
Design and Analysis of a Estimation and

Control Pipeline for a Robot

Manipulator in Space

Daniel Vedova

CMU-RI-TR-21-63

August 12 2021

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Howie Choset, co-chair

Professor Matthew Travers, co-chair
Professor Zachary Manchester

Jaskaran Grover

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2021 Daniel Vedova. All rights reserved except where otherwise noted.

To mom and dad.

iv

Abstract

Many satellites are rapidly reaching the end of their lifespans, and risk
de-orbiting if no action is taken. One common problem satellites face
towards the end of their lifespans is that they are running out of fuel,
therefore new propulsion units must be delivered in-orbit. Attempting
to deliver propulsion units using human astronauts is both dangerous
and cost-prohibitive. To meet this challenge, corporate entities such as
Northrop Grumman have led efforts to develop cost-effective, robotic
in-orbit satellite servicing vehicles capable of delivering life extension
payloads to satellites in need of maintenance. The realization of robotic
deliveries of life extension payload is the beginning of a larger effort to
perform more general on-orbit maintenance tasks using robotic tools.

In this thesis we present an integrated tracking, estimation, and control
framework for space robots, along with an environment to simulate in-orbit
satellite servicing missions. We show that existing methods for operational
space control of floating base manipulators can be extended to partially
observable environments by incorporating contact force information into
the estimation and control problem.

For our control subsystem, we first evaluate multiple control solutions
(adaptive model predictive control, nonlinear model predictive control,
operational space control). After evaluating both optimization-based ap-
proaches, (model predictive control) and classical approaches (operational
space control), we selected an operational space control method to send
control commands. We selected this controller because we concluded
that optimization-based methods struggle to run in real time for our
high degree of freedom system. We present two types of analysis for our
controller: feasibility, and stability analysis. We perform multiple types
of analysis to demonstrate the efficacy of our controller. We perform
feasibility analysis in order to numerically compute the space of initial
robot end-effector poses for which the controller can successfully complete
a docking mission. We perform stability analysis to guarantee the stability
of our controller using analytical methods from non-linear control theory.

We analyze our vision tracking subsystem by conducting a series of exper-
iments to understand the configurations in which our vision subsystem
succeeds and fails, and with what degree of confidence it reports measure-
ments of the client satellite. We focus on understanding how the motion
of our robot arm and the end-effector payload effects the performance

v

of the tracker through occlusions of the client satellite, and we search
for configurations of our robot base and arm which minimize occlusions.
This analysis enables us to better position the arm and the MEP during
docking operations.

vi

Acknowledgments

If I learned anything from six years at Carnegie Mellon, it is the following:
No one accomplishes anything of significance alone. With that being said,
I would like to start by thanking the Department of the Navy for giving
me the opportunity to delay my training as a Submarine Warfare Officer
in order to pursue my master’s studies. In particular, I would like to
thank the command at the CMU Naval ROTC Unit for supporting my
studies and my transition from a midshipman to a Naval Officer.

I am incredibly grateful to Professors Howie Choset and Matt Travers.
Over the the past six years, they’ve supported me academically, profes-
sionally, and personally. Howie and Matt: I’m honored to have studied
under your supervision during this transformative period of my life.

Thank you to the Northrop Grumman Corporation for supporting the
Biorobotics Lab, and giving me the opportunity to work on this project.
In particular, I’d like to thank Dave Bodkin and his team at NGC Mission
Systems for sharing their insights and practical advice with me.

During my time in the Biorobotics Lab, I’ve had the opportunity to
work with many brilliant students, staff, and post-docs. I’d like to thank
Ian Abraham and Vitaliy Fedonyuk for being great friends and even
better post-docs. I’d like to thank some of my peers for helping me
along during my studies: Jaskaran Grover, Haowen Shi, Ben Freed, Julian
Whitman, Matt Martone, Shuo Yang, Hans Kumar, Raunaq Bhirangi,
Alex Bouman, Kirtan Patel, Raghavv Goel, Anna Yu, Zheng Xu, Emma
Benjaminson, David Neiman, Abhimanyu, Anoop Bhat, Chase Noren,
Mickey Velado, Steve Crews, David Beskow, Tejas Zodage, Kevin Tracy,
and Tommy Moriarty. Several staff members have also played a key role in
my development as a researcher, and also as a person: Peggy Martin, B.J.
Fecich, Lu Li, Jim Picard, Chuck Whittaker, Tim Angert, Ben Brown,
Jean Harpley, and Dennis Fortner.

I owe a great deal to my closest friends who have stuck by me through
this process: Stefan Zhu, Evan Glauberman, and Ray Galeza.

The last group of people who deserve recognition is my wonderful family.
I am forever grateful to my girlfriend, Maddie, my brother, Patrick, my
cousin Brucie, and to my mother and father, for their unwavering support
over the years. Mom and Dad: Thank you for everything you did to get
me this far. I wish only to continue to make the two of you proud.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem and Proposed Solution . 1
1.3 Mission Robotic Vehicle Control System Overview 5

1.3.1 Approach . 6
1.3.2 Docking . 7

1.4 Contribution . 8

2 Prior Work 9
2.1 Brief History of Robotic Space Systems and Floating Base Systems . 9
2.2 Floating Base Manipulator Kinematics and Dynamics 11
2.3 Control for Floating Base Manipulators 14
2.4 Vision Tracking . 15

3 Controller for Space Robot 19
3.1 Model Predictive Control for Planar Space Robot 19

3.1.1 Space Robot Center of Mass Analysis 23
3.1.2 Model Predictive Control . 23
3.1.3 Rendezvous Maneuver with MPC 27
3.1.4 MPC Limitations . 29

3.2 Operational Space Control . 34
3.2.1 Controller Derivation - Approach Phase 34
3.2.2 Controller Derivation - Docking Phase 35
3.2.3 Singularity Analysis of Generalized Jacobian 39
3.2.4 Center of Mass Position Analysis for Spatial MRV System . . 39
3.2.5 Analysis Overview . 40
3.2.6 Stability Analysis (Linear Control Theory) 43
3.2.7 Stability Analysis (Lyapunov Theory) 44
3.2.8 Feasibility Analysis . 45
3.2.9 Blind Insertion Results . 46
3.2.10 Fully Observable Insertion Results 47
3.2.11 Limitations . 47

4 State Estimation for Space Robot 55

ix

4.1 Tracking . 55
4.1.1 ViSP Overview . 55
4.1.2 Transforming Tracker Measurements to Inertial Frame 55

4.2 Filtering . 57
4.2.1 Hybrid Extended Kalman Filter (H-EKF) Overview 57

5 Integrated System 61

6 Future Work 65
6.0.1 Two Arm Manipulation . 65
6.0.2 Moving/Tumbling Client Satellite 65
6.0.3 Controller Optimization . 66
6.0.4 Robust Client Satellite Tracking 66
6.0.5 Robust Motion Planning . 66
6.0.6 Robustness Analysis . 66
6.0.7 Scaling Adjustments . 67
6.0.8 Hardware in the Loop Testbed 67

7 Conclusions 69

Bibliography 71

x

List of Figures

1.1 Artists Rendering: The NGC Mission Robotic Vehicle (MRV) delivering
a Mission Extension Payload (MEP) to an aging client satellite. (Image
courtesy of NGC) . 2

1.2 When mounted on the MRV’s end-effector, the MEP partially occludes
the camera tracker’s view of the client satellite. 4

1.3 Example of occlusion from simulated MRV base camera feed. The
client satellite (green) is partially occluded by the MRV arm (blue)
and the MEP (red). 5

1.4 Summary of MRV control/communication flow. Nominal operating
frequencies are labeled below each component. 6

1.5 Block diagram of full MRV control system. Green blocks denote the
plant, blue blocks denote sensors, red blocks denote controllers/observers.
Solid lines represent signals that are active all the time, and dashed
lines represent signals that are only active when an external forces is
imparted onto the MRV. Note that the external force applied to the
MEP, Fext is passed into the OSC block in order to allow the OSC
block to compute compliant controls that are aware of contact forces,
as shown in equation 3.39. 7

1.6 Overview of three key bodies in environment. The MRV (left) flies in
low Earth orbit, acquires a MEP (center), and delivers it to an aging
client vehicle (right). To be precise, all simulated MRV operations
featured in our work assume that the MRV has already gone through
the process of acquiring the MEP. 8

2.1 Top Left: Canadarm operating on a space shuttle mission. Top Right:
Canadarm operating on the International Space Station. Bottom
Left: Japanese ETS VII Experiment Vehicle. Bottom Right: Artist’s
rendering of DARPA Oribtal Express. 10

2.2 Kinematic diagram of a generic space robot. Image from [28] 14

xi

2.3 [22] developed an OSC formulation for floating base systems. Their
test system was the above humanoid model. For their application, the
operational space frame is the base frame located in the hip link of the
humanoid robot. So for the humanoid OSC, joint torque commands in
the legs and arms are computed to achieve a desired behavior in the
base frame. For our space robot work, we define the operational space
frame to be the end effector of the robot arm instead of the base link.
Image from [22]. 16

3.1 Planar model . 21
3.2 Dynamics flowchart . 22
3.3 Open loop trajectory visualization. Note that the position of the

system center of mass does not change. 24
3.4 X-Y plots of planar space robot system center of mass over time. Note

that the position of the system center of mass does not change over
time. This is due to the fact that the robot is not firing any base
thrusters, and is not experiencing any external contact forces. 24

3.5 MPC graphical example. Image from [5]. 25
3.6 NMPC flowchart . 27
3.7 Initial and final pose . 30
3.8 EE target vs realized . 30
3.9 Position error . 30
3.10 Satellite rendezvous with Nonlinear MPC, no model differences 30
3.11 Initial and final pose . 31
3.12 End effector target vs realized . 31
3.13 Position error . 31
3.14 Satellite rendezvous with Nonlinear MPC, model differences from table

3.3 . 31
3.15 Initial and final pose . 32
3.16 End effector target vs realized . 32
3.17 Position error . 32
3.18 Satellite rendezvous with Adaptive MPC, no model differences 32
3.19 Initial and final pose . 33
3.20 End effector target vs realized . 33
3.21 Position error . 33
3.22 Satellite rendezvous with Adaptive MPC, model differences from table

3.3 . 33
3.23 Relevant coordinate frames for OSC subsystem 34
3.24 Scatter plot of region containing dynamic singularities. Note: θ4, θ5, θ6

are all set to zero to reduce the dimensionality of this visualization
down to 3 from 6. 40

xii

3.25 Scatter plot of region containing dynamic singularities. Note: θ4, θ5, θ6

are all set to −π/16,−π/8, and π/16 to reduce the dimensionality of
this visualization down to 3 from 6. 41

3.26 MRV center of mass position plotted over time. Note at frame 1378
how the position of the system center of mass stops changing. This
is the moment at which the OSC controller shifts from the approach
phase to the docking phase, and the MRV base thrusters and reaction
wheels are turned off. 42

3.27 Overview of feasibility experiments. We sample a series of initial
conditions outside of the client vehicle’s rocket nozzle, and observe the
performance of our operational space controller at each initial condition.
The green shaded MEP represents the MEP being positioned at the
origin of the point cloud of red cylinders above. The red shaded MEP
represents a sampled location of the origin, but with a small rotation
about the pitch axis. 49

3.28 Example basin of attraction for fully observable feasibility experiment.
Pitch=Yaw=0 degrees. 50

3.29 Example basin of attraction for fully observable feasibility experiment.
The MEP orientation is set to Roll=Pitch=Yaw=0 degrees. Left: A
side view of the region. Right: A top view of the region 51

3.30 Error plots during docking simulation with true system masses passed
into OSC . 52

3.31 Error plots during docking simulation with altered system masses
passed into OSC . 53

4.1 ViSP tracker block diagram . 56

4.2 Overview of key coordinate frames in system. The world frame (W),
the MRV base frame (A), the camera frame (B), the MEP frame (M),
and the client vehicle frame (C). 56

4.3 By leveraging the geometry of our MEP hook, we can determine the
location of the contact of the client vehicle, as well as the resultant
wrench applied to the body frame of the client vehicle. 60

5.1 Three separate camera views from the MRV. Left: the ViSP tracker’s
belief state overlaid onto the camera view from the MRV deck plate.
Middle: The MRV base camera view without a ViSP tracker overlay.
Right: The view from the simulated camera mounted at the front of
the MEP. 62

5.2 Third person view of integrated system test. The blue dot outside the
client vehicle represents the target waypoint for the approach stage. . 63

xiii

5.3 Time history of normalized translational and rotational positions for
an individual integrated system trial. Note that the raw and filtered
measurements are nearly on top of the ground truth signal. 64

xiv

List of Tables

2.1 Pros/cons of various types of vision trackers. 17

3.1 Parameters for the major components of the planar model satellite . . 22
3.2 Planar space robot trajectory tracking comparison - NMPC vs Adaptive

MPC . 28
3.3 Satellite component deviations from real to model 29
3.4 Summary table for analysis of MRV dynamic singularities. 43
3.5 Boundary of region of attraction for blind insertion tests. 46
3.6 Boundary of sampled space for fully observable insertion tests. (Note

that yaw and pitch were zeroed out in order to reduce the search space
from a five dimensional space down to a three dimensional space). . 47

5.1 Performance summary of integrated system across three different initial
conditions. Descriptions of initial conditions can be found in Table
5.2. Average success and error calculations were computed across 5
sets of 100 trials for each initial condition scenario. 61

5.2 Relevant position and Euler angles of the Client Vehicle for each
integrated test. 62

5.3 Manipulator arm joint angles for each integrated test. 63

xv

xvi

Chapter 1

Introduction

1.1 Motivation

There exist dozens of aging satellites in orbit currently at risk of de-orbiting due to a

lack of propulsion [26]. Collectively, these satellites are worth billions of dollars and

provide key services to society, such as weather information, GPS services, military

intelligence, communications, and broadband internet services. Governments and

companies who own these satellites have been spending growing amounts of resources

to find alternatives to launching replacement satellites. This has led companies

such as the Northrop Grumman Corporation (NGC) to develop in-orbit satellite-

servicing assets. NGC developed the Mission Robotic Vehicle (MRV) to deliver

Mission Extension Payloads (MEPs) to aging satellites in Low Earth Orbit (LEO).

These MEPs are designed to provide auxiliary power and propulsion capabilities to

the aging satellite running low on power and propellant. This thesis seeks to develop

a simulated model of the docking operations, and develops a robust force-compliant

control system to prevent error and minimize disturbances during docking.

1.2 Problem and Proposed Solution

The space environment we deal with consists of three separate bodies: The MRV,

the MEP, and the Client satellite, or client vehicle. Recall that the MRV delivers

1

1. Introduction

Figure 1.1: Artists Rendering: The NGC Mission Robotic Vehicle (MRV) delivering
a Mission Extension Payload (MEP) to an aging client satellite. (Image courtesy of
NGC)

the MEP to the client vehicle. Our satellite servicing mission consists of two phases:

approach followed by docking. Fig. 1.6 provides a visual overview of the three key

bodies interacting in our mission.

The problem we seek to solve is as follows: given an non-compliant1 client satellite,

the MRV must maneuver to attach a MEP to the rocket nozzle of the client satellite

while minimally disturbing the operations of the client satellite. We can draw a

parallel between our problem of driving an MEP towards a client satellite in space to

a well-known problem in robotics: The problem of inserting a peg into a hole using a

robot arm [16]. There are several challenges associated with controlling the MRV to

successfully dock the MEP with a client satellite in space:

1. Floating base dynamics and controls

In traditional manipulation problems, such as the peg-in-hole problem, where

the base of the manipulator arm is fixed to the ground, one can leverage

well-established manipulator dynamics and controls algorithms to move the

1In this context we define a non-compliant body as a body that is not under our control and
possibly following commands from an unobserved controller.

2

1. Introduction

end-effector of a manipulator to a desired location [4]. For in-orbit satellite

servicing, there is no ground that can withstand the reaction forces induced

by the motion of the manipulator. Even the MRV base thrusters and reaction

wheels would not be able to counteract such reaction forces. This is because

the MRV base thrusters have limited fuel capacity, and the reaction wheels

on the base can risk saturating, and be unable to respond to applied torques.

Additionally, the current operational protocol calls to disable the base thrusters

and reaction wheels during servicing. The MRV base thrusters are turned off

as a safety precaution during docking operations to minimize the maximum

velocity of a collision if one were to occur. Since the base that our manipulator

arm is mounted to is free floating, we must leverage control methods which

account for the coupled dynamics that exist between our manipulator arm and

the floating base to which it is attached. To accomplish this, we make use

of Operational Space Control [22], which has been commonly used in legged

robots to perform tasks in the work-space.

2. Tracking a partially occluded spacecraft

To send accurate position estimates to our operational space controller, we need

to have access to the precise location of the client satellite. To achieve this, we

make use of a camera mounted on the base of our MRV to publish images of

the client satellite which are fed into an off-the-shelf vision tracking algorithm

[15] to detect the client satellite, and return the client satellite’s measured pose

with respect to the MRV. This tracking routine is complicated by the fact

that the MEP partially obscures the camera’s view of the client satellite. This

obscuring of the client satellite introduces the common problem in computer

vision known as occlusion. See Figs. 1.2 and 1.3. To combat the uncertainty

that occlusion brings into our tracking measurement, we make use of a Hybrid

Extended Kalman Filter (H-EKF) [12].

3. Minimizing applied disturbance forces to client satellite

The client vehicle must not be displaced any more than 2 cm in translation, and

no more than 0.2 degrees in rotation. For the example of a telecommunications

satellite, these requirements ensure that the signals being sent back to Earth by

the client satellite stay on target, and reach their desired destination. In order

3

1. Introduction

Figure 1.2: When mounted on the MRV’s end-effector, the MEP partially occludes
the camera tracker’s view of the client satellite.

to comply with this requirement, we add a force compliant term in our controller

to respond and react to any contact forces. See equation 3.39 in the Operational

Space Controller section. This force compliance is crucial in scenarios with

heavy occlusion, where the vision subsystem cannot see the client satellite

perfectly. In a degraded vision-tracking scenario, force compliance allows the

robot arm to react with the force and move the arm in such a way that future

contact forces are reduced in cases where there is increased uncertainty about

the position of the client satellite.

4

1. Introduction

Figure 1.3: Example of occlusion from simulated MRV base camera feed. The client
satellite (green) is partially occluded by the MRV arm (blue) and the MEP (red).

1.3 Mission Robotic Vehicle Control System

Overview

The contributions we made to the MRV satellite systems are: A vision sensor/tracking

system, a Hybrid Extended Kalman Filter (H-EKF), and an Operational Space

Controller (OSC). As can be seen in Fig. 1.5, the control flow begins when the vision

and force sensors (blue blocks in Fig. 1.5) take measurements of the environment

(plant). These measurements (6-DoF force measurements and camera images) are

5

1. Introduction

passed into our H-EKF, and our vision tracking system, respectively (red blocks in

Fig. 1.5). The output of the H-EKF represents the best estimate of the current

pose of the client vehicle, and the current pose of the MRV end-effector (the MEP).

These outputs are then subtracted from one another to generate the desired pose

command, or error signal, to be sent to our Operational Space Control (OSC) system.

By sending this error signal into the OSC system, the MEP will be driven into the

client vehicle’s rocket nozzle. The task block in Fig. 1.5 sends a desired pose signal.

There are two desired poses: one for the approach phase, and one for the docking

phase. The task block detects which phase the simulation is in, and then sends the

corresponding signal for xd.

Figure 1.4: Summary of MRV control/communication flow. Nominal operating
frequencies are labeled below each component.

1.3.1 Approach

The mission starts in the approach phase. In this phase of the operation, the MRV

begins some distance away from the client satellite and uses its base thrusters and

reaction wheels to move into docking position. The docking position is selected to be

directly in front of the MEP, aligned along the axis of symmetry of the client vehicle’s

rocket nozzle. The MRV uses our Operational Space Controller to drive the MEP

6

1. Introduction

Figure 1.5: Block diagram of full MRV control system. Green blocks denote the
plant, blue blocks denote sensors, red blocks denote controllers/observers. Solid lines
represent signals that are active all the time, and dashed lines represent signals that
are only active when an external forces is imparted onto the MRV. Note that the
external force applied to the MEP, Fext is passed into the OSC block in order to allow
the OSC block to compute compliant controls that are aware of contact forces, as
shown in equation 3.39.

to the desired docking state, directly in front of the client vehicle. Once the MRV

reaches the docking position, the system enters the docking phase.

1.3.2 Docking

At this point, using the estimated position of the client vehicle coming from our

vision tracker, we use our Operational Space Controller to move the MEP into the

rocket nozzle of the client vehicle. The controller also makes use of the force sensor

mounted in the end-effector of our robot manipulator to comply with any external

forces applied to our arm. External forces measured by the MRV wrist force sensor

are passed into the OSC controller, and used to guide the motion of the MEP away

from the contact. The docking phase ends when the MEP reaches within 5mm of the

final goal location inside of the client vehicle’s rocket nozzle.

7

1. Introduction

Figure 1.6: Overview of three key bodies in environment. The MRV (left) flies in
low Earth orbit, acquires a MEP (center), and delivers it to an aging client vehicle
(right). To be precise, all simulated MRV operations featured in our work assume
that the MRV has already gone through the process of acquiring the MEP.

1.4 Contribution

The contribution of this work is two-fold: First, we present a simulated satellite

servicing pipeline for the purposes of testing integrated solutions to the problem of

docking with a non-compliant satellite in orbit. Secondly, we present our integrated

tracking, estimation, and control system which enables a satellite with a manipulator

arm to place the MEP in position with a non-compliant satellite in need of service.

To demonstrate the efficacy of our proposed automated satellite docking system, we

present individual component analyses of our vision tracker, H-EKF, and operational

space controller, as well as system level analyses of our integrated system. The novelty

of this pipeline is that we are leveraging both force and vision feedback to achieve

our goal, in addition to also leveraging force feedback to improve state estimation of

the pose of the client vehicle.

8

Chapter 2

Prior Work

There exists a great body of work for space robots, or floating base manipulator

systems. Here, we break the prior work down into four subsections: a history of space

robots, floating base manipulator kinematics and dynamics, control for floating base

manipulators, and vision tracking in robotics.

2.1 Brief History of Robotic Space Systems and

Floating Base Systems

There are several space launched robotic manipulator arms systems that have come

before the NGC MRV system. One of the first robotic manipulators was launched into

orbit when the Shuttle Remote Manipulator System (SRMS), which is also known as

the Canadarm, was first deployed in the 1980s [27]. The Canadarm is a six degree of

freedom robot arm that has been used to deploy satellites, assist with construction

tasks, and assist astronauts with space walks. In the late 1990’s, the Japanese

government launched the Engineering Test Satellite (EST) VII experiment vehicle

[18]. This space robot collected data for several docking and rendezvous missions. In

the early 2000’s, DARPA began a program called Orbital Express, whose goal was to

develop a robotic satellite capable of servicing disabled satellites in orbit, much like

the NGC MRV mission [2]. Images of these robotic space systems can be found in

Fig. 2.1 Northrop Grummans’s Mission Extension Vehicle (the predecessor to the

9

2. Prior Work

Mission Robotic Vehicle) completed its first servicing mission in orbit in Februrary

2020.

As an aside, we also draw inspiration from other floating base systems, such as

microrobots designed to swim in in-viscid fluids, such as the system designed in [9]

and [10]. Other systems with similar behavior to our system is the Chaplygin beanie,

which was analyzed in work done by [1].

Figure 2.1: Top Left: Canadarm operating on a space shuttle mission. Top Right:
Canadarm operating on the International Space Station. Bottom Left: Japanese
ETS VII Experiment Vehicle. Bottom Right: Artist’s rendering of DARPA Oribtal
Express.

10

2. Prior Work

2.2 Floating Base Manipulator Kinematics and

Dynamics

The theory behind floating base manipulator kinematics and dynamics was developed

in the late 1980s and early 1990s. In 1993, engineers and researchers in the Spacecraft

Engineering Department at the Naval Research Laboratory [14] [13]. In this work, the

authors computed the forward kinematics of a generalized floating base manipulator,

and also developed an inverse kinematics solution for a floating base robot with

a six degree of freedom manipulator arm. They additionally analyzed the feasible

work-space of a floating space robot with an unactuated base. [24] [31] both derived

dynamic equations of motion for a six degree of freedom arm attached to a floating

base. In their work, they also derived motion planning and control routines for space

robots which brought the end effector of the arm from point A to point B. Fig. 2.2

shows a schematic for a generic space robot. In these works, the equations of motion

for a generic space robot are derived by taking the following steps:

First, define the state of the system in vector form:

X =

[
xbase

q

]
(2.1)

Where xbase is the vector representing the six degree of freedom pose of the base

and q is the vector representing the joint angles of the robot arm.

Next, write out the kinetic energy of the system:

T =
1

2

[
ẋTbaseq̇

T
]
Asys

[
ẋTbase
q̇T

]
(2.2)

Where Asys is the system mass matrix, which is found following the derivation

from [28]:

We define Asys as the full system mass matrix, which is a block matrix consisting

of the base mass matrix, A11, the manipulator arm mass matrix, A22, and the mass

11

2. Prior Work

matrices representing the coupling between the arm and the base, A21, and A12.

Asys =

[
A11 A12

A21 A22

]
(2.3)

where

A11 =

[
mtotI3×3 −mtotr̂oc

mtotr̂oc Hs

]
(2.4)

mtot is the total mass of the system. r̂oc is defined in Fig. 2.2.

Hs is given by

Hs =
6∑

i=1

(Ii −mir̂0i r̂0i) + I0 (2.5)

Where Ii is the inertia of the ith link of the MRV arm, mi is the mass of the ith

link of the arm, and r̂0i is defined in Fig. 2.2.

We can obtain the coupling inertia matrices with the following relationship:

A12 =

[
JTS

Hsq

]
(2.6)

where JTS is given by:

JTS =
6∑

i=1

(miJTi
) (2.7)

JTi
is found as follows:

JTi
=
[
k̂1 (ri − P1) ... k̂i (ri − Pi) 03×6−i

]
∀ (1 ≤ i ≤ 6) (2.8)

k̂i is the unit vector representing the axis of rotation of the ith joint of the MRV

arm.

Pi is the position vector pointing from the inertial frame to the ith joint of the

12

2. Prior Work

MRV arm. ri is the position vector pointing from the inertial frame to the center of

mass frame of the ith link of the MRV arm.

And JRi
is obtained with:

JRi
=
[
k̂1 ... k̂i 03×6−i

]
∀ (1 ≤ i ≤ N) (2.9)

We define our second coupling matrix by transposing A12:

A21 = AT
12 (2.10)

Lastly, we obtain the manipulator arm mass matrix with the following calculations:

A22 =
6∑

i=1

(
JT
Ri
IiJRi

+miJ
T
Ti
JTi

)
(2.11)

Now we can compute the Lagrangian (neglecting the potential term since we can

neglect gravity effects in orbit):

d

dt

(
∂T

∂ẋbase

)
− ∂T

∂xbase
= 0 (2.12)

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
= Γ (2.13)

Where Γ is a vector of manipulator arm joint torques.

This provides us with the equations of motion for our generic floating base

manipulator system:

Asys

[
ẍbase

q̈

]
+ bsys =

[
0

Γ

]
(2.14)

Where bsys is the vector of system Coriolis terms, defined below:

13

2. Prior Work

bsys =

[
Ȧ11 Ȧ12

Ȧ21 Ȧ22

][
ẋbase

q̇

]
+

[
cbase

carm

]
(2.15)

where

cbase = −1

2

∂

∂xbase

(
ẋTbaseA11ẋbase + q̇TA22q̇ + ẋTbaseA12q̇ + q̇TA21ẋbase

)
(2.16)

and

carm = −1

2

∂

∂q

(
ẋTbaseA11ẋbase + q̇TA22q̇ + ẋTbaseA12q̇ + q̇TA21ẋbase

)
(2.17)

Figure 2.2: Kinematic diagram of a generic space robot. Image from [28]

2.3 Control for Floating Base Manipulators

There exists a variety of literature regarding the subject of controls for floating base

manipulators. In 1987, Khatib et al developed a method called Operational Space

Control (OSC) for fixed base manipulators [11]. The OSC formulation enables an

14

2. Prior Work

engineer to determine generalized forces that act in the joint space (joint torque

commands), based on a desired force to be applied in the work-space [11]. Khatib,

along with Sentis et al. [22] extended Operational Space Control for use with floating

base systems. Their use case was on a humanoid robot. See Fig. 2.3. In chapter 3,

we will present our implementation of the Khatib OSC formulation, which includes

modeling external forces into our computed torque computations. Several other

control methods exist for floating base robots, such as resolved motion rate control,

introduced by Yoshida and Umetani [31], and inverse dynamics control [20].

2.4 Vision Tracking

There are several solutions available to solving vision tracking problems. There are

model-based approaches such as ViSP [15], and learning based approaches such as

DOPE [23] and PoseCNN [30]. Other methods include particle-filter model-based

tracker such as the Depth Based Object Tracking Library (dbot) [29], and search

based methods such as PERCH from the SBPL at CMU [3]. Each one of these

methods has pros and cons. Learning based methods require large quantities of

training data in order to obtain high performance. Search based methods require

onboard GPUs in order to guarantee real time functionality. Model-based methods

require an accurate CAD model of the object to be tracked. Many of these methods

also require a depth image to be provided in addition to an RGB image. We decided

to use the ViSP model-based tracker because it does not require a depth image

input, and it does not require the creation of a large training dataset. The reason

we chose to avoid methods which rely on depth images is because NGC advised us

that their proprietary vision tracking routine does not use depth information, and

NGC recommended using a method that also does not use depth information, in

order to more accurately represent and simulate the true NGC MRV system. Table

5.1 summarizes the pros and cons of each of these methods.

15

2. Prior Work

Figure 2.3: [22] developed an OSC formulation for floating base systems. Their
test system was the above humanoid model. For their application, the operational
space frame is the base frame located in the hip link of the humanoid robot. So for
the humanoid OSC, joint torque commands in the legs and arms are computed to
achieve a desired behavior in the base frame. For our space robot work, we define the
operational space frame to be the end effector of the robot arm instead of the base
link. Image from [22].

16

2. Prior Work

Tracking Method Comparison
Method Needs

GPU?
Needs
Training
Data?

Needs
CAD
model?

Needs
Depth
Image?

ViSP x x X x
DOPE x X x x
PoseCNN x X x x
dbot x x X X
PERCH X X X X

Table 2.1: Pros/cons of various types of vision trackers.

17

2. Prior Work

18

Chapter 3

Controller for Space Robot

3.1 Model Predictive Control for Planar Space

Robot

As discussed in the prior work section, there are many different control methods

available for use with floating base manipulators. Model Predictive Control (MPC)

is a popular optimization-based method that has been implemented recently for

operation on space robots. In this section, we explore the use of several classes of

MPC controllers: Nonlinear MPC [21] and Adaptive MPC [6] on a planar space robot

simulated in MATLAB.

The work by Tomasz Rybus et. al. in [21] explores maneuvers of a floating base

satellite with an open chain manipulator to interact with a separate moving body.

The study computes open-loop motion plans using trajectory optimization, and then

treats those computed trajectories as references to track using NMPC and adaptive

MPC. Our work builds a re-creation of the methods and results presented in the

previous work, and explores an alternative MPC control method applied to the same

motion scenarios. In implementing NMPC adaptive MPC for a planar space robot,

we seek to understand the capabilities of NMPC and adaptive MPC for simplified

floating base manipulators, as well as the limitations of NMPC/adaptive MPC.

To implement and explore the proposed paper of study [21], a representative system

model was created using the Space Robotic Toolbox (SPART) toolbox [25]. The

19

3. Controller for Space Robot

model provides us with a state dynamics description of a floating base manipulator

system, this description provides us our system mass matrix and Coriolis terms.

Trajectory optimizations were performed on the models, including a representation of

the rendezvous action presented in the work. Differing instances of model predictive

control (adaptive MPC and nonlinear MPC) were then applied to the generated

trajectory, and compared both with and without model discrepancies1.

Our motivation in implementing both NMPC and adaptive MPC for this system

is to determine the pros and cons of each method, and to see which method, if any, is

most suitable to serve as the controller for our floating base system.

Floating Base Dynamics for MPC

Here we discuss the dynamics of a floating base manipulator. Because the base of the

robot is free floating, we must include the position and orientation of the base in the

state description, as can be seen in equation 3.1. We modeled our system without

an actuated base, and so our system is trivially underactuated. The floating base

nature of our system makes computing the dynamics of the system more complicated,

because our system must obey conservation of angular and linear momentum laws.

Our system is governed by the following equations of motion:

[
Hb Hc

HT
c Hm

]
q̈ +

[
cb

cm

]
= Γ (3.1)

Where Hb is the inertia matrix of the base, Hc is the coupling inertia matrix between

the base and the manipulator, and Hm is the manipulator inertia matrix. The

coupling inertia matrix helps describe how the motion of the base affects the motion

of the arm, and how the motion of the arm affects motion of the base.

SPART Toolbox

The Space Robotic Toolbox [25] is a package developed for kinematic and dynamic

analysis of open-chain manipulators. The MATLAB-based toolbox accepts a Unified

1Model discrepancies here are perturbations in the mass and geometry of the dynamical system
that the MPC routine is not made aware of.

20

3. Controller for Space Robot

Figure 3.1: Planar model

Robot Description Format (URDF) representation of a manipulator system, and

provides analysis tools for the provided model, allowing for both fixed-base and

floating-base systems. The system equations of motion are computed using a recursive

Newton-Euler algorithm (RNEA) method in the SPART toolbox.

Figure 3.2 depicts the formulation of state dynamics used in the study. Forward

dynamics relate the current state and control inputs to the requisite state velocity. The

applied control inputs are then combined to complete a forward dynamic calculation

using RNEA to return joint and base accelerations. The forward dynamics are used

for both trajectory optimization and simulation.

Planar Space Robot

In order to analyze the relevant operations presented in [21], a simplified planar

dynamic model was created using a URDF and the SPART toolbox. We use a planar

robot here to investigate the efficacy of MPC methods while easing the computational

complexity of solving an optimization problem for a higher DoF, non-planar robot.

Figure 3.1 and Table 3.1 describe the system used for planar analysis throughout

the present study. The model consists of three bodies: a base and two links in an

open-chain configuration. The two consecutive joints connecting the three bodies

allow for rotational motion about parallel axes (axes parallel to the inertial z axis in

Fig. 3.1), constraining the active motions to a plane. Each joint is active, providing a

control vector of u = [Tj1, Tj2]T . The base is free to float w.r.t. to the inertial frame,

which introduces three additional coordinates for state description. This condition

leads to an underactuated system, with minimum five generalized state coordinates,

and two independent actuated inputs.

21

3. Controller for Space Robot

Parameter value unit

Base mass 12.9 kg
Base moment of inertia 0.208 kgm2

Base center to joint 1 0.327 m
Link 1 mass 4.5 kg
Link 1 moment of inertia 0.32 kgm2

Link 1 length 0.62 m
Link 2 mass 1.5 kg
Link 2 moment of inertia 0.049 kgm2

Link 2 length 0.6 m

Table 3.1: Parameters for the major components of the planar model satellite

Figure 3.2: Dynamics flowchart

qPlanar ∈ R10 : (3.2)

qPlanar = [xb, yb, θb, θ1, θ2, ẋb, ẏb, θ̇b, θ̇1, θ̇2] (3.3)

Augmented State

Tasks required of the system generally relate to the end effector state. Since the

generalized coordinates for describing the system dynamics do not directly provide

end effector information, an augmented state with explicit end effector position and

velocity in the inertial coordinate frame was created. The augmented state allows

access to end effector state for trajectory optimization and control. The augmented

state vector is shown in equation 3.4.

22

3. Controller for Space Robot

qPlanarAug ∈ R14 :

qPlanarAug =



xb

yb

θb

θ1

θ2

ẋb

ẏb

θ̇b

θ̇1

θ̇2

EEposX

EEposY

EEvelX

EEvelY



(3.4)

3.1.1 Space Robot Center of Mass Analysis

Before we discuss the Model Predictive Controllers we implemented on our planar

space robot simulation, we fist verify that the planar space robot is obeying linear

momentum conservation constraints. Because our robot is not firing any base thrusters

and is not driving any reaction wheels, the total linear momentum of the system

should stay fixed at zero. If we plot this out, we expect to see the position of the

center of mass of the system remain at the initial position where it starts. Fig. 3.3

shows an open loop control sequence executed on our space robot. Fig. 3.4 show

the plots of the X and Y positions of the system center of mass as a function of

time. Now that we have shown that our system is properly obeying linear momentum

constraints, we can feel confident that we have properly modeled a floating base

system free from the effects of gravity.

3.1.2 Model Predictive Control

Model Predictive Control (MPC) is a control method that produces the optimal

control action at each time step during operation through solving a local optimization

23

3. Controller for Space Robot

Figure 3.3: Open loop trajectory visualization. Note that the position of the system
center of mass does not change.

Figure 3.4: X-Y plots of planar space robot system center of mass over time. Note
that the position of the system center of mass does not change over time. This is due
to the fact that the robot is not firing any base thrusters, and is not experiencing
any external contact forces.

24

3. Controller for Space Robot

Figure 3.5: MPC graphical example. Image from [5].

problem [7] at that time step. Figure 3.5 depicts a temporal representation of the

MPC process. The optimization is performed over a prediction horizon into the future,

which shifts forward during operation as a ”receding horizon.” Different methods for

model predictive control address trade-offs between optimization accuracy, horizon

distance, cost definition, constraint definitions, and their effect on computational load.

Model predictive controllers are model-based controllers, relying on the accuracy of

the model relative to the representative system for efficacy. MPC methods differ

from other optimal control techniques such as Linear Quadratic Regulation due to

the run-time iterative process of optimization. MATLAB provides a set of tools for

implementing model predictive controllers [17].

Adaptive MPC

Linear MPC methods require a linear time-invariant system for viable operation.

The state dynamic equations exhibit configuration dependent relations, forming a

significantly non-linear system over the space of configurations. Non-linear systems

pose more complicated dynamics that in general cannot be analyzed directly with

linear methods. Adaptive MPC addresses control of non-linear systems using linear

MPC methods by applying linearizations of the dynamics at each time step. While

continual linearizations add computational load to the system, the simplification of the

optimization to a linear system significantly reduces the total decision load per time

step. A linearization is only valid around an nominal trajectory of the system at which

the approximation is applied. Thus for good performance, the relationship between

the reference target and system state should be within reasonable proximity (trust

region). Given a marginal state deviation over the time horizon to the reference value,

25

3. Controller for Space Robot

a linear approximation of the non-linear dynamics can provide adequate dynamic

accuracy to implement linear MPC methods on the linearized system.

In order to use linear MPC here, we must first linearize our system. Equations

3.5-3.7 describe the process for which we linearize our nonlinear dynamical system.

[19]. Both the nominal state and control describe the linearization location, and the

partial differentiation of the dynamics with respect to the state and control provides

the first order description of the small deviation away from the local point.

˙̄x = f(x̄, ū) (3.5)

x(t) = x̄(t) + δx(t) (3.6)

˙̄x(t) + δ̇x(t) ≈ f(x̄, ū) +
∂f

∂x
|x̄,ūδx(t) +

∂f

∂u
|x̄,ūδu(t) (3.7)

The MPC process can now perform optimization using the linear approximation

from equation 3.7 as a replacement for the full non-linear model. In order to obtain the

linearized system dynamics without an explicit analytical model, numerical differenti-

ation can be performed using the method of finite differences. The MATLAB toolbox

Adaptive Robust Numerical Differentiation [8] provides functions for generating the

linearized dynamic equations with respect to state and control at an operating point,

and is used for linearization in this work.

Non-linear MPC

When the posed control problem exhibits non-linear dynamics, non-linear or time

varying constraints, and alternative cost functions that don’t assume a globally convex

form, the model predictive control process requires more sophisticated tools to perform

the optimization. Generally an iterative optimization process is used to minimize the

cost function, such as sequential quadratic programming (SQP), which serves as the

default solving method for MATLAB NMPC toolbox. It is important to note the

iterative optimization described here is iterated within the current time step to find

the optimal control action, leading to substantial increase in computational demands

for the controller. Fig. 3.6

Below is an overview of the sequential quadratic optimization method [17]:

1. Approximate optimization with a quadratic form

26

3. Controller for Space Robot

Figure 3.6: NMPC flowchart

2. Solve the Quadratic Program sub-problem

3. Iterate process at the new trajectory

4. Terminate process when a local minimum cost trajectory is found

3.1.3 Rendezvous Maneuver with MPC

The work in [21] based the realization of the planned trajectory around a non-linear

MPC controller. Our work offers a comparison of adaptive MPC and non-linear MPC

as related approaches to implementing the trajectory on the satellite model. Our

control objective is to stabilize the position of the end-effector of the manipulator to

a desired set point and its velocity to zero. The dynamic system described in section

3.1 with the augmented state was used to perform the target maneuver, and model

predictive controllers were implemented using the MATLAB MPC toolbox. The

controllers are passed the state trajectory without the nominal control sequence. This

is deemed reasonable as the control is negligibly penalized in the cost function for

the presented cases. Furthermore, the performance of the system following a desired

trajectory without corresponding control information allows for a more general case

of trajectory following. We do not pass in the nominal control sequence to better

evaluate how the MPC methods handle the trajectory planning element of the control

task. A further investigation would benefit from incorporation of the trajectory

optimized control information to the control as a feed-forward term.

The maneuver was simulated with two different scenarios:

1. Coherence between the internal model parameters used for the optimization

and actual system parameters (no differences)

27

3. Controller for Space Robot

2. Model discrepancies between component masses

In the latter scenario, the trajectories are planned about the model featuring discrep-

ancies, the control synthesis algorithm computes the control inputs by performing

an optimization, and the control sequences are applied to the actual, true system to

iterate the state. Table 3.3 details the applied deviations between the models.

The outputs of the two different MPC methods applied to the rendezvous maneuver

for both scenarios are summarized in Table 3.2. The performance of the controllers

is compared with total run time and average error. Comparison with respect to

run time shows Adaptive MPC outperforming the non-linear controller by an order

of magnitude. This improvement is expected due the optimization benefits from

linearization of the system dynamics, as detailed in section 3.1.2.

Fig Scenario Nominal Time Run time Avg error

3.10 NMPC - No model diff 4.0 s 493.10 s 0.0101 m
3.14 NMPC - Model diff 4.0 s 568.54 s 0.0126 m
3.18 Adaptive MPC - No model diff 4.0 s 63.41 s 0.0090 m
3.22 Adaptive MPC - Model diff 4.0 s 63.64 s 0.059 m

Table 3.2: Planar space robot trajectory tracking comparison - NMPC vs Adaptive
MPC

Comparing output performance in end effector error is more nuanced. Given an

alignment of model and actual system parameters, adaptive MPC and non-linear

MPC both offer similar state performance. However, introducing model inaccuracies

significantly degrades the performance of adaptive MPC as compared to NMPC,

which demonstrates a higher degree of robustness to system parameter inaccuracies.

Again this difference in performance is expected, as a linearization further introduces

prediction error into the optimization process. The relationship between model

inaccuracies and controller performance for the satellite system mirrors the results

from the controllers applied to the simple pendulums. Given the significant model

deviations and an abrupt shift in target motion near the end of the maneuver, the

adaptive controller fails to provide the necessary adjustments to maintain target

proximity.

This set of test conditions highlight particular trade-offs between adaptive and

non-linear MPC. Extending the study would entail further refinement of cost functions,

28

3. Controller for Space Robot

optimization of run time code to remove specific implementation discrepancies, and

adjustment of other parameters such as the control and prediction horizons to

investigate controller sensitivities.

Component Model deviation
Base +30% mass, Inertia
Link 1 -30% mass, Inertia
Link 2 -30% mass, Inertia

Table 3.3: Satellite component deviations from real to model

3.1.4 MPC Limitations

From our results, we have seen that Nonlinear MPC produces better trajectory

tracking (even when there is an error in the formulation of the model), although

this enhanced tracking comes at the cost of increased computational complexity.

Adaptive MPC runs much faster, but suffers from poor trajectory tracking if the

provided model is not accurate. Both Nonlinear MPC and adaptive MPC have key

limitations in that they both do not run in real time, and in the case of adaptive

MPC, are vulnerable to poor performance in the face of uncertainty in the model

description. This is highlighted in Table 3.2, where we can see that neither method

was capable of generating the four second trajectory in a timely manner. Because of

these limitations, we decided to implement a classical control method (OSC) on our

full 3D space robot simulation. One way to address these runtime limitations would

be to implement these MPC methods using optimized C++ code, but we decided

that implementing these methods in C++ would be out of the scope of this work.

29

3. Controller for Space Robot

[b]0.65

Figure 3.7: Initial and final pose
[b]0.65

Figure 3.8: EE target vs realized
[b]0.65

Figure 3.9: Position error

Figure 3.10: Satellite rendezvous with Nonlinear MPC, no model differences

30

3. Controller for Space Robot

[b]0.65

Figure 3.11: Initial and final pose
[b]0.65

Figure 3.12: End effector target vs realized
[b]0.65

Figure 3.13: Position error

Figure 3.14: Satellite rendezvous with Nonlinear MPC, model differences from table
3.3

31

3. Controller for Space Robot

[b]0.65

Figure 3.15: Initial and final pose
[b]0.65

Figure 3.16: End effector target vs realized
[b]0.65

Figure 3.17: Position error

Figure 3.18: Satellite rendezvous with Adaptive MPC, no model differences

32

3. Controller for Space Robot

[b]0.65

Figure 3.19: Initial and final pose
[b]0.65

Figure 3.20: End effector target vs realized
[b]0.65

Figure 3.21: Position error

Figure 3.22: Satellite rendezvous with Adaptive MPC, model differences from table
3.3

33

3. Controller for Space Robot

Figure 3.23: Relevant coordinate frames for OSC subsystem

3.2 Operational Space Control

Our OSC subsystem has two phases: approach and docking. During the approach

phase, the base thrusters and reaction wheels are turned on until the MEP reaches

the nominal point (coordinate frame N in Fig. 3.23). Once this point is reached, the

OSC subsystem switches into the docking phase.

3.2.1 Controller Derivation - Approach Phase

Here we will briefly describe the controller that is active during the approach phase.

The controller used in the approach phase is very similar to the controller used in the

docking phase aside from adding forces/torques that drive the MRV base. In order

to simplify this derivation, we assume that the reaction wheels to do not have any

inertia, and can instantly impact torques onto the system, so the mass matrix and

Coriolis terms remain the same. In reality, adding reaction wheels into the system

dynamics would change the composition of the mass matrix and the Coriolis terms.

We start with the equations of motion for our system with an actuated base:

34

3. Controller for Space Robot

Asys

[
ẍbase

q̈

]
+ bsys =

[
Γbase

Γarm

]
+ JTFext (3.8)

As we will describe in the derivation for the docking phase controller, these

equations of motion can be transformed into the task space with the following form:

Λẍ+ µ+ p = Jsys

[
Γbase

Γarm

]
+ Fext (3.9)

From here, we can derive our controller for the approach phase by inverting the

Jsys matrix and pre-multiplying it onto both sides:

[
Γbase

Γarm

]
= J−1

sys(Λẍd + µ+ p− Fext) (3.10)

3.2.2 Controller Derivation - Docking Phase

The following is inspired by the work done by Sentis et al. on operational space

control for legged robots [22]. We first start with the full system equations of motion

obtained from section 2.2:

Asys

[
ẍbase

q̈

]
+ bsys + gsys =

[
0

Γ

]
+ JTFext (3.11)

Where ẍbase ∈ R6×1 is the vector of base accelerations, q̈ ∈ R6×1 is the vector of

manipulator arm joint accelerations, bsys ∈ R12×1 is the vector containing Coriolis

terms, Fext ∈ R6×1 in the external wrench applied to the end effector of the space

robot. gsys ∈ R12×1 represents gravitational terms, which for our space system can be

neglected. So we have (for the docking phase):

35

3. Controller for Space Robot

Asys

[
ẍbase

q̈

]
+ bsys =

[
0

Γ

]
+ JTFext (3.12)

Where J is given by

[
Jbase Jarm

]
(3.13)

We can break down Asys ∈ R12×12 into four block matrices:

Asys =

[
A11 A12

A21 A22

]
(3.14)

Now, we can write out equation 3.12 in a system of two equations that separate

the dynamics of the base and of the arm:

A11ẍbase + A12q̈ + bbasesys = 0 + JT
baseFext (3.15)

A21ẍbase + A22q̈ + barmsys = Γ + JT
armFext (3.16)

We can replace ẍbase in equation 3.16 by solving for ẍbase in equation 3.15:

A21A
−1
11 (−A12q̈ − bbasesys + JT

baseFext) + A22q̈ + barmsys = Γ + JT
armFext (3.17)

Now, let’s rewrite the above equation and group terms:

36

3. Controller for Space Robot

(A22 − A21A
−1
11 A12)q̈ + (barmsys − A12A

−1
11 b

base
sys) (3.18)

= Γ + (JT
arm − A21A

−1
11 J

T
base)Fext (3.19)

Now we can define the following matrices for convenience:

A
′

= (A22 − A21A
−1
11 A12) (3.20)

b
′
= (barmsys − A12A

−1
11 b

base
sys) (3.21)

J∗T = (JT
arm − A21A

−1
11 J

T
base) (3.22)

J∗ = (Jarm − A21A
−1
11 Jbase) (3.23)

Now, let’s write out our simplified equations of motion in the joint space:

A
′
q̈ + b

′
= Γ + J∗Fext (3.24)

Now, we want to control behavior in the task space, so we can transform these

actuated joint space dynamics into the task space by pre-multiplying both sides with

the transpose of J̄ , the dynamically consistent inverse of J , where J̄ = A
′−1J∗TΛ:

J̄T (A
′
q̈ + b

′
) = J̄T (Γ + J∗Fext) (3.25)

This yields our task space dynamics:

37

3. Controller for Space Robot

Λẍ+ µ = F + Fext (3.26)

Where Λ = (J∗A
′−1J∗T)−1 is the OSC mass matrix, and µ is the OSC Coriolis

vector.

Now, we must design a controller, F , to cancel out the Coriolis and inertia terms

in our task space dynamics:

F = J̄TJ∗T (Λẍd + µ− Fext) (3.27)

Where ẍd is the desired task space acceleration, given by our ideal spring-mass

damper equations:

ẍd = −kp(x− xd)− kvẋ (3.28)

When we substitute our controller into our task space dynamics, we get the

following:

Λẍ+ µ = J̄TJ∗T (Λẍd + µ− Fext) + Fext (3.29)

Where J̄TJ∗T is cancelled out, because J̄ is the generalized inverse of J∗, thus

leaving us with:

Λẍ+ µ = Λẍd + µ− Fext + Fext (3.30)

This leaves us with:

ẍ = ẍd (3.31)

38

3. Controller for Space Robot

Or,

ẍ = −kp(x− xd)− kvẋ (3.32)

Equation 3.27 gives our operational space control generalized force. This gen-

eralized force is computed at each time step during simulations to bring the MEP

to its desired location. Equation 3.32 shows that the resulting accelerations in the

workspace will be equivalent to that of a spring mass damper connecting the MEP to

the desired goal location.

3.2.3 Singularity Analysis of Generalized Jacobian

We defined the generalized Jacobian for our OSC subsystem as J∗, above. Here, we

observe what MRV configurations result in dynamic singularities of the generalized

jacobian. If a dynamic singularity were to occur (for example, when the MRV arm is

fully outstretched), our OSC controller will not be able to function, as the generalized

jacobian will no longer be invertible, and we will lose the ability to command sensible

joint torques.

To evaluate the presence of dynamic singularities in our configuration space, we

sampled 15,625 different initial joint configurations of the MRV arm while keeping

the MRV base fixed. We found that of those 15,625 joint configurations, 10,000 of

those configurations represent non-singular configurations. Roughly one third of the

sampled joint configurations represented dynamic singularities, with the majority

of these configurations being associated with arm links that are nearly aligned or

fully outstretched. We sampled uniformly between plus and minus 45 degrees from

the MRV arm’s zeroed out pose (all joint angles set to zero). Table 3.4 summarizes

these results. Figs. 3.24 and 3.25 show course representations of areas where dynamic

singularities are present in the configuration space.

3.2.4 Center of Mass Position Analysis for Spatial MRV

System

Before we discuss the feasibility analysis or the stability analysis performed for the

MRV, we want to show how the base thrusters and reaction wheels influence the

39

3. Controller for Space Robot

Figure 3.24: Scatter plot of region containing dynamic singularities. Note: θ4, θ5, θ6

are all set to zero to reduce the dimensionality of this visualization down to 3 from 6.

position of the center of mass during a simulated docking mission. Fig. 3.26 show

time histories of the center of mass position of the MRV system during a simulated

docking mission. We see small oscillations once the system enters the docking phase

due to numerical imprecision in mujoco. Because we see the position of the system

center of mass stop changing once the MRV base thrusters are turned off during

docking, we can have additional confidence that we have properly modeled the floating

base MRV system.

3.2.5 Analysis Overview

Now we discuss the analysis performed for our operational space controller. The

analysis we performed can be grouped into two categories: Stability analysis and

feasibility analysis. Feasibility analysis consists of determining what is the set of

possible states (or initial conditions) for which the control system is guaranteed

to succeed in the insertion task. Stability analysis involves determining how to

characterize the global behavior of the controller, and to provide theoretical guarantees

40

3. Controller for Space Robot

Figure 3.25: Scatter plot of region containing dynamic singularities. Note: θ4, θ5, θ6

are all set to −π/16,−π/8, and π/16 to reduce the dimensionality of this visualization
down to 3 from 6.

41

3. Controller for Space Robot

Figure 3.26: MRV center of mass position plotted over time. Note at frame 1378
how the position of the system center of mass stops changing. This is the moment at
which the OSC controller shifts from the approach phase to the docking phase, and
the MRV base thrusters and reaction wheels are turned off.

42

3. Controller for Space Robot

MRV Dynamic Singularities
Sampled
joint angle
lower bound
(rad)

Sampled
joint angle
upper bound
(rad)

of sam-
ples taken

of sin-
gularities
found

% singular
configura-
tion

-0.38 0.38 15625 5625 0.36

Table 3.4: Summary table for analysis of MRV dynamic singularities.

that the control can command generalized forces that bring the steady state error to

zero.

3.2.6 Stability Analysis (Linear Control Theory)

Below is our derivation for proving stability for the full floating system under contact

(note that here we avoid using the selection matrix by instead leveraging the coupled

nature of the system dynamics and making substitutions between base and joint

accelerations):

From equation 3.32, we now have our idealized spring-mass damper dynamics in

the workspace.

We can convert these dynamics into state space representation using the following

notation:

x̄ =

[
x

ẋ

]
(3.33)

x̄ =

[
ẋ

ẍ

]
(3.34)

Using equations 3.33 and 3.34, as well as 3.32, we can group terms into the

following linear relationship:

˙̄x = Ax̄ (3.35)

43

3. Controller for Space Robot

Where A in this case is defined as A =

[
−kp 0

0 −kv

]
Now, if we perform eigenvalue analysis on linear A matrix, we find that our

proposed controller is stable ∀kp, kv > 0

3.2.7 Stability Analysis (Lyapunov Theory)

Now, our goal is to reach some desired joint-space configuration, qd, with a desired

joint velocity, q̇ = 0, and desired joint acceleration, q̈ = 0. Then we need to design a

controller, Γ to bring q, q̇, q̈ to these values.

Let us design the following Lyapunov candidate:

V =
1

2
(q − qd)T (q − qd) +

1

2
q̇T q̇ (3.36)

And the time derivative of the Lyapunov function:

V̇ = (q − qd)T (q̇ − q̇d) + q̇T q̈ (3.37)

We can substitute in the dynamics from equation 3.24 into the derivative of our

Lyapunov candidate:

V̇ = (q − qd)T q̇ + q̇T [A
′−1(−b′ + Γ + J∗TFext)] (3.38)

We can design a suitable controller as follows:

Γ = b
′ − J∗TFext − A

′
(q − qd)− A

′
q̇ (3.39)

If we substitute our controller into equation 3.37, we get:

V̇ = (q − qd)T q̇ + q̇T [A
′−1(−b′ + b

′−J∗TFext − A
′
(q − qd)− A

′
q̇ + J∗TFext)] (3.40)

44

3. Controller for Space Robot

This first set of cancellations leaves us with:

V̇ = (q − qd)T q̇ + q̇T [A
′−1(−A′(q − qd)− A

′
q̇)] (3.41)

This can be simplified down to the following:

V̇ = −q̇T q̇ (3.42)

Which is negative semi-definite. Therefore our control system is marginally stable.

3.2.8 Feasibility Analysis

We perform several variants of feasibility analysis to better understand the region of

attraction of our operational space controller. In particular, we numerically evaluate

the basins of attraction of two operational space controllers: The blind OSC, which

only has access to the goal state in the Z axis along with force feedback in six DoF,

and the fully observable OSC, which has access to the full goal state (x,y, and z

positions) along with force feedback in six DoF. For both of these situations, we

disconnect our ViSP tracker and state estimation pipeline from the controller, and

provide the operational space controller with the ground truth goal locations. We

disconnect our perception pipelines because we want to solely analyze the performance

of our operational space controller, without influencing results by introducing the

noise inherent in our perception pipeline.

We break our feasibility analysis into these two parts so we can evaluate two

separate components of the controller. We want to be able to understand how the

force feedback component of our controller reacts to external contact forces. First, we

start by studying the feasibility of our blind OSC. These blind insertion tests involve

starting the MEP at different positions and orientations in front of the client vehicle,

and moving the MEP forward in the Z axis. When a collision occurs, we can observe

whether or not the force feedback component of our operational space controller can

account for these forces and still successfully insert into the client vehicle’s rocket

nozzle. Fig. 3.27 shows an pictorial overview of our feasibility experiments.

We perform a fully observable version of the feasibility study in order to verify

the global stability claims we make in the stability analysis section above. By giving

45

3. Controller for Space Robot

our operational space controller access to the full goal state without any noise, we

can search for the full set of initial states for which our controller can drive the

MEP into the client vehicle’s rocket nozzle. Fig. 3.28 shows an example of the basin

of attraction in three dimensions when the pitch and yaw angles are fixed at zero

degrees.

3.2.9 Blind Insertion Results

For the blind insertion feasibility tests, we find that the region of success is a small

region (which is a subset of the fully observable success region) that is nearby the

radius of the client vehicle nozzle. See Table 3.5 for detailed bounds on the basin of

attraction.

Blind Insertion Success Region Bounds
X
bounds
(cm)

Y
bounds
(cm)

Z
bounds
(cm)

Pitch
bounds
(deg)

Yaw
bounds
(deg)

Success
(%)

XYZ
basin
volume
(cm3)

±3.0 ±3.0 ±10.0 ±6.0 ±6.0 38 720
±1.0 ±2.0 ±10.0 ±2.0 ±2.0 80 160
±1.0 ±1.0 ±10.0 ±2.0 ±2.0 100 80

Table 3.5: Boundary of region of attraction for blind insertion tests.

Examining the blind insertion results, we can see that as we increase the value of

the percentage of successful2 trials (Table 3.5 column 6), the size of the XYZ region

volume decreases. The XYZ volume is an intuitive way to represent the size of the

region of attraction of our five dimensional search space. We choose this XYZ volume

representation as a measure of the size of our region of attraction because it is difficult

to describe the volume of a higher dimensional space which is measured with different

units in different dimensions (meters in XYZ, degrees/radians in roll,pitch,yaw).

From these blind insertion results we can see that even if there is some error in the

positioning of the MEP (i.e. the MEP is off of nozzle centerline), we can still obtain

2We define success here as a trial which ends with the MEP within five millimeters of the
prescribed goal position inside the client vehicle rocket nozzle. A failure occurs when the MEP fails
to reach the goal position after two minutes elapse in simulation time.

46

3. Controller for Space Robot

high probabilities of a successful insertion. Without the use of the force feedback

component within our controller, this would not be possible.

3.2.10 Fully Observable Insertion Results

We visualize the region of attraction we computed in our fully observable insertion

tests in Figs. 3.28 and 3.29. We can see that this region is quite large in areas that

have a small offset distance in the Z dimension from the client vehicle rocket nozzle.

Qualitatively, this tells us that our controller is quite effective at inserting the MEP

into the client vehicle’s rocket nozzle. One way to interpret these basin of attraction

figures is to look inside the red volume, and understand that any configuration of the

MEP (at zero roll, pitch, and yaw angles) within this red region is guaranteed to result

in a successful insertion. To find this region of attraction, we sampled 15,625 different

initial conditions of the MEP’s position relative to the origin defined in Fig. 3.27.

Table 3.6 gives information about the space of initial conditions that was sampled in

order to compute the region of attraction. We selected these search bounds due to

the constraint that the floating base manipulator arm workspace imposes onto our

system. Without base thrusters active, there is a limited accessible volume to sample

initial conditions from.

Fully Observable Insertion Success Region Bounds
X
bounds
(m)

Y
bounds
(m)

Z
bounds
(m)

Pitch
bounds
(deg)

Yaw
bounds
(deg)

±0.4 ±0.4 ±0.1 ±0.0 ±0.0

Table 3.6: Boundary of sampled space for fully observable insertion tests. (Note
that yaw and pitch were zeroed out in order to reduce the search space from a five
dimensional space down to a three dimensional space).

3.2.11 Limitations

Our approach relies on a crucial assumption: we must have perfect knowledge of the

kinematic and dynamic properties of the system. If the model we use to perform

inverse dynamics does not match the true system dynamics, then our inverse dynamics

47

3. Controller for Space Robot

will not cancel out the nonlinear task space dynamics as intended, and our controller

will fail. This can be seen in Figs. 3.30 and 3.31. In Fig. 3.30, we see the error

converges to zero as the model used by our OSC subsystem is unaltered. In Fig. 3.31,

we see the error diverges, as we altered the masses of all of the links by doubling

them.

Because our method relies on having perfectly modeled dynamics, we find that

our OSC approach is primarily well-suited for applications in simulation where the

true system model is known. For applications on real robots or in simulations where

the true system dynamics are not perfectly known, an optimization-based method

may be more appropriate to help accommodate for uncertainties in the true system

dynamics. We did not implement any optimization based methods in an optimized

language such as C++ because we decided that implementing such methods in C++

was outside the scope of this work.

48

3. Controller for Space Robot

Figure 3.27: Overview of feasibility experiments. We sample a series of initial
conditions outside of the client vehicle’s rocket nozzle, and observe the performance
of our operational space controller at each initial condition. The green shaded MEP
represents the MEP being positioned at the origin of the point cloud of red cylinders
above. The red shaded MEP represents a sampled location of the origin, but with a
small rotation about the pitch axis.

49

3. Controller for Space Robot

Figure 3.28: Example basin of attraction for fully observable feasibility experiment.
Pitch=Yaw=0 degrees.

50

3. Controller for Space Robot

Figure 3.29: Example basin of attraction for fully observable feasibility experiment.
The MEP orientation is set to Roll=Pitch=Yaw=0 degrees. Left: A side view of the
region. Right: A top view of the region

51

3. Controller for Space Robot

Figure 3.30: Error plots during docking simulation with true system masses passed
into OSC

52

3. Controller for Space Robot

Figure 3.31: Error plots during docking simulation with altered system masses passed
into OSC

53

3. Controller for Space Robot

54

Chapter 4

State Estimation for Space Robot

4.1 Tracking

4.1.1 ViSP Overview

In order to obtain pose measurements of the client vehicle, we leverage an existing

tracking solution from INRIA called the Visual Servoing Platform, or ViSP [15].

Specifically, we make use of ViSP’s markerless generic model-based tracker for use

with our RGB camera. To generate a measurement of the client vehicle’s position

and orientation, the ViSP tracker takes in the CAD model of the client vehicle, an

initial estimate of the client vehicle’s position and a camera image with the client

vehicle present in the image frame; see Fig. 4.1.

4.1.2 Transforming Tracker Measurements to Inertial

Frame

The ViSP tracker produces measurements of the client vehicle’s pose with respect

to the image frame of the camera mounted on the MRV base (see frame B in Fig.

4.2). Our Kalman Filter and Operational Space Controller operate in the inertial

frame (see frame W in Fig. 4.2). To get the measured pose of the client vehicle in

the inertial frame, we must apply the following transforms:

55

4. State Estimation for Space Robot

Figure 4.1: ViSP tracker block diagram

TWC = TWATABTBC (4.1)

Where TWA is given to us by a GPS position fix from the MRV, TAB is known

through the geometry of the spacecraft, and TBC is published by the ViSP tracker

Figure 4.2: Overview of key coordinate frames in system. The world frame (W), the
MRV base frame (A), the camera frame (B), the MEP frame (M), and the client
vehicle frame (C).

56

4. State Estimation for Space Robot

4.2 Filtering

4.2.1 Hybrid Extended Kalman Filter (H-EKF) Overview

The ViSP tracker provides an estimated measurement of the pose of the client vehicle.

The accuracy of this estimate is influenced by camera noise, variable lighting conditions,

possible occlusions, and the presence of stars in the image background. To optimally

estimate the state of the client vehicle, we implement a hybrid extended Kalman

filter (H-EKF). We use a hybrid extended Kalman filter rather than a traditional

extended Kalman filter because during operations, the underlying dynamics of our

system change from when there is no contact, through contact with the client satellite,

and after contacting the client satellite. To accommodate the switching dynamics,

our H-EKF updates it’s dynamics once contact between the MEP and client vehicle

is detected. Below, we describe the updated equations of our H-EKF:

xk = f(xk−1, uk−1) + ωk−1 (4.2)

Where xk is the state of the client vehicle at time-step t = k, f(xk−1, uk−1) is the

discrete process model state transition function, and ωk−1 is the process model zero

mean Gaussian white noise at time-step t = k.

Our measurement model is described as follows:

zk = h(xk−1) + νk−1 (4.3)

Where zk is the measured state of the client vehicle (given to us by the ViSP

tracker) at time-step t = k, h(xk−1) is the measurement function which returns

the current measurement, zk, given the previous state, xk−1. νk−1 is the zero mean

Gaussian white noise associated with the measurement function. The covariance

matrices associated with the process model noise, ωk−1, and measurement model

noise, νk−1, are denoted Q, and R, respectively.

There are two steps to our H-EKF; prediction and update. Our prediction step is

described by the following equations:

57

4. State Estimation for Space Robot

The predicted state estimate:

x̂−k = f(x̂+
k−1, uk − 1) (4.4)

The predicted error covariance:

P−
k = Fk−1P

+
k−1F

T
k−1 +Q (4.5)

Our update step is described by the following equations:

The measurement residual:

ỹk = zk − h(x̂−k) (4.6)

The Kalman gain:

Kk = P−
k H

T
k (R +HkP

−
k H

T
k)−1 (4.7)

The updated state estimate:

x̂+
k = x̂−k +Kkỹk (4.8)

And the updated error covariance:

P+
k = (I −KkHk)P−

k (4.9)

Here, the ˆ operator denotes an estimate of a variable. The - operator represents

predicted, or prior estimates. The + operator represents updated, or posterior

estimates. Fk−1 is given to us by taking the jacobian of the state transition function

w.r.t. the state evaluated at x̂+
k−1 and uk−1:

Fk−1 =
∂f

∂x
|x̂+

k−1,uk−1
(4.10)

Hk is given to us by taking the jacobian of the measurement function w.r.t. the

state and evaluating it at x̂−k :

Hk =
∂h

∂x
|x̂−k (4.11)

58

4. State Estimation for Space Robot

Now, we distinguish our estimator as a Hybrid Extended Kalman Filter because

the underlying motion model, or process model, of our system switches when the MRV

faces an external contact force. We can infer what force/torque is imparted onto the

client by measuring the location of the contact force, as well as the magnitude/direction

of the force felt at the MRV wrist. See Fig. 4.3

59

4. State Estimation for Space Robot

Figure 4.3: By leveraging the geometry of our MEP hook, we can determine the
location of the contact of the client vehicle, as well as the resultant wrench applied to
the body frame of the client vehicle.

60

Chapter 5

Integrated System

Here, we present results related to the performance of our integrated system. The

integrated system features all of the sub-components presented above working together

simultaneously (tracker, filter, and controller). To demonstrate the performance of

our integrated system, we perform hundreds of experiments at multiple different

initial conditions. Fig. 5.1 shows several camera perspectives during an integrated

docking test. Table 5.1 shows a summary of the integrated system’s performance at

several initial conditions. Tables 5.2 and 5.3 show the initial conditions that were

used for our test. As can be seen from Table 5.1, the integrated tracking, filtering,

and control system performs quite well across the five batches of 100 trials that were

run.

Integrated Test Summary
Batch Avg. Suc-

cess (%)
Avg. Er-
ror, X
(mm)

Avg. Er-
ror, Y
(mm)

Avg. Er-
ror, Z
(mm)

Avg. Er-
ror, Rota-
tion (rad)

1 97.6± 1.14 7 ± 5 2 ± 8 6 ± 6 .01 ± .02

Table 5.1: Performance summary of integrated system across three different initial
conditions. Descriptions of initial conditions can be found in Table 5.2. Average
success and error calculations were computed across 5 sets of 100 trials for each initial
condition scenario.

Each trial of our integrated systems performance test consists of two steps: First,

the approach step, where the MEP is brought directly in front of the client vehicle’s

61

5. Integrated System

Figure 5.1: Three separate camera views from the MRV. Left: the ViSP tracker’s
belief state overlaid onto the camera view from the MRV deck plate. Middle: The
MRV base camera view without a ViSP tracker overlay. Right: The view from the
simulated camera mounted at the front of the MEP.

Integrated Test Initial Conditions - Client Vehicle Pose
Batch CV X

(m)
CV Y
(m)

CV Z
(m)

CV Roll
(rad)

CV
Pitch
(rad)

CV Yaw
(rad)

1 0.8 0.1 0.2 0.65 0.3 0

Table 5.2: Relevant position and Euler angles of the Client Vehicle for each integrated
test.

rocket nozzle. Once the MEP is within 1.5cm of the final approach waypoint (see

blue dot in Fig. 5.2, then the system enters the dock step, where the target waypoint

is moved into the client satellite’s rocket nozzle. Docking is complete once the MEP

reaches within five millimeters of the final docking waypoint inside of the client

vehicle’s nozzle. Fig. 5.3 shows the overlaid plots of the raw measurements coming

from ViSP, the filtered measurement returned by the H-EKF, and the ground truth

measurement provided by our simulation environment.

62

5. Integrated System

Integrated Test Initial Conditions - Arm Joint Angles
Batch θ1 (rad) θ2 (rad) θ3 (rad) θ4 (rad) θ5 (rad) θ6 (rad)
1 -0.304 -0.543 1.941 -1.402 1.264 -1.565

Table 5.3: Manipulator arm joint angles for each integrated test.

Figure 5.2: Third person view of integrated system test. The blue dot outside the
client vehicle represents the target waypoint for the approach stage.

63

5. Integrated System

Figure 5.3: Time history of normalized translational and rotational positions for an
individual integrated system trial. Note that the raw and filtered measurements are
nearly on top of the ground truth signal.

64

Chapter 6

Future Work

This work could be improved and extended in several ways:

6.0.1 Two Arm Manipulation

One extension that could be made would be to enable our operational space controller

to control two manipulator arms simultaneously. This would have direct applications

for the NGC MRV, which is equipped with two manipulator arms. This could enable

more complicated repair and maintenance activities, such as tasks which involve the

use of more than one tool, or a construction task requiring the mating of two separate

bodies.

6.0.2 Moving/Tumbling Client Satellite

Another extension to our work would be to test and validate the performance of

our docking pipeline on a moving client satellite. Our current work assumes an

unactuated, static client vehicle. A moving target would be more challenging because

our controller would have to match both the position and velocity of the client vehicle.

On top of matching the position/velocity of the rocket nozzle of the moving client

vehicle, we would also need to begin a maneuver to cancel out the existing linear

and angular momentum of the client vehicle. This would involve additional motion

planning effort. Additionally, we would need to perform tests to verify the maximum

65

6. Future Work

translational and rotational velocities that our control system can handle while still

guaranteeing a successful capture.

6.0.3 Controller Optimization

We could improve the performance of our controller by performing an optimization

routine over the OSC controller gains. This optimization could be done via a brute

force search, a Monte-Carlo search, or by leveraging existing Bayesian optimization

to tune our controller gains.

6.0.4 Robust Client Satellite Tracking

Our current solution for client vehicle tracking is to use an off the shelf solution,

the ViSP tracker. This tracker performs well in situations without occlusion, but

it struggles somewhat in situations with occlusions. There are several possible

approaches to improve the quality of tracking under occlusion, such as incorporating

the image stream from a depth camera, and using existing state-of-the-art search-

based pose estimation routines [3], or alternatively leveraging existing state of the art

learning based approaches which have been shown to gracefully handle occlusions

[23].

6.0.5 Robust Motion Planning

Our work could be extended by adding a more thorough motion planning step to

the control pipeline. Although our control system uses force feedback to help guide

the MEP into the client vehicle’s rocket nozzle, there are situations where a motion

planner would be necessary in order to guarantee the successful docking of the MEP

with the client vehicle. Example extensions here would be to incorporate the use of a

SLAM system to map out obstacles in the environment, and an A∗ or RRT planner

to plan a feasible trajectory through the environment.

6.0.6 Robustness Analysis

Additional focus can be emphasized on studying the influence of varying environmental

conditions on the operation of our control system. Changes to the environment, such

66

6. Future Work

as varying system and component operation frequencies, changes in lighting, changes

in the image background (i.e. stars, moon, and sun), and changes in image noise

all have the potential to influence the performance of our control system. Studies

investigating the effects of all of these environmental changes could be run in our

existing simulation environment.

6.0.7 Scaling Adjustments

Future work could focus on refining the scale and geometry of the simulation en-

vironment to more faithfully represent the true space system. Currently, some of

the dimensions of the bodies in our environment are not perfectly matched with

the dimensions of the corresponding bodies launched into space. Additionally, our

current simulated MRV system features a 6-DOF arm whereas the true space system

features a 7-DOF manipulator arm. Additional effort could be expended to reduce

the number of geometric differences between our simulated system and the true space

system deployed by NGC.

6.0.8 Hardware in the Loop Testbed

Lastly, our work here does not make any efforts to perform real life robot experiments.

Several groups have deployed their control systems on gravity assisted platforms, such

as air tables, and other frictionless environments, in order to simulate space-like zero

gravity conditions in the plane. Future work could involve developing a hardware in

the loop testbed system to test the efficacy of our control, tracking, and estimation

algorithms on real robots.

An alternative route would be to develop a test rig featuring emulated spacecraft

mounted on 6-DOF travels or robot arms. With such a system, we could ”simulate”

the space dynamics by actuating the relevant bodies using the 6-DOF travels based

on information from control inputs and contacts.

67

6. Future Work

68

Chapter 7

Conclusions

In conclusion, we presented our work on the development and analysis of a simulation

environment and control system for a floating base manipulator to dock with a client

satellite and deliver a life extension payload. We also presented a brief history of space

robots, and an overview of existing control and tracking methods. The integrated

system analysis we performed shows that our estimation and control pipeline enables

successful docking missions from a variety of initial conditions with high confidence.

Our analysis of the vision tracking subsystem tells us that more work is needed in

reducing the uncertainty caused by occlusions in the client satellite pose estimate.

A key result we displayed was our extension of prior work done in operational

space control. We demonstrated through exhaustive numerical experiments that

contact force information can be used to enable an operational space control routine

to operate in a partially observable environment. An additional contribution of this

work was to create a simulation and control pipeline for space manipulators to enable

the rapid development of new research on control and motion planning for space

manipulators.

69

7. Conclusions

70

Bibliography

[1] Planar Motion Control, Coordination and Dynamic Entrainment in Chap-
lygin Beanies, Dynamic Systems and Control Conference, 09 2018. doi:
10.1115/DSCC2018-9037. URL https://doi.org/10.1115/DSCC2018-9037.
V003T40A007. 2.1

[2] Spacelogistics, 2019. URL https://www.northropgrumman.com/space/

space-logistics-services/. 2.1

[3] Aditya Agarwal, Yupeng Han, and Maxim Likhachev. Perch 2.0: Fast and accu-
rate gpu-based perception via search for object pose estimation. In Proceedings of
(IROS) IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 10633 – 10640, October 2020. 2.4, 6.0.4

[4] Morten F. Amundsen, Jørgen Sverdrup-Thygeson, Eleni Kelasidi, and Kristin Y.
Pettersen. Inverse kinematic control of a free-floating underwater manipulator
using the generalized jacobian matrix. In 2018 European Control Conference
(ECC), pages 276–281, 2018. doi: 10.23919/ECC.2018.8550525. 1

[5] Martin Behrendt. A basic working principle of Model Predictive Control.
2009. URL https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.

svg. (document), 3.5

[6] Monimoy Bujarbaruah, Xiaojing Zhang, Eric Tseng, and Francesco Borrelli.
Adaptive mpc for autonomous lane keeping. 02 2018. 3.1

[7] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer
science & business media, 2013. 3.1.2

[8] D’Errico. MATLAB adaptive robust numerical differentia-
tion. https://www.mathworks.com/matlabcentral/fileexchange/

13490-adaptive-robust-numerical-differentiation, 2020. Accessed:
2020-12-16. 3.1.2

[9] Jaskaran Grover, Jake Zimmer, Tony Dear, Matthew Travers, Howie Choset, and
Scott David Kelly. Geometric motion planning for a three-link swimmer in a three-
dimensional low reynolds-number regime. In 2018 Annual American Control
Conference (ACC), pages 6067–6074, 2018. doi: 10.23919/ACC.2018.8431828.

71

https://doi.org/10.1115/DSCC2018-9037
https://www.northropgrumman.com/space/space-logistics-services/
https://www.northropgrumman.com/space/space-logistics-services/
https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation

Bibliography

2.1

[10] Jaskaran Grover, Daniel Vedova, Nalini Jain, Matthew Travers, and Howie
Choset. Motion planning, design optimization and fabrication of ferromagnetic
swimmers. In Proceedings of Robotics: Science and Systems (RSS ’19), pages 79
– 87, June 2019. 2.1

[11] O. Khatib. A unified approach for motion and force control of robot manipulators:
The operational space formulation. IEEE Journal on Robotics and Automation,
3(1):43–53, 1987. doi: 10.1109/JRA.1987.1087068. 2.3

[12] Nathan J. Kong, J. Joe Payne, George Council, and Aaron M. Johnson. The
salted kalman filter: Kalman filtering on hybrid dynamical systems. Automatica,
131:109752, 2021. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.
2021.109752. URL https://www.sciencedirect.com/science/article/pii/

S0005109821002727. 2

[13] Robert E. Lindberg, Richard W. Longman, and Michael F. Zedd. Kinematic
and Dynamic Properties of an Elbow Manipulator Mounted on a Satellite, pages
1–25. Springer US, Boston, MA, 1993. ISBN 978-1-4615-3588-1. doi: 10.1007/
978-1-4615-3588-1 1. URL https://doi.org/10.1007/978-1-4615-3588-1_1.
2.2

[14] Richard W. Longman. The Kinetics and Workspace of a Satellite-Mounted
Robot, pages 27–44. Springer US, Boston, MA, 1993. ISBN 978-1-4615-
3588-1. doi: 10.1007/978-1-4615-3588-1 2. URL https://doi.org/10.1007/

978-1-4615-3588-1_2. 2.2

[15] E. Marchand, F. Spindler, and F. Chaumette. Visp for visual servoing: a generic
software platform with a wide class of robot control skills. IEEE Robotics
Automation Magazine, 12(4):40–52, 2005. doi: 10.1109/MRA.2005.1577023. 2,
2.4, 4.1.1

[16] Matthew T. Mason. Compliance and force control for computer controlled
manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 11(6):
418–432, 1981. doi: 10.1109/TSMC.1981.4308708. 1.2

[17] Mathworks. MATLAB constrained nonlinear optimization. math-
works.com/help/optim/index.html, 2020. Accessed: 2020-12-16. 3.1.2, 3.1.2

[18] Mitsushige Oda, Kouichi Kibe, and Fumio Yamagata. Ets-vii, space robot in-
orbit experiment satellite. In Proceedings of IEEE international conference on
robotics and automation, volume 1, pages 739–744. IEEE, 1996. 2.1

[19] Andrew Packard, Roberto Horowitz, Kameshwar Poolla, and Francesco Borrelli.
ME 132, Dynamic Systems and Feedback. page 493, 2018. 3.1.2

[20] Ludovic Righetti, Jonas Buchli, Michael Mistry, and Stefan Schaal. Inverse

72

https://www.sciencedirect.com/science/article/pii/S0005109821002727
https://www.sciencedirect.com/science/article/pii/S0005109821002727
https://doi.org/10.1007/978-1-4615-3588-1_1
https://doi.org/10.1007/978-1-4615-3588-1_2
https://doi.org/10.1007/978-1-4615-3588-1_2

Bibliography

dynamics control of floating-base robots with external constraints: A unified
view. In 2011 IEEE International Conference on Robotics and Automation, pages
1085–1090, 2011. doi: 10.1109/ICRA.2011.5980156. 2.3

[21] Tomasz Rybus, Karol Seweryn, and J. Sasiadek. Control system for free-floating
space manipulator based on nonlinear model predictive control (nmpc). Journal
of Intelligent Robotic Systems, 85, 03 2017. doi: 10.1007/s10846-016-0396-2.
3.1, 3.1, 3.1.3

[22] L. Sentis and O. Khatib. Control of free-floating humanoid robots through task
prioritization. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 1718–1723, 2005. doi: 10.1109/ROBOT.2005.
1570361. (document), 1, 2.3, 2.3, 3.2.2

[23] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter
Fox, and Stan Birchfield. Deep object pose estimation for semantic robotic
grasping of household objects. In Conference on Robot Learning (CoRL), 2018.
URL https://arxiv.org/abs/1809.10790. 2.4, 6.0.4

[24] Z. Vafa and S. Dubowsky. On the Dynamics of Space Manipulators Using the
Virtual Manipulator, with Applications to Path Planning, pages 45–76. Springer
US, Boston, MA, 1993. ISBN 978-1-4615-3588-1. doi: 10.1007/978-1-4615-3588-1
3. URL https://doi.org/10.1007/978-1-4615-3588-1_3. 2.2

[25] Joseph Virgili-Llop et al. SPART: an open-source modeling and control toolkit
for mobile-base robotic multibody systems with kinematic tree topologies. https:
//github.com/NPS-SRL/SPART, 2018. 3.1, 3.1

[26] G. Visentin and D.L. Brown. Robotics for geostationary satellite servicing.
Robotics and Autonomous Systems, 23(1):45–51, 1998. ISSN 0921-8890. doi: https:
//doi.org/10.1016/S0921-8890(97)00057-2. URL https://www.sciencedirect.

com/science/article/pii/S0921889097000572. Space Robotics in Europe.
1.1

[27] CG Wagner-Bartak, JA Middleton, and JA Hunter. Shuttle remote manipulator
system hardware test facility. In 11th Space Simulation Conference, volume 2150,
page 79, 1980. 2.1

[28] Markus Wilde, Stephen Kwok Choon, Alessio Grompone, and Marcello Romano.
Equations of motion of free-floating spacecraft-manipulator systems: An engi-
neer’s tutorial. Frontiers in Robotics and AI, 5:41, 2018. ISSN 2296-9144. doi:
10.3389/frobt.2018.00041. URL https://www.frontiersin.org/article/10.

3389/frobt.2018.00041. (document), 2.2, 2.2

[29] M. Wüthrich, P. Pastor, M. Kalakrishnan, J. Bohg, and S. Schaal. Probabilistic
object tracking using a range camera. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3195–3202. IEEE, November 2013. 2.4

73

https://arxiv.org/abs/1809.10790
https://doi.org/10.1007/978-1-4615-3588-1_3
https://github.com/NPS-SRL/SPART
https://github.com/NPS-SRL/SPART
https://www.sciencedirect.com/science/article/pii/S0921889097000572
https://www.sciencedirect.com/science/article/pii/S0921889097000572
https://www.frontiersin.org/article/10.3389/frobt.2018.00041
https://www.frontiersin.org/article/10.3389/frobt.2018.00041

Bibliography

[30] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:
A convolutional neural network for 6d object pose estimation in cluttered scenes,
2018. 2.4

[31] Kazuya Yoshida and Yoji Umetani. Control of Space Manipulators with Gen-
eralized Jacobian Matrix, pages 165–204. Springer US, Boston, MA, 1993.
ISBN 978-1-4615-3588-1. doi: 10.1007/978-1-4615-3588-1 7. URL https:

//doi.org/10.1007/978-1-4615-3588-1_7. 2.2, 2.3

74

https://doi.org/10.1007/978-1-4615-3588-1_7
https://doi.org/10.1007/978-1-4615-3588-1_7

	1 Introduction
	1.1 Motivation
	1.2 Problem and Proposed Solution
	1.3 Mission Robotic Vehicle Control System Overview
	1.3.1 Approach
	1.3.2 Docking

	1.4 Contribution

	2 Prior Work
	2.1 Brief History of Robotic Space Systems and Floating Base Systems
	2.2 Floating Base Manipulator Kinematics and Dynamics
	2.3 Control for Floating Base Manipulators
	2.4 Vision Tracking

	3 Controller for Space Robot
	3.1 Model Predictive Control for Planar Space Robot
	3.1.1 Space Robot Center of Mass Analysis
	3.1.2 Model Predictive Control
	3.1.3 Rendezvous Maneuver with MPC
	3.1.4 MPC Limitations

	3.2 Operational Space Control
	3.2.1 Controller Derivation - Approach Phase
	3.2.2 Controller Derivation - Docking Phase
	3.2.3 Singularity Analysis of Generalized Jacobian
	3.2.4 Center of Mass Position Analysis for Spatial MRV System
	3.2.5 Analysis Overview
	3.2.6 Stability Analysis (Linear Control Theory)
	3.2.7 Stability Analysis (Lyapunov Theory)
	3.2.8 Feasibility Analysis
	3.2.9 Blind Insertion Results
	3.2.10 Fully Observable Insertion Results
	3.2.11 Limitations

	4 State Estimation for Space Robot
	4.1 Tracking
	4.1.1 ViSP Overview
	4.1.2 Transforming Tracker Measurements to Inertial Frame

	4.2 Filtering
	4.2.1 Hybrid Extended Kalman Filter (H-EKF) Overview

	5 Integrated System
	6 Future Work
	6.0.1 Two Arm Manipulation
	6.0.2 Moving/Tumbling Client Satellite
	6.0.3 Controller Optimization
	6.0.4 Robust Client Satellite Tracking
	6.0.5 Robust Motion Planning
	6.0.6 Robustness Analysis
	6.0.7 Scaling Adjustments
	6.0.8 Hardware in the Loop Testbed

	7 Conclusions
	Bibliography

