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Abstract

Many satellites are rapidly reaching the end of their lifespans, and risk
de-orbiting if no action is taken. One common problem satellites face
towards the end of their lifespans is that they are running out of fuel,
therefore new propulsion units must be delivered in-orbit. Attempting
to deliver propulsion units using human astronauts is both dangerous
and cost-prohibitive. To meet this challenge, corporate entities such as
Northrop Grumman have led efforts to develop cost-effective, robotic
in-orbit satellite servicing vehicles capable of delivering life extension
payloads to satellites in need of maintenance. The realization of robotic
deliveries of life extension payload is the beginning of a larger effort to
perform more general on-orbit maintenance tasks using robotic tools.

In this thesis we present an integrated tracking, estimation, and control
framework for space robots, along with an environment to simulate in-orbit
satellite servicing missions. We show that existing methods for operational
space control of floating base manipulators can be extended to partially
observable environments by incorporating contact force information into
the estimation and control problem.

For our control subsystem, we first evaluate multiple control solutions
(adaptive model predictive control, nonlinear model predictive control,
operational space control). After evaluating both optimization-based ap-
proaches, (model predictive control) and classical approaches (operational
space control), we selected an operational space control method to send
control commands. We selected this controller because we concluded
that optimization-based methods struggle to run in real time for our
high degree of freedom system. We present two types of analysis for our
controller: feasibility, and stability analysis. We perform multiple types
of analysis to demonstrate the efficacy of our controller. We perform
feasibility analysis in order to numerically compute the space of initial
robot end-effector poses for which the controller can successfully complete
a docking mission. We perform stability analysis to guarantee the stability
of our controller using analytical methods from non-linear control theory.

We analyze our vision tracking subsystem by conducting a series of exper-
iments to understand the configurations in which our vision subsystem
succeeds and fails, and with what degree of confidence it reports measure-
ments of the client satellite. We focus on understanding how the motion
of our robot arm and the end-effector payload effects the performance
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of the tracker through occlusions of the client satellite, and we search
for configurations of our robot base and arm which minimize occlusions.
This analysis enables us to better position the arm and the MEP during
docking operations.
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Chapter 1

Introduction

1.1 Motivation

There exist dozens of aging satellites in orbit currently at risk of de-orbiting due to a
lack of propulsion [26]. Collectively, these satellites are worth billions of dollars and
provide key services to society, such as weather information, GPS services, military
intelligence, communications, and broadband internet services. Governments and
companies who own these satellites have been spending growing amounts of resources
to find alternatives to launching replacement satellites. This has led companies
such as the Northrop Grumman Corporation (NGC) to develop in-orbit satellite-
servicing assets. NGC developed the Mission Robotic Vehicle (MRV) to deliver
Mission Extension Payloads (MEPs) to aging satellites in Low Earth Orbit (LEO).
These MEPs are designed to provide auxiliary power and propulsion capabilities to
the aging satellite running low on power and propellant. This thesis seeks to develop
a simulated model of the docking operations, and develops a robust force-compliant

control system to prevent error and minimize disturbances during docking.

1.2 Problem and Proposed Solution

The space environment we deal with consists of three separate bodies: The MRV,
the MEP, and the Client satellite, or client vehicle. Recall that the MRV delivers

1



1. Introduction

Figure 1.1: Artists Rendering: The NGC Mission Robotic Vehicle (MRV) delivering
a Mission Extension Payload (MEP) to an aging client satellite. (Image courtesy of

NGQ)

the MEP to the client vehicle. Our satellite servicing mission consists of two phases:
approach followed by docking. Fig. 1.6 provides a visual overview of the three key
bodies interacting in our mission.

The problem we seek to solve is as follows: given an non-compliant® client satellite,
the MRV must maneuver to attach a MEP to the rocket nozzle of the client satellite
while minimally disturbing the operations of the client satellite. We can draw a
parallel between our problem of driving an MEP towards a client satellite in space to
a well-known problem in robotics: The problem of inserting a peg into a hole using a
robot arm [16]. There are several challenges associated with controlling the MRV to

successfully dock the MEP with a client satellite in space:
1. Floating base dynamics and controls

In traditional manipulation problems, such as the peg-in-hole problem, where
the base of the manipulator arm is fixed to the ground, one can leverage

well-established manipulator dynamics and controls algorithms to move the

'In this context we define a non-compliant body as a body that is not under our control and
possibly following commands from an unobserved controller.
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end-effector of a manipulator to a desired location [4]. For in-orbit satellite
servicing, there is no ground that can withstand the reaction forces induced
by the motion of the manipulator. Even the MRV base thrusters and reaction
wheels would not be able to counteract such reaction forces. This is because
the MRV base thrusters have limited fuel capacity, and the reaction wheels
on the base can risk saturating, and be unable to respond to applied torques.
Additionally, the current operational protocol calls to disable the base thrusters
and reaction wheels during servicing. The MRV base thrusters are turned off
as a safety precaution during docking operations to minimize the maximum
velocity of a collision if one were to occur. Since the base that our manipulator
arm is mounted to is free floating, we must leverage control methods which
account for the coupled dynamics that exist between our manipulator arm and
the floating base to which it is attached. To accomplish this, we make use
of Operational Space Control [22], which has been commonly used in legged

robots to perform tasks in the work-space.
. Tracking a partially occluded spacecraft

To send accurate position estimates to our operational space controller, we need
to have access to the precise location of the client satellite. To achieve this, we
make use of a camera mounted on the base of our MRV to publish images of
the client satellite which are fed into an off-the-shelf vision tracking algorithm
[15] to detect the client satellite, and return the client satellite’s measured pose
with respect to the MRV. This tracking routine is complicated by the fact
that the MEP partially obscures the camera’s view of the client satellite. This
obscuring of the client satellite introduces the common problem in computer
vision known as occlusion. See Figs. 1.2 and 1.3. To combat the uncertainty
that occlusion brings into our tracking measurement, we make use of a Hybrid
Extended Kalman Filter (H-EKF) [12].

. Minimizing applied disturbance forces to client satellite

The client vehicle must not be displaced any more than 2 cm in translation, and
no more than 0.2 degrees in rotation. For the example of a telecommunications
satellite, these requirements ensure that the signals being sent back to Earth by

the client satellite stay on target, and reach their desired destination. In order
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Figure 1.2: When mounted on the MRV’s end-effector, the MEP partially occludes
the camera tracker’s view of the client satellite.

to comply with this requirement, we add a force compliant term in our controller
to respond and react to any contact forces. See equation 3.39 in the Operational
Space Controller section. This force compliance is crucial in scenarios with
heavy occlusion, where the vision subsystem cannot see the client satellite
perfectly. In a degraded vision-tracking scenario, force compliance allows the
robot arm to react with the force and move the arm in such a way that future
contact forces are reduced in cases where there is increased uncertainty about

the position of the client satellite.
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Figure 1.3: Example of occlusion from simulated MRV base camera feed. The client
satellite (green) is partially occluded by the MRV arm (blue) and the MEP (red).

1.3 Mission Robotic Vehicle Control System

Overview

The contributions we made to the MRV satellite systems are: A vision sensor/tracking
system, a Hybrid Extended Kalman Filter (H-EKF), and an Operational Space
Controller (OSC). As can be seen in Fig. 1.5, the control flow begins when the vision
and force sensors (blue blocks in Fig. 1.5) take measurements of the environment

(plant). These measurements (6-DoF force measurements and camera images) are

5
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passed into our H-EKF, and our vision tracking system, respectively (red blocks in
Fig. 1.5). The output of the H-EKF represents the best estimate of the current
pose of the client vehicle, and the current pose of the MRV end-effector (the MEP).
These outputs are then subtracted from one another to generate the desired pose
command, or error signal, to be sent to our Operational Space Control (OSC) system.
By sending this error signal into the OSC system, the MEP will be driven into the
client vehicle’s rocket nozzle. The task block in Fig. 1.5 sends a desired pose signal.
There are two desired poses: one for the approach phase, and one for the docking
phase. The task block detects which phase the simulation is in, and then sends the

corresponding signal for xg.

Visal Sensor
g ViSP
Op. Fq: 2-5 Hz ‘

Client Satellite
Op. Hz: Unknown

o State Est.
H-EKF
Op. Fq: 10-20Hz

Figure 1.4: Summary of MRV control/communication flow. Nominal operating
frequencies are labeled below each component.

1.3.1 Approach

The mission starts in the approach phase. In this phase of the operation, the MRV
begins some distance away from the client satellite and uses its base thrusters and
reaction wheels to move into docking position. The docking position is selected to be
directly in front of the MEP, aligned along the axis of symmetry of the client vehicle’s
rocket nozzle. The MRV uses our Operational Space Controller to drive the MEP
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Only active in contact

Plant

Sensor

= Output

Observer/Controller
e=X-X,
X, t
IO osc =
oxt 500Hz 4
Vision Visual
X Kalman pm Tracker Force Sensor
Filter Sensor S Hzm ===t
10-20 Hz

end effector state
desired end effector state

X
c
d
e

contact force
ext

X X

T o

Figure 1.5: Block diagram of full MRV control system. Green blocks denote the
plant, blue blocks denote sensors, red blocks denote controllers/observers. Solid lines
represent signals that are active all the time, and dashed lines represent signals that
are only active when an external forces is imparted onto the MRV. Note that the
external force applied to the MEP, F,,; is passed into the OSC block in order to allow
the OSC block to compute compliant controls that are aware of contact forces, as
shown in equation 3.39.

to the desired docking state, directly in front of the client vehicle. Once the MRV

reaches the docking position, the system enters the docking phase.

1.3.2 Docking

At this point, using the estimated position of the client vehicle coming from our
vision tracker, we use our Operational Space Controller to move the MEP into the
rocket nozzle of the client vehicle. The controller also makes use of the force sensor
mounted in the end-effector of our robot manipulator to comply with any external
forces applied to our arm. External forces measured by the MRV wrist force sensor
are passed into the OSC controller, and used to guide the motion of the MEP away
from the contact. The docking phase ends when the MEP reaches within 5mm of the

final goal location inside of the client vehicle’s rocket nozzle.
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Client

MRV MEP Vehicle

Delivers

Figure 1.6: Overview of three key bodies in environment. The MRV (left) flies in
low Earth orbit, acquires a MEP (center), and delivers it to an aging client vehicle
(right). To be precise, all simulated MRV operations featured in our work assume
that the MRV has already gone through the process of acquiring the MEP.

1.4 Contribution

The contribution of this work is two-fold: First, we present a simulated satellite
servicing pipeline for the purposes of testing integrated solutions to the problem of
docking with a non-compliant satellite in orbit. Secondly, we present our integrated
tracking, estimation, and control system which enables a satellite with a manipulator
arm to place the MEP in position with a non-compliant satellite in need of service.
To demonstrate the efficacy of our proposed automated satellite docking system, we
present individual component analyses of our vision tracker, H-EKF, and operational
space controller, as well as system level analyses of our integrated system. The novelty
of this pipeline is that we are leveraging both force and vision feedback to achieve
our goal, in addition to also leveraging force feedback to improve state estimation of

the pose of the client vehicle.



Chapter 2

Prior Work

There exists a great body of work for space robots, or floating base manipulator
systems. Here, we break the prior work down into four subsections: a history of space
robots, floating base manipulator kinematics and dynamics, control for floating base

manipulators, and vision tracking in robotics.

2.1 Brief History of Robotic Space Systems and
Floating Base Systems

There are several space launched robotic manipulator arms systems that have come
before the NGC MRV system. One of the first robotic manipulators was launched into
orbit when the Shuttle Remote Manipulator System (SRMS), which is also known as
the Canadarm, was first deployed in the 1980s [27]. The Canadarm is a six degree of
freedom robot arm that has been used to deploy satellites, assist with construction
tasks, and assist astronauts with space walks. In the late 1990’s, the Japanese
government launched the Engineering Test Satellite (EST) VII experiment vehicle
[18]. This space robot collected data for several docking and rendezvous missions. In
the early 2000’s, DARPA began a program called Orbital Express, whose goal was to
develop a robotic satellite capable of servicing disabled satellites in orbit, much like
the NGC MRV mission [2]. Images of these robotic space systems can be found in

Fig. 2.1 Northrop Grummans’s Mission Extension Vehicle (the predecessor to the

9



2. Prior Work

Mission Robotic Vehicle) completed its first servicing mission in orbit in Februrary

2020.

As an aside, we also draw inspiration from other floating base systems, such as
microrobots designed to swim in in-viscid fluids, such as the system designed in [9]
and [10]. Other systems with similar behavior to our system is the Chaplygin beanie,

which was analyzed in work done by [1].

Figure 2.1: Top Left: Canadarm operating on a space shuttle mission. Top Right:
Canadarm operating on the International Space Station. Bottom Left: Japanese
ETS VII Experiment Vehicle. Bottom Right: Artist’s rendering of DARPA Oribtal
Express.

10
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2.2 Floating Base Manipulator Kinematics and

Dynamics

The theory behind floating base manipulator kinematics and dynamics was developed
in the late 1980s and early 1990s. In 1993, engineers and researchers in the Spacecraft
Engineering Department at the Naval Research Laboratory [14] [13]. In this work, the
authors computed the forward kinematics of a generalized floating base manipulator,
and also developed an inverse kinematics solution for a floating base robot with
a six degree of freedom manipulator arm. They additionally analyzed the feasible
work-space of a floating space robot with an unactuated base. [24] [31] both derived
dynamic equations of motion for a six degree of freedom arm attached to a floating
base. In their work, they also derived motion planning and control routines for space
robots which brought the end effector of the arm from point A to point B. Fig. 2.2
shows a schematic for a generic space robot. In these works, the equations of motion

for a generic space robot are derived by taking the following steps:

First, define the state of the system in vector form:

X = [x"] (2.1)

q

Where ., is the vector representing the six degree of freedom pose of the base

and ¢ is the vector representing the joint angles of the robot arm.

Next, write out the kinetic energy of the system:

T = 5 [ﬁg;seqT} Asys

T
xbase (
‘ 2.2)
q" ]

Where Ay, is the system mass matrix, which is found following the derivation

from [28]:

We define A,y as the full system mass matrix, which is a block matrix consisting

of the base mass matrix, A;;, the manipulator arm mass matrix, Ass, and the mass

11
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matrices representing the coupling between the arm and the base, Ay, and Aqs.

Ay A
Ay = 11 12 (2.3)
Ay Ag
where
All _ mtot[?XB _mtotfoc (24)
MtotToc Hs
My is the total mass of the system. 7, is defined in Fig. 2.2.
Hy is given by
6

=1

Where I; is the inertia of the ith link of the MRV arm, m; is the mass of the ith
link of the arm, and 7y, is defined in Fig. 2.2.

We can obtain the coupling inertia matrices with the following relationship:

J
A = ;j (2.6)
where Jrg is given by:
6
Jrs = Z (miJr;) (2.7)
i=1
Jr, is found as follows:
Jr, = ki (ri— P) oo ki (ri— P) ogxﬁ_i] ¥ (1<i<6) (2.8)

~

k; is the unit vector representing the axis of rotation of the ith joint of the MRV

arm.

P; is the position vector pointing from the inertial frame to the ith joint of the
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MRV arm. r; is the position vector pointing from the inertial frame to the center of
mass frame of the ith link of the MRV arm.

And Jp, is obtained with:

~

We define our second coupling matrix by transposing Ajs:

Ay = Af, (2.10)

Lastly, we obtain the manipulator arm mass matrix with the following calculations:

6
Ay = (Jh LT, +miJi, Jr,) (2.11)

=1

Now we can compute the Lagrangian (neglecting the potential term since we can

neglect gravity effects in orbit):

d ar oT

E <aftbase) a aIbase =0 (212)
d (0T or
- <8_q) e r (2.13)

Where I is a vector of manipulator arm joint torques.

This provides us with the equations of motion for our generic floating base

manipulator system:

A jbase
sys r

by — H (2.14)

Where by, is the vector of system Coriolis terms, defined below:
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A A jj ase C ase
s = ‘11 '12 b. + b. (215)
Ay Ag q Carm
where
1 0 ) ) ) L . .
Chase = _§a$ (xgaseAllxbase + qTA22q + 1{%614126] + qTA21xbase) (216)
base
and
10 . . . L L .
Carm — _5(9_(] ($gaseA11xbase + QTAzzq + l"gaseAlzq + qTA21xbase) (217)

end-effector (EE)

base-spacecraft

Figure 2.2: Kinematic diagram of a generic space robot. Image from [2§]

2.3 Control for Floating Base Manipulators

There exists a variety of literature regarding the subject of controls for floating base
manipulators. In 1987, Khatib et al developed a method called Operational Space
Control (OSC) for fixed base manipulators [11]. The OSC formulation enables an
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engineer to determine generalized forces that act in the joint space (joint torque
commands), based on a desired force to be applied in the work-space [11]. Khatib,
along with Sentis et al. [22] extended Operational Space Control for use with floating
base systems. Their use case was on a humanoid robot. See Fig. 2.3. In chapter 3,
we will present our implementation of the Khatib OSC formulation, which includes
modeling external forces into our computed torque computations. Several other
control methods exist for floating base robots, such as resolved motion rate control,

introduced by Yoshida and Umetani [31], and inverse dynamics control [20].

2.4 Vision Tracking

There are several solutions available to solving vision tracking problems. There are
model-based approaches such as ViSP [15], and learning based approaches such as
DOPE [23] and PoseCNN [30]. Other methods include particle-filter model-based
tracker such as the Depth Based Object Tracking Library (dbot) [29], and search
based methods such as PERCH from the SBPL at CMU [3]. Each one of these
methods has pros and cons. Learning based methods require large quantities of
training data in order to obtain high performance. Search based methods require
onboard GPUs in order to guarantee real time functionality. Model-based methods
require an accurate CAD model of the object to be tracked. Many of these methods
also require a depth image to be provided in addition to an RGB image. We decided
to use the ViSP model-based tracker because it does not require a depth image
input, and it does not require the creation of a large training dataset. The reason
we chose to avoid methods which rely on depth images is because NGC advised us
that their proprietary vision tracking routine does not use depth information, and
NGC recommended using a method that also does not use depth information, in
order to more accurately represent and simulate the true NGC MRV system. Table

5.1 summarizes the pros and cons of each of these methods.
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Free-Floating Base

Figure 2.3: [22] developed an OSC formulation for floating base systems. Their
test system was the above humanoid model. For their application, the operational
space frame is the base frame located in the hip link of the humanoid robot. So for
the humanoid OSC, joint torque commands in the legs and arms are computed to
achieve a desired behavior in the base frame. For our space robot work, we define the
operational space frame to be the end effector of the robot arm instead of the base
link. Image from [22].
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Tracking Method Comparison

Method Needs Needs Needs Needs

GPU? Training CAD Depth
Data? model? Image?

VisSP X X v X

DOPE X v X X

PoseCNN X v X X

dbot X X v v

PERCH v v v v

Table 2.1: Pros/cons of various types of vision trackers.
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Chapter 3

Controller for Space Robot

3.1 Model Predictive Control for Planar Space
Robot

As discussed in the prior work section, there are many different control methods
available for use with floating base manipulators. Model Predictive Control (MPC)
is a popular optimization-based method that has been implemented recently for
operation on space robots. In this section, we explore the use of several classes of
MPC controllers: Nonlinear MPC [21] and Adaptive MPC [6] on a planar space robot
simulated in MATLAB.

The work by Tomasz Rybus et. al. in [21] explores maneuvers of a floating base
satellite with an open chain manipulator to interact with a separate moving body.
The study computes open-loop motion plans using trajectory optimization, and then
treats those computed trajectories as references to track using NMPC and adaptive
MPC. Our work builds a re-creation of the methods and results presented in the
previous work, and explores an alternative MPC control method applied to the same
motion scenarios. In implementing NMPC adaptive MPC for a planar space robot,
we seek to understand the capabilities of NMPC and adaptive MPC for simplified
floating base manipulators, as well as the limitations of NMPC/adaptive MPC.

To implement and explore the proposed paper of study [21], a representative system
model was created using the Space Robotic Toolbox (SPART) toolbox [25]. The
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model provides us with a state dynamics description of a floating base manipulator
system, this description provides us our system mass matrix and Coriolis terms.
Trajectory optimizations were performed on the models, including a representation of
the rendezvous action presented in the work. Differing instances of model predictive
control (adaptive MPC and nonlinear MPC) were then applied to the generated
trajectory, and compared both with and without model discrepancies’.

Our motivation in implementing both NMPC and adaptive MPC for this system
is to determine the pros and cons of each method, and to see which method, if any, is

most suitable to serve as the controller for our floating base system.

Floating Base Dynamics for MPC

Here we discuss the dynamics of a floating base manipulator. Because the base of the
robot is free floating, we must include the position and orientation of the base in the
state description, as can be seen in equation 3.1. We modeled our system without
an actuated base, and so our system is trivially underactuated. The floating base
nature of our system makes computing the dynamics of the system more complicated,
because our system must obey conservation of angular and linear momentum laws.

Our system is governed by the following equations of motion:

C
i+ | =T (3.1)

Cm

Hb Hc
ar H,

Where Hy is the inertia matrix of the base, H, is the coupling inertia matrix between
the base and the manipulator, and H,, is the manipulator inertia matrix. The
coupling inertia matrix helps describe how the motion of the base affects the motion

of the arm, and how the motion of the arm affects motion of the base.

SPART Toolbox

The Space Robotic Toolbox [25] is a package developed for kinematic and dynamic

analysis of open-chain manipulators. The MATLAB-based toolbox accepts a Unified

'Model discrepancies here are perturbations in the mass and geometry of the dynamical system
that the MPC routine is not made aware of.
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End
Effector

Figure 3.1: Planar model

Robot Description Format (URDF) representation of a manipulator system, and
provides analysis tools for the provided model, allowing for both fixed-base and
floating-base systems. The system equations of motion are computed using a recursive
Newton-Euler algorithm (RNEA) method in the SPART toolbox.

Figure 3.2 depicts the formulation of state dynamics used in the study. Forward
dynamics relate the current state and control inputs to the requisite state velocity. The
applied control inputs are then combined to complete a forward dynamic calculation
using RNEA to return joint and base accelerations. The forward dynamics are used

for both trajectory optimization and simulation.

Planar Space Robot

In order to analyze the relevant operations presented in [21], a simplified planar
dynamic model was created using a URDF and the SPART toolbox. We use a planar
robot here to investigate the efficacy of MPC methods while easing the computational
complexity of solving an optimization problem for a higher DoF, non-planar robot.
Figure 3.1 and Table 3.1 describe the system used for planar analysis throughout
the present study. The model consists of three bodies: a base and two links in an
open-chain configuration. The two consecutive joints connecting the three bodies
allow for rotational motion about parallel axes (axes parallel to the inertial z axis in
Fig. 3.1), constraining the active motions to a plane. Each joint is active, providing a
control vector of u = [Tj1, Tj2]". The base is free to float w.r.t. to the inertial frame,
which introduces three additional coordinates for state description. This condition
leads to an underactuated system, with minimum five generalized state coordinates,

and two independent actuated inputs.
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Parameter ‘ value ‘ unit
Base mass 129 | kg
Base moment of inertia 0.208 | kgm?
Base center to joint 1 0.327 | m
Link 1 mass 4.5 kg
Link 1 moment of inertia | 0.32 | kgm?
Link 1 length 0.62 | m
Link 2 mass 1.5 kg
Link 2 moment of inertia | 0.049 | kgm?
Link 2 length 0.6 m

Table 3.1: Parameters for the major components of the planar model satellite

Inertial parameters
. Body masses
Generalized state Body moments of inertia
X
Yb

O, —> Forward kinematics (pose) ﬂ
01 I

0> ) o . : . .
ep=| 5 Differential kinematics (Jacobians) Forward dynamics | —> Joint accelerations
L Base acceleration
b iy
o, ——) Inertial velocities H

)
62

Control input
Torque J1
Torque J2

Figure 3.2: Dynamics flowchart

4dPlanar S Rlo . (32)
4Planar = [Xb7 Yb, eba ela 927 -j:ba yba 91)7 917 92] (33)

Augmented State

Tasks required of the system generally relate to the end effector state. Since the
generalized coordinates for describing the system dynamics do not directly provide
end effector information, an augmented state with explicit end effector position and
velocity in the inertial coordinate frame was created. The augmented state allows
access to end effector state for trajectory optimization and control. The augmented

state vector is shown in equation 3.4.
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qPlanarAug € R™ :
Xb
Yb
th
01
02
Ty
Ub
0y
0,
0
EE osx
EEjosy
EEx
EEqery

(3.4)

qPlanar Aug =

3.1.1 Space Robot Center of Mass Analysis

Before we discuss the Model Predictive Controllers we implemented on our planar
space robot simulation, we fist verify that the planar space robot is obeying linear
momentum conservation constraints. Because our robot is not firing any base thrusters
and is not driving any reaction wheels, the total linear momentum of the system
should stay fixed at zero. If we plot this out, we expect to see the position of the
center of mass of the system remain at the initial position where it starts. Fig. 3.3
shows an open loop control sequence executed on our space robot. Fig. 3.4 show
the plots of the X and Y positions of the system center of mass as a function of
time. Now that we have shown that our system is properly obeying linear momentum
constraints, we can feel confident that we have properly modeled a floating base

system free from the effects of gravity.

3.1.2 Model Predictive Control

Model Predictive Control (MPC) is a control method that produces the optimal

control action at each time step during operation through solving a local optimization
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O baseOrigin
O link 1
15¢F link 2
O EE
+  CoM
— — — -initial
T — — — final
051
0 L
05
-1 -
-1 0.5 0 0.5 1 1.5 2

Figure 3.3: Open loop trajectory visualization. Note that the position of the system
center of mass does not change.

Planar Space Robot CoM Position Over Time

0.35 | | | |
T 03 E
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So25F
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a
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Figure 3.4: X-Y plots of planar space robot system center of mass over time. Note
that the position of the system center of mass does not change over time. This is due
to the fact that the robot is not firing any base thrusters, and is not experiencing
any external contact forces.
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Figure 3.5: MPC graphical example. Image from [5].

problem [7] at that time step. Figure 3.5 depicts a temporal representation of the
MPC process. The optimization is performed over a prediction horizon into the future,
which shifts forward during operation as a "receding horizon.” Different methods for
model predictive control address trade-offs between optimization accuracy, horizon
distance, cost definition, constraint definitions, and their effect on computational load.
Model predictive controllers are model-based controllers, relying on the accuracy of
the model relative to the representative system for efficacy. MPC methods differ
from other optimal control techniques such as Linear Quadratic Regulation due to
the run-time iterative process of optimization. MATLAB provides a set of tools for

implementing model predictive controllers [17].

Adaptive MPC

Linear MPC methods require a linear time-invariant system for viable operation.
The state dynamic equations exhibit configuration dependent relations, forming a
significantly non-linear system over the space of configurations. Non-linear systems
pose more complicated dynamics that in general cannot be analyzed directly with
linear methods. Adaptive MPC addresses control of non-linear systems using linear
MPC methods by applying linearizations of the dynamics at each time step. While
continual linearizations add computational load to the system, the simplification of the
optimization to a linear system significantly reduces the total decision load per time
step. A linearization is only valid around an nominal trajectory of the system at which
the approximation is applied. Thus for good performance, the relationship between
the reference target and system state should be within reasonable proximity (trust

region). Given a marginal state deviation over the time horizon to the reference value,
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a linear approximation of the non-linear dynamics can provide adequate dynamic
accuracy to implement linear MPC methods on the linearized system.

In order to use linear MPC here, we must first linearize our system. Equations
3.5-3.7 describe the process for which we linearize our nonlinear dynamical system.
[19]. Both the nominal state and control describe the linearization location, and the
partial differentiation of the dynamics with respect to the state and control provides

the first order description of the small deviation away from the local point.

T = f(z,u) 3.5
o(t) = a(0) + 5,(1) (36)
H(0) 4 (1) m F(2.0) + O aabalt) + Ol (37)

The MPC process can now perform optimization using the linear approximation
from equation 3.7 as a replacement for the full non-linear model. In order to obtain the
linearized system dynamics without an explicit analytical model, numerical differenti-
ation can be performed using the method of finite differences. The MATLAB toolbox
Adaptive Robust Numerical Differentiation [8] provides functions for generating the
linearized dynamic equations with respect to state and control at an operating point,

and is used for linearization in this work.

Non-linear MPC

When the posed control problem exhibits non-linear dynamics, non-linear or time
varying constraints, and alternative cost functions that don’t assume a globally convex
form, the model predictive control process requires more sophisticated tools to perform
the optimization. Generally an iterative optimization process is used to minimize the
cost function, such as sequential quadratic programming (SQP), which serves as the
default solving method for MATLAB NMPC toolbox. It is important to note the
iterative optimization described here is iterated within the current time step to find
the optimal control action, leading to substantial increase in computational demands
for the controller. Fig. 3.6

Below is an overview of the sequential quadratic optimization method [17]:

1. Approximate optimization with a quadratic form
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Model Predictive controller

Cost function Constraints
Ref trajectory Control effort Control bounds
(No Control info) State error State bounds Optimal control

Optimization parameters |:>

Prediction horizon

State Dynamics Control horizon
SPART model Sample time

i

Current state

Figure 3.6: NMPC flowchart

2. Solve the Quadratic Program sub-problem
3. Iterate process at the new trajectory

4. Terminate process when a local minimum cost trajectory is found

3.1.3 Rendezvous Maneuver with MPC

The work in [21] based the realization of the planned trajectory around a non-linear
MPC controller. Our work offers a comparison of adaptive MPC and non-linear MPC
as related approaches to implementing the trajectory on the satellite model. Our
control objective is to stabilize the position of the end-effector of the manipulator to
a desired set point and its velocity to zero. The dynamic system described in section
3.1 with the augmented state was used to perform the target maneuver, and model
predictive controllers were implemented using the MATLAB MPC toolbox. The
controllers are passed the state trajectory without the nominal control sequence. This
is deemed reasonable as the control is negligibly penalized in the cost function for
the presented cases. Furthermore, the performance of the system following a desired
trajectory without corresponding control information allows for a more general case
of trajectory following. We do not pass in the nominal control sequence to better
evaluate how the MPC methods handle the trajectory planning element of the control
task. A further investigation would benefit from incorporation of the trajectory
optimized control information to the control as a feed-forward term.

The maneuver was simulated with two different scenarios:

1. Coherence between the internal model parameters used for the optimization

and actual system parameters (no differences)
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2. Model discrepancies between component masses
In the latter scenario, the trajectories are planned about the model featuring discrep-
ancies, the control synthesis algorithm computes the control inputs by performing
an optimization, and the control sequences are applied to the actual, true system to
iterate the state. Table 3.3 details the applied deviations between the models.

The outputs of the two different MPC methods applied to the rendezvous maneuver
for both scenarios are summarized in Table 3.2. The performance of the controllers
is compared with total run time and average error. Comparison with respect to
run time shows Adaptive MPC outperforming the non-linear controller by an order
of magnitude. This improvement is expected due the optimization benefits from

linearization of the system dynamics, as detailed in section 3.1.2.

Fig ‘ Scenario ‘ Nominal Time ‘ Run time ‘ Avg error
3.10 | NMPC - No model diff 4.0 s 493.10 s | 0.0101 m
3.14 | NMPC - Model dift 4.0s 568.54 s | 0.0126 m
3.18 | Adaptive MPC - No model diff | 4.0 s 63.41 s 0.0090 m
3.22 | Adaptive MPC - Model diff 4.0 s 63.64 s 0.059 m

Table 3.2: Planar space robot trajectory tracking comparison - NMPC vs Adaptive
MPC

Comparing output performance in end effector error is more nuanced. Given an
alignment of model and actual system parameters, adaptive MPC and non-linear
MPC both offer similar state performance. However, introducing model inaccuracies
significantly degrades the performance of adaptive MPC as compared to NMPC,
which demonstrates a higher degree of robustness to system parameter inaccuracies.
Again this difference in performance is expected, as a linearization further introduces
prediction error into the optimization process. The relationship between model
inaccuracies and controller performance for the satellite system mirrors the results
from the controllers applied to the simple pendulums. Given the significant model
deviations and an abrupt shift in target motion near the end of the maneuver, the
adaptive controller fails to provide the necessary adjustments to maintain target
proximity.

This set of test conditions highlight particular trade-offs between adaptive and

non-linear MPC. Extending the study would entail further refinement of cost functions,
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optimization of run time code to remove specific implementation discrepancies, and
adjustment of other parameters such as the control and prediction horizons to

investigate controller sensitivities.

Component ‘ Model deviation

Base +30% mass, Inertia
Link 1 -30% mass, Inertia
Link 2 -30% mass, Inertia

Table 3.3: Satellite component deviations from real to model

3.1.4 MPC Limitations

From our results, we have seen that Nonlinear MPC produces better trajectory
tracking (even when there is an error in the formulation of the model), although
this enhanced tracking comes at the cost of increased computational complexity.
Adaptive MPC runs much faster, but suffers from poor trajectory tracking if the
provided model is not accurate. Both Nonlinear MPC and adaptive MPC have key
limitations in that they both do not run in real time, and in the case of adaptive
MPC, are vulnerable to poor performance in the face of uncertainty in the model
description. This is highlighted in Table 3.2, where we can see that neither method
was capable of generating the four second trajectory in a timely manner. Because of
these limitations, we decided to implement a classical control method (OSC) on our
full 3D space robot simulation. One way to address these runtime limitations would
be to implement these MPC methods using optimized C++ code, but we decided
that implementing these methods in C4++ would be out of the scope of this work.
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Figure 3.23: Relevant coordinate frames for OSC subsystem

3.2 Operational Space Control

Our OSC subsystem has two phases: approach and docking. During the approach
phase, the base thrusters and reaction wheels are turned on until the MEP reaches
the nominal point (coordinate frame N in Fig. 3.23). Once this point is reached, the

OSC subsystem switches into the docking phase.

3.2.1 Controller Derivation - Approach Phase

Here we will briefly describe the controller that is active during the approach phase.
The controller used in the approach phase is very similar to the controller used in the
docking phase aside from adding forces/torques that drive the MRV base. In order
to simplify this derivation, we assume that the reaction wheels to do not have any
inertia, and can instantly impact torques onto the system, so the mass matrix and
Coriolis terms remain the same. In reality, adding reaction wheels into the system
dynamics would change the composition of the mass matrix and the Coriolis terms.

We start with the equations of motion for our system with an actuated base:
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Agys + JTF, (3.8)

h ase F ase
xb“ + bsys — b
q Farm

As we will describe in the derivation for the docking phase controller, these

equations of motion can be transformed into the task space with the following form:

base

+ Fewt (39)

Ax+u+p:(]sys[

arm

From here, we can derive our controller for the approach phase by inverting the

Jsys matrix and pre-multiplying it onto both sides:

sy

F ase — .
[ ’ ] = J M (Aig+pu+p— Fo) (3.10)

Farm

3.2.2 Controller Derivation - Docking Phase

The following is inspired by the work done by Sentis et al. on operational space
control for legged robots [22]. We first start with the full system equations of motion
obtained from section 2.2:

Tpase

Agys + bsys + Gsys = + JT Feay (3.11)

Where Zpesc € R6*! is the vector of base accelerations, § € R®*! is the vector of
manipulator arm joint accelerations, by,s € R™*! is the vector containing Coriolis
terms, F.,; € R%%! in the external wrench applied to the end effector of the space
robot. gs,s € R'™*! represents gravitational terms, which for our space system can be

neglected. So we have (for the docking phase):
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Asys Thase + bsys = + JTFea:t (312)

Where J is given by

[Jbase Jm} (3.13)

We can break down Ay, € R'?*'? into four block matrices:

All A12

Asys =
A21 AQZ

(3.14)

Now, we can write out equation 3.12 in a system of two equations that separate

the dynamics of the base and of the arm:

Anrdpase + Ao+ b5 = 0+ Jih o Foa (3.15)
A21j'base + AZZCj + bz;;n =T+ Jg;mFe:r:t (316)

We can replace Zp.se in equation 3.16 by solving for Zp.s in equation 3.15:

A AT (= AraG — 0225 4 JL  Fopy) + Age + 0™ =T + JX Fou (3.17)

sYs sYs arm

Now, let’s rewrite the above equation and group terms:
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(A22 o A21A;11A12)q + (barm o Aleflbbase)

sys 11 Ysys
=TI+ (ch;m - AQlAIIIJIJI;se)FeIt

Now we can define the following matrices for convenience:

A = (Agg — A21A1_11A12)

/

h = (barm . A12A1—11bbase)

sYs sYs

JT = (JT - AQlAIll Jg;se)

arm

J* = (Jarm - A21A1_11Jbase)

Now, let’s write out our simplified equations of motion in the joint space:

Aj+b =T+ JF.py

3. Controller for Space Robot

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Now, we want to control behavior in the task space, so we can transform these

actuated joint space dynamics into the task space by pre-multiplying both sides with

the transpose of J, the dynamically consistent inverse of J, where J = A ~1J*TA:

JIAG+0)=J (T + JF.)

This yields our task space dynamics:

(3.25)
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AN +pu=F+F., (3.26)

Where A = (J*A1J*T)~! is the OSC mass matrix, and j is the OSC Coriolis

vector.

Now, we must design a controller, F', to cancel out the Coriolis and inertia terms

in our task space dynamics:

F=JJT(Aig+ p— Fo) (3.27)
Where 2, is the desired task space acceleration, given by our ideal spring-mass
damper equations:
i’d = —k‘p(ZE - l’d) - ]{?U.I‘ (328)
When we substitute our controller into our task space dynamics, we get the
following;:
Ag 4= J TV (Aig+ p — Fopt) + Fope (3.29)
Where J7J*T is cancelled out, because J is the generalized inverse of J*, thus
leaving us with:
ANi+pu=ANig+p— Fopp + Fopy (3.30)

This leaves us with:
T =y (3.31)
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¥ = —ky(x —xq) — k& (3.32)

Equation 3.27 gives our operational space control generalized force. This gen-
eralized force is computed at each time step during simulations to bring the MEP
to its desired location. Equation 3.32 shows that the resulting accelerations in the
workspace will be equivalent to that of a spring mass damper connecting the MEP to

the desired goal location.

3.2.3 Singularity Analysis of GGeneralized Jacobian

We defined the generalized Jacobian for our OSC subsystem as J*, above. Here, we
observe what MRV configurations result in dynamic singularities of the generalized
jacobian. If a dynamic singularity were to occur (for example, when the MRV arm is
fully outstretched), our OSC controller will not be able to function, as the generalized
jacobian will no longer be invertible, and we will lose the ability to command sensible
joint torques.

To evaluate the presence of dynamic singularities in our configuration space, we
sampled 15,625 different initial joint configurations of the MRV arm while keeping
the MRV base fixed. We found that of those 15,625 joint configurations, 10,000 of
those configurations represent non-singular configurations. Roughly one third of the
sampled joint configurations represented dynamic singularities, with the majority
of these configurations being associated with arm links that are nearly aligned or
fully outstretched. We sampled uniformly between plus and minus 45 degrees from
the MRV arm’s zeroed out pose (all joint angles set to zero). Table 3.4 summarizes
these results. Figs. 3.24 and 3.25 show course representations of areas where dynamic

singularities are present in the configuration space.

3.2.4 Center of Mass Position Analysis for Spatial MRV
System

Before we discuss the feasibility analysis or the stability analysis performed for the

MRV, we want to show how the base thrusters and reaction wheels influence the

39



3. Controller for Space Robot

Singularity Region
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Figure 3.24: Scatter plot of region containing dynamic singularities. Note: 4, 05, 05
are all set to zero to reduce the dimensionality of this visualization down to 3 from 6.

position of the center of mass during a simulated docking mission. Fig. 3.26 show
time histories of the center of mass position of the MRV system during a simulated
docking mission. We see small oscillations once the system enters the docking phase
due to numerical imprecision in mujoco. Because we see the position of the system
center of mass stop changing once the MRV base thrusters are turned off during
docking, we can have additional confidence that we have properly modeled the floating
base MRV system.

3.2.5 Analysis Overview

Now we discuss the analysis performed for our operational space controller. The
analysis we performed can be grouped into two categories: Stability analysis and
feasibility analysis. Feasibility analysis consists of determining what is the set of
possible states (or initial conditions) for which the control system is guaranteed
to succeed in the insertion task. Stability analysis involves determining how to

characterize the global behavior of the controller, and to provide theoretical guarantees
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Singularity Region
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Figure 3.25: Scatter plot of region containing dynamic singularities. Note: 4, 05, 6
are all set to —m /16, —7/8, and /16 to reduce the dimensionality of this visualization
down to 3 from 6.
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MRV CoM Position Over Time
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Figure 3.26: MRV center of mass position plotted over time. Note at frame 1378
how the position of the system center of mass stops changing. This is the moment at
which the OSC controller shifts from the approach phase to the docking phase, and

the MRV base thrusters and reac
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MRV Dynamic Singularities
Sampled Sampled # of sam-| # of sin-| % singular
joint angle | joint angle | ples taken | gularities | configura-
lower bound | upper bound found tion
(rad) (rad)
-0.38 0.38 15625 5625 0.36

Table 3.4: Summary table for analysis of MRV dynamic singularities.

that the control can command generalized forces that bring the steady state error to

Zero.

3.2.6 Stability Analysis (Linear Control Theory)

Below is our derivation for proving stability for the full floating system under contact
(note that here we avoid using the selection matrix by instead leveraging the coupled
nature of the system dynamics and making substitutions between base and joint
accelerations):

From equation 3.32, we now have our idealized spring-mass damper dynamics in
the workspace.

We can convert these dynamics into state space representation using the following

i
o

Using equations 3.33 and 3.34, as well as 3.32, we can group terms into the

notation:

T =

(3.33)

(3.34)

following linear relationship:

8l
I

o
Kl

(3.35)
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—k 0
Where A in this case is defined as A = [ Op . ]

Now, if we perform eigenvalue analysis on linear A matrix, we find that our

proposed controller is stable Vk,, k, > 0

3.2.7 Stability Analysis (Lyapunov Theory)

Now, our goal is to reach some desired joint-space configuration, gy, with a desired
joint velocity, ¢ = 0, and desired joint acceleration, § = 0. Then we need to design a
controller, I' to bring ¢, ¢, ¢ to these values.

Let us design the following Lyapunov candidate:

1 L.
V=3(a-49)"(¢— )+ 544 (3.36)

And the time derivative of the Lyapunov function:
V=(q—q)"(¢—da) +¢"§ (3.37)

We can substitute in the dynamics from equation 3.24 into the derivative of our

Lyapunov candidate:

V=(q-q)"q+q" A7 (=0 +T + JTF.,) (3.38)

We can design a suitable controller as follows:

F=b—JTF,—Ag—q)— A4 (3.39)

If we substitute our controller into equation 3.37, we get:

V=(qg—q)Tq+q"[A (= +b =TT Fp— A(g—qi) — Ag+ JTF.p)] (3.40)
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This first set of cancellations leaves us with:

’

V=(g-a)"q+q"[A7 (~A(q— q2) — A (3-41)
This can be simplified down to the following:
V =—¢"q (3.42)

Which is negative semi-definite. Therefore our control system is marginally stable.

3.2.8 Feasibility Analysis

We perform several variants of feasibility analysis to better understand the region of
attraction of our operational space controller. In particular, we numerically evaluate
the basins of attraction of two operational space controllers: The blind OSC, which
only has access to the goal state in the Z axis along with force feedback in six DoF,
and the fully observable OSC, which has access to the full goal state (x,y, and z
positions) along with force feedback in six DoF. For both of these situations, we
disconnect our ViSP tracker and state estimation pipeline from the controller, and
provide the operational space controller with the ground truth goal locations. We
disconnect our perception pipelines because we want to solely analyze the performance
of our operational space controller, without influencing results by introducing the
noise inherent in our perception pipeline.

We break our feasibility analysis into these two parts so we can evaluate two
separate components of the controller. We want to be able to understand how the
force feedback component of our controller reacts to external contact forces. First, we
start by studying the feasibility of our blind OSC. These blind insertion tests involve
starting the MEP at different positions and orientations in front of the client vehicle,
and moving the MEP forward in the Z axis. When a collision occurs, we can observe
whether or not the force feedback component of our operational space controller can
account for these forces and still successfully insert into the client vehicle’s rocket
nozzle. Fig. 3.27 shows an pictorial overview of our feasibility experiments.

We perform a fully observable version of the feasibility study in order to verify

the global stability claims we make in the stability analysis section above. By giving
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our operational space controller access to the full goal state without any noise, we
can search for the full set of initial states for which our controller can drive the
MEP into the client vehicle’s rocket nozzle. Fig. 3.28 shows an example of the basin
of attraction in three dimensions when the pitch and yaw angles are fixed at zero

degrees.

3.2.9 Blind Insertion Results

For the blind insertion feasibility tests, we find that the region of success is a small
region (which is a subset of the fully observable success region) that is nearby the

radius of the client vehicle nozzle. See Table 3.5 for detailed bounds on the basin of

attraction.
Blind Insertion Success Region Bounds

X Y Z Pitch Yaw Success | XYZ

bounds | bounds | bounds | bounds | bounds | (%) basin

(cm) (cm) (cm) (deg) (deg) volume
(cm?)

+3.0 +3.0 +10.0 +6.0 +6.0 38 720

+1.0 +2.0 +10.0 +2.0 +2.0 80 160

+1.0 +1.0 +10.0 +2.0 +2.0 100 80

Table 3.5: Boundary of region of attraction for blind insertion tests.

Examining the blind insertion results, we can see that as we increase the value of
the percentage of successful? trials (Table 3.5 column 6), the size of the XYZ region
volume decreases. The XYZ volume is an intuitive way to represent the size of the
region of attraction of our five dimensional search space. We choose this XYZ volume
representation as a measure of the size of our region of attraction because it is difficult
to describe the volume of a higher dimensional space which is measured with different
units in different dimensions (meters in XYZ, degrees/radians in roll,pitch,yaw).
From these blind insertion results we can see that even if there is some error in the
positioning of the MEP (i.e. the MEP is off of nozzle centerline), we can still obtain

2We define success here as a trial which ends with the MEP within five millimeters of the

prescribed goal position inside the client vehicle rocket nozzle. A failure occurs when the MEP fails
to reach the goal position after two minutes elapse in simulation time.
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high probabilities of a successful insertion. Without the use of the force feedback

component within our controller, this would not be possible.

3.2.10 Fully Observable Insertion Results

We visualize the region of attraction we computed in our fully observable insertion
tests in Figs. 3.28 and 3.29. We can see that this region is quite large in areas that
have a small offset distance in the Z dimension from the client vehicle rocket nozzle.
Qualitatively, this tells us that our controller is quite effective at inserting the MEP
into the client vehicle’s rocket nozzle. One way to interpret these basin of attraction
figures is to look inside the red volume, and understand that any configuration of the
MEP (at zero roll, pitch, and yaw angles) within this red region is guaranteed to result
in a successful insertion. To find this region of attraction, we sampled 15,625 different
initial conditions of the MEP’s position relative to the origin defined in Fig. 3.27.
Table 3.6 gives information about the space of initial conditions that was sampled in
order to compute the region of attraction. We selected these search bounds due to
the constraint that the floating base manipulator arm workspace imposes onto our
system. Without base thrusters active, there is a limited accessible volume to sample

initial conditions from.

Fully Observable Insertion Success Region Bounds
X Y Z Pitch Yaw
bounds | bounds | bounds | bounds | bounds
(m) (m) (m) (deg) | (deg)
+0.4 +0.4 +0.1 +0.0 +0.0

Table 3.6: Boundary of sampled space for fully observable insertion tests. (Note
that yaw and pitch were zeroed out in order to reduce the search space from a five
dimensional space down to a three dimensional space).

3.2.11 Limitations

Our approach relies on a crucial assumption: we must have perfect knowledge of the
kinematic and dynamic properties of the system. If the model we use to perform

inverse dynamics does not match the true system dynamics, then our inverse dynamics
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will not cancel out the nonlinear task space dynamics as intended, and our controller
will fail. This can be seen in Figs. 3.30 and 3.31. In Fig. 3.30, we see the error
converges to zero as the model used by our OSC subsystem is unaltered. In Fig. 3.31,
we see the error diverges, as we altered the masses of all of the links by doubling
them.

Because our method relies on having perfectly modeled dynamics, we find that
our OSC approach is primarily well-suited for applications in simulation where the
true system model is known. For applications on real robots or in simulations where
the true system dynamics are not perfectly known, an optimization-based method
may be more appropriate to help accommodate for uncertainties in the true system
dynamics. We did not implement any optimization based methods in an optimized
language such as C++ because we decided that implementing such methods in C++
was outside the scope of this work.
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MEP initial conditions to be
considered

Nominal (green) MEP initial condition and
offset (red) MEP initial conditions

Figure 3.27: Overview of feasibility experiments. We sample a series of initial
conditions outside of the client vehicle’s rocket nozzle, and observe the performance
of our operational space controller at each initial condition. The green shaded MEP
represents the MEP being positioned at the origin of the point cloud of red cylinders
above. The red shaded MEP represents a sampled location of the origin, but with a
small rotation about the pitch axis.
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Figure 3.29: Example basin of attraction for fully observable feasibility experiment.
The MEP orientation is set to Roll=Pitch=Yaw=0 degrees. Left: A side view of the
region. Right: A top view of the region
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Orientation and Translation Errors for +0% mass
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Figure 3.30: Error plots during docking simulation with true system masses passed

into OSC

52



3. Controller for Space Robot

Orientation and Translation Errors for +100% mass
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Figure 3.31: Error plots during docking simulation with altered system masses passed

into OSC
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Chapter 4

State Estimation for Space Robot

4.1 Tracking

4.1.1 VIiSP Overview

In order to obtain pose measurements of the client vehicle, we leverage an existing
tracking solution from INRIA called the Visual Servoing Platform, or ViSP [15].
Specifically, we make use of ViSP’s markerless generic model-based tracker for use
with our RGB camera. To generate a measurement of the client vehicle’s position
and orientation, the ViSP tracker takes in the CAD model of the client vehicle, an
initial estimate of the client vehicle’s position and a camera image with the client

vehicle present in the image frame; see Fig. 4.1.

4.1.2 Transforming Tracker Measurements to Inertial

Frame

The ViSP tracker produces measurements of the client vehicle’s pose with respect
to the image frame of the camera mounted on the MRV base (see frame B in Fig.
4.2). Our Kalman Filter and Operational Space Controller operate in the inertial
frame (see frame W in Fig. 4.2). To get the measured pose of the client vehicle in

the inertial frame, we must apply the following transforms:
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VISP Tracker

Inputs Outputs

CAD Model

-
xo(?) ‘Visz x(1)

Initial Condition Pose Measurement

Vi

Model-Based Tracker
!

Camera Image

Figure 4.1: ViSP tracker block diagram

Twe = TwaTapTpe (4.1)

Where Ty 4 is given to us by a GPS position fix from the MRV, T)4g is known
through the geometry of the spacecraft, and T is published by the ViSP tracker

Figure 4.2: Overview of key coordinate frames in system. The world frame (W), the
MRYV base frame (A), the camera frame (B), the MEP frame (M), and the client
vehicle frame (C).
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4.2 Filtering

4.2.1 Hybrid Extended Kalman Filter (H-EKF) Overview

The ViSP tracker provides an estimated measurement of the pose of the client vehicle.
The accuracy of this estimate is influenced by camera noise, variable lighting conditions,
possible occlusions, and the presence of stars in the image background. To optimally
estimate the state of the client vehicle, we implement a hybrid extended Kalman
filter (H-EKF). We use a hybrid extended Kalman filter rather than a traditional
extended Kalman filter because during operations, the underlying dynamics of our
system change from when there is no contact, through contact with the client satellite,
and after contacting the client satellite. To accommodate the switching dynamics,
our H-EKF updates it’s dynamics once contact between the MEP and client vehicle

is detected. Below, we describe the updated equations of our H-EKF:

o = f(Tr-1, Uk—1) + Wk—1 (4.2)

Where xy, is the state of the client vehicle at time-step ¢ = k, f(zx_1,ux_1) is the
discrete process model state transition function, and wj_; is the process model zero

mean Gaussian white noise at time-step ¢ = k.

Our measurement model is described as follows:

2k = h(l‘k_l) + VE—1 (43)

Where z; is the measured state of the client vehicle (given to us by the ViSP
tracker) at time-step t = k, h(xg_1) is the measurement function which returns
the current measurement, zj, given the previous state, x,_1. v4_1 is the zero mean
Gaussian white noise associated with the measurement function. The covariance
matrices associated with the process model noise, wy_1, and measurement model

noise, v,_1, are denoted ), and R, respectively.

There are two steps to our H-EKF; prediction and update. Our prediction step is
described by the following equations:
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The predicted state estimate:
& = FEfu— 1) (4.4
The predicted error covariance:
by = kalpl:r—lplzll +Q (4.5)

Our update step is described by the following equations:

The measurement residual:

Uk = 2z — h(Z) (4.6)
The Kalman gain:
Ky = P, HY (R+ H,P;HI)™ (4.7)
The updated state estimate:
=2, + Kk (4.8)

And the updated error covariance:
Pt = (I — KyHy,) P, (4.9)

Here, the = operator denotes an estimate of a variable. The - operator represents
predicted, or prior estimates. The + operator represents updated, or posterior
estimates. Fj_ is given to us by taking the jacobian of the state transition function
w.r.t. the state evaluated at ;7 | and uj_q:

of
Fry =+~

ax |532>_17uk71

(4.10)

Hy, is given to us by taking the jacobian of the measurement function w.r.t. the

state and evaluating it at &, :

Oh

H. — 22
g (?xlxk

(4.11)
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Now, we distinguish our estimator as a Hybrid Extended Kalman Filter because
the underlying motion model, or process model, of our system switches when the MRV
faces an external contact force. We can infer what force/torque is imparted onto the
client by measuring the location of the contact force, as well as the magnitude/direction
of the force felt at the MRV wrist. See Fig. 4.3
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Pre-Contact

Contact

Figure 4.3: By leveraging the geometry of our MEP hook, we can determine the
location of the contact of the client vehicle, as well as the resultant wrench applied to
the body frame of the client vehicle.
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Chapter 5

Integrated System

Here, we present results related to the performance of our integrated system. The
integrated system features all of the sub-components presented above working together
simultaneously (tracker, filter, and controller). To demonstrate the performance of
our integrated system, we perform hundreds of experiments at multiple different
initial conditions. Fig. 5.1 shows several camera perspectives during an integrated
docking test. Table 5.1 shows a summary of the integrated system’s performance at
several initial conditions. Tables 5.2 and 5.3 show the initial conditions that were
used for our test. As can be seen from Table 5.1, the integrated tracking, filtering,
and control system performs quite well across the five batches of 100 trials that were

run.

Integrated Test Summary

Batch || Avg. Suc-| Avg. Er-| Avg. Er-| Avg. Er-| Avg. Er-
cess (%) ror, X | ror, Y | ror, Z | ror, Rota-

(mm) (mm) (mm) tion (rad)

1 97.6+ 1.14 | 7T+ 5 248 6+6 .01 £ .02

Table 5.1: Performance summary of integrated system across three different initial
conditions. Descriptions of initial conditions can be found in Table 5.2. Average
success and error calculations were computed across 5 sets of 100 trials for each initial
condition scenario.

Each trial of our integrated systems performance test consists of two steps: First,

the approach step, where the MEP is brought directly in front of the client vehicle’s
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Figure 5.1: Three separate camera views from the MRV. Left: the ViSP tracker’s
belief state overlaid onto the camera view from the MRV deck plate. Middle: The
MRYV base camera view without a ViSP tracker overlay. Right: The view from the
simulated camera mounted at the front of the MEP.

Integrated Test Initial Conditions - Client Vehicle Pose
Batch Cv X|CV Y|CV Z|CVRol|CV CV Yaw
(m) (m) (m) (rad) Pitch (rad)
(rad)
1 0.8 0.1 0.2 0.65 0.3 0

Table 5.2: Relevant position and Euler angles of the Client Vehicle for each integrated
test.

rocket nozzle. Once the MEP is within 1.5cm of the final approach waypoint (see
blue dot in Fig. 5.2, then the system enters the dock step, where the target waypoint
is moved into the client satellite’s rocket nozzle. Docking is complete once the MEP
reaches within five millimeters of the final docking waypoint inside of the client
vehicle’s nozzle. Fig. 5.3 shows the overlaid plots of the raw measurements coming
from ViSP, the filtered measurement returned by the H-EKF, and the ground truth

measurement provided by our simulation environment.
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Integrated Test Initial Conditions - Arm Joint Angles

Batch

91 (rad)

02 (rad)

93 (rad)

94 (rad)

95 (rad)

96 (rad)

1

-0.304

-0.543

1.941

-1.402

1.264

-1.565

Table 5.3: Manipulator arm joint angles for each integrated test.

Figure 5.2: Third person view of integrated system test. The blue dot outside the
client vehicle represents the target waypoint for the approach stage.
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Figure 5.3: Time history of normalized translational and rotational positions for an

individual integrated system trial. Note that the raw and filtered measurements are
nearly on top of the ground truth signal.
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Chapter 6

Future Work

This work could be improved and extended in several ways:

6.0.1 Two Arm Manipulation

One extension that could be made would be to enable our operational space controller
to control two manipulator arms simultaneously. This would have direct applications
for the NGC MRV, which is equipped with two manipulator arms. This could enable
more complicated repair and maintenance activities, such as tasks which involve the
use of more than one tool, or a construction task requiring the mating of two separate
bodies.

6.0.2 Moving/Tumbling Client Satellite

Another extension to our work would be to test and validate the performance of
our docking pipeline on a moving client satellite. Our current work assumes an
unactuated, static client vehicle. A moving target would be more challenging because
our controller would have to match both the position and velocity of the client vehicle.
On top of matching the position/velocity of the rocket nozzle of the moving client
vehicle, we would also need to begin a maneuver to cancel out the existing linear
and angular momentum of the client vehicle. This would involve additional motion

planning effort. Additionally, we would need to perform tests to verify the maximum
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translational and rotational velocities that our control system can handle while still

guaranteeing a successful capture.

6.0.3 Controller Optimization

We could improve the performance of our controller by performing an optimization
routine over the OSC controller gains. This optimization could be done via a brute
force search, a Monte-Carlo search, or by leveraging existing Bayesian optimization

to tune our controller gains.

6.0.4 Robust Client Satellite Tracking

Our current solution for client vehicle tracking is to use an off the shelf solution,
the ViSP tracker. This tracker performs well in situations without occlusion, but
it struggles somewhat in situations with occlusions. There are several possible
approaches to improve the quality of tracking under occlusion, such as incorporating
the image stream from a depth camera, and using existing state-of-the-art search-
based pose estimation routines [3], or alternatively leveraging existing state of the art

learning based approaches which have been shown to gracefully handle occlusions
23].

6.0.5 Robust Motion Planning

Our work could be extended by adding a more thorough motion planning step to
the control pipeline. Although our control system uses force feedback to help guide
the MEP into the client vehicle’s rocket nozzle, there are situations where a motion
planner would be necessary in order to guarantee the successful docking of the MEP
with the client vehicle. Example extensions here would be to incorporate the use of a
SLAM system to map out obstacles in the environment, and an A* or RRT planner

to plan a feasible trajectory through the environment.

6.0.6 Robustness Analysis

Additional focus can be emphasized on studying the influence of varying environmental

conditions on the operation of our control system. Changes to the environment, such
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as varying system and component operation frequencies, changes in lighting, changes
in the image background (i.e. stars, moon, and sun), and changes in image noise
all have the potential to influence the performance of our control system. Studies
investigating the effects of all of these environmental changes could be run in our

existing simulation environment.

6.0.7 Scaling Adjustments

Future work could focus on refining the scale and geometry of the simulation en-
vironment to more faithfully represent the true space system. Currently, some of
the dimensions of the bodies in our environment are not perfectly matched with
the dimensions of the corresponding bodies launched into space. Additionally, our
current simulated MRV system features a 6-DOF arm whereas the true space system
features a 7-DOF manipulator arm. Additional effort could be expended to reduce
the number of geometric differences between our simulated system and the true space
system deployed by NGC.

6.0.8 Hardware in the Loop Testbed

Lastly, our work here does not make any efforts to perform real life robot experiments.
Several groups have deployed their control systems on gravity assisted platforms, such
as air tables, and other frictionless environments, in order to simulate space-like zero
gravity conditions in the plane. Future work could involve developing a hardware in
the loop testbed system to test the efficacy of our control, tracking, and estimation
algorithms on real robots.

An alternative route would be to develop a test rig featuring emulated spacecraft
mounted on 6-DOF travels or robot arms. With such a system, we could ”simulate”
the space dynamics by actuating the relevant bodies using the 6-DOF travels based

on information from control inputs and contacts.
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Chapter 7

Conclusions

In conclusion, we presented our work on the development and analysis of a simulation
environment and control system for a floating base manipulator to dock with a client
satellite and deliver a life extension payload. We also presented a brief history of space
robots, and an overview of existing control and tracking methods. The integrated
system analysis we performed shows that our estimation and control pipeline enables
successful docking missions from a variety of initial conditions with high confidence.
Our analysis of the vision tracking subsystem tells us that more work is needed in
reducing the uncertainty caused by occlusions in the client satellite pose estimate.
A key result we displayed was our extension of prior work done in operational
space control. We demonstrated through exhaustive numerical experiments that
contact force information can be used to enable an operational space control routine
to operate in a partially observable environment. An additional contribution of this
work was to create a simulation and control pipeline for space manipulators to enable
the rapid development of new research on control and motion planning for space

manipulators.
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