
Adaptive and Efficient Models for Intent

Recognition

Tejus Gupta

CMU-RI-TR-21-51

July 12, 2021

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Katia Sycara, chair

Changliu Liu
Wenhao Luo

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2021 Tejus Gupta. All rights reserved.

To Mom, Dad and Yash.

iv

Abstract

Assistive robots should have the ability to understand the intent of humans,
predict their behavior, and plan to provide anticipatory assistance in
complex real-life environments. In this thesis, we present adaptive and
efficient algorithms for recognizing human intent.

We develop adaptive models for human intent recognition in a simulated
search and rescue scenario. Humans vary widely in their behavior style due
to different preferences, initial beliefs, internal world models, and planning
mechanisms. A generic (non-adaptive) prediction model, therefore, has
limited utility in this setting. Our adaptive model can recognize a rescuer’s
behavior patterns online and make better predictions. We show that
adaptive models trained on a wide variety of simulated planning-based
agents can transfer to humans and outperform generic models trained on
limited human data.

We also present an efficient inverse reinforcement learning algorithm,
called f-IRL, which directly optimizes a parameterized reward function
to match the demonstrator’s state distribution. We show that f-IRL can
efficiently learn the demonstrator’s intent - it can learn to imitate control
policies from just a single demonstration. In addition, we show that the
learned reward can be used to transfer policies to different dynamics.

v

vi

Acknowledgments

I would like to express my gratitude to my family and many friends who
have helped me write this thesis. I would like to thank my advisor Katia,
for her invaluable guidance especially. I am also thankful to my committee
members - Changliu and Wenhao, and all my collaborators - Vidhi, Rohit,
Huao, Ini, Dana, Michael, Sophie, Harshit, Yufei, Tianwei, Lisa, and Ben.

vii

viii

Funding

This work was supported by DARPA Award HR001120C0036. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency (DARPA).

ix

x

Contents

1 Introduction 1

2 Background 3
2.1 Theory of Mind . 3
2.2 Inverse Reinforcement Learning . 4
2.3 Trajectory Prediction . 7
2.4 Adaptive Models . 7

3 Adaptive Models for Human Intent Prediction 9
3.1 Introduction . 9
3.2 Method . 11

3.2.1 Faux-human Agents . 11
3.2.2 Adaptive Models . 12

3.3 Study Design . 13
3.4 Experiments . 15
3.5 Results . 17
3.6 Conclusion . 19

4 Inverse Reinforcement Learning via State Marginal Matching 21
4.1 Introduction . 21
4.2 Preliminaries . 22
4.3 Learning Stationary Rewards via State-Marginal Matching 24

4.3.1 Analytic Gradient for State Marginal Matching in f -divergence 24
4.3.2 Learning a Stationary Reward by Gradient Descent 25
4.3.3 Robust Reward Recovery under State-only Ground-truth Reward 26
4.3.4 Practical Modification in the Exact Gradient 27

4.4 Experiments . 27
4.4.1 Matching the Specified Expert State Density 29
4.4.2 Inverse Reinforcement Learning Benchmarks 29
4.4.3 Using the Learned Stationary Reward for Downstream Tasks . 30

4.5 Conclusion . 33

5 Conclusions 35

xi

A Inverse Reinforcement Learning using State Marginal Matching 37
A.1 Derivation and Proof . 37

A.1.1 Analytical Gradient of State Marginal Distribution 37
A.1.2 Analytical Gradient of f -divergence objective 40
A.1.3 Extension to Integral Probability Metrics in f -IRL 42
A.1.4 f -IRL Learns Disentangled Rewards w.r.t. Dynamics 42

A.2 Implementation Details . 43
A.2.1 Matching the Specified Expert State Density on Reacher (Sec

4.4.1) . 43
A.2.2 Inverse Reinforcement Learning Benchmarks (Sec 4.4.2) 46
A.2.3 Reward Prior for Downstream Hard-exploration Tasks (Sec

4.4.3.1) . 48
A.2.4 Reward Transfer across Changing Dynamics (Sec 4.4.3.2) . . . 48

Bibliography 51

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xii

List of Figures

3.1 Human participants as rescuer see the view in (a). The bird’s eye view
of the environment as in (b). 14

3.2 Different Map Perturbations for the Search and Rescue Missions . . . 15
3.3 Examples of Intent Prediction : Mission State (Left), Predicted Intent

(Right) . 17

4.1 Environments: (left to right) Ant-v2, Hopper-v2, HalfCheetah-v2,
Reacher-v2, and Walker2d-v2. 28

4.2 Forward (left) and Reverse (right) KL curves in the Reacher environ-
ment for different expert densities of all methods. Curves are smoothed
in a window of 120 evaluations. 29

4.3 Training curves for f -IRL and 4 other baselines - BC, MaxEnt IRL,
f -MAX-RKL and AIRL with one expert demonstration. Solid curves
depict the mean of 3 trials and the shaded area shows the standard
deviation. The dashed blue line represents the expert performance and
the dashed red line shows the performance of a BC agent at convergence. 31

4.4 Left: Extracted final reward of all compared methods for the uniform
expert density in the point environment. Right: The task return
(in terms of rtask) with different α and prior reward weight λ. The
performance of vanilla SAC is shown in the leftmost column with λ = 0
in each subplot. 31

A.1 Top row: A healthy Ant executing a forward walk. Bottom row:
A successful transfer of walking behavior to disabled Ant with 2 legs
active. The disabled Ant learns to use the two disabled legs as support
and crawl forward, executing a very different gait than previously seen
in healthy Ant. 49

xiii

List of Tables

3.1 Accuracy for predicting the navigational intent for different algorithms. 18

4.1 Selected list of f -divergences Df (P || Q) with generator functions f and
hf defined in Theorem 4.3.1, where f is convex, lower-semicontinuous
and f(1) = 0. 25

4.2 We report the ratio between the average return of the trained (stochas-
tic) policy vs. that of the expert policy for different IRL algorithms
using 1, 4 and 16 expert trajectories. All results are averaged across 3
seeds. Negative ratios are clipped to zero. 32

4.3 The ratios of final return of the obtained policy against expert return
across IRL methods. We average f -IRL over FKL, RKL, and JS. ‘-’
indicates that we do not test learned rewards since AIRL does poorly
at these tasks in Table 4.2. 32

4.4 Returns obtained after transferring the policy/reward on modified Ant
environment using different IL methods. 32

A.1 AIRL IRL benchmarks task-specific hyper-parameters. 48

xiv

Chapter 1

Introduction

Intent recognition is a crucial component in shared autonomy and assistance systems.

In this thesis, we focus on the adaptivity and efficiency of intent recognition algorithms.

Adaptivity allows our algorithms to adapt to specific humans and make better

predictions as the system observes the humans’ decisions online. Efficiency allows

our algorithms to identify the demonstrator’s intent using a few demonstrations.

We consider a simulated search and rescue scenario for studying adaptive intent

prediction algorithms. Human participants are tasked with searching for and rescuing

victims in a simulated setting. We consider the task of predicting the rescuer’s triage

and navigation decisions in this setting. The rescuers make these decisions to optimize

their task performance, and so the predictive model needs to reason about the human’s

theory of mind and utility of different decisions over long time horizons to make these

predictions. These participants vary widely in their preferences, behavior style, initial

beliefs, internal world model, etc. A generic prediction model, therefore, has limited

utility in this setting. Our adaptive algorithms can recognize a specific rescuer’s traits

and use them to make better predictions in future missions. For example, it can

recognize that a specific human has poor memory and so often forgets information

from earlier parts of the mission. The prediction model can then condition future

predictions on these learned characteristics of the human.

We train the adaptive models completely in simulation by creating a wide variety

of planning-based agents. These planning-based agents are designed to mimic human

behavior, and we, therefore, called them faux-human agents. We show that adaptive

1

1. Introduction

models trained on these faux-humans generalize to human trajectories and can

do better than models trained on limited human data. These predictions help us

understand the rescuer’s navigation and triage strategy and would help provide

anticipatory assistance to the human.

In the second part of this thesis, we consider the inverse reinforcement learning

(IRL) problem and propose an efficient method based on state-marginal matching.

The main theoretical result of our work was the derivative of any general f-divergence

between the expert and policy state distributions w.r.t. the reward parameters.

We demonstrated that the resulting algorithm, called f-IRL, improves upon sample

efficiency of previous reward-inference and imitation learning methods. This work

enables robots to learn humans’ intent and imitate them using just a single demon-

stration. This also opens the door to provide new types of expert supervision, like

which states are unsafe and should be avoided. These capabilities are an essential

step towards enabling socially intelligent robots.

2

Chapter 2

Background

Intent recognition and behavior prediction are essential components for any socially-

intelligent robot. Social robots need to be able to understand the intent of humans,

predict their behavior, and plan to collaborate with them in complex real-life envi-

ronments. In this chapter, we discuss various tools used for these tasks. In particular,

we review algorithms for theory of mind, trajectory prediction, inverse reinforcement

learning, and learning adaptive models (meta-learning). We also describe some

applications of these methods for robotic assistance and shared autonomy systems.

2.1 Theory of Mind

Methods based on Theory of Mind (ToM) framework reason in joint belief-intent

space to understand the demonstrator’s behavior. These methods can attribute a

person’s suboptimal behavior to false beliefs. The Sally-Anne Test [67] is a popular

psychological test used to measure humans’ ability to use a theory of mind.

Baker et al. [8] model the agent’s decision-making as optimal control over a

POMDP, and design inference algorithms that share a person’s ability to identify

an agent’s beliefs and desires from its behavior. Their experiments show that this

algorithm better matches the human’s predicted belief and desires compared to

algorithms that assume that the agent has full observability of the environment or

that the agent does not update its beliefs.

Several works have built upon Baker et al. [8] by proposing better models for human

3

2. Background

behavior. Evans and Goodman [13], Evans et al. [14] model bounded rationality and

can reason about the (possibly faulty) planning mechanism of the agent. Recently,

Reddy et al. [53] proposed TOM models that also reason about human’s internal

model of the world. However, most of these results were demonstrated in smaller

settings, and it is challenging to scale Bayesian inference using ToM models to large

environments such as ours.

The Machine Theory of Mind [49] model learns to infer agent’s intents and latent

characteristics directly from data via meta-learning. It first observes the trajectories

of a large number of agents to compute its prior on an agent’s behavior. It then

predicts a specific agent’s intentions by computing the posterior conditioned on a

(small number of) agent’s trajectories. This inference is made directly using the TOM-

Net. TOM-Net comprises three modules: a character net, a mental state net, and a

prediction net. The character net summarizes the agent’s prior trajectories into an

embedding (encodes the prior). The mental state net summarizes the agent’s current

trajectory. The prediction net mimics Bayesian inference to predict subsequent agent

behavior. Rabinowitz et al. [49] choose to make models for direct prediction instead

of first assuming a generative model of an agent’s behavior and inverting it. This

trades off data efficiency for expressibility - the TOM-Net was trained on thousands

of agent trajectories. Moreover, this approach requires supervision to predict the

beliefs of the agents and to recognize false beliefs.

2.2 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) methods aim to learn the reward function

from expert demonstrations. The reward can be used to train a policy (apprentice-

ship learning), or to understand the demonstrator’s intent and asist them (shared

autonomy).

Batch IRL methods [1, 43, 55] obtain a policy by learning a reward function from

sampled trajectories of an expert policy. MaxEntIRL [72] learns a stationary reward

by maximizing the likelihood of expert trajectories, i.e., it minimizes forward KL

divergence in trajectory space under the maximum entropy RL framework. Similar to

MaxEntIRL, Deep MaxEntIRL [68] and GCL [16] optimize the forward KL divergence

in trajectory space. A recent work, EBIL [37], optimizes the reverse KL divergence in

4

2. Background

the trajectory space by treating the expert state-action marginal as an energy-based

model. Another recent method, RED [66], uses support estimation on the expert

data to extract a fixed reward, instead of trying to minimize a f -divergence between

the agent and expert distribution.

Finn et al. [15] showed that GANs [22] with a special structure in the discriminator

can be used to learn the reward. Adversarial IRL [18, 48] follows this direction, and

proposes a practical method based on the adversarial reward learning formulation.

This method can be shown to minimize the reverse KL divergence between the expert

and policy state distribution.

Another direction of IRL research has formulated IRL as a bilevel optimization

problem where we aim to find a policy whose performance is close to the expert’s

on the unknown reward function. This problem can be written as IRL(τE) =

arg minr∈R minπ∈ΠEτE [r(s, a)]− Eπ[r(s, a)]. Abbeel and Ng [1] first introduced this

formulation and proposed an efficient solution in their seminal paper. Maximum

margin planning [51] recognizes this problem as being equivalent to a structured

maximum margin problem, and propose an algorithm based on subgradient descent.

This method is applicable to non-linear reward parameterizations as well.

Online IRL methods can recognize the demonstrator’s intent from partial trajec-

tories. In a Bayesian framework [50], the actions of the expert acts as a evidence for

updating a prior on reward functions. This inference can be performed using Markov

chain Monte Carlo (MCMC) methods. In fact, the original IRL objective by [43] can

be shown as MAP estimate with a Laplacian prior. This framework can deal with

suboptimal experts and limited data, and can incorporate prior information as well.

Their key theoretical insight is that the Markov Chain will mix rapidly for a uniform

prior since the likelihood function is pseudo-log-concave. Their experiments show that

domain knowledge about a problem can be incorporated into the IRL formulation as

an informative prior, and that their method is more sample-efficient than Ng et al.

[43]’s algorithm.

It is often difficult for humans to demonstrate behaviors for high-dimensional

dynamical systems, and a preference-based approach may be practical in such scenarios.

In Sadigh et al. [56]’s work, the system actively generates two candidate feasible

trajectories for the user to rank, and updates its posterior distribution on rewards.

The candidate trajectories are optimized so as to maximize the expected volume

5

2. Background

removed from the hypothesis space.

Sadigh et al. [56] use the maximum entropy RL framework. So the probability of

the user preferring τA over τB is exp(r(τA))
exp(r(τA))+exp(r(τB))

. We can update r based on user’s

preference via Bayes rule. The trajectories τA and τB are chosen so that volume

reduced under either of user’s preference is maximized. In practise, this optimization

is done by sampling reward functions from current p(w) and optimizing query so that

a large number of these reward functions can be discarded. Note that unnormalized

p(w) is maintained implicitly as a multiplication of updates based on previous user

preferences (prior is uniform), and reward functions can be efficiently sampled via

MCMC since p(w) is log-concave. Their experiments confirm their hypothesis that

active query synthesis leads to efficient and accurate reward inference.

Demonstrated data can often be explained more efficiently locally than by a

global reward function. The encoding of such behavior using a global intention

model requires a reward structure with large number of redundant state-action based

rewards. Instead, we can assume that the global task can be decomposed into smaller

subtasks that require considerably less modeling effort. These subgoals can be then

be used as building blocks to explain complex behavior.

Bayesian Nonparametric Inverse Reinforcement Learning (BNIRL) [39] models

the generative process of decisions as subgoal selection (using Chinese Restaurant

Process prior), and optimizing for selected subgoal in each segment of trajectory. The

inverse model is able to segment trajectories and identify subgoals for each trajectory.

The hidden variables in this generative process are the partition assigment zi for

each state si in demonstration, and subgoal for each partition gzi . They use Gibbs

sampling to sample from p(z, g|s1:N).

Bayesian Multitask Inverse Reinforcement Learning [12] proposed a hierarchical

prior over reward functions to account for the fact that different trajectories in a data

set could reflect different behavioral intentions, e.g., because they were generated by

different domain experts.

Inverse Reinforcement Learning via Nonparametric Subgoal Modeling [61] improves

upon limitations of BNIRL, e.g., it is restricted to pure subgoal extraction and does

not inherently provide a reasonable mechanism to generalize the expert behavior

based on the inferred subgoals.

Apprenticeship Learning About Multiple Intentions [6] assumes that expert tra-

6

2. Background

jectories are generated from a set of K reward functions, and uses the EM algorithm

to cluster the trajectories and identify the reward functions.

Exploring Hierarchy-Aware Inverse Reinforcement Learning [10] models decision-

making as choosing from a (pre-defined) set of options, and does inference over this

model using MCMC. This method assumes that we have a known small set of options,

since considering the set of all possible options is exponentially large.

2.3 Trajectory Prediction

Direct trajectory prediction with neural sequence models [21] [40] have shown promis-

ing results. In particular, the transformer [63] is a popular attention mechanism for

sequence modeling tasks and achieves state-of-the-art results on various benchmarks.

These models are most commonly used for tasks with a large amount of available

data, such as pedestrian and vehicle trajectory forecasting. It is challenging to train

these models with a few trajectories for a new task.

Recently Shah et al. [58] investigated the utility of learning the human’s model of

decision-making compared to assuming a model such as Boltzmann optimal. Their

results corroborate the results by Armstrong et al. [4] which states a No Free

Lunch theorem for intent recognition for an agent with an unknown decision-making

model. This implies that we need to bound the hypothesis space of human models to

enable sample-efficient learning. Our work can be seen as a way of constructing this

hypothesis space.

2.4 Adaptive Models

Meta-learning, ”learning to learn” is a common framework for training models that

can adapt quickly to a new input distribution. This could be used, for example, to

adapt the model to a new task or to a new human. Meta-learning involves learning a

policy modification/learning strategy.

One research direction is metric-based meta-learning which learns a similarity

metric between tasks and uses the network most suited to the test task. Prototypical

Networks [60] is a representative method in this class of algorithms.

7

2. Background

Another research direction is based on learning parameters of an optimization

method. For example, MAML [17] trains the parameters of the model such that the

model can be easily fine-tuned using a small amount of data from a new task. Recent

work such as Reptile [44] has focused on improving the stability of optimization-based

meta-learning algorithms.

Learning a Prior over Intent via Meta-Inverse Reinforcement Learning [69] uses

MAML to learn a reward prior. This reward prior can be quickly updated using

MaxEnt IRL to learn the user’s intent from just a few demonstrations.

Scalable Meta Inverse Reinforcement Learning through Context-Conditional Poli-

cies (SMILe) [19] assumes access to a context variable describing the environment and

demonstrators, along with expert demonstrations. During meta-training, they train

context-conditioned discriminators and policies using off-policy learning (similar to

AIRL). In their experiments, they assume that the expert demonstrations themselves

form the context, and train an encoder to generate the context from trajectories.

Meta-Inverse Reinforcement Learning with Probabilistic Context Variables [70] is

a similar work that learns a trajectory to context encoder and context-conditioned

reward functions.

8

Chapter 3

Adaptive Models for Human

Intent Prediction

3.1 Introduction

People exhibit a wide variety of preferences, beliefs, and styles of behavior. Therefore,

a generic model of human behavior has limited utility for intent recognition. This

motivates our goal of learning intent recognition models that can adapt online upon

observing a specific person. We model the individual differences in people completing

the same task so that our model can learn to recognize them online and improve its

predictions.

Intent prediction is a crucial component for any human-robot interaction system.

The robot can use the predicted human intent to provide anticipatory assistance or

collaborate with humans. Liu et al. [35] showed that effective intent prediction could

reduce joint task completion rate, are preferable to humans, and are perceived to

be collaborative. Even though Bayesian goal inference has a significant error rate of

25-40%, humans found it almost as helpful as robots with knowledge of ground-truth

intent. This suggests that an attempt to predict and adapt to human goals—even

under limited accuracy— can significantly affect the team’s objective performance

and the human’s perception of the robot.

Previous work has shown the utility of intent prediction in several collaborative

9

3. Adaptive Models for Human Intent Prediction

and assistance tasks. For example, Nikolaidis et al. [45] proposed a framework for

learning human intents from demonstrations that enables the robot to compute a

robust policy for a collaborative task with a human. Similar work has shown the

utility of intent prediction for shared autonomy systems [28, 38, 52].

However, a significant limitation of previous intent recognition methods is learning

or assuming a generic model of human behavior. For example, Inverse Reinforcement

Learning (IRL) methods assume a human-decision model and invert this model to

infer the demonstrator’s intent from its actions. The most popular model is the

Boltzmann optimal model [71] which assumes that the human’s policy is the maximum

entropy policy for its internal reward. Recent work has proposed more sophisticated

modes of decision-making that account for limited planning ability, false beliefs, and

incorrect internal models of the world. However, these models remain uniform across

people. They do not model the individual differences between people.

In this work, we demonstrate the utility of adaptive models for human intent

recognition. As the model observes a person’s behavior, it recognizes their personal

traits in an online manner and specializes in its predictions. For example, an adaptive

model can recognize an aggressive driver and predict their behavior accordingly

in future timesteps. Such models are necessary and beneficial for accurate intent

recognition.

Our approach for training adaptive models uses prediction models with context

variables and is motivated by similar work for transferring control policies from simu-

lation to the real world. This context variable encodes the individual characteristics

of a person and allows the predictor to adapt to the given human appropriately.

Previous work has used meta-learning to learn a context predictor using simulated

data. For example, Rapid Motor Adaptation [31] uses an adaptation network to

predict the physical characteristics of the terrain, such as friction. Our critical insight

is to create a variety of simulated planning-based agents and use them to simulate

the diversity of real humans. These planning-based agents have a variety of planning

horizons, tolerance to risk, high-level goals, belief update mechanisms, etc. We use

these simulated agents to train our predictions model and context predictors.

We show that adaptation methods can be prone to issues due to distribution

shift between the planning-based agents and real humans. Since it is challenging

(impossible?) to model the variety of real humans accurately, this distribution shift will

10

3. Adaptive Models for Human Intent Prediction

always exist. We show that certain classes of optimization-based context-predictors

are more robust to this distribution shift.

We demonstrate our results on human subjects in a simulated search and rescue

task. The participants are tasked with searching for and rescuing victims in a 3D

simulation of a realistic office building with several rooms and corridors where the

disaster has taken place. Before starting the mission, we provide the rescuer with

the building’s original floor plan to plan their route. During the mission, they may

encounter several changes due to the damage, such as wall collapse. Some critically

injured victims take more time to triage and may expire sooner than other victims.

This task requires a good navigation strategy to explore the map efficiently and make

triage decisions about whether to come back to rescue low-priority victims later on in

the mission. We consider the task of predicting the human rescuer’s navigation and

victim triage decisions.

We trained our adaptive models to utilize information from one mission of a

person to make predictions at later missions of the same person. We empirically

demonstrate that our models adapt their predictions online to make more accurate

predictions. The second mission has different map perturbations, victim locations,

and initial player beliefs, and therefore the models can not memorize the rescuer’s

actions and need to generalize.

In summary, we contribute an empirical analysis of different approaches for training

adaptive intent prediction models.

3.2 Method

Our adaptation models are trained using meta-learning on trajectories from planning-

based agents. We now describe both the design of planning-based agents and the

meta-learning algorithms we employ.

3.2.1 Faux-human Agents

We create a wide variety of planning-based agents that are designed to quickly search

the map and triage as many victims as possible. We formulate the search and rescue

task as a partially observable Markov decision process, and create online planners

11

3. Adaptive Models for Human Intent Prediction

for completing this task. These planning-based agents are designed to simulate the

variations in human behavior, and we, therefore, refer to them as ‘faux-human’ agents.

However, humans do not always act rationally, and therefore, these naive faux-

human agents’ behavior may be quite different from human behavior. We ameliorate

this issue by collecting a small set of pilot human data and incorporating the rescuers’

observed biases into the faux-human agents. Some of the observed biases in the

rescuer’s decision-making were: (1) choosing subgoals in a soft-optimal manner

(modeled using Boltzmann distribution), (2) planning over room sequences instead of

low-level actions, and (3) using greedy frontier-based search for short-horizon combined

with long term planning aligned with the cliques in the graph representation of areas

of a map.

Moreover, we model the individual differences between rescuers to capture the

heterogeneity of human behavior. We create a variety of simulated agents based on

online planning with different planning horizons, tolerance to risk, triage strategy

preferences, and belief state accuracy. We thus obtain a rich and diverse set of

faux-human agents that incorporate human biases while optimizing for the task

objective.

3.2.2 Adaptive Models

We train an adaptive intent prediction model p(xt+1|xt, c), where xt is the current

mission state and c is the context variable. The context variable captures the

individual traits of each rescuer, such as their planning horizon, high-level strategy,

tolerance to risk, etc. This model is trained using supervised learning using privileged

information about the current agent’s context variable. Knowledge of the context

variable allows the predictor to adapt to the given agent appropriately. We randomly

sample simulated faux-human trajectories to train this model.

We empirically compare different meta-learning algorithms for training adaptive

intent prediction models. These methods primarily differ in how they obtain the

context variable based on a person’s past decisions. We broadly classify these methods

into three classes and discuss them below.

A1. Context Predictor: We can estimate the context variable c using an a

context predictor model φ(c|τ). The context predictor module uses the history of the

12

3. Adaptive Models for Human Intent Prediction

human’s decisions (states {x0, ..., xt−1} and actions {a0, ..., at−1}) to output ĉ which

is an estimate of the true context variable c.

We train the context predictor on randomly sampled faux-human agents. The

context-predictor’s parameters are updated to minimize a regression loss with respect

to the ground-truth c. Since we trained exclusively on simulation, we have access to

the ground-truth context variable.

A2. End-to-End Sequence Models: We can train recurrent intent predictors

on a diverse set of faux-human trajectories to automatically learn adaptive behavior.

These models can learn to adjust their predictions during testing to recognize the spe-

cific person’s behavior style and adapt their intents accordingly, i.e., by implementing

a learning algorithm internally.

A3. Online Context Optimization: We can directly search for the best

context variable using the human’s partial trajectory τ instead of directly predicting

it. We use online Bayesian optimization to update our posterior distribution over the

human context variable as we observe more data. In this case, our prediction for the

person’s intent is given by a weighted average of predictions using context variables.

The weights are the current distribution over the context variables.

3.3 Study Design

Participants completed an approximately three-hour experiment in which they search

for victims and rescue them in a Minecraft task environment. This simulated

environment consisted of a structurally damaged office building with victims trapped

inside. The building’s map and the participant’s screen are shown in Fig 3.1.

The building contains 26 area segments consisting of corridors, rooms, and elevators.

The initial building layout and segment connectivity were changed by perturbations

such as collapses, wall openings, and sporadic fires. The participants were given a

blueprint of the building depicting its layout prior to the collapse and needed to work

around blockages and obstacles in their search. There are 20 injured victims inside

the building who need to be rescued. Out of these, five victims are severely injured

(yellow) and might die if not treated in time. Other victims are denoted in green.

Both victims depend on the first responders’ help to stabilize and evacuate out of the

building.

13

3. Adaptive Models for Human Intent Prediction

Figure 3.1: Human participants as rescuer see the view in (a). The bird’s eye view of
the environment as in (b).

Participants with Minecraft experience took part in an approximately three-hour

experiment, in which they completed three 15 minute missions each. The participants

received a training program that introduces the rules of the mission and provides

some hands-on experience with the environment. The missions for each player had

different maps, victim locations, and initial player beliefs. The missions had different

complexity levels, randomly ordered. The complexity was manipulated by varying

victims’ location, the number/layout of blockages, occlusions, and the number/layout

of openings.

The initial information given to the rescuer was also manipulated across both

missions of the same subject. The rescuers were equipped with a device (intended

to model a rescue dog) that signaled when a regular or critical victim was nearby.

The device beeped at the door if live victims are present in the room and at the

opening of a collapsed wall if victims are present in the connected room. It beeped

twice if there was a yellow victim or a mix of yellow and green victims, once if there

are only green victims. The signaling device did not beep for any other reasons. All

the rescuers were equipped with this device, but only some of the participants were

instructed about how to use it. The other participants could either learn to use it

from experience, or could ignore the device.

We model the rescuer’s intent across the victim saving strategies, and navigation

behavior in terms of the next area to visit. First, we predict whether the rescuer’s

14

3. Adaptive Models for Human Intent Prediction

trial decision whenever they find a regular victim. With time and proximity to

the victims, these preferences tend to change in humans, making it a challenging

sequential binary prediction task. Second, given the area segments of the rooms and

corridors from the original floorplan, we formulate the next location prediction as a

multi-class classification problem.

Figure 3.2: Different Map Perturbations for the Search and Rescue Missions

3.4 Experiments

Data: We collected data for 70 human subjects to evaluate our intent prediction

models. These 70 subjects completed 3 search and rescue missions each. We used a

70% training, 15% validation and 15% testing split for all the models.

Mission State Representation: The mission is represented by a 146-dimensional

feature vector that summarizes the trajectory. The features include 6 features for

each of the 24 map regions and the estimated training condition of the player and

the mission timer (146 = 6× 24 + 2).

For each room, the feature vector contains information about:

1. Whether the player has explored this room.

2. The number of yellow victims (which the player has seen but not rescued).

3. The number of green victims (which the player has seen but not rescued).

4. Whether the player is in this room.

5. Beep information for this room.

15

3. Adaptive Models for Human Intent Prediction

6. The distance of room from the current location of the player.

Context variable representation: The context variable for each agent is a 12

dimension vector. It summarizes the agent’s planning horizon, Boltzmann constant

(for soft-optimal action selection), belief update mechanisms, internal model of the

environment, high-level triage strategy and usage of the signaling device.

Method: We train two baseline models for comparing our adaptive models with.

The first baseline model (B1) is an intent prediction model trained on limited human

data (with regularization). This model can learn to capture the patterns of human

behavior from the data. Since we have access to limited human data, this model is

heavily regularized.

The second baseline model (B2) generates trajectories from near-optimal planning-

based agents and uses them to train an intent prediction model. This planning-based

agent plans with a long horizon to efficiently search and rescue as many victims

as possible, and performs much better than most human rescuers. Since there is a

mismatch between the trajectory distribution of the optimal planning-based agents

and humans, we expect to observe a generalization gap when we test it on human

data.

Next, we train two varieties of robust models. The models are trained on various

faux-human agents (with different planning horizons, belief-update mechanisms, etc.).

Since this model is trained on a wide distribution of planning-based agents, we expect

it to generalize better to the human data. The first robust model (R1) is trained by

randomly sampling faux-humans, while the second robust model (R2) searches for

faux-humans on which the current model is not doing well and updates its parameters

to do better on these.

Our next model aims to adaptively use the robust models and the models trained

on the human data. The model trained on the human data can recognize patterns in

the human data but might not do well during testing if the mission state was not seen

during training. On the other hand, the robust model better handles this distribution

shift but is very pessimistic. Our adaptive model (R1+B1) uses the human model

when it is certain but uses the robust model as a fallback when the human model

is uncertain. We estimate the uncertainty of the model by training an ensemble of

16

3. Adaptive Models for Human Intent Prediction

models and computing the disagreement between the ensemble for a mission state.

Our adaptive models are described in Section 3.2. We use a LSTM to model the

context predictor ψ(c|τ). See the Appendix for other details.

3.5 Results

Figure 3.3: Examples of Intent Prediction : Mission State (Left), Predicted Intent
(Right)

In our experiments, we seek answers to the following questions:

1. Can we combine use the robust model and human model to get the best of

both worlds - good accuracy near human trajectory distribution with robust

predictions for out-of-distribution trajectories?

2. Is the robust model more accurate than the model trained on trajectories from

the optimal planning-based agent?

3. Can our adaptive intent prediction models outperform a generic model?

We evaluate our models on the test human subjects. We collect 3 mission trajec-

tories for each human with different map perturbations, victim locations, and initial

rescuer beliefs. We adapt our models using the first mission trajectory and evaluate

17

3. Adaptive Models for Human Intent Prediction

the models on later missions.

Method Navigation Decision Triage Strategy
Prediction Accuracy Prediction Accuracy

(B1) Model trained on limited human data 71.8% 74.2%
(B2) Model trained on optimal trajectories 56.9% 61.8%

(R) Robust model trained on distribution of faux-humans 66.5% 63.2%
(R+B1) Combine robust model and human model based on uncertainty 73.9% 75.9%

(A1) Predict context variable using context predictor ψ(c|τ) 72.3% 82.7%
(A2) Train end-to-end sequence model on distribution of faux-humans 69.0% 81.1%

(A3) Optimize distribution over context variables online 78.1% 86.4%

Table 3.1: Accuracy for predicting the navigational intent for different algorithms.

Table 3.1 shows the accuracy for our models on both predictive tasks. We discuss

our results on the navigation decision prediction task in detail below.

We observe that the generic intent prediction model trained on limited human

data (B1) obtains an accuracy of 71.8%. On the other hand, the model trained on

trajectories of the optimal planner only (B2) has an accuracy of 56.9%. This gap can

be explained by the mismatch between the trajectory distribution of humans and the

optimal planner.

The robust model (R) obtains an accuracy of 66.5%. This result suggests that

the diversity of faux-human agents helps combat the distribution shift to human

trajectories. This result is especially impressive since the model is trained using only

simulated data.

We observe that the robust model and the human model complement each other,

and combining them gives us an accuracy boost over just using one of them. We use

the human model when it has low epistemic uncertainty and fallback to the robust

model for tail events. This combination gives us an accuracy of 73.9%. This is the

highest accuracy we obtain using a generic prediction model.

We obtain an accuracy ranging from 69% to 78.1% using the adaptive models.

This shows that the adaptive models can use information from the first trajectory to

improve model predictions in the second trajectory of the same human. In particular,

we find that searching for the context variable online using Bayesian optimization

performs best.

18

3. Adaptive Models for Human Intent Prediction

3.6 Conclusion

In summary, we show that adaptive models can be used to improve predictions as

the model observes humans’ behavior. These models outperform generic prediction

models in our experiments. Moreover, we show that adaptive models can be trained

exclusively on simulated data. Despite only having access to the context variables

during training, our model can identify the behavior traits of a rescuer and use them

to make better predictions. We did not model the learning effects between missions,

which is an important direction for future work.

19

3. Adaptive Models for Human Intent Prediction

20

Chapter 4

Inverse Reinforcement Learning

via State Marginal Matching

4.1 Introduction

Imitation learning (IL) is a powerful tool to design autonomous behaviors in robotic

systems. Although reinforcement learning methods promise to learn such behaviors

automatically, they have been most successful in tasks with a clear definition of

the reward function. Reward design remains difficult in many robotic tasks such as

driving a car [47], tying a knot [46], and human-robot cooperation [24]. Imitation

learning is a popular approach to such tasks, since it is easier for an expert teacher

to demonstrate the desired behavior rather than specify the reward [5, 25, 27].

Methods in IL frameworks are generally split into behavior cloning (BC) [7] and

inverse reinforcement learning (IRL) [1, 43, 55]. BC is typically based on supervised

learning to regress expert actions from expert observations without the need for

further interaction with the environment, but suffers from the covariate shift problem

[54]. On the other hand, IRL methods aim to learn the reward function from expert

demonstrations, and use it to train the agent policy. Within IRL, adversarial imitation

learning (AIL) methods (GAIL [26], AIRL [18], f -MAX [20], SMM [32]) train a

discriminator to guide the policy to match the expert’s state-action distribution.

AIL methods learn a non-stationary reward by iteratively training a discriminator

21

4. Inverse Reinforcement Learning via State Marginal Matching

and taking a single policy update step using the reward derived from the discriminator.

After convergence, the learned AIL reward cannot be used for training a new policy

from scratch, and is thus discarded. In contrast, IRL methods such as ours learn a

stationary reward such that, if the policy is trained from scratch using the reward

function until convergence, then the policy will match the expert behavior. We argue

that learning a stationary reward function can be useful for solving downstream

tasks and transferring behavior across different dynamics. Traditionally, IL methods

assume access to expert demonstrations and minimize some divergence between policy

and expert’s trajectory distribution. However, in many cases, it may be easier to

directly specify the state distribution of the desired behavior rather than to provide

fully-specified demonstrations of the desired behavior [32]. For example, in a safety-

critical application, it may be easier to specify that the expert never visits some

unsafe states, instead of tweaking reward to penalize safety violations [11]. Similarly,

we can specify a uniform density over the whole state space for exploration tasks, or

a Gaussian centered at the goal for goal-reaching tasks. Reverse KL instantiation for

f -divergence in f -IRL allows for unnormalized density specification, which further

allows for easier preference encoding.

In this paper, we propose a new method, f -IRL, that learns a stationary reward

function from the expert density via gradient descent. To do so, we derive an

analytic gradient of any arbitrary f -divergence between the agent and the expert

state distribution w.r.t. reward parameters. We demonstrate that f -IRL is especially

useful in the limited data regime, exhibiting better sample efficiency than prior work

in terms of the number of environment interactions and expert trajectories required

to learn the MuJoCo benchmark tasks.

We also demonstrate that the reward functions recovered by f -IRL can accelerate

the learning of hard-to-explore tasks with sparse rewards, and these same reward

functions can be used to transfer behaviors across changes in dynamics.

4.2 Preliminaries

In this section, we review notation on maximum entropy (MaxEnt) RL [33] and state

marginal matching (SMM) [32] that we build upon in this work.

MaxEnt RL. Consider a Markov Decision Process (MDP) represented as a tuple

22

4. Inverse Reinforcement Learning via State Marginal Matching

(S,A,P , r, ρ0, T) with state-space S, action-space A, dynamics P : S × A × S →
[0, 1], reward function r(s, a), initial state distribution ρ0, and horizon T . The

optimal policy π under the maximum entropy framework [71] maximizes the objective∑T
t=1 ρπ,t(st, at)r(st, at) + αH(·|st). Here ρπ,t is the state-action marginal distribution

of policy π at timestamp t, and α > 0 is the entropy temperature. The trajectory

distribution induced by the soft-optimal policy is p(τ) = pd(τ)er(τ)/α/Z, where

pd(τ) = ρ0(s0)
∏T−1

i=1 π(at|st)p(st+1|st, at) is the probability of trajectory τ under the

dynamics, and r(τ) is the cumulative rewards in the trajectory τ , and Z is the

partition function.

We assume access to an expert state marginal ρE(s) which is feasible to specify in

many tasks. If expert observations are available, we can fit a density model to the

samples. Let rθ(s) be a parameterized differentiable reward function only dependent

on state. Let trajectory τ be a time series of visited states τ = (s0, s1, . . . , sT). The

optimal MaxEnt trajectory distribution ρθ(τ) under reward rθ can be computed as

ρθ(τ) = 1
Z
p(τ)erθ(τ)/α, where

p(τ) = ρ0(s0)
T−1∏
t=0

p(st+1|st, at) , rθ(τ) =
T∑
t=1

rθ(st), Z =

∫
p(τ)erθ(τ)/αdτ.

Slightly overloading the notation, the optimal MaxEnt state marginal distribution

ρθ(s) under reward rθ is obtained by marginalization:

ρθ(s) ∝
∫
p(τ)erθ(τ)/αητ (s)dτ (4.1)

where ητ (s)
∑T

t=1 1(st = s) is the visitation count of a state s in a particular trajectory

τ .

State Marginal Matching. Given the expert state density pE(s), one can

train a policy to match the expert behavior by minimizing the following f -divergence

objective:

Lf (θ) = Df (ρE(s) || ρθ(s)) (4.2)

where common choices for the f -divergence Df [2, 20] include forward KL divergence,

reverse KL divergence, and Jensen-Shannon divergence. Our proposed f -IRL algo-

rithm will compute the analytical gradient of Eq. 4.2 w.r.t. θ and use it to optimize

23

4. Inverse Reinforcement Learning via State Marginal Matching

the reward function via gradient descent.

4.3 Learning Stationary Rewards via

State-Marginal Matching

In this section, we describe our algorithm f -IRL, which takes the expert state density

as input, and optimizes the f -divergence objective (Eq. 4.2) via gradient descent.

Our algorithm trains a policy whose state marginal is close to that of the expert, and

a corresponding stationary reward function that would produce the same policy if

the policy were trained with MaxEnt RL from scratch.

4.3.1 Analytic Gradient for State Marginal Matching in

f-divergence

One of our main contributions is the exact gradient of the f -divergence objective (Eq.

4.2) w.r.t. the reward parameters θ. This gradient will be used by f -IRL to optimize

Eq. 4.2 via gradient descent. The proof is provided in Appendix A.1.

[f-divergence analytic gradient] The analytic gradient of the f -divergence

Lf(θ) between state marginals of the expert (ρE) and the soft-optimal agent w.r.t.

the reward parameters θ is given by:

∇θLf (θ) =
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,
T∑
t=1

∇θrθ(st)

)
(4.3)

where hf(u)f(u)− f ′(u)u, ρE(s) is the expert state marginal and ρθ(s) is the state

marginal of the soft-optimal agent under the reward function rθ, and the covariance

is taken under the agent’s trajectory distribution ρθ(τ).1

Choosing the f -divergence to be Forward Kullback-Leibler (FKL), Reverse Kullback-

Leibler (RKL), or Jensen-Shannon (JS) instantiates hf (see Table 4.1). Note that

the gradient of the RKL objective has a special property in that we can specify

the expert as an unnormalized log-density (i.e. energy), since in hRKL(ρE(s)
ρθ(s)

) =

1Here we assume f is differentiable, which is often the case for common f -divergence (e.g. KL
divergence).

24

4. Inverse Reinforcement Learning via State Marginal Matching

Name f -divergence Df (P || Q) Generator f(u) hf (u)

FKL
∫
p(x) log p(x)

q(x)
dx u log u −u

RKL
∫
q(x) log q(x)

p(x)
dx − log u 1− log u

JS 1
2

∫
p(x) log 2p(x)

p(x)+q(x)
+ q(x) log 2q(x)

p(x)+q(x)
dx u log u− (1 + u) log 1+u

2
− log(1 + u)

Table 4.1: Selected list of f -divergences Df (P || Q) with generator functions f and
hf defined in Theorem 4.3.1, where f is convex, lower-semicontinuous and f(1) = 0.

1 − log ρE(s) + log ρθ(s), the normalizing factor of ρE(s) does not change the gra-

dient (by linearity of covariance). This makes density specification much easier in

a number of scenarios. Intuitively, since hf is a monotonically decreasing function

(h′f(u) = −f ′′(u)u < 0) over R+, the gradient descent tells the reward function to

increase the rewards of those state trajectories that have higher sum of density ratios∑T
t=1

ρE(st)
ρθ(st)

so as to minimize the objective.

4.3.2 Learning a Stationary Reward by Gradient Descent

We now build upon Theorem 4.3.1 to design a practical algorithm for learning

the reward function rθ (Algorithm. 1). Given expert information (state density or

observation samples) and an arbitrary f -divergence, the algorithm alternates between

using MaxEnt RL with the current reward, and updating the reward parameter using

gradient descent based on the analytic gradient.

If the provided expert data is in the form of expert state density ρE(s), we can

fit a density model ρ̂θ(s) to estimate agent state density ρθ(s) and thus estimate the

density ratio required in gradient. If we are given samples from expert observations

sE, we can fit a discriminator Dω(s) in each iteration to estimate the density ratio by

optimizing the binary cross-entropy loss:

max
ω

s ∼ sElogDω(s) + s ∼ ρθ(s)log(1−Dω(s) (4.4)

where the optimal discriminator satisfies D∗ω(s) = ρE(s)
ρE(s)+ρθ(s)

[22], thus the density

ratio can be estimated by ρE(s)
ρθ(s)

≈ Dω(s)
1−Dω(s)

, which is the input to hf .

25

4. Inverse Reinforcement Learning via State Marginal Matching

Algorithm 1 Inverse RL via State Marginal Matching (f -IRL)

InputInput OutputOutput Expert state density ρE(s) or expert observations sE ,
f -divergence
Learned reward rθ, Policy πθ Initialize rθ, and density estimation model (provided
ρE(s)) or disciminator Dω (provided sE)

for i← 1 Iter do
πθ ← MaxEntRL(rθ) and collect agent trajectories τθ

if provided ρE(s) then Fit the density model ρ̂θ(s) to the state samples from τθ
elseprovided sE Fit the discriminator Dω by Eq. 4.4 using expert and agent state

samples from sE and τθ
Compute sample gradient ∇̂θLf (θ) for Eq. 4.3 over τθ
θ ← θ − λ∇̂θLf (θ)

4.3.3 Robust Reward Recovery under State-only

Ground-truth Reward

IRL methods are different from IL methods in that they recover a reward function in

addition to the policy. A hurdle in this process is often the reward ambiguity problem,

explored in [18, 42]. This ambiguity arises due to the fact that the optimal policy

remains unchanged under the following reward transformation [42]:

r̂(s, a, s′) = rgt(s, a, s
′) + γΦ(s′)− Φ(s) (4.5)

for any function Φ. In the case where the ground-truth reward is a function over states

only (i.e., rgt(s)), f -IRL is able to recover the disentangled reward function (rIRL)

that matches the ground truth reward rgt up to a constant. The obtained reward

function is robust to different dynamics – for any underlying dynamics, rIRL will

produce the same optimal policy as rgt. We formalize this claim in Appendix A.1.4

(based on Theorem 5.1 of AIRL [18]).

AIRL uses a special parameterization of the discriminator to learn state-only

rewards. A disadvantage of their approach is that AIRL needs to approximate a

separate reward-shaping network apart from the reward network. In contrast, our

method naturally recovers a state-only reward function.

26

4. Inverse Reinforcement Learning via State Marginal Matching

4.3.4 Practical Modification in the Exact Gradient

In practice with high-dimensional observations, when the agent’s current trajectory

distribution is far off from the expert trajectory distribution, we find that there is

little supervision available through our derived gradient, leading to slow learning.

Therefore, when expert trajectories are provided, we bias the gradient (Eq. 4.3) using

a mixture of agent and expert trajectories inspired by GCL [16], which allows for

richer supervision and faster convergence. Note that at convergence, the gradient

becomes unbiased as the agent’s and expert’s trajectory distribution matches.

∇̃θLf (θ) :=
1

αT
covτ∼ 1

2
(ρθ(τ)+ρE(τ))

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,

T∑
t=1

∇θrθ(st)

)
(4.6)

where the expert trajectory distribution ρE(τ) is uniform over samples τE.

4.4 Experiments

In our experiments, we seek answers to the following questions:

1. Can f -IRL learn a policy that matches the given expert state density?

2. Can f -IRL learn good policies on high-dimensional continuous control tasks in

a sample-efficient manner?

3. Can f -IRL learn a reward function that induces the expert policy?

4. How can learning a stationary reward function help solve downstream tasks?

Comparisons. To answer these questions, we compare f -IRL against two classes

of existing imitation learning algorithms: (1) those that learn only the policy, including

Behavior Cloning (BC), GAIL [26], and f -MAX-RKL2 [20]; and (2) IRL methods

that learn both a reward and a policy simultaneously, including MaxEnt IRL [72]

and AIRL [18]. The rewards/discriminators of the baselines are parameterized to be

state-only. We use SAC [23] as the base MaxEnt RL algorithm. Since the original

AIRL uses TRPO [57], we re-implement a version of AIRL that uses SAC as the

2A variant of AIRL [18] proposed in [20] only learns a policy and does not learn a reward.

27

4. Inverse Reinforcement Learning via State Marginal Matching

underlying RL algorithm for fair comparison. For our method (f -IRL), MaxEnt IRL,

and AIRL, we use a MLP for reward parameterization.

Tasks. We evaluate the algorithms on several tasks:

• Matching Expert State Density: In Section 4.4.1, the task is to learn a

policy that matches the given expert state density.

• Inverse Reinforcement Learning Benchmarks: In Section 4.4.2, the task

is to learn a reward function and a policy from expert trajectory samples.

We collected expert trajectories by training SAC [23] to convergence on each

environment. We trained all the methods using varying numbers of expert

trajectories {1, 4, 16} to test the robustness of each method to the amount of

available expert data.

• Using the Learned Reward for Downstream Tasks: In Section 4.4.3, we

first train each algorithm to convergence, then use the learned reward function to

train a new policy on a related downstream task. We measure the performance

on downstream tasks for evaluation.

We use five MuJoCo continuous control locomotion environments [9, 62] with

joint torque actions, illustrated in Figure 4.1. Further details about the environment,

expert information (samples or density specification), and hyperparameter choices

can be found in Appendix A.2.

Figure 4.1: Environments: (left to right) Ant-v2, Hopper-v2, HalfCheetah-v2,
Reacher-v2, and Walker2d-v2.

28

4. Inverse Reinforcement Learning via State Marginal Matching

f-max-rkl fkl (f-IRL) GAIL js (f-IRL) MaxEnt IRL rkl (f-IRL)

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Fo

rw
ar

d
K

L

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

R
ev

er
se

 K
L

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fo
rw

ar
d

K
L

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

2.5

3.0

3.5

4.0

4.5

5.0

R
ev

er
se

 K
L

(a) Expert Density: Gaussian (b) Expert Density: Mixture of two Gaussians

Figure 4.2: Forward (left) and Reverse (right) KL curves in the Reacher environment
for different expert densities of all methods. Curves are smoothed in a window of 120
evaluations.

4.4.1 Matching the Specified Expert State Density

First, we check whether f -IRL can learn a policy that matches the given expert state

density of the fingertip of the robotic arm in the 2-DOF Reacher environment. We

evaluate the algorithms using two different expert state marginals: (1) a Gaussian

distribution centered at the goal for single goal-reaching, and (2) a mixture of two

Gaussians, each centered at one goal. Since this problem setting assumes access to the

expert density only, we use importance sampling to generate expert samples required

by the baselines.

In Figure 4.2, we report the estimated forward and reverse KL divergences in

state marginals between the expert and the learned policy. For f -IRL and MaxEnt

IRL, we use Kernel Density Estimation (KDE) to estimate the agent’s state marginal.

We observe that the baselines demonstrate unstable convergence, which might be

because those methods optimize the f -divergence approximately. Our method {FKL,

JS} f -IRL outperforms the baselines in the forward KL and the reverse KL metric,

respectively.

4.4.2 Inverse Reinforcement Learning Benchmarks

Next, we compare f -IRL and the baselines on IRL benchmarks, where the task is

to learn a reward function and a policy from expert trajectory samples. We use the

modification proposed in Section 4.3.4 to alleviate the difficulty in optimizing the

29

4. Inverse Reinforcement Learning via State Marginal Matching

f -IRL objective with high-dimensional states.

Policy Performance. We check whether f -IRL can learn good policies on

high-dimensional continuous control tasks in a sample-efficient manner from expert

trajectories. Figure 4.3 shows the learning curves of each method in the four environ-

ments with one expert trajectory provided. f -IRL and MaxEnt IRL demonstrate

much faster convergence in most of the tasks than f -MAX-RKL. Table 4.2 shows

the final performance of each method in the four tasks, measured by the ratio of

agent returns (evaluated using the ground-truth reward) to expert returns. While

MaxEnt IRL provides a strong baseline, f -IRL outperforms all baselines on most

tasks especially in Ant, where the FKL (f -IRL) has much higher final performance

and is less sensitive to the number of expert trajectories compared to the baselines.

In contrast, we found the original implementation of f -MAX-RKL to be extremely

sensitive to hyperparameter settings. We also found that AIRL performs poorly even

after tremendous tuning, similar to the findings in [36, 37].

Recovering the Stationary Reward Function. We also evaluate whether

f -IRL can recover a stationary reward function that induces the expert policy. To do

so, we train a SAC agent from scratch to convergence using the reward model obtained

from each IRL method. We then evaluate the trained agents using the ground-truth

reward to test whether the learned reward functions are good at inducing the expert

policies.

Table 4.3 shows the ratio of the final returns of policy trained from scratch using

the rewards learned from different IRL methods with one expert trajectory provided,

to expert returns. Our results show that MaxEnt IRL and f -IRL are able to learn

stationary rewards that can induce a policy close to the optimal expert policy.

4.4.3 Using the Learned Stationary Reward for

Downstream Tasks

Finally, we investigate how the learned stationary reward can be used to learn related,

downstream tasks.

Reward prior for downstream hard-exploration tasks. We first demon-

strate the utility of the learned stationary reward by using it as a prior reward for

the downstream task. Specifically, we construct a didactic point mass environment

30

4. Inverse Reinforcement Learning via State Marginal Matching

expert BC fkl (f-IRL) rkl (f-IRL) js (f-IRL) maxentirl f-max-rkl airl

0.0 0.5 1.0 1.5 2.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

R
et

ur
n

R
at

io
Hopper

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
HalfCheetah

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
Walker2d

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
Ant

Environment Steps

Figure 4.3: Training curves for f -IRL and 4 other baselines - BC, MaxEnt IRL,
f -MAX-RKL and AIRL with one expert demonstration. Solid curves depict the mean
of 3 trials and the shaded area shows the standard deviation. The dashed blue line
represents the expert performance and the dashed red line shows the performance of
a BC agent at convergence.

Figure 4.4: Left: Extracted final reward of all compared methods for the uniform
expert density in the point environment. Right: The task return (in terms of rtask)
with different α and prior reward weight λ. The performance of vanilla SAC is shown
in the leftmost column with λ = 0 in each subplot.

that operates under linear dynamics in a 2D 6× 6 room, and actions are restricted to

[−1, 1]. The prior reward is obtained from a uniform expert density over the whole

state space, and is used to ease the learning in the hard-exploration task, where we

design a difficult goal to reach with distraction rewards (full details in appendix A.2).

We use the learned prior reward rprior to augment the task reward rtask as follows:

r(s, a, s′) = rtask(s, a, s′) + λ(γrprior(s
′)− rprior(s)) (4.7)

where λ ≥ 0 is the weight of prior reward and γ is the discount factor. The main

31

4. Inverse Reinforcement Learning via State Marginal Matching

Method Hopper Walker2d HalfCheetah Ant

Expert return 3592.63 ± 19.21 5344.21 ± 84.45 12427.49 ± 486.38 5926.18 ± 124.56
Expert traj 1 4 16 1 4 16 1 4 16 1 4 16

BC 0.00 0.13 0.16 0.00 0.05 0.08 0.00 0.01 0.02 0.00 0.22 0.47
MaxEnt IRL 0.93 0.92 0.94 0.88 0.88 0.91 0.95 0.98 0.91 0.54 0.71 0.81
f -MAX-RKL 0.94 0.93 0.91 0.49 0.49 0.47 0.71 0.41 0.65 0.60 0.65 0.62

AIRL 0.01 0.01 0.01 0.00 0.00 0.00 0.19 0.19 0.19 0.00 0.00 0.00

FKL (f -IRL) 0.93 0.90 0.93 0.90 0.90 0.90 0.94 0.97 0.94 0.82 0.83 0.84
RKL (f -IRL) 0.93 0.92 0.93 0.89 0.90 0.85 0.95 0.97 0.96 0.63 0.82 0.81
JS (f -IRL) 0.92 0.93 0.94 0.89 0.92 0.88 0.93 0.98 0.94 0.77 0.81 0.73

Table 4.2: We report the ratio between the average return of the trained (stochastic)
policy vs. that of the expert policy for different IRL algorithms using 1, 4 and 16
expert trajectories. All results are averaged across 3 seeds. Negative ratios are clipped
to zero.

Method Hopper Walker2d HalfCheetah Ant

AIRL - - -0.03 -
MaxEntIRL 0.93 0.92 0.96 0.79

f -IRL 0.93 0.88 1.02 0.82

Table 4.3: The ratios of final return of the obtained policy against expert return
across IRL methods. We average f -IRL over FKL, RKL, and JS. ‘-’ indicates that
we do not test learned rewards since AIRL does poorly at these tasks in Table 4.2.

Policy Transfer AIRL MaxEntIRL f -IRL Ground-truth
using GAIL Reward

-29.9 130.3 145.5 141.1 315.5

Table 4.4: Returns obtained after transferring the policy/reward on modified Ant
environment using different IL methods.

theoretical result of [42] dictates that adding a potential-based reward in this form

will not change the optimal policy. GAIL and f -MAX-RKL do not extract a reward

function but rather a discriminator, so we derive a prior reward from the discriminator

in the same way as [20, 26].

Figure 4.4 illustrates that the reward recovered by {FKL, RKL, JS} f -IRL and the

32

4. Inverse Reinforcement Learning via State Marginal Matching

baseline MaxEnt IRL are similar: the reward increases as the distance to the agent’s

start position, the bottom left corner, increases. This is intuitive for achieving the

target uniform density: states farther away should have higher rewards. f -MAX-RKL

and GAIL’s discriminator demonstrate a different pattern which does not induce

a uniform state distribution. The leftmost column in the Figure 4.4 (Right) shows

the poor performance of SAC training without reward augmentation (λ = 0). This

verifies the difficulty in exploration for solving the task. We vary λ in the x-axis,

and α in SAC in the y-axis, and plot the final task return (in terms of rtask) as a

heatmap in the figure. The presence of larger red region in the heatmap shows that

our method can extract a prior reward that is more robust and effective in helping

the downstream task attain better final performance with its original reward.

Reward transfer across changing dynamics. Lastly, we evaluate the algo-

rithms on transfer learning across different environment dynamics, following the

setup from [18]. In this setup, IL algorithms are provided expert trajectories from

a quadrupedal ant agent which runs forward. The algorithms are tested on an ant

with two of its legs being disabled and shrunk. This requires the ant to significantly

change its gait to adapt to the disabled legs for running forward.

We found that a forward-running policy obtained by GAIL fails to transfer to the

disabled ant. In contrast, IRL algorithms such as f -IRL are successfully able to learn

the expert’s reward function using expert demonstrations from the quadrupedal ant,

and use the reward to train a policy on the disabled ant. The results in Table 4.4

show that the reward learned by f -IRL is robust and enables the agent to learn to

move forward with just the remaining two legs.

4.5 Conclusion

In summary, we have proposed f -IRL, a practical IRL algorithm that distills an

expert’s state distribution into a stationary reward function. Our f -IRL algorithm can

learn from either expert samples (as in traditional IRL), or a specified expert density

(as in SMM [32]), which opens the door to supervising IRL with different types of

data. These types of supervision can assist agents in solving tasks faster, encode

preferences for how tasks are performed, and indicate which states are unsafe and

should be avoided. Our experiments demonstrate that f -IRL is more sample efficient

33

4. Inverse Reinforcement Learning via State Marginal Matching

in the number of expert trajectories and environment timesteps as demonstrated on

MuJoCo benchmarks.

34

Chapter 5

Conclusions

Our work aimed to develop algorithms for adaptive and efficient intent recognition

algorithms. These could be useful, for example, to provide anticipatory assistance to

human rescuers in disaster scenarios.

We demonstrated our adaptive algorithms on human subjects in a disaster scenario.

Our methods were based on training adaptive models on a wide variety of faux-humans,

so that they generalize to humans. We showed that our models could learn from a

rescuer’s decisions in the first mission to make better predictions in later missions.

These algorithms can be extended to personalize the assistance policy for the rescuer

as well.

We also showed that our proposed algorithm f -IRL is sample-efficient. It could

learn the demonstrator’s intent from a single trajectory in simulated control tasks,

and use it for imitation. The algorithm could use the learned intent to imitate the

demonstrator in a completely different environment.

35

5. Conclusions

36

Appendix A

Inverse Reinforcement Learning

using State Marginal Matching

A.1 Derivation and Proof

This section provides the derivation and proof for the main paper. Section A.1.1 and

A.1.2 provide the derivation of Theorem 4.3.1, and section A.1.4 provides the details

about section 4.3.3.

A.1.1 Analytical Gradient of State Marginal Distribution

In this subsection, we start by deriving a general result - gradient of state marginal

distribution w.r.t. parameters of the reward function. We will use this gradient in

the next subsection A.1.2 where we derive the gradient of f -divergence objective.

Based on the notation introduced in section ??, we start by writing the probability

of trajectory τ = (s0, s1, . . . , sT) of fixed horizon T under the optimal MaxEnt

trajectory distribution for rθ(s) [71].

ρθ(τ) ∝ ρ0(s0)
T−1∏
t=0

p(st+1|st, at)e
∑T
t=1 rθ(st)/α (A.1)

Let p(τ) = ρ0(s0)
∏T−1

t=0 p(st+1|st, at), which is the probability of the trajectory

under the dynamics of the environment.

37

A. Inverse Reinforcement Learning using State Marginal Matching

Explicitly computing the normalizing factor, we can write the distribution over

trajectories as follows:

ρθ(τ) =
p(τ)e

∑T
t=1 rθ(st)/α∫

p(τ)e
∑T
t=1 rθ(st)/αdτ

(A.2)

Let ητ (s) denote the number of times a state occurs in a trajectory τ . We now

compute the marginal distribution of all states in the trajectory:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (A.3)

where

ητ (s) =
T∑
t=1

1(st = s) (A.4)

is the empirical frequency of state s in trajectory τ (omitting the starting state s0 as

the policy cannot control the initial state distribution).

The marginal distribution over states can now be written as:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (A.5)

In the following derivation, we will use st to denote states in trajectory τ and s′t

to denote states from trajectory τ ′. Explicitly computing the normalizing factor, the

marginal distribution can be written as follows:

ρθ(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫ ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/αητ ′(s′)dτ ′ds′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/α

∫
ητ ′(s′)ds′dτ ′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

T
∫
p(τ ′)e

∑T
t=1 rθ(s′t)/αdτ ′

(A.6)

In the second step we swap the order of integration in the denominator. The last

line follows because only the T states in τ satisfy s ∈ τ . Finally, we define f(s) and Z

to denote the numerator (dependent on s) and denominator (normalizing constant),

38

A. Inverse Reinforcement Learning using State Marginal Matching

to simplify notation in further calculations.

f(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

Z = T

∫
p(τ)e

∑T
t=1 rθ(st)/αdτ

ρθ(s) =
f(s)

Z

(A.7)

As an initial step, we compute the derivatives of f(s) and Z w.r.t reward function

at some state rθ(s
∗).

df(s)

drθ(s∗)
=

1

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ (A.8)

dZ

drθ(s∗)
=
T

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s

∗)dτ =
T

α
f(s∗) (A.9)

We can then apply the quotient rule to compute the derivative of policy marginal

distribution w.r.t. the reward function.

dρθ(s)

drθ(s∗)
=
Z df(s)
drθ(s∗)

− f(s) dZ
drθ(s∗)

Z2

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

αZ
− f(s)

Z

Tf(s∗)

αZ

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

αZ
− T

α
ρθ(s)ρθ(s

∗)

(A.10)

Now we have all the tools needed to get the derivative of ρθ w.r.t. θ by the chain

39

A. Inverse Reinforcement Learning using State Marginal Matching

rule.

dρθ(s)

dθ
=

∫
dρθ(s)

drθ(s∗)

drθ(s
∗)

dθ
ds∗

=
1

α

∫ (∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

Z
− Tρθ(s)ρθ(s∗)

)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫ ∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)
drθ(s

∗)

dθ
ds∗dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

(A.11)

A.1.2 Analytical Gradient of f-divergence objective

f -divergence [2] is a family of divergence, which generalizes forward/reverse KL

divergence. Formally, let P and Q be two probability distributions over a space

Ω, then for a convex and lower-semicontinuous function f such that f(1) = 0, the

f -divergence of P from Q is defined as:

Df (P || Q) :=

∫
Ω

f

(
dP

dQ

)
dQ (A.12)

Applied to state marginal matching between expert density ρE(s) and agent

density ρθ(s) over state space S, the f -divergence objective is:

min
θ
Lf (θ) := Df (ρE || ρθ) =

∫
S
f

(
ρE(s)

ρθ(s)

)
ρθ(s)ds (A.13)

Now we show the proof of Theorem 4.3.1 on the gradient of f -divergence

objective:

The gradient of the f -divergence objective can be derived by chain rule:

40

A. Inverse Reinforcement Learning using State Marginal Matching

∇θLf (θ) =

∫
∇θ

(
f

(
ρE(s)

ρθ(s)

)
ρθ(s)

)
ds

=

∫ (
f

(
ρE(s)

ρθ(s)

)
− f ′

(
ρE(s)

ρθ(s)

)
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds∫

hf

(
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

(A.14)

where we denote hf (u)f(u)− f ′(u)u. for convenience.1

Substituting the gradient of state marginal distribution w.r.t θ in Eq. A.11, we

have:

∇θLf (θ)

=

∫
hf

(
ρE(s)

ρθ(s)

)(
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

)
ds

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/α

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)

(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)
ds

=
1

αT

∫
ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

(∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)ds

)(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)

=
1

αT
τ ∼ ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
− T

α
s ∼ ρθ(s)hf

(
ρE(s)

ρθ(s)

)
s ∼ ρθ(s)

drθ(s)

dθ

(A.15)

To gain more intuition about this equation, we can convert all the expectations

to be over the trajectories:

∇θLf (θ)

=
1

αT

(
ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

∇θrθ(st)− ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
ρθ(τ)

T∑
t=1

∇θrθ(st)

)

=
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,

T∑
t=1

∇θrθ(st)

) (A.16)

1Note that if f(u) is non-differentiable at some points, such as f(u) = |u − 1|/2 at u = 1 for
Total Variation distance, we take one of its subderivatives.

41

A. Inverse Reinforcement Learning using State Marginal Matching

Thus we have derived the analytic gradient of f -divergence for state-marginal matching

as shown in Theorem 4.3.1.

A.1.3 Extension to Integral Probability Metrics in f-IRL

Integral Probability Metrics (IPM) [41] is another class of divergence based on dual

norm, examples of which include Wasserstein distance [3] and MMD [34]. We can

use Kantorovich-Rubinstein duality [65] to rewrite the IPM-based state marginal

matching as:

LB(θ) = ‖ρE(s)− ρθ(s)‖B := max
Dω∈B

ρE(s)Dω(s)− ρθ(s)Dω(s) (A.17)

where B is a symmetric convex set of functions and Dω is the critic function in [3].

Then the analytical gradient of the objective LB(θ) can be derived to be:

∇θLB(θ) = − 1

αT
covτ∼ρθ(τ)

(
T∑
t=1

Dω (st) ,
T∑
t=1

∇θrθ(st)

)
(A.18)

where the derivation directly follows the proof of Theorem 4.3.1.

A.1.4 f-IRL Learns Disentangled Rewards w.r.t. Dynamics

We follow the derivation and definitions as given in Fu et al. [18] to show that

f -IRL learns disentangled rewards. We show the definitions and theorem here for

completeness. For more information, please refer to Fu et al. [18].

We first redefine the notion of “disentangled rewards”.

[Disentangled rewards] A reward function r′(s, a, s′) is (perfectly) disentangled

with respect to ground truth reward rgt(s, a, s
′) and a set of dynamics T such that

under all dynamics in T ∈ T , the optimal policy is the same: π∗r′,T (a|s) = π∗rgt,T (a|s)
Disentangled rewards can be loosely understood as learning a reward function

which will produce the same optimal policy as the ground truth reward for the

environment, on any underlying dynamics.

To show how f -IRL recovers a disentangled reward function, we need go through

the definition of ”Decomposability condition”

42

A. Inverse Reinforcement Learning using State Marginal Matching

[Decomposability condition] Two states s1,s2 are defined as ”1-step linked” under

a dyanamics or transition distribution T (s′|a, s), if there exists a state that can reach

s1 and s2 with positive probability in one timestep. Also, this relationship can transfer

through transitivity: if s1 and s2 are linked, and s2 and s3 are linked then we can

consider s1 and s3 to be linked.

A transition distribution T satisfies the decomposibility condition if all states in the

MDP are linked with all other states.

This condition is mild and can be satisfied by any of the environments used in

our experiments.

Theorem A.1.4 and A.1.4 formalize the claim that f -IRL recovers disentangled

reward functions with respect to the dynamics. The notation Q∗r,T denotes the optimal

Q function under reward function r and dynamics T , and similarly π∗r,T is the optimal

policy under reward function r and dynamics T .

Let rgt(s) be the expert reward, and T be a dynamics satisfying the decomposability

condition as defined in [18]. Suppose f -IRL learns a reward rIRL such that it produces

an optimal policy in T : Q∗rIRL,T
(s, a) = Q∗rgt,T (s, a)− f(s) ,where f(s) is an arbitrary

function of the state. Then we have:

rIRL(s) = rgt(s)+C for some constant C, and thus rIRL(s) is robust to all dynamics.

Refer to Theorem 5.1 of AIRL [18].

If a reward function r′(s, a, s′) is disentangled with respect to all dynamics func-

tions, then it must be state-only. Refer to Theorem 5.2 of AIRL [18].

A.2 Implementation Details

A.2.1 Matching the Specified Expert State Density on

Reacher (Sec 4.4.1)

Environment: The OpenAI gym Reacher-v2 environment [9] has a robotic arm

with 2 DOF on a 2D arena. The state space is 8-dimensional: sine and cosine

of both joint angles, and the position and velocity of the arm fingertip in x and

y direction. The action controls the torques for both joints. The lengths of two

bodies are r1 = 0.1, r2 = 0.11, thus the trace space of the fingertip is an annulus

with R = r1 + r2 = 0.21 and r = r2 − r1 = 0.01. Since r is very small, it can be

43

A. Inverse Reinforcement Learning using State Marginal Matching

approximated as a disc with radius R = 0.21. The time horizon is T = 30. We

remove the object in original reacher environment as we only focus on the fingertip

trajectories.

Expert State Density: The domain is x-y coordinate of fingertip position. We

experiment with the following expert densities:

• Single Gaussian: µ = (−R, 0) = (−0.21, 0), σ = 0.05.

• Mixture of two equally-weighted Gaussians: µ1 = (−R/
√

2,−R/
√

2), µ2 =

(−R/
√

2, R/
√

2), σ1 = σ2 = 0.05

Training Details: We use SAC as the underlying RL algorithm for all compared

methods. The policy network is a tanh squashed Gaussian, where the mean and std

is parameterized by a (64, 64) ReLU MLP with two output heads. The Q-network is

a (64, 64) ReLU MLP. We use Adam to optmize both the policy and the Q-network

with a learning rate of 0.003. The temperature parameter α is fixed to be 1. The

replay buffer has a size of 12000, and we use a batch size of 256.

For f -IRL and MaxEntIRL, the reward function is a (64, 64) ReLU MLP. We

clamp the output of the network to be within the range [-10, 10]. We also use Adam

to optimize the reward network with a learning rate of 0.001.

For other baselines including AIRL, f -MAX-RKL, GAIL, we refer to the f -

MAX [20] authors’ official implementation2. We use the default discriminator ar-

chitecture as in [20]. In detail, first the input is linearly embedded into a 128-dim

vector. This hidden state then passes through 6 Resnet blocks of 128-dimensions; the

residual path uses batch normalization and tanh activation. The last hidden state is

then linearly embedded into a single-dimensional output, which is the logits of the

discriminator. The logit is clipped to be within the range [−10, 10]. The discriminator

is optimized using Adam with a learning rate of 0.0003 and a batch size of 128.

At each epoch, for all methods, we train SAC for 10 episodes using the current

reward/discriminator. We warm-start SAC policy and critic networks from networks

trained at previous iteration. We do not empty the replay buffer, and leverage

data collected in earlier iterations for training SAC. We found this to be effective

empirically, while saving lots of computation time for the bilevel optimization.

For f -IRL and MaxEntIRL, we update the reward for 2 gradient steps in each

2https://github.com/KamyarGh/rl_swiss

44

https://github.com/KamyarGh/rl_swiss

A. Inverse Reinforcement Learning using State Marginal Matching

iteration. For AIRL, f -MAX-RKL and GAIL, the discriminator takes 60 gradient

steps per epoch. We train all methods for 800 epochs.

f -IRL and MaxEntIRL require an estimation of the agent state density. We use

kernel density estimation to fit the agent’s density, using epanechnikov kernel with a

bandwidth of 0.2 for pointmass, and a bandwidth of 0.02 for Reacher. At each epoch,

we sample 1000 trajectories (30000 states) from the trained SAC to fit the kernel

density model.

Baselines: Since we assume only access to expert density instead of expert

trajectories in traditional IL framework, we use importance sampling for the expert

term in the objectives of baselines.

• For MaxEntIRL: Given the reward is only dependent on state, its reward

gradient can be transformed into covariance in state marginal space using

importance sampling from agent states:

∇θLMaxEntIRL(θ) =
1

α

T∑
t=1

(st ∼ ρE,t∇rθ(st)− st ∼ ρθ,t∇rθ(st))

=
T

α
(s ∼ ρE∇rθ(s)− s ∼ ρθ∇rθ(s))

=
T

α

(
s ∼ ρθ

ρE(s)

ρ̂θ(s)
∇rθ(s)− s ∼ ρθ∇rθ(s)

) (A.19)

where ρt(s) is state marginal at timestamp t, and ρ(s) =
∑T

t=1 ρt(s)/T is state

marginal averaged over all timestamps, and we fit a density model to the agent

distribution as ρ̂θ.

• For GAIL, AIRL, f-MAX-RKL: Original discriminator needs to be trained

using expert samples, thus we use the same density model as described above,

and then use importance sampling to compute the discriminator objective:

max
D

L(D) = s ∼ ρθ
ρE(s)

ρ̂θ(s)
logD(s) + s ∼ ρθlog(1−D(s)) (A.20)

Evaluation: For the approximation of both forward and reverse KL divergence,

we use non-parametric Kozachenko-Leonenko estimator [29, 30] with lower error [59]

45

A. Inverse Reinforcement Learning using State Marginal Matching

compared to plug-in estimators using density models. Suggested by [64]3, we choose

k = 3 in k-nearest neighbor for Kozachenko-Leonenko estimator. Thus for each

evaluation, we need to collect agent state samples and expert samples for computing

the estimators.

In our experiments, before training we sample M = 10000 expert samples and

keep the valid ones within observation space. For agent, we collect 1000 trajectories

of N = 1000 ∗ T = 30000 state samples. Then we use these two batches of samples to

estimate KL divergence for every epoch during training.

A.2.2 Inverse Reinforcement Learning Benchmarks (Sec

4.4.2)

Environment: We use the Hopper-v2, Ant-v2, HalfCheetah-v2, Walker2d-v2

environments from OpenAI Gym.

Expert Samples: We use SAC to train expert policies for each environment.

SAC uses the same policy and critic networks, and the learning rate as section A.2.1.

We train using a batch size of 100, a replay buffer of size 1 million, and set the

temperature parameter α to be 0.2. The policy is trained for 1 million timesteps on

Hopper, and for 3 million timesteps on the other environments. All algorithms are

tested on 1, 4, and 16 trajectories collected from the expert stochastic policy.

Training Details: We train f -IRL, Behavior Cloning (BC), MaxEntIRL, AIRL,

and f -MAX-RKL to imitate the expert using the provided expert trajectories.

We train f -IRL using Algorithm 1. Since we have access to expert samples, we

use the practical modification described in section 4.3.4 for training f -IRL, where we

feed a mixture of 10 agent and 10 expert trajectories (resampled with replacement

from provided expert trajectories) into the reward objective.

SAC uses the same hyperparameters used for training expert policies. Similar to

the previous section, we warm-start the SAC policy and critic using trained networks

from previous iterations, and train them for 10 episodes. At each iteration, we update

the reward parameters once using Adam optimizer. For the reward network of f -IRL

and MaxEntIRL, we use the same reward structure as section A.2.1 with the learning

rate of 0.0001, and `2 weight decay of 0.001. We take one gradient step for the reward

3https://github.com/gregversteeg/NPEET

46

https://github.com/gregversteeg/NPEET

A. Inverse Reinforcement Learning using State Marginal Matching

update.

MaxEntIRL is trained in the standard manner, where the expert samples are used

for estimating reward gradient.

For Behavior cloning, we use the expert state-action pairs to learn a stochastic

policy that maximizes the likelihood on expert data. The policy network is same as

the one used in SAC for training expert policies.

For f -MAX-RKL and AIRL, we tuned the hyperparameters based on the code

provided by f -MAX that is used for state-action marginal matching in Mujoco

benchmarks. For f -MAX-RKL, we fix SAC temperature α = 0.2, and tuned reward

scale c and gradient penalty coefficient λ suggested by the authors, and found that

c = 0.2, λ = 4.0 worked for {Ant, Hopper, Walker2d} with the normalization in each

dimension of states and with a replay buffer of size 200000. However, for HalfCheetah,

we found it only worked with c = 2.0, λ = 2.0 without normalization in states and with

a replay buffer of size 20000. For the other hyperparameters and training schedule,

we keep them same as f -MAX original code: e.g. the discriminator is parameterized

as a two-layer MLP of hidden size 128 with tanh activation and the output clipped

within [-10,10]; the discriminator and policy are alternatively trained once for 100

iterations per 1000 environment timesteps.

For AIRL, we re-implement a version that uses SAC as the underlying RL algorithm

for a fair comparison, whereas the original paper uses TRPO. Both the reward and the

value model are parameterized as a two-layer MLP of hidden size 256 and use ReLU

as the activation function. For SAC training, we tune the learning rates and replay

buffer sizes for different environments, but find it cannot work on all environments

other than HalfCheetah even after tremendous tuning. For reward and value model

training, we tune the learning rate for different environments. These hyper-parameters

are summarized in table A.1. We set α = 1 in SAC for all environments. For every

1000 environment steps, we alternatively train the policy and the reward/value model

once, using a batch size of 100 and 256.

Evaluation: We compare the trained policies by f -IRL, BC, MaxEntIRL, AIRL,

and f -MAX-RKL by computing their returns according to the ground truth return

on each environment. We report the mean of their performance across 3 seeds.

For the IRL methods, f -IRL, MaxEntIRL, and AIRL, we also evaluate the learned

reward functions. We train SAC on the learned rewards, and evaluate the performance

47

A. Inverse Reinforcement Learning using State Marginal Matching

Hyper-parameter Ant Hopper Walker HalfCheetah
SAC learning rate 3e− 4 1e− 5 1e− 5 3e− 4

SAC replay buffer size 1000000 1000000 1000000 10000
Reward/Value model learning rate 1e− 4 1e− 5 1e− 5 1e− 4

Table A.1: AIRL IRL benchmarks task-specific hyper-parameters.

of learned policies according to ground-truth rewards.

A.2.3 Reward Prior for Downstream Hard-exploration

Tasks (Sec 4.4.3.1)

Environment: The pointmass environment has 2D square state space with range

[0, 6]2, and 2D actions that control the delta movement of the agent in each dimension.

The agent starts from the bottom left corner at coordinate (0, 0).

Task Details: We designed a hard-to-explore task for the pointmass. The grid

size is 6 × 6, the agent is always born at [0, 0], and the goal is to reach the region

[5.95, 6]× [5.95, 6]. The time horizon is T = 30. The agent only receives a reward of 1

if it reaches the goal region. To make the task more difficult, we add two distraction

goals: one is at [5.95, 6]× [0, 0.05], and the other at [0, 0.05]× [5.95, 6]. The agent

receives a reward of 0.1 if it reaches one of these distraction goals. Vanilla SAC always

converges to reaching one of the distraction goals instead of the real goal.

Training Details: We use SAC as the RL algorithm. We train SAC for 270

episodes, with a batch size of 256, a learning rate of 0.003, and a replay buffer size of

12000. To encourage the exploration of SAC, we use a random policy for the first 100

episodes.

A.2.4 Reward Transfer across Changing Dynamics (Sec

4.4.3.2)

Environment: In this experiment, we use Mujoco to simulate a healthy Ant, and

a disabled Ant with two broken legs (Figure A.1). We use the code provided by

Fu et al. [18]. Note that this Ant environment is a slightly modified version of the

Ant-v2 available in OpenAI gym.

48

A. Inverse Reinforcement Learning using State Marginal Matching

Figure A.1: Top row: A healthy Ant executing a forward walk. Bottom row: A
successful transfer of walking behavior to disabled Ant with 2 legs active. The disabled
Ant learns to use the two disabled legs as support and crawl forward, executing a
very different gait than previously seen in healthy Ant.

Expert Samples: We use SAC to obtain a forward-running policy for the Ant.

We use the same network structure and training parameters as section A.2.2 for

training this policy. We use 16 trajectories from this policy as expert demonstrations

for the task.

Training Details: We train f -IRL and MaxEntIRL using the same network

structure and training parameters as section A.2.2. We also run AIRL, but couldn’t

match the performance reported in Fu et al. [18].

Evaluation: We evaluate f -IRL and MaxEntIRL by training a policy on their

learned rewards using SAC. We report the return of this policy on the disabled Ant

environment according to the ground-truth reward for forward-running task. Note

that we directly report results for policy transfer using GAIL, and AIRL from Fu

et al. [18].

49

A. Inverse Reinforcement Learning using State Marginal Matching

50

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the twenty-first international conference on
Machine learning, page 1, 2004. 2.2, 4.1

[2] Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence
of one distribution from another. Journal of the Royal Statistical Society: Series
B (Methodological), 28(1):131–142, 1966. 4.2, A.1.2

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017. A.1.3, A.1.3

[4] Stuart Armstrong and Sören Mindermann. Occam’s razor is insufficient to infer
the preferences of irrational agents. arXiv preprint arXiv:1712.05812, 2017. 2.3

[5] Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration.
In ICML, volume 97, pages 12–20. Citeseer, 1997. 4.1

[6] Monica Babes, Vukosi N Marivate, Kaushik Subramanian, and Michael L Littman.
Apprenticeship learning about multiple intentions. In ICML, 2011. 2.2

[7] Michael Bain and Claude Sammut. A framework for behavioural cloning. In
Machine Intelligence 15, pages 103–129, 1995. 4.1

[8] Chris Baker, Rebecca Saxe, and Joshua Tenenbaum. Bayesian theory of mind:
Modeling joint belief-desire attribution. In Proceedings of the annual meeting of
the cognitive science society, volume 33, 2011. 2.1

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016. 4.4, A.2.1

[10] Chris Cundy and Daniel Filan. Exploring hierarchy-aware inverse reinforcement
learning. arXiv preprint arXiv:1807.05037, 2018. 2.2

[11] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin
Paduraru, and Yuval Tassa. Safe exploration in continuous action spaces. arXiv
preprint arXiv:1801.08757, 2018. 4.1

[12] Christos Dimitrakakis and Constantin A Rothkopf. Bayesian multitask inverse

51

Bibliography

reinforcement learning. In European workshop on reinforcement learning, pages
273–284. Springer, 2011. 2.2

[13] Owain Evans and Noah D Goodman. Learning the preferences of bounded agents.
In NIPS Workshop on Bounded Optimality, volume 6, 2015. 2.1

[14] Owain Evans, Andreas Stuhlmüller, and Noah Goodman. Learning the prefer-
ences of ignorant, inconsistent agents. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016. 2.1

[15] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection
between generative adversarial networks, inverse reinforcement learning, and
energy-based models. arXiv preprint arXiv:1611.03852, 2016. 2.2

[16] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep
inverse optimal control via policy optimization. In International conference on
machine learning, pages 49–58, 2016. 2.2, 4.3.4

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In International Conference on Machine
Learning, pages 1126–1135. PMLR, 2017. 2.4

[18] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adver-
sarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017. 2.2,
4.1, 4.3.3, 4.3.3, 4.4, 2, 4.4.3, A.1.4, A.2.4

[19] Seyed Kamyar Seyed Ghasemipour, Shixiang Gu, and Richard Zemel. Smile:
Scalable meta inverse reinforcement learning through context-conditional policies.
2019. 2.4

[20] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A diver-
gence minimization perspective on imitation learning methods. arXiv preprint
arXiv:1911.02256, 2019. 4.1, 4.2, 4.4, 2, 4.4.3, A.2.1

[21] Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. Transformer
networks for trajectory forecasting, 2020. URL https://arxiv.org/abs/2003.

08111. 2.3

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing systems, pages 2672–2680,
2014. 2.2, 4.3.2

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018. 4.4

[24] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan.
Cooperative inverse reinforcement learning. In Advances in neural information

52

https://arxiv.org/abs/2003.08111
https://arxiv.org/abs/2003.08111

Bibliography

processing systems, pages 3909–3917, 2016. 4.1

[25] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. Deep reinforcement learning that matters. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018. 4.1

[26] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in neural information processing systems, pages 4565–4573, 2016. 4.1,
4.4, 4.4.3

[27] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor
skills for legged robots. Science Robotics, 4(26):eaau5872, 2019. 4.1

[28] Shervin Javdani, Siddhartha S Srinivasa, and J Andrew Bagnell. Shared auton-
omy via hindsight optimization. Robotics science and systems: online proceedings,
2015, 2015. 3.1

[29] LF Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a
random vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987. A.2.1

[30] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating
mutual information. Physical review E, 69(6):066138, 2004. A.2.1

[31] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid
motor adaptation for legged robots. arXiv preprint arXiv:2107.04034, 2021. 3.1

[32] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and
Ruslan Salakhutdinov. Efficient exploration via state marginal matching. arXiv
preprint arXiv:1906.05274, 2019. 4.1, 4.2, 4.5

[33] Sergey Levine. Reinforcement learning and control as probabilistic inference:
Tutorial and review. arXiv preprint arXiv:1805.00909, 2018. 4.2

[34] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás
Póczos. Mmd gan: Towards deeper understanding of moment matching network.
In Advances in Neural Information Processing Systems, pages 2203–2213, 2017.
A.1.3

[35] Chang Liu, Jessica B Hamrick, Jaime F Fisac, Anca D Dragan, J Karl Hedrick,
S Shankar Sastry, and Thomas L Griffiths. Goal inference improves objec-
tive and perceived performance in human-robot collaboration. arXiv preprint
arXiv:1802.01780, 2018. 3.1

[36] Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based
imitation learning. arXiv preprint arXiv:1911.10947, 2019. 4.4.2

[37] Minghuan Liu, Tairan He, Minkai Xu, and Weinan Zhang. Energy-based imitation
learning. arXiv preprint arXiv:2004.09395, 2020. 2.2, 4.4.2

[38] Negar Mehr, Roberto Horowitz, and Anca D Dragan. Inferring and assisting

53

Bibliography

with constraints in shared autonomy. In 2016 IEEE 55th Conference on Decision
and Control (CDC), pages 6689–6696. IEEE, 2016. 3.1

[39] Bernard Michini and Jonathan P How. Bayesian nonparametric inverse reinforce-
ment learning. In Joint European conference on machine learning and knowledge
discovery in databases, pages 148–163. Springer, 2012. 2.2

[40] Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita Cucchiara. Dag-net:
Double attentive graph neural network for trajectory forecasting, 2020. URL
https://arxiv.org/abs/2005.12661. 2.3

[41] Alfred Müller. Integral probability metrics and their generating classes of
functions. Advances in Applied Probability, pages 429–443, 1997. A.1.3

[42] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In ICML,
volume 99, pages 278–287, 1999. 4.3.3, 4.4.3

[43] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, volume 1, pages 663–670, 2000. 2.2, 4.1

[44] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning
algorithms. arXiv preprint arXiv:1803.02999, 2018. 2.4

[45] Stefanos Nikolaidis, Keren Gu, Ramya Ramakrishnan, and Julie Shah. Efficient
model learning for human-robot collaborative tasks. arxiv, 2014. 3.1

[46] Takayuki Osa, Naohiko Sugita, and Mamoru Mitsuishi. Online trajectory plan-
ning and force control for automation of surgical tasks. IEEE Transactions on
Automation Science and Engineering, 15(2):675–691, 2017. 4.1

[47] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
In Advances in neural information processing systems, pages 305–313, 1989. 4.1

[48] Ahmed H Qureshi, Byron Boots, and Michael C Yip. Adversarial imitation
via variational inverse reinforcement learning. arXiv preprint arXiv:1809.06404,
2018. 2.2

[49] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami,
and Matthew Botvinick. Machine theory of mind. In International conference
on machine learning, pages 4218–4227. PMLR, 2018. 2.1

[50] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning.
In IJCAI, volume 7, pages 2586–2591, 2007. 2.2

[51] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum
margin planning. In Proceedings of the 23rd international conference on Machine
learning, pages 729–736, 2006. 2.2

[52] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared autonomy via
deep reinforcement learning. arXiv preprint arXiv:1802.01744, 2018. 3.1

54

https://arxiv.org/abs/2005.12661

Bibliography

[53] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Where do you think
you’re going?: Inferring beliefs about dynamics from behavior. arXiv preprint
arXiv:1805.08010, 2018. 2.1

[54] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 661–668, 2010. 4.1

[55] Stuart Russell. Learning agents for uncertain environments. In Proceedings of
the eleventh annual conference on Computational learning theory, pages 101–103,
1998. 2.2, 4.1

[56] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active
preference-based learning of reward functions. 2017. 2.2

[57] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on machine
learning, pages 1889–1897, 2015. 4.4

[58] Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. On the feasi-
bility of learning, rather than assuming, human biases for reward inference. In
International Conference on Machine Learning, pages 5670–5679. PMLR, 2019.
2.3

[59] Shashank Singh and Barnabás Póczos. Analysis of k-nearest neighbor distances
with application to entropy estimation. arXiv preprint arXiv:1603.08578, 2016.
A.2.1

[60] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for
few-shot learning. arXiv preprint arXiv:1703.05175, 2017. 2.4

[61] Adrian Šošić, Abdelhak M Zoubir, and Heinz Koeppl. Inverse reinforcement
learning via nonparametric subgoal modeling. In 2018 AAAI Spring Symposium
Series, 2018. 2.2

[62] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. 4.4

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.
2.3

[64] Greg Ver Steeg. Non-parametric entropy estimation toolbox (npeet). 2000. A.2.1

[65] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &
Business Media, 2008. A.1.3

[66] Ruohan Wang, Carlo Ciliberto, Pierluigi Amadori, and Yiannis Demiris. Random

55

Bibliography

expert distillation: Imitation learning via expert policy support estimation. arXiv
preprint arXiv:1905.06750, 2019. 2.2

[67] Heinz Wimmer and Josef Perner. Beliefs about beliefs: Representation and
constraining function of wrong beliefs in young children’s understanding of
deception. Cognition, 13(1):103–128, 1983. 2.1

[68] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy
deep inverse reinforcement learning. arXiv preprint arXiv:1507.04888, 2015. 2.2

[69] Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning
a prior over intent via meta-inverse reinforcement learning. In International
Conference on Machine Learning, pages 6952–6962. PMLR, 2019. 2.4

[70] Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. Meta-inverse
reinforcement learning with probabilistic context variables. arXiv preprint
arXiv:1909.09314, 2019. 2.4

[71] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of
maximum causal entropy. 2010. 3.1, 4.2, A.1.1

[72] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008. 2.2, 4.4

56

	1 Introduction
	2 Background
	2.1 Theory of Mind
	2.2 Inverse Reinforcement Learning
	2.3 Trajectory Prediction
	2.4 Adaptive Models

	3 Adaptive Models for Human Intent Prediction
	3.1 Introduction
	3.2 Method
	3.2.1 Faux-human Agents
	3.2.2 Adaptive Models

	3.3 Study Design
	3.4 Experiments
	3.5 Results
	3.6 Conclusion

	4 Inverse Reinforcement Learning via State Marginal Matching
	4.1 Introduction
	4.2 Preliminaries
	4.3 Learning Stationary Rewards via State-Marginal Matching
	4.3.1 Analytic Gradient for State Marginal Matching in f-divergence
	4.3.2 Learning a Stationary Reward by Gradient Descent
	4.3.3 Robust Reward Recovery under State-only Ground-truth Reward
	4.3.4 Practical Modification in the Exact Gradient

	4.4 Experiments
	4.4.1 Matching the Specified Expert State Density
	4.4.2 Inverse Reinforcement Learning Benchmarks
	4.4.3 Using the Learned Stationary Reward for Downstream Tasks

	4.5 Conclusion

	5 Conclusions
	A Inverse Reinforcement Learning using State Marginal Matching
	A.1 Derivation and Proof
	A.1.1 Analytical Gradient of State Marginal Distribution
	A.1.2 Analytical Gradient of f-divergence objective
	A.1.3 Extension to Integral Probability Metrics in f-IRL
	A.1.4 f-IRL Learns Disentangled Rewards w.r.t. Dynamics

	A.2 Implementation Details
	A.2.1 Matching the Specified Expert State Density on Reacher (Sec 4.4.1)
	A.2.2 Inverse Reinforcement Learning Benchmarks (Sec 4.4.2)
	A.2.3 Reward Prior for Downstream Hard-exploration Tasks (Sec 4.4.3.1)
	A.2.4 Reward Transfer across Changing Dynamics (Sec 4.4.3.2)

	Bibliography

