amount of data for ground-truth is another time-
consuming challenge when dealing with raw human driver
data.

The current state of the art in acquiring and using such data
faces several problems. First, some published work relies
on privately collected datasets, the inaccessibility of which
makes them impossible to use as benchmarks for compar-
isons between various algorithms. Second, some datasets are
collected by autonomous vehicles from the perspective of
the ego vehicle. Although this perspective is ultimately the
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Fig. 1: The UrbanFlow dataset processing pipeline. The
pipeline includes the drone data collection and process flow
from raw video data to the final trajectory data.

one available to an autonomous vehicle, it is difficult for
it to provide full sequences showing the social behavior of
surrounding vehicles. To derive models for such behavior,
bird’s-eye view datasets are useful. In response to these
problems, this paper constructs a method for benchmarking
human driver behavior based on a bird’s-eye-view data
collection system via drone. Figure 1 shows the pipeline of
the data processing procedure.

Based on such datasets, predicting other vehicles’ inten-
tions or trajectories is an essential component of autonomous
vehicle behavior planning during decision making or trajec-
tory planning. Most traffic lights control Going Straight (GS),
Turning Left (TL) and Turning Right (TR) with one light with
the result that at urban intersections, many interactions occur
between vehicles approaching from opposite directions with
intention pair of GS and TL or TL and TR. In these situations,
’who will go first’ between the two interacting vehicles is a
key problem even for human drivers.

The main contributions of this work are:

• A drone-based data collection and processing system
to analyze bird’s-eye view trajectory data of human
drivers.

• An algorithm which can predict the interacting human
drivers’ intentions as well as trajectories based on the
historical trajectories occupying a given period of time
when approaching an urban intersection.

II. RELATED WORK

This section introduces previous work related to this paper,
which can be categorized as follows: 1) papers related to
traffic data collection; 2) papers that propose intention and
trajectory prediction of human drivers.



A. Data Extraction

With the current popularity of autonomous driving, various
datasets are available for researchers to develop and test
their algorithms. These datasets can be categorized into two
classes. The first one is traffic-flow-based datasets, which
focus on a particular scene and simultaneously capture all
the vehicles within it. This type of dataset uses a bird’s-
eye view to observe vehicle trajectories within the scene.
The NGSIM dataset [6] is the best-known such dataset and
includes highway and urban scenarios. Last year, RWTH
Aachen University released the highD dataset [7], which used
advanced computer vision technology to improve the data
collection mechanism based on the NGSIM dataset. Another
kind of dataset is based on the sensors mounted on the ego-
vehicle and data collected while driving the ego car over a
given route. Most such datasets create various vision-based
benchmarks for further study. The KITTI dataset [8] offers
a vision benchmark for different autonomous vehicle-related
tasks. The Oxford RobotCar dataset [9] collected 20 million
images from 6 cameras mounted on the vehicle, along with
LIDAR, GPS, and INS ground truth. Recently, UC Berkeley
released the BDD100k [10], which includes diverse driving
videos collected from a camera mounted on the vehicle with
scalable annotation tooling.

In the current work, in order to gain a comprehensive view
of the traffic situation, we use a bird’s-eye-view method to
collect traffic-flow-based datasets via drone. The portable
end-to-end system allows researchers to collect their own
data from any site of interest, unlike the NGSIM system,
which depended on the installation of a fixed camera. While
our data collection method is similar to that used for the
highD dataset, our method focuses primarily on urban in-
tersections, which are more challenging than the highway
scenarios that the highD dataset focuses on.

B. Prediction

Liebner [11] proposed an explicit model to extract char-
acteristic desired velocity profiles from real-world data that
allow the Intelligent Drive Model (IDM) to account for
turn-related deceleration to represent both car-following and
turning behavior. Derek et al. [12] used LSTMs to classify
vehicle maneuvers at intersections. They predicted whether
a driver will turn left, turn right, or continue straight up to
150m with consistent accuracy before reaching the intersec-
tion using LSTM, with the mean cross-validated prediction
accuracy averaging over 85% for both three- and four-way
intersections. There are other works on predicting complete
trajectories using Hidden Markov Models [13], Gaussian
Processes [14], Dynamic Bayesian Networks [15], Support
Vector Machines [16], and inverse reinforcement learning
[17].

Compared with [11], besides velocity profile, multiple
factors are added in our models, such as yaw variation, target
motion features, etc., which contain information on environ-
mental changes for the ego vehicle. The work concentrates on
the interaction of ego and target car pairs. We also introduce
the idea of direction intention prediction and use the result

Fig. 2: Optimized stabilization method flow.

to determine a more detailed trajectory prediction. The main
challenge is that the human driver’s intentions and vehicle
trajectories are highly variable when approaching an urban
intersection with heavy traffic flow compared to highway
situations. The main contribution of the paper is a prediction
algorithm which combines direction and yield intentions and
accordingly derives trajectory predictions.

III. METHODOLOGY

In this section we propose UrbanFlow as a procedure to
deal with the collected bird’s-eye view data. Then, based on
UrbanFlow, we propose a method for predicting the human
driver’s intention as well as trajectories.

A. UrbanFlow

1) Video Stabilization: The two main challenges for video
stabilization are the robustness and the speed of the align-
ment [18][19]. In this paper, we propose several steps for
the video stabilization in order to deal with the displacement
of the drone during the data collection process. Figure 2
visualizes the flow of the stabilization method. For each
frame fn at time step n, the algorithm chooses a reference
frame fre f according to the alignment evaluation score gotten
from the result of the last time step and corresponding
homography matrix in order to get the stabilized frame.
Firstly, a re-alignment is performed when the result of the
ECC alignment score is lower than a threshold. ECC takes
a lot of time to converge and is not adaptive to align the
current frame with a reference frame when their similarity
is lower than a threshold. Secondly, since the alignment is
time-consuming, it is only performed when a reference frame
needs to be re-chosen. The homography matrix is re-used for
the following frames until a new reference frame is chosen
when the evaluation score drops to the threshold. Then, the
homography matrix calculated from ECC alignment during
the previous step is used for initializing the guess for ECC
in the next step to speed up the convergence. Lastly, images
are down-sampled [20] so that ECC uses fewer pixels during
the calculation.



Fig. 3: Transition from original image-based coordinate to
road-based Coordinate

2) Object Detection: In the proposed pipeline, RetinaNet
[21] is used for detecting vehicles in the images. The
training dataset contains all the bounding boxes and their
corresponding labels for each image. The input images are
re-sized to ensure that the size of detection objects is greater
than 32-by-32 pixels as well as not too large for the GPU
computational capability. Images are masked to crop out the
roads in order to make detection easier. RetinaNet was fine-
tuned using pre-trained weights from the COCO dataset [22].

3) Map Construction and Coordinate Transition: The
first step in the creation of the map is to crop the area
of interest, which in this case is the roads. To attack this
problem, we took advantage of the image segmentation
network ”U-net”, described in Ronneberger et al. [23], with
just a few adjustments based on the work of Iglovikov et
al. [24]. We preserve the decoder section of the network
because by adding a large number of feature channels,
it allows the network to propagate context information to
the higher-resolution layers. The important change was in
the encoder section, where it was replaced by the down-
sampling elements of the VGG16 architecture in order to
take advantage of the pre-trained weights in ImageNet [25],
due to the limitation of the quantity of the collected data.

After detecting the road and applying a color filter to
detect the lane markings on the road, the work transforms all
the detected vehicle positions from the original image-based
coordinates to the road-based coordinates. Figure 3 shows
the method to generate the road-based coordinate based on
a random road geometry which may occur in the real world.
The method firstly chooses an origin and then proceeds to
obtain the x axis and y axis along the lane markings which
separate the opposite directions of moving vehicles. For the
given vehicles v1 and v2, the figure shows two examples of
how to extract the road-based positions. Finally, it is able
to represent the vehicles’ information, which contains the

Fig. 4: Intention Prediction Network Structure

Fig. 5: Trajectories Prediction Network Structure

following items:
• Local x and y based on the road-based coordinates
• Vehicle length and width
• Section ID i
• Lane ID l
4) Vehicle Tracking and Trajectory Smoothing: A Kalman

filter [26] is used for tracking and trajectory smoothing.
Based on the car’s dynamic model, characteristics of the sys-
tem noise and measurement noise, the measurement variables
are used as the input signal, and the estimation variables
that we need to know are the output of the filter. After the
positions of vehicles have been transformed into the local
(road) coordinates, we apply the tracking algorithm to track
each car. Meanwhile, we smooth each vehicle’s trajectory. In
the system, we use vehicle position as the state variable. F is
the state transition matrix and H is the measurement matrix.
Vq(n) and Vp(n) represent the system noise and measurement
noise, respectively.

B. Driving Behavior Prediction

1) Intention Prediction: For the driving behavior task,
we construct the network with an LSTM layer which gets
the Direction Intention d and Yield Intention y (see Figure
4). The direction intentions include Going Straight (GS),
Turing Left (TL) and Turning Right (TR). The yield intention
indicates the prediction of which car will go through the
potential crash point first. For the interacting driver pairs
with intentions of GS and TL or TL and TR, the input
states include the positions, velocities, heading angles and
relative distance to the intersection center of both cars of
each pair. During the interaction procedure, the yield motion
also changes based on the counterpart’s behavior. This will
contribute as a key factor to the next-step motion planning
module and help to generate a safer and feasible trajectory.



Fig. 6: Reference trajectories according to the direction
intention. Follow the center of the lanes.

TABLE I: Comparison between different stabilization meth-
ods. DS means down sampled.

Method Processing Time (s/ f rame) SSIM
ORB + ECC w/o DS 1.7609 0.8032
ORB + ECC, 1

2 DS 0.6724 0.7759
ORB + ECC, 1

4 DS 0.4779 0.7324
ORB + ECC, 1

8 DS 0.4071 0.7160
SURF + ECC w/o DS 0.6599 0.81896
SURF + ECC, 1

2 DS 0.6627 0.7758
SURF + ECC, 1

4 DS 0.4960 0.7336
SURF + ECC, 1

8 DS 0.3750 0.7166
ECC, 1

2 DS 0.9345 0.9404
ORB 3.4665 0.8278
SIFT 13.575 0.8370
SURF 2.1060 0.8390

2) Trajectory Prediction: Based on the results of direction
and yield predictions, a more detailed trajectory prediction
procedure includes more information on the future trajec-
tories. In Figure 5, Pt includes information on velocities
and positions of the target car. A reference trajectory is
first selected according to the intention prediction results.
According to the reference trajectories (see Figure 6) with
intersection geometry information, the velocities, heading
angles and relative distance to the intersection center of both
cars, the network can predict the future trajectories.

IV. EXPERIMENTS

In this section, we show the results for methods corre-
sponding to different data processing procedures.

A. UrbanFlow

1) Video Stabilization: In the previous section, we have
introduced the combination of the feature-matching-based
and homography-based alignment methods. Here we com-
pare different combinations of feature-matching-based and
homography-based video stabilization algorithms with var-
ious down-sampling ratios. Table I shows the results of
different choices of algorithms and the corresponding struc-
tural similarity (SSIM) score which is used to calculate the
similarity between any two images. The higher SSIM score
indicates a better stabilization result.

We finally chose the Speeded Up Robust Features (SURF)
detector combined with ECC and 1

8 down-sampling to get a

Fig. 7: Two blended frames before stabilization and after
stabilization

Fig. 8: Vehicle detection results of Retinanet algorithm for a
selected frame.

relatively good tradeoff between stabilization and compu-
tational efficiency. We visualize images with and without
stabilization in Figure 7 with four sub-figures. The Reference
Frame shows the anchor frame for the stabilization. Ideally,
the roads can be perfectly aligned in the Reference Frame and
Target Frame. Before stabilization, the Reference Frame and
the Target Frame are blended, which is shown as the Target
Blended Frame. It is obvious that the two frames have a big
misalignment. After the stabilization of the frame, the result
is shown as the Stabilized Frame and then the new blended
result is shown as the Stabilized Blended Frame. The final
trajectory dataset is provided for later use 1.

B. Prediction

1) Vehicle Detection: By using Retinanet to do vehicle
detection, we trained a good model to detect vehicles from
a bird’s-eye view. For testing, only 97 out of 2322 vehicles
are not detected, giving an accuracy of 96%, and the average
intersection over union is 92%. This accuracy is high since
the vehicles in the test cases are similar to the ones during
training. False positives were removed using non-maximum
suppression and thresholding the confidence score for a
prediction. If vehicles such as a bus appear in testing but
had never appeared in training, these vehicles will not be

1https://drive.google.com/drive/folders/
1SwPnVHcQLJ_VwFUZ1R3DQsv0ftJxRaXk?usp=sharing

https://drive.google.com/drive/folders/1SwPnVHcQLJ_VwFUZ1R3DQsv0ftJxRaXk?usp=sharing
https://drive.google.com/drive/folders/1SwPnVHcQLJ_VwFUZ1R3DQsv0ftJxRaXk?usp=sharing


TABLE II: Detection Result

Prediction / True Car (Train / Test) No Car (Train / Test)
Car 387 / 2369 1 / 0

No Car 3 / 72 0 / 0
GT∩PR
GT∪PR 0.95 / 0.994
GT∩PR

GT 0.97 / 0.995
GT∩PR

PR 0.97 / 0.996

Fig. 9: Comparison between vehicle trajectories with and
without smoothing.

detected, since they are too different from what the network
has learned both in size and color. The images with incorrect
detection were relabeled to fine-tune the network.

For each frame, RetinaNet is applied to detect vehicles.
Figure 8 visualizes one of the testing images after applying
the vehicle detection method. The original image-based
positions of all the red bounding boxes detected as vehicles
are saved. Table II shows the quantitative results of training
and testing. GT is the abbreviation for the area of Ground
Truth and PR is the abbreviation for the area of Predicted
Results.

2) Trajectory Smoothing: Most existing vehicle trajectory
datasets, such as NGSIM [6], only provide raw trajectories,
which are noisy and therefore hard to use directly due
to the jerky trajectories. Figure 9 visualizes the results of
the trajectories for one of the vehicles with and without
smoothing. The Figure 9(a) shows the result with equal
scaling of the x and y axes. It is hard to find the difference
between the trajectories with (RED) and without (GREEN)
smoothing. However, when the x axis is enlarged in figure
9(b), the trajectory without smoothing (GREEN) is much
jerkier than the one with smoothing (RED).

Finally, the video2 includes all the dynamic results pro-
posed in the pipeline.

3) Scenario: We tested the algorithm based on the Ur-
banFlow dataset. We selected pairs of interacting vehicles
with the driving directions of GS and TL or TL and TR
from the dataset. Figure 10 shows a pair of two interacting
vehicles. The blue rectangle with E is the ego car and the
green rectangle with T is the target vehicle. The input state

2https://www.youtube.com/watch?v=cnfH1pi5pJQ

Fig. 10: Scenario of interacting vehicles pair.

Fig. 11: Comparison of the intention prediction results be-
tween TTC and our algorithm.

includes velocities, heading angles and relative distances to
the intersection center of both ego and target cars.

4) Intention Prediction: According to the described state,
the intention network predicts the direction intention as
well as the yield intention. Figure 12 visualizes the re-
sults of direction and yield intentions. All the ego cars
approach the intersection (intersection center is coordinate
(0,0)) from the bottom. Different colors with marker • show
the results of direction predictions when the target vehicle
reaches that position and the other colors with marker X
present the yield intention prediction results. A quantitized
comparison between the TTC (time-to-collision) approach
and our algorithm is shown in Table III. In TTC model,
we made assumptions of constant velocity and constant
acceleration set-up for yield estimation. The result shows
that our algorithm is better for estimation at the proposed
scenario. Both of these three methods have similar results
on threshold time of 0.5s, 1.0s, 1.5s. Figure 11 shows one of
comparisons among constant-velocity-based TTC, constant-
acceleration-based TTC and our proposed method. It shows
that the TTC-based methods are more unstable for prediction
results especially when the vehicles are far away from the

TABLE III: Comparison with TTC.

Method Average accuracy
TTC w/ constant velocity 0.74

TTC w/ constant acceleration 0.62
Ours 0.92

https://www.youtube.com/watch?v=cnfH1pi5pJQ


Fig. 12: The direction and yield prediction result of selected interacting pairs. GT means that the corresponding intention is
the ground truth of the selected pair. Direction intention of ego cars is noted in parentheses in the ego car legend.

Fig. 13: Direction and yield intention as well as MSE of
trajectories prediction for the target vehicle.

intersection.
Figure 13 shows the prediction accuracy with respect to

the distance to the start of the intersection for the target
vehicle. The prediction accuracy drops at the 35m to 40m
range, which is due to some trajectories started at this range
and lacked of history frame information, which will lead to
an incorrect prediction. The number of samples above 50 m
for yield and 65 m for direction is too small for statistical
significance, so those results can be ignored.

5) Trajectory Prediction: We compared the mean squared
error (MSE) results between the trajectory prediction with
and without intention results and reference trajectories. Table
IV presents the average MSE for different methods and

TABLE IV: MSE of trajectory predictions.

Method Average MSE (m)
LSTM 3.71

LSTM w/ intention 0.89
LSTM w/ intention and reference trajectory 0.18

Figure 13 shows the MSE with respect to the distance to
the start of the intersection for the target vehicle. Once past
the start position of the intersection, the trajectories become
diverse due to various direction intentions, and as a result, the
MSE of the trajectory prediction increases. In Figure 13, for
the trajectory prediction part, when the vehicles are observed
within the scene initially, the trajectory history information is
lacking for accurate prediction without reference trajectories.
Meanwhile, when vehicles enter the intersection and begin to
do turning behavior, the trajectory prediction becomes harder
without reference trajectories.

V. CONCLUSIONS

In this paper, we propose a pipeline called UrbanFlow
which is used to deal with traffic data collected by drones
in urban environments. The raw data are processed through
video stabilization, vehicle detection, map construction and
coordinate transformation, vehicle tracking, and trajectory
smoothing. Moreover, the paper proposes a method for
driving behavior predictions and tests it on the UrbanFlow
dataset. The following work for improving the dataset will
focus on increasing the quantity of the dataset. More types of
urban scenarios like T-intersections, stop-sign intersections
and yield intersections will be included in the dataset.
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