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ABSTRACT

Though robots have become more prevalent in search and rescue operations, they
usually require human operators to direct their search. Automating the search
process can allow larger teams of robots to be used in a wider variety of situations,
such as when communication is limited. Furthermore, automated robots have the
potential to outperform teleoperated ones, especially in cases where it is difficult for
a human to interpret incoming sensor data in real time.

Recent works have used ergodic search methods to automatically generate search
trajectories. Ergodic search scales to a larger number of agents compared to typical
information-based algorithms while still allowing prior knowledge to be incorpo-
rated into the search procedure. The prior knowledge, whether about the locations
of survivors or sensing capabilities of the searching agents, must be encoded in the
form of an information map which specifies which areas agents should spend more
time in when looking for survivors. In this work, we focus on the generation of
mutual information-based maps for robots with binary detectors (i.e., that sense a 1
when a survivor is seen and a 0 otherwise), and demonstrate that, even with such
limited sensing capabilities, the robots are able to hone in on the locations of mul-
tiple moving targets. We show that these information maps results in significantly
lower mean absolute distance (MAD) than previously used maps through simulated
search scenarios. Furthermore, we show that, using these maps, ergodic search can
also outperform standard coverage-based methods for search.
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C h a p t e r 1

INTRODUCTION

Autonomous swarms of robots are becoming more prevalent in search and rescue
operations due to robots’ ability to explore areas unsafe for humans. However,
search algorithms often struggle to fully utilize the collective capabilities of multiple
agents or prior knowledge about locations of potential survivors. Methods which
can take advantage of prior knowledge, like information-based methods, typically
cannot scale to even moderately large swarms of robots [7]. In this work, we
investigate ergodic search methods, which offer a good tradeoff between scalability
and effectiveness.

Ergodic search is a recent method in the field of active information gathering. Active
information gathering algorithms typically work by optimizing agents’ trajectories
in order to maximize an information metric like mutual information [7, 10, 16,
25]. These types of algorithms make full use of agents’ sensing capabilities and
prior knowledge, but have poor computational performance. Ergodic search, in
contrast, treats the search task as a spatial coverage problem over an information
map. Agents’ trajectories are optimized so that the total amount of time spent by
the agents in any region is proportional to the amount of information in that region,
according to the map. While information metrics like mutual information typically
require exponential time to compute [7], the ergodic metric is linear with respect to
the number of agents.

While previous works have focused on ergodic control, we focus on how to create the
information maps in the first place. Since the map defines the behavior of the multi-
agent system, it should take into account both the agents’ sensing capabilities and the
current knowledge about the locations of survivors. To this end, we use the mutual
information of a single sensor measurement to define our information map. By only
considering a single measurement, we avoid the high computational complexity
typically associated with mutual information, and instead rely on the ergodic metric
to balance agents’ exploration and exploitation. We derive equations to efficiently
compute the maps for both single and multi-target search, where in the latter the
number of targets is not known a priori. Though previous works have considered
using a similar metric, expected Fisher information, to create maps for ergodic
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Figure 1.1: Snapshot of the simulation environment used to test and evaluate the
proposed information map. The top left image shows the generated information
map and ergodic trajectories for the three search agents (quadcopters). The bottom
image shows the current belief about the target’s (x, y) position.

search, this required strong assumptions about the measurement model and current
distribution over potential survivor locations (e.g., differentiable andGaussian). Our
method only requires that the measurement model is known beforehand.

To show the effectiveness of these mutual information maps, we demonstrate that
agents with only binary detectors can effectively localize multiple moving targets.
The binary detectors sense a 1 when a survivor is detected and a 0 otherwise and
thus provide little information about the survivors locations. This means that the
agents must take full advantage of their sensing capabilities in order to localize the
survivors. We show that our maps lead to much better accuracy (in terms of mean
absolute distance) in the survivor’s estimated locations compared to themaps used in
prior ergodic search works. We also compare our method to a purely coverage-based
method ("lawnmower" paths) and show that our method results in better accuracy.

A summary of the contributions in this work is as follows

1. A novel mutual information-based map for single target ergodic search with
binary sensors.

2. Derivations of the cardinalized probability hypothesis density (CPHD) filter-
ing equations for binary sensors to use for multi-target tracking.

3. A novel mutual information-based map for multi-target search based on the
derived CPHD filter equations.
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C h a p t e r 2

RELATED WORK

2.1 Coverage Methods
We briefly mention coverage methods such as “lawn-mower” paths and frontier-
based planners due to their well-established usage in search and other exploration
problems. Lawn-mower trajectories, where agents move back and forth across the
search space in a lawn-mower-like pattern, have been widely used for autonomous
exploration to search for static targets like non-moving survivors or unexploded
ordinances [3]. Though these paths are computationally cheap to generate and cover
the entire search space, they do not generalize to the case where targets can move
around. Also, full coverage becomes less useful when sensor noise, such as false
detections or missed detections, are considered or some prior knowledge about the
locations of survivors is known. Frontier methods generally suffer from the same
issues, and so both are mainly limited to static search problems where sensor noise
is low.

2.2 Active Information Gathering
The field of active information gathering (AIG) is focused on how information
metrics, like mutual information and Fisher information, can be used to guide agents
whose goal is to estimate some uncertain parameter (e.g., the locations of survivors).
The basic premise of most of these metrics is to measure how much uncertainty will
decrease after a sequence of actions are performed [25]. While mutual information
measures this uncertainty in terms of entropy, Fisher information gives bounds on
the variance instead.

Many different formulations and approximations for information have been consid-
ered in the AIG literature. In [16], the authors use a particle filter based estimate of
U-mutual information (Rényi information) for fixed proximity sensors to create short
time horizon plans for surveillance. Other works consider information maximizing
control methods for mobile agents using various types of sensors [25, 11]. Due
to computational constraints, these early works choose actions in a greedy manner,
leading to myopic behavior that can result in failure to locate targets.

Recent works have developed less greedy methods using combination of compu-



4

tationally cheaper approximations of information gain and more efficient planning
methods. In [7], the authors derive an approximate form for the mutual informa-
tion when the measurement model is Gaussian, and alleviate some of the issues
of greedy planning by carefully choosing the set of possible actions to avoid con-
sidering multiple trajectories which collect similar information. Other works con-
sider sample-based planning techniques for information acquisition over long time
horizons [12, 13]. Dames [10] considers many ways to make computing mutual
information more computationally feasible—for example, the use of an adaptive
cellular representation for the target belief distribution.

However, despite the these advancements, none of theseAIG algorithms scalewell to
evenmoderately largemulti agent systemswithout relying on decentralized planning.
This is because the computational complexity of mutual information (along with the
majority of other information measures) is exponential in the number of agents and
the length of the planning horizon. The ergodic metric, in contrast, scales linearly
with both the planning horizon and number of agents, making it better suited to
multi-agent systems.

2.3 Ergodic Search
Ergodic search is another technique that has been applied to AIG problems. In the
ergodic search framework, trajectories of agents are optimized so that the agents
visit areas of the search space with a frequency proportional to the amount of
information in that area [20]. An image depicting an ergodic trajectory is shown
in Figure 2.1. This search strategy allows for the planning of long-term trajectories
which balance between exploitation of areas of high information and exploration of
low-information regions, even when the distribution of information is highly non-
convex [24]. Typically, ergodic search works consider continuous action spaces [1,
2, 5, 6, 20, 19, 21, 22, 24], and therefore can better optimize trajectories compared
to most other AIG methods which use coarsely discretized actions.

In [19] and [5], the authors use this framework for search with a heuristic-based map
defined by the target belief distribution. In this work, we show that using the target
belief distribution as the information map is not always effective as just maximizing
the likelihood of observing the target may not be enough to get a good estimate of its
location. Both [22] and [21] consider sensors with non-linear measurement models
and use an information map defined with the Fisher information matrix determinant
in order to get more informative measurements. Though maximizing the Fisher
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Figure 2.1: An example ergodic trajectory. The information map is shown as a
contour plot in the background, and the trajectory as a black line. For each of the
regions #8, the amount of time spent in the region is proportional to the information
in that region. Image taken from [24].

information is desirable, as it can be used to derive a lower bound for the variance
of an unbiased estimator for a target location [9], it requires the measurement model
to be differentiable. Otherwise, the Fisher Information does not exist at every
point. For the binary sensors considered in this work, using Fisher information is
particularly impractical as it is always either zero or undefined. We propose to use
mutual information to generate these maps, which allows to more general sensors to
be used.
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C h a p t e r 3

BACKGROUND

3.1 Ergodic Metric
In this section, we give an overview of the ergodic metric and how it can be
optimized to create ergodic search trajectories. As the focus of this work is on
generating information maps, there is no novelty presented in this section. Similar
information can be found in [21, 24].

First, we define some notation. Let agent 8’s state at time C be G8,C , and its location
within the search space H8,C . The set of all agent states isX and the set of all locations
is Y ⊂ R=. We assume the agents move according to the deterministic, discrete
time dynamics G8,C+1 = 5 (G8,C , D8,C), where D8,C is a control input.

Now, assuming an information map Φ : Y → R is given, we can plan a set of
ergodic trajectories for the agents over a time horizon C� . For brevity, we define
x = [G0,C , . . . , G#,C+C�−1] and u = [D0,C , . . . , D#,C+C�−1]. In ergodic search, the goal
is to match the density of x with Φ. Formally, we want the following relationship:∫

�

C+C�−1∑
g=C

#∑
8=1

XH8,g (H)3H =
∫
�

Φ(H)3H (3.1)

for any � ⊂ Y, where XH8,g is the dirac delta function centered at H8,g. This says that
the time spent by the agents in any region � ofY, should be proportional to the total
information in that region (according to Φ). In general, we assume Φ is normalized
such that

∫
Y Φ(H)3H = 1 and can define the spatial statistics of x as

� (H) = 1
#C

C+C�−1∑
g=C

#∑
8=1

XH8,g (H), (3.2)

While it is unclear how we can optimize the controls u to get the relationship in
(3.1) for an arbitrary set �, [20] derives a metric which is minimized when the
relationship holds for spherical sets (i.e., the set � in (3.1) is a sphere in R=). First,
let F: be a Fourier transform over Y. Note that, similar to [20], we use the cosine
transform rather than the standard Fourier transform. Then, the ergodic metric is
defined as

E(x) =
∑

:∈(Z∗)=
Λ: (F: (�) − F: (Φ))2, (3.3)
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where Z∗ are the non-negative integers and

Λ: =
1

(1 + ||: | |2) (=+1)/2
, (3.4)

where = is the dimension of the search space (Y ⊂ R=). Minimizing the ergodic
metric generally results in trajectories which approximate the relationship in (3.1),
and have been shown to provide a good balance between exploration and exploitation
[24].

As the goal of this work is to find useful information maps, we do not focus much
on the optimization of E and instead rely on CasADi [4] as a black box optimization
library. We do note that there are more efficient methods for optimizing the ergodic
metric. For more information on these methods, see [23, 21].

3.2 Mutual Information
In this section, we give the definition and interpretation of mutual information as
a measure for information gain. At a high level, the mutual information � (+1;+2)
between two random variables +1, +2 describes how much measuring one variable
will decrease the uncertainty in the other. Mutual information is high when two
variables are highly dependent on each other and zero when they are independent.
It is symmetric in the sense that � (+1;+2) = � (+2;+1). Mutual information can be
defined in a few different, equivalent, ways:

� (+1;+2) = E?(+2) [� ! (?(+1 |+2) | | ?(+1))]
= � ! (?(+1, +2) | | ?(+1)?(+2))
= � (+1) − � (+1 |+2),

(3.5)

where E is the expected value, � ! is the Kullback-Leibler (KL) divergence, and �
is the Shannon entropy [9]. Line 2 of (3.5) relates to the interpretation as a measure
of dependence between two the two variables, while line 3 gives the interpretation
of a decrease in uncertainty (entropy).

One major advantage of mutual information compared to Fisher information is that
no assumptions about the differentiability of the measurement model are required.
Past methods have also relied on Gaussian assumptions for the relevant distributions
in order to compute the Fisher information [24]. We show that the mutual infor-
mation can be efficiently computed for arbitrary target belief distributions (e.g., a
particle filter instead of a Kalman filter) with the binary sensors considered.
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We also note that more general forms for mutual information exist, including U-
mutual information, or Rényi information [15, 27]. However, unlike mutual infor-
mation, there is no clear way to keep both interpretations (decrease in uncertainty
and measure of dependence) at the same time [27], and so we only look at mutual
information.

3.3 PHD Filters
Though on the surfacemulti-target trackingmay appear to be a simple generalization
of single target tracking, naïve implementations of multi-target filters have been
shown to be intractable [14, 18, 26, 28]. As the number of targets grows, the size
of the space containing their joint state grow exponentially. For example, if a single
target’s state could be represented as simply its (G, H) ∈ R2 coordinates on the plane,
then the joint state of " targets would lie in

(
R2)" .

For a particle filter representation, this implies that the number of particles re-
quired to effectively estimate the joint multi-target state scales exponentially with
the number of targets [28]. Though Kalman filters seem promising, the number of
parameters to be estimated would still scale quadratically with the number of targets.
Additionally, the Kalman filter is not easily generalizable to the number of targets
isn’t known beforehand.

Probability hypothesis density (PHD) filters take a different approach to the problem
to allow for the efficient estimation of a large and unknown number of target states.
The basic premise behind PHD filters is to treat the joint multi-target density as an
independent and identically distributed (IID) point process [17]. In an IID point
process, the joint multi-target belief is approximated by a separable distribution:

1({B1, B2, . . . , B<}) ≈ (<!)2(<)
<∏
8=1

3 (B8). (3.6)

Here, 1({B1, B2, . . . , B<}) is the estimated probability density (i.e., belief) for the
set of target states B1 through B<. For a non-negative integer <, 2(<) is the
probability that there are < targets and is called the “cardinality” distribution. 3 (·)
is a probability distribution representing the density of targets. The < factorial is
required in order to account for the possible permutations of states within the set.

Because of this approximation, the number of particles in a particle-based imple-
mentation of the PHD filter can scale linearly with the expected number of targets
while still giving good estimates of the target density and number of targets [28]. In
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general, the PHD filtering equations allow for efficient multi-target density estima-
tion.

We note that, usually, “the” PHD filter refers to the case where the cardinality
distribution 2(·) is Poisson since this leads to the simplest forms for the update
equations. When 2(·) is not Poisson, the filter is called a cardinalized PHD (CPHD)
filter instead.
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C h a p t e r 4

SEARCH ENVIRONMENT

In this section, we define the search environment, including the agents, targets, and
the binary sensors used by the agents to find and track the targets. The main purpose
of this section is to define notation, and also define the measurement model of the
binary sensors considered in this work.

4.1 Agents
We are to plan trajectories for # homogeneous agents. Denote agent 8’s state at
time C by G8,C ∈ X and its location within the search space Y ⊂ R= as H8,C . We use
!G : X → Y to map from the agent’s state to its location within the search space.
We assume a deterministic discrete time dynamics model G8,C+1 = 5 (G8,C , D8,C), where
D8,C is the control input at time C.

4.2 Targets
We consider homogeneous targets which move about the search space randomly.
Call target 9’s state at time C B∗

9 ,C
∈ S. We use !B : S → Y to map from a target’s

state to its location within the search space. In the multi-target case, we will use
"∗ to denote the number of targets and s∗C = {B∗1,C , . . . , B

∗
"∗,C} the set of target states.

Since it will be relevant later, we note that s∗C is a member of the power set of S:
%(S). For the single target case, we will drop the index 9 . We assume a known
transition probability density B∗

9 ,C+1 ∼ 6(·|B
∗
9 ,C
) which describes how the target’s state

evolves over time. Note that while the agents know this probability density, they do
not know the outcome of the random process.

4.3 Binary Sensors
In this work, we focus on binary sensors which measure a 1 when a target is detected
and a 0 otherwise. We label the observation of agent 8’s sensor at time C as I8,C . We
call the sensor’s field of view (FOV) + (!G (G)) ⊆ Y, which is the area of the search
space Y visible when a robot is at location !G (G).

In the single target case, a sensor measures I = 1 with probability ?3 when the target
is within+ (!G (G)) (i.e., !B (B∗) ∈ + (!G (G))) andwith probability ? 5 when the target
is outside the sensor’s FOV. ?3 represents the probability of a true detectionwhile ? 5
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is the probability of a false detection. To simplify notation, we will write B∗ ∈ + (G)
instead of !B (B∗) ∈ + (!G (G)), noting that we are really talking about the robot’s and
target’s location and not their full states. We call ℎ(I |B∗, G) the sensor model, which
is a probability distribution over possible observations. For the single target setting,
we have

ℎ(I = 1|B∗, G) =

?3 if B∗ ∈ + (G)

? 5 if B∗ ∉ + (G)
(4.1)

ℎ(I = 0|B∗, G) =


1 − ?3 if B∗ ∈ + (G)

1 − ? 5 if B∗ ∉ + (G)
. (4.2)

For the multi-target case, the sensor model becomes slightly more complex. We
treat it such that a sensor has probability ?3 of observing a single target within its
FOV, and the probability of getting a reading of 1 goes up when there are more
targets within the field of view. Let 1+ (B) be the indicator function for + (G) and

"∗G = |+ (G) ∩ s∗ | =
"∗∑
9=1

1+ (B∗9 ) (4.3)

the number of targets within the sensor’s field of view from state G. Then we have
the sensor model

ℎ(I = 1|"∗G , G) =


1 − (1 − ?3)"
∗
G if "∗G > 0

? 5 if "∗G = 0
(4.4)

ℎ(I = 0|"∗G , G) =

(1 − ?3)"

∗
G if "∗G > 0

1 − ? 5 if "∗G = 0
. (4.5)

These models are used in filtering equations to estimate target locations as well as
in the information maps derived in the following sections.
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C h a p t e r 5

SINGLE TARGET INFORMATION MAP

In this section, we derive the information map for single target search. The goal is
to find a way of computing the mutual information of a single binary observation
for a large number of positions in an efficient way. This is achieved by writing the
mutual information in terms of the measure

`+ =

∫
S

1+ (B)1C+1|C (B)3B, (5.1)

where 1C+1|C (·) is the probability density function representing the belief over target
states, and 1+ (·) is the indicator function for the FOV + (G) for an agent at state G.
Rewriting in terms of `+ will make computing the information map cheap (on the
order of a couple milliseconds for a map of size 40 by 40).

5.1 The Information Map

Proposition 1. The mutual information between the belief of target locations B and
a single measurement I from an agent at state G is

�G (B; I) =`+
(
?3 log

(
?3

?1

)
+ (1 − ?3) log

(
1 − )
?0

))
+

(1 − `+ )
(
? 5 log

(
? 5

?1

)
+ (1 − ? 5 ) log

(1 − ? 5
?0

)) , (5.2)

where ?1 = ?3`+ + ? 5 (1 − `+ ) and ?0 = 1 − ?1 are the believed probabilities of
observing a 1 and 0 respectively.

Proof. We start with the definition of mutual information using KL divergence in
Eq. (3.5) and rewrite it to use the conditional distribution of I on B.

�G (B; I) = � ! (?(B, I; G) | | 1(H)ℎ(I; G)) (5.3)

=

∫
S

∑
I∈{0,1}

?(B, I; G) log
(
?(B, I; G)
1(H)ℎ(I; G)

)
3B (5.4)∫

S

∑
I∈{0,1}

ℎ(I |B; G)1(B) log
(
ℎ(I |B; G)
ℎ(I; G)

)
3B (5.5)
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We write 1(B) in place of 1C+1|C for brevity. Then, we can write ℎ(I; G) in terms of
`+ , ?3 , and ?3 using the sensor model (equations (4.2) and (4.1)) and the law of
total probability.

?1 , ℎ(1; G) =
∫
S
ℎ(1|B; G)1(B)3B (5.6)

= ?3

∫
S

1+1(B)3B + �
∫
S
(1 − 1+ )1(B)3B (5.7)

= ?3`+ + ? 5 (1 − `+ ) (5.8)

Similarly,
?0 , ℎ(0; G) = 1 − ℎ(1; G) (5.9)

= 1 − ?3`+ − ? 5 (1 − `+ ) (5.10)

Then, (5.5) becomes∫
S

[
ℎ(0|B; G)1(B) log

(
ℎ(0|B; G)
?0

)
+ ℎ(1|B; G)1(B) log

(
ℎ(1|B; G)
?1

)]
3B (5.11)

=

∫
S

1+1(B)
[
?3 log

(
?3

?1

)
+ (1 − ?3) log

(
1 − ?3
?0

) ]
3B +∫

S
(1 − 1+ )1(B)

[
? 5 log

(
? 5

?1

)
+ (1 − ? 5 ) log

(1 − ? 5
?0

) ]
3B

(5.12)

Since all the values in the square brackets are constant with respect to B, we can
substitute in the definition for `+ to get the final expression in (5.2):

�G (B; I) =`+
(
?3 log

(
?3

?1

)
+ (1 − ?3) log

(
1 − )
?0

))
+

(1 − `+ )
(
? 5 log

(
? 5

?1

)
+ (1 − ? 5 ) log

(1 − ? 5
?0

))
�

5.2 Efficient Computation of `+
Now that we have the mutual information written in terms of `+ , we discuss how this
allows us to compute the mutual information efficiently. The first step is to discretize
the belief over target locations onto a grid. In this work, 1C+1|C (·) is represented as a
particle filter, so the simplest way is to just round the particle values to the nearest
grid cell and sum up the weights of the particles in each cell. Next, we represent
the indicator function for the FOV of an agent at state G = 0: 10(B) on a grid as
well, where the value of each cell with location H is 1 when H ∈ + (0) and 0 when
H ∉ + (0). Then we can rewrite `+ as

`+ =

∫
S

1+ (B)1C+1|C (B)3B (5.13)
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Figure 5.1: Process for computing the information map �G . The mask 10 for a
sensor with a rectangular FOV is shown in (a) and the current belief 1C+1|C over
target locations is shown in (b). `+ is computed by convolving 10 and 1C+1|C . Then,
equation (5.2) is used to compute the information map �G .

=

∫
S

10(B − G)1C+1|C (B)3B (5.14)

= (10 ∗ 1C+1|C) (G), (5.15)

where ∗ is the convolution operator. Because we can write `+ in terms of the
convolution operator andwe can easily discretize both 1C+1|C and 10, we can efficiently
compute `+ for every G on the grid using image convolution. Once we have
compute `+ , the information map can be computed using (5.2). This full process is
summarized in Figure 5.1. Note that, somewhat counterintuitively, the information
map is significantly different from the belief over the target’s location (and is even
low where the belief is high). This is because of the binary sensor model is highly
non-linear with respect to location of a target.
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C h a p t e r 6

CPHD FILTER FOR BINARY SENSORS

In this section, we derive the correction equations (i.e., the update to the multi-target
belief after making a measurement) for the CPHD filter from the sensor model
described in section 4.3. We note that the predictor equations remain the same as
those derived in [18, 17] with zero for the birth and death rates since we assume the
number of targets stays the same.

6.1 CPHD Filter
In aCPHDfilter, we estimate two distributions, one called the cardinality distribution
2 and the other the target density 3. 2(<) is the believed probability of there being
< targets in the search environment and 3 (B) is a distribution over the states of the
those targets. The assumption made in the CPHD filter is that the full belief over
the set of the targets, which we will call 1(s), is an IID point process

1(s) = ( |s|!)2( |s|)
∏
B∈s

3 (B). (6.1)

We use an IID point process the approximate the true distribution over sets of targets
because computing the full multi-target density is generally intractable [18, 28, 14,
26].

Using the common notation for Bayes filters, we write 2C+1|C and 2C+1|C+1 for the
estimate of the cardinality distribution before and after observation IC+1. Similarly
for the estimate of the target density we write 3C+1|C and 3C+1|C+1.

As the predictor step 3C |C → 3C+1|C remains unchanged from those shown in [18,
17], we refer the reader to that work for the details. This section focuses on the
corrector step 3C+1|C → 3C+1|C+1, which are novel due the different type of sensor
being considered compared to [17] and related works.

Correction Equations
At each time step C, we will want to update our belief from 1C+1|C to 1C+1|C+1, which
consists of updating 2C+1|C to 2C+1|C+1 and 3C+1|C to 3C+1|C+1.
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The correction equation for the cardinality distribution is

2C+1|C+1(<) = 2C+1|C (<) ×

(1 − `+ ?3)< − ? 5 (1 − `+ )< if IC+1 = 0

1 − (1 − `+ ?3)< + ? 5 (1 − `+ )< if IC+1 = 1
, (6.2)

where
`+ =

∫
S

1+ (B)3C+1|C (B)3B (6.3)

is the measure of of the FOV + (G) under 3C+1|C and 1+ is the indicator function for
+ (G).

The correction equation for the density distribution when IC+1 = 0 is

3C+1|C+1(B) ∝ 3C+1|C (B) ×

00 if B ∈ + (G)

1 if B ∉ + (G)
, (6.4)

where 00 = 21/22 and

21 =
∞∑
<=1

2C+1|C (<) (1 − ?3) (1 − ?3`+ )<−1< (6.5)

22 =
∞∑
<=1

2C+1|C (<)
(
(1 − ?3`+ )<−1 − ? 5 (1 − `+ )<−1

)
<, (6.6)

Similarly, when IC+1 = 1, the update is

3C+1|C+1(B) ∝ 3C+1|C (B) ×

01 if B ∈ + (G)

1 if B ∉ + (G)
, (6.7)

where 01 = 23/24

23 =
∞∑
<=1

2C+1|C (<)
(
1 − (1 − ?3) (1 − ?3`+ )<−1

)
< (6.8)

24 =
∞∑
<=1

2C+1|C (<)
(
1 − (1 − ?3`+ )<−1 + ? 5 (1 − `+ )<−1

)
< (6.9)

Derivations
Best IID Point Process Approximation

In order to derive the CPHD correction equations, we must first generalize theorem
4 (Best Poisson Approximation) from [18] to the case where the cardinality distribu-
tion 2(<) is arbitrary. First, we define some terminology. Let s = {B1, . . . , B |s|} ⊂ S
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be the random finite set describing the joint multi-target state, and 5 (s) a proba-
bility distribution over %(S) (the power set of S). � 5 (B) is called the probability
hypothesis density (PHD) for 5 and is uniquely defined by the equation [18]∫

�

� 5 (B)3B = E 5 [|� ∩ s|] , (6.10)

for all � ⊂ S. � 5 (B) is the expected density of targets whose integral over the target
state space S gives the expected total number of targets.

Now we consider theorem 4 from [18], which states that � 5 (B) is the best (in the
information theoretic sense) Poisson approximation to 5 (s). Formally, it is shown
that the Kullback-Leibler (KL) divergence

� !

(
5 (s)

�������� (<!)_
<4−_

<!

<∏
8=1

3 (B8)
)

(6.11)

is minimized when 3 (B) = (1/_)� 5 (B) and _ = E 5 [<]. In this paper, we consider
the more general case where the distribution of the number of targets 2(·) is an arbi-
trary distribution (not necessarily Poisson) and want to show that the KL divergence
is still minimized when 3 (B) ∝ � 5 (B).

Proposition 2 (Best IID Point Process Approximation). We show that

� !

(
5 (s)

�������� (<!)2(<)
<∏
8=1

3 (B8)
)

(6.12)

is minimized when

2(<) = 5 ( |s| = <) , 1
<!

∫
S<

5 ({B1, . . . , B<})3B1 . . . 3B< (6.13)

and 3 (B) ∝ � (B).

Proof. The proof is similar to the proof of theorem 4 in [18]:

� !

(
5 (s)

�������� (<)2(<) <∏
8=1

3 (B8)
)

(6.14)

=

∫
5 (s) log

(
5 (s)

(<!)2(<)∏<
8=1 3 (B8)

)
Xs (6.15)

= 0 −
∫

5 (s)
(
log(2(<)) +

<∑
8=1

log(3 (B8))
)
Xs, (6.16)
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where 0 is constant with respect to 2(·) and 3 (·). We can now look at the contribu-
tions from 2(·) and 3 (·) separately. First, we have

−
∫

5 (s) log(2(<))Xs (6.17)

= −
∞∑
<=0

1
<!

∫
S"

5 ({B1, . . . , B<}) log(2(<))3B1 . . . 3B< (6.18)

by the definition of a set integral. Therefore we have

= −
∞∑
<=0

5 ( |s| = <) log(2(<)). (6.19)

Minimizing this equation is equivalent to minimizing � ! ( 5 ( |s| = <) | | 2(<)), so
the optimal value for 2(<) is 5 ( |s| = <).

Now, looking at the contribution from 3 (·), we have

−
∫

5 (s)
"∑
8=1

log(3 (B8))Xs = −
∫
S
� 5 (B) log(3 (B))3B (6.20)

by proposition 2a from [18]. Since � 5 (B) must be non-negative, we can write it as
_3∗(B), where _ =

∫
(
� 5 (B)3B > 0 and 3∗(B) is a probability density function. So,

we have
= −_

∫
S
3∗(B) log(3 (B))3B. (6.21)

Minimizing this is equivalent to minimizing � ! (3∗(B) | | 3 (B)), so we have a
minimum when

3 (B) = 3∗(B) ∝ � 5 (B). (6.22)

�

Cardinality Distribution Corrector

Using proposition 2, the update to the cardinality distribution 2C+1|C+1(<) should be

2C+1|C+1(<) = 1 ( |s| = < |IC+1, . . . , I1) (6.23)

We are leaving out the explicit dependence of the belief on G (i.e., we are writing
1(s|I) instead of 1(s|I, G)) to reduce clutter. Next,

=
1
<!

∫
S<
1(s<,C+1 |IC+1, . . . , I1)3s<,C+1, (6.24)
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where s<,C+1 , {B1,C+1, . . . , B<,C+1} and 3s<,C+1 , 3B1,C+1 . . . 3B<,C+1 are, again, used
to reduce clutter.

∝ 1
<!

∫
S<
ℎ(IC+1 |s<,C+1)1(s<,C+1 |IC , . . . , I1)3s<,C+1 (6.25)

≈ 1
<!

∫
S<
ℎ(IC+1 |s<,C+1)1C+1|C (s<,C+1)3s<,C+1. (6.26)

Recognizing that the sensor model ℎ(IC+1 |s<,C+1) only depends on the number of
targets within the FOV + (G),

"G , |+ (G) ∩ s<,C+1 |, (6.27)

we can rewrite this as

=
1
<!

<∑
<=0

ℎ(IC+1 |"G (s))
∫
S<,"G=<

1C+1|C (s<,C+1)3s<,C+1. (6.28)

Since 1C+1|C (s<,C+1) is a distribution describing an IIDpoint process,"G ∼ Binomial(<, `+ ),
and so we have

= 2C+1|C (<)
<∑
8=0

ℎ(IC+1 |"G = 8)
(
<

8

)
(`+ )8 (1 − `+ )<−8 (6.29)

For IC+1 = 0, this is

= 2C+1|C (<)
[
(1 − ? 5 ) (1 − `+ )< +

<∑
8=1
(1 − ?3)8

(
<

8

)
(`+ )8 (1 − `+ )<−8

]
. (6.30)

Using the binomial theorem we simplify this to

= 2C+1|C (<)
[
(1 − ? 5 ) (1 − `+ )< + (1 − `+ ?3)< − (1 − `+ )<

]
(6.31)

= 2C+1|C (<)
[
(1 − `+ ?3)< − ? 5 (1 − `+ )<

]
(6.32)

The case for IC+1 = 1 follows similarly and gives us

= 2C+1|C (<)
[
1 − (1 − `+ ?3)< + ? 5 (1 − `+ )<

]
(6.33)

Target Density Corrector

For the target density corrector, proposition 2 showed that 3C+1|C+1(B) should be pro-
portional to �1(s|IC+1,...,I1) (B) in order to get the best IID point process approximation
for 1(sC+1 |IC+1, . . . , I1). First, for all � ⊂ S, we have∫

�

�1(sC+1 |IC+1,...,I1) (B) = E1(·|IC+1,...,I1) [|� ∩ sC+1 |] (6.34)
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To reduce clutter, we will drop the time index on sC+1, making it just s. Then, we
have

=

∫
1(s|IC+1, . . . , I1) |� ∩ s|Xs (6.35)

∝
∫

ℎ(IC+1 |s, IC , . . . , I1)1(s|IC , . . . , I1) |� ∩ s|Xs (6.36)

≈
∫

ℎ(IC+1 |s, IC , . . . , I1)1C+1|C (s) |� ∩ s|Xs (6.37)

=

∫
ℎ(IC+1 |s)1C+1|C (s) |� ∩ s|Xs. (6.38)

We can rewrite |� ∩ s| as
|s|∑
8=1

1� (B 9 ), (6.39)

and use the fact that 1C+1|C (s) represents an IID point process, to give us

=

∞∑
<=1

2C+1|C (<)
<∑
8=1

∫
S<
ℎ(IC+1 |B1, . . . , B<)1� (B8)

©­«
<∏
9=1

3C+1|C (B 9 )
ª®¬ 3B1 . . . 3B< .

(6.40)
For IC+1 = 0,

ℎ(0|"G , G) =

(1 − ?3)"G if "G > 0

1 − ? 5 if "G = 0
, (6.41)

where

"G = |+ (G) ∩ s| =
<∑
9=1

1+ (B 9 ) (6.42)

is the number of targets in s within the FOV + (B) and 1+ is the indicator function
for + (G). Now, we can rewrite the integral in (6.40) as∫

S<
ℎ(IC+1 |B1, . . . , B<)1� (B8)

©­«
<∏
9=1

3C+1|C (B 9 )
ª®¬ 3B1 . . . 3B< (6.43)

=

∫
S<,"G>0

(1 − ?3)"G1� (B8)
©­«
<∏
9=1

3C+1|C (B 9 )
ª®¬ 3B1 . . . 3B<

+
∫
S<,"G=0

(1 − ? 5 )1� (B8)
©­«
<∏
9=1

3C+1|C (B 9 )
ª®¬ 3B1 . . . 3B<

(6.44)
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Using the definition of "G we can rewrite this as

=

∫
S<,"G>0

1� (B8)
©­«
<∏
9=1
(1 − ?3)1+ (B 9 )3C+1|C (B 9 )

ª®¬ 3B1 . . . 3B<
+

∫
S<,"G=0

(1 − ? 5 )1� (B8)
©­«
<∏
9=1

3C+1|C (B 9 )
ª®¬ 3B1 . . . 3B<

(6.45)

=

∫
S<

1� (B8)
©­«
<∏
9=1
(1 − ?3)1+ (B 9 )3C+1|C (B 9 )

ª®¬ 3B1 . . . 3B<
−

∫
S<,"G=0

1� (B8)
©­«
<∏
9=1
(1 − ?3)1+ (B 9 )3C+1|C (B 9 )

ª®¬ 3B1 . . . 3B<
+

∫
S<,"G=0

(1 − ? 5 )1� (B8)
©­«
<∏
9=1

3C+1|C (B 9 )
ª®¬ 3B1 . . . 3B< .

(6.46)

=

∫
S<

1� (B8)
©­«
<∏
9=1
(1 − ?3)1+ (B 9 )3C+1|C (B 9 )

ª®¬ 3B1 . . . 3B<
−

∫
S<

1� (B8)
©­«
<∏
9=1
(1 − 1+ (B 9 ))3C+1|C (B 9 )

ª®¬ 3B1 . . . 3B<
+

∫
S<
(1 − ? 5 )1� (B8)

©­«
<∏
9=1
(1 − 1+ (B 9 ))3C+1|C (B 9 )

ª®¬ 3B1 . . . 3B< .
(6.47)

Now, we write this equation in terms of the measures `�∩+ and `�\+ over 3C+1|C ,
which follow the same definition as (6.3):

=(`�∩+ (1 − ?3) + `�\+ ) ((1 − ?3)`+ + (1 − `+ ))<−1

− (`�\+ ) (1 − `+ )<−1 + (1 − ? 5 ) (`�\+ ) (1 − `+ )<−1
(6.48)

= (`�∩+ (1 − ?3) + `�\+ ) (1 − ?3`+ )<−1 − ? 5 (`�\+ ) (1 − `+ )<−1 (6.49)

Rearranging into terms related to `�∩+ and `�\+ , we get

= `�∩+ (1− ?3) (1− ?3`+ )<−1 + `�\+
(
(1 − ?3`+ )<−1 − ? 5 (1 − `+ )<−1

)
(6.50)

Now, plugging the whole thing into the sum from (6.40), we get

= `�∩+21 + `�\+22, (6.51)
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where

21 =
∞∑
<=1

2C+1|C (<) (1 − ?3) (1 − ?3`+ )<−1< (6.52)

22 =
∞∑
<=1

2C+1|C (<)
(
(1 − ?3`+ )<−1 − ? 5 (1 − `+ )<−1

)
<, (6.53)

are constants with respect to �. Since this should be true for all � ⊂ S, the update
to the density 3C+1|C is

3C+1|C+1(B) ∝ 3C+1|C (B) ×

21 if B ∈ + (G)

22 if B ∉ + (G)
. (6.54)

Since this requires normalization at the end, we can equivalently write the update as

3C+1|C+1(B) ∝ 3C+1|C (B) ×

21/22 if B ∈ + (G)

1 if B ∉ + (G)
. (6.55)

For the case where I:+1 = 1, the derivations are similar and we get

3C+1|C+1(B) ∝ 3C+1|C (B) ×

23/24 if B ∈ + (G)

1 if B ∉ + (G)
, (6.56)

where

23 =
∞∑
<=1

2C+1|C (<)
(
1 − (1 − ?3) (1 − ?3`+ )<−1

)
< (6.57)

24 =
∞∑
<=1

2C+1|C (<)
(
1 − (1 − ?3`+ )<−1 + ? 5 (1 − `+ )<−1

)
< (6.58)

In general, we won’t be able to simplify these equations further, so they are the
final equations for the CPHD filter. In practice, this computation is cheap for a
distribution with a reasonable maximum number of targets such that 2C+1|C (<) = 0
for all < greater than a certain number.
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C h a p t e r 7

MULTI-TARGET INFORMATION MAP

In this section, we derive the information map used for multi-target search. The
idea here is to find the mutual information between the target density 3 (B) and
the next observation IC+1 made by an agent. To reduce clutter, we will write I in
place of IC+1. Similar to the single target mutual information map (chapter 5), we
compute the information for every point on a grid in order to take advantage of the
fast computation of convolution operations.

Proposition 3.

�G (B; I) =
∑

I∈{0,1}
ℎ(I)

[
0I`+

1 + (0I − 1)`+
log(0I) − log(1 + (0I − 1)`+ )

]
, (7.1)

where (same as (6.3))
`+ =

∫
S

1+ (B)3C+1|C (B)3B

and (from section 6.1)

00 =

∑∞
<=1 2C+1|C (<) (1 − ?3) (1 − ?3`(G))<−1<∑∞

<=1 2C+1|C (<)
(
(1 − ?3`(G))<−1 − ? 5 (1 − `(G))<−1) < (7.2)

01 =

∑∞
<=1 2C+1|C (<)

(
1 − (1 − ?3) (1 − ?3`(G))<−1) <∑∞

<=1 2C+1|C (<)
(
1 − (1 − ?3`(G))<−1 + ? 5 (1 − `(G))<−1) < . (7.3)

ℎ(I) is estimated using the current of target density and cardinality distribution
3C+1|C and 2C+1|C and is given as

ℎ(0) =
∞∑
<=0

2C+1|C
[
(1 − ?3`(G))< − ? 5 (1 − `(G))<

]
(7.4)

ℎ(1) =
∞∑
<=0

2C+1|C
[
1 − (1 − ?3`(G))< + ? 5 (1 − `(G))<

]
(7.5)

Though this equation does not simplify down as nicely as in the single target case,
it is still efficient to compute, taking on average a few milliseconds at each time step
in our simulations.
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Proof. This information map is derived from the update equations written in section
section 6.1. This approximates the true mutual information∑

I∈{0,1}

∫
S
3 (B |I)ℎ(I) log

3 (B |I)
3 (B) (7.6)

by using the update from 3C+1|C (B) to 3C+1|C+1 in place of 3 (B |I). This gives us

�G (B; IC+1) ,
∑

IC+1∈{0,1}
ℎ(IC+1)

∫
S
3:+1|:+1(B) log

3C+1|C+1(B)
3C+1|C (B)

(7.7)

=
∑

IC+1∈{0,1}
ℎ(IC+1)

[ ∫
S∩+ (G)

3:+1|:+1(B) log
3C+1|C+1(B)
3C+1|C (B)

+∫
S\+ (G)

3:+1|:+1(B) log
3C+1|C+1(B)
3C+1|C (B)

] (7.8)

Now, normalizing the update equations from section 6.1, we can see that

3:+1|:+1(B) =


00
1+(00−1)`+ when IC+1 = 0

01
1+(01−1)`+ when IC+1 = 1

, (7.9)

so (7.8) becomes

=
∑

IC+1∈{0,1}
ℎ(IC+1)

[
0I`+

1 + (0I − 1)`+
log( 0I

1 + (0I − 1)`+
) +

1 − `+
1 + (0I − 1)`+

log
1

1 + (0I − 1)`+ )

] (7.10)

=
∑

IC+1∈{0,1}
ℎ(IC+1)

[
0I`+

1 + (0I − 1)`+
log(0I) − log(1 + (0I − 1)`+ )

]
(7.11)

�
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C h a p t e r 8

EXPERIMENTS

8.1 Experimental Setup
In order to compare ergodic search with our mutual information maps, we simulate
search scenarios with varying numbers of targets and agents. In both the single
and multi-target experiments, the agents and targets are enclosed in a 6 by 6 meter
space. The targets are represented as red cylinders, though in real life these would
be human survivors or other targets of interest. The agents are quadcopters which
fly at a fixed height above the ground and each have one binary sensor. We assume
that position control is reasonably good for the low velocities the drones will move
at, and so the planned trajectories for the agents are simply a series of waypoints. A
picture of the setup with three targets and two agents is shown in Figure 8.1.

In the simulations, the targets are either static or moves according to a random walk.
The random walk is such that the velocity of the target in the x and y directions
change by a small random value drawn from a normal distribution with standard
deviation 0.0001 ten times a second. The maximum magnitude of the velocity is
clipped at 0.015 m/s, and target which hit the boundary of the environment have
their velocity reset to zero.

The agents’ sensors take measurements at 10 Hz. As described in section 4.3, the
agent’s binary sensors are noisy in the sense that they can get both false detections
and missed detections. When a single target is within the FOV of an agent, its

Figure 8.1: Experimental setup with three targets and two agents
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sensor has probability ?3 = 0.8 of getting a true detection and 0.2 of not detecting
the target. When not observing any targets, they have a probability ? 5 = 0.01 of
getting a false detection and 0.99 of getting a true negative. The sensor model when
multiple targets are in the FOV of the agent can be found in section 4.3, with the
same values for ?3 and ? 5 mentioned above.

In the single target experiments, the target is tracked with a simple particle filter
using 60,000 particles. Information on particle filter implementations can be found
in, for example, [8]. This number of particles is overkill, but contributes relatively
little to computation cost. In the multi-target experiments, the targets are tracked
with a particle implementation of the CPHD filter described in section 6.1, again
with 60,000 particles.

We compare three different methods:

1. Ergodic MI: Ergodic search with our mutual information map (either the
single target or multi-target version depending on the experiment). The infor-
mationmap is computed over a 40 by 40 grid, and 10× 10 Fourier components
are used to optimize the ergodic trajectories. At each time step, sensor mea-
surements are used to update the particle filter. Then, the information map is
updated and ergodic trajectories replanned.

2. Ergodic Density: Ergodic search with the target density used as the informa-
tion map. This does not take into account the sensor model when performing
the search. The same specifications as method Ergodic MI are used for the
ergodic search procedure.

3. Lawnmower: A lawn-mower trajectory. For multiple agents, the path is just
split evenly between the agents so their paths do not overlap.

8.2 Single Target Results
First, we compare the three methods in simulations with a single moving target. The
starting location of the target is randomized according to a uniform distribution over
the search space. We use mean absolute distance (MAD) to measure how accurate
the belief over target states is. For a particle filter with particles B8 and weights F8,
the MAD is computed as ∑

8

F8 | |B8 − B∗ | |2, (8.1)
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Figure 8.2: Comparison of different methods for tracking a single moving target
with two agents in terms of MAD. Highlighted areas show ± 2 standard errors
(standard deviation of the mean).

where B∗ is the true target location and | |B8−B∗ | |2 is the Euclidean distance. Figure 8.2
shows the results from 40 simulations of each method over 200 time steps (20
seconds) with two agents. As can be seen, Ergodic MI results in much lower steady
state error than the others as the agents are able to better utilize their sensors. The
Lawnmower method, as expected, performs the worst since the targets move over
time.

Next, we look at the effect of the number of agents on the quality of the search while
using method Ergodic MI. The results from 40 simulations of each scenario are
plotted in Figure 8.3. As can be seen, there are diminishing returns for larger teams
of agents. While the difference between a single searching agent and two searching
agents is quiet large, more agents seems to provide relatively little decrease in the
MAD over time.
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Figure 8.3: MAD vs. time for varying numbers of agents and a single target using
methodErgodicMI. Highlighted areas show± 2 standard errors (standard deviation
of the mean).

8.3 Multi-Target Results
For the multi-target scenarios, we need to measure MAD in a different way. We
use the particle filter density estimate from the CPHD filter to do this. For each
particle, we find which target it is closest to and have it only contribute to the MAD
for that target. Then, we average the individual MADs to give the reported MAD.
Figure 8.4 visualizes how the particles are separated by target.

Now, we first compare the MAD over time for the three listed methods. The
cardinality distribution 2(<) is initialized so that there is an equal probability of
being between 0 and 9 targets. The expected number of targets is just a mean over
this distribution, i.e.,

9∑
<=0

<2(<). (8.2)

In this comparison, the true number of targets is three and the targets initial locations
are randomized uniformly over the search space. The results of 40 simulations of
each method are shown in Figure 8.5. As can be seen, the Ergodic MI method
performs the best both in terms of MAD and the expected number of targets. Both
the lawnmowermethod and ergodic densitymethod fail to keep track of the targets
locations and therefore also have worse estimates of the number of targets.

Next, we look at how the performance is affected by the number of searching agents.
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Figure 8.4: How MAD is computed in the multi target setting. Each • is a particle
and each X a target. The MAD is computed for each target individually based on the
particles that are closest to it (blue lines show separation), and then all the values
are averaged to give the final MAD.
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Figure 8.5: Comparisons between three methods with three targets.

Figure 8.6 shows this comparison for 40 simulations with three targets in each one.
Although the MAD follows the same trend seen the single target search simulations,
withmore agents resulting in better performance, the expected number of targets over
time gets worse with the number of agents. This is a limitation of our derived CPHD
filtering method. As noted in [18], the PHD filter does a poor job of estimating the
number of targets when the sensors have low signal to noise. Though the CPHD
is proposed to solve this issue [17], it does not guarantee that the expected number
of target over time will be unbiased. In our experiments, we found that the CPHD
filter tended to overestimate the number of targets in most situations.

Finally, we look at how the performance of two searching agents varies with the
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Figure 8.6: Comparisons for different numbers of searching agentswith three targets.
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Figure 8.7: Comparisons for different numbers of targets with two searching agents.

number of targets. The result from 40 simulations with two agents and 2, 3, 6,
and 9 targets are shown in Figure 8.7. As can be expected, the expected number
of targets is more difficult to estimate with more targets per agent. Interestingly,
the MAD seems to converge to around the same value regardless of the number of
targets, though this is somewhat misleading because the MAD naturally is higher
for fewer number of targets. Figure 8.8 shows a “summed” version of MAD, where
instead of averaging the individual target MADs, they are instead added together.
This runs into the opposite issue of the averaging version, making it so that more
targets results in a naturally higher value. More important is the decrease in the
MAD over time, which, as expected, is greater for fewer targets.
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Figure 8.8: Comparisons of “summed” MAD for different numbers of targets with
two searching agents.
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C h a p t e r 9

CONCLUSIONS

In this work, we derived mutual information maps for both single and multi-target
search with binary sensors. Additionally, we derived the CPHD filtering equations
for these sensors in order to track an unknown number of targets. We show that
our maps results in better target localization accuracy than a naive map which does
not consider the agent’s sensor model. We also demonstrate that a "lawnmower"
coverage method has significantly worse performance.

This work shows that using information-theoretic metrics to create maps for ergodic
search can significantly increase the search performance. This is especially impor-
tant in search and rescue operations, where it is necessary to quickly and accurately
locate survivors.

In future works, we would like to consider other sensing modalities to allow our
method to be used in wider variety of situations. In addition, we would like to
improve the multi-target filtering equations to get better estimates of the number of
targets as this appears to be the biggest weakness of our method.
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